HRNN レシピ (レガシー) - Amazon Personalize

翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。

HRNN レシピ (レガシー)

注記

レガシー HRNN レシピは利用できなくなりました。このドキュメントは参照用です。

レガシー HRNN レシピではなく、aws-user-personalizaton (User-Personalization) レシピを使用することをお勧めします。User-Personalization では、HRNN レシピによって提供される機能が改善および統合されています。詳細については、「User-Personalization レシピ」を参照してください。

Amazon Personalize 階層的再帰型ニューラルネットワーク (HRNN) レシピでは、セッション中にレコメンデーションを提供するために、ユーザーの行動の変化をモデル化します。セッションとは、例えば、必要を満たすために特定のアイテムを見つけることを目的とする、特定の期間内の一連のユーザーインタラクションです。ユーザーの最近のインタラクションの重み付けを高くすることで、セッション中により関連性の高いレコメンデーションを提供できます。

HRNN は、時間の経過とともに変化する可能性がある、ユーザーのインテントや関心に対応します。また、順序付けられたユーザー履歴を取得し、自動的に重み付けして推論を改善します。HRNN は、ゲート機構を使用して減損の重みをアイテムとタイムスタンプの学習可能な関数としてモデル化します。

Amazon Personalize は、データセットから各ユーザーの特徴を派生させます。リアルタイムのデータ統合を完了している場合、これらの特徴はユーザーアクティビティに応じてリアルタイムで更新されます。レコメンデーションを取得するには、USER_ID のみを指定します 。ITEM_ID も指定すると、Amazon Personalize はそれを無視します。

HRNN レシピには以下のプロパティがあります。

  • 名前aws-hrnn

  • レシピ Amazon リソースネーム (ARN)arn:aws:personalize:::recipe/aws-hrnn

  • アルゴリズム ARNarn:aws:personalize:::algorithm/aws-hrnn

  • 機能変換 ARNarn:aws:personalize:::feature-transformation/JSON-percentile-filtering

  • レシピタイプUSER_PERSONALIZATION

以下の表では、HRNN レシピのハイパーパラメータについて説明します。ハイパーパラメータは、モデルパフォーマンスを向上させるために調整できるアルゴリズムパラメータです。アルゴリズムのハイパーパラメータは、モデルの実行方法を制御します。特徴化のハイパーパラメータは、トレーニングで使用するデータのフィルタリング方法を制御します。ハイパーパラメータに最適な値を選択するプロセスは、ハイパーパラメータの最適化 (HPO) と呼ばれます。詳細については、「ハイパーパラメータと HPO」を参照してください。

このテーブルには、各ハイパーパラメータに関する以下の情報も含まれています。

  • 範囲: [下限、上限]

  • 値のタイプ: 整数、連続 (浮動小数点)、カテゴリ別 (ブール値、リスト、文字列)

  • HPO 調整可能: パラメータが HPO に参加できますか?

名前 説明
アルゴリズムのハイパーパラメータ
hidden_dimension

モデルで使用される非表示変数の数。非表示の変数は、ユーザーの購入履歴と商品統計を再作成して、ランキングスコアを生成します。アイテムインタラクションデータセットにより複雑なパターンが含まれている場合は、より多くの非表示ディメンションを指定します。使用する非表示のディメンションが多くなると、データセットが大きくなり、処理時間が長くなります。最適な値を決定するには、HPO を使用します。HPO を使用するには、CreateSolution オペレーション CreateSolutionVersion とオペレーションを呼び出すときに performHPOtrue に設定します。

デフォルト値: 43

範囲: [32, 256]

値の型: 整数

HPO 調整可能: はい

bptt

通し時間のバックプロパゲーションの手法を使用するかどうかを決定します。通し時間のバックプロパゲーションは、再帰的なニューラルネットワークベースのアルゴリズムの重みを更新する手法です。遅延報酬を早期イベントに接続するには、長期クレジットに bptt を使用します。例えば、遅延報酬には、数回のクリック後に行われる購入を指定できます。早期イベントは、最初のクリックにすることができます。クリックなどの同じイベントタイプ内であっても、長期的な効果を考慮し、合計報酬を最大化することをお勧めします。長期的な効果を考慮するには、より大きい bptt 値を使用します。大きな bptt 値を使用するには、より大きいデータセットと長い処理時間が必要です。

デフォルト値: 32

範囲: [2, 32]

値の型: 整数

HPO 調整可能: はい

recency_mask

モデルがアイテムインタラクションデータセットの最新の人気傾向を考慮する必要があるかどうかを決定します。最新の人気トレンドには、インタラクションイベントの基盤となるパターンの突然の変化が含まれる可能性があります。最近のイベントにより多くの重みを置くモデルをトレーニングするには、recency_masktrue に設定します。過去のすべてのインタラクションを均等に重み付けするモデルをトレーニングするには、recency_maskfalse に設定します。同じ重みを使用して適切なレコメンデーションを取得するには、より大きなトレーニングデータセットが必要になる場合があります。

デフォルト値: True

範囲: True または False

値の型: ブール値

HPO 調整可能: はい

特徴化のハイパーパラメータ
min_user_history_length_percentile

モデルのトレーニングに含めるユーザー履歴の長さの最小パーセンタイル。履歴の長さ は、ユーザーに関するデータの合計量です。履歴の長さが短いある割合のユーザーを除外するには、min_user_history_length_percentile を使用します。履歴が短いユーザーは、多くの場合、ユーザーの個人的なニーズや希望ではなく、アイテムの人気に基づくパターンを表示します。それらを削除すると、データの基盤となるパターンに重点を置いてモデルをトレーニングできます。ヒストグラムまたは同様のツールを使用して、ユーザー履歴の長さを確認した後で適切な値を選択します。大部分のユーザーを保持し、エッジケースを削除する値を設定することをお勧めします。

例えば、min__user_history_length_percentile to 0.05max_user_history_length_percentile to 0.95 を設定すると、履歴の長さが下位または上位 5% であるユーザーを除くすべてのユーザーが含まれます。

デフォルト値: 0.0

範囲: [0.0, 1.0]

値の型: 浮動小数点

HPO 調整可能: いいえ

max_user_history_length_percentile

モデルのトレーニングに含めるユーザー履歴の長さの最大パーセンタイル。履歴の長さ は、ユーザーに関するデータの合計量です。max_user_history_length_percentile を使用して、ある割合の履歴の長さが長いユーザーを除外します。これらのユーザーのデータにはノイズが含まれる傾向があるためです。例えば、ロボットに自動化されたインタラクションの長いリストがあるとします。これらのユーザーを削除することで、トレーニングのノイズが制限されます。ヒストグラムまたは同様のツールを使用して、ユーザー履歴の長さを確認した後で適切な値を選択します。大部分のユーザーを保持し、エッジケースを削除する値を設定することをお勧めします。

例えば、min__user_history_length_percentile to 0.05max_user_history_length_percentile to 0.95 を設定すると、履歴の長さが下位または上位 5% であるユーザーを除くすべてのユーザーが含まれます。

デフォルト値: 0.99

範囲: [0.0, 1.0]

値の型: 浮動小数点

HPO 調整可能: いいえ