Sviluppa un utente della Kinesis Client Library in Python - Flusso di dati Amazon Kinesis

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Sviluppa un utente della Kinesis Client Library in Python

Nota

Le versioni 1.x e 2.x di Kinesis Client Library (KCL) sono obsolete. Consigliamo di effettuare la migrazione alla KCLversione 3.x, che offre prestazioni migliorate e nuove funzionalità. Per la KCL documentazione e la guida alla migrazione più recenti, consulta. Usa la libreria client Kinesis

È possibile utilizzare Kinesis Client Library (KCL) per creare applicazioni che elaborano i dati dai flussi di dati Kinesis. La Kinesis Client Library è disponibile in più linguaggi. In questo argomento viene discusso Python.

KCLÈ una libreria Java; il supporto per linguaggi diversi da Java viene fornito utilizzando un'interfaccia multilingue chiamata. MultiLangDaemon Questo demone è basato su Java e viene eseguito in background quando si utilizza un KCL linguaggio diverso da Java. Pertanto, se installi KCL for Python e scrivi la tua app consumer interamente in Python, avrai comunque bisogno che Java sia installato sul tuo sistema a causa di. MultiLangDaemon Inoltre, MultiLangDaemon ha alcune impostazioni predefinite che potresti dover personalizzare in base al tuo caso d'uso, ad esempio, la AWS regione a cui si connette. Per ulteriori informazioni su MultiLangDaemon on GitHub, vai alla pagina del KCL MultiLangDaemon progetto.

Per scaricare Python KCL da GitHub, vai alla Kinesis Client Library (Python). Per scaricare il codice di esempio per un'applicazione KCL consumer Python, vai alla pagina del progetto di esempio per KCL Python su. GitHub

È necessario completare le seguenti attività quando si implementa un'applicazione KCL consumer in Python:

Implementa i metodi della RecordProcessor classe

La classe RecordProcess deve estendere la classe RecordProcessorBase per implementare i seguenti metodi:

initialize process_records shutdown_requested

L'esempio fornisce implementazioni che è possibile utilizzare come punto di partenza.

#!/usr/bin/env python # Copyright 2014-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Amazon Software License (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://aws.amazon.com/asl/ # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import print_function import sys import time from amazon_kclpy import kcl from amazon_kclpy.v3 import processor class RecordProcessor(processor.RecordProcessorBase): """ A RecordProcessor processes data from a shard in a stream. Its methods will be called with this pattern: * initialize will be called once * process_records will be called zero or more times * shutdown will be called if this MultiLangDaemon instance loses the lease to this shard, or the shard ends due a scaling change. """ def __init__(self): self._SLEEP_SECONDS = 5 self._CHECKPOINT_RETRIES = 5 self._CHECKPOINT_FREQ_SECONDS = 60 self._largest_seq = (None, None) self._largest_sub_seq = None self._last_checkpoint_time = None def log(self, message): sys.stderr.write(message) def initialize(self, initialize_input): """ Called once by a KCLProcess before any calls to process_records :param amazon_kclpy.messages.InitializeInput initialize_input: Information about the lease that this record processor has been assigned. """ self._largest_seq = (None, None) self._last_checkpoint_time = time.time() def checkpoint(self, checkpointer, sequence_number=None, sub_sequence_number=None): """ Checkpoints with retries on retryable exceptions. :param amazon_kclpy.kcl.Checkpointer checkpointer: the checkpointer provided to either process_records or shutdown :param str or None sequence_number: the sequence number to checkpoint at. :param int or None sub_sequence_number: the sub sequence number to checkpoint at. """ for n in range(0, self._CHECKPOINT_RETRIES): try: checkpointer.checkpoint(sequence_number, sub_sequence_number) return except kcl.CheckpointError as e: if 'ShutdownException' == e.value: # # A ShutdownException indicates that this record processor should be shutdown. This is due to # some failover event, e.g. another MultiLangDaemon has taken the lease for this shard. # print('Encountered shutdown exception, skipping checkpoint') return elif 'ThrottlingException' == e.value: # # A ThrottlingException indicates that one of our dependencies is is over burdened, e.g. too many # dynamo writes. We will sleep temporarily to let it recover. # if self._CHECKPOINT_RETRIES - 1 == n: sys.stderr.write('Failed to checkpoint after {n} attempts, giving up.\n'.format(n=n)) return else: print('Was throttled while checkpointing, will attempt again in {s} seconds' .format(s=self._SLEEP_SECONDS)) elif 'InvalidStateException' == e.value: sys.stderr.write('MultiLangDaemon reported an invalid state while checkpointing.\n') else: # Some other error sys.stderr.write('Encountered an error while checkpointing, error was {e}.\n'.format(e=e)) time.sleep(self._SLEEP_SECONDS) def process_record(self, data, partition_key, sequence_number, sub_sequence_number): """ Called for each record that is passed to process_records. :param str data: The blob of data that was contained in the record. :param str partition_key: The key associated with this recod. :param int sequence_number: The sequence number associated with this record. :param int sub_sequence_number: the sub sequence number associated with this record. """ #################################### # Insert your processing logic here #################################### self.log("Record (Partition Key: {pk}, Sequence Number: {seq}, Subsequence Number: {sseq}, Data Size: {ds}" .format(pk=partition_key, seq=sequence_number, sseq=sub_sequence_number, ds=len(data))) def should_update_sequence(self, sequence_number, sub_sequence_number): """ Determines whether a new larger sequence number is available :param int sequence_number: the sequence number from the current record :param int sub_sequence_number: the sub sequence number from the current record :return boolean: true if the largest sequence should be updated, false otherwise """ return self._largest_seq == (None, None) or sequence_number > self._largest_seq[0] or \ (sequence_number == self._largest_seq[0] and sub_sequence_number > self._largest_seq[1]) def process_records(self, process_records_input): """ Called by a KCLProcess with a list of records to be processed and a checkpointer which accepts sequence numbers from the records to indicate where in the stream to checkpoint. :param amazon_kclpy.messages.ProcessRecordsInput process_records_input: the records, and metadata about the records. """ try: for record in process_records_input.records: data = record.binary_data seq = int(record.sequence_number) sub_seq = record.sub_sequence_number key = record.partition_key self.process_record(data, key, seq, sub_seq) if self.should_update_sequence(seq, sub_seq): self._largest_seq = (seq, sub_seq) # # Checkpoints every self._CHECKPOINT_FREQ_SECONDS seconds # if time.time() - self._last_checkpoint_time > self._CHECKPOINT_FREQ_SECONDS: self.checkpoint(process_records_input.checkpointer, str(self._largest_seq[0]), self._largest_seq[1]) self._last_checkpoint_time = time.time() except Exception as e: self.log("Encountered an exception while processing records. Exception was {e}\n".format(e=e)) def lease_lost(self, lease_lost_input): self.log("Lease has been lost") def shard_ended(self, shard_ended_input): self.log("Shard has ended checkpointing") shard_ended_input.checkpointer.checkpoint() def shutdown_requested(self, shutdown_requested_input): self.log("Shutdown has been requested, checkpointing.") shutdown_requested_input.checkpointer.checkpoint() if __name__ == "__main__": kcl_process = kcl.KCLProcess(RecordProcessor()) kcl_process.run()

Modificare le proprietà di configurazione

L'esempio fornisce valori di default per le proprietà di configurazione, come mostra lo script seguente. È possibile sostituire una qualsiasi di queste proprietà con i propri valori.

# The script that abides by the multi-language protocol. This script will # be executed by the MultiLangDaemon, which will communicate with this script # over STDIN and STDOUT according to the multi-language protocol. executableName = sample_kclpy_app.py # The name of an Amazon Kinesis stream to process. streamName = words # Used by the KCL as the name of this application. Will be used as the name # of an Amazon DynamoDB table which will store the lease and checkpoint # information for workers with this application name applicationName = PythonKCLSample # Users can change the credentials provider the KCL will use to retrieve credentials. # The DefaultAWSCredentialsProviderChain checks several other providers, which is # described here: # http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/DefaultAWSCredentialsProviderChain.html AWSCredentialsProvider = DefaultAWSCredentialsProviderChain # Appended to the user agent of the KCL. Does not impact the functionality of the # KCL in any other way. processingLanguage = python/2.7 # Valid options at TRIM_HORIZON or LATEST. # See http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html#API_GetShardIterator_RequestSyntax initialPositionInStream = TRIM_HORIZON # The following properties are also available for configuring the KCL Worker that is created # by the MultiLangDaemon. # The KCL defaults to us-east-1 #regionName = us-east-1 # Fail over time in milliseconds. A worker which does not renew it's lease within this time interval # will be regarded as having problems and it's shards will be assigned to other workers. # For applications that have a large number of shards, this msy be set to a higher number to reduce # the number of DynamoDB IOPS required for tracking leases #failoverTimeMillis = 10000 # A worker id that uniquely identifies this worker among all workers using the same applicationName # If this isn't provided a MultiLangDaemon instance will assign a unique workerId to itself. #workerId = # Shard sync interval in milliseconds - e.g. wait for this long between shard sync tasks. #shardSyncIntervalMillis = 60000 # Max records to fetch from Kinesis in a single GetRecords call. #maxRecords = 10000 # Idle time between record reads in milliseconds. #idleTimeBetweenReadsInMillis = 1000 # Enables applications flush/checkpoint (if they have some data "in progress", but don't get new data for while) #callProcessRecordsEvenForEmptyRecordList = false # Interval in milliseconds between polling to check for parent shard completion. # Polling frequently will take up more DynamoDB IOPS (when there are leases for shards waiting on # completion of parent shards). #parentShardPollIntervalMillis = 10000 # Cleanup leases upon shards completion (don't wait until they expire in Kinesis). # Keeping leases takes some tracking/resources (e.g. they need to be renewed, assigned), so by default we try # to delete the ones we don't need any longer. #cleanupLeasesUponShardCompletion = true # Backoff time in milliseconds for Amazon Kinesis Client Library tasks (in the event of failures). #taskBackoffTimeMillis = 500 # Buffer metrics for at most this long before publishing to CloudWatch. #metricsBufferTimeMillis = 10000 # Buffer at most this many metrics before publishing to CloudWatch. #metricsMaxQueueSize = 10000 # KCL will validate client provided sequence numbers with a call to Amazon Kinesis before checkpointing for calls # to RecordProcessorCheckpointer#checkpoint(String) by default. #validateSequenceNumberBeforeCheckpointing = true # The maximum number of active threads for the MultiLangDaemon to permit. # If a value is provided then a FixedThreadPool is used with the maximum # active threads set to the provided value. If a non-positive integer or no # value is provided a CachedThreadPool is used. #maxActiveThreads = 0

Nome applicazione

KCLRichiede un nome di applicazione che sia unico tra le tue applicazioni e tra le tabelle Amazon DynamoDB nella stessa regione. La biblioteca utilizza il valore di configurazione del nome dell'applicazione nei seguenti modi:

  • Si suppone che tutti i lavoratori associati con questo nome dell'applicazione stiano lavorando insieme nello stesso flusso. Questi lavoratori possono essere distribuiti su più istanze. Se esegui un'istanza aggiuntiva dello stesso codice applicativo, ma con un nome di applicazione diverso, KCL considera la seconda istanza come un'applicazione completamente separata che opera anch'essa sullo stesso flusso.

  • KCLCrea una tabella DynamoDB con il nome dell'applicazione e utilizza la tabella per conservare le informazioni sullo stato (come i checkpoint e la mappatura dei worker-shard) per l'applicazione. Ogni applicazione ha la propria tabella DynamoDB. Per ulteriori informazioni, consulta Utilizzate una tabella di leasing per tenere traccia degli shard elaborati dall'applicazione consumer KCL.

Credenziali

È necessario rendere disponibili AWS le credenziali a uno dei provider di credenziali nella catena di provider di credenziali predefinita. Puoi utilizzare la proprietà AWSCredentialsProvider per impostare un provider di credenziali. Se esegui la tua applicazione consumer su un'EC2istanza Amazon, ti consigliamo di configurare l'istanza con un IAM ruolo. AWS le credenziali che riflettono le autorizzazioni associate a questo IAM ruolo vengono rese disponibili alle applicazioni sull'istanza tramite i relativi metadati dell'istanza. Questo è il modo più sicuro per gestire le credenziali per un'applicazione consumer in esecuzione su un'istanza. EC2