
AWS KMS Cryptographic Details

AWS Key Management Service

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Key Management Service AWS KMS Cryptographic Details

AWS Key Management Service: AWS KMS Cryptographic Details

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Key Management Service AWS KMS Cryptographic Details

Table of Contents

Introduction ... 1
Concepts ... 2
Design goals .. 4

AWS Key Management Service foundations .. 6
Cryptographic primitives ... 6

Entropy and random number generation .. 6
Symmetric key operations (encryption only) ... 6
Asymmetric key operations (encryption, digital signing and signature verification) 7
Key derivation functions .. 7
AWS KMS internal use of digital signatures .. 7
Envelope encryption ... 8

AWS KMS key hierarchy .. 8
Use cases .. 11

EBS volume encryption ... 11
Client-side encryption ... 13

AWS KMS keys ... 15
Calling CreateKey ... 16
Importing key material ... 18

Calling ImportKeyMaterial .. 18
Enabling and disabling keys .. 19
Deleting keys ... 20
Rotating key material .. 20

Customer data operations ... 22
Generating data keys .. 22
Encrypt ... 24
Decrypt ... 25
Reencrypting an encrypted object ... 26

AWS KMS internal operations .. 28
Domains and domain state .. 28

Domain keys ... 29
Exported domain tokens ... 29
Managing domain states ... 30

Internal communicaton security ... 32
Key establishment .. 32

iii

AWS Key Management Service AWS KMS Cryptographic Details

HSM security boundary ... 33
Quorum-signed commands .. 33
Authenticated sessions .. 34

Replication process for multi-Region keys .. 35
Durability protection ... 36

Reference .. 37
Abbreviations .. 37
Keys ... 38
Contributors ... 39
Bibliography ... 40

Document history .. 42

iv

AWS Key Management Service AWS KMS Cryptographic Details

Introduction to the cryptographic details of AWS KMS

AWS Key Management Service (AWS KMS) provides a web interface to generate and manage
cryptographic keys and operates as a cryptographic service provider for protecting data. AWS KMS
offers traditional key management services integrated with AWS services to provide a consistent
view of customers’ keys across AWS, with centralized management and auditing. This whitepaper
provides a detailed description of the cryptographic operations of AWS KMS to assist you in
evaluating the features offered by the service.

AWS KMS includes a web interface through the AWS Management Console, command line
interface, and RESTful API operations to request cryptographic operations of a distributed fleet
of FIPS 140-2 validated hardware security modules (HSMs)[1]. The AWS KMS HSM is a multichip
standalone hardware cryptographic appliance designed to provide dedicated cryptographic
functions to meet the security and scalability requirements of AWS KMS. You can establish your
own HSM-based cryptographic hierarchy under keys that you manage as AWS KMS keys. These
keys are made available only on the HSMs and only in memory for the necessary time needed to
process your cryptographic request. You can create multiple KMS keys, each represented by its key
ID. Only under AWS IAM roles and accounts administered by each customer can customer KMS keys
be created, deleted, or used to encrypt, decrypt, sign, or verify data. You can define access controls
on who can manage and/or use KMS keys by creating a policy that is attached to the key. Such
policies allow you to define application-specific uses for your keys for each API operation.

In addition, most AWS services support encryption of data at rest using KMS keys. This capability
allows customers to control how and when AWS services can access encrypted data by controlling
how and when KMS keys can be accessed.

1

AWS Key Management Service AWS KMS Cryptographic Details

AWS KMS is a tiered service consisting of web-facing AWS KMS hosts and a tier of HSMs. The
grouping of these tiered hosts forms the AWS KMS stack. All requests to AWS KMS must be
made over the Transport Layer Security protocol (TLS) and terminate on an AWS KMS host. AWS
KMS hosts only allow TLS with a ciphersuite that provides perfect forward secrecy. AWS KMS
authenticates and authorizes your requests using the same credential and policy mechanisms of
AWS Identity and Access Management (IAM) that are available for all other AWS API operations.

Basic concepts

Learning some basic terms and concepts will help you get the most out of AWS Key Management
Service.

AWS KMS key

Note

AWS KMS is replacing the term customer master key (CMK) with AWS KMS key and KMS
key. The concept has not changed. To prevent breaking changes, AWS KMS is keeping
some variations of this term.

A logical key that represents the top of your key hierarchy. A KMS key is given an Amazon
Resource Name (ARN) that includes a unique key identifier, or key ID. AWS KMS keys have three
types:

Concepts 2

http://dx.doi.org/10.6028/NIST.SP.800-52r2

AWS Key Management Service AWS KMS Cryptographic Details

• Customer managed key – Customers create and control the lifecycle and key policies of
customer managed keys. All requests made against these keys are logged as CloudTrail
events.

• AWS managed keys – AWS creates and controls the lifecycle and key policies of AWS
managed keys, which are resources in a customer’s AWS account. Customers can view access
policies and CloudTrail events for AWS managed keys, but cannot manage any aspect of these
keys. All requests made against these keys are logged as CloudTrail events.

• AWS owned keys – These keys are created and exclusively used by AWS for internal
encryption operations across different AWS services. Customers do not have visibility into key
policies or AWS owned key usage in CloudTrail.

Alias

A user-friendly name that is associated with a KMS key. The alias can be used interchangeably
with key ID in many of the AWS KMS API operations.

Permissions

A policy attached to a KMS key that defines permissions on the key. The default policy allows
any principals that you define, as well as allowing the AWS account to add IAM policies that
reference the key.

Grants

The delegated permission to use a KMS key when the intended IAM principals or duration of
usage is not known at the outset and therefore cannot be added to a key or IAM policy. One use
of grants is to define scoped-down permissions for how an AWS service can use a KMS key. The
service may need to use your key to do asynchronous work on your behalf on encrypted data in
the absence of a direct-signed API call from you.

Data keys

Cryptographic keys generated on HSMs, protected by a KMS key. AWS KMS allows authorized
entities to obtain data keys protected by a KMS key. They can be returned both as plaintext
(unencrypted) data keys and as encrypted data keys. Data keys can be symmetric or asymmetric
(with both the public and private portions returned).

Ciphertexts

The encrypted output of AWS KMS, sometimes referred to as customer ciphertext to eliminate
confusion. Ciphertext contains encrypted data with additional information that identifies the
KMS key to use in the decryption process. Encrypted data keys are one common example of

Concepts 3

AWS Key Management Service AWS KMS Cryptographic Details

ciphertext produced when using a KMS key, but any data under 4 KB in size can be encrypted
under a KMS key to produce a ciphertext.

Encryption context

A key–value pair map of additional information that is associated with AWS KMS–protected
information. AWS KMS uses authenticated encryption to protect data keys. The encryption
context is incorporated into the AAD of the authenticated encryption in AWS KMS–encrypted
ciphertexts. This context information is optional and not returned when requesting a key (or
an encryption operation). But if used, this context value is required to successfully complete
a decryption operation. An intended use of the encryption context is to provide additional
authenticated information. This information can help you enforce policies and be included in
the AWS CloudTrail logs. For example, you could use a key–value pair of {"key name":"satellite
uplink key"} to name the data key. Subsequent use of the key creates an AWS CloudTrail entry
that includes “key name”: “satellite uplink key.” This additional information can provide useful
context to understand why a given KMS key was used.

Public key

When using asymmetric ciphers (RSA or elliptic curve), the public key is the “public component”
of a public-private key pair. The public key can be shared and distributed to entities that need
to encrypt data for the owner of the public-private key pair. For digital signature operations, the
public key is used to verify the signature.

Private key

When using asymmetric ciphers (RSA or elliptic curve), the private key is the “private
component” of a public-private key pair. The private key is used to decrypt data or create
digital signatures. Similar to symmetric KMS keys, private keys are encrypted in HSMs. They
are decrypted only into the short term memory of the HSM and only for the time needed to
process your cryptographic request.

AWS KMS design goals

AWS KMS is designed to meet the following requirements.

Durability

The durability of cryptographic keys is designed to equal that of the highest durability
services in AWS. A single cryptographic key can encrypt large volumes of your data that has
accumulated over a long time.

Design goals 4

AWS Key Management Service AWS KMS Cryptographic Details

Trustworthy

Use of keys is protected by access control policies that you define and manage. There is no
mechanism to export plaintext KMS keys. The confidentiality of your cryptographic keys is
crucial. Multiple Amazon employees with role-specific access to quorum-based access controls
are required to perform administrative actions on the HSMs.

Low-latency and high throughput

AWS KMS provides cryptographic operations at latency and throughput levels suitable for use
by other services in AWS.

Independent Regions

AWS provides independent Regions for customers who need to restrict data access in different
Regions. Key usage can be isolated within an AWS Region.

Secure source of random numbers

Because strong cryptography depends on truly unpredictable random number generation, AWS
KMS provides a high-quality and validated source of random numbers.

Audit

AWS KMS records the use and management of cryptographic keys in AWS CloudTrail logs. You
can use AWS CloudTrail logs to inspect use of your cryptographic keys, including the use of keys
by AWS services on your behalf.

To achieve these goals, the AWS KMS system includes a set of AWS KMS operators and service
host operators (collectively, “operators”) that administer “domains.” A domain is a Regionally
defined set of AWS KMS servers, HSMs, and operators. Each AWS KMS operator has a hardware
token that contains a private and public key pair that is used to authenticate its actions. The HSMs
have an additional private and public key pair to establish encryption keys that protect HSM state
synchronization.

This paper illustrates how AWS KMS protects your keys and other data that you want to encrypt.
Throughout this document, encryption keys or data that you want to encrypt are referred to as
“secrets” or “secret material.”

Design goals 5

AWS Key Management Service AWS KMS Cryptographic Details

AWS Key Management Service foundations
The topics in this chapter describe the cryptographic primitives of AWS Key Management Service
and where they are used. They also introduce the basic elements of AWS KMS.

Topics

• Cryptographic primitives

• AWS KMS key hierarchy

Cryptographic primitives

AWS KMS uses configurable cryptographic algorithms so that the system can quickly migrate from
one approved algorithm, or mode, to another. The initial default set of cryptographic algorithms
has been selected from Federal Information Processing Standard (FIPS-approved) algorithms for
their security properties and performance.

Entropy and random number generation

AWS KMS key generation is performed on the AWS KMS HSMs. The HSMs implement a hybrid
random number generator that uses the NIST SP800-90A Deterministic Random Bit Generator
(DRBG) CTR_DRBG using AES-256. It is seeded with a nondeterministic random bit generator with
384-bits of entropy and updated with additional entropy to provide prediction resistance on every
call for cryptographic material.

Symmetric key operations (encryption only)

All symmetric key encrypt commands used within HSMs use the Advanced Encryption Standards
(AES), in Galois Counter Mode (GCM) using 256-bit keys. The analogous calls to decrypt use the
inverse function.

AES-GCM is an authenticated encryption scheme. In addition to encrypting plaintext to produce
ciphertext, it computes an authentication tag over the ciphertext and any additional data for which
authentication is required (additionally authenticated data, or AAD). The authentication tag helps
ensure that the data is from the purported source and that the ciphertext and AAD have not been
modified.

Frequently, AWS omits the inclusion of the AAD in our descriptions, especially when referring to
the encryption of data keys. It is implied by surrounding text in these cases that the structure to

Cryptographic primitives 6

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

AWS Key Management Service AWS KMS Cryptographic Details

be encrypted is partitioned between the plaintext to be encrypted and the cleartext AAD to be
protected.

AWS KMS provides an option for you to import key material into an AWS KMS key instead of
relying on AWS KMS to generate the key material. This imported key material can be encrypted
using RSAES-OAEP or RSAES-PKCS1-v1_5 to protect the key during transport to the AWS KMS
HSM. The RSA key pairs are generated on AWS KMS HSMs. The imported key material is decrypted
on an AWS KMS HSM and re-encrypted under AES-GCM before being stored by the service.

Asymmetric key operations (encryption, digital signing and signature
verification)

AWS KMS supports the use of asymmetric key operations for both encryption and digital signature
operations. Asymmetric key operations rely on a mathematically related public key and private key
pair that you can use for encryption and decryption or signing and signature verification, but not
both. The private key never leaves AWS KMS unencrypted. You can use the public key within AWS
KMS by calling the AWS KMS API operations, or download the public key and use it outside of AWS
KMS.

AWS KMS supports two types of asymmetric ciphers.

• RSA-OAEP (for encryption) & RSA-PSS and RSA-PKCS-#1-v1_5 (for signing and verification) –
Supports RSA key lengths (in bits): 2048, 3072, and 4096 for different security requirements.

• Elliptic Curve (ECC) – Used exclusively for signing and verification. Supports ECC curves: NIST
P256, P384, P521, SECP 256k1.

Key derivation functions

A key derivation function is used to derive additional keys from an initial secret or key. AWS KMS
uses a key derivation function (KDF) to derive per-call keys for every encryption under an AWS
KMS key. All KDF operations use the KDF in counter mode using HMAC [FIPS197] with SHA256
[FIPS180]. The 256-bit derived key is used with AES-GCM to encrypt or decrypt customer data and
keys.

AWS KMS internal use of digital signatures

Digital signatures are also used to authenticate commands and communications between AWS KMS
entities. All service entities have an elliptic curve digital signature algorithm (ECDSA) key pair. They

Asymmetric key operations (encryption, digital signing and signature verification) 7

https://datatracker.ietf.org/doc/html/rfc8017#section-7.1
https://datatracker.ietf.org/doc/html/rfc8017#section-7.2
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-108.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

AWS Key Management Service AWS KMS Cryptographic Details

perform ECDSA as defined in Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic
Message Syntax (CMS) and X9.62-2005: Public Key Cryptography for the Financial Services Industry:
The Elliptic Curve Digital Signature Algorithm (ECDSA). The entities use the secure hash algorithm
defined in Federal Information Processing Standards Publications, FIPS PUB 180-4, known as
SHA384. The keys are generated on the curve secp384r1 (NIST-P384).

Envelope encryption

A basic construction used within many cryptographic systems is envelope encryption. Envelope
encryption uses two or more cryptographic keys to secure a message. Typically, one key is
derived from a longer-term static key k, and another key is a per-message key, msgKey, which is
generated to encrypt the message. The envelope is formed by encrypting the message: ciphertext
= Encrypt(msgKey, message) . Then the message key is encrypted with the long-term static key:
encKey = Encrypt(k, msgKey) . Finally, the two values (encKey, ciphertext) are packaged into a single
structure, or envelope encrypted message.

The recipient, with access to k, can open the enveloped message by first decrypting the encrypted
key and then decrypting the message.

AWS KMS provides the ability to manage these longer-term static keys and automate the process
of envelope encryption of your data.

In addition to the encryption capabilities provided within the AWS KMS service, the AWS
Encryption SDK provides client-side envelope encryption libraries. You can use these libraries to
protect your data and the encryption keys that are used to encrypt that data.

AWS KMS key hierarchy

Your key hierarchy starts with a top-level logical key, an AWS KMS key. A KMS key represents a
container for top-level key material and is uniquely defined within the AWS service namespace with
an Amazon Resource Name (ARN). The ARN includes a uniquely generated key identifier, a key ID. A
KMS key is created based on a user-initiated request through AWS KMS. Upon reception, AWS KMS
requests the creation of an initial HSM backing key (HBK) to be placed into the KMS key container.
The HBK is generated on an HSM in the domain and is designed never to be exported from the
HSM in plaintext. Instead, the HBK is exported encrypted under HSM-managed domain keys. These
exported HBKs are referred to as exported key tokens (EKTs).

The EKT is exported to a highly durable, low-latency storage. For example, suppose you receive an
ARN to the logical KMS key. This represents the top of a key hierarchy, or cryptographic context, for

Envelope encryption 8

https://datatracker.ietf.org/doc/html/rfc5753/
https://datatracker.ietf.org/doc/html/rfc5753/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html

AWS Key Management Service AWS KMS Cryptographic Details

you. You can create multiple KMS keys within your account and set policies on your KMS keys like
any other AWS named resource.

Within the hierarchy of a specific KMS key, the HBK can be thought of as a version of the KMS key.
When you want to rotate the KMS key through AWS KMS, a new HBK is created and associated with
the KMS key as the active HBK for the KMS key. The older HBKs are preserved and can be used to
decrypt and verify previously protected data. But only the active cryptographic key can be used to
protect new information.

You can make requests through AWS KMS to use your KMS keys to directly protect information
or request additional HSM-generated keys that are protected under your KMS key. These keys are
called customer data keys, or CDKs. CDKs can be returned encrypted as ciphertext (CT), in plaintext,
or both. All objects encrypted under a KMS key (either customer-supplied data or HSM-generated
keys) can be decrypted only on an HSM via a call through AWS KMS.

The returned ciphertext, or the decrypted payload, is never stored within AWS KMS. The
information is returned to you over your TLS connection to AWS KMS. This also applies to calls
made by AWS services on your behalf.

The key hierarchy and the specific key properties appear in the following table.

Key Description Lifecycle

Domain key A 256-bit AES-GCM key only in
memory of an HSM used to wrap

Rotated daily1

AWS KMS key hierarchy 9

AWS Key Management Service AWS KMS Cryptographic Details

Key Description Lifecycle

versions of the KMS keys, the HSM
backing keys.

HSM backing key A 256-bit symmetric key or RSA
or elliptic curve private key, used
to protect customer data and keys
and stored encrypted under domain
keys. One or more HSM backing keys
comprise the KMS key, represented
by the keyId.

Rotated yearly2

(optional
config.)

Derived encryption key A 256-bit AES-GCM key only in
memory of an HSM used to encrypt
customer data and keys. Derived
from an HBK for each encryption.

Used once per
encrypt and
regenerated on
decrypt

Customer data key User-defined symmetric or
asymmetric key exported from HSM
in plaintext and ciphertext.

Encrypted under an HSM backing
key and returned to authorized users
over TLS channel.

Rotation and use
controlled by
application

1 AWS KMS might from time to time relax domain key rotation to at most weekly to account for
domain administration and configuration tasks.

2 Default AWS managed keys created and managed by AWS KMS on your behalf are automatically
rotated annually.

AWS KMS key hierarchy 10

AWS Key Management Service AWS KMS Cryptographic Details

AWS KMS use cases

Use cases can help you get the most out of AWS Key Management Service. The first demonstrates
how AWS KMS performs server-side encryption with AWS KMS keys on an Amazon Elastic Block
Store (Amazon EBS) volume. The second is a client-side application that demonstrates how you can
use envelope encryption to protect content with AWS KMS.

Topics

• Amazon EBS volume encryption

• Client-side encryption

Amazon EBS volume encryption

Amazon EBS offers volume encryption capability. Each volume is encrypted using AES-256-XTS.
This requires two 256-bit volume keys, which you can think of as one 512-bit volume key. The
volume key is encrypted under a KMS key in your account. For Amazon EBS to encrypt a volume
for you, it must have access to generate a volume key (VK) under a KMS key in the account. You do
this by providing a grant for Amazon EBS to the KMS key to create data keys and to encrypt and
decrypt these volume keys. Now Amazon EBS uses AWS KMS with a KMS key to generate AWS KMS
encrypted volume keys.

EBS volume encryption 11

http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf

AWS Key Management Service AWS KMS Cryptographic Details

The following workflow encrypts data that is being written to an Amazon EBS volume:

1. Amazon EBS obtains an encrypted volume key under a KMS key through AWS KMS over a TLS
session and stores the encrypted key with the volume metadata.

2. When the Amazon EBS volume is mounted, the encrypted volume key is retrieved.

3. A call to AWS KMS over TLS is made to decrypt the encrypted volume key. AWS KMS identifies
the KMS key and makes an internal request to an HSM in the fleet to decrypt the encrypted
volume key. AWS KMS then returns the volume key back to the Amazon Elastic Compute Cloud
(Amazon EC2) host that contains your instance over the TLS session.

4. The volume key is used to encrypt and decrypt all data going to and from the attached Amazon
EBS volume. Amazon EBS retains the encrypted volume key for later use in case the volume key
in memory is no longer available.

For more information about encrypting Amazon EBS volumes with KMS keys, see How Amazon
Elastic Block Store uses AWS KMS in the AWS Key Management Service Developer Guide and
Amazon EBS encryption in the Amazon EC2 User Guide and Amazon EC2 User Guide.

EBS volume encryption 12

https://docs.aws.amazon.com/kms/latest/developerguide/services-ebs.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-ebs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EBSEncryption.html

AWS Key Management Service AWS KMS Cryptographic Details

Client-side encryption

The AWS Encryption SDK includes an API operation for performing envelope encryption using a
KMS key. For complete recommendations and usage details see the related documentation. Client
applications can use the AWS Encryption SDK to perform envelope encryption using AWS KMS.

// Instantiate the SDK
final AwsCrypto crypto = new AwsCrypto();
// Set up the KmsMasterKeyProvider backed by the default credentials
final KmsMasterKeyProvider prov = new KmsMasterKeyProvider(keyId);
// Do the encryption
final byte[] ciphertext = crypto.encryptData(prov, message);

The client application can run the following steps:

1. A request is made under a KMS key for a new data key. An encrypted data key and a plaintext
version of the data key are returned.

2. Within the AWS Encryption SDK, the plaintext data key is used to encrypt the message. The
plaintext data key is then deleted from memory.

3. The encrypted data key and encrypted message are combined into a single ciphertext byte array.

The envelope-encrypted message can be decrypted using the decrypt functionality to obtain the
originally encrypted message.

final AwsCrypto crypto = new AwsCrypto();

Client-side encryption 13

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/

AWS Key Management Service AWS KMS Cryptographic Details

final KmsMasterKeyProvider prov = new KmsMasterKeyProvider(keyId);
// Decrypt the data
final CryptoResult<byte[], KmsMasterKey> res = crypto.decryptData(prov, ciphertext);
// We need to check the KMS key to ensure that the
// assumed key was used
if (!res.getMasterKeyIds().get(0).equals(keyId)) {
 throw new IllegalStateException("Wrong key id!");
}
byte[] plaintext = res.getResult();

1. The AWS Encryption SDK parses the envelope-encrypted message to obtain the encrypted data
key and make a request to AWS KMS to decrypt the data key.

2. The AWS Encryption SDK receives the plaintext data key from AWS KMS.

3. The data key is then used to decrypt the message, returning the initial plaintext.

Client-side encryption 14

AWS Key Management Service AWS KMS Cryptographic Details

Working with AWS KMS keys

An AWS KMS key refers to a logical key that might refer to one or more hardware security module
(HSM) backing keys (HBKs). This topic explains how to create a KMS key, import key material, and
how to enable, disable, rotate, and delete KMS keys.

Note

AWS KMS is replacing the term customer master key (CMK) with AWS KMS key and KMS key.
The concept has not changed. To prevent breaking changes, AWS KMS is keeping some
variations of this term.

This chapter discusses the lifecycle of a KMS key from creation to deletion, as shown in the
following image.

Topics

• Calling CreateKey

• Importing key material

• Enabling and disabling keys

• Deleting keys

• Rotating key material

15

AWS Key Management Service AWS KMS Cryptographic Details

Calling CreateKey

An AWS KMS key is generated as a result of a call to the CreateKey API call.

The following is a subset of the CreateKey request syntax.

{
 "Description": "string",
 "KeySpec": "string",
 "KeyUsage": "string",
 "Origin": "string";
 "Policy": "string"
}

The request accepts the following data in JSON format.

Description

(Optional) Description of the key. We recommend that you choose a description that helps you
decide whether the key is appropriate for a task.

KeySpec

Specifies the type of KMS key to create. The default value, SYMMETRIC_DEFAULT, creates a
symmetric encryption KMS key. This parameter is optional for symmetric encryption keys, and is
required for all other key specs.

KeyUsage

Specifies the use of the key. Valid values are ENCRYPT_DECRYPT, SIGN_VERIFY, or
GENERATE_VERIFY_MAC. The default value is ENCRYPT_DECRYPT. This parameter is optional
for symmetric encryption keys, and is required for all other key specs.

Origin

(Optional) Specifies the source of the key material for the KMS key. The default value is
AWS_KMS, which indicates that AWS KMS generates and manages the key material for the KMS
key. Other valid values include EXTERNAL, which represents a KMS key created without key
material for imported key material, and AWS_CLOUDHSM which creates a KMS key in a custom
key store backed by an AWS CloudHSM cluster that you control.

Calling CreateKey 16

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html#API_CreateKey_RequestSyntax
https://docs.aws.amazon.com/kms/latest/developerguide/importing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/custom-key-store-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/custom-key-store-overview.html

AWS Key Management Service AWS KMS Cryptographic Details

Policy

(Optional) Policy to attach to the key. If the policy is omitted, the key is created with the default
policy (following) that allows the root account and IAM principals with AWS KMS permissions to
manage it.

For details on the policy, see Key policies in AWS KMS and Default key policy in the AWS Key
Management Service Developer Guide.

The CreateKey request returns a response that includes a key ARN.

arn:<partition>:kms:<region>:<account-id>:key/<key-id>

If the Origin is AWS_KMS, after the ARN is created, a request to an AWS KMS HSM is made over
an authenticated session to provision a hardware security module (HSM) backing key (HBK).
The HBK is a 256-bit key that is associated with this key ID of the KMS key. It can be generated
only on an HSM and is designed never to be exported outside of the HSM boundary in cleartext.
The HBK is encrypted under the current domain key, DK0. These encrypted HBKs are referred
to as encrypted key tokens (EKTs). Although the HSMs can be configured to use a variety of key
wrapping methods, the current implementation uses AES-256 in Galois Counter Mode (GCM), an
authenticated encryption scheme. This authenticated encryption mode allows us to protect some
cleartext exported key token metadata.

This is stylistically represented as:

EKT = Encrypt(DK0, HBK)

Two fundamental forms of protection are provided to your KMS keys and the subsequent HBKs:
authorization policies set on your KMS keys and the cryptographic protections on your associated
HBKs. The remaining sections describe the cryptographic protections and the security of the
management functions in AWS KMS.

In addition to the ARN, you can create a user-friendly name and associate it with the KMS key
by creating an alias for the key. Once an alias has been associated with a KMS key, the alias can
be used to identify the KMS key in cryptographic operations. For detailed information, see Using
aliases in the AWS Key Management Service Developer Guide.

Multiple levels of authorizations surround the use of KMS keys. AWS KMS enables separate
authorization policies between the encrypted content and the KMS key. For instance, an AWS KMS

Calling CreateKey 17

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-default.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html#API_CreateKey_ResponseSyntax
https://docs.aws.amazon.com/kms/latest/developerguide/kms-alias.html
https://docs.aws.amazon.com/kms/latest/developerguide/kms-alias.html

AWS Key Management Service AWS KMS Cryptographic Details

envelope-encrypted Amazon Simple Storage Service (Amazon S3) object inherits the policy on the
Amazon S3 bucket. However, access to the necessary encryption key is determined by the access
policy on the KMS key. For information about authorization of KMS keys, see Authentication and
access control for AWS KMS in the AWS Key Management Service Developer Guide.

Importing key material

AWS KMS provides a mechanism for importing the cryptographic material used for an HBK.
As described in Calling CreateKey, when the CreateKey command is used with Origin set to
EXTERNAL, a logical KMS key is created that contains no underlying HBK. The cryptographic
material must be imported using the ImportKeyMaterial API call. You can use this feature to
control the key creation and durability of the cryptographic material. If you use this feature, we
recommend that you take significant caution in the handling and durability of these keys in your
environment. For complete details and recommendations for importing key material, see Importing
key material in the AWS Key Management Service Developer Guide.

Calling ImportKeyMaterial

The ImportKeyMaterial request imports the necessary cryptographic material for the HBK.
The cryptographic material must be a 256-bit symmetric key. It must be encrypted using the
algorithm specified in WrappingAlgorithm under the returned public key from a recent
GetParametersForImport request.

An ImportKeyMaterial request takes the following arguments.

{
 "EncryptedKeyMaterial": blob,
 "ExpirationModel": "string",
 "ImportToken": blob,
 "KeyId": "string",
 "ValidTo": number
}

EncryptedKeyMaterial

The imported key material encrypted with the public key returned in a
GetParametersForImport request using the wrapping algorithm specified in that request.

Importing key material 18

https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.aws.amazon.com/kms/latest/developerguide/importing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/importing-keys.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetParametersForImport.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ImportKeyMaterial.html#API_ImportKeyMaterial_RequestSyntax

AWS Key Management Service AWS KMS Cryptographic Details

ExpirationModel

Specifies whether the key material expires. When this value is KEY_MATERIAL_EXPIRES,
the ValidTo parameter must contain an expiration date. When this value is
KEY_MATERIAL_DOES_NOT_EXPIRE, do not include the ValidTo parameter. The valid values
are "KEY_MATERIAL_EXPIRES" and "KEY_MATERIAL_DOES_NOT_EXPIRE".

ImportToken

The import token returned by the same GetParametersForImport request that provided the
public key.

KeyId

The KMS key that will be associated with the imported key material. The Origin of the KMS
key must be EXTERNAL.

You can delete and reimport the same imported key material into the specified KMS key, but
you cannot import or associate the KMS key any other key material.

ValidTo

(Optional) The time at which the imported key material expires. When the key material expires,
AWS KMS deletes the key material and the KMS key becomes unusable. This parameter is
required when the value of the ExpirationModel is KEY_MATERIAL_EXPIRES. Otherwise it is
invalid.

When the request succeeds, the KMS key is available for use within AWS KMS until the specified
expiration date, if one is provided. After the imported key material expires, the EKT is deleted from
the AWS KMS storage layer.

Enabling and disabling keys

Disabling a KMS key prevents the key from being used in cryptographic operations. It suspends the
ability to use all HBKs that are associated with the KMS key. Enabling restores use of the HBKs and
the KMS key. Enable and Disable are simple requests that take only the key ID or key ARN of the
KMS key.

Enabling and disabling keys 19

https://docs.aws.amazon.com/kms/latest/APIReference/API_Enable.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Disable.html

AWS Key Management Service AWS KMS Cryptographic Details

Deleting keys

Authorized users can use the ScheduleKeyDeletion API to schedule the deletion of a KMS
key and all associated HBKs. This is an inherently destructive operation, and you should exercise
caution when deleting keys from AWS KMS. AWS KMS enforces a minimal wait time of seven
days when deleting KMS keys. During the waiting period the key is placed in a disabled state with
a key state of Pending Deletion. All calls to use the key for cryptographic operations will fail.
ScheduleKeyDeletion takes the following arguments.

{
 "KeyId": "string",
 "PendingWindowInDays": number
}

KeyId

The unique identifier for the KMS key to delete. To specify this value, use the unique key ID or
the key ARN of the KMS key.

PendingWindowInDays

(Optional) The waiting period, in number of days. This value is optional. The range is 7-30 days
and the default value is 30 days. After the waiting period ends, AWS KMS deletes the KMS key
and all associated HBKs.

Rotating key material

Authorized users can enable automatic annual rotation of their customer managed KMS keys. AWS
managed keys are always rotated every year.

When a KMS key is rotated, a new HBK is created and marked as the current version of the key
material for all new encrypt requests. All previous versions of the HBK remain available for use in
perpetuity to decrypt any ciphertexts that were encrypted using this HBK version. Because AWS
KMS does not store any ciphertext encrypted under a KMS key, ciphertexts encrypted under an
older, rotated HBK require that HBK to decrypt. You can use the ReEncrypt API to reencrypt any
ciphertext under the new HBK for the KMS key or under a different KMS key without exposing the
plaintext.

Deleting keys 20

https://docs.aws.amazon.com/kms/latest/APIReference/API_ScheduleKeyDeletion.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Key Management Service AWS KMS Cryptographic Details

For information about enabling and disabling key rotation, see Rotating AWS KMS keys in the AWS
Key Management Service Developer Guide.

Rotating key material 21

https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html

AWS Key Management Service AWS KMS Cryptographic Details

Customer data operations

After you have established a KMS key, it can be used to perform cryptographic operations.
Whenever data is encrypted under a KMS key, the resulting object is a customer ciphertext. The
ciphertext contains two sections: an unencrypted header (or cleartext) portion, protected by the
authenticated encryption scheme as the additional authenticated data, and an encrypted portion.
The cleartext portion includes the HBK identifier (HBKID). These two immutable fields of the
ciphertext value help ensure that AWS KMS can decrypt the object in the future.

Topics

• Generating data keys

• Encrypt

• Decrypt

• Reencrypting an encrypted object

Generating data keys

Authorized users can use the GenerateDataKey API (and related APIs) to request a specific type
of data key or a random key of arbitrary length. This topic provides a simplified view of this API
operation. For details, see the GenerateDataKey APIs in the AWS Key Management Service API
Reference.

• GenerateDataKey

• GenerateDataKeyWithoutPlaintext

• GenerateDataKeyPair

• GenerateDataKeyPairWithoutPlaintext

The following is the GenerateDataKey request syntax.

{
 “EncryptionContext”: {“string” : “string”},
 “GrantTokens”: [“string”],
 “KeyId”: “string”,
 “NumberOfBytes”: “number”

Generating data keys 22

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html

AWS Key Management Service AWS KMS Cryptographic Details

}

The request accepts the following data in JSON format.

KeyId

Key identifier of the key used to encrypt the data key. This value must identify a symmetric
encryption KMS key.

This parameter is required.

NumberOfBytes

An integer that contains the number of bytes to generate. This parameter is required.

Caller must provide either KeySpec or NumberOfBytes, but not both.

EncryptionContext

(Optional) Name-value pair that contains additional data to authenticate during the encryption
and decryption processes that use the key.

GrantTokens

(Optional) A list of grant tokens that represent grants that provide permissions to generate
or use a key. For more information on grants and grant tokens, see Authentication and access
control for AWS KMS in the AWS Key Management Service Developer Guide.

After authenticating the command, AWS KMS, acquires the current active EKT associated with the
KMS key. It passes the EKT along with your provided request and any encryption context to an HSM
over a protected session between the AWS KMS host and an HSM in the domain.

The HSM does the following:

1. Generates the requested secret material and hold it in volatile memory.

2. Decrypts the EKT matching the key ID of the KMS key that is defined in the request to obtain the
active HBK = Decrypt(DKi, EKT).

3. Generates a random nonce N.

4. Generates a 256-bit AES-GCM derived encryption key K from HBK and N.

5. Encrypts the secret material ciphertext = Encrypt(K, context, secret).

Generating data keys 23

https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html

AWS Key Management Service AWS KMS Cryptographic Details

GenerateDataKey returns the plaintext secret material and the ciphertext to you over the secure
channel between the AWS KMS host and the HSM. AWS KMS then sends it to you over the TLS
session. AWS KMS does not retain the plaintext or ciphertext. Without possession of the ciphertext,
the encryption context, and the authorization to use the KMS key, the underlying secret cannot be
returned.

The following is the response syntax.

{
 "CiphertextBlob": "blob",
 "KeyId": "string",
 "Plaintext": "blob"
}

The management of data keys is left to you as the application developer. For best practice client-
side encryption with AWS KMS data keys (but not data key pairs), you can use the AWS Encryption
SDK.

Data keys can be rotated at any frequency. Further, the data key can be reencrypted under a
different KMS key or a rotated KMS key using the ReEncrypt API operation. For details, see
ReEncrypt in the AWS Key Management Service API Reference.

Encrypt

A basic function of AWS KMS is to encrypt an object under a KMS key. By design, AWS KMS
provides low latency cryptographic operations on HSMs. Thus there is a limit of 4 KB on the
amount of plaintext that can be encrypted in a direct call to the encrypt function. The AWS
Encryption SDK can be used to encrypt larger messages. AWS KMS, after authenticating the
command, acquires the current active EKT pertaining to the KMS key. It passes the EKT, along with
the plaintext and encryption context, to any available HSM in the Region. These are sent over an
authenticated session between the AWS KMS host and an HSM in the domain.

The HSM runs the following:

1. Decrypts the EKT to obtain the HBK = Decrypt(DKi, EKT) .

2. Generates a random nonce N.

3. Derives a 256-bit AES-GCM derived encryption key K from HBK and N.

4. Encrypts the plaintext ciphertext = Encrypt(K, context, plaintext).

Encrypt 24

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Key Management Service AWS KMS Cryptographic Details

The ciphertext value is returned to you, and neither the plaintext data or ciphertext is retained
anywhere in the AWS infrastructure. Without possession of the ciphertext and the encryption
context, and the authorization to use the KMS key, the underlying plaintext cannot be returned.

Decrypt

A call to AWS KMS to decrypt a ciphertext value accepts an encrypted value ciphertext and an
encryption context. AWS KMS authenticates the call using AWS signature version 4 signed requests
and extracts the HBKID for the wrapping key from the ciphertext. The HBKID is used to obtain the
EKT required to decrypt the ciphertext, the key ID, and the policy for the key ID. The request is
authorized based on the key policy, grants that may be present, and any associated IAM policies
that reference the key ID. The Decrypt function is analogous to the encryption function.

The following is the Decrypt request syntax.

{
 "CiphertextBlob": "blob",
 "EncryptionContext": { "string" : "string" }
 "GrantTokens": ["string"]
}

The following are the request parameters.

CiphertextBlob

Ciphertext including metadata.

EncryptionContext

(Optional) The encryption context. If this was specified in the Encrypt function, it must be
specified here or the decryption operation fails. For more information, see Encryption context in
the AWS Key Management Service Developer Guide.

GrantTokens

(Optional) A list of grant tokens that represent grants that provide permissions to perform
decryption.

The ciphertext and the EKT are sent, along with the encryption context, over an authenticated
session to an HSM for decryption.

Decrypt 25

https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/kms/latest/developerguide/encrypt-context.html

AWS Key Management Service AWS KMS Cryptographic Details

The HSM runs the following:

1. Decrypts the EKT to obtain the HBK = Decrypt(DKi, EKT) .

2. Extracts the nonce N from the ciphertext structure.

3. Regenerates a 256-bit AES-GCM derived encryption key K from HBK and N.

4. Decrypts the ciphertext to obtain plaintext = Decrypt(K, context, ciphertext) .

The resulting key ID and plaintext are returned to the AWS KMS host over the secure session and
then back to the calling customer application over a TLS connection.

The following is the response syntax.

{
 "KeyId": "string",
 "Plaintext": blob
}

If the calling application wants to ensure that the authenticity of the plaintext, it must verify that
the key ID returned is the one expected.

Reencrypting an encrypted object

An existing customer ciphertext encrypted under one KMS key can be reencrypted to another KMS
key through a reencrypt command. Reencrypt encrypts data on the server side with a new KMS key
without exposing the plaintext of the key on the client side. The data is first decrypted and then
encrypted.

The following is the request syntax.

{
 "CiphertextBlob": "blob",
 "DestinationEncryptionContext": { "string" : "string" },
 "DestinationKeyId": "string",
 "GrantTokens": ["string"],
 "SourceKeyId": "string",
 "SourceEncryptionContext": { "string" : "string"}
}

The request accepts the following data in JSON format.

Reencrypting an encrypted object 26

AWS Key Management Service AWS KMS Cryptographic Details

CiphertextBlob

Ciphertext of the data to reencrypt.

DestinationEncryptionContext

(Optional) Encryption context to be used when the data is reencrypted.

DestinationKeyId

Key identifier of the key used to reencrypt the data.

GrantTokens

(Optional) A list of grant tokens that represent grants that provide permissions to perform
decryption.

SourceKeyId

(Optional) Key identifier of the key used to decrypt the data.

SourceEncryptionContext

(Optional) Encryption context used to encrypt and decrypt the data specified in the
CiphertextBlob parameter.

The process combines the decrypt and encrypt operations of the previous descriptions: The
customer ciphertext is decrypted under the initial HBK referenced by the customer ciphertext to
the current HBK under the intended KMS key. When the KMS keys used in this command are the
same, this command moves the customer ciphertext from an old version of an HBK to the latest
version of an HBK.

The following is the response syntax.

{
 "CiphertextBlob": blob,
 "DestinationEncryptionAlgorithm": "string",
 "KeyId": "string",
 "SourceEncryptionAlgorithm": "string",
 "SourceKeyId": "string"
}

If the calling application wants to ensure the authenticity of the underlying plaintext, it must verify
the SourceKeyId returned is the one expected.

Reencrypting an encrypted object 27

AWS Key Management Service AWS KMS Cryptographic Details

AWS KMS internal operations

AWS KMS internals are required to scale and secure HSMs for a globally distributed key
management service.

Topics

• Domains and domain state

• Internal communication security

• Replication process for multi-Region keys

• Durability protection

Domains and domain state

A cooperative collection of trusted internal AWS KMS entities within an AWS Region is referred
to as a domain. A domain includes a set of trusted entities, a set of rules, and a set of secret keys,
called domain keys. The domain keys are shared among HSMs that are members of the domain. A
domain state consists of the following fields.

Name

A domain name to identify this domain.

Members

A list of HSMs that are members of the domain, including their public signing key and public
agreement keys.

Operators

A list of entities, public signing keys, and a role (AWS KMS operator or service host) that
represents the operators of this service.

Rules

A list of quorum rules for each command that must be satisfied to run a command on the HSM.

Domain keys

A list of domain keys (symmetric keys) currently in use within the domain.

Domains and domain state 28

AWS Key Management Service AWS KMS Cryptographic Details

The full domain state is available only on the HSM. The domain state is synchronized between HSM
domain members as an exported domain token.

Domain keys

All the HSMs in a domain share a set of domain keys, {DKr }. These keys are shared through a
domain state export routine. The exported domain state can be imported into any HSM that is a
member of the domain.

The set of domain keys, {DKr }, always includes one active domain key, and several deactivated
domain keys. Domain keys are rotated daily to ensure that AWS complies with Recommendation
for Key Management - Part 1. During domain key rotation, all existing KMS keys encrypted
under the outgoing domain key are re-encrypted under the new active domain key. The active
domain key is used to encrypt any new EKTs. The expired domain keys can be used only to decrypt
previously encrypted EKTs for a number of days equivalent to the number of recently rotated
domain keys.

Exported domain tokens

There is a regular need to synchronize state between domain participants. This is accomplished
through exporting the domain state whenever a change is made to the domain. The domain state
is exported as an exported domain token.

Name

A domain name to identify this domain.

Members

A list of HSMs that are members of the domain, including their signing and agreement public
keys.

Operators

A list of entities, public signing keys, and a role that represents the operators of this service.

Rules

A list of quorum rules for each command that must be satisfied to run a command on an HSM
domain member.

Domain keys 29

https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final

AWS Key Management Service AWS KMS Cryptographic Details

Encrypted domain keys

Envelope-encrypted domain keys. The domain keys are encrypted by the signing member for
each of the members listed above, enveloped to their public agreement key.

Signature

A signature on the domain state produced by an HSM, necessarily a member of the domain that
exported the domain state.

The exported domain token forms the fundamental source of trust for entities operating within the
domain.

Managing domain states

The domain state is managed through quorum-authenticated commands. These changes include
modifying the list of trusted participants in the domain, modifying the quorum rules for running
HSM commands, and periodically rotating the domain keys. These commands are authenticated on
a per-command basis as opposed to authenticated session operations, as shown in the following
image.

In its initialized and operational state, an HSM contains a set of self-generated asymmetric identity
keys, a signing key pair, and a key-establishment key pair. Through a manual process, an AWS
KMS operator can establish an initial domain to be created on a first HSM in a Region. This initial
domain consists of a full domain state as defined previously in this topic. It is installed through a
join command to each of the defined HSM members in the domain.

After an HSM has joined an initial domain, it is bound to the rules that are defined in that domain.
These rules govern the commands that use customer cryptographic keys or make changes to the
host or domain state. The authenticated session API operations that use your cryptographic keys
have been defined earlier.

Managing domain states 30

AWS Key Management Service AWS KMS Cryptographic Details

The foregoing image depicts how a domain state gets modified. The process consists of four steps:

1. A quorum-based command is sent to an HSM to modify the domain.

2. A new domain state is generated and exported as a new exported domain token. The state on
the HSM is not modified, meaning that the change is not enacted on the HSM.

3. A second command is sent to each of the HSMs in the newly exported domain token to update
their domain state with the new domain token.

4. The HSMs listed in the new exported domain token can authenticate the command and the
domain token. They can also unpack the domain keys to update the domain state on all HSMs in
the domain.

HSMs do not communicate directly with one another. Instead, a quorum of operators requests a
change to the domain state that results in a new exported domain token. A service host member of
the domain is used to distribute the new domain state to every HSM in the domain.

The leaving and joining of a domain are done through the HSM management functions. The
modification of the domain state is done through the domain management functions.

Leave domain

Causes an HSM to leave a domain, deleting all remnants and keys of that domain from memory.

Join domain

Causes an HSM to join a new domain or update its current domain state to the new domain
state. The existing domain is used as source of the initial set of rules to authenticate this
message.

Managing domain states 31

AWS Key Management Service AWS KMS Cryptographic Details

Create domain

Causes a new domain to be created on an HSM. Returns a first domain token that can be
distributed to member HSMs of the domain.

Modify operators

Adds or removes operators from the list of authorized operators and their roles in the domain.

Modify members

Adds or removes an HSM from the list of authorized HSMs in the domain.

Modify rules

Modifies the set of quorum rules that are required to run commands on an HSM.

Rotate domain keys

Causes a new domain key to be created and marked as the active domain key. This moves
the existing active key to a deactivated key and removes the oldest deactivated key from the
domain state.

Internal communication security

Commands between the service hosts or AWS KMS operators and the HSMs are secured through
two mechanisms depicted in Authenticated sessions: a quorum-signed request method and an
authenticated session using an HSM-service host protocol.

The quorum-signed commands are designed so that no single operator can modify the critical
security protections that the HSMs provide. The commands that run over the authenticated
sessions help ensure that only authorized service operators can perform operations involving KMS
keys. All customer-bound secret information is secured across the AWS infrastructure.

Key establishment

To secure internal communications, AWS KMS uses two different key establishment methods. The
first is defined as C(1, 2, ECC DH) in Recommendation for Pair-Wise Key Establishment Schemes
Using Discrete Logarithm Cryptography (Revision 2). This scheme has an initiator with a static
signing key. The initiator generates and signs an ephemeral elliptic curve Diffie-Hellman (ECDH)
key, intended for a recipient with a static ECDH agreement key. This method uses one ephemeral
key and two static keys using ECDH. That is the derivation of the label C(1, 2, ECC DH). This method
is sometimes called one-pass ECDH.

Internal communicaton security 32

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

AWS Key Management Service AWS KMS Cryptographic Details

The second key establishment method is C(2, 2, ECC, DH). In this scheme, both parties have a
static signing key, and they generate, sign, and exchange an ephemeral ECDH key. This method
uses two static keys and two ephemeral keys, each using ECDH. That is the derivation of the label
C(2, 2, ECC, DH). This method is sometimes called ECDH ephemeral or ECDHE. All ECDH keys are
generated on the curve secp384r1 (NIST-P384).

HSM security boundary

The inner security boundary of AWS KMS is the HSM. The HSM has a proprietary interface and no
other active physical interfaces in its operational state. An operational HSM is provisioned during
initialization with the necessary cryptographic keys to establish its role in the domain. Sensitive
cryptographic materials of the HSM are only stored in volatile memory and erased when the HSM
moves out of the operational state, including intended or unintended shutdowns or resets.

The HSM API operations are authenticated either by individual commands or over a mutually
authenticated confidential session established by a service host.

Quorum-signed commands

Quorum-signed commands are issued by operators to HSMs. This section describes how quorum-
based commands are created, signed, and authenticated. These rules are fairly simple. For
example, command Foo requires two members from role Bar to be authenticated. There are three
steps in the creation and verification of a quorum-based command. The first step is the initial
command creation; the second is the submission to additional operators to sign; and the third is
the verification and execution.

For the purpose of introducing the concepts, assume that there is an authentic set of operator’s
public keys and roles {QOSs}, and a set of quorum-rules QR = {Commandi, Rule{i, t}} where each Rule
is a set of roles and minimum number N {Rolet, Nt}. For a command to satisfy the quorum rule, the
command dataset must be signed by a set of operators listed in {QOSs} such that they meet one of
the rules listed for that command. As mentioned earlier, the set of quorum rules and operators are
stored in the domain state and the exported domain token.

HSM security boundary 33

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

AWS Key Management Service AWS KMS Cryptographic Details

In practice, an initial signer signs the command Sig1 = Sign(dOp1, Command) . A second operator
also signs the command Sig2 = Sign(dOp2, Command) . The doubly signed message is sent to an
HSM for execution. The HSM performs the following:

1. For each signature, it extracts the signer’s public key from the domain state and verifies the
signature on the command.

2. It verifies that the set of signers satisfies a rule for the command.

Authenticated sessions

Your key operations run between the externally facing AWS KMS hosts and the HSMs. These
commands pertain to the creation and use of cryptographic keys and secure random number
generation. The commands run over a session-authenticated channel between the service hosts
and the HSMs. In addition to the need for authenticity, these sessions require confidentiality.
Commands running over these sessions include the returning of cleartext data keys and decrypted
messages intended for you. To ensure that these sessions cannot be subverted through man-in-
the-middle attacks, sessions are authenticated.

This protocol performs a mutually authenticated ECDHE key agreement between the HSM and the
service host. The exchange is initiated by the service host and completed by the HSM. The HSM
also returns a session key (SK) encrypted by the negotiated key and an exported key token that
contains the session key. The exported key token contains a validity period, after which the service
host must renegotiate a session key.

A service host is a member of the domain and has an identity-signing key pair (dHOSi, QHOSi)
and an authentic copy of the HSMs’ identity public keys. It uses its set of identity-signing keys to
securely negotiate a session key that can be used between the service host and any HSM in the
domain. The exported key tokens have a validity period associated with them, after which a new
key must be negotiated.

The process begins with the service host recognition that it requires a session key to send and
receive sensitive communication flows between itself and an HSM member of the domain.

Authenticated sessions 34

AWS Key Management Service AWS KMS Cryptographic Details

1. A service host generates an ECDH ephemeral key pair (d1, Q1) and signs it with its identity key
Sig1 = Sign(dOS,Q1).

2. The HSM verifies the signature on the received public key using its current domain token
and creates an ECDH ephemeral key pair (d2, Q2). It then completes the ECDH-key-exchange
according to Recommendation for Pair-Wise Key Establishment Schemes Using Discrete
Logarithm Cryptography (Revised) to form a negotiated 256-bit AES-GCM key. The HSM
generates a fresh 256-bit AES-GCM session key. It encrypts the session key with the negotiated
key to form the encrypted session key (ESK). It also encrypts the session key under the domain
key as an exported key token EKT. Finally, it signs a return value with its identity key pair Sig2 =
Sign(dHSK, (Q2, ESK, EKT)).

3. The service host verifies the signature on the received keys using its current domain token. The
service host then completes the ECDH key exchange according to Recommendation for Pair-Wise
Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised). It next decrypts
the ESK to obtain the session key SK.

During the validity period in the EKT, the service host can use the negotiated session key SK to
send envelope-encrypted commands to the HSM. Every service-host-initiated command over this
authenticated session includes the EKT. The HSM responds using the same negotiated session key
SK.

Replication process for multi-Region keys

AWS KMS uses a cross-Region replication mechanism to copy the key material in a KMS key from
an HSM in one AWS Region to an HSM in a different AWS Region. For this mechanism to work, the
KMS key that is being replicated must be a multi-Region key. When replicating a KMS key from
one Region to another, the HSMs in the Regions cannot communicate directly, because they’re
in isolated networks. Instead, the messages exchanged during the cross-Region replication are
delivered by a proxy service.

During cross-Region replication, every message generated by an AWS KMS HSM is
cryptographically signed using a replication signing key. Replication signing keys (RSKs) are ECDSA
keys on the NIST P-384 curve. Every Region owns at least one RSK, and the public component of
each RSK is shared with every other Region in the same AWS partition.

The cross-Region replication process to copy key material from Region A to Region B works as
follows:

Replication process for multi-Region keys 35

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

AWS Key Management Service AWS KMS Cryptographic Details

1. The HSM in Region B generates an ephemeral ECDH key on the NIST P-384 curve, Replication
Agreement Key B (RAKB). The public component of RAKB is sent to an HSM in Region A by the
proxy service.

2. The HSM in Region A receives the public component of RAKB and then generates another
ephemeral ECDH key on the NIST P-384 curve, Replication Agreement Key A (RAKA). The HSM
runs the ECDH key establishment scheme on RAKA and the public component of RAKB, and
derives a symmetric key from the output, the Replication Wrapping Key (RWK). The RWK is used
to encrypt the key material of the multi-Region KMS key that is being replicated.

3. The public component of RAKA and the key material encrypted with the RWK are sent to the
HSM in Region B through the proxy service.

4. The HSM in Region B receives the public component of RAKA and the key material encrypted
using the RWK. The HSM derives by RWK by running the ECDH key establishment scheme on
RAKB and the public component of RAKA.

5. The HSM in Region B use the RWK to decrypt the key material from Region A.

Durability protection

Additional service durability for keys generated by the service is provided by the use of offline
HSMs, multiple nonvolatile storage of exported domain tokens, and redundant storage of
encrypted KMS keys. The offline HSMs are members of the existing domains. With the exception
of not being online and participating in the regular domain operations, the offline HSMs appear
identically in the domain state as the existing HSM members.

The durability design is intended to protect all KMS keys in a Region should AWS experience
a wide-scale loss of either the online HSMs or the set of KMS keys stored within our primary
storage system. AWS KMS keys with imported key material are not included under the durability
protections afforded other KMS keys. In the event of a Regionwide failure in AWS KMS, imported
key material may need to be reimported into a KMS key.

The offline HSMs, and the credentials to access them, are stored in safes within monitored safe
rooms in multiple independent geographical locations. Each safe requires at least one AWS security
officer and one AWS KMS operator, from two independent teams in AWS, to obtain these materials.
The use of these materials is governed by internal policy requiring a quorum of AWS KMS operators
to be present.

Durability protection 36

AWS Key Management Service AWS KMS Cryptographic Details

Reference

Use the following reference material to get information about abbreviations, keys, contributors,
and sources cited in this document.

Topics

• Abbreviations

• Keys

• Contributors

• Bibliography

Abbreviations

The following list illuminates abbreviations referenced in this document.

AES

Advanced Encryption Standard

CDK

customer data key

DK

domain key

ECDH

Elliptic Curve Diffie-Hellman

ECDHE

Elliptic Curve Diffie-Hellman Ephemeral

ECDSA

Elliptic Curve Digital Signature Algorithm

EKT

exported key token

Abbreviations 37

AWS Key Management Service AWS KMS Cryptographic Details

ESK

encrypted session key

GCM

Galois Counter Mode

HBK

HSM backing key

HBKID

HSM backing key identifier

HSM

hardware security module

RSA

Rivest Shamir and Adleman (cryptologic)

secp384r1

Standards for Efficient Cryptography prime 384-bit random curve 1

SHA256

Secure Hash Algorithm of digest length 256-bits

Keys

The following list defines the keys referenced in this document.

HBK

HSM backing key: HSM backing keys are 256-bit root keys, from which specific use keys are
derived.

DK

Domain key: A domain key is a 256-bit AES-GCM key. It is shared among all the members of a
domain and is used to protect HSM backing keys material and HSM-service host session keys.

Keys 38

AWS Key Management Service AWS KMS Cryptographic Details

DKEK

Domain key encryption key: A domain key encryption Key is an AES-256-GCM key generated
on a host and used for encrypting the current set of domain keys synchronizing domain state
across the HSM hosts.

(dHAK,QHAK)

HSM agreement key pair: Every initiated HSM has a locally generated Elliptic Curve Diffie-
Hellman agreement key pair on the curve secp384r1 (NIST-P384).

(dE, QE)

Ephemeral agreement key pair: HSM and service hosts generate ephemeral agreement keys.
These are Elliptic Curve Diffie-Hellman keys on the curve secp384r1 (NIST-P384). These are
generated in two use cases: to establish a host-to-host encryption key to transport domain key
encryption keys in domain tokens and to establish HSM-service host session keys to protect
sensitive communications.

(dHSK,QHSK)

HSM signature key pair: Every initiated HSM has a locally generated Elliptic Curve Digital
Signature key pair on the curve secp384r1 (NIST-P384).

(dOS,QOS)

Operator signature key pair: Both the service host operators and AWS KMS operators have an
identity signing key used to authenticate itself to other domain participants.

K

Data encryption key: A 256-bit AES-GCM key derived from an HBK using the NIST SP800-108
KDF in counter mode using HMAC with SHA256.

SK

Session key: A session key is created as a result of an authenticated Elliptic Curve Diffie-Hellman
key exchanged between a service host operator and an HSM. The purpose of the exchange is to
secure communication between the service host and the members of the domain.

Contributors

The following individuals and organizations contributed to this document:

Contributors 39

AWS Key Management Service AWS KMS Cryptographic Details

• Ken Beer, General Manager - KMS, AWS Cryptography

• Matthew Campagna, Principal Security Engineer, AWS Cryptography

Bibliography

For information about the AWS Key Management Service HSMs, go to the NIST Computer Security
Resource Center Cryptographic Module Validation Program search page and search for AWS Key
Management Service HSM.

Amazon Web Services, General Reference (Version 1.0), “Signing AWS API Request,” http://
docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html.

Amazon Web Services, “What is the AWS Encryption SDK,” http://docs.aws.amazon.com/
encryption-sdk/latest/developer-guide/introduction.html.

Federal Information Processing Standards Publications, FIPS PUB 180-4. Secure Hash Standard,
August 2012. Available from https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf.

Federal Information Processing Standards Publication 197, Announcing the Advanced Encryption
Standard (AES), November 2001. Available from http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf.

Federal Information Processing Standards Publication 198-1, The Keyed-Hash Message
Authentication Code (HMAC), July 2008. Available from http://csrc.nist.gov/publications/fips/
fips198-1/FIPS-198-1_final.pdf.

NIST Special Publication 800-52 Revision 2, Guidelines for the Selection, Configuration, and Use of
Transport Layer Security (TLS) Implementations, August 2019. https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-52r2.pdf.

PKCS#1 v2.2: RSA Cryptography Standard (RFC 8017), Internet Engineering Task Force (IETF),
November 2016. https://tools.ietf.org/html/rfc8017.

Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC, NIST Special Publication 800-38D, November 2007. Available from http://csrc.nist.gov/
publications/nistpubs/800-38D/SP-800-38D.pdf.

Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality
on Storage Devices, NIST Special Publication 800-38E, January 2010. Available from https://
nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf.

Bibliography 40

https://csrc.nist.gov/projects/cryptographic-module-validation-program/validated-modules/search
http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
http://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
http://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://tools.ietf.org/html/rfc8017
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf

AWS Key Management Service AWS KMS Cryptographic Details

Recommendation for Key Derivation Using Pseudorandom Functions, NIST Special Publication
800-108, October 2009, Available from https://nvlpubs.nist.gov/nistpubs/legacy/sp/
nistspecialpublication800-108.pdf.

Recommendation for Key Management - Part 1: General (Revision 5), NIST Special Publication
800-57A, May 2020, Available from https://doi.org/10.6028/NIST.SP.800-57pt1r5.

Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography
(Revised), NIST Special Publication 800-56A Revision 3, April 2018. Available from https://
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf.

Recommendation for Random Number Generation Using Deterministic Random Bit Generators,
NIST Special Publication 800-90A Revision 1, June 2015, Available from https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf.

SEC 2: Recommended Elliptic Curve Domain Parameters, Standards for Efficient Cryptography
Group, Version 2.0, 27 January 2010.

Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic Message Syntax (CMS), Brown,
D., Turner, S., Internet Engineering Task Force, July 2010, http://tools.ietf.org/html/rfc5753/.

X9.62-2005: Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital
Signature Algorithm (ECDSA), American National Standards Institute, 2005.

Bibliography 41

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-108.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-108.pdf
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://datatracker.ietf.org/doc/html/rfc5753/

AWS Key Management Service AWS KMS Cryptographic Details

Document History for AWS KMS Cryptographic Details

The following table describes important changes to the documentation for AWS Key Management
Service Cryptographic Details. We also update the documentation frequently to address the
feedback that you send to us.

Change Description Date

Updated content Added details about the
implementation of the
AWS KMS ReplicateKey
operation.

October 28, 2021

Documentation change Replace the term customer
master key (CMK) with AWS
KMS key and KMS key.

August 30, 2021

Initial release Created this guide from the
KMS Cryptographic Details
technical paper

December 30, 2020

42

https://docs.aws.amazon.com/kms/latest/cryptographic-details/replicate-key-details.html
https://docs.aws.amazon.com/kms/latest/cryptographic-details/basic-concepts.html

	AWS Key Management Service
	Table of Contents
	Introduction to the cryptographic details of AWS KMS
	Basic concepts
	AWS KMS design goals

	AWS Key Management Service foundations
	Cryptographic primitives
	Entropy and random number generation
	Symmetric key operations (encryption only)
	Asymmetric key operations (encryption, digital signing and signature verification)
	Key derivation functions
	AWS KMS internal use of digital signatures
	Envelope encryption

	AWS KMS key hierarchy

	AWS KMS use cases
	Amazon EBS volume encryption
	Client-side encryption

	Working with AWS KMS keys
	Calling CreateKey
	Importing key material
	Calling ImportKeyMaterial

	Enabling and disabling keys
	Deleting keys
	Rotating key material

	Customer data operations
	Generating data keys
	Encrypt
	Decrypt
	Reencrypting an encrypted object

	AWS KMS internal operations
	Domains and domain state
	Domain keys
	Exported domain tokens
	Managing domain states

	Internal communication security
	Key establishment
	HSM security boundary
	Quorum-signed commands
	Authenticated sessions

	Replication process for multi-Region keys
	Durability protection

	Reference
	Abbreviations
	Keys
	Contributors
	Bibliography

	Document History for AWS KMS Cryptographic Details

