Select your cookie preferences

We use essential cookies and similar tools that are necessary to provide our site and services. We use performance cookies to collect anonymous statistics, so we can understand how customers use our site and make improvements. Essential cookies cannot be deactivated, but you can choose “Customize” or “Decline” to decline performance cookies.

If you agree, AWS and approved third parties will also use cookies to provide useful site features, remember your preferences, and display relevant content, including relevant advertising. To accept or decline all non-essential cookies, choose “Accept” or “Decline.” To make more detailed choices, choose “Customize.”

Image understanding examples

Focus mode
Image understanding examples - Amazon Nova

The following example shows how to send a image prompt to Amazon Nova Model with InvokeModel.

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import base64 import boto3 import json # Create a Bedrock Runtime client in the AWS Region of your choice. client = boto3.client( "bedrock-runtime", region_name="us-east-1", ) MODEL_ID = "us.amazon.nova-lite-v1:0" # Open the image you'd like to use and encode it as a Base64 string. with open("media/sunset.png", "rb") as image_file: binary_data = image_file.read() base_64_encoded_data = base64.b64encode(binary_data) base64_string = base_64_encoded_data.decode("utf-8") # Define your system prompt(s). system_list = [ { "text": "You are an expert artist. When the user provides you with an image, provide 3 potential art titles" } ] # Define a "user" message including both the image and a text prompt. message_list = [ { "role": "user", "content": [ { "image": { "format": "png", "source": {"bytes": base64_string}, } }, { "text": "Provide art titles for this image." } ], } ] # Configure the inference parameters. inf_params = {"maxTokens": 300, "topP": 0.1, "topK": 20, "temperature": 0.3} native_request = { "schemaVersion": "messages-v1", "messages": message_list, "system": system_list, "inferenceConfig": inf_params, } # Invoke the model and extract the response body. response = client.invoke_model(modelId=MODEL_ID, body=json.dumps(native_request)) model_response = json.loads(response["body"].read()) # Pretty print the response JSON. print("[Full Response]") print(json.dumps(model_response, indent=2)) # Print the text content for easy readability. content_text = model_response["output"]["message"]["content"][0]["text"] print("\n[Response Content Text]") print(content_text)
PrivacySite termsCookie preferences
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.