AWS Doc SDK ExamplesWord
기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.
Amazon Bedrock에서 Stability.ai Stable Diffusion XL을 호출하여 이미지 생성
다음 코드 예제에서는 Amazon Bedrock에서 Stability.ai Stable Diffusion XL을 호출하여 이미지를 생성하는 방법을 보여줍니다.
- Java
-
- Java 2.x용 SDK
-
참고
더 많은 on GitHub가 있습니다. AWS 코드 예시 리포지토리
에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요. 안정적인 확산을 사용하여 이미지를 생성합니다.
// Create an image with Stable Diffusion. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; import java.math.BigInteger; import java.security.SecureRandom; import static com.example.bedrockruntime.libs.ImageTools.displayImage; public class InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Stable Diffusion XL v1. var modelId = "stability.stable-diffusion-xl-v1"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-diffusion-1-0-text-image.html var nativeRequestTemplate = """ { "text_prompts": [{ "text": "{{prompt}}" }], "style_preset": "{{style}}", "seed": {{seed}} }"""; // Define the prompt for the image generation. var prompt = "A stylized picture of a cute old steampunk robot"; // Get a random 32-bit seed for the image generation (max. 4,294,967,295). var seed = new BigInteger(31, new SecureRandom()); // Choose a style preset. var style = "cinematic"; // Embed the prompt, seed, and style in the model's native request payload. String nativeRequest = nativeRequestTemplate .replace("{{prompt}}", prompt) .replace("{{seed}}", seed.toString()) .replace("{{style}}", style); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated image data from the model's response. var base64ImageData = new JSONPointer("/artifacts/0/base64") .queryFrom(responseBody) .toString(); return base64ImageData; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { System.out.println("Generating image. This may take a few seconds..."); String base64ImageData = invokeModel(); displayImage(base64ImageData); } }
-
API 세부 정보는 InvokeModel AWS SDK for Java 2.x 참조의 API를 참조하세요.
-
- PHP
-
- PHP용 SDK
-
참고
더 많은 on GitHub가 있습니다. AWS 코드 예시 리포지토리
에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요. 안정적인 확산을 사용하여 이미지를 생성합니다.
public function invokeStableDiffusion(string $prompt, int $seed, string $style_preset) { // The different model providers have individual request and response formats. // For the format, ranges, and available style_presets of Stable Diffusion models refer to: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-stability-diffusion.html $base64_image_data = ""; try { $modelId = 'stability.stable-diffusion-xl-v1'; $body = [ 'text_prompts' => [ ['text' => $prompt] ], 'seed' => $seed, 'cfg_scale' => 10, 'steps' => 30 ]; if ($style_preset) { $body['style_preset'] = $style_preset; } $result = $this->bedrockRuntimeClient->invokeModel([ 'contentType' => 'application/json', 'body' => json_encode($body), 'modelId' => $modelId, ]); $response_body = json_decode($result['body']); $base64_image_data = $response_body->artifacts[0]->base64; } catch (Exception $e) { echo "Error: ({$e->getCode()}) - {$e->getMessage()}\n"; } return $base64_image_data; }
-
API 세부 정보는 InvokeModel AWS SDK for PHP 참조의 API를 참조하세요.
-
- Python
-
- Python용 SDK(Boto3)
-
참고
더 많은 on GitHub가 있습니다. AWS 코드 예시 리포지토리
에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요. 안정적인 확산을 사용하여 이미지를 생성합니다.
# Use the native inference API to create an image with Stability.ai Stable Diffusion import base64 import boto3 import json import os import random # Create a Bedrock Runtime client in the AWS Region of your choice. client = boto3.client("bedrock-runtime", region_name="us-east-1") # Set the model ID, e.g., Stable Diffusion XL 1. model_id = "stability.stable-diffusion-xl-v1" # Define the image generation prompt for the model. prompt = "A stylized picture of a cute old steampunk robot." # Generate a random seed. seed = random.randint(0, 4294967295) # Format the request payload using the model's native structure. native_request = { "text_prompts": [{"text": prompt}], "style_preset": "photographic", "seed": seed, "cfg_scale": 10, "steps": 30, } # Convert the native request to JSON. request = json.dumps(native_request) # Invoke the model with the request. response = client.invoke_model(modelId=model_id, body=request) # Decode the response body. model_response = json.loads(response["body"].read()) # Extract the image data. base64_image_data = model_response["artifacts"][0]["base64"] # Save the generated image to a local folder. i, output_dir = 1, "output" if not os.path.exists(output_dir): os.makedirs(output_dir) while os.path.exists(os.path.join(output_dir, f"stability_{i}.png")): i += 1 image_data = base64.b64decode(base64_image_data) image_path = os.path.join(output_dir, f"stability_{i}.png") with open(image_path, "wb") as file: file.write(image_data) print(f"The generated image has been saved to {image_path}")
-
API 세부 정보는 Word for Python(Boto3) InvokeModel 참조의 Word를 참조하세요. AWS SDK API
-
- SAP ABAP
-
- SDK for SAP ABAP
-
참고
더 많은 on GitHub가 있습니다. AWS 코드 예시 리포지토리
에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요. 안정적인 확산을 사용하여 이미지를 생성합니다.
"Stable Diffusion Input Parameters should be in a format like this: * { * "text_prompts": [ * {"text":"Draw a dolphin with a mustache"}, * {"text":"Make it photorealistic"} * ], * "cfg_scale":10, * "seed":0, * "steps":50 * } TYPES: BEGIN OF prompt_ts, text TYPE /aws1/rt_shape_string, END OF prompt_ts. DATA: BEGIN OF ls_input, text_prompts TYPE STANDARD TABLE OF prompt_ts, cfg_scale TYPE /aws1/rt_shape_integer, seed TYPE /aws1/rt_shape_integer, steps TYPE /aws1/rt_shape_integer, END OF ls_input. APPEND VALUE prompt_ts( text = iv_prompt ) TO ls_input-text_prompts. ls_input-cfg_scale = 10. ls_input-seed = 0. "or better, choose a random integer. ls_input-steps = 50. DATA(lv_json) = /ui2/cl_json=>serialize( data = ls_input pretty_name = /ui2/cl_json=>pretty_mode-low_case ). TRY. DATA(lo_response) = lo_bdr->invokemodel( iv_body = /aws1/cl_rt_util=>string_to_xstring( lv_json ) iv_modelid = 'stability.stable-diffusion-xl-v1' iv_accept = 'application/json' iv_contenttype = 'application/json' ). "Stable Diffusion Result Format: * { * "result": "success", * "artifacts": [ * { * "seed": 0, * "base64": "iVBORw0KGgoAAAANSUhEUgAAAgAAA.... * "finishReason": "SUCCESS" * } * ] * } TYPES: BEGIN OF artifact_ts, seed TYPE /aws1/rt_shape_integer, base64 TYPE /aws1/rt_shape_string, finishreason TYPE /aws1/rt_shape_string, END OF artifact_ts. DATA: BEGIN OF ls_response, result TYPE /aws1/rt_shape_string, artifacts TYPE STANDARD TABLE OF artifact_ts, END OF ls_response. /ui2/cl_json=>deserialize( EXPORTING jsonx = lo_response->get_body( ) pretty_name = /ui2/cl_json=>pretty_mode-camel_case CHANGING data = ls_response ). IF ls_response-artifacts IS NOT INITIAL. DATA(lv_image) = cl_http_utility=>if_http_utility~decode_x_base64( ls_response-artifacts[ 1 ]-base64 ). ENDIF. CATCH /aws1/cx_bdraccessdeniedex INTO DATA(lo_ex). WRITE / lo_ex->get_text( ). WRITE / |Don't forget to enable model access at https://console.aws.amazon.com/bedrock/home?#/modelaccess|. ENDTRY.
Stability.ai Stable Diffusion XL 파운데이션 모델을 호출하여 L2 상위 수준 클라이언트를 사용하여 이미지를 생성합니다.
TRY. DATA(lo_bdr_l2_sd) = /aws1/cl_bdr_l2_factory=>create_stable_diffusion_xl_1( lo_bdr ). " iv_prompt contains a prompt like 'Show me a picture of a unicorn reading an enterprise financial report'. DATA(lv_image) = lo_bdr_l2_sd->text_to_image( iv_prompt ). CATCH /aws1/cx_bdraccessdeniedex INTO DATA(lo_ex). WRITE / lo_ex->get_text( ). WRITE / |Don't forget to enable model access at https://console.aws.amazon.com/bedrock/home?#/modelaccess|. ENDTRY.
-
API 세부 정보는 Word for InvokeModel Word Word 참조의 Word를 참조하세요. AWS SDK SAP ABAP API
-