Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.
Memahami opsi untuk mengevaluasi model bahasa besar dengan Clarify SageMaker
penting
Untuk menggunakan SageMaker Clarify Foundation Model Evaluations, Anda harus meningkatkan ke pengalaman Studio baru. Pada 30 November 2023, pengalaman Amazon SageMaker Studio sebelumnya sekarang bernama Amazon SageMaker Studio Classic. Fitur evaluasi pondasi hanya dapat digunakan dalam pengalaman yang diperbarui. Untuk informasi tentang cara memperbarui Studio, lihatMigrasi dari Amazon SageMaker Studio Classic. Untuk informasi tentang menggunakan aplikasi Studio Classic, lihatAmazon SageMaker Studio Klasik.
Menggunakan Amazon SageMaker Clarify Anda dapat mengevaluasi model bahasa besar (LLMs) dengan membuat pekerjaan evaluasi model. Pekerjaan evaluasi model memungkinkan Anda untuk mengevaluasi dan membandingkan metrik kualitas dan tanggung jawab model untuk model fondasi berbasis teks dari. JumpStart Pekerjaan evaluasi model juga mendukung penggunaan JumpStart model yang telah diterapkan ke titik akhir.
Anda dapat membuat pekerjaan evaluasi model menggunakan tiga pendekatan berbeda.
-
Buat pekerjaan evaluasi model otomatis di Studio - Pekerjaan evaluasi model otomatis memungkinkan Anda mengevaluasi kemampuan model dengan cepat untuk melakukan tugas. Anda dapat menyediakan kumpulan data prompt kustom Anda sendiri yang telah disesuaikan dengan kasus penggunaan tertentu, atau Anda dapat menggunakan kumpulan data bawaan yang tersedia.
-
Buat pekerjaan evaluasi model yang menggunakan pekerja manusia di Studio - Pekerjaan evaluasi model yang menggunakan pekerja manusia memungkinkan Anda untuk membawa masukan manusia ke proses evaluasi model. Mereka bisa menjadi karyawan perusahaan Anda atau sekelompok ahli materi pelajaran dari industri Anda.
-
Buat pekerjaan evaluasi model otomatis menggunakan
fmeval
perpustakaan — Membuat pekerjaan menggunakanfmeval
memberi Anda kontrol paling halus atas pekerjaan evaluasi model Anda. Ini juga mendukung penggunaan model LLMs di luar AWS atau tidak JumpStart berbasis dari layanan lain.
Pekerjaan evaluasi model mendukung kasus penggunaan umum LLMs seperti pembuatan teks, klasifikasi teks, tanya jawab, dan ringkasan teks.
-
Generasi terbuka — Produksi respons manusia alami terhadap teks yang tidak memiliki struktur yang telah ditentukan sebelumnya.
-
Ringkasan teks — Pembuatan ringkasan ringkas dan ringkas sambil mempertahankan makna dan informasi kunci yang terkandung dalam teks yang lebih besar.
-
Menjawab pertanyaan — Generasi respons yang relevan dan akurat terhadap prompt.
-
Klasifikasi — Menetapkan kategori, seperti label atau skor ke teks, berdasarkan kontennya.
Topik berikut menjelaskan tugas evaluasi model yang tersedia, dan jenis metrik yang dapat Anda gunakan. Mereka juga menjelaskan kumpulan data bawaan yang tersedia dan cara menentukan kumpulan data Anda sendiri.
Topik
- Apa itu evaluasi model pondasi?
- Memulai dengan evaluasi model
- Menggunakan kumpulan data yang cepat dan dimensi evaluasi yang tersedia dalam pekerjaan evaluasi model
- Buat pekerjaan evaluasi model yang menggunakan pekerja manusia
- Evaluasi model otomatis
- Memahami hasil pekerjaan evaluasi model Anda
- Sesuaikan alur kerja Anda menggunakan pustaka fmeval
- Tutorial notebook evaluasi model
- Mengatasi kesalahan saat membuat pekerjaan evaluasi model di Amazon SageMaker