Pulizia del SQL database Aurora Postgre in un ambiente Amazon MWAA - Amazon Managed Workflows for Apache Airflow

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Pulizia del SQL database Aurora Postgre in un ambiente Amazon MWAA

Amazon Managed Workflows for Apache Airflow utilizza un database Aurora Postgre come SQL database di metadati Apache Airflow, in cui vengono archiviate le esecuzioni e le istanze delle attività. DAG Il seguente codice di esempio cancella periodicamente le voci dal SQL database Aurora Postgre dedicato per il tuo ambiente Amazon. MWAA

Versione

Prerequisiti

Per utilizzare il codice di esempio in questa pagina, avrai bisogno di quanto segue:

Dipendenze

  • Per utilizzare questo esempio di codice con Apache Airflow v2, non sono richieste dipendenze aggiuntive. Il codice utilizza l'installazione di base di Apache Airflow v2 nell'ambiente in uso.

Esempio di codice

Quanto segue DAG pulisce il database dei metadati per le tabelle specificate in. TABLES_TO_CLEAN L'esempio elimina i dati dalle tabelle specificate che risalgono a più di 30 giorni. Per modificare la data di eliminazione delle voci, MAX_AGE_IN_DAYS impostate un valore diverso.

Apache Airflow v2.4 and later
from airflow import DAG from airflow.models.param import Param from airflow.operators.bash_operator import BashOperator from airflow.utils.dates import days_ago from datetime import datetime, timedelta # Note: Database commands may time out if running longer than 5 minutes. If this occurs, please increase the MAX_AGE_IN_DAYS (or change # timestamp parameter to an earlier date) for initial runs, then reduce on subsequent runs until the desired retention is met. MAX_AGE_IN_DAYS = 30 # To clean specific tables, please provide a comma-separated list per # https://airflow.apache.org/docs/apache-airflow/stable/cli-and-env-variables-ref.html#clean # A value of None will clean all tables TABLES_TO_CLEAN = None with DAG( dag_id="clean_db_dag", schedule_interval=None, catchup=False, start_date=days_ago(1), params={ "timestamp": Param( default=(datetime.now()-timedelta(days=MAX_AGE_IN_DAYS)).strftime("%Y-%m-%d %H:%M:%S"), type="string", minLength=1, maxLength=255, ), } ) as dag: if TABLES_TO_CLEAN: bash_command="airflow db clean --clean-before-timestamp '{{ params.timestamp }}' --tables '"+TABLES_TO_CLEAN+"' --skip-archive --yes" else: bash_command="airflow db clean --clean-before-timestamp '{{ params.timestamp }}' --skip-archive --yes" cli_command = BashOperator( task_id="bash_command", bash_command=bash_command )
Apache Airflow v2.2 and earlier
from airflow import settings from airflow.utils.dates import days_ago from airflow.models import DagTag, DagModel, DagRun, ImportError, Log, SlaMiss, RenderedTaskInstanceFields, TaskInstance, TaskReschedule, XCom from airflow.decorators import dag, task from airflow.utils.dates import days_ago from time import sleep from airflow.version import version major_version, minor_version = int(version.split('.')[0]), int(version.split('.')[1]) if major_version >= 2 and minor_version >= 6: from airflow.jobs.job import Job else: # The BaseJob class was renamed as of Apache Airflow v2.6 from airflow.jobs.base_job import BaseJob as Job # Delete entries for the past 30 days. Adjust MAX_AGE_IN_DAYS to set how far back this DAG cleans the database. MAX_AGE_IN_DAYS = 30 MIN_AGE_IN_DAYS = 0 DECREMENT = -7 # This is a list of (table, time) tuples. # table = the table to clean in the metadata database # time = the column in the table associated to the timestamp of an entry # or None if not applicable. TABLES_TO_CLEAN = [[Job, Job.latest_heartbeat], [TaskInstance, TaskInstance.execution_date], [TaskReschedule, TaskReschedule.execution_date], [DagTag, None], [DagModel, DagModel.last_parsed_time], [DagRun, DagRun.execution_date], [ImportError, ImportError.timestamp], [Log, Log.dttm], [SlaMiss, SlaMiss.execution_date], [RenderedTaskInstanceFields, RenderedTaskInstanceFields.execution_date], [XCom, XCom.execution_date], ] @task() def cleanup_db_fn(x): session = settings.Session() if x[1]: for oldest_days_ago in range(MAX_AGE_IN_DAYS, MIN_AGE_IN_DAYS, DECREMENT): earliest_days_ago = max(oldest_days_ago + DECREMENT, MIN_AGE_IN_DAYS) print(f"deleting {str(x[0])} entries between {earliest_days_ago} and {oldest_days_ago} days old...") earliest_date = days_ago(earliest_days_ago) oldest_date = days_ago(oldest_days_ago) query = session.query(x[0]).filter(x[1] >= earliest_date).filter(x[1] <= oldest_date) query.delete(synchronize_session= False) session.commit() sleep(5) else: # No time column specified for the table. Delete all entries print("deleting", str(x[0]), "...") query = session.query(x[0]) query.delete(synchronize_session= False) session.commit() session.close() @dag( dag_id="cleanup_db", schedule_interval="@weekly", start_date=days_ago(7), catchup=False, is_paused_upon_creation=False ) def clean_db_dag_fn(): t_last=None for x in TABLES_TO_CLEAN: t=cleanup_db_fn(x) if t_last: t_last >> t t_last = t clean_db_dag = clean_db_dag_fn()