翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。
DeepAR ハイパーパラメータ
次の表は、Amazon SageMaker DeepAR 予測アルゴリズムを使用してトレーニングするときに設定できるハイパーパラメータを示しています。
Parameter Name | 説明 |
---|---|
context_length |
予測を生成する前にモデルが参照する時間ポイントの数。このパラメータの値は、 必須 有効な値: 正の整数 |
epochs |
トレーニングデータへのパスの最大数。最適な値は、データサイズと学習レートによって異なります。「 必須 有効な値: 正の整数 |
prediction_length |
モデルが予測するようにトレーニングされる時間ステップの数。予測地平線とも呼ばれます。トレーニング済みモデルは常にこの長さで予測を生成します。それよりも長い予測を生成することはできません。 必須 有効な値: 正の整数 |
time_freq |
データセット内の時系列の詳細度。
必須 有効な値: |
cardinality |
カテゴリ別特徴 ( カテゴリ別特徴がデータに存在する場合でも、DeepAR でそれを使用しないようにするには、cardinality を 追加のデータ検証を実行するには、このパラメータを実際の値に明示的に設定します。たとえば、2 つのカテゴリ別特徴が提供され、最初の特徴には可能な値が 2 つ、もう 1 つの特徴には 3 つある場合は、これを [2, 3] に設定します。 カテゴリ別特徴の使用方法の詳細については、DeepAR のメインドキュメントページのデータセクションを参照してください。 オプション 有効な値: デフォルト値: |
dropout_rate |
トレーニング時に使用するドロップアウト率。モデルはゾーンアウトの正則化を使用します。反復ごとに、隠れニューロンのランダムなサブセットが更新されることはありません。通常の値の範囲は 0.2 未満です。 オプション 有効な値: 浮動小数点数 デフォルト値: 0.1 |
early_stopping_patience |
このパラメータが設定されると、 オプション 有効な値: 整数 |
embedding_dimension |
カテゴリ別特徴ごとに学習された埋め込みベクトルのサイズ (アルゴリズムはすべてのカテゴリ別特徴に対して同じ値を使用します)。 DeepAR モデルは、カテゴリグループ化機能が提供される場合に、グループレベルの時系列パターンを学習できます。これを行うために、モデルは各グループのサイズ オプション 有効な値: 正の整数 デフォルト値: 10 |
learning_rate |
トレーニングで使用する学習レート。通常の値の範囲は 1e-4 から 1e-1 です。 オプション 有効な値: 浮動小数点数 デフォルト値: 1e-3 |
likelihood |
モデルは確率予測を生成し、分散の変位値を提供してサンプルを返すことができます。データによっては、不確実性予測に使用される適切な尤度 (ノイズモデル) を選択します。次の可能性を選択できます。
オプション 有効な値: ガウス分布、ベータ、負の 2 項分布、スチューデントの t 分布、または 決定論的 L1 のいずれか 1 つ。 デフォルト値: |
mini_batch_size |
トレーニング時に使用するミニバッチのサイズ。通常の値の範囲は 32 ~ 512 です。 オプション 有効な値: 正の整数 デフォルト値: 128 |
num_cells |
の各非表示レイヤーで使用するセルの数RNN。通常の値の範囲は 30 ~ 100 です。 オプション 有効な値: 正の整数 デフォルト値: 40 |
num_dynamic_feat |
データに指定されている 動的特徴がデータに存在している場合でも、DeepAR でそれを使用しないようにするには、 追加のデータ検証を実行するには、このパラメータを実際の整数値に明示的に設定します。たとえば、動的な特徴が 2 つ提供されている場合は、これを 2 に設定します。 オプション 有効な値: デフォルト値: |
num_eval_samples |
テスト精度メトリクスを計算するときに時系列ごとに使用されるサンプル数。このパラメータは、トレーニングまたは最終モデルには影響しません。特に、モデルに対するクエリは、異なるサンプル数を使用して実行できます。このパラメータは、トレーニング後にテストチャネルで報告された精度スコアのみに影響します。値が小さいほど評価は速くなりますが、その場合、評価スコアは一般的に悪くなり、確実性が低下します。評価時の分位数が大きい場合は (たとえば、0.95)、評価サンプルの数を増やすことが重要である可能性があります。 オプション 有効な値: 整数 デフォルト値: 100 |
num_layers |
内の非表示レイヤーの数RNN。通常の値の範囲は 1 ~ 4 です。 オプション 有効な値: 正の整数 デフォルト値: 2 |
test_quantiles |
テストチャネルで分位損失を計算するための分位数。 オプション 有効な値: 浮動小数点数の配列 デフォルト値: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] |