Mengotomatiskan AWS Device Farm - AWSDevice Farm

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Mengotomatiskan AWS Device Farm

Akses terprogram ke Device Farm adalah cara ampuh untuk mengotomatiskan tugas-tugas umum yang perlu Anda selesaikan, seperti menjadwalkan proses atau mengunduh artefak untuk dijalankan, suite, atau pengujian. TheAWSSDK danAWS CLImenyediakan sarana untuk melakukannya.

TheAWSSDK menyediakan akses ke setiapAWSlayanan, termasuk Device Farm, Amazon S3, dan banyak lagi. Untuk informasi selengkapnya, lihat

Contoh: MenggunakanAWSSDK untuk memulai menjalankan Device Farm dan mengumpulkan artefak

Contoh berikut memberikan demonstrasi awal-ke-akhir tentang bagaimana Anda dapat menggunakanAWSSDK untuk bekerja dengan Device Farm. Contoh ini melakukan hal berikut:

  • Mengunggah paket pengujian dan aplikasi ke Device Farm

  • Memulai uji coba dan menunggu penyelesaiannya (atau kegagalan)

  • Mengunduh semua artefak yang diproduksi oleh suite uji

Contoh ini tergantung pada pihak ketigarequestspaket untuk berinteraksi dengan HTTP.

import boto3 import os import requests import string import random import time import datetime import time import json # The following script runs a test through Device Farm # # Things you have to change: config = { # This is our app under test. "appFilePath":"app-debug.apk", "projectArn": "arn:aws:devicefarm:us-west-2:111122223333:project:1b99bcff-1111-2222-ab2f-8c3c733c55ed", # Since we care about the most popular devices, we'll use a curated pool. "testSpecArn":"arn:aws:devicefarm:us-west-2::upload:101e31e8-12ac-11e9-ab14-d663bd873e83", "poolArn":"arn:aws:devicefarm:us-west-2::devicepool:082d10e5-d7d7-48a5-ba5c-b33d66efa1f5", "namePrefix":"MyAppTest", # This is our test package. This tutorial won't go into how to make these. "testPackage":"tests.zip" } client = boto3.client('devicefarm') unique = config['namePrefix']+"-"+(datetime.date.today().isoformat())+(''.join(random.sample(string.ascii_letters,8))) print(f"The unique identifier for this run is going to be {unique} -- all uploads will be prefixed with this.") def upload_df_file(filename, type_, mime='application/octet-stream'): response = client.create_upload(projectArn=config['projectArn'], name = (unique)+"_"+os.path.basename(filename), type=type_, contentType=mime ) # Get the upload ARN, which we'll return later. upload_arn = response['upload']['arn'] # We're going to extract the URL of the upload and use Requests to upload it upload_url = response['upload']['url'] with open(filename, 'rb') as file_stream: print(f"Uploading {filename} to Device Farm as {response['upload']['name']}... ",end='') put_req = requests.put(upload_url, data=file_stream, headers={"content-type":mime}) print(' done') if not put_req.ok: raise Exception("Couldn't upload, requests said we're not ok. Requests says: "+put_req.reason) started = datetime.datetime.now() while True: print(f"Upload of {filename} in state {response['upload']['status']} after "+str(datetime.datetime.now() - started)) if response['upload']['status'] == 'FAILED': raise Exception("The upload failed processing. DeviceFarm says reason is: \n"+(response['upload']['message'] if 'message' in response['upload'] else response['upload']['metadata'])) if response['upload']['status'] == 'SUCCEEDED': break time.sleep(5) response = client.get_upload(arn=upload_arn) print("") return upload_arn our_upload_arn = upload_df_file(config['appFilePath'], "ANDROID_APP") our_test_package_arn = upload_df_file(config['testPackage'], 'APPIUM_PYTHON_TEST_PACKAGE') print(our_upload_arn, our_test_package_arn) # Now that we have those out of the way, we can start the test run... response = client.schedule_run( projectArn = config["projectArn"], appArn = our_upload_arn, devicePoolArn = config["poolArn"], name=unique, test = { "type":"APPIUM_PYTHON", "testSpecArn": config["testSpecArn"], "testPackageArn": our_test_package_arn } ) run_arn = response['run']['arn'] start_time = datetime.datetime.now() print(f"Run {unique} is scheduled as arn {run_arn} ") try: while True: response = client.get_run(arn=run_arn) state = response['run']['status'] if state == 'COMPLETED' or state == 'ERRORED': break else: print(f" Run {unique} in state {state}, total time "+str(datetime.datetime.now()-start_time)) time.sleep(10) except: # If something goes wrong in this process, we stop the run and exit. client.stop_run(arn=run_arn) exit(1) print(f"Tests finished in state {state} after "+str(datetime.datetime.now() - start_time)) # now, we pull all the logs. jobs_response = client.list_jobs(arn=run_arn) # Save the output somewhere. We're using the unique value, but you could use something else save_path = os.path.join(os.getcwd(), unique) os.mkdir(save_path) # Save the last run information for job in jobs_response['jobs'] : # Make a directory for our information job_name = job['name'] os.makedirs(os.path.join(save_path, job_name), exist_ok=True) # Get each suite within the job suites = client.list_suites(arn=job['arn'])['suites'] for suite in suites: for test in client.list_tests(arn=suite['arn'])['tests']: # Get the artifacts for artifact_type in ['FILE','SCREENSHOT','LOG']: artifacts = client.list_artifacts( type=artifact_type, arn = test['arn'] )['artifacts'] for artifact in artifacts: # We replace : because it has a special meaning in Windows & macos path_to = os.path.join(save_path, job_name, suite['name'], test['name'].replace(':','_') ) os.makedirs(path_to, exist_ok=True) filename = artifact['type']+"_"+artifact['name']+"."+artifact['extension'] artifact_save_path = os.path.join(path_to, filename) print("Downloading "+artifact_save_path) with open(artifact_save_path, 'wb') as fn, requests.get(artifact['url'],allow_redirects=True) as request: fn.write(request.content) #/for artifact in artifacts #/for artifact type in [] #/ for test in ()[] #/ for suite in suites #/ for job in _[] # done print("Finished")