Ada lebih banyak AWS SDK contoh yang tersedia di GitHub repo SDKContoh AWS Dokumen
Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.
Gunakan IndexFaces
dengan AWS SDK atau CLI
Contoh kode berikut menunjukkan cara menggunakanIndexFaces
.
Untuk informasi selengkapnya, lihat Menambahkan wajah ke koleksi.
- .NET
-
- AWS SDK for .NET
-
catatan
Ada lebih banyak tentang GitHub. Temukan contoh lengkapnya dan pelajari cara pengaturan dan menjalankannya di Repositori Contoh Kode AWS
. using System; using System.Collections.Generic; using System.Threading.Tasks; using Amazon.Rekognition; using Amazon.Rekognition.Model; /// <summary> /// Uses the Amazon Rekognition Service to detect faces in an image /// that has been uploaded to an Amazon Simple Storage Service (Amazon S3) /// bucket and then adds the information to a collection. /// </summary> public class AddFaces { public static async Task Main() { string collectionId = "MyCollection2"; string bucket = "amzn-s3-demo-bucket"; string photo = "input.jpg"; var rekognitionClient = new AmazonRekognitionClient(); var image = new Image { S3Object = new S3Object { Bucket = bucket, Name = photo, }, }; var indexFacesRequest = new IndexFacesRequest { Image = image, CollectionId = collectionId, ExternalImageId = photo, DetectionAttributes = new List<string>() { "ALL" }, }; IndexFacesResponse indexFacesResponse = await rekognitionClient.IndexFacesAsync(indexFacesRequest); Console.WriteLine($"{photo} added"); foreach (FaceRecord faceRecord in indexFacesResponse.FaceRecords) { Console.WriteLine($"Face detected: Faceid is {faceRecord.Face.FaceId}"); } } }
-
Untuk API detailnya, lihat IndexFacesdi AWS SDK for .NET APIReferensi.
-
- CLI
-
- AWS CLI
-
Untuk menambahkan wajah ke koleksi
index-faces
Perintah berikut menambahkan wajah yang ditemukan dalam gambar ke koleksi yang ditentukan.aws rekognition index-faces \ --image '
{"S3Object":{"Bucket":"MyVideoS3Bucket","Name":"MyPicture.jpg"}}
' \ --collection-idMyCollection
\ --max-faces1
\ --quality-filter"AUTO"
\ --detection-attributes"ALL"
\ --external-image-id"MyPicture.jpg"
Output:
{ "FaceRecords": [ { "FaceDetail": { "Confidence": 99.993408203125, "Eyeglasses": { "Confidence": 99.11750030517578, "Value": false }, "Sunglasses": { "Confidence": 99.98249053955078, "Value": false }, "Gender": { "Confidence": 99.92769622802734, "Value": "Male" }, "Landmarks": [ { "Y": 0.26750367879867554, "X": 0.6202793717384338, "Type": "eyeLeft" }, { "Y": 0.26642778515815735, "X": 0.6787431836128235, "Type": "eyeRight" }, { "Y": 0.31361380219459534, "X": 0.6421601176261902, "Type": "nose" }, { "Y": 0.3495299220085144, "X": 0.6216195225715637, "Type": "mouthLeft" }, { "Y": 0.35194727778434753, "X": 0.669899046421051, "Type": "mouthRight" }, { "Y": 0.26844894886016846, "X": 0.6210268139839172, "Type": "leftPupil" }, { "Y": 0.26707562804222107, "X": 0.6817160844802856, "Type": "rightPupil" }, { "Y": 0.24834522604942322, "X": 0.6018546223640442, "Type": "leftEyeBrowLeft" }, { "Y": 0.24397172033786774, "X": 0.6172008514404297, "Type": "leftEyeBrowUp" }, { "Y": 0.24677404761314392, "X": 0.6339119076728821, "Type": "leftEyeBrowRight" }, { "Y": 0.24582654237747192, "X": 0.6619398593902588, "Type": "rightEyeBrowLeft" }, { "Y": 0.23973053693771362, "X": 0.6804757118225098, "Type": "rightEyeBrowUp" }, { "Y": 0.24441994726657867, "X": 0.6978968977928162, "Type": "rightEyeBrowRight" }, { "Y": 0.2695908546447754, "X": 0.6085202693939209, "Type": "leftEyeLeft" }, { "Y": 0.26716896891593933, "X": 0.6315826177597046, "Type": "leftEyeRight" }, { "Y": 0.26289820671081543, "X": 0.6202316880226135, "Type": "leftEyeUp" }, { "Y": 0.27123287320137024, "X": 0.6205548048019409, "Type": "leftEyeDown" }, { "Y": 0.2668408751487732, "X": 0.6663622260093689, "Type": "rightEyeLeft" }, { "Y": 0.26741549372673035, "X": 0.6910083889961243, "Type": "rightEyeRight" }, { "Y": 0.2614026665687561, "X": 0.6785826086997986, "Type": "rightEyeUp" }, { "Y": 0.27075251936912537, "X": 0.6789616942405701, "Type": "rightEyeDown" }, { "Y": 0.3211299479007721, "X": 0.6324167847633362, "Type": "noseLeft" }, { "Y": 0.32276326417922974, "X": 0.6558475494384766, "Type": "noseRight" }, { "Y": 0.34385165572166443, "X": 0.6444970965385437, "Type": "mouthUp" }, { "Y": 0.3671635091304779, "X": 0.6459195017814636, "Type": "mouthDown" } ], "Pose": { "Yaw": -9.54541015625, "Roll": -0.5709401965141296, "Pitch": 0.6045494675636292 }, "Emotions": [ { "Confidence": 39.90074157714844, "Type": "HAPPY" }, { "Confidence": 23.38753890991211, "Type": "CALM" }, { "Confidence": 5.840933322906494, "Type": "CONFUSED" } ], "AgeRange": { "High": 63, "Low": 45 }, "EyesOpen": { "Confidence": 99.80887603759766, "Value": true }, "BoundingBox": { "Width": 0.18562500178813934, "Top": 0.1618015021085739, "Left": 0.5575000047683716, "Height": 0.24770642817020416 }, "Smile": { "Confidence": 99.69740295410156, "Value": false }, "MouthOpen": { "Confidence": 99.97393798828125, "Value": false }, "Quality": { "Sharpness": 95.54405975341797, "Brightness": 63.867706298828125 }, "Mustache": { "Confidence": 97.05007934570312, "Value": false }, "Beard": { "Confidence": 87.34505462646484, "Value": false } }, "Face": { "BoundingBox": { "Width": 0.18562500178813934, "Top": 0.1618015021085739, "Left": 0.5575000047683716, "Height": 0.24770642817020416 }, "FaceId": "ce7ed422-2132-4a11-ab14-06c5c410f29f", "ExternalImageId": "example-image.jpg", "Confidence": 99.993408203125, "ImageId": "8d67061e-90d2-598f-9fbd-29c8497039c0" } } ], "UnindexedFaces": [], "FaceModelVersion": "3.0", "OrientationCorrection": "ROTATE_0" }
Untuk informasi selengkapnya, lihat Menambahkan Wajah ke Koleksi di Panduan Pengembang Rekognition Amazon.
-
Untuk API detailnya, lihat IndexFaces
di Referensi AWS CLI Perintah.
-
- Java
-
- SDKuntuk Java 2.x
-
catatan
Ada lebih banyak tentang GitHub. Temukan contoh lengkapnya dan pelajari cara pengaturan dan menjalankannya di Repositori Contoh Kode AWS
. import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.IndexFacesResponse; import software.amazon.awssdk.services.rekognition.model.IndexFacesRequest; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.QualityFilter; import software.amazon.awssdk.services.rekognition.model.Attribute; import software.amazon.awssdk.services.rekognition.model.FaceRecord; import software.amazon.awssdk.services.rekognition.model.UnindexedFace; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.Reason; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class AddFacesToCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> <sourceImage> Where: collectionName - The name of the collection. sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; String sourceImage = args[1]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); addToCollection(rekClient, collectionId, sourceImage); rekClient.close(); } public static void addToCollection(RekognitionClient rekClient, String collectionId, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); Image souImage = Image.builder() .bytes(sourceBytes) .build(); IndexFacesRequest facesRequest = IndexFacesRequest.builder() .collectionId(collectionId) .image(souImage) .maxFaces(1) .qualityFilter(QualityFilter.AUTO) .detectionAttributes(Attribute.DEFAULT) .build(); IndexFacesResponse facesResponse = rekClient.indexFaces(facesRequest); System.out.println("Results for the image"); System.out.println("\n Faces indexed:"); List<FaceRecord> faceRecords = facesResponse.faceRecords(); for (FaceRecord faceRecord : faceRecords) { System.out.println(" Face ID: " + faceRecord.face().faceId()); System.out.println(" Location:" + faceRecord.faceDetail().boundingBox().toString()); } List<UnindexedFace> unindexedFaces = facesResponse.unindexedFaces(); System.out.println("Faces not indexed:"); for (UnindexedFace unindexedFace : unindexedFaces) { System.out.println(" Location:" + unindexedFace.faceDetail().boundingBox().toString()); System.out.println(" Reasons:"); for (Reason reason : unindexedFace.reasons()) { System.out.println("Reason: " + reason); } } } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
Untuk API detailnya, lihat IndexFacesdi AWS SDK for Java 2.x APIReferensi.
-
- Kotlin
-
- SDKuntuk Kotlin
-
catatan
Ada lebih banyak tentang GitHub. Temukan contoh lengkapnya dan pelajari cara pengaturan dan menjalankannya di Repositori Contoh Kode AWS
. suspend fun addToCollection( collectionIdVal: String?, sourceImage: String, ) { val souImage = Image { bytes = (File(sourceImage).readBytes()) } val request = IndexFacesRequest { collectionId = collectionIdVal image = souImage maxFaces = 1 qualityFilter = QualityFilter.Auto detectionAttributes = listOf(Attribute.Default) } RekognitionClient { region = "us-east-1" }.use { rekClient -> val facesResponse = rekClient.indexFaces(request) // Display the results. println("Results for the image") println("\n Faces indexed:") facesResponse.faceRecords?.forEach { faceRecord -> println("Face ID: ${faceRecord.face?.faceId}") println("Location: ${faceRecord.faceDetail?.boundingBox}") } println("Faces not indexed:") facesResponse.unindexedFaces?.forEach { unindexedFace -> println("Location: ${unindexedFace.faceDetail?.boundingBox}") println("Reasons:") unindexedFace.reasons?.forEach { reason -> println("Reason: $reason") } } } }
-
Untuk API detailnya, lihat IndexFaces AWS
SDKAPIreferensi Kotlin.
-
- Python
-
- SDKuntuk Python (Boto3)
-
catatan
Ada lebih banyak tentang GitHub. Temukan contoh lengkapnya dan pelajari cara pengaturan dan menjalankannya di Repositori Contoh Kode AWS
. class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def index_faces(self, image, max_faces): """ Finds faces in the specified image, indexes them, and stores them in the collection. :param image: The image to index. :param max_faces: The maximum number of faces to index. :return: A tuple. The first element is a list of indexed faces. The second element is a list of faces that couldn't be indexed. """ try: response = self.rekognition_client.index_faces( CollectionId=self.collection_id, Image=image.image, ExternalImageId=image.image_name, MaxFaces=max_faces, DetectionAttributes=["ALL"], ) indexed_faces = [ RekognitionFace({**face["Face"], **face["FaceDetail"]}) for face in response["FaceRecords"] ] unindexed_faces = [ RekognitionFace(face["FaceDetail"]) for face in response["UnindexedFaces"] ] logger.info( "Indexed %s faces in %s. Could not index %s faces.", len(indexed_faces), image.image_name, len(unindexed_faces), ) except ClientError: logger.exception("Couldn't index faces in image %s.", image.image_name) raise else: return indexed_faces, unindexed_faces
-
Untuk API detailnya, lihat IndexFaces AWSSDKReferensi Python (Boto3). API
-