기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.
를 사용하여 Amazon Bedrock 에이전트를 생성하고 호출하는 방법을 보여주는 예제 end-to-end AWS SDK
다음 코드 예제는 다음과 같은 작업을 수행하는 방법을 보여줍니다.
에이전트에 대한 실행 역할을 생성합니다.
에이전트를 생성하고 DRAFT 버전을 배포합니다.
에이전트의 기능을 구현하는 Lambda 함수를 생성합니다.
에이전트를 Lambda 함수에 연결하는 작업 그룹을 생성합니다.
완전히 구성된 에이전트를 배포합니다.
사용자가 제공한 프롬프트로 에이전트를 간접 호출합니다.
생성된 모든 리소스를 삭제합니다.
- Python
-
- SDK Python용(Boto3)
-
참고
더 많은 기능이 있습니다 GitHub. AWS 코드 예시 리포지토리
에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요. 에이전트를 생성 및 간접 호출합니다.
REGION = "us-east-1" ROLE_POLICY_NAME = "agent_permissions" class BedrockAgentScenarioWrapper: """Runs a scenario that shows how to get started using Amazon Bedrock Agents.""" def __init__( self, bedrock_agent_client, runtime_client, lambda_client, iam_resource, postfix ): self.iam_resource = iam_resource self.lambda_client = lambda_client self.bedrock_agent_runtime_client = runtime_client self.postfix = postfix self.bedrock_wrapper = BedrockAgentWrapper(bedrock_agent_client) self.agent = None self.agent_alias = None self.agent_role = None self.prepared_agent_details = None self.lambda_role = None self.lambda_function = None def run_scenario(self): print("=" * 88) print("Welcome to the Amazon Bedrock Agents demo.") print("=" * 88) # Query input from user print("Let's start with creating an agent:") print("-" * 40) name, foundation_model = self._request_name_and_model_from_user() print("-" * 40) # Create an execution role for the agent self.agent_role = self._create_agent_role(foundation_model) # Create the agent self.agent = self._create_agent(name, foundation_model) # Prepare a DRAFT version of the agent self.prepared_agent_details = self._prepare_agent() # Create the agent's Lambda function self.lambda_function = self._create_lambda_function() # Configure permissions for the agent to invoke the Lambda function self._allow_agent_to_invoke_function() self._let_function_accept_invocations_from_agent() # Create an action group to connect the agent with the Lambda function self._create_agent_action_group() # If the agent has been modified or any components have been added, prepare the agent again components = [self._get_agent()] components += self._get_agent_action_groups() components += self._get_agent_knowledge_bases() latest_update = max(component["updatedAt"] for component in components) if latest_update > self.prepared_agent_details["preparedAt"]: self.prepared_agent_details = self._prepare_agent() # Create an agent alias self.agent_alias = self._create_agent_alias() # Test the agent self._chat_with_agent(self.agent_alias) print("=" * 88) print("Thanks for running the demo!\n") if q.ask("Do you want to delete the created resources? [y/N] ", q.is_yesno): self._delete_resources() print("=" * 88) print( "All demo resources have been deleted. Thanks again for running the demo!" ) else: self._list_resources() print("=" * 88) print("Thanks again for running the demo!") def _request_name_and_model_from_user(self): existing_agent_names = [ agent["agentName"] for agent in self.bedrock_wrapper.list_agents() ] while True: name = q.ask("Enter an agent name: ", self.is_valid_agent_name) if name.lower() not in [n.lower() for n in existing_agent_names]: break print( f"Agent {name} conflicts with an existing agent. Please use a different name." ) models = ["anthropic.claude-instant-v1", "anthropic.claude-v2"] model_id = models[ q.choose("Which foundation model would you like to use? ", models) ] return name, model_id def _create_agent_role(self, model_id): role_name = f"AmazonBedrockExecutionRoleForAgents_{self.postfix}" model_arn = f"arn:aws:bedrock:{REGION}::foundation-model/{model_id}*" print("Creating an an execution role for the agent...") try: role = self.iam_resource.create_role( RoleName=role_name, AssumeRolePolicyDocument=json.dumps( { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": {"Service": "bedrock.amazonaws.com"}, "Action": "sts:AssumeRole", } ], } ), ) role.Policy(ROLE_POLICY_NAME).put( PolicyDocument=json.dumps( { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": "bedrock:InvokeModel", "Resource": model_arn, } ], } ) ) except ClientError as e: logger.error(f"Couldn't create role {role_name}. Here's why: {e}") raise return role def _create_agent(self, name, model_id): print("Creating the agent...") instruction = """ You are a friendly chat bot. You have access to a function called that returns information about the current date and time. When responding with date or time, please make sure to add the timezone UTC. """ agent = self.bedrock_wrapper.create_agent( agent_name=name, foundation_model=model_id, instruction=instruction, role_arn=self.agent_role.arn, ) self._wait_for_agent_status(agent["agentId"], "NOT_PREPARED") return agent def _prepare_agent(self): print("Preparing the agent...") agent_id = self.agent["agentId"] prepared_agent_details = self.bedrock_wrapper.prepare_agent(agent_id) self._wait_for_agent_status(agent_id, "PREPARED") return prepared_agent_details def _create_lambda_function(self): print("Creating the Lambda function...") function_name = f"AmazonBedrockExampleFunction_{self.postfix}" self.lambda_role = self._create_lambda_role() try: deployment_package = self._create_deployment_package(function_name) lambda_function = self.lambda_client.create_function( FunctionName=function_name, Description="Lambda function for Amazon Bedrock example", Runtime="python3.11", Role=self.lambda_role.arn, Handler=f"{function_name}.lambda_handler", Code={"ZipFile": deployment_package}, Publish=True, ) waiter = self.lambda_client.get_waiter("function_active_v2") waiter.wait(FunctionName=function_name) except ClientError as e: logger.error( f"Couldn't create Lambda function {function_name}. Here's why: {e}" ) raise return lambda_function def _create_lambda_role(self): print("Creating an execution role for the Lambda function...") role_name = f"AmazonBedrockExecutionRoleForLambda_{self.postfix}" try: role = self.iam_resource.create_role( RoleName=role_name, AssumeRolePolicyDocument=json.dumps( { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": {"Service": "lambda.amazonaws.com"}, "Action": "sts:AssumeRole", } ], } ), ) role.attach_policy( PolicyArn="arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole" ) print(f"Created role {role_name}") except ClientError as e: logger.error(f"Couldn't create role {role_name}. Here's why: {e}") raise print("Waiting for the execution role to be fully propagated...") wait(10) return role def _allow_agent_to_invoke_function(self): policy = self.iam_resource.RolePolicy( self.agent_role.role_name, ROLE_POLICY_NAME ) doc = policy.policy_document doc["Statement"].append( { "Effect": "Allow", "Action": "lambda:InvokeFunction", "Resource": self.lambda_function["FunctionArn"], } ) self.agent_role.Policy(ROLE_POLICY_NAME).put(PolicyDocument=json.dumps(doc)) def _let_function_accept_invocations_from_agent(self): try: self.lambda_client.add_permission( FunctionName=self.lambda_function["FunctionName"], SourceArn=self.agent["agentArn"], StatementId="BedrockAccess", Action="lambda:InvokeFunction", Principal="bedrock.amazonaws.com", ) except ClientError as e: logger.error( f"Couldn't grant Bedrock permission to invoke the Lambda function. Here's why: {e}" ) raise def _create_agent_action_group(self): print("Creating an action group for the agent...") try: with open("./scenario_resources/api_schema.yaml") as file: self.bedrock_wrapper.create_agent_action_group( name="current_date_and_time", description="Gets the current date and time.", agent_id=self.agent["agentId"], agent_version=self.prepared_agent_details["agentVersion"], function_arn=self.lambda_function["FunctionArn"], api_schema=json.dumps(yaml.safe_load(file)), ) except ClientError as e: logger.error(f"Couldn't create agent action group. Here's why: {e}") raise def _get_agent(self): return self.bedrock_wrapper.get_agent(self.agent["agentId"]) def _get_agent_action_groups(self): return self.bedrock_wrapper.list_agent_action_groups( self.agent["agentId"], self.prepared_agent_details["agentVersion"] ) def _get_agent_knowledge_bases(self): return self.bedrock_wrapper.list_agent_knowledge_bases( self.agent["agentId"], self.prepared_agent_details["agentVersion"] ) def _create_agent_alias(self): print("Creating an agent alias...") agent_alias_name = "test_agent_alias" agent_alias = self.bedrock_wrapper.create_agent_alias( agent_alias_name, self.agent["agentId"] ) self._wait_for_agent_status(self.agent["agentId"], "PREPARED") return agent_alias def _wait_for_agent_status(self, agent_id, status): while self.bedrock_wrapper.get_agent(agent_id)["agentStatus"] != status: wait(2) def _chat_with_agent(self, agent_alias): print("-" * 88) print("The agent is ready to chat.") print("Try asking for the date or time. Type 'exit' to quit.") # Create a unique session ID for the conversation session_id = uuid.uuid4().hex while True: prompt = q.ask("Prompt: ", q.non_empty) if prompt == "exit": break response = asyncio.run(self._invoke_agent(agent_alias, prompt, session_id)) print(f"Agent: {response}") async def _invoke_agent(self, agent_alias, prompt, session_id): response = self.bedrock_agent_runtime_client.invoke_agent( agentId=self.agent["agentId"], agentAliasId=agent_alias["agentAliasId"], sessionId=session_id, inputText=prompt, ) completion = "" for event in response.get("completion"): chunk = event["chunk"] completion += chunk["bytes"].decode() return completion def _delete_resources(self): if self.agent: agent_id = self.agent["agentId"] if self.agent_alias: agent_alias_id = self.agent_alias["agentAliasId"] print("Deleting agent alias...") self.bedrock_wrapper.delete_agent_alias(agent_id, agent_alias_id) print("Deleting agent...") agent_status = self.bedrock_wrapper.delete_agent(agent_id)["agentStatus"] while agent_status == "DELETING": wait(5) try: agent_status = self.bedrock_wrapper.get_agent( agent_id, log_error=False )["agentStatus"] except ClientError as err: if err.response["Error"]["Code"] == "ResourceNotFoundException": agent_status = "DELETED" if self.lambda_function: name = self.lambda_function["FunctionName"] print(f"Deleting function '{name}'...") self.lambda_client.delete_function(FunctionName=name) if self.agent_role: print(f"Deleting role '{self.agent_role.role_name}'...") self.agent_role.Policy(ROLE_POLICY_NAME).delete() self.agent_role.delete() if self.lambda_role: print(f"Deleting role '{self.lambda_role.role_name}'...") for policy in self.lambda_role.attached_policies.all(): policy.detach_role(RoleName=self.lambda_role.role_name) self.lambda_role.delete() def _list_resources(self): print("-" * 40) print(f"Here is the list of created resources in '{REGION}'.") print("Make sure you delete them once you're done to avoid unnecessary costs.") if self.agent: print(f"Bedrock Agent: {self.agent['agentName']}") if self.lambda_function: print(f"Lambda function: {self.lambda_function['FunctionName']}") if self.agent_role: print(f"IAM role: {self.agent_role.role_name}") if self.lambda_role: print(f"IAM role: {self.lambda_role.role_name}") @staticmethod def is_valid_agent_name(answer): valid_regex = r"^[a-zA-Z0-9_-]{1,100}$" return ( answer if answer and len(answer) <= 100 and re.match(valid_regex, answer) else None, "I need a name for the agent, please. Valid characters are a-z, A-Z, 0-9, _ (underscore) and - (hyphen).", ) @staticmethod def _create_deployment_package(function_name): buffer = io.BytesIO() with zipfile.ZipFile(buffer, "w") as zipped: zipped.write( "./scenario_resources/lambda_function.py", f"{function_name}.py" ) buffer.seek(0) return buffer.read() if __name__ == "__main__": logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") postfix = "".join( random.choice(string.ascii_lowercase + "0123456789") for _ in range(8) ) scenario = BedrockAgentScenarioWrapper( bedrock_agent_client=boto3.client( service_name="bedrock-agent", region_name=REGION ), runtime_client=boto3.client( service_name="bedrock-agent-runtime", region_name=REGION ), lambda_client=boto3.client(service_name="lambda", region_name=REGION), iam_resource=boto3.resource("iam"), postfix=postfix, ) try: scenario.run_scenario() except Exception as e: logging.exception(f"Something went wrong with the demo. Here's what: {e}")
-
API 자세한 내용은 AWS SDK Python(Boto3) API 참조의에서 다음 주제를 참조하세요.
-
개발자 안내서 및 코드 예제의 AWS SDK 전체 목록은 섹션을 참조하세요에서 Amazon Bedrock 사용 AWS SDK. 이 주제에는 시작하기에 대한 정보와 이전 SDK 버전에 대한 세부 정보도 포함되어 있습니다.
시나리오
Step Functions를 사용하여 생성형 AI 애플리케이션 오케스트레이션