Amazon EMR on EKS 7.3.0 releases - Amazon EMR

Amazon EMR on EKS 7.3.0 releases

This page describes the new and updated functionality for Amazon EMR that is specific to the Amazon EMR on EKS deployment. For details about Amazon EMR running on Amazon EC2 and about the Amazon EMR 7.3.0 release in general, see Amazon EMR 7.3.0 in the Amazon EMR Release Guide.

Amazon EMR on EKS 7.3 releases

The following Amazon EMR 7.3.0 releases are available for Amazon EMR on EKS. Select a specific emr-7.3.0-XXXX release to view more details such as the related container image tag.

Flink releases

The following Amazon EMR 7.3.0 releases are available for Amazon EMR on EKS when you run Flink applications.

Spark releases

The following Amazon EMR 7.3.0 releases are available for Amazon EMR on EKS when you run Spark applications.

  • emr-7.3.0-latest

  • emr-7.3.0-29240920

  • emr-7.3.0-spark-rapids-latest

  • emr-7.3.0-spark-rapids-29240920

  • emr-7.3.0-java11-latest

  • emr-7.3.0-java11-29240920

  • emr-7.3.0-java8-latest

  • emr-7.3.0-java8-29240920

  • emr-7.3.0-spark-rapids-java8-latest

  • emr-7.3.0-spark-rapids-java8-29240920

  • notebook-spark/emr-7.3.0-latest

  • notebook-spark/emr-7.3.0-29240920

  • notebook-spark/emr-7.3.0-spark-rapids-latest

  • notebook-spark/emr-7.3.0-spark-rapids-29240920

  • notebook-spark/emr-7.3.0-java11-latest

  • notebook-spark/emr-7.3.0-java11-29240920

  • notebook-spark/emr-7.3.0-java8-latest

  • notebook-spark/emr-7.3.0-java8-29240920

  • notebook-spark/emr-7.3.0-spark-rapids-java8-latest

  • notebook-spark/emr-7.3.0-spark-rapids-java8-29240920

  • notebook-python/emr-7.3.0-latest

  • notebook-python/emr-7.3.0-29240920

  • notebook-python/emr-7.3.0-spark-rapids-latest

  • notebook-python/emr-7.3.0-spark-rapids-29240920

  • notebook-python/emr-7.3.0-java11-latest

  • notebook-python/emr-7.3.0-java11-29240920

  • notebook-python/emr-7.3.0-java8-latest

  • notebook-python/emr-7.3.0-java8-29240920

  • notebook-python/emr-7.3.0-spark-rapids-java8-latest

  • notebook-python/emr-7.3.0-spark-rapids-java8-29240920

  • livy/emr-7.3.0-latest

  • livy/emr-7.3.0-29240920

  • livy/emr-7.3.0-java11-latest

  • livy/emr-7.3.0-java11-29240920

  • livy/emr-7.3.0-java8-latest

  • livy/emr-7.3.0-java8-29240920

Release notes

Release notes for Amazon EMR on EKS 7.3.0

  • Supported applications ‐ AWS SDK for Java 2.25.70 and 1.12.747, Apache Spark 3.5.1-amzn-1, Apache Hudi 0.15.0-amzn-0, Apache Iceberg 1.5.2-amzn-0, Delta 3.2.0-amzn-0, Apache Spark RAPIDS 24.06.1-amzn-0, Jupyter Enterprise Gateway 2.6.0, Apache Flink 1.18.1-amzn-2, Flink Operator 1.9.0-amzn-0

  • Supported componentsaws-sagemaker-spark-sdk, emr-ddb, emr-goodies, emr-s3-select, emrfs, hadoop-client, hudi, hudi-spark, iceberg, spark-kubernetes.

  • Supported configuration classifications

    For use with StartJobRun and CreateManagedEndpoint APIs:

    Classifications Descriptions

    core-site

    Change values in the core-site.xml Hadoop file.

    emrfs-site

    Change EMRFS settings.

    spark-metrics

    Change values in the metrics.properties Spark file.

    spark-defaults

    Change values in the spark-defaults.conf Spark file.

    spark-env

    Change values in the Spark environment.

    spark-hive-site

    Change values in the hive-site.xml Spark file.

    spark-log4j2

    Change values in the log4j2.properties Spark file.

    emr-job-submitter

    Configuration for job submitter pod.

    For use specifically with CreateManagedEndpoint APIs:

    Classifications Descriptions

    jeg-config

    Change values in Jupyter Enterprise Gateway jupyter_enterprise_gateway_config.py file.

    jupyter-kernel-overrides

    Change value for the Kernel Image in Jupyter Kernel Spec file.

    Configuration classifications allow you to customize applications. These often correspond to a configuration XML file for the application, such as spark-hive-site.xml. For more information, see Configure Applications.

Notable features

The following features are included with the 7.3.0 release of Amazon EMR on EKS.

  • Application upgrades – Amazon EMR on EKS now includes Flink Operator 1.9.0. In addition to other features, the Flink Kubernetes now lets you set CPU and memory quotas for the autoscaler.

  • Apache Iceberg support for Apache Flink – Apache Iceberg is an open-source high-performance format huge analytic tables. Starting with Amazon EMR 7.3.0, you can use Apache Iceberg tables when you run Apache Flink on Amazon EMR on EKS. For more information, see the Amazon EMR on EKS Using Apache Iceberg with Amazon EMR on EKS.

  • Delta Lake support for Apache Flink – Delta Lake is a storage layer framework for lakehouse architectures commonly built on Amazon S3. With Amazon EMR 7.3.0 and higher, you can use Delta tables when you run Apache Flink on Amazon EMR on EKS. For more information, see Using Delta Lake with Amazon EMR on EKS.

Changes

The following changes are included with the 7.3.0 release of Amazon EMR on EKS.

  • With Amazon EMR on EKS 7.3.0 and higher, Apache Flink now uses Java 17 runtime by default.