翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。
SageMaker AI 分散データ並列ライブラリを使用して独自の Docker コンテナを作成する
トレーニング用に独自の Docker コンテナを構築し、SageMaker AI データ並列ライブラリを使用するには、正しい依存関係と SageMaker AI 分散並列ライブラリのバイナリファイルを Dockerfile に含める必要があります。このセクションでは、データ並列ライブラリを使用して SageMaker AI での分散トレーニングの最小限の依存関係のセットを含む完全な Dockerfile を作成する方法について説明します。
注記
SageMaker AI データ並列ライブラリをバイナリとして使用するこのカスタム Docker オプションは、PyTorch でのみ使用できます。
SageMaker トレーニングツールキットとデータ並列ライブラリを使用して Dockerfile を作成する
-
NVIDIA CUDA
の Docker イメージから始めます。CUDA ランタイムと開発ツール (ヘッダーとライブラリ) を含む cuDNN 開発者バージョンを使用し、PyTorch source code からビルドします。 FROM nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04
ヒント
公式の AWS Deep Learning Container (DLC) イメージは、NVIDIA CUDA ベースイメージ
から構築されています。残りの手順を実行しながら、ビルド済みの DLC イメージをリファレンスとして使用する場合は、「AWS Deep Learning Containers for PyTorch Dockerfiles 」をご覧ください。 -
以下の引数を追加して PyTorch と他のパッケージのバージョンを指定します。また、Amazon S3 プラグインなどの AWS リソースを使用する SageMaker AI データ並列ライブラリやその他のソフトウェアへの Amazon S3 バケットパスを指定します。
次のコード例で提供されているバージョン以外のサードパーティーライブラリを使用するには、PyTorch 用 AWS Deep Learning Containers の公式 Dockerfiles
を調べて、テスト済みで互換性があり、アプリケーションに適したバージョンを見つけることをお勧めします。 SMDATAPARALLEL_BINARY
引数に指定する URL を調べるには、「サポートされるフレームワーク」のルックアップテーブルを参照してください。ARG PYTORCH_VERSION=
1.10.2
ARG PYTHON_SHORT_VERSION=3.8
ARG EFA_VERSION=1.14.1
ARG SMDATAPARALLEL_BINARY=https://smdataparallel.s3.amazonaws.com/binary/pytorch/${PYTORCH_VERSION}/cu113/2022-02-18/smdistributed_dataparallel-1.4.0-cp38-cp38-linux_x86_64.whl
ARG PT_S3_WHL_GPU=https://aws-s3-plugin.s3.us-west-2.amazonaws.com/binaries/0.0.1/1c3e69e/awsio-0.0.1-cp38-cp38-manylinux1_x86_64.whl ARG CONDA_PREFIX="/opt/conda" ARG BRANCH_OFI=1.1.3-aws
-
SageMaker トレーニングコンポーネントを適切にビルドしてデータ並列ライブラリを実行するには、以下の環境変数を設定します。以降のステップでは、これらの変数をコンポーネントに使用します。
# Set ENV variables required to build PyTorch ENV TORCH_CUDA_ARCH_LIST="7.0+PTX 8.0" ENV TORCH_NVCC_FLAGS="-Xfatbin -compress-all" ENV NCCL_VERSION=2.10.3 # Add OpenMPI to the path. ENV PATH /opt/amazon/openmpi/bin:$PATH # Add Conda to path ENV PATH $CONDA_PREFIX/bin:$PATH # Set this enviroment variable for SageMaker AI to launch SMDDP correctly. ENV SAGEMAKER_TRAINING_MODULE=sagemaker_pytorch_container.training:main # Add enviroment variable for processes to be able to call fork() ENV RDMAV_FORK_SAFE=1 # Indicate the container type ENV DLC_CONTAINER_TYPE=training # Add EFA and SMDDP to LD library path ENV LD_LIBRARY_PATH="/opt/conda/lib/python${PYTHON_SHORT_VERSION}/site-packages/smdistributed/dataparallel/lib:$LD_LIBRARY_PATH" ENV LD_LIBRARY_PATH=/opt/amazon/efa/lib/:$LD_LIBRARY_PATH
-
curl
、wget
、git
をインストールまたは更新し、以降のステップでパッケージをダウンロードしてビルドします。RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \ apt-get update && apt-get install -y --no-install-recommends \ curl \ wget \ git \ && rm -rf /var/lib/apt/lists/*
-
Amazon EC2 ネットワーク通信用の Elastic Fabric Adapter (EFA) ソフトウェアをインストールします。
RUN DEBIAN_FRONTEND=noninteractive apt-get update RUN mkdir /tmp/efa \ && cd /tmp/efa \ && curl --silent -O https://efa-installer.amazonaws.com/aws-efa-installer-${EFA_VERSION}.tar.gz \ && tar -xf aws-efa-installer-${EFA_VERSION}.tar.gz \ && cd aws-efa-installer \ && ./efa_installer.sh -y --skip-kmod -g \ && rm -rf /tmp/efa
-
Conda
をインストールしてパッケージ管理を行います。 RUN curl -fsSL -v -o ~/miniconda.sh -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \ chmod +x ~/miniconda.sh && \ ~/miniconda.sh -b -p $CONDA_PREFIX && \ rm ~/miniconda.sh && \ $CONDA_PREFIX/bin/conda install -y python=${PYTHON_SHORT_VERSION} conda-build pyyaml numpy ipython && \ $CONDA_PREFIX/bin/conda clean -ya
-
PyTorch とその依存関係を取得し、ビルドおよびインストールします。NCCL のバージョンを管理して AWS OFI NCCL plug-in
との互換性を保証するために、PyTorch from the source code をビルドします。 -
PyTorch official dockerfile
の手順に従って、ビルドの依存関係をインストールし、再コンパイルを高速化するために ccache を設定します。 RUN DEBIAN_FRONTEND=noninteractive \ apt-get install -y --no-install-recommends \ build-essential \ ca-certificates \ ccache \ cmake \ git \ libjpeg-dev \ libpng-dev \ && rm -rf /var/lib/apt/lists/* # Setup ccache RUN /usr/sbin/update-ccache-symlinks RUN mkdir /opt/ccache && ccache --set-config=cache_dir=/opt/ccache
-
PyTorch’s common and Linux dependencies
をインストールします。 # Common dependencies for PyTorch RUN conda install astunparse numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing_extensions future six requests dataclasses # Linux specific dependency for PyTorch RUN conda install -c pytorch magma-cuda113
-
PyTorch GitHub repository
のクローンを作成します。 RUN --mount=type=cache,target=/opt/ccache \ cd / \ && git clone --recursive https://github.com/pytorch/pytorch -b v${PYTORCH_VERSION}
-
特定の NCCL
バージョンをインストールしてビルドします。これを行うには、PyTorch のデフォルトの NCCL フォルダ ( /pytorch/third_party/nccl
) の内容を、NVIDIA リポジトリの特定の NCCL バージョンに置き換えます。NCCL のバージョンは、このガイドのステップ 3 で設定しました。RUN cd /pytorch/third_party/nccl \ && rm -rf nccl \ && git clone https://github.com/NVIDIA/nccl.git -b v${NCCL_VERSION}-1 \ && cd nccl \ && make -j64 src.build CUDA_HOME=/usr/local/cuda NVCC_GENCODE="-gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_80,code=sm_80" \ && make pkg.txz.build \ && tar -xvf build/pkg/txz/nccl_*.txz -C $CONDA_PREFIX --strip-components=1
-
PyTorch をビルドしてインストールします。このプロセスが完了するまで、通常は 1 時間強かかります。前のステップでダウンロードした NCCL バージョンを使用してビルドされます。
RUN cd /pytorch \ && CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" \ python setup.py install \ && rm -rf /pytorch
-
-
AWS OFI NCCL プラグイン
をビルドしてインストールします。これにより、SageMaker AI データ並列ライブラリのlibfabric サポートが可能になります。 RUN DEBIAN_FRONTEND=noninteractive apt-get update \ && apt-get install -y --no-install-recommends \ autoconf \ automake \ libtool RUN mkdir /tmp/efa-ofi-nccl \ && cd /tmp/efa-ofi-nccl \ && git clone https://github.com/aws/aws-ofi-nccl.git -b v${BRANCH_OFI} \ && cd aws-ofi-nccl \ && ./autogen.sh \ && ./configure --with-libfabric=/opt/amazon/efa \ --with-mpi=/opt/amazon/openmpi \ --with-cuda=/usr/local/cuda \ --with-nccl=$CONDA_PREFIX \ && make \ && make install \ && rm -rf /tmp/efa-ofi-nccl
-
TorchVision
をビルドしてインストールします。 RUN pip install --no-cache-dir -U \ packaging \ mpi4py==3.0.3 RUN cd /tmp \ && git clone https://github.com/pytorch/vision.git -b v0.9.1 \ && cd vision \ && BUILD_VERSION="0.9.1+cu111" python setup.py install \ && cd /tmp \ && rm -rf vision
-
OpenSSH をインストールおよび設定します。MPI がコンテナ間で通信するには OpenSSH が必要です。確認なしに OpenSSH がコンテナと通信できるようになります。
RUN apt-get update \ && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \ && apt-get install -y --no-install-recommends openssh-client openssh-server \ && mkdir -p /var/run/sshd \ && cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new \ && echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new \ && mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config \ && rm -rf /var/lib/apt/lists/* # Configure OpenSSH so that nodes can communicate with each other RUN mkdir -p /var/run/sshd && \ sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /etc/pam.d/sshd RUN rm -rf /root/.ssh/ && \ mkdir -p /root/.ssh/ && \ ssh-keygen -q -t rsa -N '' -f /root/.ssh/id_rsa && \ cp /root/.ssh/id_rsa.pub /root/.ssh/authorized_keys \ && printf "Host *\n StrictHostKeyChecking no\n" >> /root/.ssh/config
-
PT S3 プラグインをインストールして、Amazon S3 のデータセットに効率的にアクセスします。
RUN pip install --no-cache-dir -U ${PT_S3_WHL_GPU} RUN mkdir -p /etc/pki/tls/certs && cp /etc/ssl/certs/ca-certificates.crt /etc/pki/tls/certs/ca-bundle.crt
-
libboost
ライブラリをインストールします。このパッケージは、SageMaker AI データ並列ライブラリの非同期 IO 機能をネットワーキングするために必要です。 WORKDIR / RUN wget https://sourceforge.net/projects/boost/files/boost/1.73.0/boost_1_73_0.tar.gz/download -O boost_1_73_0.tar.gz \ && tar -xzf boost_1_73_0.tar.gz \ && cd boost_1_73_0 \ && ./bootstrap.sh \ && ./b2 threading=multi --prefix=${CONDA_PREFIX} -j 64 cxxflags=-fPIC cflags=-fPIC install || true \ && cd .. \ && rm -rf boost_1_73_0.tar.gz \ && rm -rf boost_1_73_0 \ && cd ${CONDA_PREFIX}/include/boost
-
PyTorch トレーニング用に次の SageMaker AI ツールをインストールします。
WORKDIR /root RUN pip install --no-cache-dir -U \ smclarify \ "sagemaker>=2,<3" \ sagemaker-experiments==0.* \ sagemaker-pytorch-training
-
最後に、SageMaker AI データ並列バイナリと残りの依存関係をインストールします。
RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \ apt-get update && apt-get install -y --no-install-recommends \ jq \ libhwloc-dev \ libnuma1 \ libnuma-dev \ libssl1.1 \ libtool \ hwloc \ && rm -rf /var/lib/apt/lists/* RUN SMDATAPARALLEL_PT=1 pip install --no-cache-dir ${SMDATAPARALLEL_BINARY}
-
Dockerfile の作成が完了したら、「Adapting Your Own Training Container」を参照し、Docker コンテナを構築する方法、Amazon ECR でホストする方法、および SageMaker Python SDK を使用してトレーニングジョブを実行する方法を確認してください。
以下のサンプルコードは、前述のコードブロックをすべて組み合わせた後の Dockerfile 全体を示しています。
# This file creates a docker image with minimum dependencies to run SageMaker AI data parallel training FROM nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04 # Set appropiate versions and location for components ARG PYTORCH_VERSION=1.10.2 ARG PYTHON_SHORT_VERSION=3.8 ARG EFA_VERSION=1.14.1 ARG SMDATAPARALLEL_BINARY=https://smdataparallel.s3.amazonaws.com/binary/pytorch/${PYTORCH_VERSION}/cu113/2022-02-18/smdistributed_dataparallel-1.4.0-cp38-cp38-linux_x86_64.whl ARG PT_S3_WHL_GPU=https://aws-s3-plugin.s3.us-west-2.amazonaws.com/binaries/0.0.1/1c3e69e/awsio-0.0.1-cp38-cp38-manylinux1_x86_64.whl ARG CONDA_PREFIX="/opt/conda" ARG BRANCH_OFI=1.1.3-aws # Set ENV variables required to build PyTorch ENV TORCH_CUDA_ARCH_LIST="3.7 5.0 7.0+PTX 8.0" ENV TORCH_NVCC_FLAGS="-Xfatbin -compress-all" ENV NCCL_VERSION=2.10.3 # Add OpenMPI to the path. ENV PATH /opt/amazon/openmpi/bin:$PATH # Add Conda to path ENV PATH $CONDA_PREFIX/bin:$PATH # Set this enviroment variable for SageMaker AI to launch SMDDP correctly. ENV SAGEMAKER_TRAINING_MODULE=sagemaker_pytorch_container.training:main # Add enviroment variable for processes to be able to call fork() ENV RDMAV_FORK_SAFE=1 # Indicate the container type ENV DLC_CONTAINER_TYPE=training # Add EFA and SMDDP to LD library path ENV LD_LIBRARY_PATH="/opt/conda/lib/python${PYTHON_SHORT_VERSION}/site-packages/smdistributed/dataparallel/lib:$LD_LIBRARY_PATH" ENV LD_LIBRARY_PATH=/opt/amazon/efa/lib/:$LD_LIBRARY_PATH # Install basic dependencies to download and build other dependencies RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \ apt-get update && apt-get install -y --no-install-recommends \ curl \ wget \ git \ && rm -rf /var/lib/apt/lists/* # Install EFA. # This is required for SMDDP backend communication RUN DEBIAN_FRONTEND=noninteractive apt-get update RUN mkdir /tmp/efa \ && cd /tmp/efa \ && curl --silent -O https://efa-installer.amazonaws.com/aws-efa-installer-${EFA_VERSION}.tar.gz \ && tar -xf aws-efa-installer-${EFA_VERSION}.tar.gz \ && cd aws-efa-installer \ && ./efa_installer.sh -y --skip-kmod -g \ && rm -rf /tmp/efa # Install Conda RUN curl -fsSL -v -o ~/miniconda.sh -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \ chmod +x ~/miniconda.sh && \ ~/miniconda.sh -b -p $CONDA_PREFIX && \ rm ~/miniconda.sh && \ $CONDA_PREFIX/bin/conda install -y python=${PYTHON_SHORT_VERSION} conda-build pyyaml numpy ipython && \ $CONDA_PREFIX/bin/conda clean -ya # Install PyTorch. # Start with dependencies listed in official PyTorch dockerfile # https://github.com/pytorch/pytorch/blob/master/Dockerfile RUN DEBIAN_FRONTEND=noninteractive \ apt-get install -y --no-install-recommends \ build-essential \ ca-certificates \ ccache \ cmake \ git \ libjpeg-dev \ libpng-dev && \ rm -rf /var/lib/apt/lists/* # Setup ccache RUN /usr/sbin/update-ccache-symlinks RUN mkdir /opt/ccache && ccache --set-config=cache_dir=/opt/ccache # Common dependencies for PyTorch RUN conda install astunparse numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing_extensions future six requests dataclasses # Linux specific dependency for PyTorch RUN conda install -c pytorch magma-cuda113 # Clone PyTorch RUN --mount=type=cache,target=/opt/ccache \ cd / \ && git clone --recursive https://github.com/pytorch/pytorch -b v${PYTORCH_VERSION} # Note that we need to use the same NCCL version for PyTorch and OFI plugin. # To enforce that, install NCCL from source before building PT and OFI plugin. # Install NCCL. # Required for building OFI plugin (OFI requires NCCL's header files and library) RUN cd /pytorch/third_party/nccl \ && rm -rf nccl \ && git clone https://github.com/NVIDIA/nccl.git -b v${NCCL_VERSION}-1 \ && cd nccl \ && make -j64 src.build CUDA_HOME=/usr/local/cuda NVCC_GENCODE="-gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_80,code=sm_80" \ && make pkg.txz.build \ && tar -xvf build/pkg/txz/nccl_*.txz -C $CONDA_PREFIX --strip-components=1 # Build and install PyTorch. RUN cd /pytorch \ && CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" \ python setup.py install \ && rm -rf /pytorch RUN ccache -C # Build and install OFI plugin. \ # It is required to use libfabric. RUN DEBIAN_FRONTEND=noninteractive apt-get update \ && apt-get install -y --no-install-recommends \ autoconf \ automake \ libtool RUN mkdir /tmp/efa-ofi-nccl \ && cd /tmp/efa-ofi-nccl \ && git clone https://github.com/aws/aws-ofi-nccl.git -b v${BRANCH_OFI} \ && cd aws-ofi-nccl \ && ./autogen.sh \ && ./configure --with-libfabric=/opt/amazon/efa \ --with-mpi=/opt/amazon/openmpi \ --with-cuda=/usr/local/cuda \ --with-nccl=$CONDA_PREFIX \ && make \ && make install \ && rm -rf /tmp/efa-ofi-nccl # Build and install Torchvision RUN pip install --no-cache-dir -U \ packaging \ mpi4py==3.0.3 RUN cd /tmp \ && git clone https://github.com/pytorch/vision.git -b v0.9.1 \ && cd vision \ && BUILD_VERSION="0.9.1+cu111" python setup.py install \ && cd /tmp \ && rm -rf vision # Install OpenSSH. # Required for MPI to communicate between containers, allow OpenSSH to talk to containers without asking for confirmation RUN apt-get update \ && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \ && apt-get install -y --no-install-recommends openssh-client openssh-server \ && mkdir -p /var/run/sshd \ && cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new \ && echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new \ && mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config \ && rm -rf /var/lib/apt/lists/* # Configure OpenSSH so that nodes can communicate with each other RUN mkdir -p /var/run/sshd && \ sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /etc/pam.d/sshd RUN rm -rf /root/.ssh/ && \ mkdir -p /root/.ssh/ && \ ssh-keygen -q -t rsa -N '' -f /root/.ssh/id_rsa && \ cp /root/.ssh/id_rsa.pub /root/.ssh/authorized_keys \ && printf "Host *\n StrictHostKeyChecking no\n" >> /root/.ssh/config # Install PT S3 plugin. # Required to efficiently access datasets in Amazon S3 RUN pip install --no-cache-dir -U ${PT_S3_WHL_GPU} RUN mkdir -p /etc/pki/tls/certs && cp /etc/ssl/certs/ca-certificates.crt /etc/pki/tls/certs/ca-bundle.crt # Install libboost from source. # This package is needed for smdataparallel functionality (for networking asynchronous IO). WORKDIR / RUN wget https://sourceforge.net/projects/boost/files/boost/1.73.0/boost_1_73_0.tar.gz/download -O boost_1_73_0.tar.gz \ && tar -xzf boost_1_73_0.tar.gz \ && cd boost_1_73_0 \ && ./bootstrap.sh \ && ./b2 threading=multi --prefix=${CONDA_PREFIX} -j 64 cxxflags=-fPIC cflags=-fPIC install || true \ && cd .. \ && rm -rf boost_1_73_0.tar.gz \ && rm -rf boost_1_73_0 \ && cd ${CONDA_PREFIX}/include/boost # Install SageMaker AI PyTorch training. WORKDIR /root RUN pip install --no-cache-dir -U \ smclarify \ "sagemaker>=2,<3" \ sagemaker-experiments==0.* \ sagemaker-pytorch-training # Install SageMaker AI data parallel binary (SMDDP) # Start with dependencies RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \ apt-get update && apt-get install -y --no-install-recommends \ jq \ libhwloc-dev \ libnuma1 \ libnuma-dev \ libssl1.1 \ libtool \ hwloc \ && rm -rf /var/lib/apt/lists/* # Install SMDDP RUN SMDATAPARALLEL_PT=1 pip install --no-cache-dir ${SMDATAPARALLEL_BINARY}
ヒント
SageMaker AI でのトレーニング用のカスタム Dockerfile の作成に関する一般的な情報については、「Use Your Own Training Algorithms」を参照してください。
ヒント
カスタム Dockerfile を拡張して SageMaker AI モデル並列ライブラリを組み込む場合は、「」を参照してくださいSageMaker 分散モデル並列ライブラリを使用した独自の Docker コンテナの作成。