이미지에서 얼굴 감지 - Amazon Rekognition

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

이미지에서 얼굴 감지

Amazon Rekognition Image는 입력 이미지에서 눈, 코, 입 등 주요 얼굴 특성을 찾는 DetectFaces 작업을 제공합니다. Amazon Rekognition Image는 이미지에서 가장 큰 얼굴 100개를 감지합니다.

입력 이미지를 이미지 바이트 배열(base64 인코딩 이미지 바이트)로 제공하거나 Amazon S3 객체를 지정할 수 있습니다. 이 절차에서는 S3 버킷에 이미지(JPEG 또는 PNG)를 업로드하고 객체 키 이름을 지정합니다.

이미지에서 얼굴 감지
  1. 아직 설정하지 않았다면 다음과 같이 하세요.

    1. AmazonRekognitionFullAccess 권한과 AmazonS3ReadOnlyAccess 권한을 가진 사용자를 생성하거나 업데이트합니다. 자세한 내용은 1단계: AWS 계정 설정 및 사용자 생성 단원을 참조하십시오.

    2. AWS CLI 및 AWS SDKs를 설치하고 구성합니다. 자세한 내용은 2단계: AWS CLI 및 AWS SDKs 설정 단원을 참조하십시오.

  2. 한 개 이상의 얼굴이 포함된 이미지를 S3 버킷에 업로드합니다.

    이에 관한 지침은 Amazon Simple Storage Service 사용 설명서에서 Amazon S3에 객체 업로드를 참조하세요.

  3. 다음 예제를 사용하여 DetectFaces를 호출합니다.

    Java

    이 예제에서는 감지된 얼굴의 추정 연령 범위를 표시하고 감지된 모든 얼굴 속성의 JSON을 나열합니다. photo의 값을 이미지 파일 이름으로 변경합니다. amzn-s3-demo-bucket의 값을 이미지가 저장된 Amazon S3 버킷으로 변경합니다.

    //Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) package aws.example.rekognition.image; import com.amazonaws.services.rekognition.AmazonRekognition; import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder; import com.amazonaws.services.rekognition.model.AmazonRekognitionException; import com.amazonaws.services.rekognition.model.Image; import com.amazonaws.services.rekognition.model.S3Object; import com.amazonaws.services.rekognition.model.AgeRange; import com.amazonaws.services.rekognition.model.Attribute; import com.amazonaws.services.rekognition.model.DetectFacesRequest; import com.amazonaws.services.rekognition.model.DetectFacesResult; import com.amazonaws.services.rekognition.model.FaceDetail; import com.fasterxml.jackson.databind.ObjectMapper; import java.util.List; public class DetectFaces { public static void main(String[] args) throws Exception { String photo = "input.jpg"; String bucket = "bucket"; AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder.defaultClient(); DetectFacesRequest request = new DetectFacesRequest() .withImage(new Image() .withS3Object(new S3Object() .withName(photo) .withBucket(bucket))) .withAttributes(Attribute.ALL); // Replace Attribute.ALL with Attribute.DEFAULT to get default values. try { DetectFacesResult result = rekognitionClient.detectFaces(request); List < FaceDetail > faceDetails = result.getFaceDetails(); for (FaceDetail face: faceDetails) { if (request.getAttributes().contains("ALL")) { AgeRange ageRange = face.getAgeRange(); System.out.println("The detected face is estimated to be between " + ageRange.getLow().toString() + " and " + ageRange.getHigh().toString() + " years old."); System.out.println("Here's the complete set of attributes:"); } else { // non-default attributes have null values. System.out.println("Here's the default set of attributes:"); } ObjectMapper objectMapper = new ObjectMapper(); System.out.println(objectMapper.writerWithDefaultPrettyPrinter().writeValueAsString(face)); } } catch (AmazonRekognitionException e) { e.printStackTrace(); } } }
    Java V2

    이 코드는 AWS 설명서 SDK 예제 GitHub 리포지토리에서 가져옵니다. 전체 예제는 여기에서 확인하세요.

    import java.util.List; //snippet-start:[rekognition.java2.detect_labels.import] import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.DetectFacesRequest; import software.amazon.awssdk.services.rekognition.model.DetectFacesResponse; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.Attribute; import software.amazon.awssdk.services.rekognition.model.FaceDetail; import software.amazon.awssdk.services.rekognition.model.AgeRange; //snippet-end:[rekognition.java2.detect_labels.import] public class DetectFaces { public static void main(String[] args) { final String usage = "\n" + "Usage: " + " <bucket> <image>\n\n" + "Where:\n" + " bucket - The name of the Amazon S3 bucket that contains the image (for example, ,amzn-s3-demo-bucket)." + " image - The name of the image located in the Amazon S3 bucket (for example, Lake.png). \n\n"; if (args.length != 2) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String image = args[1]; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .credentialsProvider(ProfileCredentialsProvider.create("profile-name")) .build(); getLabelsfromImage(rekClient, bucket, image); rekClient.close(); } // snippet-start:[rekognition.java2.detect_labels_s3.main] public static void getLabelsfromImage(RekognitionClient rekClient, String bucket, String image) { try { S3Object s3Object = S3Object.builder() .bucket(bucket) .name(image) .build() ; Image myImage = Image.builder() .s3Object(s3Object) .build(); DetectFacesRequest facesRequest = DetectFacesRequest.builder() .attributes(Attribute.ALL) .image(myImage) .build(); DetectFacesResponse facesResponse = rekClient.detectFaces(facesRequest); List<FaceDetail> faceDetails = facesResponse.faceDetails(); for (FaceDetail face : faceDetails) { AgeRange ageRange = face.ageRange(); System.out.println("The detected face is estimated to be between " + ageRange.low().toString() + " and " + ageRange.high().toString() + " years old."); System.out.println("There is a smile : "+face.smile().value().toString()); } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } // snippet-end:[rekognition.java2.detect_labels.main] }
    AWS CLI

    이 예제에서는 detect-faces AWS CLI 작업의 JSON 출력을 표시합니다. file을 이미지 파일의 이름으로 바꿉니다. amzn-s3-demo-bucket을 이미지 파일이 들어 있는 Amazon S3 버킷의 이름으로 바꿉니다.

    aws rekognition detect-faces --image "{"S3Object":{"Bucket":"amzn-s3-demo-bucket,"Name":"image-name"}}"\ --attributes "ALL" --profile profile-name --region region-name

    Windows 디바이스에서 CLI에 액세스하는 경우 작은따옴표 대신 큰따옴표를 사용하고 내부 큰따옴표는 백슬래시(즉 \)로 이스케이프 처리하여 발생할 수 있는 구문 분석 오류를 해결합니다. 예를 들어 다음을 참조하세요.

    aws rekognition detect-faces --image "{\"S3Object\":{\"Bucket\":\"amzn-s3-demo-bucket\",\"Name\":\"image-name\"}}" --attributes "ALL" --profile profile-name --region region-name
    Python

    이 예제에서는 감지된 얼굴의 추정 연령 범위 및 기타 속성을 표시하고 감지된 모든 얼굴 속성의 JSON을 나열합니다. photo의 값을 이미지 파일 이름으로 변경합니다. amzn-s3-demo-bucket의 값을 이미지가 저장된 Amazon S3 버킷으로 변경합니다. Rekognition 세션을 생성하는 라인에서 profile_name의 값을 개발자 프로필의 이름으로 대체합니다.

    import boto3 import json def detect_faces(photo, bucket, region): session = boto3.Session(profile_name='profile-name', region_name=region) client = session.client('rekognition', region_name=region) response = client.detect_faces(Image={'S3Object':{'Bucket':bucket,'Name':photo}}, Attributes=['ALL']) print('Detected faces for ' + photo) for faceDetail in response['FaceDetails']: print('The detected face is between ' + str(faceDetail['AgeRange']['Low']) + ' and ' + str(faceDetail['AgeRange']['High']) + ' years old') print('Here are the other attributes:') print(json.dumps(faceDetail, indent=4, sort_keys=True)) # Access predictions for individual face details and print them print("Gender: " + str(faceDetail['Gender'])) print("Smile: " + str(faceDetail['Smile'])) print("Eyeglasses: " + str(faceDetail['Eyeglasses'])) print("Face Occluded: " + str(faceDetail['FaceOccluded'])) print("Emotions: " + str(faceDetail['Emotions'][0])) return len(response['FaceDetails']) def main(): photo='photo' bucket='amzn-s3-demo-bucket' region='region' face_count=detect_faces(photo, bucket, region) print("Faces detected: " + str(face_count)) if __name__ == "__main__": main()
    .NET

    이 예제에서는 감지된 얼굴의 추정 연령 범위를 표시하고 감지된 모든 얼굴 속성의 JSON을 나열합니다. photo의 값을 이미지 파일 이름으로 변경합니다. amzn-s3-demo-bucket의 값을 이미지가 저장된 Amazon S3 버킷으로 변경합니다.

    //Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) using System; using System.Collections.Generic; using Amazon.Rekognition; using Amazon.Rekognition.Model; public class DetectFaces { public static void Example() { String photo = "input.jpg"; String bucket = "amzn-s3-demo-bucket"; AmazonRekognitionClient rekognitionClient = new AmazonRekognitionClient(); DetectFacesRequest detectFacesRequest = new DetectFacesRequest() { Image = new Image() { S3Object = new S3Object() { Name = photo, Bucket = bucket }, }, // Attributes can be "ALL" or "DEFAULT". // "DEFAULT": BoundingBox, Confidence, Landmarks, Pose, and Quality. // "ALL": See https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Rekognition/TFaceDetail.html Attributes = new List<String>() { "ALL" } }; try { DetectFacesResponse detectFacesResponse = rekognitionClient.DetectFaces(detectFacesRequest); bool hasAll = detectFacesRequest.Attributes.Contains("ALL"); foreach(FaceDetail face in detectFacesResponse.FaceDetails) { Console.WriteLine("BoundingBox: top={0} left={1} width={2} height={3}", face.BoundingBox.Left, face.BoundingBox.Top, face.BoundingBox.Width, face.BoundingBox.Height); Console.WriteLine("Confidence: {0}\nLandmarks: {1}\nPose: pitch={2} roll={3} yaw={4}\nQuality: {5}", face.Confidence, face.Landmarks.Count, face.Pose.Pitch, face.Pose.Roll, face.Pose.Yaw, face.Quality); if (hasAll) Console.WriteLine("The detected face is estimated to be between " + face.AgeRange.Low + " and " + face.AgeRange.High + " years old."); } } catch (Exception e) { Console.WriteLine(e.Message); } } }
    Ruby

    이 예제에서는 감지된 얼굴의 추정 연령 범위를 표시하고, 감지된 모든 얼굴 속성을 나열합니다. photo의 값을 이미지 파일 이름으로 변경합니다. amzn-s3-demo-bucket의 값을 이미지가 저장된 Amazon S3 버킷으로 변경합니다.

    # Add to your Gemfile # gem 'aws-sdk-rekognition' require 'aws-sdk-rekognition' credentials = Aws::Credentials.new( ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY'] ) bucket = 'bucket' # the bucketname without s3:// photo = 'input.jpg'# the name of file client = Aws::Rekognition::Client.new credentials: credentials attrs = { image: { s3_object: { bucket: bucket, name: photo }, }, attributes: ['ALL'] } response = client.detect_faces attrs puts "Detected faces for: #{photo}" response.face_details.each do |face_detail| low = face_detail.age_range.low high = face_detail.age_range.high puts "The detected face is between: #{low} and #{high} years old" puts "All other attributes:" puts " bounding_box.width: #{face_detail.bounding_box.width}" puts " bounding_box.height: #{face_detail.bounding_box.height}" puts " bounding_box.left: #{face_detail.bounding_box.left}" puts " bounding_box.top: #{face_detail.bounding_box.top}" puts " age.range.low: #{face_detail.age_range.low}" puts " age.range.high: #{face_detail.age_range.high}" puts " smile.value: #{face_detail.smile.value}" puts " smile.confidence: #{face_detail.smile.confidence}" puts " eyeglasses.value: #{face_detail.eyeglasses.value}" puts " eyeglasses.confidence: #{face_detail.eyeglasses.confidence}" puts " sunglasses.value: #{face_detail.sunglasses.value}" puts " sunglasses.confidence: #{face_detail.sunglasses.confidence}" puts " gender.value: #{face_detail.gender.value}" puts " gender.confidence: #{face_detail.gender.confidence}" puts " beard.value: #{face_detail.beard.value}" puts " beard.confidence: #{face_detail.beard.confidence}" puts " mustache.value: #{face_detail.mustache.value}" puts " mustache.confidence: #{face_detail.mustache.confidence}" puts " eyes_open.value: #{face_detail.eyes_open.value}" puts " eyes_open.confidence: #{face_detail.eyes_open.confidence}" puts " mout_open.value: #{face_detail.mouth_open.value}" puts " mout_open.confidence: #{face_detail.mouth_open.confidence}" puts " emotions[0].type: #{face_detail.emotions[0].type}" puts " emotions[0].confidence: #{face_detail.emotions[0].confidence}" puts " landmarks[0].type: #{face_detail.landmarks[0].type}" puts " landmarks[0].x: #{face_detail.landmarks[0].x}" puts " landmarks[0].y: #{face_detail.landmarks[0].y}" puts " pose.roll: #{face_detail.pose.roll}" puts " pose.yaw: #{face_detail.pose.yaw}" puts " pose.pitch: #{face_detail.pose.pitch}" puts " quality.brightness: #{face_detail.quality.brightness}" puts " quality.sharpness: #{face_detail.quality.sharpness}" puts " confidence: #{face_detail.confidence}" puts "------------" puts "" end
    Node.js

    이 예제에서는 감지된 얼굴의 추정 연령 범위를 표시하고, 감지된 모든 얼굴 속성을 나열합니다. photo의 값을 이미지 파일 이름으로 변경합니다. amzn-s3-demo-bucket의 값을 이미지가 저장된 Amazon S3 버킷으로 변경합니다.

    Rekognition 세션을 생성하는 라인에서 profile_name의 값을 개발자 프로필의 이름으로 대체합니다.

    TypeScript 정의를 사용하는 경우 Node.js로 프로그램을 실행하려면 const AWS = require('aws-sdk') 대신 import AWS from 'aws-sdk'를 사용해야 할 수도 있습니다. 자세한 내용은 AWS SDK for Javascript를 참조하세요. 구성 설정에 따라 AWS.config.update({region:region});으로 리전을 지정해야 할 수도 있습니다.

    // Load the SDK var AWS = require('aws-sdk'); const bucket = 'bucket-name' // the bucketname without s3:// const photo = 'photo-name' // the name of file var credentials = new AWS.SharedIniFileCredentials({profile: 'profile-name'}); AWS.config.credentials = credentials; AWS.config.update({region:'region-name'}); const client = new AWS.Rekognition(); const params = { Image: { S3Object: { Bucket: bucket, Name: photo }, }, Attributes: ['ALL'] } client.detectFaces(params, function(err, response) { if (err) { console.log(err, err.stack); // an error occurred } else { console.log(`Detected faces for: ${photo}`) response.FaceDetails.forEach(data => { let low = data.AgeRange.Low let high = data.AgeRange.High console.log(`The detected face is between: ${low} and ${high} years old`) console.log("All other attributes:") console.log(` BoundingBox.Width: ${data.BoundingBox.Width}`) console.log(` BoundingBox.Height: ${data.BoundingBox.Height}`) console.log(` BoundingBox.Left: ${data.BoundingBox.Left}`) console.log(` BoundingBox.Top: ${data.BoundingBox.Top}`) console.log(` Age.Range.Low: ${data.AgeRange.Low}`) console.log(` Age.Range.High: ${data.AgeRange.High}`) console.log(` Smile.Value: ${data.Smile.Value}`) console.log(` Smile.Confidence: ${data.Smile.Confidence}`) console.log(` Eyeglasses.Value: ${data.Eyeglasses.Value}`) console.log(` Eyeglasses.Confidence: ${data.Eyeglasses.Confidence}`) console.log(` Sunglasses.Value: ${data.Sunglasses.Value}`) console.log(` Sunglasses.Confidence: ${data.Sunglasses.Confidence}`) console.log(` Gender.Value: ${data.Gender.Value}`) console.log(` Gender.Confidence: ${data.Gender.Confidence}`) console.log(` Beard.Value: ${data.Beard.Value}`) console.log(` Beard.Confidence: ${data.Beard.Confidence}`) console.log(` Mustache.Value: ${data.Mustache.Value}`) console.log(` Mustache.Confidence: ${data.Mustache.Confidence}`) console.log(` EyesOpen.Value: ${data.EyesOpen.Value}`) console.log(` EyesOpen.Confidence: ${data.EyesOpen.Confidence}`) console.log(` MouthOpen.Value: ${data.MouthOpen.Value}`) console.log(` MouthOpen.Confidence: ${data.MouthOpen.Confidence}`) console.log(` Emotions[0].Type: ${data.Emotions[0].Type}`) console.log(` Emotions[0].Confidence: ${data.Emotions[0].Confidence}`) console.log(` Landmarks[0].Type: ${data.Landmarks[0].Type}`) console.log(` Landmarks[0].X: ${data.Landmarks[0].X}`) console.log(` Landmarks[0].Y: ${data.Landmarks[0].Y}`) console.log(` Pose.Roll: ${data.Pose.Roll}`) console.log(` Pose.Yaw: ${data.Pose.Yaw}`) console.log(` Pose.Pitch: ${data.Pose.Pitch}`) console.log(` Quality.Brightness: ${data.Quality.Brightness}`) console.log(` Quality.Sharpness: ${data.Quality.Sharpness}`) console.log(` Confidence: ${data.Confidence}`) console.log("------------") console.log("") }) // for response.faceDetails } // if });

DetectFaces 작업 요청

DetectFaces에 대한 입력은 이미지입니다. 이 예제에서는 Amazon S3 버킷에서 이미지를 불러옵니다. Attributes 파라미터는 모든 얼굴 속성을 반환하도록 지정합니다. 자세한 내용은 이미지 작업 단원을 참조하십시오.

{ "Image": { "S3Object": { "Bucket": "amzn-s3-demo-bucket", "Name": "input.jpg" } }, "Attributes": [ "ALL" ] }

DetectFaces 작업 응답

DetectFaces는 감지된 각 얼굴에 대해 다음 정보를 반환합니다.

  • 경계 상자 - 얼굴 주위를 두르는 경계 상자의 좌표.

  • 신뢰도 - 경계 상자에 얼굴이 포함될 신뢰도 수준.

  • 얼굴 표식 – 얼굴 표식의 배열. 응답은 왼쪽 눈, 오른쪽 눈, 입 같은 각각의 표식의 x, y 좌표를 제공합니다.

  • 얼굴 속성 - FaceDetail 객체로 반환되는, 얼굴의 가려짐 여부와 같은 얼굴 속성의 집합. 이 집합에는 AgeRange, Beard, Emotions, EyeDirection, Eyeglasses, EyesOpen, FaceOccluded, Gender, MouthOpen, Mustache, Smile, Sunglasses가 포함됩니다. 응답은 각 속성의 값을 제공합니다. 이 값은 부울(사람이 선글라스를 착용하고 있는지 아닌지), 문자열(남성인지 여성인지), 각도값(시선 방향의 피치나 요) 등 다양한 유형이 될 수 있습니다. 또한 대부분의 속성의 경우, 응답은 해당 속성에 대해 감지된 값의 신뢰도도 제공합니다. 단, FaceOccluded 속성과 EyeDirection 속성은 DetectFaces를 사용할 때는 지원되지만, StartFaceDetectionGetFaceDetection을 사용하여 비디오를 분석할 때는 지원되지 않습니다.

  • 품질 – 얼굴의 밝기와 선명도를 기술합니다. 최상의 얼굴 감지을 보장하는 것에 관한 내용은 얼굴 비교 입력 이미지에 대한 권장 사항 단원을 참조하십시오.

  • 포즈 – 이미지 내 얼굴의 회전을 기술합니다.

요청에는 반환하려는 얼굴 속성의 배열이 표시될 수 있습니다. 얼굴 속성의 DEFAULT 하위 집합(BoundingBox, Confidence, Pose, Quality, Landmarks)은 항상 반환됩니다. ["DEFAULT", "FACE_OCCLUDED", "EYE_DIRECTION"]를 사용하여 특정 얼굴 속성(기본 목록에 더해) 여러 개나 ["FACE_OCCLUDED"]와 같은 단일 속성의 반환을 요청할 수 있습니다. ["ALL"]을 사용하여 모든 얼굴 속성의 반환을 요청할 수 있습니다. 더 많은 속성을 요청하면 응답 시간이 늘어날 수 있습니다.

다음은 DetectFaces API 직접 호출 응답의 예입니다.

{ "FaceDetails": [ { "BoundingBox": { "Width": 0.7919622659683228, "Height": 0.7510867118835449, "Left": 0.08881539851427078, "Top": 0.151064932346344 }, "AgeRange": { "Low": 18, "High": 26 }, "Smile": { "Value": false, "Confidence": 89.77348327636719 }, "Eyeglasses": { "Value": true, "Confidence": 99.99996948242188 }, "Sunglasses": { "Value": true, "Confidence": 93.65237426757812 }, "Gender": { "Value": "Female", "Confidence": 99.85968780517578 }, "Beard": { "Value": false, "Confidence": 77.52591705322266 }, "Mustache": { "Value": false, "Confidence": 94.48904418945312 }, "EyesOpen": { "Value": true, "Confidence": 98.57169342041016 }, "MouthOpen": { "Value": false, "Confidence": 74.33953094482422 }, "Emotions": [ { "Type": "SAD", "Confidence": 65.56403350830078 }, { "Type": "CONFUSED", "Confidence": 31.277774810791016 }, { "Type": "DISGUSTED", "Confidence": 15.553778648376465 }, { "Type": "ANGRY", "Confidence": 8.012762069702148 }, { "Type": "SURPRISED", "Confidence": 7.621500015258789 }, { "Type": "FEAR", "Confidence": 7.243380546569824 }, { "Type": "CALM", "Confidence": 5.8196024894714355 }, { "Type": "HAPPY", "Confidence": 2.2830512523651123 } ], "Landmarks": [ { "Type": "eyeLeft", "X": 0.30225440859794617, "Y": 0.41018882393836975 }, { "Type": "eyeRight", "X": 0.6439348459243774, "Y": 0.40341562032699585 }, { "Type": "mouthLeft", "X": 0.343580037355423, "Y": 0.6951127648353577 }, { "Type": "mouthRight", "X": 0.6306480765342712, "Y": 0.6898072361946106 }, { "Type": "nose", "X": 0.47164231538772583, "Y": 0.5763645172119141 }, { "Type": "leftEyeBrowLeft", "X": 0.1732882857322693, "Y": 0.34452149271965027 }, { "Type": "leftEyeBrowRight", "X": 0.3655243515968323, "Y": 0.33231860399246216 }, { "Type": "leftEyeBrowUp", "X": 0.2671719491481781, "Y": 0.31669262051582336 }, { "Type": "rightEyeBrowLeft", "X": 0.5613729953765869, "Y": 0.32813435792922974 }, { "Type": "rightEyeBrowRight", "X": 0.7665090560913086, "Y": 0.3318614959716797 }, { "Type": "rightEyeBrowUp", "X": 0.6612788438796997, "Y": 0.3082450032234192 }, { "Type": "leftEyeLeft", "X": 0.2416982799768448, "Y": 0.4085965156555176 }, { "Type": "leftEyeRight", "X": 0.36943578720092773, "Y": 0.41230902075767517 }, { "Type": "leftEyeUp", "X": 0.29974061250686646, "Y": 0.3971870541572571 }, { "Type": "leftEyeDown", "X": 0.30360740423202515, "Y": 0.42347756028175354 }, { "Type": "rightEyeLeft", "X": 0.5755768418312073, "Y": 0.4081145226955414 }, { "Type": "rightEyeRight", "X": 0.7050536870956421, "Y": 0.39924031496047974 }, { "Type": "rightEyeUp", "X": 0.642906129360199, "Y": 0.39026668667793274 }, { "Type": "rightEyeDown", "X": 0.6423097848892212, "Y": 0.41669243574142456 }, { "Type": "noseLeft", "X": 0.4122826159000397, "Y": 0.5987403392791748 }, { "Type": "noseRight", "X": 0.5394935011863708, "Y": 0.5960900187492371 }, { "Type": "mouthUp", "X": 0.478581964969635, "Y": 0.6660456657409668 }, { "Type": "mouthDown", "X": 0.483366996049881, "Y": 0.7497162818908691 }, { "Type": "leftPupil", "X": 0.30225440859794617, "Y": 0.41018882393836975 }, { "Type": "rightPupil", "X": 0.6439348459243774, "Y": 0.40341562032699585 }, { "Type": "upperJawlineLeft", "X": 0.11031254380941391, "Y": 0.3980775475502014 }, { "Type": "midJawlineLeft", "X": 0.19301874935626984, "Y": 0.7034031748771667 }, { "Type": "chinBottom", "X": 0.4939905107021332, "Y": 0.8877836465835571 }, { "Type": "midJawlineRight", "X": 0.7990140914916992, "Y": 0.6899225115776062 }, { "Type": "upperJawlineRight", "X": 0.8548634648323059, "Y": 0.38160091638565063 } ], "Pose": { "Roll": -5.83309268951416, "Yaw": -2.4244730472564697, "Pitch": 2.6216139793395996 }, "Quality": { "Brightness": 96.16363525390625, "Sharpness": 95.51618957519531 }, "Confidence": 99.99872589111328, "FaceOccluded": { "Value": true, "Confidence": 99.99726104736328 }, "EyeDirection": { "Yaw": 16.299732, "Pitch": -6.407457, "Confidence": 99.968704 } } ], "ResponseMetadata": { "RequestId": "8bf02607-70b7-4f20-be55-473fe1bba9a2", "HTTPStatusCode": 200, "HTTPHeaders": { "x-amzn-requestid": "8bf02607-70b7-4f20-be55-473fe1bba9a2", "content-type": "application/x-amz-json-1.1", "content-length": "3409", "date": "Wed, 26 Apr 2023 20:18:50 GMT" }, "RetryAttempts": 0 } }

다음 사항에 유의하세요.

  • Pose 데이터는 감지된 얼굴의 회전을 기술합니다. BoundingBoxPose 데이터의 조합을 사용하여 애플리케이션이 표시하는 얼굴 주위에 경계 상자를 그릴 수 있습니다.

  • Quality는 얼굴의 밝기와 선명도를 기술합니다. 이는 여러 이미지에서 얼굴을 비교해 가장 좋은 얼굴을 찾는 데 유용할 수 있습니다.

  • 이전 응답은 서비스가 감지할 수 있는 모든 얼굴 landmarks, 모든 얼굴 속성 및 감정을 보여 줍니다. 응답에서 이 모두를 얻으려면 attributes 파라미터를 값 ALL로 지정해야 합니다. DetectFaces API는 기본적으로 BoundingBox, Confidence, Pose, Quality, landmarks와 같은 5가지 얼굴 속성만 반환합니다. 기본 표식은 eyeLeft, eyeRight, nose, mouthLeft, mouthRight가 반환됩니다.