翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。
AWS Encryption SDK for Python サンプルコード
次の例は、 を使用してデータを AWS Encryption SDK for Python 暗号化および復号する方法を示しています。
このセクションの例では、オプションの暗号化マテリアルプロバイダーライブラリaws-cryptographic-material-providers
。以前のバージョンを使用する例、またはマテリアルプロバイダーライブラリ (MPL) のないインストールを表示するには、 のaws-encryption-sdk-python
AWS Encryption SDK for Python で のバージョン 4.x を使用する場合MPL、キーリングを使用してエンベロープ暗号化を実行します。 AWS Encryption SDK には、以前のバージョンで使用していたマスターキープロバイダーと互換性のあるキーリングが用意されています。詳細については、「キーリングの互換性」を参照してください。マスターキープロバイダーからキーリングへの移行の例については、 aws-encryption-sdk-python
リポジトリの「移行例
文字列の暗号化と復号
次の例は、 を使用して文字列 AWS Encryption SDK を暗号化および復号する方法を示しています。この例では、対称暗号化AWS KMS キーを持つ キーリングを使用します。 KMS
この例では、デフォルトのコミットメントポリシー を使用して AWS Encryption SDK クライアントをインスタンス化しますREQUIRE_ENCRYPT_REQUIRE_DECRYPT
。詳細については、「コミットメントポリシーの設定」を参照してください。
# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ This example sets up the KMS Keyring The AWS KMS keyring uses symmetric encryption KMS keys to generate, encrypt and decrypt data keys. This example creates a KMS Keyring and then encrypts a custom input EXAMPLE_DATA with an encryption context. This example also includes some sanity checks for demonstration: 1. Ciphertext and plaintext data are not the same 2. Encryption context is correct in the decrypted message header 3. Decrypted plaintext value matches EXAMPLE_DATA These sanity checks are for demonstration in the example only. You do not need these in your code. AWS KMS keyrings can be used independently or in a multi-keyring with other keyrings of the same or a different type. """ import boto3 from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig from aws_cryptographic_material_providers.mpl.models import CreateAwsKmsKeyringInput from aws_cryptographic_material_providers.mpl.references import IKeyring from typing import Dict # noqa pylint: disable=wrong-import-order import aws_encryption_sdk from aws_encryption_sdk import CommitmentPolicy EXAMPLE_DATA: bytes = b"Hello World" def encrypt_and_decrypt_with_keyring( kms_key_id: str ): """Demonstrate an encrypt/decrypt cycle using an AWS KMS keyring. Usage: encrypt_and_decrypt_with_keyring(kms_key_id) :param kms_key_id: KMS Key identifier for the KMS key you want to use for encryption and decryption of your data keys. :type kms_key_id: string """ # 1. Instantiate the encryption SDK client. # This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment policy, # which enforces that this client only encrypts using committing algorithm suites and enforces # that this client will only decrypt encrypted messages that were created with a committing # algorithm suite. # This is the default commitment policy if you were to build the client as # `client = aws_encryption_sdk.EncryptionSDKClient()`. client = aws_encryption_sdk.EncryptionSDKClient( commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT ) # 2. Create a boto3 client for KMS. kms_client = boto3.client('kms', region_name="us-west-2") # 3. Optional: create encryption context. # Remember that your encryption context is NOT SECRET. encryption_context: Dict[str, str] = { "encryption": "context", "is not": "secret", "but adds": "useful metadata", "that can help you": "be confident that", "the data you are handling": "is what you think it is", } # 4. Create your keyring mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders( config=MaterialProvidersConfig() ) keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput( kms_key_id=kms_key_id, kms_client=kms_client ) kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring( input=keyring_input ) # 5. Encrypt the data with the encryptionContext. ciphertext, _ = client.encrypt( source=EXAMPLE_DATA, keyring=kms_keyring, encryption_context=encryption_context ) # 6. Demonstrate that the ciphertext and plaintext are different. # (This is an example for demonstration; you do not need to do this in your own code.) assert ciphertext != EXAMPLE_DATA, \ "Ciphertext and plaintext data are the same. Invalid encryption" # 7. Decrypt your encrypted data using the same keyring you used on encrypt. plaintext_bytes, _ = client.decrypt( source=ciphertext, keyring=kms_keyring, # Provide the encryption context that was supplied to the encrypt method encryption_context=encryption_context, ) # 8. Demonstrate that the decrypted plaintext is identical to the original plaintext. # (This is an example for demonstration; you do not need to do this in your own code.) assert plaintext_bytes == EXAMPLE_DATA, \ "Decrypted plaintext should be identical to the original plaintext. Invalid decryption"
バイトストリームの暗号化と復号
次の例は、 を使用してバイトストリームを AWS Encryption SDK 暗号化および復号する方法を示しています。この例では、Raw AESキーリングを使用します。
この例では、デフォルトのコミットメントポリシー を使用して AWS Encryption SDK クライアントをインスタンス化しますREQUIRE_ENCRYPT_REQUIRE_DECRYPT
。詳細については、「コミットメントポリシーの設定」を参照してください。
# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ This example demonstrates file streaming for encryption and decryption. File streaming is useful when the plaintext or ciphertext file/data is too large to load into memory. Therefore, the AWS Encryption SDK allows users to stream the data, instead of loading it all at once in memory. In this example, we demonstrate file streaming for encryption and decryption using a Raw AES keyring. However, you can use any keyring with streaming. This example creates a Raw AES Keyring and then encrypts an input stream from the file `plaintext_filename` with an encryption context to an output (encrypted) file `ciphertext_filename`. It then decrypts the ciphertext from `ciphertext_filename` to a new file `decrypted_filename`. This example also includes some sanity checks for demonstration: 1. Ciphertext and plaintext data are not the same 2. Encryption context is correct in the decrypted message header 3. Decrypted plaintext value matches EXAMPLE_DATA These sanity checks are for demonstration in the example only. You do not need these in your code. See raw_aes_keyring_example.py in the same directory for another raw AES keyring example in the AWS Encryption SDK for Python. """ import filecmp import secrets from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig from aws_cryptographic_material_providers.mpl.models import AesWrappingAlg, CreateRawAesKeyringInput from aws_cryptographic_material_providers.mpl.references import IKeyring from typing import Dict # noqa pylint: disable=wrong-import-order import aws_encryption_sdk from aws_encryption_sdk import CommitmentPolicy def encrypt_and_decrypt_with_keyring( plaintext_filename: str, ciphertext_filename: str, decrypted_filename: str ): """Demonstrate a streaming encrypt/decrypt cycle. Usage: encrypt_and_decrypt_with_keyring(plaintext_filename ciphertext_filename decrypted_filename) :param plaintext_filename: filename of the plaintext data :type plaintext_filename: string :param ciphertext_filename: filename of the ciphertext data :type ciphertext_filename: string :param decrypted_filename: filename of the decrypted data :type decrypted_filename: string """ # 1. Instantiate the encryption SDK client. # This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment policy, # which enforces that this client only encrypts using committing algorithm suites and enforces # that this client will only decrypt encrypted messages that were created with a committing # algorithm suite. # This is the default commitment policy if you were to build the client as # `client = aws_encryption_sdk.EncryptionSDKClient()`. client = aws_encryption_sdk.EncryptionSDKClient( commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT ) # 2. The key namespace and key name are defined by you. # and are used by the Raw AES keyring to determine # whether it should attempt to decrypt an encrypted data key. key_name_space = "Some managed raw keys" key_name = "My 256-bit AES wrapping key" # 3. Optional: create encryption context. # Remember that your encryption context is NOT SECRET. encryption_context: Dict[str, str] = { "encryption": "context", "is not": "secret", "but adds": "useful metadata", "that can help you": "be confident that", "the data you are handling": "is what you think it is", } # 4. Generate a 256-bit AES key to use with your keyring. # In practice, you should get this key from a secure key management system such as an HSM. # Here, the input to secrets.token_bytes() = 32 bytes = 256 bits static_key = secrets.token_bytes(32) # 5. Create a Raw AES keyring # We choose to use a raw AES keyring, but any keyring can be used with streaming. mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders( config=MaterialProvidersConfig() ) keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput( key_namespace=key_name_space, key_name=key_name, wrapping_key=static_key, wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16 ) raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring( input=keyring_input ) # 6. Encrypt the data stream with the encryptionContext with open(plaintext_filename, 'rb') as pt_file, open(ciphertext_filename, 'wb') as ct_file: with client.stream( mode='e', source=pt_file, keyring=raw_aes_keyring, encryption_context=encryption_context ) as encryptor: for chunk in encryptor: ct_file.write(chunk) # 7. Demonstrate that the ciphertext and plaintext are different. # (This is an example for demonstration; you do not need to do this in your own code.) assert not filecmp.cmp(plaintext_filename, ciphertext_filename), \ "Ciphertext and plaintext data are the same. Invalid encryption" # 8. Decrypt your encrypted data stream using the same keyring you used on encrypt. with open(ciphertext_filename, 'rb') as ct_file, open(decrypted_filename, 'wb') as pt_file: with client.stream( mode='d', source=ct_file, keyring=raw_aes_keyring, encryption_context=encryption_context ) as decryptor: for chunk in decryptor: pt_file.write(chunk) # 10. Demonstrate that the decrypted plaintext is identical to the original plaintext. # (This is an example for demonstration; you do not need to do this in your own code.) assert filecmp.cmp(plaintext_filename, decrypted_filename), \ "Decrypted plaintext should be identical to the original plaintext. Invalid decryption"