Esempi di Amazon Comprehend con SDK for JavaScript (v3) - AWS SDK for JavaScript

La Guida API di riferimento AWS SDK for JavaScript V3 descrive in dettaglio tutte le API operazioni per la AWS SDK for JavaScript versione 3 (V3).

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Esempi di Amazon Comprehend con SDK for JavaScript (v3)

I seguenti esempi di codice mostrano come eseguire azioni e implementare scenari comuni utilizzando AWS SDK for JavaScript (v3) con Amazon Comprehend.

Gli scenari sono esempi di codice che mostrano come eseguire un'attività specifica richiamando più funzioni all'interno dello stesso servizio o combinate con altri Servizi AWS.

Ogni esempio include un collegamento al codice sorgente completo, dove puoi trovare istruzioni su come configurare ed eseguire il codice nel contesto.

Argomenti

Scenari

L'esempio di codice seguente mostra come creare un'applicazione che registra, trascrive e traduce l'audio in tempo reale e invia tramite e-mail i risultati.

SDKper JavaScript (v3)

Mostra come usare Amazon Transcribe per creare un'app che registra, trascrive e traduce audio dal vivo in tempo reale e invia tramite e-mail i risultati utilizzando Amazon Simple Email Service (Amazon). SES

Per il codice sorgente completo e le istruzioni su come configurarlo ed eseguirlo, consulta l'esempio completo su. GitHub

Servizi utilizzati in questo esempio
  • Amazon Comprehend

  • Amazon SES

  • Amazon Transcribe

  • Amazon Translate

Il seguente esempio di codice mostra come creare un chatbot per coinvolgere i visitatori del tuo sito web.

SDKper JavaScript (v3)

Mostra come utilizzare Amazon Lex API per creare un Chatbot all'interno di un'applicazione Web per coinvolgere i visitatori del sito Web.

Per il codice sorgente completo e le istruzioni su come configurarlo ed eseguirlo, consulta l'esempio completo Costruire un chatbot Amazon Lex nella guida per gli AWS SDK for JavaScript sviluppatori.

Servizi utilizzati in questo esempio
  • Amazon Comprehend

  • Amazon Lex

  • Amazon Translate

L'esempio di codice seguente mostra come creare un'applicazione che analizza le schede dei commenti dei clienti, le traduce dalla loro lingua originale, ne determina il sentiment e genera un file audio dal testo tradotto.

SDKper JavaScript (v3)

Questa applicazione di esempio analizza e archivia le schede di feedback dei clienti. In particolare, soddisfa l'esigenza di un hotel fittizio a New York City. L'hotel riceve feedback dagli ospiti in varie lingue sotto forma di schede di commento fisiche. Tale feedback viene caricato nell'app tramite un client Web. Dopo aver caricato l'immagine di una scheda di commento, vengono eseguiti i seguenti passaggi:

  • Il testo viene estratto dall'immagine utilizzando Amazon Textract.

  • Amazon Comprehend determina il sentiment del testo estratto e la sua lingua.

  • Il testo estratto viene tradotto in inglese utilizzando Amazon Translate.

  • Amazon Polly sintetizza un file audio dal testo estratto.

L'app completa può essere implementata con  AWS CDK. Per il codice sorgente e le istruzioni di distribuzione, consulta il progetto in GitHub. I seguenti estratti mostrano come AWS SDK for JavaScript viene utilizzato all'interno delle funzioni Lambda.

import { ComprehendClient, DetectDominantLanguageCommand, DetectSentimentCommand, } from "@aws-sdk/client-comprehend"; /** * Determine the language and sentiment of the extracted text. * * @param {{ source_text: string}} extractTextOutput */ export const handler = async (extractTextOutput) => { const comprehendClient = new ComprehendClient({}); const detectDominantLanguageCommand = new DetectDominantLanguageCommand({ Text: extractTextOutput.source_text, }); // The source language is required for sentiment analysis and // translation in the next step. const { Languages } = await comprehendClient.send( detectDominantLanguageCommand, ); const languageCode = Languages[0].LanguageCode; const detectSentimentCommand = new DetectSentimentCommand({ Text: extractTextOutput.source_text, LanguageCode: languageCode, }); const { Sentiment } = await comprehendClient.send(detectSentimentCommand); return { sentiment: Sentiment, language_code: languageCode, }; };
import { DetectDocumentTextCommand, TextractClient, } from "@aws-sdk/client-textract"; /** * Fetch the S3 object from the event and analyze it using Amazon Textract. * * @param {import("@types/aws-lambda").EventBridgeEvent<"Object Created">} eventBridgeS3Event */ export const handler = async (eventBridgeS3Event) => { const textractClient = new TextractClient(); const detectDocumentTextCommand = new DetectDocumentTextCommand({ Document: { S3Object: { Bucket: eventBridgeS3Event.bucket, Name: eventBridgeS3Event.object, }, }, }); // Textract returns a list of blocks. A block can be a line, a page, word, etc. // Each block also contains geometry of the detected text. // For more information on the Block type, see https://docs.aws.amazon.com/textract/latest/dg/API_Block.html. const { Blocks } = await textractClient.send(detectDocumentTextCommand); // For the purpose of this example, we are only interested in words. const extractedWords = Blocks.filter((b) => b.BlockType === "WORD").map( (b) => b.Text, ); return extractedWords.join(" "); };
import { PollyClient, SynthesizeSpeechCommand } from "@aws-sdk/client-polly"; import { S3Client } from "@aws-sdk/client-s3"; import { Upload } from "@aws-sdk/lib-storage"; /** * Synthesize an audio file from text. * * @param {{ bucket: string, translated_text: string, object: string}} sourceDestinationConfig */ export const handler = async (sourceDestinationConfig) => { const pollyClient = new PollyClient({}); const synthesizeSpeechCommand = new SynthesizeSpeechCommand({ Engine: "neural", Text: sourceDestinationConfig.translated_text, VoiceId: "Ruth", OutputFormat: "mp3", }); const { AudioStream } = await pollyClient.send(synthesizeSpeechCommand); const audioKey = `${sourceDestinationConfig.object}.mp3`; // Store the audio file in S3. const s3Client = new S3Client(); const upload = new Upload({ client: s3Client, params: { Bucket: sourceDestinationConfig.bucket, Key: audioKey, Body: AudioStream, ContentType: "audio/mp3", }, }); await upload.done(); return audioKey; };
import { TranslateClient, TranslateTextCommand, } from "@aws-sdk/client-translate"; /** * Translate the extracted text to English. * * @param {{ extracted_text: string, source_language_code: string}} textAndSourceLanguage */ export const handler = async (textAndSourceLanguage) => { const translateClient = new TranslateClient({}); const translateCommand = new TranslateTextCommand({ SourceLanguageCode: textAndSourceLanguage.source_language_code, TargetLanguageCode: "en", Text: textAndSourceLanguage.extracted_text, }); const { TranslatedText } = await translateClient.send(translateCommand); return { translated_text: TranslatedText }; };
Servizi utilizzati in questo esempio
  • Amazon Comprehend

  • Lambda

  • Amazon Polly

  • Amazon Textract

  • Amazon Translate