Interrogazioni con funzioni aggregate - Amazon Timestream

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Interrogazioni con funzioni aggregate

Di seguito è riportato un esempio di set di dati di esempio di scenario IoT per illustrare le query con funzioni aggregate.

Dati di esempio

Timestream consente di archiviare e analizzare i dati dei sensori IoT come la posizione, il consumo di carburante, la velocità e la capacità di carico di una o più flotte di camion per consentire una gestione efficace della flotta. Di seguito sono riportati lo schema e alcuni dati di una tabella iot_trucks che memorizza dati di telemetria come posizione, consumo di carburante, velocità e capacità di carico dei camion.

Orario truck_id Make Modello Parco istanze capacità_carburante capacità_di carico measure_name measure_value::double measure_value::varchar

2019-12-04 19:00:00.000 000000

123456781

GMC

Astro

Alpha (Afa)

100

500

fuel_reading

65,2

null

2019-12-04 19:00:00.000 000000

123456781

GMC

Astro

Alpha (Afa)

100

500

caricare

400,0

null

2019-12-04 19:00:00.000 000000

123456781

GMC

Astro

Alpha (Afa)

100

500

speed

90,2

null

2019-12-04 19:00:00.000 000000

123456781

GMC

Astro

Alpha (Afa)

100

500

posizione

null

47,6062 NM, 122.321 W

2019-12-04 19:00:00.000 000000

123456782

Kenworth

W900

Alpha (Afa)

150

1000

lettura del carburante

10.1

null

2019-12-04 19:00:00.000 000000

123456782

Kenworth

W900

Alpha (Afa)

150

1000

caricare

950,3

null

2019-12-04 19:00:00.000 000000

123456782

Kenworth

W900

Alpha (Afa)

150

1000

speed

50,8

null

2019-12-04 19:00:00.000 000000

123456782

Kenworth

W900

Alpha (Afa)

150

1000

posizione

null

40.7128 gradi N, 74.0060 gradi W

Query di esempio

Ottieni un elenco di tutti gli attributi e i valori dei sensori monitorati per ogni camion della flotta.

SELECT truck_id, fleet, fuel_capacity, model, load_capacity, make, measure_name FROM "sampleDB".IoT GROUP BY truck_id, fleet, fuel_capacity, model, load_capacity, make, measure_name

Ottieni i dati più recenti relativi al carburante di ogni camion della flotta nelle ultime 24 ore.

WITH latest_recorded_time AS ( SELECT truck_id, max(time) as latest_time FROM "sampleDB".IoT WHERE measure_name = 'fuel-reading' AND time >= ago(24h) GROUP BY truck_id ) SELECT b.truck_id, b.fleet, b.make, b.model, b.time, b.measure_value::double as last_reported_fuel_reading FROM latest_recorded_time a INNER JOIN "sampleDB".IoT b ON a.truck_id = b.truck_id AND b.time = a.latest_time WHERE b.measure_name = 'fuel-reading' AND b.time > ago(24h) ORDER BY b.truck_id

Identifica i camion che hanno utilizzato poco carburante (meno del 10%) nelle ultime 48 ore:

WITH low_fuel_trucks AS ( SELECT time, truck_id, fleet, make, model, (measure_value::double/cast(fuel_capacity as double)*100) AS fuel_pct FROM "sampleDB".IoT WHERE time >= ago(48h) AND (measure_value::double/cast(fuel_capacity as double)*100) < 10 AND measure_name = 'fuel-reading' ), other_trucks AS ( SELECT time, truck_id, (measure_value::double/cast(fuel_capacity as double)*100) as remaining_fuel FROM "sampleDB".IoT WHERE time >= ago(48h) AND truck_id IN (SELECT truck_id FROM low_fuel_trucks) AND (measure_value::double/cast(fuel_capacity as double)*100) >= 10 AND measure_name = 'fuel-reading' ), trucks_that_refuelled AS ( SELECT a.truck_id FROM low_fuel_trucks a JOIN other_trucks b ON a.truck_id = b.truck_id AND b.time >= a.time ) SELECT DISTINCT truck_id, fleet, make, model, fuel_pct FROM low_fuel_trucks WHERE truck_id NOT IN ( SELECT truck_id FROM trucks_that_refuelled )

Calcola il carico medio e la velocità massima di ogni camion nell'ultima settimana:

SELECT bin(time, 1d) as binned_time, fleet, truck_id, make, model, AVG( CASE WHEN measure_name = 'load' THEN measure_value::double ELSE NULL END ) AS avg_load_tons, MAX( CASE WHEN measure_name = 'speed' THEN measure_value::double ELSE NULL END ) AS max_speed_mph FROM "sampleDB".IoT WHERE time >= ago(7d) AND measure_name IN ('load', 'speed') GROUP BY fleet, truck_id, make, model, bin(time, 1d) ORDER BY truck_id

Calcola l'efficienza di carico di ogni camion nell'ultima settimana:

WITH average_load_per_truck AS ( SELECT truck_id, avg(measure_value::double) AS avg_load FROM "sampleDB".IoT WHERE measure_name = 'load' AND time >= ago(7d) GROUP BY truck_id, fleet, load_capacity, make, model ), truck_load_efficiency AS ( SELECT a.truck_id, fleet, load_capacity, make, model, avg_load, measure_value::double, time, (measure_value::double*100)/avg_load as load_efficiency -- , approx_percentile(avg_load_pct, DOUBLE '0.9') FROM "sampleDB".IoT a JOIN average_load_per_truck b ON a.truck_id = b.truck_id WHERE a.measure_name = 'load' ) SELECT truck_id, time, load_efficiency FROM truck_load_efficiency ORDER BY truck_id, time