CPU Inference - AWS Deep Learning Containers

CPU Inference

This section guides you on running inference on Deep Learning Containers for EKS CPU clusters using PyTorch, and TensorFlow.

For a complete list of Deep Learning Containers, see Available Deep Learning Containers Images.

PyTorch CPU inference

In this approach, you create a Kubernetes Service and a Deployment to run CPU inference with PyTorch. The Kubernetes Service exposes a process and its ports. When you create a Kubernetes Service, you can specify the kind of Service you want using ServiceTypes. The default ServiceType is ClusterIP. The Deployment is responsible for ensuring that a certain number of pods is always up and running.

  1. Create the namespace. You may need to change the kubeconfig to point to the right cluster. Verify that you have setup a "training-cpu-1" or change this to your CPU cluster's config. For more information on setting up your cluster, see Amazon EKS Setup.

    $ NAMESPACE=pt-inference; kubectl create namespace ${NAMESPACE}
  2. (Optional step when using public models.) Setup your model at a network location that is mountable, like in Amazon S3. For information on how to upload a trained model to S3, see TensorFlow CPU inference. Apply the secret to your namespace. For more information on secrets, see the Kubernetes Secrets documentation.

    $ kubectl -n ${NAMESPACE} apply -f secret.yaml
  3. Create a file named pt_inference.yaml with the following content. This example file specifies the model, PyTorch inference image used, and the location of the model. This example uses a public model, so you don't need to modify it.

    --- kind: Service apiVersion: v1 metadata: name: densenet-service labels: app: densenet-service spec: ports: - port: 8080 targetPort: mms selector: app: densenet-service --- kind: Deployment apiVersion: apps/v1 metadata: name: densenet-service labels: app: densenet-service spec: replicas: 1 selector: matchLabels: app: densenet-service template: metadata: labels: app: densenet-service spec: containers: - name: densenet-service image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-inference:1.3.1-cpu-py36-ubuntu16.04 args: - multi-model-server - --start - --mms-config /home/model-server/config.properties - --models densenet=https://dlc-samples.s3.amazonaws.com/pytorch/multi-model-server/densenet/densenet.mar ports: - name: mms containerPort: 8080 - name: mms-management containerPort: 8081 imagePullPolicy: IfNotPresent
  4. Apply the configuration to a new pod in the previously defined namespace.

    $ kubectl -n ${NAMESPACE} apply -f pt_inference.yaml

    Your output should be similar to the following:

    service/densenet-service created deployment.apps/densenet-service created
  5. Check the status of the pod and wait for the pod to be in “RUNNING” state:

    $ kubectl get pods -n ${NAMESPACE} -w

    Your output should be similar to the following:

    NAME READY STATUS RESTARTS AGE densenet-service-xvw1 1/1 Running 0 3m
  6. To further describe the pod, run the following:

    $ kubectl describe pod <pod_name> -n ${NAMESPACE}
  7. Because the serviceType here is ClusterIP, you can forward the port from your container to your host machine.

    $ kubectl port-forward -n ${NAMESPACE} `kubectl get pods -n ${NAMESPACE} --selector=app=densenet-service -o jsonpath='{.items[0].metadata.name}'` 8080:8080 &
  8. With your server started, you can now run inference from a different window using the following:

    $ curl -O https://s3.amazonaws.com/model-server/inputs/flower.jpg curl -X POST http://127.0.0.1:8080/predictions/densenet -T flower.jpg

See EKS Cleanup for information on cleaning up a cluster after you're done using it.

TensorFlow CPU inference

In this tutorial, you create a Kubernetes Service and a Deployment to run CPU inference with TensorFlow. The Kubernetes Service exposes a process and its ports. When you create a Kubernetes Service, you can specify the kind of Service you want using ServiceTypes. The default ServiceType is ClusterIP. The Deployment is responsible for ensuring that a certain number of pods is always up and running.

  1. Create the namespace. You may need to change the kubeconfig to point to the right cluster. Verify that you have setup a "training-cpu-1" or change this to your CPU cluster's config. For more information on setting up your cluster, see Amazon EKS Setup.

    $ NAMESPACE=tf-inference; kubectl —kubeconfig=/home/ubuntu/.kube/eksctl/clusters/training-cpu-1 create namespace ${NAMESPACE}
  2. Models served for inference can be retrieved in different ways, such as using shared volumes and Amazon S3. Because the Kubernetes Service requires access to Amazon S3 and Amazon ECR, you must store your AWS credentials as a Kubernetes secret. For the purpose of this example, use S3 to store and fetch trained models.

    Verify your AWS credentials. They must have S3 write access.

    $ cat ~/.aws/credentials
  3. The output will be similar to the following:

    $ [default] aws_access_key_id = YOURACCESSKEYID aws_secret_access_key = YOURSECRETACCESSKEY
  4. Encode the credentials using base64.

    Encode the access key first.

    $ echo -n 'YOURACCESSKEYID' | base64

    Encode the secret access key next.

    $ echo -n 'YOURSECRETACCESSKEY' | base64

    Your output should look similar to the following:

    $ echo -n 'YOURACCESSKEYID' | base64 RkFLRUFXU0FDQ0VTU0tFWUlE $ echo -n 'YOURSECRETACCESSKEY' | base64 RkFLRUFXU1NFQ1JFVEFDQ0VTU0tFWQ==
  5. Create a file named secret.yaml with the following content in your home directory. This file is used to store the secret.

    apiVersion: v1 kind: Secret metadata: name: aws-s3-secret type: Opaque data: AWS_ACCESS_KEY_ID: YOURACCESSKEYID AWS_SECRET_ACCESS_KEY: YOURSECRETACCESSKEY
  6. Apply the secret to your namespace.

    $ kubectl -n ${NAMESPACE} apply -f secret.yaml
  7. Clone the tensorflow-serving repository.

    $ git clone https://github.com/tensorflow/serving/ $ cd serving/tensorflow_serving/servables/tensorflow/testdata/
  8. Sync the pretrained saved_model_half_plus_two_cpu model to your S3 bucket.

    $ aws s3 sync saved_model_half_plus_two_cpu s3://<your_s3_bucket>/saved_model_half_plus_two
  9. Create a file named tf_inference.yaml with the following content. Update --model_base_path to use your S3 bucket. You can use this with either TensorFlow or TensorFlow 2. To use it with TensorFlow 2, change the Docker image to a TensorFlow 2 image.

    --- kind: Service apiVersion: v1 metadata: name: half-plus-two labels: app: half-plus-two spec: ports: - name: http-tf-serving port: 8500 targetPort: 8500 - name: grpc-tf-serving port: 9000 targetPort: 9000 selector: app: half-plus-two role: master type: ClusterIP --- kind: Deployment apiVersion: apps/v1 metadata: name: half-plus-two labels: app: half-plus-two role: master spec: replicas: 1 selector: matchLabels: app: half-plus-two role: master template: metadata: labels: app: half-plus-two role: master spec: containers: - name: half-plus-two image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-inference:1.15.0-cpu-py36-ubuntu18.04 command: - /usr/bin/tensorflow_model_server args: - --port=9000 - --rest_api_port=8500 - --model_name=saved_model_half_plus_two - --model_base_path=s3://tensorflow-trained-models/saved_model_half_plus_two ports: - containerPort: 8500 - containerPort: 9000 imagePullPolicy: IfNotPresent env: - name: AWS_ACCESS_KEY_ID valueFrom: secretKeyRef: key: AWS_ACCESS_KEY_ID name: aws-s3-secret - name: AWS_SECRET_ACCESS_KEY valueFrom: secretKeyRef: key: AWS_SECRET_ACCESS_KEY name: aws-s3-secret - name: AWS_REGION value: us-east-1 - name: S3_USE_HTTPS value: "true" - name: S3_VERIFY_SSL value: "true" - name: S3_ENDPOINT value: s3.us-east-1.amazonaws.com
  10. Apply the configuration to a new pod in the previously defined namespace.

    $ kubectl -n ${NAMESPACE} apply -f tf_inference.yaml

    Your output should be similar to the following:

    service/half-plus-two created deployment.apps/half-plus-two created
  11. Check the status of the pod.

    $ kubectl get pods -n ${NAMESPACE}

    Repeat the status check until you see the following "RUNNING" state:

    NAME READY STATUS RESTARTS AGE half-plus-two-vmwp9 1/1 Running 0 3m
  12. To further describe the pod, you can run:

    $ kubectl describe pod <pod_name> -n ${NAMESPACE}
  13. Because the serviceType is ClusterIP, you can forward the port from your container to your host machine.

    $ kubectl port-forward -n ${NAMESPACE} `kubectl get pods -n ${NAMESPACE} --selector=app=half-plus-two -o jsonpath='{.items[0].metadata.name}'` 8500:8500 &
  14. Place the following json string in a file named half_plus_two_input.json

    {"instances": [1.0, 2.0, 5.0]}
  15. Run inference on the model.

    $ curl -d @half_plus_two_input.json -X POST http://localhost:8500/v1/models/saved_model_half_plus_two_cpu:predict

    Your output should look like the following:

    { "predictions": [2.5, 3.0, 4.5 ] }

Next steps

To learn about using Custom Entrypoints with Deep Learning Containers on Amazon EKS, see Custom Entrypoints.