Pilih preferensi cookie Anda

Kami menggunakan cookie penting serta alat serupa yang diperlukan untuk menyediakan situs dan layanan. Kami menggunakan cookie performa untuk mengumpulkan statistik anonim sehingga kami dapat memahami cara pelanggan menggunakan situs dan melakukan perbaikan. Cookie penting tidak dapat dinonaktifkan, tetapi Anda dapat mengklik “Kustom” atau “Tolak” untuk menolak cookie performa.

Jika Anda setuju, AWS dan pihak ketiga yang disetujui juga akan menggunakan cookie untuk menyediakan fitur situs yang berguna, mengingat preferensi Anda, dan menampilkan konten yang relevan, termasuk iklan yang relevan. Untuk menerima atau menolak semua cookie yang tidak penting, klik “Terima” atau “Tolak”. Untuk membuat pilihan yang lebih detail, klik “Kustomisasi”.

Buat Jadwal Pemantauan untuk Titik Akhir Real-time dengan Sumber Daya AWS CloudFormation Kustom

Mode fokus
Buat Jadwal Pemantauan untuk Titik Akhir Real-time dengan Sumber Daya AWS CloudFormation Kustom - Amazon SageMaker AI

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Jika Anda menggunakan titik akhir real-time, Anda dapat menggunakan sumber daya AWS CloudFormation khusus untuk membuat jadwal pemantauan. Sumber daya kustom ada di Python. Untuk menerapkannya, lihat Penerapan Python Lambda.

Sumber Daya Kustom

Mulailah dengan menambahkan sumber daya khusus ke AWS CloudFormation template Anda. Ini menunjuk ke AWS Lambda fungsi yang Anda buat di langkah berikutnya.

Sumber daya ini memungkinkan Anda untuk menyesuaikan parameter untuk jadwal pemantauan Anda dapat menambah atau menghapus lebih banyak parameter dengan memodifikasi AWS CloudFormation sumber daya dan fungsi Lambda dalam sumber daya contoh berikut.

{ "AWSTemplateFormatVersion": "2010-09-09", "Resources": { "MonitoringSchedule": { "Type": "Custom::MonitoringSchedule", "Version": "1.0", "Properties": { "ServiceToken": "arn:aws:lambda:us-west-2:111111111111:function:lambda-name", "ScheduleName": "YourScheduleName", "EndpointName": "YourEndpointName", "BaselineConstraintsUri": "s3://your-baseline-constraints/constraints.json", "BaselineStatisticsUri": "s3://your-baseline-stats/statistics.json", "PostAnalyticsProcessorSourceUri": "s3://your-post-processor/postprocessor.py", "RecordPreprocessorSourceUri": "s3://your-preprocessor/preprocessor.py", "InputLocalPath": "/opt/ml/processing/endpointdata", "OutputLocalPath": "/opt/ml/processing/localpath", "OutputS3URI": "s3://your-output-uri", "ImageURI": "111111111111.dkr.ecr.us-west-2.amazonaws.com/your-image", "ScheduleExpression": "cron(0 * ? * * *)", "PassRoleArn": "arn:aws:iam::111111111111:role/AmazonSageMaker-ExecutionRole" } } } }

Kode Sumber Daya Kustom Lambda

Sumber daya AWS CloudFormation kustom ini menggunakan AWS pustaka Custom Resource Helper, yang dapat Anda instal dengan pip menggunakan. pip install crhelper

Fungsi Lambda ini dipanggil oleh AWS CloudFormation selama pembuatan dan penghapusan tumpukan. Fungsi Lambda ini bertanggung jawab untuk membuat dan menghapus jadwal pemantauan dan menggunakan parameter yang ditentukan dalam sumber daya khusus yang dijelaskan di bagian sebelumnya.

import boto3 import botocore import logging from crhelper import CfnResource from botocore.exceptions import ClientError logger = logging.getLogger(__name__) sm = boto3.client('sagemaker') # cfnhelper makes it easier to implement a CloudFormation custom resource helper = CfnResource() # CFN Handlers def handler(event, context): helper(event, context) @helper.create def create_handler(event, context): """ Called when CloudFormation custom resource sends the create event """ create_monitoring_schedule(event) @helper.delete def delete_handler(event, context): """ Called when CloudFormation custom resource sends the delete event """ schedule_name = get_schedule_name(event) delete_monitoring_schedule(schedule_name) @helper.poll_create def poll_create(event, context): """ Return true if the resource has been created and false otherwise so CloudFormation polls again. """ schedule_name = get_schedule_name(event) logger.info('Polling for creation of schedule: %s', schedule_name) return is_schedule_ready(schedule_name) @helper.update def noop(): """ Not currently implemented but crhelper will throw an error if it isn't added """ pass # Helper Functions def get_schedule_name(event): return event['ResourceProperties']['ScheduleName'] def create_monitoring_schedule(event): schedule_name = get_schedule_name(event) monitoring_schedule_config = create_monitoring_schedule_config(event) logger.info('Creating monitoring schedule with name: %s', schedule_name) sm.create_monitoring_schedule( MonitoringScheduleName=schedule_name, MonitoringScheduleConfig=monitoring_schedule_config) def is_schedule_ready(schedule_name): is_ready = False schedule = sm.describe_monitoring_schedule(MonitoringScheduleName=schedule_name) status = schedule['MonitoringScheduleStatus'] if status == 'Scheduled': logger.info('Monitoring schedule (%s) is ready', schedule_name) is_ready = True elif status == 'Pending': logger.info('Monitoring schedule (%s) still creating, waiting and polling again...', schedule_name) else: raise Exception('Monitoring schedule ({}) has unexpected status: {}'.format(schedule_name, status)) return is_ready def create_monitoring_schedule_config(event): props = event['ResourceProperties'] return { "ScheduleConfig": { "ScheduleExpression": props["ScheduleExpression"], }, "MonitoringJobDefinition": { "BaselineConfig": { "ConstraintsResource": { "S3Uri": props['BaselineConstraintsUri'], }, "StatisticsResource": { "S3Uri": props['BaselineStatisticsUri'], } }, "MonitoringInputs": [ { "EndpointInput": { "EndpointName": props["EndpointName"], "LocalPath": props["InputLocalPath"], } } ], "MonitoringOutputConfig": { "MonitoringOutputs": [ { "S3Output": { "S3Uri": props["OutputS3URI"], "LocalPath": props["OutputLocalPath"], } } ], }, "MonitoringResources": { "ClusterConfig": { "InstanceCount": 1, "InstanceType": "ml.t3.medium", "VolumeSizeInGB": 50, } }, "MonitoringAppSpecification": { "ImageUri": props["ImageURI"], "RecordPreprocessorSourceUri": props['PostAnalyticsProcessorSourceUri'], "PostAnalyticsProcessorSourceUri": props['PostAnalyticsProcessorSourceUri'], }, "StoppingCondition": { "MaxRuntimeInSeconds": 300 }, "RoleArn": props["PassRoleArn"], } } def delete_monitoring_schedule(schedule_name): logger.info('Deleting schedule: %s', schedule_name) try: sm.delete_monitoring_schedule(MonitoringScheduleName=schedule_name) except ClientError as e: if e.response['Error']['Code'] == 'ResourceNotFound': logger.info('Resource not found, nothing to delete') else: logger.error('Unexpected error while trying to delete monitoring schedule') raise e
PrivasiSyarat situsPreferensi cookie
© 2025, Amazon Web Services, Inc. atau afiliasinya. Semua hak dilindungi undang-undang.