for Python (Boto3) を使用した Managed Service SDK for Apache Flink の例 - AWS SDK CLI コードの例

AWS Doc SDK Examples GitHub リポジトリには他にも AWS SDK例があります。

翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。

for Python (Boto3) を使用した Managed Service SDK for Apache Flink の例

次のコード例は、Managed Service for Apache Flink AWS SDK for Python (Boto3) で を使用してアクションを実行し、一般的なシナリオを実装する方法を示しています。

アクションはより大きなプログラムからのコードの抜粋であり、コンテキスト内で実行する必要があります。アクションは個々のサービス機能を呼び出す方法を示していますが、コンテキスト内のアクションは、関連するシナリオで確認できます。

各例には、完全なソースコードへのリンクが含まれており、コンテキスト内でコードを設定して実行する方法の手順を確認できます。

アクション

次の例は、AddApplicationInput を使用する方法を説明しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

class KinesisAnalyticsApplicationV2: """Encapsulates Kinesis Data Analytics application functions.""" def __init__(self, analytics_client): """ :param analytics_client: A Boto3 Kinesis Data Analytics v2 client. """ self.analytics_client = analytics_client self.name = None self.arn = None self.version_id = None self.create_timestamp = None def add_input(self, input_prefix, stream_arn, input_schema): """ Adds an input stream to the application. The input stream data is mapped to an in-application stream that can be processed by your code running in Kinesis Data Analytics. :param input_prefix: The prefix prepended to in-application input stream names. :param stream_arn: The ARN of the input stream. :param input_schema: A schema that maps the data in the input stream to the runtime environment. This can be automatically generated by using `discover_input_schema` or you can create it yourself. :return: Metadata about the newly added input. """ try: response = self.analytics_client.add_application_input( ApplicationName=self.name, CurrentApplicationVersionId=self.version_id, Input={ "NamePrefix": input_prefix, "KinesisStreamsInput": {"ResourceARN": stream_arn}, "InputSchema": input_schema, }, ) self.version_id = response["ApplicationVersionId"] logger.info("Add input stream %s to application %s.", stream_arn, self.name) except ClientError: logger.exception( "Couldn't add input stream %s to application %s.", stream_arn, self.name ) raise else: return response
  • API 詳細については、「 for AWS SDKPython (Boto3) APIリファレンスAddApplicationInput」の「」を参照してください。

次の例は、AddApplicationOutput を使用する方法を説明しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

class KinesisAnalyticsApplicationV2: """Encapsulates Kinesis Data Analytics application functions.""" def __init__(self, analytics_client): """ :param analytics_client: A Boto3 Kinesis Data Analytics v2 client. """ self.analytics_client = analytics_client self.name = None self.arn = None self.version_id = None self.create_timestamp = None def add_output(self, in_app_stream_name, output_arn): """ Adds an output stream to the application. Kinesis Data Analytics maps data from the specified in-application stream to the output stream. :param in_app_stream_name: The name of the in-application stream to map to the output stream. :param output_arn: The ARN of the output stream. :return: A list of metadata about the output resources currently assigned to the application. """ try: response = self.analytics_client.add_application_output( ApplicationName=self.name, CurrentApplicationVersionId=self.version_id, Output={ "Name": in_app_stream_name, "KinesisStreamsOutput": {"ResourceARN": output_arn}, "DestinationSchema": {"RecordFormatType": "JSON"}, }, ) outputs = response["OutputDescriptions"] self.version_id = response["ApplicationVersionId"] logging.info( "Added output %s to %s, which now has %s outputs.", output_arn, self.name, len(outputs), ) except ClientError: logger.exception("Couldn't add output %s to %s.", output_arn, self.name) raise else: return outputs
  • API 詳細については、「 for AWS SDKPython (Boto3) APIリファレンスAddApplicationOutput」の「」を参照してください。

次の例は、CreateApplication を使用する方法を説明しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

class KinesisAnalyticsApplicationV2: """Encapsulates Kinesis Data Analytics application functions.""" def __init__(self, analytics_client): """ :param analytics_client: A Boto3 Kinesis Data Analytics v2 client. """ self.analytics_client = analytics_client self.name = None self.arn = None self.version_id = None self.create_timestamp = None def create(self, app_name, role_arn, env="SQL-1_0"): """ Creates a Kinesis Data Analytics application. :param app_name: The name of the application. :param role_arn: The ARN of a role that can be assumed by Kinesis Data Analytics and grants needed permissions. :param env: The runtime environment of the application, such as SQL. Code uploaded to the application runs in this environment. :return: Metadata about the newly created application. """ try: response = self.analytics_client.create_application( ApplicationName=app_name, RuntimeEnvironment=env, ServiceExecutionRole=role_arn, ) details = response["ApplicationDetail"] self._update_details(details) logger.info("Application %s created.", app_name) except ClientError: logger.exception("Couldn't create application %s.", app_name) raise else: return details
  • API 詳細については、「 for AWS SDKPython (Boto3) APIリファレンスCreateApplication」の「」を参照してください。

次のコード例は、DeleteApplication を使用する方法を示しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

class KinesisAnalyticsApplicationV2: """Encapsulates Kinesis Data Analytics application functions.""" def __init__(self, analytics_client): """ :param analytics_client: A Boto3 Kinesis Data Analytics v2 client. """ self.analytics_client = analytics_client self.name = None self.arn = None self.version_id = None self.create_timestamp = None def delete(self): """ Deletes an application. """ try: self.analytics_client.delete_application( ApplicationName=self.name, CreateTimestamp=self.create_timestamp ) logger.info("Deleted application %s.", self.name) except ClientError: logger.exception("Couldn't delete application %s.", self.name) raise
  • API 詳細については、「 for AWS SDKPython (Boto3) APIリファレンスDeleteApplication」の「」を参照してください。

次の例は、DescribeApplication を使用する方法を説明しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

class KinesisAnalyticsApplicationV2: """Encapsulates Kinesis Data Analytics application functions.""" def __init__(self, analytics_client): """ :param analytics_client: A Boto3 Kinesis Data Analytics v2 client. """ self.analytics_client = analytics_client self.name = None self.arn = None self.version_id = None self.create_timestamp = None def describe(self, name): """ Gets metadata about an application. :param name: The name of the application to look up. :return: Metadata about the application. """ try: response = self.analytics_client.describe_application(ApplicationName=name) details = response["ApplicationDetail"] self._update_details(details) logger.info("Got metadata for application %s.", name) except ClientError: logger.exception("Couldn't get metadata for application %s.", name) raise else: return details
  • API 詳細については、「 for AWS SDKPython (Boto3) APIリファレンスDescribeApplication」の「」を参照してください。

次のコード例は、DescribeApplicationSnapshot を使用する方法を示しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

class KinesisAnalyticsApplicationV2: """Encapsulates Kinesis Data Analytics application functions.""" def __init__(self, analytics_client): """ :param analytics_client: A Boto3 Kinesis Data Analytics v2 client. """ self.analytics_client = analytics_client self.name = None self.arn = None self.version_id = None self.create_timestamp = None def describe_snapshot(self, application_name, snapshot_name): """ Gets metadata about a previously saved application snapshot. :param application_name: The name of the application. :param snapshot_name: The name of the snapshot. :return: Metadata about the snapshot. """ try: response = self.analytics_client.describe_application_snapshot( ApplicationName=application_name, SnapshotName=snapshot_name ) snapshot = response["SnapshotDetails"] logger.info( "Got metadata for snapshot %s of application %s.", snapshot_name, application_name, ) except ClientError: logger.exception( "Couldn't get metadata for snapshot %s of application %s.", snapshot_name, application_name, ) raise else: return snapshot
  • API 詳細については、「 for AWS SDKPython (Boto3) APIリファレンスDescribeApplicationSnapshot」の「」を参照してください。

次の例は、DiscoverInputSchema を使用する方法を説明しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

class KinesisAnalyticsApplicationV2: """Encapsulates Kinesis Data Analytics application functions.""" def __init__(self, analytics_client): """ :param analytics_client: A Boto3 Kinesis Data Analytics v2 client. """ self.analytics_client = analytics_client self.name = None self.arn = None self.version_id = None self.create_timestamp = None def discover_input_schema(self, stream_arn, role_arn): """ Discovers a schema that maps data in a stream to a format that is usable by an application's runtime environment. The stream must be active and have enough data moving through it for the service to sample. The returned schema can be used when you add the stream as an input to the application or you can write your own schema. :param stream_arn: The ARN of the stream to map. :param role_arn: A role that lets Kinesis Data Analytics read from the stream. :return: The discovered schema of the data in the input stream. """ try: response = self.analytics_client.discover_input_schema( ResourceARN=stream_arn, ServiceExecutionRole=role_arn, InputStartingPositionConfiguration={"InputStartingPosition": "NOW"}, ) schema = response["InputSchema"] logger.info("Discovered input schema for stream %s.", stream_arn) except ClientError: logger.exception( "Couldn't discover input schema for stream %s.", stream_arn ) raise else: return schema
  • API 詳細については、「 for AWS SDKPython (Boto3) APIリファレンスDiscoverInputSchema」の「」を参照してください。

次の例は、StartApplication を使用する方法を説明しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

class KinesisAnalyticsApplicationV2: """Encapsulates Kinesis Data Analytics application functions.""" def __init__(self, analytics_client): """ :param analytics_client: A Boto3 Kinesis Data Analytics v2 client. """ self.analytics_client = analytics_client self.name = None self.arn = None self.version_id = None self.create_timestamp = None def start(self, input_id): """ Starts an application. After the application is running, it reads from the specified input stream and runs the application code on the incoming data. :param input_id: The ID of the input to read. """ try: self.analytics_client.start_application( ApplicationName=self.name, RunConfiguration={ "SqlRunConfigurations": [ { "InputId": input_id, "InputStartingPositionConfiguration": { "InputStartingPosition": "NOW" }, } ] }, ) logger.info("Started application %s.", self.name) except ClientError: logger.exception("Couldn't start application %s.", self.name) raise
  • API 詳細については、「 for AWS SDKPython (Boto3) APIリファレンスStartApplication」の「」を参照してください。

次の例は、StopApplication を使用する方法を説明しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

class KinesisAnalyticsApplicationV2: """Encapsulates Kinesis Data Analytics application functions.""" def __init__(self, analytics_client): """ :param analytics_client: A Boto3 Kinesis Data Analytics v2 client. """ self.analytics_client = analytics_client self.name = None self.arn = None self.version_id = None self.create_timestamp = None def stop(self): """ Stops an application. This stops the application from processing data but does not delete any resources. """ try: self.analytics_client.stop_application(ApplicationName=self.name) logger.info("Stopping application %s.", self.name) except ClientError: logger.exception("Couldn't stop application %s.", self.name) raise
  • API 詳細については、「 for AWS SDK Python (Boto3) APIリファレンスStopApplication」の「」を参照してください。

次のコード例は、UpdateApplication を使用する方法を示しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

この例は、既存のアプリケーションで実行されるコードを更新します。

class KinesisAnalyticsApplicationV2: """Encapsulates Kinesis Data Analytics application functions.""" def __init__(self, analytics_client): """ :param analytics_client: A Boto3 Kinesis Data Analytics v2 client. """ self.analytics_client = analytics_client self.name = None self.arn = None self.version_id = None self.create_timestamp = None def update_code(self, code): """ Updates the code that runs in the application. The code must run in the runtime environment of the application, such as SQL. Application code typically reads data from in-application streams and transforms it in some way. :param code: The code to upload. This completely replaces any existing code in the application. :return: Metadata about the application. """ try: response = self.analytics_client.update_application( ApplicationName=self.name, CurrentApplicationVersionId=self.version_id, ApplicationConfigurationUpdate={ "ApplicationCodeConfigurationUpdate": { "CodeContentTypeUpdate": "PLAINTEXT", "CodeContentUpdate": {"TextContentUpdate": code}, } }, ) details = response["ApplicationDetail"] self.version_id = details["ApplicationVersionId"] logger.info("Update code for application %s.", self.name) except ClientError: logger.exception("Couldn't update code for application %s.", self.name) raise else: return details
  • API 詳細については、「 for AWS SDKPython (Boto3) APIリファレンスUpdateApplication」の「」を参照してください。

データジェネレーター

次のコード例は、リファラーで Kinesis ストリームを生成する方法を示しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

import json import boto3 STREAM_NAME = "ExampleInputStream" def get_data(): return {"REFERRER": "http://www.amazon.com"} def generate(stream_name, kinesis_client): while True: data = get_data() print(data) kinesis_client.put_record( StreamName=stream_name, Data=json.dumps(data), PartitionKey="partitionkey" ) if __name__ == "__main__": generate(STREAM_NAME, boto3.client("kinesis"))

次のコード例は、血圧異常で Kinesis ストリームを生成する方法を示しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

from enum import Enum import json import random import boto3 STREAM_NAME = "ExampleInputStream" class PressureType(Enum): low = "LOW" normal = "NORMAL" high = "HIGH" def get_blood_pressure(pressure_type): pressure = {"BloodPressureLevel": pressure_type.value} if pressure_type == PressureType.low: pressure["Systolic"] = random.randint(50, 80) pressure["Diastolic"] = random.randint(30, 50) elif pressure_type == PressureType.normal: pressure["Systolic"] = random.randint(90, 120) pressure["Diastolic"] = random.randint(60, 80) elif pressure_type == PressureType.high: pressure["Systolic"] = random.randint(130, 200) pressure["Diastolic"] = random.randint(90, 150) else: raise TypeError return pressure def generate(stream_name, kinesis_client): while True: rnd = random.random() pressure_type = ( PressureType.low if rnd < 0.005 else PressureType.high if rnd > 0.995 else PressureType.normal ) blood_pressure = get_blood_pressure(pressure_type) print(blood_pressure) kinesis_client.put_record( StreamName=stream_name, Data=json.dumps(blood_pressure), PartitionKey="partitionkey", ) if __name__ == "__main__": generate(STREAM_NAME, boto3.client("kinesis"))

次のコード例は、列のデータで Kinesis ストリームを生成する方法を示しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

import json import boto3 STREAM_NAME = "ExampleInputStream" def get_data(): return {"Col_A": "a", "Col_B": "b", "Col_C": "c", "Col_E_Unstructured": "x,y,z"} def generate(stream_name, kinesis_client): while True: data = get_data() print(data) kinesis_client.put_record( StreamName=stream_name, Data=json.dumps(data), PartitionKey="partitionkey" ) if __name__ == "__main__": generate(STREAM_NAME, boto3.client("kinesis"))

次のコード例は、心拍数異常で Kinesis ストリームを生成する方法を示しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

from enum import Enum import json import random import boto3 STREAM_NAME = "ExampleInputStream" class RateType(Enum): normal = "NORMAL" high = "HIGH" def get_heart_rate(rate_type): if rate_type == RateType.normal: rate = random.randint(60, 100) elif rate_type == RateType.high: rate = random.randint(150, 200) else: raise TypeError return {"heartRate": rate, "rateType": rate_type.value} def generate(stream_name, kinesis_client, output=True): while True: rnd = random.random() rate_type = RateType.high if rnd < 0.01 else RateType.normal heart_rate = get_heart_rate(rate_type) if output: print(heart_rate) kinesis_client.put_record( StreamName=stream_name, Data=json.dumps(heart_rate), PartitionKey="partitionkey", ) if __name__ == "__main__": generate(STREAM_NAME, boto3.client("kinesis"))

次のコード例は、ホットスポットで Kinesis ストリームを生成する方法を示しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

import json from pprint import pprint import random import time import boto3 STREAM_NAME = "ExampleInputStream" def get_hotspot(field, spot_size): hotspot = { "left": field["left"] + random.random() * (field["width"] - spot_size), "width": spot_size, "top": field["top"] + random.random() * (field["height"] - spot_size), "height": spot_size, } return hotspot def get_record(field, hotspot, hotspot_weight): rectangle = hotspot if random.random() < hotspot_weight else field point = { "x": rectangle["left"] + random.random() * rectangle["width"], "y": rectangle["top"] + random.random() * rectangle["height"], "is_hot": "Y" if rectangle is hotspot else "N", } return {"Data": json.dumps(point), "PartitionKey": "partition_key"} def generate( stream_name, field, hotspot_size, hotspot_weight, batch_size, kinesis_client ): """ Generates points used as input to a hotspot detection algorithm. With probability hotspot_weight (20%), a point is drawn from the hotspot; otherwise, it is drawn from the base field. The location of the hotspot changes for every 1000 points generated. """ points_generated = 0 hotspot = None while True: if points_generated % 1000 == 0: hotspot = get_hotspot(field, hotspot_size) records = [ get_record(field, hotspot, hotspot_weight) for _ in range(batch_size) ] points_generated += len(records) pprint(records) kinesis_client.put_records(StreamName=stream_name, Records=records) time.sleep(0.1) if __name__ == "__main__": generate( stream_name=STREAM_NAME, field={"left": 0, "width": 10, "top": 0, "height": 10}, hotspot_size=1, hotspot_weight=0.2, batch_size=10, kinesis_client=boto3.client("kinesis"), )

次のコード例は、ログエントリで Kinesis ストリームを生成する方法を示しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

import json import boto3 STREAM_NAME = "ExampleInputStream" def get_data(): return { "LOGENTRY": "203.0.113.24 - - [25/Mar/2018:15:25:37 -0700] " '"GET /index.php HTTP/1.1" 200 125 "-" ' '"Mozilla/5.0 [en] Gecko/20100101 Firefox/52.0"' } def generate(stream_name, kinesis_client): while True: data = get_data() print(data) kinesis_client.put_record( StreamName=stream_name, Data=json.dumps(data), PartitionKey="partitionkey" ) if __name__ == "__main__": generate(STREAM_NAME, boto3.client("kinesis"))

次のコード例は、スタッガーデータで Kinesis ストリームを生成する方法を示しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

import datetime import json import random import time import boto3 STREAM_NAME = "ExampleInputStream" def get_data(): event_time = datetime.datetime.utcnow() - datetime.timedelta(seconds=10) return { "EVENT_TIME": event_time.isoformat(), "TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]), } def generate(stream_name, kinesis_client): while True: data = get_data() # Send six records, ten seconds apart, with the same event time and ticker for _ in range(6): print(data) kinesis_client.put_record( StreamName=stream_name, Data=json.dumps(data), PartitionKey="partitionkey", ) time.sleep(10) if __name__ == "__main__": generate(STREAM_NAME, boto3.client("kinesis"))

次のコード例は、株価データで Kinesis ストリームを生成する方法を示しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

import datetime import json import random import boto3 STREAM_NAME = "ExampleInputStream" def get_data(): return { "EVENT_TIME": datetime.datetime.now().isoformat(), "TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]), "PRICE": round(random.random() * 100, 2), } def generate(stream_name, kinesis_client): while True: data = get_data() print(data) kinesis_client.put_record( StreamName=stream_name, Data=json.dumps(data), PartitionKey="partitionkey" ) if __name__ == "__main__": generate(STREAM_NAME, boto3.client("kinesis"))

次のコード例は、2 つのデータ型でストリームを生成する方法を示しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

import json import random import boto3 STREAM_NAME = "OrdersAndTradesStream" PARTITION_KEY = "partition_key" def get_order(order_id, ticker): return { "RecordType": "Order", "Oid": order_id, "Oticker": ticker, "Oprice": random.randint(500, 10000), "Otype": "Sell", } def get_trade(order_id, trade_id, ticker): return { "RecordType": "Trade", "Tid": trade_id, "Toid": order_id, "Tticker": ticker, "Tprice": random.randint(0, 3000), } def generate(stream_name, kinesis_client): order_id = 1 while True: ticker = random.choice(["AAAA", "BBBB", "CCCC"]) order = get_order(order_id, ticker) print(order) kinesis_client.put_record( StreamName=stream_name, Data=json.dumps(order), PartitionKey=PARTITION_KEY ) for trade_id in range(1, random.randint(0, 6)): trade = get_trade(order_id, trade_id, ticker) print(trade) kinesis_client.put_record( StreamName=stream_name, Data=json.dumps(trade), PartitionKey=PARTITION_KEY, ) order_id += 1 if __name__ == "__main__": generate(STREAM_NAME, boto3.client("kinesis"))

次のコード例は、Web ログデータを使用して Kinesis ストリームを生成する方法を示しています。

SDK for Python (Boto3)
注記

詳細については、「」を参照してください GitHub。用例一覧を検索し、AWS コード例リポジトリでの設定と実行の方法を確認してください。

import json import boto3 STREAM_NAME = "ExampleInputStream" def get_data(): return { "log": "192.168.254.30 - John [24/May/2004:22:01:02 -0700] " '"GET /icons/apache_pb.gif HTTP/1.1" 304 0' } def generate(stream_name, kinesis_client): while True: data = get_data() print(data) kinesis_client.put_record( StreamName=stream_name, Data=json.dumps(data), PartitionKey="partitionkey" ) if __name__ == "__main__": generate(STREAM_NAME, boto3.client("kinesis"))