Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.
Gunakan SageMakerEstimator dalam Pipa Spark
Anda dapat menggunakan org.apache.spark.ml.Estimator
estimator dan org.apache.spark.ml.Model
model, dan SageMakerEstimator
estimator dan SageMakerModel
model dalam org.apache.spark.ml.Pipeline
pipeline, seperti yang ditunjukkan pada contoh berikut:
import org.apache.spark.ml.Pipeline import org.apache.spark.ml.feature.PCA import org.apache.spark.sql.SparkSession import com.amazonaws.services.sagemaker.sparksdk.IAMRole import com.amazonaws.services.sagemaker.sparksdk.algorithms import com.amazonaws.services.sagemaker.sparksdk.algorithms.KMeansSageMakerEstimator val spark = SparkSession.builder.getOrCreate // load mnist data as a dataframe from libsvm val region = "us-east-1" val trainingData = spark.read.format("libsvm") .option("numFeatures", "784") .load(s"s3://sagemaker-sample-data-$region/spark/mnist/train/") val testData = spark.read.format("libsvm") .option("numFeatures", "784") .load(s"s3://sagemaker-sample-data-$region/spark/mnist/test/") // substitute your SageMaker IAM role here val roleArn = "arn:aws:iam::
account-id
:role/rolename
" val pcaEstimator = new PCA() .setInputCol("features") .setOutputCol("projectedFeatures") .setK(50) val kMeansSageMakerEstimator = new KMeansSageMakerEstimator( sagemakerRole = IAMRole(integTestingRole), requestRowSerializer = new ProtobufRequestRowSerializer(featuresColumnName = "projectedFeatures"), trainingSparkDataFormatOptions = Map("featuresColumnName" -> "projectedFeatures"), trainingInstanceType = "ml.p2.xlarge", trainingInstanceCount = 1, endpointInstanceType = "ml.c4.xlarge", endpointInitialInstanceCount = 1) .setK(10).setFeatureDim(50) val pipeline = new Pipeline().setStages(Array(pcaEstimator, kMeansSageMakerEstimator)) // train val pipelineModel = pipeline.fit(trainingData) val transformedData = pipelineModel.transform(testData) transformedData.show()
Parameter trainingSparkDataFormatOptions
mengonfigurasi Spark untuk membuat serial ke protobuf kolom "projectedFeatures" untuk pelatihan model. Selain itu, Spark membuat serial untuk membuat protobuf kolom “label” secara default.
Karena kita ingin membuat kesimpulan menggunakan kolom projectedFeatures "”, kita meneruskan nama kolom ke dalam kolom. ProtobufRequestRowSerializer
Contoh berikut menunjukkan transformasiDataFrame
:
+-----+--------------------+--------------------+-------------------+---------------+ |label| features| projectedFeatures|distance_to_cluster|closest_cluster| +-----+--------------------+--------------------+-------------------+---------------+ | 5.0|(784,[152,153,154...|[880.731433034386...| 1500.470703125| 0.0| | 0.0|(784,[127,128,129...|[1768.51722024166...| 1142.18359375| 4.0| | 4.0|(784,[160,161,162...|[704.949236329314...| 1386.246826171875| 9.0| | 1.0|(784,[158,159,160...|[-42.328192193771...| 1277.0736083984375| 5.0| | 9.0|(784,[208,209,210...|[374.043902028333...| 1211.00927734375| 3.0| | 2.0|(784,[155,156,157...|[941.267714528850...| 1496.157958984375| 8.0| | 1.0|(784,[124,125,126...|[30.2848596410594...| 1327.6766357421875| 5.0| | 3.0|(784,[151,152,153...|[1270.14374062052...| 1570.7674560546875| 0.0| | 1.0|(784,[152,153,154...|[-112.10792566485...| 1037.568359375| 5.0| | 4.0|(784,[134,135,161...|[452.068280676606...| 1165.1236572265625| 3.0| | 3.0|(784,[123,124,125...|[610.596447285397...| 1325.953369140625| 7.0| | 5.0|(784,[216,217,218...|[142.959601818422...| 1353.4930419921875| 5.0| | 3.0|(784,[143,144,145...|[1036.71862533658...| 1460.4315185546875| 7.0| | 6.0|(784,[72,73,74,99...|[996.740157435754...| 1159.8631591796875| 2.0| | 1.0|(784,[151,152,153...|[-107.26076167417...| 960.963623046875| 5.0| | 7.0|(784,[211,212,213...|[619.771820430940...| 1245.13623046875| 6.0| | 2.0|(784,[151,152,153...|[850.152101817161...| 1304.437744140625| 8.0| | 8.0|(784,[159,160,161...|[370.041887230547...| 1192.4781494140625| 0.0| | 6.0|(784,[100,101,102...|[546.674328209335...| 1277.0908203125| 2.0| | 9.0|(784,[209,210,211...|[-29.259112927426...| 1245.8182373046875| 6.0| +-----+--------------------+--------------------+-------------------+---------------+