Amazon SageMaker Unified Studio is in preview release and is subject to change.
Remote Execution APIs
Use the following APIs to start, stop, get, or list executions running on remote compute.
StartExecution
You can start a notebook execution headlessly on a remote compute specified in the StartExecution
request.
from sagemaker_studio.sagemaker_studio_api import SageMakerUIHelperAPI from sagemaker_studio._openapi.models import ( StartExecutionRequest, ) from sagemaker_studio import ClientConfig config = ClientConfig(region="us-west-2") sagemaker_studio_api = SageMakerUIHelperAPI(config) result = sagemaker_studio_api.execution_client.start_execution( StartExecutionRequest( execution_name="my-execution", execution_type="NOTEBOOK", input_config={"notebook_config": {"input_path": "src/folder2/test.ipynb"}}, output_config={"notebook_config": {"output_formats": ["NOTEBOOK", "HTML"]}}, termination_condition={"max_runtime_in_seconds": 9000}, compute={ "instance_type": "ml.c5.xlarge", "image_details": { # provide either ecr_uri or (image_name and image_version) "image_name": "sagemaker-distribution-2.2", "image_version": "2.2", "ecr_uri": "123456123456.dkr.ecr.us-west-2.amazonaws.com/sagemaker-distribution-embargoed-prod:3.0.0-reinvent2024-cpu" } } ) ) print(result)
GetExecution
You can retrieve details about an execution running on remote compute using the GetExecution
API.
from sagemaker_studio.sagemaker_studio_api import SageMakerUIHelperAPI from sagemaker_studio._openapi.models import ( GetExecutionRequest, ) from sagemaker_studio import ClientConfig config = ClientConfig(region="us-west-2") sagemaker_studio_api = SageMakerUIHelperAPI(config) get_response = sagemaker_studio_api.execution_client.get_execution(GetExecutionRequest(execution_id="asdf-3b998be2-02dd-42af-8802-593d48d04daa")) print(get_response)
ListExecutions
You can use the ListExecutions
API to list all the headless executions that ran on remote compute.
from sagemaker_studio.sagemaker_studio_api import SageMakerUIHelperAPI from sagemaker_studio._openapi.models import ( ListExecutionsRequest, ) from sagemaker_studio import ClientConfig config = ClientConfig(region="us-west-2") sagemaker_studio_api = SageMakerUIHelperAPI(config) list_executions_response = sagemaker_studio_api.execution_client.list_executions(ListExecutionsRequest(status="COMPLETED")) print(list_executions_response)
StopExecution
You can use the StopExecution
API to stop an execution that's running on remote compute.
from sagemaker_studio.sagemaker_studio_api import SageMakerUIHelperAPI from sagemaker_studio._openapi.models import ( StopExecutionRequest, ) from sagemaker_studio import ClientConfig config = ClientConfig(region="us-west-2") sagemaker_studio_api = SageMakerUIHelperAPI(config) stop_response = sagemaker_studio_api.execution_client.stop_execution(StopExecutionRequest(execution_id="asdf-3b998be2-02dd-42af-8802-593d48d04daa")) print(stop_response)