an AWS SDKStartPipelineExecution와 함께 사용 - AWS SDK 코드 예제

AWS Doc SDK ExamplesWord AWS SDK 리포지토리에는 더 많은 GitHub 예제가 있습니다.

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

an AWS SDKStartPipelineExecution와 함께 사용

다음 코드 예제는 StartPipelineExecution의 사용 방법을 보여 줍니다.

작업 예제는 대규모 프로그램에서 발췌한 코드이며 컨텍스트에 맞춰 실행해야 합니다. 다음 코드 예제에서는 컨텍스트 내에서 이 작업을 확인할 수 있습니다.

.NET
AWS SDK for .NET
참고

더 많은 on GitHub가 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

/// <summary> /// Run a pipeline with input and output file locations. /// </summary> /// <param name="queueUrl">The URL for the queue to use for pipeline callbacks.</param> /// <param name="inputLocationUrl">The input location in Amazon Simple Storage Service (Amazon S3).</param> /// <param name="outputLocationUrl">The output location in Amazon S3.</param> /// <param name="pipelineName">The name of the pipeline.</param> /// <param name="executionRoleArn">The ARN of the role.</param> /// <returns>The ARN of the pipeline run.</returns> public async Task<string> ExecutePipeline( string queueUrl, string inputLocationUrl, string outputLocationUrl, string pipelineName, string executionRoleArn) { var inputConfig = new VectorEnrichmentJobInputConfig() { DataSourceConfig = new() { S3Data = new VectorEnrichmentJobS3Data() { S3Uri = inputLocationUrl } }, DocumentType = VectorEnrichmentJobDocumentType.CSV }; var exportConfig = new ExportVectorEnrichmentJobOutputConfig() { S3Data = new VectorEnrichmentJobS3Data() { S3Uri = outputLocationUrl } }; var jobConfig = new VectorEnrichmentJobConfig() { ReverseGeocodingConfig = new ReverseGeocodingConfig() { XAttributeName = "Longitude", YAttributeName = "Latitude" } }; #pragma warning disable SageMaker1002 // Property value does not match required pattern is allowed here to match the pipeline definition. var startExecutionResponse = await _amazonSageMaker.StartPipelineExecutionAsync( new StartPipelineExecutionRequest() { PipelineName = pipelineName, PipelineExecutionDisplayName = pipelineName + "-example-execution", PipelineParameters = new List<Parameter>() { new Parameter() { Name = "parameter_execution_role", Value = executionRoleArn }, new Parameter() { Name = "parameter_queue_url", Value = queueUrl }, new Parameter() { Name = "parameter_vej_input_config", Value = JsonSerializer.Serialize(inputConfig) }, new Parameter() { Name = "parameter_vej_export_config", Value = JsonSerializer.Serialize(exportConfig) }, new Parameter() { Name = "parameter_step_1_vej_config", Value = JsonSerializer.Serialize(jobConfig) } } }); #pragma warning restore SageMaker1002 return startExecutionResponse.PipelineExecutionArn; }
Java
Java 2.x용 SDK
참고

더 많은 on GitHub가 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

// Start a pipeline run with job configurations. public static String executePipeline(SageMakerClient sageMakerClient, String bucketName, String queueUrl, String roleArn, String pipelineName) { System.out.println("Starting pipeline execution."); String inputBucketLocation = "s3://" + bucketName + "/samplefiles/latlongtest.csv"; String output = "s3://" + bucketName + "/outputfiles/"; Gson gson = new GsonBuilder() .setFieldNamingPolicy(FieldNamingPolicy.UPPER_CAMEL_CASE) .setPrettyPrinting().create(); // Set up all parameters required to start the pipeline. List<Parameter> parameters = new ArrayList<>(); Parameter para1 = Parameter.builder() .name("parameter_execution_role") .value(roleArn) .build(); Parameter para2 = Parameter.builder() .name("parameter_queue_url") .value(queueUrl) .build(); String inputJSON = "{\n" + " \"DataSourceConfig\": {\n" + " \"S3Data\": {\n" + " \"S3Uri\": \"s3://" + bucketName + "/samplefiles/latlongtest.csv\"\n" + " },\n" + " \"Type\": \"S3_DATA\"\n" + " },\n" + " \"DocumentType\": \"CSV\"\n" + "}"; System.out.println(inputJSON); Parameter para3 = Parameter.builder() .name("parameter_vej_input_config") .value(inputJSON) .build(); // Create an ExportVectorEnrichmentJobOutputConfig object. VectorEnrichmentJobS3Data jobS3Data = VectorEnrichmentJobS3Data.builder() .s3Uri(output) .build(); ExportVectorEnrichmentJobOutputConfig outputConfig = ExportVectorEnrichmentJobOutputConfig.builder() .s3Data(jobS3Data) .build(); String gson4 = gson.toJson(outputConfig); Parameter para4 = Parameter.builder() .name("parameter_vej_export_config") .value(gson4) .build(); System.out.println("parameter_vej_export_config:" + gson.toJson(outputConfig)); // Create a VectorEnrichmentJobConfig object. ReverseGeocodingConfig reverseGeocodingConfig = ReverseGeocodingConfig.builder() .xAttributeName("Longitude") .yAttributeName("Latitude") .build(); VectorEnrichmentJobConfig jobConfig = VectorEnrichmentJobConfig.builder() .reverseGeocodingConfig(reverseGeocodingConfig) .build(); String para5JSON = "{\"MapMatchingConfig\":null,\"ReverseGeocodingConfig\":{\"XAttributeName\":\"Longitude\",\"YAttributeName\":\"Latitude\"}}"; Parameter para5 = Parameter.builder() .name("parameter_step_1_vej_config") .value(para5JSON) .build(); System.out.println("parameter_step_1_vej_config:" + gson.toJson(jobConfig)); parameters.add(para1); parameters.add(para2); parameters.add(para3); parameters.add(para4); parameters.add(para5); StartPipelineExecutionRequest pipelineExecutionRequest = StartPipelineExecutionRequest.builder() .pipelineExecutionDescription("Created using Java SDK") .pipelineExecutionDisplayName(pipelineName + "-example-execution") .pipelineParameters(parameters) .pipelineName(pipelineName) .build(); StartPipelineExecutionResponse response = sageMakerClient.startPipelineExecution(pipelineExecutionRequest); return response.pipelineExecutionArn(); }
JavaScript
SDK for JavaScript (v3)
참고

더 많은 on GitHub가 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

a SageMaker 파이프라인 실행을 시작합니다.

/** * Start the execution of the Amazon SageMaker pipeline. Parameters that are * passed in are used in the AWS Lambda function. * @param {{ * name: string, * sagemakerClient: import('@aws-sdk/client-sagemaker').SageMakerClient, * roleArn: string, * queueUrl: string, * s3InputBucketName: string, * }} props */ export async function startPipelineExecution({ sagemakerClient, name, bucketName, roleArn, queueUrl, }) { /** * The Vector Enrichment Job requests CSV data. This configuration points to a CSV * file in an Amazon S3 bucket. * @type {import("@aws-sdk/client-sagemaker-geospatial").VectorEnrichmentJobInputConfig} */ const inputConfig = { DataSourceConfig: { S3Data: { S3Uri: `s3://${bucketName}/input/sample_data.csv`, }, }, DocumentType: VectorEnrichmentJobDocumentType.CSV, }; /** * The Vector Enrichment Job adds additional data to the source CSV. This configuration points * to an Amazon S3 prefix where the output will be stored. * @type {import("@aws-sdk/client-sagemaker-geospatial").ExportVectorEnrichmentJobOutputConfig} */ const outputConfig = { S3Data: { S3Uri: `s3://${bucketName}/output/`, }, }; /** * This job will be a Reverse Geocoding Vector Enrichment Job. Reverse Geocoding requires * latitude and longitude values. * @type {import("@aws-sdk/client-sagemaker-geospatial").VectorEnrichmentJobConfig} */ const jobConfig = { ReverseGeocodingConfig: { XAttributeName: "Longitude", YAttributeName: "Latitude", }, }; const { PipelineExecutionArn } = await sagemakerClient.send( new StartPipelineExecutionCommand({ PipelineName: name, PipelineExecutionDisplayName: `${name}-example-execution`, PipelineParameters: [ { Name: "parameter_execution_role", Value: roleArn }, { Name: "parameter_queue_url", Value: queueUrl }, { Name: "parameter_vej_input_config", Value: JSON.stringify(inputConfig), }, { Name: "parameter_vej_export_config", Value: JSON.stringify(outputConfig), }, { Name: "parameter_step_1_vej_config", Value: JSON.stringify(jobConfig), }, ], }), ); return { arn: PipelineExecutionArn, }; }
Kotlin
Kotlin용 SDK
참고

더 많은 on GitHub가 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

// Start a pipeline run with job configurations. suspend fun executePipeline(bucketName: String, queueUrl: String?, roleArn: String?, pipelineNameVal: String): String? { println("Starting pipeline execution.") val inputBucketLocation = "s3://$bucketName/samplefiles/latlongtest.csv" val output = "s3://$bucketName/outputfiles/" val gson = GsonBuilder() .setFieldNamingPolicy(FieldNamingPolicy.UPPER_CAMEL_CASE) .setPrettyPrinting() .create() // Set up all parameters required to start the pipeline. val parameters: MutableList<Parameter> = java.util.ArrayList<Parameter>() val para1 = Parameter { name = "parameter_execution_role" value = roleArn } val para2 = Parameter { name = "parameter_queue_url" value = queueUrl } val inputJSON = """{ "DataSourceConfig": { "S3Data": { "S3Uri": "s3://$bucketName/samplefiles/latlongtest.csv" }, "Type": "S3_DATA" }, "DocumentType": "CSV" }""" println(inputJSON) val para3 = Parameter { name = "parameter_vej_input_config" value = inputJSON } // Create an ExportVectorEnrichmentJobOutputConfig object. val jobS3Data = VectorEnrichmentJobS3Data { s3Uri = output } val outputConfig = ExportVectorEnrichmentJobOutputConfig { s3Data = jobS3Data } val gson4: String = gson.toJson(outputConfig) val para4: Parameter = Parameter { name = "parameter_vej_export_config" value = gson4 } println("parameter_vej_export_config:" + gson.toJson(outputConfig)) val para5JSON = "{\"MapMatchingConfig\":null,\"ReverseGeocodingConfig\":{\"XAttributeName\":\"Longitude\",\"YAttributeName\":\"Latitude\"}}" val para5: Parameter = Parameter { name = "parameter_step_1_vej_config" value = para5JSON } parameters.add(para1) parameters.add(para2) parameters.add(para3) parameters.add(para4) parameters.add(para5) val pipelineExecutionRequest = StartPipelineExecutionRequest { pipelineExecutionDescription = "Created using Kotlin SDK" pipelineExecutionDisplayName = "$pipelineName-example-execution" pipelineParameters = parameters pipelineName = pipelineNameVal } SageMakerClient { region = "us-west-2" }.use { sageMakerClient -> val response = sageMakerClient.startPipelineExecution(pipelineExecutionRequest) return response.pipelineExecutionArn } }