翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。
SIMS の recipe
注記
RELATED_ITEMS レシピはすべてインタラクションデータを使用します。モデルにさらに多くのハイパーパラメータを設定したい場合は、SIMS を選択してください。商品のメタデータがあり、Amazon Personalize に類似商品の検索に使用させたい場合は、を選択してください。Similar-Items レシピ
アイテム間の類似性 (SIMS) レシピは、協調フィルタリングを使用して、レコメンデーションを取得するときに指定したアイテムに最も類似するアイテムを推奨します。SIMS は、色や料金などのアイテムメタデータではなく、アイテムインタラクションデータセットを使用して類似性を判断します。SIMS は、Interactions データセットのユーザー履歴でアイテムの共起を識別して、類似アイテムを推奨します。例えば、SIMS を使用すると、Amazon Personalize は、顧客が頻繁に併せて購入するコーヒーショップの商品や、別のユーザーも視聴した映画を推奨できます。
類似商品のレコメンデーションを受け取ったら、リクエストで指定した商品の属性に基づいて商品をフィルタリングできます。そのためには、CurrentItem
.attribute
要素をフィルターに追加します。例については、「item data filter examples」を参照してください。
SIMS を使用するには、履歴とイベントのユニークなインタラクションを (合わせて) 1000 件以上含むアイテムインタラクションデータセットを作成する必要があります。SIMS は、レコメンデーションを生成する際に Users または Items のデータセットのデータを使用しません。これらのデータセットのデータに基づいてレコメンデーションをフィルタリングすることはできます。詳細については、「レコメンデーションとユーザーセグメントのフィルタリング」を参照してください。
アイテムに関する十分なユーザー行動データがない場合、または指定されたアイテム ID が見つからない場合、SIMS は人気のあるアイテムを推奨します。ソリューションバージョンを作成した後は、必ずソリューションバージョンとデータを最新の状態に保ってください。SIMS では、Amazon Personalize の新しいソリューションバージョンを手動で作成 (モデルを再トレーニング) して、新しいアイテムをレコメンデーションの対象として考慮し、ユーザーの最新の行動でモデルを更新する必要があります。次に、ソリューションバージョンを使用してキャンペーンを更新する必要があります。詳細については、「レコメンデーションの関連性の維持」を参照してください。
SIMS レシピには以下のプロパティがあります。
-
名前 –
aws-sims
-
レシピ Amazon リソースネーム (ARN) –
arn:aws:personalize:::recipe/aws-sims
-
アルゴリズム ARN –
arn:aws:personalize:::algorithm/aws-sims
-
機能変換 ARN –
arn:aws:personalize:::feature-transformation/sims
-
レシピタイプ –
RELATED_ITEMS
以下の表では、SIMS レシピのハイパーパラメータについて説明します。ハイパーパラメータは、モデルパフォーマンスを向上させるために調整できるアルゴリズムパラメータです。アルゴリズムのハイパーパラメータは、モデルの実行方法を制御します。特徴化のハイパーパラメータは、トレーニングで使用するデータのフィルタリング方法を制御します。ハイパーパラメータに最適な値を選択するプロセスは、ハイパーパラメータの最適化 (HPO) と呼ばれます。詳細については、「ハイパーパラメータと HPO」を参照してください。
このテーブルには、各ハイパーパラメータに関する以下の情報も含まれています。
-
範囲: [下限、上限]
-
値のタイプ: 整数、連続 (浮動小数点)、カテゴリ別 (ブール値、リスト、文字列)
-
HPO 調整可能: パラメータがハイパーパラメータ最適化 (HPO) に参加できますか?
名前 | 説明 |
---|---|
アルゴリズムのハイパーパラメータ | |
popularity_discount_factor |
人気がレコメンデーションにどのように影響するかを設定します。人気の高い商品を多く含めるには、0 に近い値を指定します。1 に近い値を指定すると、人気度があまり重視されなくなります。 デフォルト値: 0.5 範囲: [0.0, 1.0] 値の型: 浮動小数点 HPO 調整可能: はい |
min_cointeraction_count |
アイテムのペア間の類似度を計算するために必要な同時インタラクションの最小数。例えば、値が デフォルト値: 3 範囲: [0, 10] 値の型: 整数 HPO 調整可能: はい |
特徴化のハイパーパラメータ | |
min_user_history_length_percentile |
モデルのトレーニングに含めるユーザー履歴の長さの最小パーセンタイル。履歴の長さは、ユーザーに関して利用可能なデータの合計量です。履歴の長さが短いある割合のユーザーを除外するには、 デフォルト値: 0.005 範囲: [0.0, 1.0] 値の型: 浮動小数点 HPO 調整可能: いいえ |
max_user_history_length_percentile |
モデルのトレーニングに含めるユーザー履歴の長さの最大パーセンタイル。履歴の長さは、ユーザーに関して利用可能なデータの合計量です。履歴の長さが長いある割合のユーザーを除外するには、 例えば、 デフォルト値: 0.995 範囲: [0.0, 1.0] 値の型: 浮動小数点 HPO 調整可能: いいえ |
min_item_interaction_count_percentile |
モデルのトレーニングに含めるアイテムのやり取りの最小パーセンタイル数。インタラクション履歴が短いアイテムの割合を除外するには、 デフォルト値: 0.01 範囲: [0.0, 1.0] 値の型: 浮動小数点 HPO 調整可能: いいえ |
max_item_interaction_count_percentile |
モデルのトレーニングに含めるアイテムのやり取りの最大パーセンタイル数。インタラクション履歴が長いアイテムの割合を除外するには、 例えば、 デフォルト値: 0.9 範囲: [0.0, 1.0] 値の型: 浮動小数点 HPO 調整可能: いいえ |
SIMS サンプルノートブック
SIMS レシピの使用方法を示す Jupyter ノートブックのサンプルについては、「Finding similar items + HPO