Mendeteksi Teks Dokumen dengan Amazon Textract - Amazon Textract

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Mendeteksi Teks Dokumen dengan Amazon Textract

Untuk mendeteksi teks dalam dokumen, Anda menggunakanDetectDocumentTextoperasi, dan lulus file dokumen sebagai masukan.DetectDocumentTextmengembalikan struktur JSON yang berisi garis dan kata-kata teks yang terdeteksi, lokasi teks dalam dokumen, dan hubungan antara teks yang terdeteksi. Untuk informasi selengkapnya, lihat Mendeteksi teks.

Anda dapat menyediakan dokumen input sebagai array bit citra (bit citra yang dikodekan base64), atau sebagai objek Amazon S3. Dalam prosedur ini, Anda mengunggah file citra ke bucket S3 Anda dan menentukan nama file.

Untuk mendeteksi teks dalam dokumen (API)
  1. Jika belum:

    1. Buat atau perbarui pengguna IAM dengan izin AmazonTextractFullAccess dan AmazonS3ReadOnlyAccess. Untuk informasi selengkapnya, lihat Langkah 1: Siapkan Akun AWS dan Buat Pengguna IAM.

    2. Instal dan konfigurasikan SDK AWS CLI dan AWS. Untuk informasi selengkapnya, lihat Langkah 2: MenyiapkanAWS CLIdanAWSSDK.

  2. Unggah dokumen ke bucket S3.

    Untuk instruksi, lihatMengunggah Objek ke Amazon S3diPanduan Pengguna Amazon Simple Storage Service.

  3. Gunakan contoh berikut untuk memanggil operasi DetectDocumentText.

    Java

    Kode contoh berikut menampilkan dokumen dan kotak di sekitar baris teks terdeteksi.

    Fungsimain, ganti nilaibucketdandocumentdengan nama bucket Amazon S3 dan dokumen yang Anda gunakan pada langkah 2.

    //Calls DetectDocumentText. //Loads document from S3 bucket. Displays the document and bounding boxes around detected lines/words of text. package com.amazonaws.samples; import java.awt.*; import java.awt.image.BufferedImage; import java.util.List; import javax.imageio.ImageIO; import javax.swing.*; import com.amazonaws.services.s3.AmazonS3; import com.amazonaws.services.s3.AmazonS3ClientBuilder; import com.amazonaws.services.s3.model.S3ObjectInputStream; import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration; import com.amazonaws.services.textract.AmazonTextract; import com.amazonaws.services.textract.AmazonTextractClientBuilder; import com.amazonaws.services.textract.model.Block; import com.amazonaws.services.textract.model.BoundingBox; import com.amazonaws.services.textract.model.DetectDocumentTextRequest; import com.amazonaws.services.textract.model.DetectDocumentTextResult; import com.amazonaws.services.textract.model.Document; import com.amazonaws.services.textract.model.S3Object; import com.amazonaws.services.textract.model.Point; import com.amazonaws.services.textract.model.Relationship; public class DocumentText extends JPanel { private static final long serialVersionUID = 1L; BufferedImage image; DetectDocumentTextResult result; public DocumentText(DetectDocumentTextResult documentResult, BufferedImage bufImage) throws Exception { super(); result = documentResult; // Results of text detection. image = bufImage; // The image containing the document. } // Draws the image and text bounding box. public void paintComponent(Graphics g) { int height = image.getHeight(this); int width = image.getWidth(this); Graphics2D g2d = (Graphics2D) g; // Create a Java2D version of g. // Draw the image. g2d.drawImage(image, 0, 0, image.getWidth(this) , image.getHeight(this), this); // Iterate through blocks and display polygons around lines of detected text. List<Block> blocks = result.getBlocks(); for (Block block : blocks) { DisplayBlockInfo(block); if ((block.getBlockType()).equals("LINE")) { ShowPolygon(height, width, block.getGeometry().getPolygon(), g2d); /* ShowBoundingBox(height, width, block.getGeometry().getBoundingBox(), g2d); */ } else { // its a word, so just show vertical lines. ShowPolygonVerticals(height, width, block.getGeometry().getPolygon(), g2d); } } } // Show bounding box at supplied location. private void ShowBoundingBox(int imageHeight, int imageWidth, BoundingBox box, Graphics2D g2d) { float left = imageWidth * box.getLeft(); float top = imageHeight * box.getTop(); // Display bounding box. g2d.setColor(new Color(0, 212, 0)); g2d.drawRect(Math.round(left), Math.round(top), Math.round(imageWidth * box.getWidth()), Math.round(imageHeight * box.getHeight())); } // Shows polygon at supplied location private void ShowPolygon(int imageHeight, int imageWidth, List<Point> points, Graphics2D g2d) { g2d.setColor(new Color(0, 0, 0)); Polygon polygon = new Polygon(); // Construct polygon and display for (Point point : points) { polygon.addPoint((Math.round(point.getX() * imageWidth)), Math.round(point.getY() * imageHeight)); } g2d.drawPolygon(polygon); } // Draws only the vertical lines in the supplied polygon. private void ShowPolygonVerticals(int imageHeight, int imageWidth, List<Point> points, Graphics2D g2d) { g2d.setColor(new Color(0, 212, 0)); Object[] parry = points.toArray(); g2d.setStroke(new BasicStroke(2)); g2d.drawLine(Math.round(((Point) parry[0]).getX() * imageWidth), Math.round(((Point) parry[0]).getY() * imageHeight), Math.round(((Point) parry[3]).getX() * imageWidth), Math.round(((Point) parry[3]).getY() * imageHeight)); g2d.setColor(new Color(255, 0, 0)); g2d.drawLine(Math.round(((Point) parry[1]).getX() * imageWidth), Math.round(((Point) parry[1]).getY() * imageHeight), Math.round(((Point) parry[2]).getX() * imageWidth), Math.round(((Point) parry[2]).getY() * imageHeight)); } //Displays information from a block returned by text detection and text analysis private void DisplayBlockInfo(Block block) { System.out.println("Block Id : " + block.getId()); if (block.getText()!=null) System.out.println(" Detected text: " + block.getText()); System.out.println(" Type: " + block.getBlockType()); if (block.getBlockType().equals("PAGE") !=true) { System.out.println(" Confidence: " + block.getConfidence().toString()); } if(block.getBlockType().equals("CELL")) { System.out.println(" Cell information:"); System.out.println(" Column: " + block.getColumnIndex()); System.out.println(" Row: " + block.getRowIndex()); System.out.println(" Column span: " + block.getColumnSpan()); System.out.println(" Row span: " + block.getRowSpan()); } System.out.println(" Relationships"); List<Relationship> relationships=block.getRelationships(); if(relationships!=null) { for (Relationship relationship : relationships) { System.out.println(" Type: " + relationship.getType()); System.out.println(" IDs: " + relationship.getIds().toString()); } } else { System.out.println(" No related Blocks"); } System.out.println(" Geometry"); System.out.println(" Bounding Box: " + block.getGeometry().getBoundingBox().toString()); System.out.println(" Polygon: " + block.getGeometry().getPolygon().toString()); List<String> entityTypes = block.getEntityTypes(); System.out.println(" Entity Types"); if(entityTypes!=null) { for (String entityType : entityTypes) { System.out.println(" Entity Type: " + entityType); } } else { System.out.println(" No entity type"); } if(block.getPage()!=null) System.out.println(" Page: " + block.getPage()); System.out.println(); } public static void main(String arg[]) throws Exception { // The S3 bucket and document String document = ""; String bucket = ""; AmazonS3 s3client = AmazonS3ClientBuilder.standard() .withEndpointConfiguration( new EndpointConfiguration("https://s3.amazonaws.com","us-east-1")) .build(); // Get the document from S3 com.amazonaws.services.s3.model.S3Object s3object = s3client.getObject(bucket, document); S3ObjectInputStream inputStream = s3object.getObjectContent(); BufferedImage image = ImageIO.read(inputStream); // Call DetectDocumentText EndpointConfiguration endpoint = new EndpointConfiguration( "https://textract.us-east-1.amazonaws.com", "us-east-1"); AmazonTextract client = AmazonTextractClientBuilder.standard() .withEndpointConfiguration(endpoint).build(); DetectDocumentTextRequest request = new DetectDocumentTextRequest() .withDocument(new Document().withS3Object(new S3Object().withName(document).withBucket(bucket))); DetectDocumentTextResult result = client.detectDocumentText(request); // Create frame and panel. JFrame frame = new JFrame("RotateImage"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); DocumentText panel = new DocumentText(result, image); panel.setPreferredSize(new Dimension(image.getWidth() , image.getHeight() )); frame.setContentPane(panel); frame.pack(); frame.setVisible(true); } }
    AWS CLI

    Perintah AWS CLI ini menampilkan output JSON untuk operasi CLI detect-document-text.

    Ganti nilaiBucketdanNamedengan nama bucket Amazon S3 dan dokumen yang Anda gunakan pada langkah 2.

    aws textract detect-document-text \ --document '{"S3Object":{"Bucket":"bucket","Name":"document"}}'
    Python

    Kode contoh berikut menampilkan dokumen dan kotak di sekitar baris terdeteksi teks.

    Fungsimain, ganti nilaibucketdandocumentdengan nama bucket Amazon S3 dan dokumen yang Anda gunakan pada langkah 2.

    #Detects text in a document stored in an S3 bucket. Display polygon box around text and angled text import boto3 import io from io import BytesIO import sys import psutil import time import math from PIL import Image, ImageDraw, ImageFont # Displays information about a block returned by text detection and text analysis def DisplayBlockInformation(block): print('Id: {}'.format(block['Id'])) if 'Text' in block: print(' Detected: ' + block['Text']) print(' Type: ' + block['BlockType']) if 'Confidence' in block: print(' Confidence: ' + "{:.2f}".format(block['Confidence']) + "%") if block['BlockType'] == 'CELL': print(" Cell information") print(" Column: " + str(block['ColumnIndex'])) print(" Row: " + str(block['RowIndex'])) print(" ColumnSpan: " + str(block['ColumnSpan'])) print(" RowSpan: " + str(block['RowSpan'])) if 'Relationships' in block: print(' Relationships: {}'.format(block['Relationships'])) print(' Geometry: ') print(' Bounding Box: {}'.format(block['Geometry']['BoundingBox'])) print(' Polygon: {}'.format(block['Geometry']['Polygon'])) if block['BlockType'] == "KEY_VALUE_SET": print (' Entity Type: ' + block['EntityTypes'][0]) if 'Page' in block: print('Page: ' + block['Page']) print() def process_text_detection(bucket, document): #Get the document from S3 s3_connection = boto3.resource('s3') s3_object = s3_connection.Object(bucket,document) s3_response = s3_object.get() stream = io.BytesIO(s3_response['Body'].read()) image=Image.open(stream) # Detect text in the document client = boto3.client('textract') #process using image bytes #image_binary = stream.getvalue() #response = client.detect_document_text(Document={'Bytes': image_binary}) #process using S3 object response = client.detect_document_text( Document={'S3Object': {'Bucket': bucket, 'Name': document}}) #Get the text blocks blocks=response['Blocks'] width, height =image.size draw = ImageDraw.Draw(image) print ('Detected Document Text') # Create image showing bounding box/polygon the detected lines/text for block in blocks: print('Type: ' + block['BlockType']) if block['BlockType'] != 'PAGE': print('Detected: ' + block['Text']) print('Confidence: ' + "{:.2f}".format(block['Confidence']) + "%") print('Id: {}'.format(block['Id'])) if 'Relationships' in block: print('Relationships: {}'.format(block['Relationships'])) print('Bounding Box: {}'.format(block['Geometry']['BoundingBox'])) print('Polygon: {}'.format(block['Geometry']['Polygon'])) print() draw=ImageDraw.Draw(image) # Draw WORD - Green - start of word, red - end of word if block['BlockType'] == "WORD": draw.line([(width * block['Geometry']['Polygon'][0]['X'], height * block['Geometry']['Polygon'][0]['Y']), (width * block['Geometry']['Polygon'][3]['X'], height * block['Geometry']['Polygon'][3]['Y'])],fill='green', width=2) draw.line([(width * block['Geometry']['Polygon'][1]['X'], height * block['Geometry']['Polygon'][1]['Y']), (width * block['Geometry']['Polygon'][2]['X'], height * block['Geometry']['Polygon'][2]['Y'])], fill='red', width=2) # Draw box around entire LINE if block['BlockType'] == "LINE": points=[] for polygon in block['Geometry']['Polygon']: points.append((width * polygon['X'], height * polygon['Y'])) draw.polygon((points), outline='black') # Uncomment to draw bounding box #box=block['Geometry']['BoundingBox'] #left = width * box['Left'] #top = height * box['Top'] #draw.rectangle([left,top, left + (width * box['Width']), top +(height * box['Height'])],outline='black') # Display the image image.show() # display image for 10 seconds return len(blocks) def main(): bucket = '' document = '' block_count=process_text_detection(bucket,document) print("Blocks detected: " + str(block_count)) if __name__ == "__main__": main()
    Node.js

    Berikut Node.js contoh kode menampilkan dokumen dan kotak di sekitar baris terdeteksi teks, output gambar hasil ke direktori Anda menjalankan kode dari. Itu membuat penggunaanimage-sizedanimagespaket.

    Fungsimain, ganti nilaibucketdandocumentdengan nama bucket Amazon S3 dan dokumen yang Anda gunakan pada langkah 2. Ganti nilairegionConfigdengan nama wilayah akun Anda berada.

    async function main(){ // Import AWS const AWS = require("aws-sdk") // Use Image-Size to get const sizeOf = require('image-size'); // Image tool to draw buffers const images = require("images"); // Create a canvas and get the context const { createCanvas } = require('canvas') const canvas = createCanvas(200, 200) const ctx = canvas.getContext('2d') // Set variables const bucket = 'bucket-name' // the s3 bucket name const photo = 'image-name' // the name of file const regionConfig = 'region' // Set region if needed AWS.config.update({region:regionConfig}); // Connect to Textract const client = new AWS.Textract(); // Connect to S3 to display image const s3 = new AWS.S3(); // Define paramaters const params = { Document: { S3Object: { Bucket: bucket, Name: photo }, }, } // Function to display image async function getImage(){ const imageData = s3.getObject( { Bucket: bucket, Key: photo } ).promise(); return imageData; } // get image var imageData = await getImage() // Get the height, width of the image const dimensions = sizeOf(imageData.Body) const width = dimensions.width const height = dimensions.height console.log(imageData.Body) console.log(width, height) canvas.width = width; canvas.height = height; try{ // Call API and log response const res = await client.detectDocumentText(params).promise(); var image = images(imageData.Body).size(width, height) //console.log the type of block, text, text type, and confidence res.Blocks.forEach(block => { console.log(`Block Type: ${block.BlockType}`), console.log(`Text: ${block.Text}`) console.log(`TextType: ${block.TextType}`) console.log(`Confidence: ${block.Confidence}`) // Draw box around detected text using polygons ctx.strokeStyle = 'rgba(0,0,0,0.5)'; ctx.beginPath(); block.Geometry.Polygon.forEach(({X, Y}) => ctx.lineTo(width * X - 10, height * Y - 10) ); ctx.closePath(); ctx.stroke(); console.log("-----") }) // render image var buffer = canvas.toBuffer("image/png"); image.draw(images(buffer), 10, 10) image.save("output-image.jpg"); } catch (err){ console.error(err);} } main()
  4. Jalankan contoh. Contoh Python dan Java menampilkan gambar dokumen. Kotak hitam mengelilingi setiap baris teks yang terdeteksi. Garis vertikal hijau adalah awal dari kata yang terdeteksi. Garis vertikal merah adalah akhir dari kata yang terdeteksi. ParameterAWS CLIcontoh hanya menampilkan output JSON untukDetectDocumentTextoperasi.