Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.
Interrogazioni con funzioni aggregate
Di seguito è riportato un esempio di set di dati di esempio di scenario IoT per illustrare le query con funzioni aggregate.
Argomenti
Dati di esempio
Timestream consente di archiviare e analizzare i dati dei sensori IoT come la posizione, il consumo di carburante, la velocità e la capacità di carico di una o più flotte di camion per consentire una gestione efficace della flotta. Di seguito sono riportati lo schema e alcuni dati di una tabella iot_trucks che memorizza dati di telemetria come posizione, consumo di carburante, velocità e capacità di carico dei camion.
Orario | truck_id | Make | Modello | Parco istanze | capacità_carburante | capacità_di carico | measure_name | measure_value::double | measure_value::varchar |
---|---|---|---|---|---|---|---|---|---|
2019-12-04 19:00:00.000 000000 |
123456781 |
GMC |
Astro |
Alpha (Afa) |
100 |
500 |
fuel_reading |
65,2 |
null |
2019-12-04 19:00:00.000 000000 |
123456781 |
GMC |
Astro |
Alpha (Afa) |
100 |
500 |
caricare |
400,0 |
null |
2019-12-04 19:00:00.000 000000 |
123456781 |
GMC |
Astro |
Alpha (Afa) |
100 |
500 |
speed |
90,2 |
null |
2019-12-04 19:00:00.000 000000 |
123456781 |
GMC |
Astro |
Alpha (Afa) |
100 |
500 |
posizione |
null |
47,6062 NM, 122.321 W |
2019-12-04 19:00:00.000 000000 |
123456782 |
Kenworth |
W900 |
Alpha (Afa) |
150 |
1000 |
lettura del carburante |
10.1 |
null |
2019-12-04 19:00:00.000 000000 |
123456782 |
Kenworth |
W900 |
Alpha (Afa) |
150 |
1000 |
caricare |
950,3 |
null |
2019-12-04 19:00:00.000 000000 |
123456782 |
Kenworth |
W900 |
Alpha (Afa) |
150 |
1000 |
speed |
50,8 |
null |
2019-12-04 19:00:00.000 000000 |
123456782 |
Kenworth |
W900 |
Alpha (Afa) |
150 |
1000 |
posizione |
null |
40.7128 gradi N, 74.0060 gradi W |
Query di esempio
Ottieni un elenco di tutti gli attributi e i valori dei sensori monitorati per ogni camion della flotta.
SELECT truck_id, fleet, fuel_capacity, model, load_capacity, make, measure_name FROM "sampleDB".IoT GROUP BY truck_id, fleet, fuel_capacity, model, load_capacity, make, measure_name
Ottieni i dati più recenti relativi al carburante di ogni camion della flotta nelle ultime 24 ore.
WITH latest_recorded_time AS ( SELECT truck_id, max(time) as latest_time FROM "sampleDB".IoT WHERE measure_name = 'fuel-reading' AND time >= ago(24h) GROUP BY truck_id ) SELECT b.truck_id, b.fleet, b.make, b.model, b.time, b.measure_value::double as last_reported_fuel_reading FROM latest_recorded_time a INNER JOIN "sampleDB".IoT b ON a.truck_id = b.truck_id AND b.time = a.latest_time WHERE b.measure_name = 'fuel-reading' AND b.time > ago(24h) ORDER BY b.truck_id
Identifica i camion che hanno utilizzato poco carburante (meno del 10%) nelle ultime 48 ore:
WITH low_fuel_trucks AS ( SELECT time, truck_id, fleet, make, model, (measure_value::double/cast(fuel_capacity as double)*100) AS fuel_pct FROM "sampleDB".IoT WHERE time >= ago(48h) AND (measure_value::double/cast(fuel_capacity as double)*100) < 10 AND measure_name = 'fuel-reading' ), other_trucks AS ( SELECT time, truck_id, (measure_value::double/cast(fuel_capacity as double)*100) as remaining_fuel FROM "sampleDB".IoT WHERE time >= ago(48h) AND truck_id IN (SELECT truck_id FROM low_fuel_trucks) AND (measure_value::double/cast(fuel_capacity as double)*100) >= 10 AND measure_name = 'fuel-reading' ), trucks_that_refuelled AS ( SELECT a.truck_id FROM low_fuel_trucks a JOIN other_trucks b ON a.truck_id = b.truck_id AND b.time >= a.time ) SELECT DISTINCT truck_id, fleet, make, model, fuel_pct FROM low_fuel_trucks WHERE truck_id NOT IN ( SELECT truck_id FROM trucks_that_refuelled )
Calcola il carico medio e la velocità massima di ogni camion nell'ultima settimana:
SELECT bin(time, 1d) as binned_time, fleet, truck_id, make, model, AVG( CASE WHEN measure_name = 'load' THEN measure_value::double ELSE NULL END ) AS avg_load_tons, MAX( CASE WHEN measure_name = 'speed' THEN measure_value::double ELSE NULL END ) AS max_speed_mph FROM "sampleDB".IoT WHERE time >= ago(7d) AND measure_name IN ('load', 'speed') GROUP BY fleet, truck_id, make, model, bin(time, 1d) ORDER BY truck_id
Calcola l'efficienza di carico di ogni camion nell'ultima settimana:
WITH average_load_per_truck AS ( SELECT truck_id, avg(measure_value::double) AS avg_load FROM "sampleDB".IoT WHERE measure_name = 'load' AND time >= ago(7d) GROUP BY truck_id, fleet, load_capacity, make, model ), truck_load_efficiency AS ( SELECT a.truck_id, fleet, load_capacity, make, model, avg_load, measure_value::double, time, (measure_value::double*100)/avg_load as load_efficiency -- , approx_percentile(avg_load_pct, DOUBLE '0.9') FROM "sampleDB".IoT a JOIN average_load_per_truck b ON a.truck_id = b.truck_id WHERE a.measure_name = 'load' ) SELECT truck_id, time, load_efficiency FROM truck_load_efficiency ORDER BY truck_id, time