Pilih preferensi cookie Anda

Kami menggunakan cookie penting serta alat serupa yang diperlukan untuk menyediakan situs dan layanan. Kami menggunakan cookie performa untuk mengumpulkan statistik anonim sehingga kami dapat memahami cara pelanggan menggunakan situs dan melakukan perbaikan. Cookie penting tidak dapat dinonaktifkan, tetapi Anda dapat mengklik “Kustom” atau “Tolak” untuk menolak cookie performa.

Jika Anda setuju, AWS dan pihak ketiga yang disetujui juga akan menggunakan cookie untuk menyediakan fitur situs yang berguna, mengingat preferensi Anda, dan menampilkan konten yang relevan, termasuk iklan yang relevan. Untuk menerima atau menolak semua cookie yang tidak penting, klik “Terima” atau “Tolak”. Untuk membuat pilihan yang lebih detail, klik “Kustomisasi”.

Masking data dinamis bersyarat - Amazon Redshift

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Masking data dinamis bersyarat

Anda dapat menutupi data di tingkat sel dengan membuat kebijakan masking dengan ekspresi kondisional dalam ekspresi masking. Misalnya, Anda dapat membuat kebijakan masking yang menerapkan masker berbeda ke nilai, bergantung pada nilai kolom lain di baris tersebut.

Berikut ini adalah contoh penggunaan masking data bersyarat untuk membuat dan melampirkan kebijakan masking yang sebagian menyunting nomor kartu kredit yang terlibat dalam penipuan, sementara sepenuhnya menyembunyikan semua nomor kartu kredit lainnya. Anda harus menjadi superuser atau memiliki sys:secadminperan untuk menjalankan contoh ini.

--Create an analyst role. CREATE ROLE analyst; --Create a credit card table. The table contains an is_fraud boolean column, --which is TRUE if the credit card number in that row was involved in a fraudulent transaction. CREATE TABLE credit_cards (id INT, is_fraud BOOLEAN, credit_card_number VARCHAR(16)); --Create a function that partially redacts credit card numbers. CREATE FUNCTION REDACT_CREDIT_CARD (credit_card VARCHAR(16)) RETURNS VARCHAR(16) IMMUTABLE AS $$ import re regexp = re.compile("^([0-9]{6})[0-9]{5,6}([0-9]{4})") match = regexp.search(credit_card) if match != None: first = match.group(1) last = match.group(2) else: first = "000000" last = "0000" return "{}XXXXX{}".format(first, last) $$ LANGUAGE plpythonu; --Create a masking policy that partially redacts credit card numbers if the is_fraud value for that row is TRUE, --and otherwise blanks out the credit card number completely. CREATE MASKING POLICY card_number_conditional_mask WITH (fraudulent BOOLEAN, pan varchar(16)) USING (CASE WHEN fraudulent THEN REDACT_CREDIT_CARD(pan) ELSE Null END); --Attach the masking policy to the credit_cards/analyst table/role pair. ATTACH MASKING POLICY card_number_conditional_mask ON credit_cards (credit_card_number) USING (is_fraud, credit_card_number) TO ROLE analyst PRIORITY 100;
PrivasiSyarat situsPreferensi cookie
© 2025, Amazon Web Services, Inc. atau afiliasinya. Semua hak dilindungi undang-undang.