Amazon Data Firehose를 사용하여 개별 레코드 및 배치 레코드 처리 - AWS SDK 코드 예제

AWS Doc SDK ExamplesWord AWS SDK 리포지토리에는 더 많은 GitHub 예제가 있습니다.

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

Amazon Data Firehose를 사용하여 개별 레코드 및 배치 레코드 처리

다음 코드 예제는 Firehose를 사용하여 개별 레코드 및 배치 레코드를 처리하는 방법을 보여줍니다.

Python
Python용 SDK(Boto3)
참고

더 많은 on GitHub가 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

이 스크립트는 개별 레코드 및 배치 레코드를 Firehose에 넣습니다.

import json import logging import random from datetime import datetime, timedelta import backoff import boto3 from config import get_config def load_sample_data(path: str) -> dict: """ Load sample data from a JSON file. Args: path (str): The file path to the JSON file containing sample data. Returns: dict: The loaded sample data as a dictionary. """ with open(path, "r") as f: return json.load(f) # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class FirehoseClient: """ AWS Firehose client to send records and monitor metrics. Attributes: config (object): Configuration object with delivery stream name and region. delivery_stream_name (str): Name of the Firehose delivery stream. region (str): AWS region for Firehose and CloudWatch clients. firehose (boto3.client): Boto3 Firehose client. cloudwatch (boto3.client): Boto3 CloudWatch client. """ def __init__(self, config): """ Initialize the FirehoseClient. Args: config (object): Configuration object with delivery stream name and region. """ self.config = config self.delivery_stream_name = config.delivery_stream_name self.region = config.region self.firehose = boto3.client("firehose", region_name=self.region) self.cloudwatch = boto3.client("cloudwatch", region_name=self.region) @backoff.on_exception( backoff.expo, Exception, max_tries=5, jitter=backoff.full_jitter ) def put_record(self, record: dict): """ Put individual records to Firehose with backoff and retry. Args: record (dict): The data record to be sent to Firehose. This method attempts to send an individual record to the Firehose delivery stream. It retries with exponential backoff in case of exceptions. """ try: entry = self._create_record_entry(record) response = self.firehose.put_record( DeliveryStreamName=self.delivery_stream_name, Record=entry ) self._log_response(response, entry) except Exception: logger.info(f"Fail record: {record}.") raise @backoff.on_exception( backoff.expo, Exception, max_tries=5, jitter=backoff.full_jitter ) def put_record_batch(self, data: list, batch_size: int = 500): """ Put records in batches to Firehose with backoff and retry. Args: data (list): List of data records to be sent to Firehose. batch_size (int): Number of records to send in each batch. Default is 500. This method attempts to send records in batches to the Firehose delivery stream. It retries with exponential backoff in case of exceptions. """ for i in range(0, len(data), batch_size): batch = data[i : i + batch_size] record_dicts = [{"Data": json.dumps(record)} for record in batch] try: response = self.firehose.put_record_batch( DeliveryStreamName=self.delivery_stream_name, Records=record_dicts ) self._log_batch_response(response, len(batch)) except Exception as e: logger.info(f"Failed to send batch of {len(batch)} records. Error: {e}") def get_metric_statistics( self, metric_name: str, start_time: datetime, end_time: datetime, period: int, statistics: list = ["Sum"], ) -> list: """ Retrieve metric statistics from CloudWatch. Args: metric_name (str): The name of the metric. start_time (datetime): The start time for the metric statistics. end_time (datetime): The end time for the metric statistics. period (int): The granularity, in seconds, of the returned data points. statistics (list): A list of statistics to retrieve. Default is ['Sum']. Returns: list: List of datapoints containing the metric statistics. """ response = self.cloudwatch.get_metric_statistics( Namespace="AWS/Firehose", MetricName=metric_name, Dimensions=[ {"Name": "DeliveryStreamName", "Value": self.delivery_stream_name}, ], StartTime=start_time, EndTime=end_time, Period=period, Statistics=statistics, ) return response["Datapoints"] def monitor_metrics(self): """ Monitor Firehose metrics for the last 5 minutes. This method retrieves and logs the 'IncomingBytes', 'IncomingRecords', and 'FailedPutCount' metrics from CloudWatch for the last 5 minutes. """ end_time = datetime.utcnow() start_time = end_time - timedelta(minutes=10) period = int((end_time - start_time).total_seconds()) metrics = { "IncomingBytes": self.get_metric_statistics( "IncomingBytes", start_time, end_time, period ), "IncomingRecords": self.get_metric_statistics( "IncomingRecords", start_time, end_time, period ), "FailedPutCount": self.get_metric_statistics( "FailedPutCount", start_time, end_time, period ), } for metric, datapoints in metrics.items(): if datapoints: total_sum = sum(datapoint["Sum"] for datapoint in datapoints) if metric == "IncomingBytes": logger.info( f"{metric}: {round(total_sum)} ({total_sum / (1024 * 1024):.2f} MB)" ) else: logger.info(f"{metric}: {round(total_sum)}") else: logger.info(f"No data found for {metric} over the last 5 minutes") def _create_record_entry(self, record: dict) -> dict: """ Create a record entry for Firehose. Args: record (dict): The data record to be sent. Returns: dict: The record entry formatted for Firehose. Raises: Exception: If a simulated network error occurs. """ if random.random() < 0.2: raise Exception("Simulated network error") elif random.random() < 0.1: return {"Data": '{"malformed": "data"'} else: return {"Data": json.dumps(record)} def _log_response(self, response: dict, entry: dict): """ Log the response from Firehose. Args: response (dict): The response from the Firehose put_record API call. entry (dict): The record entry that was sent. """ if response["ResponseMetadata"]["HTTPStatusCode"] == 200: logger.info(f"Sent record: {entry}") else: logger.info(f"Fail record: {entry}") def _log_batch_response(self, response: dict, batch_size: int): """ Log the batch response from Firehose. Args: response (dict): The response from the Firehose put_record_batch API call. batch_size (int): The number of records in the batch. """ if response.get("FailedPutCount", 0) > 0: logger.info( f'Failed to send {response["FailedPutCount"]} records in batch of {batch_size}' ) else: logger.info(f"Successfully sent batch of {batch_size} records") if __name__ == "__main__": config = get_config() data = load_sample_data(config.sample_data_file) client = FirehoseClient(config) # Process the first 100 sample network records for record in data[:100]: try: client.put_record(record) except Exception as e: logger.info(f"Put record failed after retries and backoff: {e}") client.monitor_metrics() # Process remaining records using the batch method try: client.put_record_batch(data[100:]) except Exception as e: logger.info(f"Put record batch failed after retries and backoff: {e}") client.monitor_metrics()

이 파일에는 위 스크립트에 대한 구성이 포함되어 있습니다.

class Config: def __init__(self): self.delivery_stream_name = "ENTER YOUR DELIVERY STREAM NAME HERE" self.region = "us-east-1" self.sample_data_file = ( "../../../../../workflows/firehose/resources/sample_records.json" ) def get_config(): return Config()
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조의 다음 주제를 참조하세요.