Ci sono altri AWS SDK esempi disponibili nel repository AWS Doc SDK Examples
Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.
Utilizzare StartJobRun
con un AWS SDK o CLI
Gli esempi di codice seguenti mostrano come utilizzare StartJobRun
.
Gli esempi di operazioni sono estratti di codice da programmi più grandi e devono essere eseguiti nel contesto. È possibile visualizzare questa operazione nel contesto nel seguente esempio di codice:
- .NET
-
- AWS SDK for .NET
-
Nota
C'è altro da fare GitHub. Trova l'esempio completo e scopri di più sulla configurazione e l'esecuzione nel Repository di esempi di codice AWS
. /// <summary> /// Start an AWS Glue job run. /// </summary> /// <param name="jobName">The name of the job.</param> /// <returns>A string representing the job run Id.</returns> public async Task<string> StartJobRunAsync( string jobName, string inputDatabase, string inputTable, string bucketName) { var request = new StartJobRunRequest { JobName = jobName, Arguments = new Dictionary<string, string> { {"--input_database", inputDatabase}, {"--input_table", inputTable}, {"--output_bucket_url", $"s3://{bucketName}/"} } }; var response = await _amazonGlue.StartJobRunAsync(request); return response.JobRunId; }
-
Per API i dettagli, vedi StartJobRun AWS SDK for .NETAPIReference.
-
- C++
-
- SDKper C++
-
Nota
C'è di più su. GitHub Trova l'esempio completo e scopri di più sulla configurazione e l'esecuzione nel Repository di esempi di codice AWS
. Aws::Client::ClientConfiguration clientConfig; // Optional: Set to the AWS Region in which the bucket was created (overrides config file). // clientConfig.region = "us-east-1"; Aws::Glue::GlueClient client(clientConfig); Aws::Glue::Model::StartJobRunRequest request; request.SetJobName(JOB_NAME); Aws::Map<Aws::String, Aws::String> arguments; arguments["--input_database"] = CRAWLER_DATABASE_NAME; arguments["--input_table"] = tableName; arguments["--output_bucket_url"] = Aws::String("s3://") + bucketName + "/"; request.SetArguments(arguments); Aws::Glue::Model::StartJobRunOutcome outcome = client.StartJobRun(request); if (outcome.IsSuccess()) { std::cout << "Successfully started the job." << std::endl; Aws::String jobRunId = outcome.GetResult().GetJobRunId(); int iterator = 0; bool done = false; while (!done) { ++iterator; std::this_thread::sleep_for(std::chrono::seconds(1)); Aws::Glue::Model::GetJobRunRequest jobRunRequest; jobRunRequest.SetJobName(JOB_NAME); jobRunRequest.SetRunId(jobRunId); Aws::Glue::Model::GetJobRunOutcome jobRunOutcome = client.GetJobRun( jobRunRequest); if (jobRunOutcome.IsSuccess()) { const Aws::Glue::Model::JobRun &jobRun = jobRunOutcome.GetResult().GetJobRun(); Aws::Glue::Model::JobRunState jobRunState = jobRun.GetJobRunState(); if ((jobRunState == Aws::Glue::Model::JobRunState::STOPPED) || (jobRunState == Aws::Glue::Model::JobRunState::FAILED) || (jobRunState == Aws::Glue::Model::JobRunState::TIMEOUT)) { std::cerr << "Error running job. " << jobRun.GetErrorMessage() << std::endl; deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, JOB_NAME, bucketName, clientConfig); return false; } else if (jobRunState == Aws::Glue::Model::JobRunState::SUCCEEDED) { std::cout << "Job run succeeded after " << iterator << " seconds elapsed." << std::endl; done = true; } else if ((iterator % 10) == 0) { // Log status every 10 seconds. std::cout << "Job run status " << Aws::Glue::Model::JobRunStateMapper::GetNameForJobRunState( jobRunState) << ". " << iterator << " seconds elapsed." << std::endl; } } else { std::cerr << "Error retrieving job run state. " << jobRunOutcome.GetError().GetMessage() << std::endl; deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, JOB_NAME, bucketName, clientConfig); return false; } } } else { std::cerr << "Error starting a job. " << outcome.GetError().GetMessage() << std::endl; deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, JOB_NAME, bucketName, clientConfig); return false; }
-
Per API i dettagli, vedi StartJobRun AWS SDK for C++APIReference.
-
- CLI
-
- AWS CLI
-
Per avviare l'esecuzione di un processo
L'esempio
start-job-run
seguente avvia un processo.aws glue start-job-run \ --job-name
my-job
Output:
{ "JobRunId": "jr_22208b1f44eb5376a60569d4b21dd20fcb8621e1a366b4e7b2494af764b82ded" }
Per ulteriori informazioni, consulta Creazione di processi nella Guida per gli sviluppatori di AWS Glue.
-
Per API i dettagli, vedere StartJobRun
in AWS CLI Command Reference.
-
- Java
-
- SDKper Java 2.x
-
Nota
C'è altro su. GitHub Trova l'esempio completo e scopri di più sulla configurazione e l'esecuzione nel Repository di esempi di codice AWS
. /** * Starts a job run in AWS Glue. * * @param glueClient the AWS Glue client to use for the job run * @param jobName the name of the Glue job to run * @param inputDatabase the name of the input database * @param inputTable the name of the input table * @param outBucket the URL of the output S3 bucket * @throws GlueException if there is an error starting the job run */ public static void startJob(GlueClient glueClient, String jobName, String inputDatabase, String inputTable, String outBucket) { try { Map<String, String> myMap = new HashMap<>(); myMap.put("--input_database", inputDatabase); myMap.put("--input_table", inputTable); myMap.put("--output_bucket_url", outBucket); StartJobRunRequest runRequest = StartJobRunRequest.builder() .workerType(WorkerType.G_1_X) .numberOfWorkers(10) .arguments(myMap) .jobName(jobName) .build(); StartJobRunResponse response = glueClient.startJobRun(runRequest); System.out.println("The request Id of the job is " + response.responseMetadata().requestId()); } catch (GlueException e) { throw e; } }
-
Per API i dettagli, vedi StartJobRun AWS SDK for Java 2.xAPIReference.
-
- JavaScript
-
- SDKper JavaScript (v3)
-
Nota
C'è di più su. GitHub Trova l'esempio completo e scopri di più sulla configurazione e l'esecuzione nel Repository di esempi di codice AWS
. const startJobRun = (jobName, dbName, tableName, bucketName) => { const client = new GlueClient({}); const command = new StartJobRunCommand({ JobName: jobName, Arguments: { "--input_database": dbName, "--input_table": tableName, "--output_bucket_url": `s3://${bucketName}/`, }, }); return client.send(command); };
-
Per API i dettagli, vedi StartJobRun AWS SDK for JavaScriptAPIReference.
-
- PHP
-
- SDK per PHP
-
Nota
C'è altro da sapere GitHub. Trova l'esempio completo e scopri di più sulla configurazione e l'esecuzione nel Repository di esempi di codice AWS
. $jobName = 'test-job-' . $uniqid; $databaseName = "doc-example-database-$uniqid"; $tables = $glueService->getTables($databaseName); $outputBucketUrl = "s3://$bucketName"; $runId = $glueService->startJobRun($jobName, $databaseName, $tables, $outputBucketUrl)['JobRunId']; public function startJobRun($jobName, $databaseName, $tables, $outputBucketUrl): Result { return $this->glueClient->startJobRun([ 'JobName' => $jobName, 'Arguments' => [ 'input_database' => $databaseName, 'input_table' => $tables['TableList'][0]['Name'], 'output_bucket_url' => $outputBucketUrl, '--input_database' => $databaseName, '--input_table' => $tables['TableList'][0]['Name'], '--output_bucket_url' => $outputBucketUrl, ], ]); }
-
Per API i dettagli, vedi StartJobRun AWS SDK for PHPAPIReference.
-
- Python
-
- SDKper Python (Boto3)
-
Nota
C'è di più su. GitHub Trova l'esempio completo e scopri di più sulla configurazione e l'esecuzione nel Repository di esempi di codice AWS
. class GlueWrapper: """Encapsulates AWS Glue actions.""" def __init__(self, glue_client): """ :param glue_client: A Boto3 Glue client. """ self.glue_client = glue_client def start_job_run(self, name, input_database, input_table, output_bucket_name): """ Starts a job run. A job run extracts data from the source, transforms it, and loads it to the output bucket. :param name: The name of the job definition. :param input_database: The name of the metadata database that contains tables that describe the source data. This is typically created by a crawler. :param input_table: The name of the table in the metadata database that describes the source data. :param output_bucket_name: The S3 bucket where the output is written. :return: The ID of the job run. """ try: # The custom Arguments that are passed to this function are used by the # Python ETL script to determine the location of input and output data. response = self.glue_client.start_job_run( JobName=name, Arguments={ "--input_database": input_database, "--input_table": input_table, "--output_bucket_url": f"s3://{output_bucket_name}/", }, ) except ClientError as err: logger.error( "Couldn't start job run %s. Here's why: %s: %s", name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response["JobRunId"]
-
Per API i dettagli, vedere StartJobRunPython (Boto3) Reference.AWS SDK API
-
- Ruby
-
- SDKper Ruby
-
Nota
c'è altro da fare. GitHub Trova l'esempio completo e scopri di più sulla configurazione e l'esecuzione nel Repository di esempi di codice AWS
. # The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a simplified interface for common operations. # It encapsulates the functionality of the AWS SDK for Glue and provides methods for interacting with Glue crawlers, databases, tables, jobs, and S3 resources. # The class initializes with a Glue client and a logger, allowing it to make API calls and log any errors or informational messages. class GlueWrapper def initialize(glue_client, logger) @glue_client = glue_client @logger = logger end # Starts a job run for the specified job. # # @param name [String] The name of the job to start the run for. # @param input_database [String] The name of the input database for the job. # @param input_table [String] The name of the input table for the job. # @param output_bucket_name [String] The name of the output S3 bucket for the job. # @return [String] The ID of the started job run. def start_job_run(name, input_database, input_table, output_bucket_name) response = @glue_client.start_job_run( job_name: name, arguments: { '--input_database': input_database, '--input_table': input_table, '--output_bucket_url': "s3://#{output_bucket_name}/" } ) response.job_run_id rescue Aws::Glue::Errors::GlueException => e @logger.error("Glue could not start job run #{name}: \n#{e.message}") raise end
-
Per API i dettagli, vedi StartJobRun AWS SDK for RubyAPIReference.
-
- Rust
-
- SDKper Rust
-
Nota
c'è altro da fare GitHub. Trova l'esempio completo e scopri di più sulla configurazione e l'esecuzione nel Repository di esempi di codice AWS
. let job_run_output = glue .start_job_run() .job_name(self.job()) .arguments("--input_database", self.database()) .arguments( "--input_table", self.tables .first() .ok_or_else(|| GlueMvpError::Unknown("Missing crawler table".into()))? .name(), ) .arguments("--output_bucket_url", self.bucket()) .send() .await .map_err(GlueMvpError::from_glue_sdk)?; let job = job_run_output .job_run_id() .ok_or_else(|| GlueMvpError::Unknown("Missing run id from just started job".into()))? .to_string();
-
Per API i dettagli, StartJobRun
consulta AWS SDKRust API Reference.
-