Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.
Kueri dengan fungsi agregat
Di bawah ini adalah contoh contoh skenario IoT kumpulan data untuk menggambarkan query dengan fungsi agregat.
Contoh data
Timestream memungkinkan Anda menyimpan dan menganalisis data sensor IoT seperti lokasi, konsumsi bahan bakar, kecepatan, dan kapasitas muat satu atau lebih armada truk untuk memungkinkan manajemen armada yang efektif. Di bawah ini adalah skema dan beberapa data tabel iot_trucks yang menyimpan telemetri seperti lokasi, konsumsi bahan bakar, kecepatan, dan kapasitas muat truk.
Waktu | truck_id | Membuat | Model | Armada | kapasitas bahan bakar | load_capacity | ukuran_nama | ukuran_nilai: :ganda | ukuran_nilai: :varchar |
---|---|---|---|---|---|---|---|---|---|
2019-12-04 19:00:00.000 000000 |
123456781 |
GMC |
Astro |
Alfa |
100 |
500 |
bahan bakar_membaca |
65.2 |
null |
2019-12-04 19:00:00.000 000000 |
123456781 |
GMC |
Astro |
Alfa |
100 |
500 |
muat |
400,0 |
null |
2019-12-04 19:00:00.000 000000 |
123456781 |
GMC |
Astro |
Alfa |
100 |
500 |
kecepatan |
90.2 |
null |
2019-12-04 19:00:00.000 000000 |
123456781 |
GMC |
Astro |
Alfa |
100 |
500 |
lokasi |
null |
47.6062 N, 122.3321 W |
2019-12-04 19:00:00.000 000000 |
123456782 |
Kenworth |
W900 |
Alfa |
150 |
1000 |
bahan bakar_membaca |
10.1 |
null |
2019-12-04 19:00:00.000 000000 |
123456782 |
Kenworth |
W900 |
Alfa |
150 |
1000 |
muat |
950,3 |
null |
2019-12-04 19:00:00.000 000000 |
123456782 |
Kenworth |
W900 |
Alfa |
150 |
1000 |
kecepatan |
50,8 |
null |
2019-12-04 19:00:00.000 000000 |
123456782 |
Kenworth |
W900 |
Alfa |
150 |
1000 |
lokasi |
null |
40,7128 derajat N, 74,0060 derajat W |
Kueri contoh
Dapatkan daftar semua atribut sensor dan nilai yang dipantau untuk setiap truk di armada.
SELECT truck_id, fleet, fuel_capacity, model, load_capacity, make, measure_name FROM "sampleDB".IoT GROUP BY truck_id, fleet, fuel_capacity, model, load_capacity, make, measure_name
Dapatkan pembacaan bahan bakar terbaru dari setiap truk di armada dalam 24 jam terakhir.
WITH latest_recorded_time AS ( SELECT truck_id, max(time) as latest_time FROM "sampleDB".IoT WHERE measure_name = 'fuel-reading' AND time >= ago(24h) GROUP BY truck_id ) SELECT b.truck_id, b.fleet, b.make, b.model, b.time, b.measure_value::double as last_reported_fuel_reading FROM latest_recorded_time a INNER JOIN "sampleDB".IoT b ON a.truck_id = b.truck_id AND b.time = a.latest_time WHERE b.measure_name = 'fuel-reading' AND b.time > ago(24h) ORDER BY b.truck_id
Identifikasi truk yang menggunakan bahan bakar rendah (kurang dari 10%) dalam 48 jam terakhir:
WITH low_fuel_trucks AS ( SELECT time, truck_id, fleet, make, model, (measure_value::double/cast(fuel_capacity as double)*100) AS fuel_pct FROM "sampleDB".IoT WHERE time >= ago(48h) AND (measure_value::double/cast(fuel_capacity as double)*100) < 10 AND measure_name = 'fuel-reading' ), other_trucks AS ( SELECT time, truck_id, (measure_value::double/cast(fuel_capacity as double)*100) as remaining_fuel FROM "sampleDB".IoT WHERE time >= ago(48h) AND truck_id IN (SELECT truck_id FROM low_fuel_trucks) AND (measure_value::double/cast(fuel_capacity as double)*100) >= 10 AND measure_name = 'fuel-reading' ), trucks_that_refuelled AS ( SELECT a.truck_id FROM low_fuel_trucks a JOIN other_trucks b ON a.truck_id = b.truck_id AND b.time >= a.time ) SELECT DISTINCT truck_id, fleet, make, model, fuel_pct FROM low_fuel_trucks WHERE truck_id NOT IN ( SELECT truck_id FROM trucks_that_refuelled )
Temukan beban rata-rata dan kecepatan maksimal untuk setiap truk selama seminggu terakhir:
SELECT bin(time, 1d) as binned_time, fleet, truck_id, make, model, AVG( CASE WHEN measure_name = 'load' THEN measure_value::double ELSE NULL END ) AS avg_load_tons, MAX( CASE WHEN measure_name = 'speed' THEN measure_value::double ELSE NULL END ) AS max_speed_mph FROM "sampleDB".IoT WHERE time >= ago(7d) AND measure_name IN ('load', 'speed') GROUP BY fleet, truck_id, make, model, bin(time, 1d) ORDER BY truck_id
Dapatkan efisiensi beban untuk setiap truk selama seminggu terakhir:
WITH average_load_per_truck AS ( SELECT truck_id, avg(measure_value::double) AS avg_load FROM "sampleDB".IoT WHERE measure_name = 'load' AND time >= ago(7d) GROUP BY truck_id, fleet, load_capacity, make, model ), truck_load_efficiency AS ( SELECT a.truck_id, fleet, load_capacity, make, model, avg_load, measure_value::double, time, (measure_value::double*100)/avg_load as load_efficiency -- , approx_percentile(avg_load_pct, DOUBLE '0.9') FROM "sampleDB".IoT a JOIN average_load_per_truck b ON a.truck_id = b.truck_id WHERE a.measure_name = 'load' ) SELECT truck_id, time, load_efficiency FROM truck_load_efficiency ORDER BY truck_id, time