
User Guide

AWS App2Container

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS App2Container User Guide

AWS App2Container: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS App2Container User Guide

Table of Contents

What is AWS App2Container? ... 1
How App2Container works ... 1
Accessing AWS through App2Container .. 2
Pricing ... 2

Compatibility guide ... 3
Operating system compatibility .. 3
Containerization features .. 5
Deployment features ... 6
Pipeline support .. 8

Supported applications ... 9
Complex Windows .NET apps .. 12

Step 1: Setup and initialization ... 13
Step 2: Analysis phase ... 13
Step 3: Containerization .. 15
Step 4: Deployment ... 17

Getting started .. 28
Understand Docker containers .. 29
Decide where containerization will run ... 29
Prerequisites: Set up your servers .. 30

Sign up for AWS ... 31
Grant permissions to run AWS App2Container commands .. 31
Enable remote access for a worker machine (optional) .. 32
Configure your AWS profile .. 34
Install the Docker engine .. 35

Step 1: Install App2Container ... 37
Step 2: Initialize App2Container ... 41
Step 3: Analyze your application .. 43
Step 4: Transform your application ... 45
Step 5: Deploy your application ... 47
Step 6: Clean up ... 49

App2Container Automation runbook ... 50
Prerequisites .. 50

Create policies and roles for the automation ... 51
Attaching the IAM role .. 60

iii

AWS App2Container User Guide

Run the automation .. 60
Runbook parameters .. 61
Running the automation ... 63
Reviewing output from the automation .. 64

Complete the modernization process .. 64
Configuring your application .. 66

Manage secrets ... 66
Create remote access secrets ... 67
Create secrets for Jenkins pipelines ... 69
Create secrets for Microsoft Azure DevOps pipelines ... 72

Configure containers ... 74
Configure deployment .. 94

deployment.json file ... 94
Configure pipelines .. 113

pipeline.json file .. 113
Product and service integrations ... 123

Automatic storage and registration using Amazon Elastic Container Registry 123
Deploy to Amazon ECS ... 124

Prerequisites .. 125
Amazon ECS integration for App2Container workflow .. 126

Deploy to Amazon EKS ... 129
Prerequisites .. 129
Amazon EKS integration for App2Container workflow .. 129

Deploy to App Runner .. 132
Prerequisites .. 133
App Runner integration for App2Container workflow ... 133

Set up CodePipeline pipelines .. 135
Validation ... 136
Output ... 137

Set up Jenkins pipelines ... 138
Prerequisites .. 138
Jenkins integration for App2Container workflow ... 139

Set up Azure DevOps pipelines .. 141
Prerequisites .. 142
Azure DevOps integration for App2Container workflow ... 143

Route logs using FireLens .. 149

iv

AWS App2Container User Guide

FireLens log routing for Linux ... 149
Security .. 162

Data protection .. 162
Data encryption .. 163
Internetwork traffic privacy .. 164

Identity and access management ... 164
Create IAM resources for general use .. 166
Create IAM resources for deployment ... 181

Update management .. 182
Command reference .. 183

Containerization phases ... 183
Initialize ... 183
Analyze .. 184
Transform ... 185
Deploy ... 186

Utility commands ... 187
analyze ... 187

Syntax .. 188
Parameters and options .. 188
Output ... 188
Examples ... 189

containerize ... 190
Syntax .. 190
Parameters and options .. 190
Output ... 191
Examples ... 192

extract ... 194
Syntax .. 194
Parameters and options .. 195
Output ... 195
Examples ... 195

generate app-deployment ... 196
Syntax .. 198
Parameters and options .. 198
Output ... 199
Examples ... 201

v

AWS App2Container User Guide

generate pipeline ... 205
Syntax .. 207
Parameters and options .. 207
Output ... 208
Examples ... 210

help ... 216
Syntax .. 217
Parameters and options .. 217
Output ... 217
Examples ... 217

init ... 218
Syntax .. 218
Parameters and options .. 218
Output ... 219
Examples ... 220

inventory .. 222
Syntax .. 222
Parameters and options .. 222
Output ... 223
Examples ... 223

remote analyze ... 225
Syntax .. 225
Parameters and options .. 226
Output ... 226
Examples ... 227

remote configure ... 228
Syntax .. 228
Parameters and options .. 228
Input .. 228
Output ... 230
Examples ... 230

remote extract .. 231
Syntax .. 232
Parameters and options .. 232
Output ... 232
Examples ... 233

vi

AWS App2Container User Guide

remote inventory ... 233
Syntax .. 234
Parameters and options .. 234
Output ... 230
Examples ... 230

upgrade .. 237
Syntax .. 237
Options ... 238
Output ... 238
Examples ... 238

upload-support-bundle ... 238
Syntax .. 239
Options ... 239
Output ... 239
Examples ... 239

Troubleshooting ... 241
Access App2Container logs on your server .. 241
Access application logs inside of a running container ... 242
AWS resource creation fails for the generate command ... 242

Description ... 242
Cause ... 243
Solution ... 243

Troubleshoot Java applications on Linux .. 243
Troubleshoot .NET applications on Windows ... 245
Troubleshoot generate pipeline build for Jenkins .. 246

Release notes ... 248
Document history .. 274

vii

AWS App2Container User Guide

What is AWS App2Container?

AWS App2Container (A2C) is a command line tool to help you lift and shift applications that run
in your on-premises data centers or on virtual machines, so that they run in containers that are
managed by Amazon ECS, Amazon EKS, or AWS App Runner. For a console-based experience,
you can use the Replatform applications to Amazon ECS template in the AWS Migration Hub
Orchestrator console. For more information, see Replatform applications to Amazon ECS in the
AWS Migration Hub Orchestrator User Guide.

Moving legacy applications to containers is often the starting point toward application
modernization. There are many benefits to containerization:

• Reduces operational overhead and infrastructure costs

• Increases development and deployment agility

• Standardizes build and deployment processes across an organization

Contents

• How App2Container works

• Accessing AWS through App2Container

• Pricing

How App2Container works

You can use App2Container to generate container images for one or more applications running
on Windows or Linux servers that are compatible with the Open Containers Initiative (OCI). This
includes commercial off-the-shelf applications (COTs). App2Container does not need source code
for the application to containerize it.

You can use App2Container directly on the application servers that are running your applications,
or perform the containerization and deployment steps on a worker machine.

App2Container performs the following tasks:

• Creates an inventory list for the application server that identifies all running ASP.NET (Windows)
and Java applications (Linux) that are candidates to containerize.

How App2Container works 1

https://console.aws.amazon.com/migrationhub/orchestrator?region=us-east-1#/templates
https://console.aws.amazon.com/migrationhub/orchestrator?region=us-east-1#/templates
https://docs.aws.amazon.com/migrationhub-orchestrator/latest/userguide/replatform-to-ecs.html

AWS App2Container User Guide

• Analyzes the runtime dependencies of supported applications that are running, including
cooperating processes and network port dependencies.

• Extracts application artifacts for containerization and generates a Dockerfile.

• Initiates builds for the application container.

• Generates AWS artifacts and optionally deploys the containers on Amazon ECS, Amazon EKS, or
AWS App Runner. For example:

• a CloudFormation template to configure required compute, network, and security
infrastructure to deploy containers using Amazon ECS, Amazon EKS, or AWS App Runner.

• An Amazon ECR container image, Amazon ECS task definitions, or AWS CloudFormation
templates for Amazon EKS or AWS App Runner that incorporate best practices for security and
scalability of the application by integrating with various AWS services.

• When deploying directly, App2Container can upload AWS CloudFormation resources to an
Amazon S3 bucket, and create a CloudFormation stack.

• Optionally creates a CI/CD pipeline with AWS CodePipeline and associated services, to automate
building and deploying your application containers.

Accessing AWS through App2Container

When you initialize App2Container, you provide it with your AWS credentials. This allows
App2Container to do the following:

• Store artifacts in Amazon S3, if you configured it to do so.

• Create and deploy application containers using AWS services such as Amazon ECS, Amazon EKS,
and AWS App Runner.

• Create CI/CD pipelines using AWS CodePipeline.

Pricing

App2Container is offered at no additional charge. You are charged only when you use other AWS
services to run your containerized application, such as Amazon ECR, Amazon ECS, Amazon EKS, and
AWS App Runner. For more information, see AWS Pricing.

Accessing AWS through App2Container 2

https://aws.amazon.com/pricing/

AWS App2Container User Guide

App2Container compatibility

The following documentation provides information for the operating systems, software, and
tooling that you can use with App2Container.

Contents

• Operating system compatibility

• Containerization features

• Deployment features

• Pipeline support

Operating system compatibility

The following table contains information about the applications that App2Container supports for
each operating system.

Compatibility item Linux Windows

Supported application server
operating systems 1

• Ubuntu (version 18.04 and
later)

• CentOS (version 8 and
later)

• RHEL (version 7 and later)

• Amazon Linux 2 (AL2)

• Amazon Linux 2023
(AL2023)

• Windows Server 2008 and
later 2

Container hosts The container host can be
any supported application
server operating system. The
major kernel version of the
container host must match
with the container image.

The container host operating
system must be either
Windows Server 2016, 2019,
or 2022. The Windows Server
operating system version
of the container host must
match the container image.

Operating system compatibility 3

AWS App2Container User Guide

Compatibility item Linux Windows

App2Container automatically
deploys the container host
using the same operating
system used for the container
ization process.

Application types • Java applications

• .NET applications

• IIS .NET applications

Supported frameworks • Java (JDK 1.8 and later)

• Tomcat

• TomEE

• JBoss (standalone mode)

• .NET applications

• .NET Core 3.1

• .NET 5

• .NET 6

• .NET 7

• .NET 8

.NET Framework version 3.5
and 4.x

Unsupported application
features

High Availability (HA) clusters • IIS applications that use
files and registries outside
of IIS web application
directories

Operating system compatibility 4

AWS App2Container User Guide

Compatibility item Linux Windows

Additional system requireme
nts

• Docker version 17.07 and
later 3

• kubectl versions up to
v1.30 for Amazon EKS
deployments.

• Docker version 17.07 and
later 3

• kubectl versions up to
v1.30 for Amazon EKS
deployments.

• Windows IIS (7.5 and later)

• Windows PowerShell
version 5.1 or PowerShell
version 6 and later

1 We have only tested the operating systems and configurations listed. Other operating systems
could be compatible, but have not been tested.

2 Windows Server 2008 and 2012 require a worker machine. For more information, see
Applications you can containerize using AWS App2Container.S

3 Docker must be installed to use App2Container. For more information, see Prerequisites: Set up
your servers.

Note

Windows client operating systems such as Windows 7 and Windows 10 aren't supported.

Containerization features

App2Container supports the following containerization features.

Containerization feature Linux Windows

gMSA for connection with
Active Directory

Not supported Supported

Containerization features 5

AWS App2Container User Guide

Containerization feature Linux Windows

Containerization of multiple
applications in the same
container

Not supported Supported *

Containerization of applicati
ons that use multiple ports

Not supported Supported

* Containerizing multiple applications in the same container for Windows requires that the
applications are nested under a main IIS site.

For more information about configuring Windows containers with additional ports and multiple
applications, see Configuring application containers.

For more information about group managed service accounts (gMSAs), see Configuring container
deployment.

Deployment features

The following table lists the deployment services that App2Container supports.

Deploymen
t feature

Linux Windows

Amazon
ECS (AWS
Fargate
only)

Amazon
EKS
(Amazon
EC2 only)

AWS App
Runner

Amazon
ECS (AWS
Fargate)

Amazon
ECS
(Amazon
EC2)

Amazon
EKS
(Amazon
EC2 only)

Modify
memory
usage

Supported Supported Not
supported

Supported
1

Supported Supported

Modify
CPU usage

Supported Supported Not
supported

Supported Supported Supported

Deployment features 6

AWS App2Container User Guide

Deploymen
t feature

Linux Windows

Load
balancer
types

Applicati
on Load
Balancer

Applicati
on Load
Balancer,
Network
Load
Balancer
with Nginx

N/A Applicati
on Load
Balancer

Applicati
on Load
Balancer

Applicati
on Load
Balancer,
Network
Load
Balancer
with Nginx

Reuse VPC
²

Supported Supported Not
supported

Supported Supported Supported

Reuse
cluster
previously
deployed
with
App2Conta
iner 2

Supported Supported N/A Supported Supported Supported

FireLens
logging

Supported Not
supported

Not
supported

Not
supported

Not
supported

Not
supported

gMSA for
connection
with Active
Directory

Not
supported

Not
supported

Not
supported

Not
supported

Supported Supported

Deploy
complex .NET
applicati
ons 3

N/A N/A N/A Supported Supported Supported

1 AWS Fargate only supports certain Windows Server operating systems for running Windows
containers. Select a Windows Server operating system that both Fargate and App2Container

Deployment features 7

AWS App2Container User Guide

support. For more information, see Windows platform versions in the Amazon ECS User Guide for
AWS Fargate.

2 You can reuse certain components that App2Container created for a prior deployment. For more
information about the reuseResources object, see Configuring container deployment.

3 A complex .NET application has multiple Windows .NET application components running in a
single container. For more information, see Containerizing complex Windows .NET applications
with App2Container.

For more information about FireLens for Amazon ECS, see Custom log routing in the Amazon
Elastic Container Service Developer Guide.

For more information about deployment settings for group managed service accounts (gMSAs), see
Configuring container deployment.

Pipeline support

App2Container supports AWS CodePipeline, Jenkins, and Azure DevOps Services pipeline types
for both Windows and Linux. For more information about configuring pipelines, see Configuring
container pipelines and Examples.

Pipeline support 8

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/platform-windows-fargate.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_firelens.html

AWS App2Container User Guide

Applications you can containerize using AWS
App2Container

App2Container supports the following application types:

• Java applications (Linux)

• ASP.NET applications (Windows, Linux)

For supported application frameworks, App2Container targets only the application files and
dependencies that are needed for containerization, thereby minimizing the size of the resulting
container image. This is known as application mode.

If App2Container does not find a supported framework running on your application server, or if
you have other dependent processes running on your server, App2Container takes a conservative
approach to identifying dependencies. This is known as process mode. For process mode, all non-
system files on the application server are included in the container image.

For more details on application and framework support, expand the section that matches the
platform that your application runs on.

Important

App2Container does not containerize database layer components. If your application
requires access to a database, you must configure your application container to have access
to the database server.

Supported applications for Linux

App2Container supports identification and containerization of Java and ASP.NET applications
running on Linux.

Supported Linux distributions:

• Ubuntu

• CentOS

• RHEL

Supported applications for Linux 9

AWS App2Container User Guide

• Amazon Linux

For supported frameworks, and other language-specific details, choose the tab that matches the
language your application is written in.

Java

For Java applications, App2Container identifies Java processes, and can generate container
images that replicate the running state of each process. App2Container determines which files
to include in the application container image, based on the Java application framework.

Application mode is supported for the following Java application frameworks:

Supported frameworks

• Tomcat

• TomEE

• JBoss (standalone mode)

Note

Containerization is not supported for Java applications running on frameworks that are
using Cluster/HA mode.

ASP.NET

For ASP.NET applications running on Linux, App2Container detects the .NET runtime version
and containerizes the application using the corresponding runtime base images.

Supported .NET Core runtime versions

• .NET Core 3.1 – uses SDK version 3.1 as the base image for generic .NET Core applications (or
the highest version if multiple versions are used).

• .NET 5 – uses SDK version 5.0 as the base image for generic .NET Core applications (or the
highest version if multiple versions are used).

• .NET 6 – uses SDK version 6.0 as the base image for generic .NET Core applications (or the
highest version if multiple versions are used).

Supported applications for Linux 10

https://dotnet.microsoft.com/en-us/download/dotnet/3.1
https://dotnet.microsoft.com/en-us/download/dotnet/5.0
https://dotnet.microsoft.com/en-us/download/dotnet/6.0

AWS App2Container User Guide

• .NET 7 – uses SDK version 7.0 as the base image for generic .NET Core applications (or the
highest version if multiple versions are used).

• .NET 8 – uses SDK version 8.0 as the base image for generic .NET Core applications (or the
highest version if multiple versions are used).

Important

• Process mode is not supported for ASP.NET applications running on .NET Core.

• If you are using .NET Core 3.1 or .NET 5, you must update the analysis.json
file's containerBaseImage parameter to mcr.microsoft.com/dotnet/sdk:3.1
or mcr.microsoft.com/dotnet/sdk:5.0, respectively. For more information, see
Configuring application containers.

Supported applications for Windows

App2Container supports containerization of ASP.NET applications deployed on IIS, including IIS-
hosted WCF applications, running on Windows Server 2016, 2019, and 2022. It uses Windows
Server Core as a base image for its container artifacts, matching the Windows Server Core version
to the operating system (OS) version of the server where you run containerization commands.

If you use a worker machine to containerize your application, the version matches your worker
machine OS. If you are running containerization directly on application servers, the version
matches your application server OS.

If your applications are running on Windows Server 2008 or 2012 R2, you might still be able to
use App2Container by setting up a worker machine for containerization and deployment steps.
App2Container does not support applications running on Windows client operating systems, such
as Windows 7 or Windows 10.

Application framework and system requirements

• Containerization commands must run on Windows OS versions that support containers—
Windows Server 2016, 2019, or 2022. This can be the worker machine, if you configure one, or
the application server.

• If you use a worker machine to run containerization commands, App2Container supports
Windows Server 2008 and up for the application server.

Supported applications for Windows 11

https://dotnet.microsoft.com/en-us/download/dotnet/7.0
https://dotnet.microsoft.com/en-us/download/dotnet/8.0

AWS App2Container User Guide

• IIS 7.5 or later.

• .NET framework version 3.5 or later.

• Docker version 17.07 or later (to install).

Note

App2Container does not support applications running on Windows client operating
systems, such as Windows 7 or Windows 10.

Supported applications

• Simple ASP.NET applications running in a single container

• A Windows service running in a single container

• Complex ASP.NET applications that depend on WCF, running in a single container or multiple
containers

• Complex ASP.NET applications that depend on Windows services or processes outside of IIS,
running in a single container or multiple containers

• Complex, multi-node IIS or Windows service applications, running in a single container or
multiple containers

Unsupported applications

• ASP.NET applications that use files and registries outside of IIS web application directories

• ASP.NET applications that depend on features of a Windows operating system version prior to
Windows Server Core 2016

Containerizing complex Windows .NET applications with
App2Container

Containerization for complex multi-tier Windows .NET applications requires careful planning.
When functionality is shared between the root application and one or more lower-level or system
applications, you need to make decisions about packaging, deployment, and orchestration for all of
the components.

Complex Windows .NET apps 12

AWS App2Container User Guide

To summarize how AWS App2Container works to containerize a complex Windows .NET
application, we'll visit each step in the App2Container workflow, and call out the highlights and
things to consider.

Step 1: Setup and initialization

Setup and initialization are the same for complex Windows .NET applications as for other types
of applications. Setup tasks include installing software, configuring your AWS profile and IAM
permissions, and deciding which servers the App2Container commands should run on. To learn
more about setting up your environment before running App2Container for the first time, see
Prerequisites: Set up your servers.

After you have completed the setup tasks, but before you use App2Container for the first time, you
must initialize the servers where you plan to run App2Container commands. To learn more about
initialization and worker machine configuration, see the Initialize section in the App2Container
command reference.

Step 2: Analysis phase

After you have completed setup and initialization tasks on your servers, App2Container helps you
to take an inventory of your running applications, and perform analysis to determine what should
be included in your application containers.

Inventory

The first step in the analysis phase is to take an inventory of your applications. When you run
the app2container inventory command (or the app2container remote inventory command, if
you have configured a worker machine), App2Container detects the applications that are running
in IIS. It also detects the Windows services that could be configured as dependent application
components.

App2Container identifies each IIS application or Windows service as a separate application, with its
own application ID in the inventory.json file. App2Container makes an effort to exclude basic
operating system services that you would not want to add to your containers. However, even when
these services are excluded, the inventory list can still be quite long.

To narrow the results of the app2container inventory or app2container remote inventory
commands, you can specify what type of application you are looking for with the --type option:

• To run an inventory of your IIS applications, you can set the --type option to "iis".

Step 1: Setup and initialization 13

AWS App2Container User Guide

• To run an inventory of your Windows services, you can set the --type option to "service".

If you don't want App2Container to filter inventory results at all, you can use the --nofilter
option. This option prevents App2Container from filtering out default system services when
building the inventory list. For more information and command syntax, see the inventory or
remote inventory command in the command reference section.

Analysis

When you run the app2container analyze or app2container remote analyze commands,
App2Container analyzes the application component that you specify with the --application-id
parameter.

App2Container creates the folder structure for the application component, inside of the
App2Container directory on your application server or worker machine. It produces the
analysis.json file, and saves it to the new folder structure, along with other artifacts that are
required for containerization. The analysis.json file is where you begin to define your container
structure.

Tip

Run the app2container analyze or app2container remote analyze command for every
component in your multi-tier application before you configure your container structure.

You can implement the following container structures for a multi-tier Windows .NET application:

• Multiple application components running in separate containers (recommended)

In this scenario, each application component in your multi-tier Windows .NET application runs
in a separate container. Relationships between the root application and up to two dependent
applications are configured in the deployment.json file for the root application. This file is
produced during the containerization phase.

When your application components are running in separate containers, leave the
additionalApps array in the analysis.json file empty for all components.

• Multiple application components running in a single container

Step 2: Analysis phase 14

AWS App2Container User Guide

In this scenario, the application components in a multi-tier Windows .NET application run
together in one container. We recommend that packaging multiple application components in a
single container is only done when there are cross-dependencies between the components.

To specify multiple application components running in a single container, you can include
up to five dependent component application IDs in the additionalApps array in the
analysis.json file for the root application.

Note

This configuration has the following limitations:

• Only the port that is defined for the root application is exposed to outside traffic
through your load balancer. Ports that are defined for other application components
are exposed only from the container, and are not accessible through the load balancer.

• If you are using remote commands on a worker machine, all of the application
components in a multi-tier application must be running on the same application server
if you want them to run in a single container.

To learn more about configuring containers, see Configuring application containers. To compare
configuration examples for a simple .NET application, and for complex multi-tier .NET applications,
expand the Containers running on Windows section, and explore the example tabs.

For more information and command syntax, see the analyze or remote analyze command in the
command reference section.

Step 3: Containerization

This phase creates containers for your application, based on the output of the analysis phase and
on your configuration in the analysis.json file.

Extract

If you are using a worker machine to run App2Container commands, or if you want to store
an application archive for reference, this phase starts with an app2container extract or
app2container remote extract command. Because this has no effect on the configuration for
multi-tier application containers, we will not cover that here.

Step 3: Containerization 15

AWS App2Container User Guide

Containerize

The app2container containerize command performs the following tasks for the application that's
specified in the --application id parameter:

• Extracts application artifacts from the server it runs on, or reads from an extract archive. For
complex multi-tier applications, the extract includes all artifacts that are needed for all of the
components running in the container.

• Generates a Dockerfile and a container image, based on the application artifacts and the
application settings in the analysis.json file.

• Creates the deployment.json file that defines initial settings for container deployment during
the deployment phase.

You must run the app2container containerize command for the root application container, and for
each additional application component that runs in a separate container. Do not run the command
for any components that are included in the root application container. The command displays
real-time task completion messages, followed by instructions for next steps. This includes the AWS
commands that you run if you are deploying manually.

To configure the deployment.json file for a complex multi-tier application, refer to the following
scenario that describes your implementation:

• Multiple application components running in separate containers

In this scenario, each application component is running in a separate container, and each has its
own deployment file. Before running the generate app-deployment command, configure the
deployment.json file for the root application to include all dependent applications or services
in the dependentApps array, including the application ID, private root domain, and DNS record
name for each one.

• Multiple application components running in a single container

If you are running multiple application components in a single container, the process for
configuring the deployment.json file is the same as for any other containerized application.
Leave the dependentApps array empty.

Step 3: Containerization 16

AWS App2Container User Guide

Note

If you are deploying to a specific VPC, make sure that all components point to that VPC in
the vpcId parameter in the reuseResources array in the deployment.json file.

To learn more about configuring your deployment.json file, see Configuring container
deployment. For more information and command syntax for creating your application container,
see the containerize command in the command reference section.

Step 4: Deployment

Deployment steps for complex Windows .NET applications with multiple application components
running in a single container are handled the same as any other application deployment. For more
information and command syntax for deploying your application container, see the generate app-
deployment command in the command reference section.

The remainder of the content in this section applies to complex Windows .NET applications that
have multiple application components running in separate containers, similar to the application
example shown in the following diagrams:

Amazon ECS deployment

Step 4: Deployment 17

AWS App2Container User Guide

Step 4: Deployment 18

AWS App2Container User Guide

Amazon EKS deployment

Step 4: Deployment 19

AWS App2Container User Guide

Step 4: Deployment 20

AWS App2Container User Guide

Normally, you run the generate app-deployment command for each application container that
you create. However, with complex Windows .NET applications that have dependent applications
running in separate containers, App2Container takes care of some of that for you. When you run
the generate app-deployment command for the root application, App2Container completes the
following tasks for the root application and each of its dependent application components:

• Checks for AWS and Docker prerequisites.

• Creates an Amazon ECR repository.

• Pushes the container image to the Amazon ECR repository.

• Generates the following artifacts, depending on your target container management service:

Amazon ECS

• An Amazon ECS task definition.

• The ecs-master.yml file that you can use for Amazon ECS deployment.

Amazon EKS

• The Kubernetes eks-master.yml file that you can use for Amazon EKS deployment.

• The eks_deployment.yaml and eks_service.yaml files that you can use with the kubectl
command.

• Generates a pipeline.json file.

Additionally, if you use the --deploy option, App2Container takes care of all of those
deployments in the order in which they need to run, and configures shared infrastructure settings.
When App2Container handles the deployment for you, it follows these conventions:

• The root application and all dependent application components are deployed to the same
cluster.

• All dependent application components are configured with an internal load balancer only.

• Each application component has its own Amazon ECS or Amazon EKS service running in a shared
cluster.

If you want to customize the deployment artifacts, you can deploy manually, using the AWS
Management Console or AWS CLI when you are ready.

For deployment steps, choose the tab that matches your deployment scenario.

Step 4: Deployment 21

AWS App2Container User Guide

Automated (A2C)

Follow these steps if you are using the App2Container automated deployment.

1. Verify that the values are set correctly in the deployment.json files for all of your
application components, before running the generate app-deployment command for your
root application, as follows:

• None of the application components in the multi-tier application should specify
reuseCfnStack.

• Dependent application components should not specify any of the following parameters:
vpcId, gMSAParameters.

• The following parameters can be specified in the root application, and App2Container
applies the same values for all dependent application components: vpcId,
resourceTags, and gMSAParameters.

2. The following example shows the generate app-deployment command for the root
application in our sample multi-tier application, using the --deploy option, with the
--application-id parameter set to the application ID for the root application. This
example handles the full deployment for all application components.

PS> app2container generate app-deployment --deploy --application-id iis-
colormvciis-b69c09ab --profile admin-profile
√ AWS prerequisite check succeeded
√ Docker prerequisite check succeeded
... [more notifications as deployment steps are completed for each dependent
 application component, followed by the root application and shared
 configurations]
Deployment successful for application iis-colormvciis-b69c09ab

The URL to your Load Balancer Endpoint is:
a2c-i-Publi-1A2BCD3EFGRW-4567890123.us-west-2.elb.amazonaws.com

Successfully created Amazon ECS stack a2c-iis-colormvciis-b69c09ab-ECS. Check
 the AWS CloudFormation Console for additional details.
3. Set up a pipeline for your application stack using app2container:

 app2container generate pipeline --application-id iis-colormvciis-
b69c09ab

Step 4: Deployment 22

AWS App2Container User Guide

The first deployment for a dependent application component creates shared AWS
resources, such as the VPC and Amazon ECS or Amazon EKS cluster. After the first
dependent application component is successfully deployed, App2Container updates
deployment artifacts for all of the other application components to reference the shared
AWS resources prior to completing the remaining deployments.

Manual (AWS CLI)

Follow these steps to customize your deployment files and use the AWS CLI to deploy manually.
We do not include AWS Management Console instructions here. However, you can follow the
same general order of operations in the console.

1. Verify that the values are set correctly in the deployment.json files for all of your
application components, before running the generate app-deployment command for your
root application, as follows:

• None of the application components in the multi-tier application should specify
reuseCfnStack.

• Dependent application components should not specify any of the following parameters:
vpcId, gMSAParameters.

• The following parameters can be specified in the root application, and App2Container
applies the same values for all dependent application components: vpcId,
resourceTags, and gMSAParameters.

2. The following example shows the generate app-deployment command for the root
application in our sample multi-tier application, with the --application-id parameter
set to the application ID for the root application. The --deploy option is not used in this
case, as we plan to customize deployment files and then deploy using AWS CLI commands
to control deployment for each application component.

Note

App2Container creates deployment artifacts for all application components in the
complex Windows .NET application when you run the generate app-deployment
command for the root application.

Step 4: Deployment 23

AWS App2Container User Guide

Use the generate app-deployment command, specifying the application ID for your root
application, as follows:

PS> app2container generate app-deployment --application-id iis-colormvciis-
b69c09ab --profile admin-profile
√ AWS prerequisite check succeeded
√ Docker prerequisite check succeeded
... [more notifications as deployment steps are completed for each dependent
 component, followed by the root application and shared configurations]
CloudFormation templates and additional deployment artifacts generated
 successfully for application iis-colormvciis-b69c09ab

You're all set to use AWS CloudFormation to manage your application stack.

Next Steps:
1. Create application stacks for first dependent application using the AWS CLI
 or the AWS Console. AWS CLI commands:

 aws cloudformation deploy --template-file C:\Users\Administrator\AppData
\Local\app2container\iis-dependentappb-12345bcd\EcsDeployment\ecs-master.yml --
capabilities CAPABILITY_NAMED_IAM CAPABILITY_AUTO_EXPAND --stack-name a2c-iis-
dependentappb-12345bcd-ECS

2. Required! Reuse the VpcId, ClusterId and PublicSubnets from above
 CloudFormation console outputs and assign them in master templates of service-
colorwindowsservice-69f90194, iis-colormvciis-b69c09ab
If your other dependent application(s) that share the same root domain, also
 assign HostedZoneId to their master template(s).
Create application stacks for remaining applications using the AWS CLI or the
 AWS Console. AWS CLI commands:

 aws cloudformation deploy --template-file C:\Users\Administrator\AppData
\Local\app2container\service-colorwindowsservice-69f90194\EcsDeployment\ecs-
master.yml --capabilities CAPABILITY_NAMED_IAM CAPABILITY_AUTO_EXPAND --stack-
name a2c-service-colorwindowsservice-69f90194-ECS

 aws cloudformation deploy --template-file C:\Users\Administrator\AppData
\Local\app2container\iis-colormvciis-b69c09ab\EcsDeployment\ecs-master.yml --
capabilities CAPABILITY_NAMED_IAM CAPABILITY_AUTO_EXPAND --stack-name a2c-iis-
colormvciis-b69c09ab-ECS

3. Set up a pipeline for your application stack using app2container:

Step 4: Deployment 24

AWS App2Container User Guide

 app2container generate pipeline --application-id iis-colormvciis-
b69c09ab

3. Review the deployment artifacts that were generated in the prior step, and customize the
YAML deployment templates and other deployment artifacts as needed.

Manual deployment follows this step, beginning with one of the dependent applications.
The first deployment creates any shared infrastructure that is required.

Note

If you are using an existing VPC, the vpcId that you specified in the
deployment.json file for the root application should be reflected in the YAML
deployment templates for all of the dependent applications.

4. To deploy your first dependent application and create shared infrastructure, run the
following command in the AWS CLI, using your dependent application's details.

PS> aws cloudformation deploy --template-file C:\Users\Administrator\AppData
\Local\app2container\iis-dependentappb-12345bcd\EcsDeployment\ecs-master.yml --
capabilities CAPABILITY_NAMED_IAM CAPABILITY_AUTO_EXPAND --stack-name a2c-iis-
dependentappb-12345bcd-ECS

5. After your first stack is ready (stack status is CREATE_COMPLETE), update the YAML
deployment templates for all remaining application components in your application to
reference the following shared infrastructure in the parameters for existing resources:

• VpcId

• PublicSubnets

• ClusterId

Additionally, for any remaining dependent applications, update the following references:

• DomainName

• RecordName

• ExistingHostedZoneId – update this if dependent applications share the root domain, or
if they are using an existing domain.

Step 4: Deployment 25

AWS App2Container User Guide

• RecordExist – set this to "true" (string) if the record already exists in the hosted zone. If
you are creating a new domain, set this to "false". The default value is "true".

6. Deploy any remaining dependent applications, using your application component
information and the updated YAML deployment templates, with the cloudformation
deploy command. The following command example deploys the service component in our
sample multi-tier application.

PS> aws cloudformation deploy --template-file C:\Users\Administrator\AppData
\Local\app2container\service-colorwindowsservice-69f90194\EcsDeployment\ecs-
master.yml --capabilities CAPABILITY_NAMED_IAM CAPABILITY_AUTO_EXPAND --stack-
name a2c-service-colorwindowsservice-69f90194-ECS

7. After you've created all of your dependent component stacks, deploy your root application
with the cloudformation deploy command. The following command example deploys the
root application in our sample multi-tier application.

PS> aws cloudformation deploy --template-file C:\Users\Administrator\AppData
\Local\app2container\iis-colormvciis-b69c09ab\EcsDeployment\ecs-master.yml --
capabilities CAPABILITY_NAMED_IAM CAPABILITY_AUTO_EXPAND --stack-name a2c-iis-
colormvciis-b69c09ab-ECS

Tip

It can take a few minutes to spin up a CloudFormation stack, along with the other
infrastructure that is created for your deployment. You can use one of the following
methods to check the stack status for your deployment:

• Sign in to the AWS Management Console and open the AWS CloudFormation console at
https://console.aws.amazon.com/cloudformation.

In the console, you can see stacks that are being created, as well as existing stacks. For
more information, see Viewing AWS CloudFormation stack data and resources on the
AWS Management Console in the AWS CloudFormation User Guide.

• Use one of these AWS CloudFormation commands in the AWS CLI: list-stacks or
describe-stacks. For more information, see Available Commands in the AWS CLI
Command Reference.

Step 4: Deployment 26

https://console.aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation

AWS App2Container User Guide

• Use one of these AWS CloudFormation API commands: ListStacks or DescribeStacks. For
more information, see Actions in the AWS CloudFormation API Reference.

Step 4: Deployment 27

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/

AWS App2Container User Guide

Getting started with AWS App2Container

AWS App2Container is a tool that helps you break down the work of moving your applications into
containers, and configuring them to be hosted in AWS using the Amazon ECS, Amazon EKS, or App
Runner container management services.

The following sections demonstrate the initial setup of your containerization environment,
starting with prerequisites and initial workflow decisions. Then we take you step by step through
containerizing a basic application using App2Container. We generate the artifacts that you can use
to deploy it on Amazon ECS, Amazon EKS, or AWS App Runner, and then we clean up.

Note

To avoid creating billable AWS resources, we stop before the final deployment. You can
review the deployment artifacts that are created by the generate app-deployment
command to see what we would create.

For an overview of the command phases that includes summary information and command
reference links for all of the App2Container commands, see the App2Container command
reference.

Contents

• Understand Docker containers

• Decide where containerization will run

• Prerequisites: Set up your servers

• Step 1: Install App2Container

• Step 2: Initialize App2Container

• Step 3: Analyze your application

• Step 4: Transform your application

• Step 5: Deploy your application

• Step 6: Clean up

28

AWS App2Container User Guide

Understand Docker containers

The following resources can help you get the most out of your application containers by
understanding what goes into them.

• To learn more about Docker containers on AWS, see What is Docker?.

• Use the Docker command line reference to look up Docker commands. See Use the Docker
command line.

Decide where containerization will run

To use App2Container on the server where the applications are running, you must set up an AWS
profile, install App2Container, and install the Docker engine. If your server does not meet the
requirements to containerize your application and deploy it to AWS, or if you do not want to install
the Docker engine on the application server, you can set up and use a worker machine. On the
worker machine, you can run the steps to containerize your application and deploy it to AWS, or
you can set up connectivity between the worker machine and the application servers to run remote
commands from the worker machine, targeting the application servers.

The following are example situations where you might decide to set up a worker machine:

• Your application servers are running in an on-premises data center and they do not have internet
access.

• Your application server is running on a Windows operating system that does not support
containers. For more information, see Supported applications.

• You prefer to use a dedicated server to run the containerization and deployment steps.

• You want to consolidate your work by using a worker machine to run commands for all of your
application servers.

When you set up a worker machine to handle the steps to containerize and deploy your
applications, it must have the same operating system platform as your application server (Linux
or Windows), and the operating system must support containers. We recommend that you launch
an Amazon EC2 instance as the worker machine, using an Amazon Machine Image (AMI) that is
optimized for Amazon ECS.

Understand Docker containers 29

https://aws.amazon.com/docker
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/

AWS App2Container User Guide

Prerequisites: Set up your servers

Before you use App2Container for the first time, make sure that your application environment
meets all of the requirements that are listed for your operating system (OS) platform in the
Supported applications section of this guide.

Choose the tab that matches your operating system (OS) platform to continue:

Linux

To run on a Linux platform, App2Container has the following additional requirements for the
servers where you run App2Container commands. This includes application servers and the
worker machine, if you have one configured.

• There are one or more Java applications running on each application server whose inventory
is the subject of the analyze or remote analyze command.

• You have root access on the servers.

• The servers have tar and at least 20 GB of free space.

Windows

To run on a Windows platform, App2Container has the following additional requirements for
the servers where you run App2Container commands. This includes application servers and the
worker machine, if you have one configured.

• There are one or more applications running in IIS on each application server whose inventory
is the subject of the analyze or remote analyze command.

• You are logged in as the Administrator user on the servers.

• The servers have Windows PowerShell version 5.1 or PowerShell version 6 or later and at
least 20-30 GB of free space.

Complete the following tasks before you use App2Container for the first time.

• Sign up for AWS

• Grant permissions to run AWS App2Container commands

• Enable remote access for a worker machine (optional)

• Configure your AWS profile

Prerequisites: Set up your servers 30

AWS App2Container User Guide

• Install the Docker engine

Sign up for AWS

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up
for all services in AWS. You are charged only for the services that you use.

If you do not have an AWS account already, use the following procedure to create one.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Grant permissions to run AWS App2Container commands

App2Container needs access to AWS services in order to run most of its commands. There are two
very different sets of permissions needed to run app2container commands.

• The general purpose IAM user, group, or role can run all of the commands except commands that
are run with the --deploy option.

• For deployment, App2Container must be able to create or update AWS objects for container
management services (Amazon ECR with Amazon ECS, Amazon EKS, or AWS App Runner), and
to create CI/CD pipelines with AWS CodePipeline. This requires elevated permissions that should
only be used for deployment.

We recommend that you create general purpose IAM resources, and if you plan to use
App2Container to deploy your containers or create pipelines, that you create separate IAM
resources for deployment.

Sign up for AWS 31

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

AWS App2Container User Guide

For instructions on how to set up your IAM resources for App2Container, and policy examples
that include resources and actions that App2Container needs access to, see Identity and access
management in App2Container.

Note

You can use an instance profile to pass an IAM role to an Amazon EC2 instance.
App2Container detects if there is an instance profile associated with the application server
or worker machine when you run the init command. If it detects an instance profile, the init
command prompts if you want to use it.
To find out more about using instance profiles, see Using instance profiles in the IAM User
Guide.

Enable remote access for a worker machine (optional)

To enable your worker machine to run remote commands for your application servers, you must
ensure that the worker machine can connect.

For the required setup to enable remote access, choose the operating system tab that matches
your application server.

Linux

For Linux application servers, you can use SSH key-based or SSH certificate-based connections.
You must ensure that there is network connectivity between the worker machine and the
application server, and verify that your worker machine can connect.

Certificate-based connections

By default, App2Container trusts the certificate, and does not verify its validity before
connecting to your application server. To change this behavior, set the acceptCerts
attribute to false in the init.json file.

Windows

To connect to a Windows application server from a Windows Server 2016, 2019, or 2022 worker
machine, use the WinRM protocol. Your application server must meet the requirements that are
listed for Windows in the Supported applications section of this user guide.

Enable remote access for a worker machine (optional) 32

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html

AWS App2Container User Guide

Note

App2Container does not support applications running on Windows client operating
systems, such as Windows 7 or Windows 10.

1. Worker machine

To ensure that you can run PowerShell scripts on the worker machine, set the PowerShell
Execution Policy to one of the following values:

RemoteSigned

Example:

PS> Set-ExecutionPolicy RemoteSigned

Unrestricted

Example:

PS> Set-ExecutionPolicy Unrestricted

2. Application servers

Complete the following steps on each application server to enable remote access from the
worker machine.

1. Ensure network connectivity to the application server over WinRM port 5986.

2. Download the WinRMSetup.ps1 PowerShell script to your application server from the
following location: WinRMSetup.ps1.

Note

Checksum files for this script can be downloaded using the following links:

• WinRMSetup.ps1.sha256

• WinRMSetup.ps1.md5

Enable remote access for a worker machine (optional) 33

https://app2container-release-us-east-1.s3.us-east-1.amazonaws.com/latest/windows/WinRMSetup.ps1
https://app2container-release-us-east-1.s3.us-east-1.amazonaws.com/latest/windows/WinRMSetup.ps1.sha256
https://app2container-release-us-east-1.s3.us-east-1.amazonaws.com/latest/windows/WinRMSetup.ps1.md5

AWS App2Container User Guide

3. Download the New-SelfsignedCertificateEx.ps1 PowerShell script from the Microsoft
Technet gallery. The WinRMSetup.ps1 PowerShell script from step 2 uses it to generate a
self-signed certificate.

Note

This script must run from the same directory where the WinRMSetup.ps1
PowerShell script from step 2 is located.

4. Run the WinRMSetup.ps1 PowerShell script on the application server. The script ensures
that WinRM is enabled, and generates self-signed certificates that are used to secure the
connection from the worker machine.

Configure your AWS profile

AWS App2Container requires command line access to AWS resources for containerization and
deployment commands. It uses information from your AWS profile to configure access to AWS
resources for your account. To run App2Container commands, you must install and configure a
command line tool on the application servers and worker machines where you run the commands.

Note

• AWS Tools for Windows PowerShell is required for running App2Container commands in
PowerShell on a Windows server.

• Tools for Windows PowerShell comes pre-installed on Windows-based Amazon Machine
Images (AMIs). If your application server or worker machine is an Amazon EC2 instance
that was launched from one of these AMIs, you can skip to configuring your AWS profile.
See Shared credentials in the AWS Tools for Windows PowerShell User Guide for more
details.

To install the AWS Command Line Interface (AWS CLI) or AWS Tools for Windows PowerShell
command line tools, and to configure your AWS profile, follow the instructions on the tab that
matches your command line tool.

Configure your AWS profile 34

https://github.com/Azure/azure-libraries-for-net/blob/master/Samples/Asset/New-SelfSignedCertificateEx.ps1
https://docs.aws.amazon.com/powershell/latest/userguide/shared-credentials-in-aws-powershell.html

AWS App2Container User Guide

AWS CLI

To install the AWS CLI and set up your AWS profile, follow these steps:

1. Install the AWS CLI according to the instructions in the AWS Command Line Interface User
Guide. For more information, see Installing the AWS CLI.

2. To configure your AWS default profile, use the aws configure command. For more
information, see Configuration basics in the AWS Command Line Interface User Guide.

Tools for Windows PowerShell

To install Tools for Windows PowerShell and set up your AWS profile, follow these steps:

1. Install the Tools for Windows PowerShell according to the instructions in the AWS Tools
for Windows PowerShell User Guide. For more information see Installing the AWS Tools for
Windows PowerShell.

2. To set up your AWS default profile, use the Initialize-AWSDefaultConfiguration cmdlet. For
more information about shared credentials in Tools for Windows PowerShell, see Shared
credentials in the AWS Tools for Windows PowerShell User Guide.

After you containerize your applications, you can also use the AWS CLI or Tools for Windows
PowerShell to deploy them on AWS, though we recommend using the --deploy option with the
generate app-deployment and generate pipeline commands to do your deployment.

Install the Docker engine

App2Container uses the Docker engine (Docker CE) to create container images and generate
Dockerfiles that run the containers hosted on Amazon ECS, Amazon EKS, or AWS App Runner.
You must install the Docker engine on the application server or worker machine that you'll use to
containerize the application using the containerize command.

Linux

Use the following procedure to install Docker on Linux.

Install the Docker engine 35

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-getting-set-up.html
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-getting-set-up.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Initialize-AWSDefaultConfiguration.html
https://docs.aws.amazon.com/powershell/latest/userguide/shared-credentials-in-aws-powershell.html
https://docs.aws.amazon.com/powershell/latest/userguide/shared-credentials-in-aws-powershell.html

AWS App2Container User Guide

To install the Docker engine

1. Install Docker version 17.07 or later

Choose your Linux distribution from the following options, and follow instructions to
download and install the Docker engine, using the links provided.

Amazon Linux

To download and install the Docker engine on Amazon Linux instances, see Docker
basics for Amazon ECS in the Amazon Elastic Container Service Developer Guide. This
works with any Amazon Linux instance.

RHEL

Recent versions of RHEL do not natively support the Docker engine. However, you can
still download and install the Docker engine on RHEL to create containers that will be
hosted and run on Amazon ECS, Amazon EKS, or AWS App Runner. To do this, follow the
instructions given for CentOS on the Docker website: Install Docker engine.

All other supported distributions (CentOS, Ubuntu)

To download and install the Docker engine for other supported Linux distributions,
follow the instructions for your Linux distribution on the Docker website: Install Docker
engine.

2. Verify the Docker installation

To verify that your Docker installation was successful, run the following command.

$ docker run -it hello-world

When the command runs, it pulls the latest hello-world application from the Docker
repository, if applicable. When the application has finished downloading, it displays a
"Hello" message followed by information on how this command verified your installation of
Docker.

Windows

Use the following procedure to install Docker on Windows.

Install the Docker engine 36

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

AWS App2Container User Guide

To install the Docker engine

1. Install Docker version 17.07 or later

To download and install the Docker engine on Windows, see Get started: Prep Windows for
containers (Install Docker section).

2. Verify the Docker installation

To verify that your Docker installation was successful, run the following command.

PS> docker run -it hello-world

When the command runs, it pulls the latest hello-world application from the Docker
repository, if applicable. When the application has finished downloading, it displays a
"Hello" message followed by information on how this command verified your installation of
Docker.

Step 1: Install App2Container

To get started with App2Container, the first step is to download and install the application. To
help ensure a successful installation, you can verify the integrity and authenticity of the binary file
before installing it.

Tip

For Amazon EC2 instances, you can perform Step 1, Step 2, Step 3, and Step 4 by using an
AWS Systems Manager Automation runbook. For more information, see App2Container
Automation runbook.
If you prefer, you can replatform your applications running on Amazon EC2 to containers
and deploy them to Amazon ECS on AWS Fargate with a console-based experience by using
the Replatform applications to Amazon ECS template in the Migration Hub Orchestrator
console. For more information, see the AWS Migration Hub Orchestrator User Guide.

Choose the tab that matches your operating system (OS) platform to continue:

Step 1: Install App2Container 37

https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/set-up-environment?tabs=Windows-Server#install-docker
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/set-up-environment?tabs=Windows-Server#install-docker
https://console.aws.amazon.com/migrationhub/orchestrator
https://console.aws.amazon.com/migrationhub/orchestrator
https://docs.aws.amazon.com/migrationhub-orchestrator/latest/userguide/replatform-to-ecs.html

AWS App2Container User Guide

Linux

App2Container for Linux is packaged as a tar.gz archive. The archive contains an interactive
shell script that installs App2Container on your server. If you use an application server and a
worker machine, you must install App2Container on both.

To download and install App2Container for Linux

1. Download the installation file in one of the following ways:

• Use the curl command to download the App2Container installation package from
Amazon S3.

$ curl -o AWSApp2Container-installer-linux.tar.gz https://app2container-
release-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/AWSApp2Container-
installer-linux.tar.gz

• Use your browser to download the installer from the following URL: https://
app2container-release-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/
AWSApp2Container-installer-linux.tar.gz.

2. Extract the package to a local folder on the server.

$ sudo tar xvf AWSApp2Container-installer-linux.tar.gz

3. Run the install script that you extracted from the package and follow the prompts.

$ sudo ./install.sh

To check the downloaded tar.gz installer archive for integrity, you can validate the SHA256 hash
of the local file against the published hash file.

Verify the integrity of the download

1. Generate hashes to verify

From the directory where you downloaded your tar.gz installer, run the following command
to generate the hash of the downloaded tar.gz file.

$ sha256sum AWSApp2Container-installer-linux.tar.gz

Step 1: Install App2Container 38

https://app2container-release-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/AWSApp2Container-installer-linux.tar.gz
https://app2container-release-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/AWSApp2Container-installer-linux.tar.gz
https://app2container-release-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/AWSApp2Container-installer-linux.tar.gz

AWS App2Container User Guide

9482952019adb6df96c7be773aa20ecb8de559083b99c270c67c34da56dd8dee
 AWSApp2Container-installer-linux.tar.gz

2. Verify hashes against the public file

Download the App2Container hash file from Amazon S3 with the following link, and
compare the contents to the hash that you generated in step 1:

• Download the App2Container hash file from Amazon S3:AWSApp2Container-installer-
linux.tar.gz.sha256.

To verify the authenticity of the download, run the following commands to download the
certificate and signature files, and verify the signature.

Verify the authenticity of the download

1. Download the App2Container certificate:

curl -o app2container.cert https://app2container-keys.s3.us-
east-1.amazonaws.com/latest/app2container.cert

2. Download the App2Container signature file:

curl -o app2container.sig https://app2container-release-us-east-1.s3.us-
east-1.amazonaws.com/latest/linux/app2container.sig

3. Verify the signature:

openssl dgst -sha256 -verify app2container.cert -signature app2container.sig /
usr/bin/app2container

Windows

App2Container for Windows is packaged as a zip archive. The package contains a PowerShell
script that installs App2Container. If you use an application server and a worker machine, you
must install App2Container on both.

Step 1: Install App2Container 39

https://app2container-release-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/AWSApp2Container-installer-linux.tar.gz.sha256
https://app2container-release-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/AWSApp2Container-installer-linux.tar.gz.sha256

AWS App2Container User Guide

To download and install App2Container for Windows

1. Download the App2Container installation package, AWSApp2Container-installer-
windows.zip.

2. Extract the package to a local folder on the server and navigate to that folder.

Note

App2Container automatically enables NTFS long paths for all supported Windows
versions so that you can use file paths longer than 260 characters. For more
information about this setting, see How to enable NTFS Long Paths in Windows
10 / Windows Server 2016 / 2019 or newer (PDF).

3. Run the install script from the folder where you extracted it, and follow the prompts.

PS> .\install.ps1

4. (Optional) To verify the authenticity of the download, use the Get-
AuthenticodeSignature PowerShell command as follows to get the Authenticode
Signature of the App2Container executable.

PS> Get-AuthenticodeSignature C:\Users\Administrator\app2container
\AWSApp2Container\bin\app2container.exe

To check the downloaded zip archive for integrity, you can validate the SHA256 hash of the
local file against the published hash file.

To verify the integrity of the download

1. Generate hashes to verify

From the directory where you downloaded your zip archive, run the following command to
generate the hash of the downloaded archive file.

PS> Get-FileHash C:\Users\Administrator\Downloads\AWSApp2Container-installer-
windows.zip -Algorithm SHA256

Step 1: Install App2Container 40

https://app2container-release-us-east-1.s3.us-east-1.amazonaws.com/latest/windows/AWSApp2Container-installer-windows.zip
https://app2container-release-us-east-1.s3.us-east-1.amazonaws.com/latest/windows/AWSApp2Container-installer-windows.zip
https://www.tgrmn.com/web/docs/enable-longpaths-windows.pdf
https://www.tgrmn.com/web/docs/enable-longpaths-windows.pdf

AWS App2Container User Guide

2. Verify hashes against the public file

Download the App2Container hash file from Amazon S3 with the following link, and
compare the contents to the hash that you generated in step 1:

• Download the App2Container hash file from Amazon S3:AWSApp2Container-installer-
windows.zip.sha256.

Step 2: Initialize App2Container

The containerization process consists of several distinct phases. This step focuses on the
initialization phase, during which you initialize App2Container's global settings, and configure
remote command settings if you are using a worker machine.

The init command performs one-time initialization tasks for App2Container. This interactive
command prompts for the information required to set up the local App2Container environment.
Run this command before you run any other App2Container commands. For more information, see
the init command reference page.

If you are using a worker machine to run commands remotely on application servers, you must also
run the remote configure command on the worker machine. For more information, see the remote
configure command reference page.

Choose the tab that matches your operating system (OS) platform to continue:

Linux

On each server where you installed App2Container, run the init command as follows.

$ sudo app2container init

You are prompted to provide the following information. Choose <enter> to accept the default
value.

• Workspace directory path – A local directory where App2Container can store artifacts during
the containerization process. The default is /root/app2container.

• AWS profile – Contains information needed to run App2Container, such as your AWS access
keys. For more information about AWS profiles, see Configure your AWS profile.

Step 2: Initialize App2Container 41

https://app2container-release-us-east-1.s3.us-east-1.amazonaws.com/latest/windows/AWSApp2Container-installer-windows.zip.sha256
https://app2container-release-us-east-1.s3.us-east-1.amazonaws.com/latest/windows/AWSApp2Container-installer-windows.zip.sha256

AWS App2Container User Guide

Note

If App2Container detects an instance profile for your server, the init command
prompts if you want to use it. If you don't specify any value, App2Container uses your
AWS default profile.

• Amazon S3 bucket – You can optionally provide the name of an Amazon S3 bucket where
you can extract artifacts using the extract command. The containerize command uses
the extracted components to create the application container if the Amazon S3 bucket is
configured. The default is no bucket.

• You can optionally upload logs and command-generated artifacts automatically to
App2Container support when an app2container command crashes or encounters internal
errors.

• Permission to collect usage metrics – You can optionally allow App2Container to collect
information about the host operating system, application type, and the app2container
commands that you run. The default is to allow the collection of metrics.

• Whether to enforce signed images – You can optionally require that images are signed using
Docker Content Trust (DCT). The default is no.

Windows

On each server where you installed App2Container, run the init command as follows.

PS> app2container init

You are prompted to provide the following information. Choose <enter> to accept the default
value.

• Workspace directory path – A local directory where App2Container can store artifacts during
the containerization process. The default is C:\Users\Administrator\AppData\Local
\app2container.

• AWS profile – Contains information needed to run App2Container, such as your AWS access
keys. For more information about AWS profiles, see Configure your AWS profile.

Step 2: Initialize App2Container 42

AWS App2Container User Guide

Note

If App2Container detects an instance profile for your server, the init command
prompts if you want to use it. If you don't specify any value, App2Container uses your
AWS default profile.

• Amazon S3 bucket – You can optionally provide the name of an Amazon S3 bucket where
you can extract artifacts using the extract command. The containerize command uses
the extracted components to create the application container if the Amazon S3 bucket is
configured. The default is no bucket.

• You can optionally upload logs and command-generated artifacts automatically to
App2Container support when an app2container command crashes or encounters internal
errors.

• Permission to collect usage metrics – You can optionally allow App2Container to collect
information about the host operating system, application type, and the app2container
commands that you run. The default is to allow the collection of metrics.

• Whether to enforce signed images – You can optionally require that images are signed using
Docker Content Trust (DCT). The default is no.

Step 3: Analyze your application

After you have completed setup and initialization tasks on your servers, you can begin to analyze
your applications. During the analysis phase, you take inventory of the applications running on
your application servers, and analyze specific applications within your inventory.

Choose the tab that matches your operating system (OS) platform to continue:

Linux

On the application server, follow these steps to prepare to containerize the applications.

Prepare for containerization

1. Run the inventory command as follows to list the Java applications that are running on
your server.

$ sudo app2container inventory

Step 3: Analyze your application 43

AWS App2Container User Guide

The output includes a JSON object collection with one entry for each application. Each
application object will include key/value pairs as shown in the following example.

"java-app-id": {
 "processId": pid,
 "cmdline": "/user/bin/java ...",
 "applicationType": "java-apptype"
}

2. Locate the application ID for the application to containerize in the JSON output of the
inventory command, and then run the analyze command as follows, replacing java-app-
id with the application ID that you located.

$ sudo app2container analyze --application-id java-app-id

The output is a JSON file, analysis.json, stored in the workspace directory that you
specified when you ran the init command.

3. (Optional) You can edit the information in the containerParameters section of
analysis.json as needed before continuing to the next step.

Windows

On the application server, follow these steps to prepare to containerize your applications.

Prepare for containerization

1. Run the inventory command as follows to list the ASP.NET applications that are running on
your server.

PS> app2container inventory

The output includes a JSON object collection with one entry for each application. Each
application object will include key/value pairs as shown in the following example.

"iis-app-id": {
 "siteName": My site name,
 "bindings": "http/*:80:",
 "applicationType": "iis",

Step 3: Analyze your application 44

AWS App2Container User Guide

 "discoveredWebApps": [
 "app1",
 "app2"
]
}

2. Locate the application ID for the application to containerize in the JSON output of the
inventory command, and then run the analyze command as follows, replacing iis-app-
id with the application ID that you located.

PS> app2container analyze --application-id iis-app-id

The output is a JSON file, analysis.json, stored in the workspace directory that you
specified when you ran the init command.

3. (Optional) You can edit the information in the containerParameters section of
analysis.json as needed before continuing to the next step.

Step 4: Transform your application

Now that your application has gone through the analysis phase, it's ready for containerization. The
transform phase creates the containers that your application runs in after you deploy it to Amazon
ECS, Amazon EKS, or App Runner, if eligible. For more information about how App2Container
integrates with container management services and other products, see Product and service
integrations for AWS App2Container.

Choose the tab that matches your operating system (OS) platform to continue:

Linux

The transform phase depends on whether you are running all steps on the application server, or
are using the application server for the analysis and a worker machine for containerization and
deployment.

To containerize the application on the application server

If you are using an application server for all steps, run the containerize command as follows.

$ sudo app2container containerize --application-id java-app-id

Step 4: Transform your application 45

AWS App2Container User Guide

The output is a set of deployment files that are stored in the workspace directory that you
specified when you ran the init command.

To containerize the application on a worker machine

If you are using a worker machine for containerization and deployment, use the following
procedure to transform the application.

1. On the application server, run the extract command as follows.

$ sudo app2container extract --application-id java-app-id

2. If you specified an Amazon S3 bucket when you ran the init command, the archive is
extracted to that location. Otherwise, you can manually copy the resulting archive file to
the worker machine.

3. On the worker machine, run the containerize command as follows.

$ sudo app2container containerize --input-archive /path/extraction-file.tar

The output is a set of deployment artifacts that are stored in the workspace directory that
you specified when you ran the init command.

Windows

The transform phase depends on whether you are running all steps on the application server
or using the application server for the analysis and a worker machine for containerization and
deployment.

To containerize the application on the application server

If you are using an application server for all steps, run the containerize command as follows.

PS> app2container containerize --application-id iis-app-id

The output is a set of deployment files stored in the workspace directory that you specified
when you ran the init command.

Step 4: Transform your application 46

AWS App2Container User Guide

To containerize the application on a worker machine

If you are using a worker machine for containerization and deployment, use the following
procedure to transform the application.

1. On the application server, run the extract command as follows.

PS> app2container extract --application-id iis-app-id

2. If you specified an Amazon S3 bucket when you ran the init command, the archive is
extracted to that location. Otherwise, you can manually copy the resulting archive file to
the worker machine.

3. On the worker machine, run the containerize command as follows.

PS> app2container containerize --input-archive drive:\path\extraction-file.zip

The output is a set of deployment artifacts that are stored in the workspace directory that
you specified when you ran the init command.

Step 5: Deploy your application

After your application has gone through containerization, it's ready to deploy to Amazon ECS,
Amazon EKS, or App Runner, if eligible. When you run the generate app-deployment command,
App2Container creates an Amazon ECR repository where it stores your application container
artifacts for deployment. It also creates deployment configuration files that you can deploy as
follows:

• You can customize the deployment files, and have complete control over the deployment by
running the AWS commands for your destination container management environment. When
you run the generate app-deployment command without the --deploy option, App2Container
returns instructions that you can use to deploy manually.

• If you're sure that you won't need to customize your deployment files, App2Container can
optionally deploy your application containers directly to the container management environment
that you have configured. To choose this option, run the generate app-deployment command
with the --deploy option. You can verify the settings that App2Container used for the
deployment by reviewing the deployment configuration files.

Step 5: Deploy your application 47

AWS App2Container User Guide

The deployment phase includes the option to create a deployment pipeline using the generate
pipeline command. That step is not covered here, in order to prevent any unexpected charges
for AWS resources. For more information, see app2container generate pipeline command in the
command reference section.

Choose the tab that matches your operating system (OS) platform to continue:

Linux

Run the generate app-deployment command as follows to deploy the application on AWS.

$ sudo app2container generate app-deployment --application-id java-app-id

You have now created deployment artifacts for your application! You can find the deployment
artifacts that the generate app-deployment command created for you in the local directory for
your application.

Windows

Run the generate app-deployment command as follows to deploy the application on AWS.

PS> app2container generate app-deployment --application-id iis-smarts-51d2dbf8

You have now created deployment artifacts for your application! You can find the deployment
artifacts that the generate app-deployment command created for you in the local directory for
your application.

Applications using Windows authentication

For applications using Windows authentication, you can use the gMSAParameters
inside of the deployment.json file to set the gMSA-related artifacts automatically
during generation of your AWS CloudFormation template.
Perform the actions in the list below once per Active Directory domain before you
update the gMSA parameters.

• Set up a secret in SecretsManager that stores the Domain credentials with the
following key value pairs:

Step 5: Deploy your application 48

AWS App2Container User Guide

Key Value

Username <DomainNetBIOSName>\<Domain
User>

Password <DomainUserPassword>

• For the VPC with the Domain Controller, verify that the DHCP options are set to reach
the Domain Controller. The options for DomainName and DomainNameServers must
be set correctly. See DHCP options sets for more information about how to set DHCP
options.

Step 6: Clean up

If you explored deployment options outside of the steps that we covered for this tutorial, make
sure that you tear down any application stacks that might have been created, and verify that you
have removed any artifacts that were created in the process.

Choose the tab that matches your operating system (OS) platform to continue:

Linux

To remove App2Container from your application server or worker machine, delete the /usr/
local/app2container folder where it is installed, and then remove this folder from your
path.

To clean up your AWS profile, use the aws configure set command. For more information, see
Set and view configuration settings in the AWS Command Line Interface User Guide.

Windows

To remove App2Container from your application server or worker machine, delete the C:
\Users\Administrator\app2container folder where it is installed, and then remove this
folder from your path.

To clean up your AWS profile, see Removing Credential Profiles in the AWS Tools for Windows
PowerShell User Guide.

Step 6: Clean up 49

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-methods
https://docs.aws.amazon.com/powershell/latest/userguide/shared-credentials-in-aws-powershell.html#removing-credential-profiles

AWS App2Container User Guide

App2Container Automation runbook

AWS App2Container provides the AWSApp2Container-ReplatformApplications Automation
runbook for use on Amazon EC2 instances. Automation is a capability of AWS Systems Manager.
The runbook performs the installation of App2Container as well as the initialize, analyze, and
transform phases for replatforming supported applications. If desired, the automation can also
push the containerized application to Amazon Elastic Container Registry (Amazon ECR). For more
information, see App2Container compatibility and Applications you can containerize using AWS
App2Container.

You must have access to Systems Manager to use the runbook. For more information about
Systems Manager Automation, see AWS Systems Manager Automation in the AWS Systems
Manager User Guide.

Tip

To containerize your applications with a console-based experience and deploy them on
Amazon ECS on AWS Fargate, you can use the Replatform applications to Amazon ECS
template on the AWS Migration Hub Orchestrator console. For more information, see
Replatform applications to Amazon ECS in the AWS Migration Hub Orchestrator User Guide.

Contents

• Prerequisites

• Create policies and roles for the automation

• Attaching the IAM role

• Run the automation

• Runbook parameters

• Running the automation

• Reviewing output from the automation

• Complete the modernization process

Prerequisites

Before you run the automation, you must have:

Prerequisites 50

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-automation.html
https://console.aws.amazon.com/migrationhub/orchestrator?region=us-east-1#/templates
https://docs.aws.amazon.com/migrationhub-orchestrator/latest/userguide/replatform-to-ecs.html

AWS App2Container User Guide

• An S3 bucket to store your containerized application artifacts. This bucket must be in the
same AWS account and Region as your Amazon EC2 instances being containerized. For more
information, see Creating a bucket in the Amazon Simple Storage Service User Guide.

• An IAM service role with the permissions necessary for Automation, a capability of AWS Systems
Manager, to run the automation on your behalf.

• An IAM role for your EC2 instances that permits the necessary actions to run the automation in
your target instances.

• (Optional) A customer managed key in AWS KMS to use as your own server-side encryption
key for Amazon S3. For more information, see Customer managed keys in the Amazon Simple
Storage Service User Guide.

Topics

• Create policies and roles for the automation

• Attaching the IAM role

Create policies and roles for the automation

You must create the required policies and roles before running the automation. You can create the
roles using AWS CloudFormation or manually.

Creating policies and roles with AWS CloudFormation

You can use the following AWS CloudFormation template to create a stack which will create
the roles and policies required to run the automation. You can create a stack using the AWS
CloudFormation console or the AWS Command Line Interface (AWS CLI).

AWSTemplateFormatVersion: "2010-09-09"
Parameters:
 A2CServiceRoleName:
 Type: String
 Description: Name of the A2C Service Role
 Default: "a2cServiceRole"

 A2CInstanceRoleName:
 Type: String
 Description: Name of the A2C Instance Role
 Default: "a2cinstancerole"

Create policies and roles for the automation 51

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-cli-creating-stack.html

AWS App2Container User Guide

Resources:
 A2CServiceRole:
 Type: "AWS::IAM::Role"
 Properties:
 RoleName: !Ref A2CServiceRoleName
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service: ["ssm.amazonaws.com"]
 Action: "sts:AssumeRole"
 Policies:
 - PolicyName: "a2cServicePolicy"
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Sid: "EC2DescribeAccess"
 Effect: "Allow"
 Action:
 - "ec2:DescribeInstances"
 Resource: "*"
 - Sid: "IAMRoleAccess"
 Effect: "Allow"
 Action:
 - "iam:AttachRolePolicy"
 - "iam:GetInstanceProfile"
 Resource: "*"
 - Sid: "ApplicationTransformationAccess"
 Effect: "Allow"
 Action:
 - "application-transformation:StartRuntimeAssessment"
 - "application-transformation:GetRuntimeAssessment"
 - "application-transformation:PutMetricData"
 - "application-transformation:PutLogData"
 Resource: "*"
 - Sid: "SSMSendCommandAccess"
 Effect: "Allow"
 Action:
 - "ssm:SendCommand"
 Resource:
 - "arn:aws:ec2:*:*:instance/*"
 - "arn:aws:ssm:*::document/AWS-RunRemoteScript"
 - Sid: "SSMDescribeAccess"

Create policies and roles for the automation 52

AWS App2Container User Guide

 Effect: "Allow"
 Action:
 - "ssm:DescribeInstanceInformation"
 - "ssm:ListCommandInvocations"
 - "ssm:GetCommandInvocation"
 - "ssm:GetParameters"
 Resource: "arn:aws:ssm:*:*:*"
 - Sid: "S3ObjectAccess"
 Effect: "Allow"
 Action:
 - "s3:GetObject"
 - "s3:PutObject"
 Resource:
 - "arn:aws:s3:::*/application-transformation*"
 - Sid: "S3ListAccess"
 Effect: "Allow"
 Action:
 - "s3:ListBucket"
 - "s3:GetBucketLocation"
 Resource: "arn:aws:s3:::*"
 - Sid: "KmsAccess"
 Effect: "Allow"
 Action:
 - "kms:GenerateDataKey"
 - "kms:Decrypt"
 Resource:
 - "arn:aws:kms:*:*:key/*"
 Condition:
 StringLike:
 kms:ViaService:
 - "s3.*.amazonaws.com"

 A2CInstanceRole:
 Type: "AWS::IAM::Role"
 Properties:
 RoleName: !Ref A2CInstanceRoleName
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service: ["ec2.amazonaws.com"]
 Action: "sts:AssumeRole"
 ManagedPolicyArns:

Create policies and roles for the automation 53

AWS App2Container User Guide

 - "arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore"
 Policies:
 - PolicyName: "ApplicationTransformationAnalyzerPolicy"
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Sid: "S3BucketAccess"
 Effect: "Allow"
 Action:
 - "s3:GetBucketLocation"
 Resource:
 - "arn:aws:s3:::*"
 - Sid: "S3ObjectAccess"
 Effect: "Allow"
 Action:
 - "s3:PutObject"
 - "s3:GetObject"
 Resource:
 - "arn:aws:s3:::*/application-transformation*"
 - Sid: "KmsAccess"
 Effect: "Allow"
 Action:
 - "kms:GenerateDataKey"
 - "kms:Decrypt"
 Resource:
 - "arn:aws:kms:*:*:key/*"
 Condition:
 StringLike:
 kms:ViaService:
 - "s3.*.amazonaws.com"
 - Sid: "TelemetryAccess"
 Effect: "Allow"
 Action:
 - "application-transformation:PutMetricData"
 - "application-transformation:PutLogData"
 Resource:
 - "*"
 a2cInstanceProfile:
 Type: AWS::IAM::InstanceProfile
 Properties:
 InstanceProfileName: !Ref A2CInstanceRoleName
 Roles:
 - !Ref A2CInstanceRole

Create policies and roles for the automation 54

AWS App2Container User Guide

Creating policies and roles manually

The following sections detail how you can manually create the roles and policies required to run
the automation.

Creating policies to run the automation

To enhance the security posture of the App2Container automation execution, it is strongly
recommended to scope down IAM S3 access permissions to allow access only to the bucket created
for the App2Container automation execution. You can create least-privilege policies required to run
the automation with the following procedures.

To create the service role policy for running the automation

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies then choose Create policy.

3. Choose JSON, enter the following policy in the Policy editor, then choose Next:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EC2DescribeAccess",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeInstances"
],
 "Resource": "*"
 },
 {
 "Sid": "IAMRoleAccess",
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:GetInstanceProfile"
],
 "Resource": ["*"]
 },
 {
 "Sid": "ApplicationTransformationAccess",
 "Effect": "Allow",
 "Action": [

Create policies and roles for the automation 55

https://console.aws.amazon.com/iam/

AWS App2Container User Guide

 "application-transformation:StartRuntimeAssessment",
 "application-transformation:GetRuntimeAssessment",
 "application-transformation:PutMetricData",
 "application-transformation:PutLogData"
],
 "Resource": "*"
 },
 {
 "Sid": "SSMSendCommandAccess",
 "Effect": "Allow",
 "Action": [
 "ssm:SendCommand"
],
 "Resource": [
 "arn:aws:ec2:*:*:instance/*",
 "arn:aws:ssm:*::document/AWS-RunRemoteScript"
]
 },
 {
 "Sid": "SSMDescribeAccess",
 "Effect": "Allow",
 "Action": [
 "ssm:DescribeInstanceInformation",
 "ssm:ListCommandInvocations",
 "ssm:GetCommandInvocation",
 "ssm:GetParameters"
],
 "Resource": "arn:aws:ssm:*:*:*"
 },
 {
 "Sid": "S3ObjectAccess",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::*/application-transformation*"
]
 },
 {
 "Sid": "S3ListAccess",
 "Effect": "Allow",
 "Action": [

Create policies and roles for the automation 56

AWS App2Container User Guide

 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Sid": "KmsAccess",
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:*:*:key/*"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": [
 "s3.*.amazonaws.com"
]
 }
 }
 }
]
}

4. Enter a value for the Policy name.

5. Choose Create policy.

To create the policy for the IAM role used by your instance profile

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies then choose Create policy.

3. Choose JSON, enter the following policy in the Policy editor, then choose Next:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3BucketAccess",
 "Effect": "Allow",
 "Action": [

Create policies and roles for the automation 57

https://console.aws.amazon.com/iam/

AWS App2Container User Guide

 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::*"
]
 },
 {
 "Sid": "S3ObjectAccess",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::*/application-transformation*"
]
 },
 {
 "Sid": "KmsAccess",
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:*:*:key/*"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": [
 "s3.*.amazonaws.com"
]
 }
 }
 },
 {
 "Sid": "TelemetryAccess",
 "Effect": "Allow",
 "Action": [
 "application-transformation:PutMetricData",
 "application-transformation:PutLogData"
],
 "Resource": [
 "*"

Create policies and roles for the automation 58

AWS App2Container User Guide

]
 }
]
}

4. Enter ApplicationTransformationAnalyzerPolicy for the Policy name.

5. Choose Create policy.

Creating the IAM service role for running the automation

You can use the following procedure to create an IAM service role.

To create an IAM role using the IAM console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles then choose Create role.

3. On the Select trusted entity page, choose AWS service, select the Systems Manager use case,
and then choose Next.

4. On the Add permissions page, select the policy that you created for the IAM service role
previously, and then choose Next.

5. On the Name, review, and create page, enter a name and description for the role and add tags
if needed.

6. Choose Create role.

This role is used for the AutomationAssumeRole parameter in the Run the automation section.

Creating the instance profile role

You can use the following procedure to create an IAM role for your instance profile. The
permissions provided by the instance profile role are used by your EC2 instances. For more
information, see Using an IAM role to grant permissions to applications running on Amazon EC2
instances in the AWS Identity and Access Management User Guide.

Note

An instance profile can only contain one IAM role. If your target instances have an existing
IAM role, the automation will add the ApplicationTransformationAnalyzerPolicy
policy on execution to the instance profile role on your behalf. The existing role should

Create policies and roles for the automation 59

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS App2Container User Guide

provide the permissions required to make the instances managed nodes in AWS Systems
Manager. For more information, see Instance profiles in the Amazon Elastic Compute Cloud
User Guide and Managed nodes in the AWS Systems Manager User Guide.

To create an instance profile role using the IAM console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles then choose Create role.

3. On the Select trusted entity page, choose AWS service, select the EC2 use case, and then
choose Next.

4. On the Add permissions page, select both the AmazonSSMManagedInstanceCore policy and
the policy you created for the instance profile role previously, and then choose Next.

5. On the Name, review, and create page, enter a name and description for the role and add tags
if needed.

6. Choose Create role.

The instance profile role is used in the following section.

Attaching the IAM role

If your target instances don't have an existing IAM role, you can attach the previously created IAM
role to them. The following steps assume you have already created the required policies and roles.

To attach an IAM role to an instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances.

3. Select the instance, choose Actions, Security, Modify IAM role.

4. Select the IAM role to attach to your instance, and choose Save.

For more information, see Attach an IAM role to an instance.

Run the automation

When you run the automation, the following processes occur:

Attaching the IAM role 60

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#attach-iam-role
https://docs.aws.amazon.com/systems-manager/latest/userguide/managed_instances.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#attach-iam-role

AWS App2Container User Guide

• Discover – The instances you specified are scanned for supported applications to create an
inventory of each server.

• Analyze – Once the discover phase has completed, the automation analyzes each application and
creates an entry. The instances you specified are scanned for supported applications to create an
inventory of each server. Once this discovery process has completed, the automation analyzes
each application and creates an entry.

Note

Applications using Windows Server operating systems will use Windows Server Core
as their base image. Applications using Linux operating systems will use a Linux based
image.

Topics

• Runbook parameters

• Running the automation

• Reviewing output from the automation

Runbook parameters

You can specify the following parameters for the Automation runbook.

Parameter
name

Type Description Default value Required

Automatio
nAssumeRo
le

String The ARN of the
role that allows
Automation to
perform actions
 on your behalf.

TRUE

EnableCon
taineriza
tion

Boolean Controls
whether to
containerize

FALSE FALSE

Runbook parameters 61

AWS App2Container User Guide

Parameter
name

Type Description Default value Required

discovered
applications.
If enabled, the
automation will
use the artifacts
uploaded to
the S3 bucket
to generate
Open Container
s Initiative
(OCI) container
images and
push them to
Amazon ECR.

OutputLoc
ation

String The S3 location
in which
to upload
deployment
artifacts. The
bucket must
be in the same
 account and
Region of the
EC2 instance.
All artifacts
will be create
d with a prefix
of applicati
on-transf
ormation .

TRUE

Runbook parameters 62

AWS App2Container User Guide

Parameter
name

Type Description Default value Required

OutputEnc
ryptionKey

String The ARN of
a customer
managed KMS
key to use
for server-si
de encryptio
n. For more
information, see
Protecting data
with server-si
de encryption
in the Amazon
Simple Storage
Service User
Guide.

FALSE

InstanceId String An EC2 instance
ID with applicati
ons to be
assessed for
 replatforming.
Only running
applications are
assessed.

TRUE

Running the automation

You can run the automation from the Systems Manager console.

To run the automation

1. Access the AWS Systems Manager Automation console at https://console.aws.amazon.com/
systems-manager/automation.

Running the automation 63

https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html
https://console.aws.amazon.com/systems-manager/automation
https://console.aws.amazon.com/systems-manager/automation

AWS App2Container User Guide

2. Choose Execute automation.

3. Under Automation runbook, enter AWSApp2Container-ReplatformApplications, and
search the repository.

4. Choose the AWSApp2Container-ReplatformApplications runbook, then choose Next.

5. Enter the required parameters, and any optional ones you require:

a. For AutomationAssumeRole, enter the ARN of the service role you created previously.

b. For EnableContainerization, specify TRUE if you want your containerized
applications pushed to Amazon ECR.

c. For OutputLocation, specify the S3 path to upload artifacts to.

d. For OutputEncryptionKey, you can specify the ARN of a KMS key if you want to encrypt
the uploaded objects with your customer managed key.

e. For InstanceId, specify the instance ID for the automation to take action on.

6. Choose Execute.

Reviewing output from the automation

Once the automation has completed, you can access the output in the S3 location that you
provided.

To review output from the automation

1. Access the AWS Systems Manager Automation console at https://console.aws.amazon.com/
systems-manager/automation.

2. Choose the Execution ID to review.

3. Select Outputs and review the Finalize.report output.

4. For more details, review the text file indicated in the Finalize.reportS3Location output.

Complete the modernization process

You can complete the modernization process using AWS Migration Hub Orchestrator to create
a workflow based on the Replatform applications to Amazon ECS template to deploy your
applications on Amazon ECS on AWS Fargate. This template can use the application artifacts
App2Container uploaded to Amazon S3. For more information, see Replatform applications to
Amazon ECS in the AWS Migration Hub Orchestrator User Guide.

Reviewing output from the automation 64

https://console.aws.amazon.com/systems-manager/automation
https://console.aws.amazon.com/systems-manager/automation
https://docs.aws.amazon.com/migrationhub-orchestrator/latest/userguide/replatform-to-ecs.html
https://docs.aws.amazon.com/migrationhub-orchestrator/latest/userguide/replatform-to-ecs.html

AWS App2Container User Guide

To continue the containerization process without Migration Hub Orchestrator, you can use the
App2Container CLI extraction and containerization process. For more information, see Step 4:
Transform your application.

After performing the containerization process with App2Container, continue with the deployment
phase to complete the modernization process. You can use either App2Container or proprietary
deployment tools. If you use the App2Container CLI, you can generate the required AWS
CloudFormation templates. For more information about deploying your containerized application
using App2Container, see Step 5: Deploy your application.

Complete the modernization process 65

AWS App2Container User Guide

Configuring your application

Containerizing your application and creating pipelines with App2Container requires configuration
throughout the process. This section of the guide describes the configuration files that are created
by app2container commands, the fields that they contain, and which fields are configurable.
App2Container commands primarily generate JSON configuration files, using standard JSON
notation. Field details for the files included here indicate where there are specific requirements for
the values.

App2Container also generates YAML format CloudFormation templates when you run the generate
app-deployment command. However, those are not covered in this section, as their content is
dictated by the target container management environment, such as Amazon ECS, Amazon EKS, or
AWS App Runner. For more information about how App2Container works with these services, see
Product and service integrations for AWS App2Container.

Creating IAM resources is also covered separately, under the Security section. For more information
and instructions about how to set up IAM resources for App2Container, see Identity and access
management in App2Container.

You can consolidate your containerization workload by configuring connections to your application
servers to run containerization workflows remotely, using App2Container remote commands from
your worker machine. Prior to running remote commands, you must configure the connections that
the worker machine uses for its target application servers. For more information on configuring
connections, see the remote configure command reference page.

Contents

• Manage secrets for AWS App2Container

• Configuring application containers

• Configuring container deployment

• Configuring container pipelines

Manage secrets for AWS App2Container

App2Container uses AWS Secrets Manager to manage the credentials necessary to connect your
worker machine to application servers and run remote commands. Secrets Manager encrypts
your secrets for storage and provides an Amazon Resource Name (ARN) so that you can access

Manage secrets 66

AWS App2Container User Guide

the secret. When you run the remote configure command, you provide the secret ARN that
App2Container uses to connect to your target server when you run the remote command.

For more information about Secrets Manager, see What Is AWS Secrets Manager? For information
specifically related to costs, see Pricing for AWS Secrets Manager in the AWS Secrets Manager User
Guide.

Create remote access secrets

The secret that App2Container uses to connect to an application server varies with the application
server's operating system (OS) platform. To create a remote access secret for your application
server, choose the tab that matches your OS platform.

Linux

For Linux, you can store either the SSH private key or the Certificate and SSH private key in
Secrets Manager. To create a secret in Secrets Manager so that you can access your application
server remotely, follow the steps shown in the Create a secret page in the AWS Secrets Manager
User Guide. Provide the information that App2Container needs to run remote commands as
follows.

Step 1 Choose secret type

• Secret type – To store a key that App2Container uses programmatically, through API calls,
choose the Other type of secrets option.

• Specify the following Key/value pairs to store in the secret. To add the next key/value pair,
choose + Add row.

Username key

• Key name (box 1): username

• Key value (box 2): Enter the plaintext username value to use with SSH.

SSH private key

• Key name (box 1): key

• Key value (box 2): Copy the base64-encoded string that represents your private key file
into the second box.

Create remote access secrets 67

https://docs.aws.amazon.com/secretsmanager/latest/userguide/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html#asm_pricing
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS App2Container User Guide

Note

To base64-encode your key file, you can use the following command, where .ssh/
id_rsa is the private key that encodes the file:

$ base64 .ssh/id_rsa

SSH Certificate key (optional)

• Key name (box 1): cert

• Key value (box 2): Copy the base64-encoded string that represents your signed certificate
file into the second box.

Note

To base64-encode your signed certificate file, you can use the following command,
where .ssh/id_rsa-cert.pub is the private key that encodes the file:

$ base64 .ssh/id_rsa-cert.pub

Step 2 Configure secret

• Enter a name for your secret in the Secret name box. You can also enter optional information
to help identify your secret, such as Description, or you can enter tags in the Tags panel.

Windows

For Windows application servers, you can store the Username and Password for remote access.
In most cases, the username and password translates to a set of credentials for a domain user
with access to the application servers. Create a secret page in the AWS Secrets Manager User
Guide

Step 1 Choose secret type

• Secret type – To store a key that App2Container uses programmatically, through API calls,
choose the Other type of secrets option.

Create remote access secrets 68

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS App2Container User Guide

• Specify the following Key/value pairs to store in the secret. To add the next key/value pair,
choose + Add row.

Username key

• Key name (box 1): username

• Key value (box 2): In the second box, enter the plaintext username value to use with the
connection credentials for your application server.

Password key

• Key name (box 1): password

• Key value (box 2): In the second box, enter the password value.

Step 2 Configure secret

• Enter a name for your secret in the Secret name box. You can also enter optional information
to help identify your secret, such as Description, or you can enter tags in the Tags panel.

Create secrets for Jenkins pipelines

Integration with Jenkins requires secure authentication, both for the Git repository that Jenkins
uses for automated container build pipelines, and for authentication to the Jenkins server itself.
For secure authentication, App2Container uses Secrets Manager to store credentials, and provide
access to the authentication secrets to Jenkins agent nodes.

Jenkins secrets

• Authentication secret for Git

• Authentication secret for Jenkins server

Authentication secret for Git

App2Container uses SSH to authenticate to the Git source repository that the Jenkins agent uses
to update your pipeline. In the pipeline.json file, you provide the ARN from the authentication
secret you create, in the sshKeyArn parameter value.

To create a secret in Secrets Manager so that App2Container can authenticate to the Git repository
for the Jenkins agent, follow the steps shown in the Create a secret page in the AWS Secrets

Create secrets for Jenkins pipelines 69

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS App2Container User Guide

Manager User Guide. Provide the information that App2Container needs to authenticate to the Git
source repository as follows.

Step 1 Choose secret type

• Secret type – To store a key that App2Container uses programmatically, through API calls,
choose the Other type of secrets option.

• Specify the following Key/value pairs to store in the secret. To add the next key/value pair,
choose + Add row.

Username key

• Key name (box 1): username

• Key value (box 2): In the second box, enter the plaintext username value that App2Container
uses with SSH to authenticate to the Git source repository for Jenkins.

Username key

• Key name (box 1): key

• Key value (box 2): In the second box, copy the base64-encoded string that represents your
private key file.

Note

To base64-encode your key file, you can use the following command, where .ssh/
id_rsa is the private key that encodes the file:

$ base64 .ssh/id_rsa

Step 2 Configure secret

• Enter a name for your secret in the Secret name box. You can also enter optional information to
help identify your secret, such as Description, or you can enter tags in the Tags panel.

Authentication secret for Jenkins server

Just as App2Container needs credentials to interact with AWS services on your behalf, so
it also needs credentials to interact with the Jenkins server that runs your pipelines. In the

Create secrets for Jenkins pipelines 70

AWS App2Container User Guide

pipeline.json file, you provide the ARN from the authentication secret you create, in the
apiTokenArn parameter value.

Generate a Jenkins authentication token

Before you store your Jenkins authentication secrets in Secrets Manager, generate an API token
from your Jenkins server. To generate a Jenkins API authentication token, follow these steps:

1. Log in to your Jenkins server.

2. In the upper right corner of the interface, choose your name.

3. From the left side navigation menu, choose Configure .

4. In the API Token panel, choose Add new Token.

5. After Jenkins generates the token, give it a name. Keep track of the name. You will need it for
the secret key you enter in Secrets Manager.

6. Choose the copy icon to copy the token value, or select and copy the value manually. You will
need it for the secret value that you enter in Secrets Manager You can't see the value again
after you log out of Jenkins.

Note

Ensure that you revoke tokens that you no longer need.

Store your Jenkins authentication token in Secrets Manager

To create a secret in Secrets Manager for the Jenkins authentication token, follow the steps shown
in the Create a secret page in the AWS Secrets Manager User Guide. Provide the information that
App2Container needs to authenticate to the Jenkins server that runs your pipelines as follows.

Step 1 Choose secret type

• Secret type – To store a key that App2Container uses programmatically, through API calls,
choose the Other type of secrets option.

• Specify the following Key/value pairs to store in the secret. To add the next key/value pair,
choose + Add row.

Username key

• Key name (box 1): username

Create secrets for Jenkins pipelines 71

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS App2Container User Guide

• Key value (box 2): In the second box, enter the plaintext username value so that
App2Container can log in to the Jenkins server.

Username key

• Key name (box 1): apitoken

• Key value (box 2): In the second box, copy the base64-encoded string that represents your
Jenkins authentication token.

Note

To base64-encode a string, you can use the following command:

$ echo string-to-encode | base64

Step 2 Configure secret

• Enter a name for your secret in the Secret name box. You can also enter optional information to
help identify your secret, such as Description, or you can enter tags in the Tags panel.

Create secrets for Microsoft Azure DevOps pipelines

To integrate with Azure Repos Git repositories and Azure DevOps pipelines, App2Container uses
secure authentication. App2Container authenticates with a Microsoft Azure Personal Access Token
(PAT) that you store as a secret in Secrets Manager.

In the apiTokenArn parameter value of the pipeline.json file, provide the ARN from the
authentication secret that you create.

Generate a Microsoft Azure Personal Access Token (PAT)

Before you generate a Personal Access Token (PAT), you first must have an active Microsoft Azure
account, with an organization and project already defined. For more information about how to set
up Azure DevOps, see Prerequisites.

To generate a PAT for your Microsoft Azure account, sign in to your Azure organization and create
a new token with a Custom defined scope. For instructions, see Create a PAT in the Azure DevOps

Create secrets for Microsoft Azure DevOps pipelines 72

https://docs.microsoft.com/en-us/azure/devops/organizations/accounts/use-personal-access-tokens-to-authenticate?view=azure-devops#create-a-pat

AWS App2Container User Guide

Services documentation on the Microsoft documentation website. Choose the settings for your
custom scope as follows.

• Agent Pools: Read and manage

• Build: Read and execute

• Code: Full

• Extensions: Read and manage

• Release: Read, write, execute, and manage

• Service Connections: Read and query

Note

If you don't see all of the settings, choose Show all scopes to show the complete list.

Store your PAT in Secrets Manager

To create a secret in Secrets Manager for the PAT, follow the procedure on the Create a secret
page in the AWS Secrets Manager User Guide. To access the Azure Repos Git repository, and Azure
DevOps, provide the information that App2Container needs to authenticate to Microsoft Azure, as
follows.

Step 1 Choose secret type

• Secret type – To store a key that App2Container uses programmatically, through API calls,
choose the Other type of secrets option.

• Specify the following Key/value pair to store in the secret.

PAT key

• Key name (box 1): azure-personal-access-token

• Key value (box 2): Paste a copy of the token string that the Azure DevOps service generated.

Step 2 Configure secret

• Enter a name for your secret in the Secret name box. You can also enter optional information to
help identify your secret, such as Description, or you can enter tags in the Tags panel.

Create secrets for Microsoft Azure DevOps pipelines 73

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS App2Container User Guide

Configuring application containers

When you run the analyze command, an analysis.json file is created for the application that is
specified in the --application-id parameter. The containerize command uses this file to build
the application container image and to generate artifacts.

You can configure the fields in the containerParameters section before running the
containerize command to customize your application container. For configurable key/value pairs
that do not apply to your container, set string values to an empty string, numeric values to zero,
and Boolean values to false.

Containers running on Linux

For applications running on Linux, the application analysis.json file includes the following
content:

Read-only data

• Control fields – Fields having to do with file creation, such as template version, and the file
creation timestamp.

• analysisInfo – System dependencies for the application.

Configurable data

The containerParameters section contains the following fields:

• imageRepository (string, required) – The name of the repository where the application container
image is stored.

• imageTag (string, required) – A tag for the build version of the application container image.

• containerBaseImage (string) – The base operating system (OS) image for the container build. By
default, App2Container uses the operating system from the application server or worker machine
where containerization runs.

Note

If specified, this must be an image name from your registry in the format <image
name>[:<tag>], and it must match the operating system platform and version that runs

Configure containers 74

AWS App2Container User Guide

on the application server or worker machine where containerization runs. The tag is
optional if the repository supports "latest".

• appExcludedFiles (array of strings) – Specific files and directories to exclude from the container
build.

• appSpecificFiles (array of strings) – Specific files and directories to include in the container build.

• applicationPort (number) – The application port exposed inside of the container. This port is
tested for a successful HTTP response during pre-validation when the containerize command
runs. App2Container assigns this as the default exposed port when creating a load balancer
during deployment.

• applicationMode (Boolean, required) – The approach that App2Container uses to determine
which files to include in your container image. App2Container uses application mode
(value=true) for supported application frameworks, and process mode (value=false) for all other
configurations.

You can override this value if necessary. For example, if your application is running on a
supported framework, but App2Container did not recognize it and therefore assigned process
mode, you can override the setting to use application mode instead.

Application mode settings

• true (application mode): For supported application frameworks, App2Container targets
only the application files and dependencies that are needed for containerization, thereby
minimizing the size of the resulting container image. This is known as application mode.
Supported application frameworks include: Tomcat, TomEE, and JBoss (standalone mode).

• false (process mode): If App2Container does not find a supported framework running on
your application server, or if you have other dependent processes running on your server,
App2Container takes a conservative approach to identifying dependencies. This is known as
process mode. For process mode, all non-system files on the application server are included in
the container image.

Tip

If your application container image includes unnecessary files, or is missing files that
should be included, use the following parameters to make corrections:

• To specify files to exclude from your application container image, use the
appExcludedFiles parameter.

Configure containers 75

AWS App2Container User Guide

• To add files that were missed, use the appSpecificFiles parameter.

• logLocations (array of strings) – Specific log files or log directories to be routed to stdout. This
enables applications that write to log files on the host to be integrated with AWS services such as
CloudWatch and Firehose.

• enableDynamicLogging (Boolean, required) – Maps application logs to stdout as they are
created. If set to true, requires log directories to be entered in logLocations.

• dependencies (array of strings) – A listing of all dependent processes or applications found for
the application ID by the analyze command. You can remove specific dependencies to exclude
them from the container.

Examples

The following examples show an analysis.json file for an application running on Linux. Choose
the tab that matches your application.

Java

This example shows an analysis.json file for a Java application running on Linux.

{
 "a2CTemplateVersion": "",
 "createdTime": "",
 "containerParameters": {
 "_comment1": "*** EDITABLE: The below section can be edited according
 to the application requirements. Please see the analysisInfo section below for
 details discovered regarding the application. ***",
 "imageRepository": "java-tomcat-6e6f3a87",
 "imageTag": "latest",
 "containerBaseImage": "ubuntu:18.04",
 "appExcludedFiles": [],
 "appSpecificFiles": [],
 "applicationPort": 5000,
 "applicationMode": true,
 "logLocations": [],
 "enableDynamicLogging": false,
 "dependencies": []
 },
 "analysisInfo": {
 "_comment2": "*** NON-EDITABLE: Analysis Results ***",

Configure containers 76

AWS App2Container User Guide

 "processId": 2065,
 "appId": "java-tomcat-6e6f3a87",
 "userId": "1000",
 "groupId": "1000",
 "cmdline": [
 "/usr/bin/java",
 "... list of commands",
 "start"
],
 "osData": {
 "BUG_REPORT_URL": "",
 "HOME_URL": "",
 "ID": "ubuntu",
 "ID_LIKE": "debian",
 "NAME": "Ubuntu",
 "PRETTY_NAME": "Ubuntu 18.04.2 LTS",
 "PRIVACY_POLICY_URL": "",
 "SUPPORT_URL": "",
 "UBUNTU_CODENAME": "",
 "VERSION": "",
 "VERSION_CODENAME": "",
 "VERSION_ID": "18.04"
 },
 "osName": "ubuntu",
 "ports": [
 {
 "localPort": 8080,
 "protocol": "tcp6"
 },
 {
 "localPort": 8009,
 "protocol": "tcp6"
 },
 {
 "localPort": 8005,
 "protocol": "tcp6"
 }
],
 "Properties": {
 "catalina.base": "<application directory>",
 "catalina.home": "<application directory>",
 "classpath": "<application directory>/bin/bootstrap.jar:...
 etc.",
 "ignore.endorsed.dirs": "",

Configure containers 77

AWS App2Container User Guide

 "java.io.tmpdir": "<application directory>/temp",
 "java.protocol.handler.pkgs":
 "org.apache.catalina.webresources",
 "java.util.logging.config.file": "<application directory>/conf/
logging.properties",
 "java.util.logging.manager":
 "org.apache.juli.ClassLoaderLogManager",
 "jdk.tls.ephemeralDHKeySize": "2048",
 "jdkVersion": "11.0.7",
 "org.apache.catalina.security.SecurityListener.UMASK": ""
 },
 "AdvancedAppInfo": {
 "Directories": {
 "base": "<application directory>",
 "bin": "<application directory>/bin",
 "conf": "<application directory>/conf",
 "home": "<application directory>",
 "lib": "<application directory>/lib",
 "logConfig": "<application directory>/conf/
logging.properties",
 "logs": "<application directory>/logs",
 "tempDir": "<application directory>/temp",
 "webapps": "<application directory>/webapps",
 "work": "<application directory>/work"
 },
 "distro": "java-tomee",
 "flavor": "plume",
 "jdkVersion": "11.0.7",
 "version": "8.0.0"
 },
 "env": {
 "HOME": "... Java Home directory",
 "JDK_JAVA_OPTIONS": "",
 "LANG": "C.UTF-8",
 "LC_TERMINAL": "iTerm2",
 "LC_TERMINAL_VERSION": "3.3.11",
 "LESSCLOSE": "/usr/bin/lesspipe %s %s",
 "LESSOPEN": "| /usr/bin/lesspipe %s",
 "LOGNAME": "ubuntu",
 "LS_COLORS": "",
 "MAIL": "",
 "OLDPWD": "",
 "PATH": "... server PATH",
 "PWD": "",

Configure containers 78

AWS App2Container User Guide

 "SHELL": "/bin/bash",
 "SHLVL": "1",
 "SSH_CLIENT": "",
 "SSH_CONNECTION": "",
 "SSH_TTY": "",
 "TERM": "",
 "USER": "ubuntu",
 "XDG_DATA_DIRS": "",
 "XDG_RUNTIME_DIR": "",
 "XDG_SESSION_ID": "1",
 "_": "bin/startup.sh"
 },
 "cwd": "",
 "procUID": {
 "euid": "1000",
 "suid": "1000",
 "fsuid": "1000",
 "ruid": "1000"
 },
 "procGID": {
 "egid": "1000",
 "sgid": "1000",
 "fsgid": "1000",
 "rgid": "1000"
 },
 "userNames": {
 "1000": "ubuntu"
 },
 "groupNames": {
 "1000": "ubuntu"
 },
 "fileDescriptors": [
 "<application directory>/logs/... log files",
 "<application directory>/lib/... jar files",
 "... etc.",
 "/usr/lib/jvm/.../lib/modules"
],
 "dependencies": {}
 }
}

Configure containers 79

AWS App2Container User Guide

ASP.NET generic

This example shows an analysis.json file for an ASP.NET generic application running on
Linux.

{
 "a2CTemplateVersion": "1.0",
 "createdTime": "2021-11-24 18:49:1224",
 "containerParameters": {
 "_comment1": "*** EDITABLE: The below section can be edited according
 to the application requirements. Please see the analysisInfo section below for
 details discovered regarding the application. ***",
 "imageRepository": "dotnet-generic-a27b2829",
 "imageTag": "latest",
 "containerBaseImage": "mcr.microsoft.com/dotnet/sdk:5.0",
 "appExcludedFiles": [
 "/root/.aws"
],
 "appSpecificFiles": [],
 "applicationPort": 5000,
 "applicationMode": true,
 "logLocations": [],
 "enableDynamicLogging": false,
 "dependencies": []
 },
 "analysisInfo": {
 "_comment2": "*** NON-EDITABLE: Analysis Results ***",
 "processId": 1,
 "appId": "dotnet-generic-a27b2829",
 "userId": "0",
 "groupId": "0",
 "cmdline": [
 "/usr/bin/dotnet",
 "/root/nopCommerce440/Nop.Web.dll"
],
 "webApp": "",
 "osData": {
 "BUG_REPORT_URL": "https://bugs.launchpad.net/ubuntu/",
 "HOME_URL": "https://www.ubuntu.com/",
 "ID": "ubuntu",
 "ID_LIKE": "debian",
 "NAME": "Ubuntu",
 "PRETTY_NAME": "Ubuntu 20.04.3 LTS",

Configure containers 80

AWS App2Container User Guide

 "PRIVACY_POLICY_URL": "https://www.ubuntu.com/legal/terms-and-
policies/privacy-policy",
 "SUPPORT_URL": "https://help.ubuntu.com/",
 "UBUNTU_CODENAME": "focal",
 "VERSION": "20.04.3 LTS (Focal Fossa)",
 "VERSION_CODENAME": "focal",
 "VERSION_ID": "20.04"
 },
 "osName": "ubuntu",
 "ports": [
 {
 "localPort": 5000,
 "protocol": "tcp"
 }
],
 "Properties": null,
 "applicationType": "dotnet-generic",
 "AdvancedAppInfo": {
 "Directories": {
 "dotnetApp": "/root/nopCommerce440"
 },
 "dotnetVersion": "5.0"
 },
 "env": {
 "HOME": "/root",
 "HOSTNAME": "678f90a12bc3",
 "PATH": "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "TERM": "xterm",
 "TZ": "Etc/UTC"
 },
 "cwd": "",
 "exe": "/usr/share/dotnet/dotnet",
 "procUID": {
 "euid": "0",
 "suid": "0",
 "fsuid": "0",
 "ruid": "0"
 },
 "procGID": {
 "egid": "0",
 "sgid": "0",
 "fsgid": "0",
 "rgid": "0"
 },

Configure containers 81

AWS App2Container User Guide

 "userNames": {
 "0": "root"
 },
 "groupNames": {
 "0": "root"
 },
 "fileDescriptors": [
 "/dev/pts/0",
 "/root/nopCommerce440/AdvancedStringBuilder.dll",
 "/root/nopCommerce440/AutoMapper.dll",
 "... etc.",
 "/root/nopCommerce440/netstandard.dll"
],
 "dependencies": {}
 }
}

ASP.NET single file

This example shows an analysis.json file for an ASP.NET single file application running on
Linux.

{
 "a2CTemplateVersion": "1.0",
 "createdTime": "2021-11-29 07:08:2929",
 "containerParameters": {
 "_comment1": "*** EDITABLE: The below section can be edited according
 to the application requirements. Please see the analysisInfo section below for
 details discovered regarding the application. ***",
 "imageRepository": "dotnet-single-c2930d3132",
 "imageTag": "latest",
 "containerBaseImage": "mcr.microsoft.com/dotnet/sdk:latest",
 "appExcludedFiles": [
 "/root/.aws"
],
 "appSpecificFiles": [],
 "applicationPort": 5000,
 "applicationMode": true,
 "logLocations": [],
 "enableDynamicLogging": false,
 "dependencies": []
 },
 "analysisInfo": {

Configure containers 82

AWS App2Container User Guide

 "_comment2": "*** NON-EDITABLE: Analysis Results ***",
 "processId": 1,
 "appId": "dotnet-single-c2930d3132",
 "userId": "0",
 "groupId": "0",
 "cmdline": [
 "./MyCoreWebApp.5"
],
 "webApp": "",
 "osData": {
 "BUG_REPORT_URL": "https://bugs.launchpad.net/ubuntu/",
 "HOME_URL": "https://www.ubuntu.com/",
 "ID": "ubuntu",
 "ID_LIKE": "debian",
 "NAME": "Ubuntu",
 "PRETTY_NAME": "Ubuntu 20.04.3 LTS",
 "PRIVACY_POLICY_URL": "https://www.ubuntu.com/legal/terms-and-
policies/privacy-policy",
 "SUPPORT_URL": "https://help.ubuntu.com/",
 "UBUNTU_CODENAME": "focal",
 "VERSION": "20.04.3 LTS (Focal Fossa)",
 "VERSION_CODENAME": "focal",
 "VERSION_ID": "20.04"
 },
 "osName": "ubuntu",
 "ports": [
 {
 "localPort": 5000,
 "protocol": "tcp"
 }
],
 "Properties": null,
 "applicationType": "dotnet-single",
 "AdvancedAppInfo": {
 "Directories": {
 "dotnetApp": "/root/mycorewebapp"
 },
 "dotnetVersion": "latest"
 },
 "env": {
 "HOME": "/root",
 "HOSTNAME": "a1bc23d4567e",
 "PATH": "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "TERM": "xterm",

Configure containers 83

AWS App2Container User Guide

 "TZ": "Etc/UTC"
 },
 "cwd": "/root/mycorewebapp",
 "exe": "/root/mycorewebapp/MyCoreWebApp.5",
 "procUID": {
 "euid": "0",
 "suid": "0",
 "fsuid": "0",
 "ruid": "0"
 },
 "procGID": {
 "egid": "0",
 "sgid": "0",
 "fsgid": "0",
 "rgid": "0"
 },
 "userNames": {
 "0": "root"
 },
 "groupNames": {
 "0": "root"
 },
 "fileDescriptors": [
 "/dev/pts/0",
 "/root/mycorewebapp/MyCoreWebApp.5"
],
 "dependencies": {}
 }
}

Containers running on Windows

For applications running on Windows, the application analysis.json file includes the following
content:

Read-only data

• Control fields – Fields having to do with file creation, such as template version, and the file
creation timestamp.

• analysisInfo – System dependencies for the application.

Configure containers 84

AWS App2Container User Guide

Configurable data

The containerParameters section contains the following fields:

• containerBaseImage (string) – The base operating system (OS) image for the container build. By
default, App2Container uses the operating system from the application server or worker machine
where containerization runs.

Note

If specified, this must be an image name from your registry in the format <image
name>[:<tag>], and it must match the operating system platform and version that runs
on the application server or worker machine where containerization runs. The tag is
optional if the repository supports "latest".

• enableServerConfigurationUpdates (Boolean, required) – Provides an option in the Dockerfile to
restore the application configuration of the source server.

• imageRepositoryName (string, required) – The name of the repository where the application
container image is stored.

• imageTag (string, required) – A tag for the build version of the application container image.

• additionalExposedPorts (array of numbers) – Additional port numbers that should be exposed
inside of the application container.

• appIncludedFiles (array of strings) – Specific files and directories to include in the container
build.

• appExcludedFiles (array of strings) – Specific files and directories to exclude from the container
build.

• enableLogging (Boolean, required) – Enables dynamic logging, redirecting application logs to
container stdout.

• includedWebApps (array of strings) – The application IDs for web applications running under the
IIS site that should be included in the container image. Applications must have been running in IIS
during inventory and analysis.

• additionalApps (array of strings) – For the analysis.json file that describes the root
application in a complex Windows .NET application, these are the additional application or
service components to include in the application container. You can include up to five additional
application components in the array.

Configure containers 85

AWS App2Container User Guide

Examples

The following examples show an analysis.json file for a .NET application running on Windows.
Your analysis.json file configuration can vary by the type of .NET application you are
migrating, its dependencies, and whether you want it to run in a single container or in multiple
containers. Choose the tab that matches your .NET configuration.

Simple

The following example shows an analysis.json file for a simple .NET application running on
Windows.

{
 "a2CTemplateVersion": "3.1",
 "createdTime": "",
 "containerParameters": {
 "_comment": "*** EDITABLE: The below section can be edited according to the
 application requirements. Please see the Analysis Results section further below for
 details discovered regarding the application. ***",
 "containerBaseImage": "mcr.microsoft.com/dotnet/framework/aspnet:4.7.2-
windowsservercore-ltsc2019",
 "enableServerConfigurationUpdates": true,
 "imageRepositoryName": "iis-smarts-51d2dbf8",
 "imageTag": "latest",
 "additionalExposedPorts": [
],
 "appIncludedFiles": [

],
 "appExcludedFiles": [
],
 "enableLogging": false,
 "additionalApps": [
]
 },
 "analysisInfo": {
 "_comment": "*** NON-EDITABLE: Analysis Results ***",
 "hostInfo": {
 "os": "...",
 "osVersion": "...",
 "osWindowsDirectory": "...",
 "arch": "..."
 },

Configure containers 86

AWS App2Container User Guide

 "appId": "iis-smarts-51d2dbf8",
 "appServerIp": "localhost",
 "appType": "IIS",
 "appName": "smarts",
 "ports": [
 {
 "localPort": 90,
 "protocol": "http"
 }
],
 "features": [
 "File-Services",
 "FS-FileServer",
 "Web-Http-Tracing",
 "Web-Basic-Auth",
 "Web-Digest-Auth",
 "Web-Url-Auth",
 "Web-Windows-Auth",
 "Web-ASP",
 "Web-CGI",
 "Web-Mgmt-Tools",
 "Web-Mgmt-Console",
 "Web-Scripting-Tools",
 "FS-SMB1",
 "User-Interfaces-Infra",
 "Server-Gui-Mgmt-Infra",
 "Server-Gui-Shell",
 "PowerShell-ISE"
],
 "appPoolName": "smarts",
 "poolIdentityType": "ApplicationPoolIdentity",
 "dotnetVersion": "v4.0",
 "iisVersion": "IIS 10.0",
 "sitePhysicalPath": "<IIS web root directory>\\smarts",
 "discoveredWebApps": [
],
 "reportPath": "<application output directory>\\iis-smarts-51d2dbf8\\report.txt",
 "isSiteUsingWindowsAuth": false,
 "serverBackupFile": "<application directory>\\Web Deploy Backups\\... backup zip
 file"
 }
}

Configure containers 87

AWS App2Container User Guide

Complex – one container

In this scenario, each application or service has its own analysis.json file, but the root
application references the application ID for the service in the additionalApps array. This
results in a single container that includes both the root application and the service when you
run the containerize command.

• Root application

The following example shows the analysis.json file for the root application.

 {
 "a2CTemplateVersion": "1.0",
 "createdTime": "2021-06-25-05:18:24",
 "containerParameters": {
 "_comment": "*** EDITABLE: The below section can be edited according to the
 application requirements. Please see the Analysis Results section further below
 for details discovered regarding the application. ***",
 "containerBaseImage": "",
 "enableServerConfigurationUpdates": true,
 "imageRepositoryName": "iis-colormvciis-b69c09ab",
 "imageTag": "latest",
 "additionalExposedPorts": [
],
 "appIncludedFiles": [
],
 "appExcludedFiles": [
],
 "enableLogging": false,
 "includedWebApps": [
],
 "additionalApps": [
 "service-colorwindowsservice-69f90194"
]
 },
 "analysisInfo": {
 "_comment": "*** NON-EDITABLE: Analysis Results ***",
 "hostInfo": {
 "os": "Microsoft Windows Server 2019 Datacenter",
 "osVersion": "10.0.17763",
 "osWindowsDirectory": "C:\\Windows",
 "arch": "64-bit"
 },

Configure containers 88

AWS App2Container User Guide

 "appId": "iis-colormvciis-b69c09ab",
 "appServerIp": "localhost",
 "appType": "IIS",
 "appName": "colorMvcIIs",
 "ports": [
 {
 "localPort": 82,
 "protocol": "http"
 }
],
 "features": [
 "Web-Http-Redirect",
 "Web-Custom-Logging",
 "... etc."
],
 "appPoolName": "colorMVC",
 "poolIdentityType": "ApplicationPoolIdentity",
 "dotNetVersion": "v4.0",
 "iisVersion": "IIS 10.0",
 "sitePhysicalPath": "C:\\colorMvcIis",
 "discoveredWebApps": [
],
 "siteUsesWindowsAuth": false,
 "serverBackupFile": "<application directory>\\Web Deploy Backups\\... backup
 zip file",
 "reportPath": "<application output directory>\\iis-colormvciis-b69c09ab\
\report.txt"
 }
}

• Windows service

The following example shows the analysis.json file for the Windows service that is
included in the application container.

{
 "a2CTemplateVersion": "1.0",
 "createdTime": "2021-07-09-04:16:58",
 "containerParameters": {
 "_comment": "*** EDITABLE: The below section can be edited according to the
 application requirements. Please see the Analysis Results section further below
 for details discovered regarding the application. ***",
 "containerBaseImage": "",

Configure containers 89

AWS App2Container User Guide

 "enableServerConfigurationUpdates": true,
 "imageRepositoryName": "service-colorwindowsservice-69f90194",
 "imageTag": "latest",
 "additionalExposedPorts": [
],
 "appIncludedFiles": [
],
 "appExcludedFiles": [
],
 "enableLogging": false,
 "additionalApps": [
]
 },
 "analysisInfo": {
 "_comment": "*** NON-EDITABLE: Analysis Results ***",
 "hostInfo": {
 "os": "Microsoft Windows Server 2019 Datacenter",
 "osVersion": "10.0.17763",
 "osWindowsDirectory": "C:\\Windows",
 "arch": "64-bit"
 },
 "appId": "service-colorwindowsservice-69f90194",
 "appServerIp": "localhost",
 "appType": "service",
 "appName": "colorwindowsservice",
 "ports": [
 {
 "localPort": 33335,
 "protocol": "TCP"
 }
],
 "features": [
 "Web-Http-Redirect",
 "Web-Custom-Logging",
 "... etc."
],
 "serviceName": "colorwindowsservice",
 "serviceBinary": "ColorWindowsService.exe",
 "serviceDir": "C:\\COLORCODE\\colorservice-master\\ColorWindowsService\\bin\
\Release\\",
 "cmdline": [
 "C:\\COLORCODE\\colorservice-master\\ColorWindowsService\\bin\\Release\
\ColorWindowsService.exe"
]

Configure containers 90

AWS App2Container User Guide

 }
}

Complex – multiple containers

In this scenario, each application or service has its own analysis.json file, and the
additionalApps array is empty. To create two containers, run the containerize command
twice – once for the root application and once for the service. For container orchestration,
specify the service as a dependent application when you configure the deployment.json file
for the root application.

• Root application

The following example shows the analysis.json file for the root application.

 {
 "a2CTemplateVersion": "1.0",
 "createdTime": "2021-06-25-05:18:24",
 "containerParameters": {
 "_comment": "*** EDITABLE: The below section can be edited according to the
 application requirements. Please see the Analysis Results section further below
 for details discovered regarding the application. ***",
 "containerBaseImage": "",
 "enableServerConfigurationUpdates": true,
 "imageRepositoryName": "iis-colormvciis-b69c09ab",
 "imageTag": "latest",
 "additionalExposedPorts": [
],
 "appIncludedFiles": [
],
 "appExcludedFiles": [
],
 "enableLogging": false,
 "includedWebApps": [
],
 "additionalApps": [
]
 },
 "analysisInfo": {
 "_comment": "*** NON-EDITABLE: Analysis Results ***",
 "hostInfo": {
 "os": "Microsoft Windows Server 2019 Datacenter",

Configure containers 91

AWS App2Container User Guide

 "osVersion": "10.0.17763",
 "osWindowsDirectory": "C:\\Windows",
 "arch": "64-bit"
 },
 "appId": "iis-colormvciis-b69c09ab",
 "appServerIp": "localhost",
 "appType": "IIS",
 "appName": "colorMvcIIs",
 "ports": [
 {
 "localPort": 82,
 "protocol": "http"
 }
],
 "features": [
 "Web-Http-Redirect",
 "Web-Custom-Logging",
 "... etc."
],
 "appPoolName": "colorMVC",
 "poolIdentityType": "ApplicationPoolIdentity",
 "dotNetVersion": "v4.0",
 "iisVersion": "IIS 10.0",
 "sitePhysicalPath": "C:\\colorMvcIis",
 "discoveredWebApps": [
],
 "siteUsesWindowsAuth": false,
 "serverBackupFile": "<application directory>\\Web Deploy Backups\\... backup
 zip file",
 "reportPath": "<application output directory>\\iis-colormvciis-b69c09ab\
\report.txt"
 }
}

• Windows service

The following example shows the analysis.json file for the Windows service that runs in a
separate container.

{
 "a2CTemplateVersion": "1.0",
 "createdTime": "2021-07-09-04:16:58",
 "containerParameters": {

Configure containers 92

AWS App2Container User Guide

 "_comment": "*** EDITABLE: The below section can be edited according to the
 application requirements. Please see the Analysis Results section further below
 for details discovered regarding the application. ***",
 "containerBaseImage": "",
 "enableServerConfigurationUpdates": true,
 "imageRepositoryName": "service-colorwindowsservice-69f90194",
 "imageTag": "latest",
 "additionalExposedPorts": [
],
 "appIncludedFiles": [
],
 "appExcludedFiles": [
],
 "enableLogging": false,
 "additionalApps": [
]
 },
 "analysisInfo": {
 "_comment": "*** NON-EDITABLE: Analysis Results ***",
 "hostInfo": {
 "os": "Microsoft Windows Server 2019 Datacenter",
 "osVersion": "10.0.17763",
 "osWindowsDirectory": "C:\\Windows",
 "arch": "64-bit"
 },
 "appId": "service-colorwindowsservice-69f90194",
 "appServerIp": "localhost",
 "appType": "service",
 "appName": "colorwindowsservice",
 "ports": [
 {
 "localPort": 33335,
 "protocol": "TCP"
 }
],
 "features": [
 "Web-Http-Redirect",
 "Web-Custom-Logging",
 "... etc."
],
 "serviceName": "colorwindowsservice",
 "serviceBinary": "ColorWindowsService.exe",
 "serviceDir": "C:\\COLORCODE\\colorservice-master\\ColorWindowsService\\bin\
\Release\\",

Configure containers 93

AWS App2Container User Guide

 "cmdline": [
 "C:\\COLORCODE\\colorservice-master\\ColorWindowsService\\bin\\Release\
\ColorWindowsService.exe"
]
 }
}

Note

For complex Windows .NET applications, you can also use a hybrid approach, with some
components running together in a single container and other components running in
separate containers.

Configuring container deployment

This topic contains information about the files that are used for configuring deployment of
application containers.

Container deployment files

• deployment.json file

deployment.json file

When you run the containerize command, a deployment.json file is created for the application
specified in the --application-id parameter. The generate app-deployment command uses
this file, along with others, to generate application deployment artifacts. All of the fields in this
file are configurable as needed so that you can customize your application container deployment
before running the generate app-deployment command.

Important

The deployment.json file includes sections for both Amazon ECS and Amazon EKS.
If your application is suitable for App Runner, there is a section for that too. Set the
Boolean value deployment flag for the section that matches your target container
management service to true. Set the other flags to false. The flag to deploy to Amazon ECS

Configure deployment 94

AWS App2Container User Guide

is createEcsArtifacts, the flag to deploy to Amazon EKS is createEksArtifacts,
and the flag to deploy to App Runner is createAppRunnerArtifacts.

The application deployment.json file includes the following content. While all fields
are configurable, the following fields should not be changed: a2CTemplateVersion,
applicationId, and imageName. For key-value pairs that do not apply to your deployment, set
string values to an empty string, numeric values to zero, and Boolean values to false.

• exposedPorts (array of objects, required) – An array of JSON objects representing the ports that
should be exposed when the container is running. Each object consists of the following fields:

• localPort (number) – A port to expose for container communication.

• protocol (string) – The application protocol for the exposed port, for example, "http".

• environment (array of objects) – Environment variables to be passed on to the target container
management deployment. For Amazon ECS deployments, the key-value pairs update the
Amazon ECS task definition. For Amazon EKS deployments, the key-value pairs update the
Kubernetes deployment.yml file.

• ecrParameters (object) – Contains parameters needed to register application container images in
Amazon ECR.

• ecrRepoTag (string, required) – The version tag to use for registering an application container
image in Amazon ECR.

• ecsParameters (object) – Contains parameters needed for deployment to Amazon ECS. The
createEcsArtifacts parameter is always required. Other parameters in this section that are
marked as required apply only to Amazon ECS deployment.

• createEcsArtifacts (Boolean, required) – A flag that indicates if you are targeting Amazon ECS
for deployment.

• ecsFamily (string, required) – An ID for the Amazon ECS family in the Amazon ECS task
definition. We recommend setting this value to the application ID.

• cpu (number, required*) – The hard limit for the number of vCPUs to present for the task.
When the task definition is registered, the number of CPU units is determined by multiplying
the number of vCPUs by 1024.

* This parameter is required for Linux containers, but is not supported for Windows containers.

• memory (number or string, required*) – The hard limit of memory (in MiB) to present to the
task. You can express this value as an integer in the Amazon ECS task definition, using MiB, for

deployment.json file 95

AWS App2Container User Guide

example, 1024. You can also express the value as a string including the unit GB, for example, 1
GB. When the task definition is registered, a GB value is converted to an integer indicating the
MiB.

* This parameter is required for Linux containers, but is not supported for Windows containers.

Note

In the Amazon ECS task definition, task size consists of the cpu and memory
parameters. The configuration for task size, in part, depends on where your tasks are
hosted – on an EC2 instance, or in Fargate. For more information about setting the task
size for your Amazon ECS task definition, see Task definition parameters in the Amazon
Elastic Container Service Developer Guide.

• dockerSecurityOption (string) – For .NET applications, this is the gMSA Credspec location
value for the Amazon ECS task definition.

• enableCloudwatchLogging (Boolean, required*) – A flag that sets the Amazon ECS task
definition to turn on CloudWatch logging for your Windows application container. If set to true,
the enableLogging field in the analysis.json file must have a valid value.

* This parameter is required for Windows containers, but is not supported for Linux containers.

• publicApp (Boolean, required) – A flag to configure the CloudFormation templates with a
public endpoint for your application when it runs.

• stackName (string, required) – A name to use as a prefix to your CloudFormation stack Amazon
Resource Name (ARN). We recommend using the application ID for this.

• resourceTags (array of objects) – Custom tags, expressed as key/value pairs that are added to
resources during deployment. For Amazon ECS deployments, the key-value pairs update the
Amazon ECS task definition.

Note

An example tag is generated when the deployment.json file is created. If the
example tag isn't removed or changed before deployment, it's ignored by default.

• reuseResources (object) – Contains shared resource identifiers that can be used throughout
your CloudFormation templates.

deployment.json file 96

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#task_size

AWS App2Container User Guide

• vpcId (string) – The VPC ID, if you want to bring your own VPC or to reuse an existing VPC
that App2Container created for a prior deployment.

• reuseExistingA2cStack (object) – Contains references so that you can reuse AWS
CloudFormation resources that App2Container has already created.

• cfnStackName (string) – The name or ID (ARN) of the CloudFormation stack created with
App2Container for the containerized application.

• microserviceUriPath (string) – Used to create application forwarding rules in your load
balancer.

Note

The load balancer does not strip off this prefix when it forwards traffic. Your
application must be able to handle requests coming in with the prefix.

• sshKeyPairName (string) – The name of the EC2 key pair to use for the instances that your
container runs on.

• acmCertificateArn (string) – The AWS Certificate Manager certificate ARN used to provide
HTTPS connectivity to your Application Load Balancer.

Note

The certificate can be imported or provisioned as follows:

• To import an IIS certificate into ACM, see How to import PFX-formatted
certificates into AWS Certificate Manager using OpenSSL.

• To provision a certificate in ACM, see Issuing and Managing Certificates in the AWS
Certificate Manager User Guide.

If you use an HTTPS endpoint for your load balancer, this parameter is required. For more
information about ACM, see What is AWS Certificate Manager in the AWS Certificate
Manager User Guide.

• gMSAParameters (object) – Contains parameters used by the CloudFormation template to
create gMSA-related artifacts for .NET applications that are deployed on EC2 instances. The
gMSAParameters are not valid for deployments to Fargate, and will generate an error when
the generate app-deployment command runs.

deployment.json file 97

https://aws.amazon.com/blogs/security/how-to-import-pfx-formatted-certificates-into-aws-certificate-manager-using-openssl/
https://aws.amazon.com/blogs/security/how-to-import-pfx-formatted-certificates-into-aws-certificate-manager-using-openssl/
https://docs.aws.amazon.com/acm/latest/userguide/gs.html
https://docs.aws.amazon.com/acm/latest/userguide/

AWS App2Container User Guide

• domainSecretsArn (string) – The Secrets Manager ARN for the domain credentials to join
the Amazon ECS nodes to gMSA Active Directory.

• domainDNSName (string) – The DNS name of the gMSA Active Directory for Amazon ECS
nodes to join.

• domainNetBIOSName (string) – The NetBIOS name of the Active Directory for Amazon ECS
nodes to join.

• createGMSA (Boolean, required) – A flag to create a group Managed Service Account (gMSA)
Active Directory security group and account, using the name supplied in the gMSAName field.

• gMSAName (string) – The name of the gMSA Active Directory that the container should use
for access.

• deployTarget (string, required) – Identifies which Amazon ECS container launch type runs the
task. Valid values depend on your application environment, as follows:

• .NET applications running on Windows – ec2, fargate.

• Java applications running on Linux – fargate.

Note

The default value that is generated for the deployTarget parameter for .NET
applications running on Windows is ec2. To deploy your application to Fargate, you
can edit the deployment.json file, and change that value to fargate.
If your .NET application meets the following criteria, you can deploy to Fargate.

• The base operating system for your container is Windows 2019. If you are using a
worker machine for containerization, this means that the worker machine must be
running Windows 2019.

• Your application must not use gMSA.

• dependentApps (array of objects) – For complex Windows applications, this array of JSON
objects contains identifying details for dependent applications. App2Container does
not generate this array. For complex Windows applications that incorporate dependent
applications, you must add details to this array for each dependent application. You can
include up to two dependent applications in the array.

• appId (string, required) – The application ID that App2Container generated for this
dependent application.

deployment.json file 98

AWS App2Container User Guide

• privateRootDomain (string, required) – The private domain name that's used for creating
the hosted zone.

• dnsRecordName (string, required) – The DNS record name of the application. This is
combined with the privateRootDomain to construct the endpoint for the dependent
application.

• fireLensParameters (object) – Contains parameters needed to use FireLens with your Linux
application to route your application logs for Amazon ECS tasks. The enableFireLensLogging
parameter is always required. Other parameters in this section that are marked as required apply
only when FireLens is used for log routing.

Note

This section is not included for applications running on Windows.

• enableFireLensLogging (Boolean, required) – A flag for using FireLens for Amazon ECS to
configure application log routing for containers.

• logDestinations (array of objects) – A list of unique target destinations for application log
routing. If more than one destination is configured, App2Container creates a custom file that
contains the FireLens configuration. Otherwise, the destination parameters are used directly in
the Amazon ECS task definition and CloudFormation templates.

• service (string) – The AWS service to route logs to. Valid values are "cloudwatch", "firehose",
and "kinesis".

• regexFilter (string) – A Ruby regular expression to match against log content to determine
where to route the log.

• streamName (string) – The name of the log delivery stream that will be created at the
destination.

• eksParameters (object) – Contains parameters needed for deployment to Amazon EKS. The
createEksArtifacts parameter is always required. Other parameters in this section that are
marked as required apply only to Amazon EKS deployments.

• createEksArtifacts (Boolean, required) – A flag that indicates if you are targeting Amazon EKS
for deployment.

• stackName (string, required) – A name to use as a prefix to your CloudFormation stack ID ARN.
We recommend using the application ID for this.

deployment.json file 99

AWS App2Container User Guide

• cpu (number, required) – The hard limit for the number of vCPUs to present for the application
container. The minimum value is .25, and the maximum value is 1.5. If there are no overrides,
the default value is 1.5.

• memory (number, required) – The hard limit of memory (in MiB) for the application container.
Express this value as an integer, for example, 1024.

• ingress (string, required) – The type of load balancer to use for the deployment. Specify one of
the following values:

• alb – Provisions an Application Load Balancer in the VPC for the deployment.

• nginx – Provisions a Network Load Balancer in the VPC, and an NGINX ingress in the
Kubernetes cluster for the deployment.

Note

If you upgrade from a previous App2Container deployment, the load balancer URL
might change.

• dnsRecordName (string) – The fully qualified domain name (FQDN) for a DNS record for the
deployed application, for example hello.example.com. If you specify this parameter, then
App2Container creates the DNS record in a private hosted zone in Amazon Route 53. If you
also specify the rootDomain parameter, then App2Container creates the DNS record in the
specified root domain.

• applicationPath (string) – The location of the application from the root of the web server, as
accessed from the public URL, for example /my-application.

• reuseResources (object) – Contains shared resource identifiers that can be used throughout
your CloudFormation templates.

• vpcId (string) – The VPC ID, if you want to bring your own VPC or to reuse an existing VPC
that App2Container created for a prior deployment. If you bring a custom VPC, you must
have two or more private subnets in two or more Availability Zones. In this case, you can
optionally have two or more public subnets in the same two Availability Zones.

Note

For each private subnet in the reused VPC, you must configure a route to the internet
using a NAT gateway. For more information about cluster networking for Amazon
EKS, see De-mystifying cluster networking for Amazon EKS worker nodes.

deployment.json file 100

https://aws.amazon.com/blogs/containers/de-mystifying-cluster-networking-for-amazon-eks-worker-nodes/

AWS App2Container User Guide

• cfnStackName (string) – The name or ID (ARN) of the CloudFormation stack created with
App2Container for the containerized application.

• sshKeyPairName (string) – The name of the Amazon EC2 key pair to use for the instances
that your container runs on.

• resourceTags (array of objects) – Custom tags, expressed as key/value pairs that are added
to resources during deployment. For Amazon EKS deployments, the key/value pairs update
the Kubernetes deployment.yml file.

Note

An example tag is generated when the deployment.json file is created. If you
don't remove or change the example tag before deployment, the tag is ignored by
default.

• rootDomain (string) – The name of a root domain (hosted zone) in Amazon Route 53, for
example example.com. If you specify the rootDomain, then App2Container creates the DNS
record that points to it.

• acmCertificateArn (string) – The AWS Certificate Manager certificate ARN used to provide
HTTPS connectivity to your Application Load Balancer. If you don't specify a value for
acmCertificateArn, App2Container can only deploy HTTP applications.

Note

The certificate can be imported or provisioned as follows:

• To import an IIS certificate into ACM, see How to import PFX-formatted
certificates into AWS Certificate Manager using OpenSSL.

• To provision a certificate in ACM, see Issuing and Managing Certificates in the AWS
Certificate Manager User Guide.

If you use an HTTPS endpoint for your load balancer, this parameter is required. For more
information about ACM, see What is AWS Certificate Manager in the AWS Certificate
Manager User Guide.

• gMSAParameters (object) – Contains parameters used by the CloudFormation template to
create gMSA-related artifacts for .NET applications.

deployment.json file 101

https://aws.amazon.com/blogs/security/how-to-import-pfx-formatted-certificates-into-aws-certificate-manager-using-openssl/
https://aws.amazon.com/blogs/security/how-to-import-pfx-formatted-certificates-into-aws-certificate-manager-using-openssl/
https://docs.aws.amazon.com/acm/latest/userguide/gs.html
https://docs.aws.amazon.com/acm/latest/userguide/

AWS App2Container User Guide

• domainSecretsArn (string) – The Secrets Manager ARN for the domain credentials to join
the Amazon EKS nodes to gMSA Active Directory.

• domainDNSName (string) – The DNS name of the gMSA Active Directory for Amazon EKS
nodes to join.

• domainNetBIOSName (string) – The NetBIOS name of the Active Directory for Amazon EKS
nodes to join.

• createGMSA (Boolean, required) – A flag to create a group Managed Service Account (gMSA)
Active Directory security group and account, using the name supplied in the gMSAName field.

• gMSAAccountName (string) – The name of the gMSA Active Directory that the container
should use for access.

• dependentApps (array of objects) – For complex Windows applications, this array of JSON
objects contains identifying details for dependent applications. App2Container does
not generate this array. For complex Windows applications that incorporate dependent
applications, you must add details to this array for each dependent application. You can
include up to two dependent applications in the array.

• appId (string, required) – The application ID that App2Container generated for this
dependent application.

• privateRootDomain (string, required) – The private domain name that's used for creating
the hosted zone.

• dnsRecordName (string, required) – The DNS record name of the application. This is
combined with the privateRootDomain to construct the endpoint for the dependent
application.

• appRunnerParameters (object) – Contains parameters needed for deployment of Linux
applications to an AWS App Runner environment. The createAppRunnerArtifacts parameter
is always required. Other parameters in this section that are marked as required apply only to App
Runner deployments.

Note

This section is not included for applications running on Windows.

• createAppRunnerArtifacts (Boolean, required) – A flag that indicates if you are targeting App
Runner for deployment.

deployment.json file 102

AWS App2Container User Guide

• stackName (string, required) – The name of the AWS CloudFormation stack. We recommend
including the application ID in the stack name.

• serviceName (string, required) – The name of the service in App Runner. We recommend using
the application ID for the service name.

• autoDeploymentsEnabled (Boolean, required) – If set to true, an update to the Amazon ECR
repository also updates the service in App Runner. If set to false, you can manually update the
service using the App Runner console or API, or apprunner commands in the AWS CLI.

• resourceTags (array of objects) – Custom tags, expressed as key/value pairs that are added to
resources during deployment. For App Runner deployments, the key/value pairs update both
of the resources that are created in the apprunner.yml AWS CloudFormation template.

Note

An example tag is generated when the deployment.json file is created. If the
example tag isn't removed or changed before deployment, the tag is ignored by
default.

Note

When the containerize command runs, it determines if your application is suitable for
App Runner, and adds appRunnerParameters to the deployment.json file if it is. If
your application is not suitable for App Runner, the appRunnerParameters are ignored.

Examples

Linux Java application deployed to Amazon ECS

The following example shows a deployment.json file for a Java application running on Linux,
with default settings to deploy to an Amazon ECS environment.

{
 "a2CTemplateVersion": "3.1",
 "applicationId": "java-tomcat-6e6f3a87",
 "imageName": "java-tomcat-6e6f3a87",
 "exposedPorts": [
 {
 "localPort": 8080,

deployment.json file 103

AWS App2Container User Guide

 "protocol": "tcp6"
 },
 {
 "localPort": 8009,
 "protocol": "tcp6"
 },
 {
 "localPort": 8005,
 "protocol": "tcp6"
 }
],
 "environment": [],
 "ecrParameters": {
 "ecrRepoTag": "latest"
 },
 "ecsParameters": {
 "createEcsArtifacts": true,
 "ecsFamily": "java-tomcat-6e6f3a87",
 "cpu": 2,
 "memory": 4096,
 "dockerSecurityOption": "",
 "enableCloudwatchLogging": false,
 "publicApp": true,
 "stackName": "app2container-java-tomcat-6e6f3a87-ECS",
 "resourceTags": [
 {
 "key": "example-key",
 "value": "example-value"
 }
],
 "reuseResources": {
 "vpcId": "",
 "reuseExistingA2cStack": {
 "cfnStackName": "",
 "microserviceUrlPath": ""
 },
 "sshKeyPairName": "",
 "acmCertificateArn": ""
 },
 "gMSAParameters": {
 "createGMSA": false,
 "domainSecretsArn": "",
 "domainDNSName": "",
 "domainNetBIOSName": "",

deployment.json file 104

AWS App2Container User Guide

 "gMSAName": "",
 "ADSecurityGroupName": ""
 },
 "deployTarget": "fargate"
 },
 "fireLensParameters": {
 "enableFireLensLogging": true,
 "logDestinations": [
 {
 "service": "cloudwatch",
 "matchRegex": "^.*INFO.*$",
 "streamName": "Info"
 },
 {
 "service": "cloudwatch",
 "matchRegex": "^.*WARN.*$",
 "streamName": "Warn"
 }
]
 },
 "eksParameters": {
 "createEksArtifacts": false,
 "stackName": "java-tomcat-6e6f3a87",
 "reuseResources": {
 "vpcId": "",
 "cfnStackName": "",
 "sshKeyPairName": ""
 },
 "gMSAParameters": {
 "createGMSA": false,
 "domainSecretsArn": "",
 "domainDNSName": "",
 "domainNetBIOSName": "",
 "gMSAAccountName": "",
 "ADSecurityGroupName": ""
 }
 },
 "appRunnerParameters": {
 "createAppRunnerArtifacts": false,
 "stackName": "a2c-java-tomcat-6e6f3a87-AppRunner",
 "autoDeploymentsEnabled": true,
 "resourceTags": [
 {
 "key": "example-key",

deployment.json file 105

AWS App2Container User Guide

 "value": "example-value"
 }
]
 }
}

Windows .NET application deployed to AWS Fargate

The following example shows a deployment.json file for a .NET application running on
Windows. The application has been configured to deploy to an Amazon ECS Fargate environment.

{
 "a2CTemplateVersion": "3.1",
 "applicationId": "iis-smarts-51d2dbf8",
 "imageName": "iis-smarts-51d2dbf8",
 "exposedPorts": [
 {
 "localPort": 8080,
 "protocol": "http"
 }
],
 "environment": [],
 "ecrParameters": {
 "ecrRepoTag": "latest"
 },
 "ecsParameters": {
 "createEcsArtifacts": true,
 "ecsFamily": "iis-smarts-51d2dbf8",
 "cpu": 2,
 "memory": 4096,
 "dockerSecurityOption": "",
 "enableCloudwatchLogging": false,
 "publicApp": true,
 "stackName": "iis-smarts-51d2dbf8-ECS",
 "resourceTags": [
 {
 "key": "example-key",
 "value": "example-value"
 }
],
 "reuseResources": {
 "vpcId": "vpc-0abc1defa2345b67c",
 "reuseExistingA2cStack": {

deployment.json file 106

AWS App2Container User Guide

 "cfnStackName": "",
 "microserviceUrlPath": ""
 },
 "sshKeyPairName": "",
 "acmCertificateArn": ""
 },
 "gMSAParameters": {
 "domainSecretsArn": "",
 "domainDNSName": "",
 "domainNetBIOSName": "",
 "createGMSA": false,
 "gMSAName": ""
 },
 "deployTarget": "fargate",
 "dependentApps" : []
 },
 "eksParameters": {
 "createEksArtifacts": false,
 "stackName": "iis-smarts-51d2dbf8-EKS",
 "reuseResources": {
 "vpcId": "",
 "reuseExistingA2cStack": {
 "cfnStackName": "",
 "microserviceUrlPath": ""
 },
 "sshKeyPairName": ""
 },
 "gMSAParameters": {
 "createGMSA": false,
 "domainSecretsArn": "",
 "domainDNSName": "",
 "domainNetBIOSName": "",
 "gMSAAccountName": ""
 },
 "dependentApps" : []
 }
}

Complex Windows .NET application deployed to Amazon ECS

For complex Windows .NET web applications that consist of a root application and up to two
dependent applications, each application is defined separately. Each application has its own
deployment.json file.

deployment.json file 107

AWS App2Container User Guide

The following example shows the deployment.json file for the root application in a
complex .NET web service running on Windows, followed by deployment.json files for the
two dependent applications that it refers to. The applications are deployed to an Amazon ECS
environment running together in the same VPC.

• Root application example

{
 "a2CTemplateVersion": "3.1",
 "applicationId": "iis-smarts-51d2dbf8",
 "imageName": "iis-smarts-51d2dbf8",
 "exposedPorts": [
 {
 "localPort": 8080,
 "protocol": "http"
 }
],
 "environment": [],
 "ecrParameters": {
 "ecrRepoTag": "latest"
 },
 "ecsParameters": {
 "createEcsArtifacts": true,
 "ecsFamily": "iis-smarts-51d2dbf8",
 "cpu": 2,
 "memory": 4096,
 "dockerSecurityOption": "",
 "enableCloudwatchLogging": false,
 "publicApp": true,
 "stackName": "iis-smarts-51d2dbf8-ECS",
 "resourceTags": [
 {
 "key": "example-key",
 "value": "example-value"
 }
],
 "reuseResources": {
 "vpcId": "vpc-0abc1defa2345b67c",
 "reuseExistingA2cStack": {
 "cfnStackName": "",
 "microserviceUrlPath": ""
 },
 "sshKeyPairName": "",

deployment.json file 108

AWS App2Container User Guide

 "acmCertificateArn": ""
 },
 "gMSAParameters": {
 "createGMSA": false,
 "domainSecretsArn": "",
 "domainDNSName": "",
 "domainNetBIOSName": "",
 "gMSAName": ""
 },
 "deployTarget": "ec2",
 "dependentApps" : [
 {
 "appId":"iis-appB-ab800cde",
 "privateRootDomain": "dependent-app1.test1.com",
 "dnsRecordName":"appB"
 },
 {
 "appId":"service-appC-9fghi90j",
 "privateRootDomain": "dependent-app2.test1.com",
 "dnsRecordName":"appC"
 }
]
 },
 "eksParameters": {
 "createEksArtifacts": false,
 "stackName": "iis-smarts-51d2dbf8",
 "reuseResources": {
 "vpcId": "",
 "reuseExistingA2cStack": {
 "cfnStackName": "",
 "microserviceUrlPath": ""
 },
 "sshKeyPairName": "",
 "acmCertificateArn": ""
 },
 "gMSAParameters": {
 "createGMSA": false,
 "domainSecretsArn": "",
 "domainDNSName": "",
 "domainNetBIOSName": "",
 "gMSAAccountName": ""
 },
 "dependentApps" : []
 }

deployment.json file 109

AWS App2Container User Guide

}

• Dependent application B

{
 "a2CTemplateVersion": "3.1",
 "applicationId": "iis-appB-ab800cde",
 "imageName": "iis-appB-ab800cde",
 "exposedPorts": [
 {
 "localPort": 8080,
 "protocol": "http"
 }
],
 "environment": [],
 "ecrParameters": {
 "ecrRepoTag": "latest"
 },
 "ecsParameters": {
 "createEcsArtifacts": true,
 "ecsFamily": "iis-appB-ab800cde",
 "cpu": 2,
 "memory": 4096,
 "dockerSecurityOption": "",
 "enableCloudwatchLogging": false,
 "publicApp": true,
 "stackName": "iis-appB-ab800cde-ECS",
 "resourceTags": [
 {
 "key": "example-key",
 "value": "example-value"
 }
],
 "reuseResources": {
 "vpcId": "vpc-0abc1defa2345b67c",
 "reuseExistingA2cStack": {
 "cfnStackName": "",
 "microserviceUrlPath": ""
 },
 "sshKeyPairName": "",
 "acmCertificateArn": ""
 },
 "gMSAParameters": {
 "createGMSA": false,

deployment.json file 110

AWS App2Container User Guide

 "domainSecretsArn": "",
 "domainDNSName": "",
 "domainNetBIOSName": "",
 "gMSAName": ""
 },
 "deployTarget": "ec2",
 "dependentApps" : []
 },
 "eksParameters": {
 "createEksArtifacts": false,
 "stackName": "",
 "reuseResources": {
 "vpcId": "",
 "reuseExistingA2cStack": {
 "cfnStackName": "",
 "microserviceUrlPath": ""
 },
 "sshKeyPairName": ""
 },
 "gMSAParameters": {
 "createGMSA": false,
 "domainSecretsArn": "",
 "domainDNSName": "",
 "domainNetBIOSName": "",
 "gMSAAccountName": ""
 },
 "dependentApps" : []
 }
}

• Dependent application C

{
 "a2CTemplateVersion": "3.1",
 "applicationId": "service-appC-9fghi90j",
 "imageName": "service-appC-9fghi90j",
 "exposedPorts": [
 {
 "localPort": 8080,
 "protocol": "http"
 }
],
 "environment": [],
 "ecrParameters": {

deployment.json file 111

AWS App2Container User Guide

 "ecrRepoTag": "latest"
 },
 "ecsParameters": {
 "createEcsArtifacts": true,
 "ecsFamily": "service-appC-9fghi90j",
 "cpu": 2,
 "memory": 4096,
 "dockerSecurityOption": "",
 "enableCloudwatchLogging": false,
 "publicApp": true,
 "stackName": "service-appC-9fghi90j-ECS",
 "resourceTags": [
 {
 "key": "example-key",
 "value": "example-value"
 }
],
 "reuseResources": {
 "vpcId": "vpc-0abc1defa2345b67c",
 "reuseExistingA2cStack": {
 "cfnStackName": "",
 "microserviceUrlPath": ""
 },
 "sshKeyPairName": "",
 "acmCertificateArn": ""
 },
 "gMSAParameters": {
 "createGMSA": false,
 "domainSecretsArn": "",
 "domainDNSName": "",
 "domainNetBIOSName": "",
 "gMSAName": ""
 },
 "deployTarget": "ec2",
 "dependentApps" : []
 },
 "eksParameters": {
 "createEksArtifacts": false,
 "stackName": "service-appC-9fghi90j",
 "reuseResources": {
 "vpcId": "",
 "reuseExistingA2cStack": {
 "cfnStackName": "",
 "microserviceUrlPath": ""

deployment.json file 112

AWS App2Container User Guide

 },
 "sshKeyPairName": ""
 },
 "gMSAParameters": {
 "createGMSA": false,
 "domainSecretsArn": "",
 "domainDNSName": "",
 "domainNetBIOSName": "",
 "gMSAAccountName": ""
 },
 "dependentApps" : []
 }
}

Configuring container pipelines

This topic contains information about the files that you use to configure continuous integration
and deployment (CI/CD) pipelines for your application container with CodePipeline, Jenkins, or
Microsoft Azure DevOps.

Pipeline configuration files

• pipeline.json file

pipeline.json file

When you run the generate app-deployment command, App2Container creates a
pipeline.json file for the application that the --application-id parameter specifies. The
generate pipeline command uses this file, along with others, to generate pipeline deployment
artifacts. Before you run the generate pipeline command, you can configure any of the fields in
this file to customize your application container pipeline.

Important

The pipeline.json file includes sections for all of the types of pipelines that you can
configure. This includes CodePipeline, Jenkins, and Microsoft Azure DevOps.
Configure exactly one source repository, and one type of pipeline. In each section, set one
Boolean value enabled flag to true, and all others to false. For Jenkins pipelines, you
can choose to use either a CodeCommit repository, or an existing Git repository.

Configure pipelines 113

AWS App2Container User Guide

CodePipeline

• sourceInfo

• CodeCommit – enabled: true

• ExistingGitRepo – enabled: false

• AzureRepo – enabled: false

• pipelineInfo

• CodePipeline – enabled: true

• Jenkins – enabled: false

• AzureDevOps – enabled: false

Jenkins

• sourceInfo

• CodeCommit – enabled: false

• ExistingGitRepo – enabled: true

• AzureRepo – enabled: false

• pipelineInfo

• CodePipeline – enabled: false

• Jenkins – enabled: true

• AzureDevOps – enabled: false

Microsoft Azure DevOps

• sourceInfo

• CodeCommit – enabled: false

• ExistingGitRepo – enabled: false

• AzureRepo – enabled: true

• pipelineInfo

• CodePipeline – enabled: false

• Jenkins – enabled: false

• AzureDevOps – enabled: truepipeline.json file 114

AWS App2Container User Guide

App2Container enables CodeCommit as the source repository, and CodePipeline as the
pipeline by default.

The application pipeline.json file includes the following content. While all fields are
configurable, the a2CTemplateVersion field should not be changed. For key/value pairs that
do not apply to your pipeline, set string values to an empty string, numeric values to zero, and
Boolean values to false.

• imageInfo (object) – Contains parameters needed for Amazon ECR configuration.

• image (string, required) – The full repository name of the application container image to store
in Amazon ECR. Must be in the format <application ID>.<repository name>:<tag>.

• sourceInfo (object) – Contains JSON objects for pipeline source repository configuration for
CodePipeline or Jenkins pipelines. CodePipeline uses CodeCommit for its source repository, while
Jenkins uses Git.

• CodeCommit (object) – Contains parameters needed for AWS CodeCommit configuration.

• enabled (Boolean, required) – A flag that indicates if you are targeting CodeCommit as the
source repository for your pipeline.

• repositoryName (string, required) – The name of the CodeCommit repository to use or
create.

• branch (string, required) – The name of the code branch in the CodeCommit repository to
commit to.

• ExistingGitRepo (object) – Contains parameters needed for Git repository configuration.

• enabled (Boolean, required) – A flag that indicates if you are targeting Git as the source
repository for your pipeline.

• repositoryUri (string, required) – The URI of the Git repository to use for your pipeline. SSH
access is required.

• branch (string, required) – The name of the code branch in the Git repository to commit to.

• sshKeyArn (string, required) – The ARN of the secret in Secrets Manager that is used to store
the user name and SSH key for Git authentication from the Jenkins server.

• AzureRepo (object) – Contains parameters to specify the Azure Repos Git repository where
App2Container uploads pipeline artifacts for your application.

pipeline.json file 115

AWS App2Container User Guide

• enabled (Boolean, required) – A flag that indicates if you want to use an Azure Repos Git
repository as the source repository for an Azure DevOps pipeline that you create.

• repositoryName (string, required) – The name of the Azure Repos Git repository that you
want to use or create.

• branch (string, required) – The name of the code branch in the Azure Repos Git repository
where App2Container commits pipeline resources.

• releaseInfo (object) – Contains JSON objects with parameters needed to create a pipeline for
your target deployment environments.

• ECS | EKS | AppRunner (object) – Contains JSON objects representing the environments to
target for deployment. The key name specifies the container management service that you are
targeting for your application container pipeline. Key must be "ECS", "EKS", or "AppRunner". At
least one of the pipeline environments must be enabled.

• beta (object) –

• clusterName (string, required*) – The name of the Amazon ECS or Amazon EKS cluster to
set up in the AWS CloudFormation stack.

• serviceName (string, required*) – The name of the Amazon ECS service to set up in the
AWS CloudFormation stack.

* Applies only to Amazon ECS pipelines.

• enabled (Boolean, required) – A flag indicating whether a beta environment should be
configured.

Note

Beta environments are not supported for App Runner.

• prod (object) –

• clusterName (string, required*) – The name of the Amazon ECS or Amazon EKS cluster to
set up in the AWS CloudFormation stack.

* Does not apply to App Runner.

• serviceName (string, required*) – The name of the Amazon ECS service to set up in the
AWS CloudFormation stack.

* Applies only to Amazon ECS pipelines.

pipeline.json file 116

AWS App2Container User Guide

• enabled (Boolean, required) – A flag indicating whether a prod environment should be
configured.

• pipelineInfo (object) – Contains JSON objects with parameters needed to access and configure
your target pipeline environments.

• CodePipeline (object) – Contains parameters needed for CodePipeline configuration.

• enabled (Boolean, required) – A flag that indicates if you are targeting CodePipeline for your
pipeline.

• Jenkins (object) – Contains parameters needed for Jenkins pipeline access and configuration.

• enabled (Boolean, required) – A flag that indicates if you are targeting Jenkins for your
pipeline.

• jenkinsServerUrl (string, required) – The URL of the Jenkins server. The URL requires HTTPS
protocol for secure access.

• nodeLabels (array of strings, required) – A list of the labels that must be attached to the
Jenkins agent node that runs the pipeline. All labels specified must be present on the agent
node for it to run.

• apiTokenArn (string, required) – The ARN of the secret in Secrets Manager that is used to
authenticate to the Jenkins server.

• repoSshCredentialId (string, required) – The ID that you create on the Jenkins server that
the Jenkins agent node uses for SSH access to the Git repository. For more information
about SSH credentials on Jenkins, see the Using credentials chapter in the Jenkins User
Handbook, available online..

• awsCredentialId (string, required) – The AWS profile on the Jenkins server that is used to
access AWS resources from the Jenkins agent node when the pipeline runs.

• AzureDevOps (object) – Contains parameters that you need to access and configure your Azure
DevOps pipeline.

• enabled (Boolean, required) – A flag that indicates if you want App2Container to use Azure
DevOps to set up your CI/CD pipeline.

• organizationName (string, required) – The name of the organization that you set up under
your Microsoft Azure account for Azure DevOps.

• projectName (string, required) – The name of the project that you set up under your
Microsoft Azure account for Azure DevOps.

• serviceCredName (string, required) – The name of the service credentials that Azure DevOps
uses to connect to AWS.

pipeline.json file 117

https://www.jenkins.io/doc/book/using/using-credentials/

AWS App2Container User Guide

• agentPoolName (string, required) – The name of the agent pool with the Microsoft-hosted
agents that your pipeline uses to build and deploy updated container images for your
application.

• personalAccessTokenARN (string, required) – The ARN that identifies the Secrets Manager
secret where you store your Microsoft Azure Personal Access Token (PAT).

Examples

The following example shows a pipeline.json file that uses the CodePipeline environment
as the pipeline for an IIS application that runs on Windows. The application runs in a beta
environment, and there is no prod environment configured yet.

{
 "a2CTemplateVersion": "3.1",
 "imageInfo": {
 "image": "123456789012.dkr.ecr.us-west-1.amazonaws.com/iis-
smarts-51d2dbf8:latest"
 },
 "sourceInfo": {
 "CodeCommit": {
 "repositoryName": "app2container-iis-smarts-51d2dbf8-ecs",
 "branch": "master"
 }
 },
 "releaseInfo": {
 "ECS": {
 "beta": {
 "clusterName": "a2c-iis-smarts-51d2dbf8-ECS-Cluster",
 "serviceName": "a2c-iis-smarts-51d2dbf8-ECS-
LBWebAppStack-1EB23FI45ZYXW-Service-1mnoPQRS2Tu3",
 "enabled": true
 },
 "prod": {
 "clusterName": "",
 "serviceName": "",
 "enabled": false
 }
 }
 }
}

pipeline.json file 118

AWS App2Container User Guide

The following example shows a pipeline.json file that uses the Jenkins environment as the
pipeline for an IIS application that runs on Windows.

{
 "a2CTemplateVersion": "1.0",
 "imageInfo": {
 "image": "123456789012.dkr.ecr.us-west-1.amazonaws.com/iis-
smarts-51d2dbf8:latest"
 },
 "sourceInfo": {
 "CodeCommit": {
 "enabled": false,
 "repositoryName": "",
 "branch": ""
 },
 "ExistingGitRepo": {
 "enabled": true,
 "repositoryUri": "git@ec2-12-34-567-890.us-west-1.compute.amazonaws.com/~/
windows.git",
 "branch": "master",
 "sshKeyArn": "arn:aws:secretsmanager:us-east-1:123456789075:secret:test-
We6XCm"
 }
 },
 "releaseInfo": {
 "ECS": {
 "beta": {
 "clusterName": "a2c-iis-smarts-51d2dbf8-ECS-Cluster",
 "serviceName": "a2c-iis-smarts-51d2dbf8-ECS-
LBWebAppStack-1EB23FI45ZYXW-Service-1mnoPQRS2Tu3",
 "enabled": true
 },
 "prod": {
 "clusterName": "",
 "serviceName": "",
 "enabled": false
 }
 }
 },
 "resourceTags": [
 {
 "key": "example-key",
 "value": "example-value"

pipeline.json file 119

AWS App2Container User Guide

 }
],
 "pipelineInfo": {
 "CodePipeline": {
 "enabled": false
 },
 "Jenkins": {
 "enabled": true,
 "jenkinsServerUrl": "https://ec2-3-101-121-107.us-
west-1.compute.amazonaws.com",
 "nodeLabels": [
 "windows2019",
 "beta"
],
 "apiTokenArn": "arn:aws:secretsmanager:us-east-1:123456789076:secret:test-
We6XCm",
 "repoSshCredentialId": "12345678-90a1-23bc-de45-f67a123bc45d",
 "awsCredentialId": "beta-tester"
 }
 }
}

The following example shows a pipeline.json file that uses Microsoft Azure DevOps as the
pipeline for a Java application that runs on Linux.

{
 "a2CTemplateVersion": "1.0",
 "imageInfo": {
 "image": "459632601910.dkr.ecr.us-west-1.amazonaws.com/java-tomcat-9e8e4799:latest"
 },
 "sourceInfo": {
 "CodeCommit": {
 "enabled": false,
 "repositoryName": "a2c-java-tomcat-9e8e4799-ecs",
 "branch": "master"
 },
 "ExistingGitRepo": {
 "enabled": false,
 "repositoryUri": "",
 "branch": "",
 "sshKeyArn": ""
 },
 "AzureRepo": {

pipeline.json file 120

AWS App2Container User Guide

 "enabled": true,
 "repositoryName": "a2c-java-tomcat-9e8e4799",
 "branch": "main"
 }
 },
 "releaseInfo": {
 "ECS": {
 "beta": {
 "clusterName": "a2c-java-tomcat-9e8e4799-ECS-Cluster",
 "serviceName": "a2c-java-tomcat-9e8e4799-ECS-JavaStack-1AB23CD45ZYXW-
Service-1abcPQRS2Tu3",
 "enabled": true
 },
 "prod": {
 "clusterName": "",
 "serviceName": "",
 "enabled": false
 }
 }
 },
 "resourceTags": [{
 "key": "example-key",
 "value": "example-value"
 }],
 "pipelineInfo": {
 "CodePipeline": {
 "enabled": false
 },
 "Jenkins": {
 "enabled": false,
 "jenkinsServerUrl": "",

 "nodeLabels": [],
 "apiTokenArn": "",
 "repoSshCredentialId": "",
 "awsCredentialId": ""
 },
 "AzureDevOps": {
 "enabled": true,
 "organizationName": "App2Container",
 "projectName": "a2c-java-tomcat-9e8e4799-project",
 "serviceCredName": "azure-devops-to-aws-creds",
 "agentPoolName": "Azure Pipelines",

pipeline.json file 121

AWS App2Container User Guide

 "personalAccessTokenARN": "arn:aws:secretsmanager:us-
east-1:12345678:secret:APP2CONTAINER-PAT"
 }
 }
 }

pipeline.json file 122

AWS App2Container User Guide

Product and service integrations for AWS App2Container

AWS App2Container integrates with an array of AWS services, and partner products and services.
After you've deployed your application containers to run on Amazon ECS, Amazon EKS, or App
Runner, you can use App2Containerto choose from several different continuous integration and
delivery (CI/CD) platforms to keep your images up to date. Use the information in the following
sections to help you configure App2Container to integrate with the products and services that you
use.

Contents

• Automatic storage and registration using Amazon Elastic Container Registry

• Deploy application containers to Amazon Elastic Container Service with AWS App2Container

• Deploy application containers to Amazon EKS with AWS App2Container

• Deploy application containers to AWS App Runner with AWS App2Container

• Set up CI/CD pipelines with AWS CodePipeline

• Set up CI/CD pipelines with Jenkins

• Set up CI/CD pipelines with Microsoft Azure DevOps

• Setting up FireLens log file routing for containers with AWS App2Container

Automatic storage and registration using Amazon Elastic
Container Registry

App2Container uses the Amazon Elastic Container Registry (Amazon ECR) service to register
and store container images for all of the environments it supports for application container
deployment. When you run the app2container generate app-deployment command,
App2Container creates an ECR repository and registers your application container image. The ECR
repository name is the application ID that App2Container creates when you run the app2container
inventory command on your application server or worker machine.

Amazon ECR includes the following features, which are not enabled by default when
App2Container creates your repository and registers your container image.

Automatic storage and registration using Amazon Elastic Container Registry 123

AWS App2Container User Guide

• Lifecycle policies that help you manage the lifecycle of your images, and clean up unused
images. For more information, see Lifecycle policies in the Amazon Elastic Container Registry User
Guide.

• Image scanning that helps to identify software vulnerabilities in your container images. You can
configure scan on push validation for your images. You can also run a manual scan on any of
your images that are stored in Amazon ECR. For more information, see Image scanning in the
Amazon Elastic Container Registry User Guide.

• Cross-Region and cross-account replication to help you distribute your container image to
destination accounts and Regions. For more information about replication settings for your
registry, see Private image replication in the Amazon Elastic Container Registry User Guide.

To view your ECR repository, and change settings using the AWS Management Console, follow
these steps:

1. Open the Amazon ECR console at https://console.aws.amazon.com/ecr/.

Verify that the console is showing the Region where you want to view and change settings for
your repository. The current Region is displayed in the upper right corner of the console.

2. Select the option next to the Repository name, where the name matches your App2Container
application ID.

Tip

You can use any part of the application ID in the search bar to filter your results.

3. Choose Edit to view and change the settings for your repository.

4. Choose Save to save settings that you have changed, or Cancel to exit without saving.

To learn more about Amazon ECR, see What is Amazon Elastic Container Registry? in the Amazon
Elastic Container Registry User Guide.

Deploy application containers to Amazon Elastic Container
Service with AWS App2Container

Amazon Elastic Container Service (Amazon ECS) is a fully managed container orchestration service
that helps you to deploy, manage, and scale containerized applications. It provides a secure

Deploy to Amazon ECS 124

https://docs.aws.amazon.com/AmazonECR/latest/userguide/LifecyclePolicies.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/replication.html
https://console.aws.amazon.com/ecr/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html

AWS App2Container User Guide

solution for running container workloads with high availability across multiple Availability Zones
within a Region. Amazon ECS offers a variety of hosting options for your container environment.
For more information about Amazon ECS, see What is Amazon Elastic Container Service? in the
Amazon Elastic Container Service Developer Guide.

AWS App2Container integrates with Amazon ECS, to deploy your application containers to the
following Amazon ECS environments:

• Amazon ECS – In the default environment, your containers run on EC2 instances. App2Container
supports Windows .NET application containers for this environment. Linux is not currently
supported for this environment.

• AWS Fargate – Fargate is a serverless architecture. App2Container supports both Linux and
Windows application containers for this environment. To learn more about Fargate, see Amazon
ECS on AWS Fargate in the Amazon Elastic Container Service Developer Guide.

Tip

To containerize your applications with a console-based experience and deploy them on
Amazon ECS on AWS Fargate, you can use the Replatform applications to Amazon ECS
template on the AWS Migration Hub Orchestrator console. For more information, see
Replatform applications to Amazon ECS in the AWS Migration Hub Orchestrator User Guide.

Prerequisites

To configure an Amazon ECS integration for your application container with App2Container, your
application must meet the following criteria.

Amazon ECS

• For deployment to the Amazon ECS default environment, App2Container supports .NET
applications running on Windows. [Linux applications are not currently supported.]

• .NET applications running on Windows must satisfy application framework and system
requirements, and meet the criteria for supported applications. For details, see Supported
applications, and expand the Supported applications for Windows section.

Prerequisites 125

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html
https://console.aws.amazon.com/migrationhub/orchestrator?region=us-east-1#/templates
https://docs.aws.amazon.com/migrationhub-orchestrator/latest/userguide/replatform-to-ecs.html

AWS App2Container User Guide

Fargate

• For deployment to Fargate, App2Container supports the following types of applications:

• Java applications running on Linux.

• .NET applications running on Windows Server 2019.

• Java applications running on Linux must satisfy Java application framework requirements, and
run on a supported Linux distribution. For details, see Supported applications, and expand the
Supported applications for Linux section.

• For .NET application containers, the container operating system must be Windows Server 2019.
Prior versions are not supported for deployment to Fargate. The container operating system
is derived from the application server or worker machine where containerization runs, so the
applicable server operating system must also be Windows Server 2019.

Additionally, .NET applications running on Windows must satisfy application framework
requirements, and meet the criteria for supported applications. For details, see Supported
applications, and expand the Supported applications for Windows section.

• gMSA is not supported.

Amazon ECS integration for App2Container workflow

To set up application containers for hosting in Amazon ECS within the App2Container workflow,
follow these steps:

Initial steps for App2Container are the same for all applications deploying to Amazon ECS:

1. Install and set up the App2Container environment, as described in the Prerequisites: Set up
your servers section.

2. Complete the initialization phase for your App2Container environment with the init command,
and the remote configure command, if applicable. To learn more about what is included in all
of the App2Container containerization phases, see the Command reference.

3. Complete the analyze phase for each application that you want to containerize.

• If you are running commands directly on application servers, use the inventory and analyze
commands.

• If you are running a remote workflow on a worker machine, use the remote inventory and
remote analyze commands.

Amazon ECS integration for App2Container workflow 126

AWS App2Container User Guide

4. Integration begins with the containerization step.

• When you run the containerize command, App2Container generates the
deployment.json file, which provides configurable parameters for all supported container
management service options that could apply to your application container.

• Parameters for Amazon ECS and Amazon EKS are always included. Parameters for App
Runner are also included if your application container meets the App2Container criteria for
hosting in App Runner.

• Each container management service has its own section in the deployment.json file, and
each section has a flag to indicate which container management service is the destination
for your application container. Only one section can have its flag set to true – all others must
be set to false.

Amazon ECS is configured by default as the container management service for your
application. However, the destination settings differ, depending on system requirements and
the type of application you have.

In the deployment.json file, App2Container initially sets the deployTarget parameter
as follows:

• ec2 – App2Container targets the Amazon ECS default environment, which runs containers
on EC2 instances, for .NET applications that do not meet the criteria specified in the
Fargate section under Prerequisites. Java applications are not currently supported for this
deployment target.

• fargate – App2Container targets the Fargate environment by default for Java
applications, and for .NET applications that meet the criteria specified in the Fargate
section under Prerequisites.

If you want your container to run on EC2 instances instead of running in Fargate, you
can change the deployTarget parameter to ec2. However, this is currently only true
for .NET applications. If you change the value for a Java application, the generate app-
deployment command throws an error when you run it.

For more information about configuring the deployment.json file, see Configure
deployment.

Amazon ECS integration for App2Container workflow 127

AWS App2Container User Guide

Note

The gMSAParameters are not valid for deployments to Fargate, and will generate an
error when the generate app-deployment command runs.

5. The deployment step generates an ECS task definition and pipeline.json file that are
targeted for the Amazon ECS container management service, based on the settings in the
deployment.json file, where the createEcsArtifacts flag is set to true.

• When you run the generate app-deployment command, App2Container validates the
properties in the deployment.json file, and pushes the container image to Amazon ECR.
This is the standard workflow.

• The command generates a CloudFormation template for Amazon ECS deployment (ecs-
master.yml) that contains the IAM role that Amazon ECS uses to pull your application
container images from Amazon ECR, and the Amazon ECS service definition.

• The command generates the pipeline.json file to support creating a pipeline to deploy
updates to your application container in Amazon ECR.

• If you use the --deploy option for the generate app-deployment command,
App2Container deploys the CloudFormation stack that creates the Amazon ECS service
for the containerized application, using the configuration values in the CloudFormation
template that it generates. To customize the configuration, run the command without the
--deploy option, and then manually deploy using the AWS CLI when you are ready.

6. The pipeline step generates a CloudFormation template for the pipeline that is targeted for
the Amazon ECS container management service, based on the settings in the pipeline.json
file.

• When you run the generate pipeline command, App2Container validates the properties
in the pipeline.json file, verifies that initial deployment to Amazon ECS has been
completed, and verifies that your application is active.

• The command generates a CloudFormation template to create a two-step pipeline:

1. Code commit – Creates or updates an AWS CodeCommit repository that contains the
Dockerfile and application artifacts that are required to create your application container
image.

2. Code build – Builds the Docker image for your application container, and pushes the
updated image to the Amazon ECR repository that you configured for your application.

Amazon ECS integration for App2Container workflow 128

AWS App2Container User Guide

3. If you use the --deploy option for the generate pipeline command, App2Container
deploys the pipeline with the configuration values in the CloudFormation template it
generates. To customize the configuration, run the command without the --deploy
option, and then manually deploy using the AWS CLI when you are ready.

Deploy application containers to Amazon EKS with AWS
App2Container

Amazon Elastic Kubernetes Service (Amazon EKS) is a managed service that you can use to run
Kubernetes on AWS. Amazon EKS streamlines the provisioning of highly available and secure
clusters, and automates key maintenance tasks such as patching, node provisioning, and updates.
Kubernetes is an open-source system for automating the deployment, scaling, and management of
containerized applications. For more information about Amazon EKS, see What is Amazon EKS? in
the Amazon EKS User Guide.

Prerequisites

To configure an Amazon EKS integration for your application container with App2Container, your
application must meet the following criteria.

• Java applications running on Linux must satisfy Java application framework requirements, and
run on a supported Linux distribution. For details, see Supported applications, and expand the
Supported applications for Linux section.

• .NET applications running on Windows must satisfy application framework and system
requirements, and meet the criteria for supported applications. For details, see Supported
applications, and expand the Supported applications for Windows section.

• Application containers that run in Amazon EKS must launch EC2 instances. App2Container does
not currently support Fargate as a container launch type for Amazon EKS.

Amazon EKS integration for App2Container workflow

The process for setting up application containers for hosting in Amazon EKS is integrated smoothly
with the App2Container workflow. Initial steps for App2Container are the same for all applications.

1. Install and set up the App2Container environment, as described in the Prerequisites: Set up
your servers section.

Deploy to Amazon EKS 129

https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/eks/latest/userguide/

AWS App2Container User Guide

2. Complete the initialization phase for your App2Container environment with the init command,
and the remote configure command, if applicable. To learn more about what is included in all
of the App2Container containerization phases, see the Command reference.

3. Complete the analyze phase for each application that you want to containerize.

• If you are running commands directly on application servers, use the inventory and analyze
commands.

• If you are running a remote workflow on a worker machine, use the remote inventory and
remote analyze commands.

4. Integration begins with the containerization step.

• When you run the containerize command, App2Container generates the
deployment.json file, which provides configurable parameters for all supported container
management service options that could apply to your application container.

• Parameters for Amazon ECS and Amazon EKS are always included. Parameters for App
Runner are also included if your application container meets the App2Container criteria for
hosting in App Runner

• Each container management service has its own section in the deployment.json file, and
each section has a flag to indicate which container management service is the destination
for your application container. Only one section can have its flag set to true – all others must
be set to false.

Amazon ECS is configured as the destination by default. To deploy your application
containers to Amazon EKS, you can set the createEksArtifacts in the eksParameters
section to true, and the createEcsArtifacts flag in the ecsParameters section to
false. For more information about configuring the deployment.json file, see Configure
deployment.

• App2Container configures HTTP-based deployments by default. To use HTTPS for your
deployment, specify the Amazon Resource Name (ARN) of an AWS Certificate Manager
(ACM) certificate in the deployment.json file. For more information, see Configure
deployment.

5. The deployment step creates artifacts that are targeted for the Amazon EKS container
hosting service, based on the settings in the deployment.json file, where the
createEksArtifacts flag is set to true.

Amazon EKS integration for App2Container workflow 130

AWS App2Container User Guide

• When you run the generate app-deployment command, App2Container validates the
properties in the deployment.json file, and pushes the container image to Amazon ECR.
This is the standard workflow.

• The command generates a CloudFormation template (eks-master.yml) that creates an
EKS cluster, pulls your application container images from Amazon ECR, and deploys your
application to the cluster.

It also generates Kubernetes manifests (eks_deployment.yaml, eks_service.yaml, and
eks_ingress.yaml), for post-deployment customizations using a tool such as kubectl.

• The command generates the pipeline.json file to support creating a pipeline to deploy
updates to your application container in Amazon ECR.

• If you use the --deploy option for the generate app-deployment command,
App2Container deploys the AWS CloudFormation stack that creates the Amazon EKS service
for the containerized application, using the configuration values in the AWS CloudFormation
template that it generates. To customize the configuration, run the command without the
--deploy option, and then manually deploy using the AWS CLI when you are ready.

6. The pipeline step generates a CloudFormation template for the pipeline that is targeted for
the Amazon EKS container management service, based on the settings in the pipeline.json
file.

• When you run the generate pipeline command, App2Container validates the properties
in the pipeline.json file, and verifies that initial deployment to Amazon EKS has been
completed, and that your application is active.

• The command generates a CloudFormation template to create a two-step pipeline:

1. Code commit – Creates or updates an AWS CodeCommit repository that contains the
Dockerfile and application artifacts that are required to create your application container
image.

2. Code build – Builds the Docker image for your application container, and pushes the
updated image to the Amazon ECR repository that you configured for your application.

3. If you use the --deploy option for the generate pipeline command, App2Container
deploys the pipeline with the configuration values in the CloudFormation template it
generates. To customize the configuration, run the command without the --deploy
option, and then manually deploy using the AWS CLI when you are ready.

Amazon EKS integration for App2Container workflow 131

AWS App2Container User Guide

Deploy application containers to AWS App Runner with AWS
App2Container

AWS App Runner is an AWS service that provides a way for existing container images or
source code to run directly as web services in AWS. App Runner uses Fargate as its underlying
environment, but has its own management layer on top. With App Runner, you can access your
application through an assigned web service URL, via HTTP requests.

Considerations for deploying to App Runner using App2Container:

• App Runner is not available in all Regions. To see the Regions and service endpoints for App
Runner, refer to App Runner Service endpoints in the AWS General Reference.

• Resources that are created by App Runner reside in the multi-tenant App Runner service account.
With other container management services, you might access resources such as an Amazon EC2
instance that your container runs on, or an Amazon EBS volume attached to your container
instance, using the standard access methods for those resources directly. With App Runner you
access resources that App Runner creates for your application through the App Runner service,
using the App Runner console, API, SDKs, or by using apprunner commands in the AWS CLI.

• App Runner supports continuous integration and deployment from the Amazon ECR repository
that App2Container creates on your behalf. When continuous deployment is configured, an
update to the container image in the Amazon ECR repository automatically initiates an update in
App Runner.

You can turn this on or off in the deployment.json file. For more information, see Configure
deployment.

• App Runner integrates with Amazon CloudWatch and AWS CloudTrail to provide logging and
monitoring support for your application. App Runner creates the following log groups for each
App Runner service:

• An application group, which contains stdout from your containers.

• A service group, which contains high-level logs from App Runner to notify you about service-
related events, such as new deployments or health check failures.

These logs can also be viewed from the App Runner console, or by using the App Runner API,
SDKs, or by using apprunner commands in the AWS CLI.

• App Runner enforces limits for the application containers that it hosts, such as the number of
concurrent requests, the size of the application, and the amount of memory it can use. To learn

Deploy to App Runner 132

https://docs.aws.amazon.com/general/latest/gr/apprunner.html#apprunner_region

AWS App2Container User Guide

more about Service Quotas for App Runner, see App Runner Service quotas in the AWS General
Reference.

• Application state is not guaranteed to be maintained between requests.

For more information about using App Runner to host your application container, see What is AWS
App Runner in the AWS App Runner Developer Guide.

Prerequisites

To configure an App Runner integration for your application container with App2Container, your
application must meet the following criteria:

• Your application runs on Linux. [Windows applications are not currently supported.]

• Your application meets all of the requirements that are listed in the Supported applications
section for Linux.

• Your application container size is less than 3 GB.

• Your application must not be dependent on background processing. App Runner heavily throttles
container CPU when requests are not actively being processed.

App Runner integration for App2Container workflow

Setting up application containers for hosting in App Runner integrates smoothly with the
App2Container workflow. Initial steps for App2Container are the same for all applications:

1. Install and set up the App2Container environment, as described in the Prerequisites: Set up
your servers section.

2. Complete the initialization phase for your App2Container environment with the init command,
and the remote configure command, if applicable. To learn more about what is included in all
of the App2Container containerization phases, see the Command reference.

3. Complete the analyze phase for each application that you want to containerize.

• If you are running commands directly on application servers, use the inventory and analyze
commands.

• If you are running a remote workflow on a worker machine, use the remote inventory and
remote analyze commands.

4. Integration begins with the containerization step.

Prerequisites 133

https://docs.aws.amazon.com/general/latest/gr/apprunner.html#limits_apprunner
https://docs.aws.amazon.com/apprunner/latest/dg/what-is-apprunner.html
https://docs.aws.amazon.com/apprunner/latest/dg/what-is-apprunner.html

AWS App2Container User Guide

• When you run the containerize command, App2Container generates the
deployment.json file, which provides configurable parameters for all supported container
management service options that could apply to your application container.

• Parameters for Amazon ECS and Amazon EKS are always included. Parameters for App
Runner are also included if your application container meets the App2Container criteria for
hosting in App Runner (see Prerequisites).

• Each container management service has its own section in the deployment.json file, and
each section has a flag to indicate which container management service is the destination
for your application container. Only one section can have its flag set to true – all others must
be set to false.

Amazon ECS is configured as the destination by default, but if your application is
suitable for App Runner, you can set the createAppRunnerArtifacts flag in the
appRunnerParameters section to true, and the createEcsArtifacts flag in
the ecsParameters section to false. For more information about configuring the
deployment.json file, see Configure deployment.

5. The deployment step generates a CloudFormation template and pipeline.json file that
are targeted for the App Runner container management service, based on the settings in the
deployment.json file, where the createAppRunnerArtifacts flag is set to true.

• When you run the generate app-deployment command, App2Container validates the
properties in the deployment.json file, and pushes the container image to Amazon ECR.
This is the standard workflow.

• The command generates a CloudFormation template for App Runner deployment that
contains the IAM role that App Runner uses to pull your application container images from
Amazon ECR, and the App Runner service definition.

• The command generates the pipeline.json file to support creating a pipeline to deploy
updates to your application container in Amazon ECR.

• If you use the --deploy option for the generate app-deployment command,
App2Container deploys the AWS CloudFormation stack that creates the App Runner service
for the containerized application, using the configuration values in the AWS CloudFormation
template that it generates. To customize the configuration, run the command without the
--deploy option, and then manually deploy using the AWS CLI when you are ready.

App Runner integration for App2Container workflow 134

AWS App2Container User Guide

6. The pipeline step generates a CloudFormation template for the pipeline that is targeted for
the App Runner container management service, based on the settings in the pipeline.json
file.

• When you run the generate pipeline command, App2Container validates the properties
in the pipeline.json file, and verifies that initial deployment to App Runner has been
completed, and that your application is active.

• The command generates a CloudFormation template to create a two-step pipeline:

1. Code commit – Creates or updates an AWS CodeCommit repository that contains the
Dockerfile and application artifacts that are required to create your application container
image.

2. Code build – Builds the Docker image for your application container, and pushes the
updated image to the Amazon ECR repository that you configured for your application.

3. If you use the --deploy option for the generate pipeline command, App2Container
deploys the pipeline with the configuration values in the CloudFormation template it
generates. To customize the configuration, run the command without the --deploy
option, and then manually deploy using the AWS CLI when you are ready.

Note

If you have automatic deployments configured for App Runner, an update to your
application container image in Amazon ECR automatically kicks off an update for
your application in App Runner.
To configure automatic deployments, use the following settings in the
deployment.json file:

• Set autoDeploymentsEnabled to true to automatically deploy updates to App
Runner when you deploy updates to Amazon ECR. This is the default setting.

• Set autoDeploymentsEnabled to false if you want to update App Runner
manually, using the App Runner service console, API, SDKs, or AWS CLI.

Set up CI/CD pipelines with AWS CodePipeline

AWS CodePipeline is a continuous delivery service that you can use tomodel, visualize, and
automate your software release process. App2Container integrates with CodePipeline to automate

Set up CodePipeline pipelines 135

AWS App2Container User Guide

a consistent release process while it gives you insights to monitor and manage your pipeline. For
more information, see What is AWS CodePipeline? in the AWS CodePipeline User Guide.

Before you run the generate pipeline command, review the pipeline.json file that the
generate app-deployment command creates. Configure the parameters for your CodeCommit
pipeline as follows:

• Set the flags to enable CodePipeline deployment.

• sourceInfo

• CodeCommit – enabled: true

• ExistingGitRepo – enabled: false

• AzureRepo – enabled: false

• pipelineInfo

• CodePipeline – enabled: true

• Jenkins – enabled: false

• AzureDevOps – enabled: false

Important

You must set the sourceInfo and pipelineInfo flags as described or else the pipeline
integration will fail.

Contents

• Validation

• Output

Validation

File validation

When you run the generate pipeline command, App2Container performs the following
validation to ensure that your pipeline deploys successfully:

• Checks that CodeCommit is the only source repository that you've activated in the sourceInfo
section of the pipeline.json file, and that this section contains all required properties.

Validation 136

https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html

AWS App2Container User Guide

• Checks that CodePipeline is the only pipeline that you've activated in the pipelineInfo section
of the pipeline.json file, and that this section contains all required properties.

Deployment validation

If you use the App2Container generate pipeline command with --deploy, the
pipeline.json file that App2Container creates will have the required configuration already
defined. If you don't specify the --deploy flag for the command, or you use your own
deployment, you must edit the pipeline.json file to specify the required configuration. For
more information, see Configuring container pipelines.

Output

The generate pipeline command generates the following artifacts for CodePipeline pipelines.
If you don't use the --deploy option with the generate pipeline command, you can edit the
artifacts that App2Container added to your CodeCommit repository to create your pipeline from
the CodePipeline interface (AWS CLI or AWS Management Console).

Note

If you run the generate pipeline command with the --deploy option, App2Container
creates the pipeline in CodePipeline, and starts the pipeline build.

App2Container generates the following artifacts:

buildspec.yml files

Used to build the application container image and uploads it to Amazon ECR.

AWS CloudFormation templates

Used to create your pipeline in CodePipeline along with other required resources.

Note

If your CodeCommit repository doesn't already exist, App2Containercreates it for you.

Output 137

AWS App2Container User Guide

Set up CI/CD pipelines with Jenkins

Jenkins is an open source automation server that which supports building, deploying, and
automating your application with the help of Jenkins Pipeline. Jenkins Pipeline is a suite of
plugins that supports implementing and integrating continuous delivery pipelines into Jenkins.
These plugins can be used to integrate with AWS App2Container to automate deployments for
your applications. App2Container can help configure a Jenkins pipeline in your existing Jenkins
environment.

For more information about using Jenkins, see the User Handbook overview on the Jenkins
website.

Prerequisites

To configure Jenkins pipeline integration for your application container from App2Container, your
application must meet the following criteria.

• A fully functional Jenkins server with the following plugins installed:

• Pipeline

• Pipeline: AWS Steps

• Git

• One or more agent nodes, running Linux or Windows must be configured on the Jenkins server.

Note

The application container platform must match the platform of the agent node. For
example, a Java application that runs on Linux, must use a Linux agent node for Jenkins.
A .NET application that runs on Windows, must use a Windows agent node.

• Agent nodes must have the following tools installed:

• AWS command line tool – To install the AWS CLI or Tools for Windows PowerShell on the
agent nodes, follow the same steps that you used to set up your application servers and
worker machines, except that you do not need to set up an AWS profile on the agent node.
Agent nodes use the AWS profile that is configured on the Jenkins server.

• Docker – The Docker engine installation varies by the operating system platform for the server
or instance where you install it. For more information about the variations, see Install the
Docker engine.

Set up Jenkins pipelines 138

https://www.jenkins.io/doc/book/getting-started/
https://plugins.jenkins.io/workflow-aggregator/
https://plugins.jenkins.io/pipeline-aws/
https://plugins.jenkins.io/git/
https://docs.aws.amazon.com/app2container/latest/UserGuide/a2c-setup.html#setup-aws-profile

AWS App2Container User Guide

• Git – For more information, see the 1.5 Getting Started - Installing Git chapter in the Pro Git
guide, available free to read online.

• Agent nodes must be able to connect to AWS and run commands using the AWS CLI.

• The Jenkins server must have access to an existing Git repository for pipeline source. The
following credentials and resources are required for pipeline builds:

• Credentials created on the Jenkins server that are used to access the Git repository from
the Jenkins agent node through SSH. The ID of the Jenkins credentials is required in
pipeline.json configuration. For more information about SSH credentials on Jenkins, see
the Using credentials chapter in the Jenkins User Handbook, available online.

• An AWS profile on the Jenkins server that is used to access AWS resources from the Jenkins
agent node when the pipeline runs.

• Credentials for App2Container to integrate with Jenkins resources must be created and stored in
AWS Secrets Manager. For more information, see Create secrets for Jenkins pipelines

• The application server or worker machine where the App2Container generate pipeline command
runs must be able to connect to the Git source repository and Jenkins server, using the secrets
stored in Secrets Manager.

For more information about installing and configuring a Jenkins server, see the Installing Jenkins
chapter in the Jenkins User Handbook, available online. The Jenkins User Documentation also
includes tutorials and other reference materials.

Jenkins integration for App2Container workflow

The process for setting up Jenkins pipelines to refresh components for your application container
integrates smoothly with the App2Container workflow. Applications follow all the standard steps
through deployment. Jenkins integration happens in the pipeline step.

1. Before you run the generate pipeline command, review the pipeline.json file that was
created by the generate app-deployment command. Configure the parameters for your
Jenkins pipeline as follows:

• Set the flags to enable Jenkins deployment.

• sourceInfo

• CodeCommit – enabled: false

• ExistingGitRepo – enabled: true

Jenkins integration for App2Container workflow 139

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.jenkins.io/doc/book/using/using-credentials/
https://www.jenkins.io/doc/book/installing/
https://www.jenkins.io/doc/

AWS App2Container User Guide

• AzureRepo – enabled: false

• pipelineInfo

• CodePipeline – enabled: false

• Jenkins – enabled: true

• AzureDevOps – enabled: false

• In the ExistingGitRepo object, set the following parameters:

• repositoryUri (string, required) – The URI of the Git repository to use for your pipeline.
SSH access is required.

• branch (string, required) – The name of the code branch in the Git repository to commit
to.

• sshKeyArn (string, required) – The ARN of the secret in Secrets Manager that is used to
store the user name and SSH key for Git authentication from the Jenkins server.

• In the pipelineInfo section Jenkins object, set the following parameters:

• jenkinsServerUrl (string, required) – The URL of the Jenkins server. HTTPS is required for
secure access.

• nodeLabels (array of strings, required) – A list of the labels that must be attached to the
Jenkins agent node that runs the pipeline. All labels specified must be present on the
agent node for it to run.

• apiTokenArn (string, required) – The ARN of the secret in Secrets Manager that is used to
authenticate to the Jenkins server.

• repoSshCredentialId (string, required) – The ID of the credential that you create on the
Jenkins server, which is used to access the Git repository from the Jenkins agent node
through SSH. For more information about SSH credentials on Jenkins, see the Using
credentials chapter in the Jenkins User Handbook, available online.

• awsCredentialId (string, required) – The AWS profile on the Jenkins server that is used to
access AWS resources from the Jenkins agent node when the pipeline runs.

2. When you run the generate pipeline command, App2Container validates the properties in
the pipeline.json file, and verifies that initial deployment to your container management
service has been completed, and that your application is active.

The generate pipeline command generates the following artifacts for Jenkins pipelines:

• Jenkinsfile – App2Container uses the Declarative Pipeline syntax to produce the
Jenkinsfile. The file contains the steps and stages (code, build, release, etc.) for the

Jenkins integration for App2Container workflow 140

https://www.jenkins.io/doc/book/using/using-credentials/
https://www.jenkins.io/doc/book/using/using-credentials/

AWS App2Container User Guide

Jenkins pipeline. For more information about Jenkins pipeline syntax, see Pipeline Syntax on
the Jenkins website.

If you are not using the --deploy option with the generate pipeline command, you can
customize the Jenkinsfile, and then use it to create your pipeline using the Jenkins user
interface.

• A config.xml file – If you are not using the --deploy option with the generate pipeline
command, you can use the config.xml file, along with the Jenkinsfile to create your
pipeline using the Jenkins REST API (JenkinsAPI). For more information, see the online
documentation site: JenkinsAPI.

• Amazon EKS CloudFormation template (for Amazon EKS deployment only) – If your
application is deploying to Amazon EKS, the generate pipeline command generates a
CloudFormation template to create a two-step pipeline. For more information about
Amazon EKS deployments, see Deploy application containers to Amazon EKS with AWS
App2Container

Note

If you are using CodeCommit as your source repository, App2Container creates an
SSH key for the IAM user that is running the command. It provides that SSH key to
the Jenkins server, so that Jenkins can access files in CodeCommit when it runs the
pipeline.

If you run the generate pipeline command with the --deploy option, App2Container creates
the pipeline in Jenkins, and starts the pipeline build.

Set up CI/CD pipelines with Microsoft Azure DevOps

Azure DevOps is a continuous delivery platform, orchestrator, and cloud provider from Microsoft.
App2Container integrates with Azure DevOps Services to automate the build and deployment
process that updates your application container images in Amazon ECR. For more information
about Azure DevOps, see What is Azure DevOps? in the Microsoft documentation.

Contents

• Prerequisites

Set up Azure DevOps pipelines 141

https://www.jenkins.io/doc/book/pipeline/syntax/
https://jenkinsapi.readthedocs.io/en/latest/
https://docs.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops?view=azure-devops

AWS App2Container User Guide

• Azure DevOps integration for App2Container workflow

Prerequisites

To configure Azure DevOps pipeline integration for your application container from App2Container,
your application must meet the following criteria.

• You must have a Microsoft Azure account with the following organization and project structure:

• An organization that Azure DevOps services can use for your pipeline. To learn more about
how to set up an organization for your Microsoft Azure account, see the Create an organization
page on the Azure DevOps Services documentation website.

• A project that Azure DevOps services can use for your pipeline. The project establishes a
repository where your pipeline stores artifacts for your application. For more information, see
Create a project in Azure DevOps on the Azure DevOps Services documentation website.

• An agent pool that contains Microsoft-hosted agents. Microsoft provides a predefined agent
pool called Azure Pipelines that contains Microsoft-hosted agents. When you create your
agent pool, choose the Azure Pipelines default agent pool. For more information, see Create
and manage agent pools on the Azure DevOps Services documentation website.

• To access AWS resources for your application from your Azure DevOps pipeline, install the AWS
Toolkit for Azure DevOps extension into your Azure DevOps account .

• Search for AWS toolkit for Azure DevOps in the Azure DevOps section of the Visual
Studio Marketplace.

• Choose the AWS toolkit for Azure DevOps extension from the results.

• Choose Get it free If prompted, sign in to your Azure DevOps account.

• To install the extension into your Azure DevOps account, choose Install.

• Azure DevOps pipelines need permission to perform pipeline actions that access or update AWS
resources. To grant access for Azure DevOps, attach or embed the policy resources and actions
shown in the IAM policy for Azure DevOps example in the IAM policy examples. For more
information on how to set up your IAM resources for App2Container, see Create IAM resources
for general use.

• After you've installed the AWS Toolkit for Azure DevOps and set up the IAM user and policy that
Azure DevOps uses to interact with AWS services, you can set up an AWS service connection
under your Azure project settings, as follows:

1. Sign in to your Azure DevOps account organization, and select your project.

Prerequisites 142

https://docs.microsoft.com/en-us/azure/devops/organizations/accounts/create-organization?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/organizations/projects/create-project?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/pools-queues?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/pools-queues?view=azure-devops
https://marketplace.visualstudio.com/azuredevops
https://marketplace.visualstudio.com/azuredevops

AWS App2Container User Guide

2. In the lower left of your browser window, choose Project settings. This opens the Project
Settings menu.

3. In the Pipelines section of the menu, choose Service connections.

4. Choose New service connection. This displays a list of services that you can connect to.

5. To open the New AWS service connection form, choose AWS from the list, and then choose
Next. If there is a long list of service connections, you might need to scroll down.

6. Enter the following information in the form:

Required

• Access Key ID – The access key ID for the IAM user that Azure DevOps uses to access AWS
services for pipeline actions.

• Secret Access Key – The secret access key for the IAM user that Azure DevOps uses to
access AWS services for pipeline actions.

• Service connection name – The name of the service connection for your project

• Grant access permission to all pipelines – Select this check box to ensure that all of your
pipelines have permission to access AWS services.

You can fill in one or more of the optional fields, if needed, depending on how you set up
your security in IAM.

7. Choose Save to save your settings and close the form.

For more information, see Manage service connections on the Azure DevOps Services
documentation website.

• When App2Container runs Azure DevOps pipelines, it authenticates with a Microsoft Azure
Personal Access Token (PAT). To learn more about how to create a PAT and save it as a secret in
AWS Secrets Manager, see Create secrets for Microsoft Azure DevOps pipelines.

Azure DevOps integration for App2Container workflow

Applications follow all of the standard App2Container workflow steps through deployment.
Azure DevOps integration happens in the pipeline step. To set up integration with Microsoft
Azure DevOps pipelines, to refresh components for your application container, configure the
pipeline.json file as follows.

Azure DevOps integration for App2Container workflow 143

https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops

AWS App2Container User Guide

Before you run the generate pipeline command, review the pipeline.json file that the
generate app-deployment command created. Configure the parameters for your Azure DevOps
pipeline as follows:

• Set the flags to activate Azure DevOps deployment. Configure exactly one source repository, and
one type of pipeline. In each section, set one Boolean value enabled flag to true, and all others
to false.

• sourceInfo

• CodeCommit – enabled: false

• ExistingGitRepo – enabled: false

• AzureRepo – enabled: true

• pipelineInfo

• CodePipeline – enabled: false

• Jenkins – enabled: false

• AzureDevOps – enabled: true

• In the AzureRepo object of the sourceInfo section, set the following additional parameters, or
leave the default values that App2Container creates:

• repositoryName (string, required) – The name of the Azure Repos Git repository that you want
to use or create.

• branch (string, required) – The name of the code branch in the Azure Repos Git repository
where App2Container commits pipeline resources.

• In the Azure DevOps object of the pipelineInfo section, set the following additional
parameters, or leave the default values that App2Container creates:

• organizationName (string, required) – The name of the organization that you set up under
your Microsoft Azure account for Azure DevOps.

• projectName (string, required) – The name of the project that you set up under your Microsoft
Azure account for Azure DevOps.

• serviceCredName (string, required) – The name of the service credentials that Azure DevOps
uses to connect to AWS.

• agentPoolName (string, required) – The name of the agent pool with the Microsoft-hosted
agents that your pipeline uses to build and deploy updated container images for your
application.

Azure DevOps integration for App2Container workflow 144

AWS App2Container User Guide

• personalAccessTokenARN (string, required) – The ARN that identifies the Secrets Manager
secret where you store your Microsoft Azure Personal Access Token (PAT).

Validation

When you run the generate pipeline command, App2Container performs the following validation
to ensure the success of your pipeline deployment:

File validation

App2Container ensures that the Azure DevOps sections in the pipeline.json file are complete,
and that all required properties pass validation.

• Checks that AzureRepo is the only source repository that you have activated in the sourceInfo
section of the pipeline.json file, and that this section contains all required properties.

• Checks that AzureDevOps is the only pipeline that you have activated in the pipelineInfo
section of the pipeline.json file, and that this section contains all required properties.

Deployment validation

Before creating a pipeline, you must have deployed your containerized application to run on
Amazon ECS, Amazon EKS, or App Runner. App2Container verifies that your application container is
running in the environment you've configured before it proceeds.

Microsoft-hosted agent validation

App2Container verifies that all of the following prerequisites are installed on the Microsoft-hosted
agent:

• Git

• Docker engine

• AWS CLI

• kubectl (only for Amazon EKS container pipelines)

Azure account tools and settings

App2Container verifies that the Microsoft Azure account has the tools and settings it needs to
interact with AWS for Azure DevOps pipeline deployments, as follows:

Azure DevOps integration for App2Container workflow 145

AWS App2Container User Guide

• The AWS Toolkit for Microsoft Azure DevOps is installed in the Azure DevOps account

• The Azure DevOps service connection is configured for AWS

• The Microsoft Azure Agent Pool exists

Output

The generate pipeline command generates the following artifacts for Azure DevOps pipelines.
If you don't use the --deploy option with the generate pipeline command, you can edit the
artifacts that App2Container added to your Azure Repos Git repository to create your pipeline from
the Azure DevOps interface.

Amazon ECS

Scripts to install and validate prerequisites on the Microsoft-hosted agent

• install-pre-req-aws.sh – Installs AWS CLI on the Microsoft-hosted agent.

• install-pre-req-docker.sh – Installs the Docker engine on the Microsoft-hosted agent.

• install-pre-req-git.sh – Installs Git on the Microsoft-hosted agent.

• pre-requisite-validation.sh – Checks the Microsoft-hosted agent for prerequisites,
and installs any that are missing.

Note

Scripts for Windows platforms use the .ps1 file extension.

Pipeline resources (in usage order)

• pre-requisites.yml – Sets up a pipeline stage that runs scripts to check the Microsoft-
hosted agent and install any prerequisites that are missing.

• pipeline.json – Contains configurable settings for your pipeline..

• image-build.yml – Builds the application container image and uploads it to Amazon ECR.

• beta-ecs-release.yaml – Updates the Amazon ECS clusters for your beta environment, if
you have defined that stage.

• prod-ecs-release.yaml – Updates the Amazon ECS clusters for your prod environment, if
you have defined that stage.

Azure DevOps integration for App2Container workflow 146

AWS App2Container User Guide

Note

App2Container supports two stages for your pipelines: beta and prod. You must have at
least one stage defined, or you can have both.

Amazon EKS

Scripts to install and validate prerequisites on the Microsoft-hosted agent

• install-pre-req-aws.sh – Installs AWS CLI on the Microsoft-hosted agent.

• install-pre-req-docker.sh – Installs the Docker engine on the Microsoft-hosted agent.

• install-pre-req-git.sh – Installs Git on the Microsoft-hosted agent.

• install-pre-req-kubectl.sh – Installs kubectl on the Microsoft-hosted agent.

• A pre-requisite-validation.sh file – Checks the Microsoft-hosted agent for
prerequisites, and installs any that are missing.

Note

Scripts for Windows platforms use the .ps1 file extension.

Pipeline resources (in usage order)

• pre-requisites.yml – Sets up a pipeline stage that runs scripts to check the Microsoft-
hosted agent and install any prerequisites that are missing.

• pipeline.json – Contains configurable settings for your pipeline.

• image-build.yml – Builds the application container image and uploads it to Amazon ECR.

• beta-eks-release.yaml – Updates the Amazon EKS clusters for your beta environment, if
you have defined that stage.

• prod-eks-release.yaml – Updates the Amazon EKS clusters for your prod environment, if
you have defined that stage.

Azure DevOps integration for App2Container workflow 147

AWS App2Container User Guide

Note

App2Container supports two stages for your pipelines: beta and prod. You must have at
least one stage defined, or you can have both.

App Runner

Scripts to install and validate prerequisites on the Microsoft-hosted agent

• install-pre-req-aws.sh – Installs AWS CLI on the Microsoft-hosted agent.

• install-pre-req-docker.sh – Installs the Docker engine on the Microsoft-hosted agent.

• install-pre-req-git.sh – Installs Git on the Microsoft-hosted agent.

• pre-requisite-validation.sh – Checks the Microsoft-hosted agent for prerequisites,
and installs any that are missing.

Note

Scripts for Windows platforms use the .ps1 file extension.

Pipeline resources (in usage order)

• pre-requisites.yml – Sets up a pipeline stage that runs scripts to check the Microsoft-
hosted agent and install any prerequisites that are missing.

• pipeline.json – Contains configurable settings for your pipeline.

• image-build.yml – Builds the application container image and uploads it to Amazon ECR.

Note

If your Azure Repos Git repository doesn't already exist, App2Container creates it.

If you run the generate pipeline command with the --deploy option, App2Container creates the
pipeline in Azure DevOps, and starts the pipeline build.

Azure DevOps integration for App2Container workflow 148

AWS App2Container User Guide

Setting up FireLens log file routing for containers with AWS
App2Container

When you set up your application containers to use FireLens for Amazon ECS you can route your
application logs to CloudWatch, Kinesis Data Streams, or Firehose for log storage and analytics.
After you have configured the FireLens settings in your application analysis and deployment JSON
files, App2Container creates the artifacts that you need to deploy your application to Amazon EC2
or AWS Fargate. This includes:

• Creation of initial Kinesis Data Streams or Firehose streams, if applicable

• Creation of an IAM role with the permissions needed to enable FireLens log routing to the
destinations that you have specified

• Deployment artifacts that contain the FireLens parameters that you specified in your JSON
configuration files, including the Amazon ECS task definition and AWS CloudFormation template
files

For more information about using FireLens for Amazon ECS, see Custom log routing in the Amazon
Elastic Container Service Developer Guide.

Note

App2Container initially supports FireLens log file routing for Amazon ECS for Linux
containers only.

Contents

• FireLens log routing for Linux

FireLens log routing for Linux

Before starting these configuration steps, you should have an understanding of the App2Container
containerization phases – Initialize, Analyze, Transform, and Deploy. To learn more about the
containerization phases and the commands that run during each phase, see the App2Container
command reference in this user guide.

Route logs using FireLens 149

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_firelens.html

AWS App2Container User Guide

Follow these steps to set up log file routing with FireLens for Amazon ECS for your Linux
application containers:

FireLens configuration

• Prerequisites

• Step 1: Identify log locations for the container

• Step 2: Configure log deployment parameters

• Step 3: Validate deployment artifacts

• Step 4: Deploy your application to Amazon ECS

• Step 5: Verify log routing

Prerequisites

Prior to setting up FireLens log routing for your application, you must have completed the
following prerequisites:

• You have root access on the application server (and worker machine, if using).

• You successfully completed all of the steps from the Prerequisites: Set up your servers section of
this user guide.

• You have initialized the App2Container environment by successfully running the init command.

• The application must be running on the application server, and must have a valid application ID
assigned by the inventory command.

Step 1: Identify log locations for the container

Run the analyze command for your application, and then update the following parameters in your
analysis.json file:

• Update the logLocations array to include a list of log files or directory locations where log
files can be picked up for routing with FireLens.

• Set the enableDynamicLogging parameter to true to map application logs to stdout as they
are created. If your application appends to specific log files such as info.log or error.log, set
the enableDynamicLogging parameter to false.

FireLens log routing for Linux 150

AWS App2Container User Guide

The analysis.json file is stored in the application folder, for example: /root/
app2container/java-tomcat-9e8e4799. For more information on analysis.json fields and
configuration, see Configuring application containers in the Configuring your application section
of this user guide.

Example:

The following example shows container parameters in the analysis.json file for logging.

"containerParameters": {
 ...
 "logFiles": ["error.log", "info.log"],
 "logDirectory": "/var/app/logs/",
 "logLocations": ["error.log", "info.log", "/var/app/logs/"],
 "enableDynamicLogging": true,
 ...
},

Step 2: Configure log deployment parameters

Run the containerize command, and then edit the deployment.json file to set the
fireLensParameters. The deployment.json file is stored in the application folder, for
example: /root/app2container/java-tomcat-9e8e4799.

There must be at least one valid log destination defined for the logDestinations array, with
valid values for each of the parameters it contains. For more information on deployment.json
fields and configuration, including how to target deployment to AWS Fargate with the
deployTarget parameter, see Configuring container deployment in the Configuring your
application section of this user guide.

• Set enableFirelensLogging to true.

• Configure one or more valid logDestinations as follows:

• service – the AWS service to route logs to. Valid values are "cloudwatch", "firehose", and
"kinesis".

• regexFilter (string) – the pattern to match against log content using a Ruby regular expression
to determine where to route the log.

FireLens log routing for Linux 151

AWS App2Container User Guide

Note

Ruby regular expressions begin and end with a forward slash, with the pattern to
match specified in between the slashes. Patterns often begin with a caret (^), which
starts matching at the beginning of the line, and end with a dollar sign ($), which stops
matching at the end of the line.
The regexFilter parameter in the deployment.json file represents only
the matching pattern. Be sure to test your matching pattern using one of the
many applications available for your desktop or online, such as Rubular. For more
information about Ruby regular expressions, see Mastering Ruby Regular Expressions.

• streamName (string) – the name of the log delivery stream that will be created at the
destination.

Examples:

The following example shows FireLens parameters in the deployment.json file for logging to a
single destination - CloudWatch – using a Ruby regular expression.

"fireLensParameters": {
 "enableFireLensLogging": true,
 "logDestinations": [
 {
 "service": "cloudwatch",
 "regexFilter": "^.*INFO.*$",
 "streamName": "Info"
 }
]
},

This example shows FireLens parameters in the deployment.json file for logging to a single
destination – Firehose – using a Ruby regular expression.

"fireLensParameters": {
 "enableFireLensLogging": true,
 "logDestinations": [
 {
 "service": "firehose",
 "regexFilter": "^.*INFO.*$",

FireLens log routing for Linux 152

https://rubular.com/
https://www.rubyguides.com/2015/06/ruby-regex/

AWS App2Container User Guide

 "streamName": "Info"
 }
]
},

This example shows FireLens parameters in the deployment.json file for routing separate log
files to different destinations in CloudWatch, using Ruby regular expressions.

"fireLensParameters": {
 "enableFireLensLogging": true,
 "logDestinations": [
 {
 "service": "cloudwatch",
 "regexFilter": "^.*INFO.*$",
 "streamName": "Info"
 },
 {
 "service": "cloudwatch",
 "regexFilter": "^.*WARNING.*$",
 "streamName": "Warning"
 }
]
},

Step 3: Validate deployment artifacts

The last step before deployment is to ensure that your Amazon ECS task definitions and
AWS CloudFormation templates are configured as expected after running the generate app-
deployment command, and that your log destinations were created, if applicable.

Note

• Deployment artifacts are stored in the Amazon ECS or Amazon EKS deployment folder
within the application folder that App2Container created for you. For example: /root/
app2container/java-tomcat-9e8e4799

• If you are routing to CloudWatch, your routing destination is not created prior to
deployment.

1. Run the generate app-deployment command to generate container deployment artifacts.

FireLens log routing for Linux 153

AWS App2Container User Guide

2. Verify that the Amazon ECS task definitions include the parameters that you specified and
that the values are correct. For an example of FireLens parameters in an Amazon ECS task
definition, see Example: Amazon ECS task definition FireLens parameters

3. Verify that the AWS CloudFormation template includes the parameters that you specified
and that the values are correct. For an example of FireLens parameters in a CloudFormation
template, expand the following section: Example: AWS CloudFormation template FireLens
parameters

4. If you are routing logs to Kinesis Data Streams or Firehose, verify that the streams have been
created for you by using the AWS Management Console.

a. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

b. From the Amazon Kinesis dashboard, choose Data streams or Delivery streams from the
navigation pane.

c. Verify that your stream Status is Active.

Example: Amazon ECS task definition FireLens parameters

This example shows excerpts from an Amazon ECS task definition file that was generated for
logging to CloudWatch.

"executionRoleArn": arn:aws:iam::
 <YOUR_ACCOUNT_ID>:role/A2CEcsFirelensRole",
"containerDefinitions": [
 {
 ...
 "logConfiguration": {
 "logDriver": "awsfirelens",
 "secretOptions": null,
 "options": {
 "include-pattern": "^.*INFO.*$",
 "log_group_name": "java-tomcat-c770eed9-logs",
 "log_stream_name": "java-tomcat-c770eed9-Info",
 "auto_create_group": "true",
 "region": "us-east-1",
 "Name": "cloudwatch"
 }
 },
 ...

FireLens log routing for Linux 154

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis

AWS App2Container User Guide

 "name": "java-tomcat-c770eed9"
 },
 {
 "dnsSearchDomains": null,
 "environmentFiles": null,
 "logConfiguration": {
 "logDriver": "awslogs",
 "secretOptions": null,
 "options": {
 "awslogs-group": "/ecs/containerization",
 "awslogs-region": "us-east-1",
 "awslogs-create-group": "true",
 "awslogs-stream-prefix": "firelens"
 }
 },
 ...
 "firelensConfiguration": {
 "type": "fluentbit",
 "options": null
 },
 ...
 "name": "java-tomcat-c770eed9-log-router"
 }
],
 ...
 "taskRoleArn": arn:aws:iam::
 <YOUR_ACCOUNT_ID>:role/A2CEcsFirelensRole",
 "compatibilities": [
 "EC2",
 "FARGATE"
],
 ...
 "requiresAttributes": [
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "ecs.capability.execution-role-awslogs"
 },
 ...
 {
 "targetId": null,
 "targetType": null,
 "value": null,

FireLens log routing for Linux 155

AWS App2Container User Guide

 "name": "com.amazonaws.ecs.capability.logging-driver.awsfirelens"
 },
 ...
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "com.amazonaws.ecs.capability.logging-driver.awslogs"
 },
 ...
 {
 "targetId": null,
 "targetType": null,
 "value": null,
 "name": "ecs.capability.firelens.fluentbit"
 }
],

Example: AWS CloudFormation template FireLens parameters

This example shows excerpts from a CloudFormation template file that was generated for logging
to CloudWatch.

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
...
- Label:
 default: Logging Parameters for the application being deployed, check ecs-lb-
webapp.yml for usage
 Parameters:
 - TaskLogDriver
 - MultipleDests
 - SingleDestName
 - IncludePattern
 - LogGrpName
 - LogStrmName
 - AutoCrtGrp
 - FirehoseStream
 - KinesisStream
 - KinesisAppendNewline
 - FirelensName
 - FirelensImage

FireLens log routing for Linux 156

AWS App2Container User Guide

 - ConfigType
 - ConfigPath
 - UsingCloudwatchLogs
 - UsingFirehoseLogs
 - UsingKinesisLogs
...
Parameters:
...
Firelens Parameters for the application being deployed
 TaskLogDriver:
 Type: String
 Default: awsfirelens
 MultipleDests:
 Type: String
 AllowedValues: [true, false]
 Default: false
 SingleDestName:
 Type: String
 Default: cloudwatch
 IncludePattern:
 Type: String
 Default: ^.*INFO.*$
 LogGrpName:
 Type: String
 Default: java-tomcat-c770eed9-logs
 LogStrmName:
 Type: String
 Default: java-tomcat-c770eed9-Info
 AutoCrtGrp:
 Type: String
 Default: true
 FirehoseStream:
 Type: String
 Default: ""
 KinesisStream:
 Type: String
 Default: ""
 KinesisAppendNewline:
 Type: String
 Default: ""
 FirelensName:
 Type: String
 Default: java-tomcat-c770eed9-log-router
 FirelensImage:

FireLens log routing for Linux 157

AWS App2Container User Guide

 Type: String
 Default: 906394416424.dkr.ecr.us-east-1.amazonaws.com/aws-for-fluent-bit:latest
 ConfigType:
 Type: String
 Default: ""
 ConfigPath:
 Type: String
 Default: ""
 UsingCloudwatchLogs:
 Type: String
 Default: true
 UsingFirehoseLogs:
 Type: String
 Default: false
 UsingKinesisLogs:
 Type: String
 Default: false
...
Rules:
 FirelensSingleCloudwatch:
 RuleCondition: !And
 - !Equals [!Ref MultipleDests, 'false']
 - !Equals [!Ref UsingCloudwatchLogs, 'true']
 Assertions:
 - AssertDescription: You cannot use any other firelens destination if a single
 cloudwatch stream is desired
 Assert: !And
 - !Equals [!Ref UsingFirehoseLogs, 'false']
 - !Equals [!Ref UsingKinesisLogs, 'false']
 - !Equals [!Ref SingleDestName, "cloudwatch"]
 - !Not [!Equals [!Ref LogGrpName, ""]]
 - !Not [!Equals [!Ref LogStrmName, ""]]
 - !Not [!Equals [!Ref AutoCrtGrp, ""]]
 FirelensSingleFirehose:
 RuleCondition: !And
 - !Equals [!Ref MultipleDests, 'false']
 - !Equals [!Ref UsingFirehoseLogs, 'true']
 Assertions:
 - AssertDescription: You cannot use any other firelens destination if a single
 firehose stream is desired
 Assert: !And
 - !Equals [!Ref UsingCloudwatchLogs, 'false']
 - !Equals [!Ref UsingKinesisLogs, 'false']
 - !Equals [!Ref SingleDestName, "firehose"]

FireLens log routing for Linux 158

AWS App2Container User Guide

 - !Not [!Equals [!Ref FirehoseStream, ""]]
 FirelensSingleKinesis:
 RuleCondition: !And
 - !Equals [!Ref MultipleDests, 'false']
 - !Equals [!Ref UsingKinesisLogs, 'true']
 Assertions:
 - AssertDescription: You cannot use any other firelens destination if a single
 kinesis stream is desired
 Assert: !And
 - !Equals [!Ref UsingCloudwatchLogs, 'false']
 - !Equals [!Ref UsingFirehoseLogs, 'false']
 - !Equals [!Ref SingleDestName, "kinesis"]
 - !Not [!Equals [!Ref KinesisStream, ""]]
 - !Not [!Equals [!Ref KinesisAppendNewline, ""]]
 MultipleDestinations:
 RuleCondition: !Equals [!Ref MultipleDests, 'true']
 Assertions:
 - AssertDescription: You must supply a configuration file location and filepath
 if multiple firelens destinations are being used
 Assert: !And
 - !Not [!Equals [!Ref ConfigType, ""]]
 - !Not [!Equals [!Ref ConfigPath, ""]]
 - !Equals [!Ref SingleDestName, ""]
 - !Equals [!Ref IncludePattern, ""]
 - !Equals [!Ref LogGrpName, ""]
 - !Equals [!Ref LogStrmName, ""]
 - !Equals [!Ref AutoCrtGrp, ""]
 - !Equals [!Ref FirehoseStream, ""]
 - !Equals [!Ref KinesisStream, ""]
 - !Equals [!Ref KinesisAppendNewline, ""]
...
Conditions:
...
Resources:
 PrivateAppStack:
 Type: AWS::CloudFormation::Stack
 Condition: DoNotCreatePublicLoadBalancer
 Properties:
 TemplateURL: !Sub 'https://${S3Bucket}.s3.${S3Region}.${AWS::URLSuffix}/
${S3KeyPrefix}/ecs-private-app.yml'
 Tags:
 - Key: "a2c-generated"
 Value: !Sub 'ecs-app-${AWS::StackName}'
 Parameters:

FireLens log routing for Linux 159

AWS App2Container User Guide

...
 TaskLogDriver: !Ref TaskLogDriver
 MultipleDests: !Ref MultipleDests
 SingleDestName: !Ref SingleDestName
 IncludePattern: !Ref IncludePattern
 LogGrpName: !Ref LogGrpName
 LogStrmName: !Ref LogStrmName
 AutoCrtGrp: !Ref AutoCrtGrp
 FirehoseStream: !Ref FirehoseStream
 KinesisStream: !Ref KinesisStream
 KinesisAppendNewline: !Ref KinesisAppendNewline
 FirelensName: !Ref FirelensName
 FirelensImage: !Ref FirelensImage
 ConfigType: !Ref ConfigType
 ConfigPath: !Ref ConfigPath
 UsingCloudwatchLogs: !Ref UsingCloudwatchLogs
 UsingFirehoseLogs: !Ref UsingFirehoseLogs
 UsingKinesisLogs: !Ref UsingKinesisLogs
...

Step 4: Deploy your application to Amazon ECS

Deploy your application using the generate app-deployment command with the --deploy
option.

$ sudo app2container generate app-deployment --deploy --application-id java-
tomcat-9e8e4799
√ AWS prerequisite check succeeded
√ Docker prerequisite check succeeded
√ Created ECR Repository
√ Registered ECS Task Definition with ECS
√ Uploaded CloudFormation resources to S3 Bucket: app2container-example
√ Generated CloudFormation Master template at: /root/app2container/java-
tomcat-9e8e4799/EcsDeployment/ecs-master.yml
√ Initiated CloudFormation stack creation. This may take a few minutes. Please visit
 the AWS CloudFormation Console to track progress.
ECS deployment successful for application java-tomcat-9e8e4799

The URL to your Load Balancer Endpoint is:
<your endpoint>.us-east-1.elb.amazonaws.com
Successfully created ECS stack app2container-java-tomcat-9e8e4799-ECS. Check the AWS
 CloudFormation Console for additional details.

FireLens log routing for Linux 160

AWS App2Container User Guide

Alternatively, you can deploy your application's AWS CloudFormation template using the AWS CLI
as follows.

$ sudo aws cloudformation deploy --template-file /root/app2container/java-
tomcat-9e8e4799/EcsDeployment/ecs-master.yml --capabilities CAPABILITY_NAMED_IAM --
stack-name app2container-java-tomcat-9e8e4799-ECS

Step 5: Verify log routing

After you deploy your application to Amazon ECS, you can verify that your logs are routing to their
intended destinations.

FireLens log routing for Linux 161

AWS App2Container User Guide

Security in AWS App2Container

Security at AWS is the highest priority. As an AWS customer using AWS App2Container and tools
such as Amazon ECR, Amazon ECS, and Amazon EKS, you benefit from data centers and network
architectures that are built to meet the requirements of the most security-sensitive organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon EC2, see
AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

Contents

• Data protection in App2Container

• Identity and access management in App2Container

• Update management for App2Container

Data protection in App2Container

The AWS shared responsibility model applies to data protection in AWS App2Container. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).

Data protection 162

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

AWS App2Container User Guide

That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with App2Container or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Data encryption

App2Container communicates with AWS services using standard APIs when retrieving
artifacts from Amazon S3 or pushing Docker containers to service endpoints in the AWS
container management suite (Amazon ECR, Amazon ECS, and Amazon EKS). It works with AWS
CloudFormation and AWS CodeStar services to generate and deploy relevant container and
lifecycle artifacts using their standard APIs.

Encryption at rest

• App2Container installation packages are kept in a private Amazon S3 bucket with encryption
enabled.

• Application artifacts can optionally be uploaded into Amazon S3 buckets. Enable encryption for
your Amazon S3 bucket to enforce data encryption.

Data encryption 163

https://aws.amazon.com/compliance/fips/

AWS App2Container User Guide

Encryption in transit

• App2Container installation packages are kept in a private Amazon S3 bucket, which requires
secure download using the HTTPS protocol using links provided for each package.

• App2Container uses standard AWS APIs for the services it interacts with, including Amazon ECR,
Amazon ECS, Amazon EKS, AWS CloudFormation, CodePipeline, and Amazon S3. AWS APIs use
HTTPS as their default communication protocol.

Internetwork traffic privacy

App2Container does not store passwords, keys, or other secrets or customer-sensitive material.
App2Container also ensures that no sensitive fields are contained in application logs.

Identity and access management in App2Container

Your AWS security credentials identify you to AWS and grant you access to your AWS resources.
For example, they can allow you to access artifacts saved to an Amazon S3 bucket. You can
use features of AWS Identity and Access Management (IAM) to allow other users, services,
and applications to use specific resources in your AWS account without sharing your security
credentials. You can choose to allow full use or limited use of your AWS resources.

If you are the owner of the AWS account and use AWS as the root user, we strongly recommend
that you create an IAM admin user to use for access to your AWS resources. See Creating Your First
IAM Admin User and Group in the IAM User Guide to set up your own access before setting up any
other IAM users who need to use App2Container.

By default, IAM users don't have permission to create or modify resources. To allow IAM users to
create or modify resources and perform tasks, you must create IAM policies that grant permission
to use the specific resources and API actions that they need. For more information about IAM
policies, see Policies and Permissions in the IAM User Guide.

IAM groups and roles are a flexible way to manage permissions across multiple users. When
you assign a user to a group or when your user assumes a role, that user inherits the group's or
role's permissions, and is allowed or denied permission to perform the specified tasks on the
specified resources. You can assign multiple users to the same group, and a role can be assumed by
authorized users. While groups and roles both serve the purpose of granting access to resources,
roles are more task-oriented, and assuming a role provides you with temporary security credentials
for your role session.

Internetwork traffic privacy 164

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

AWS App2Container User Guide

IAM security best practices

Follow these top four security best practices when setting up your IAM resources. For more
information and additional best practices, see Security Best Practices in IAM in the IAM User
Guide.

1. Lock away your AWS account root user access keys

Protect your root user access key like you would your credit card numbers or any other
sensitive secret, and only use your root user account for necessary account and service
management tasks.

2. Create individual IAM users

Don't use your AWS account root user credentials to access AWS, and don't give your
credentials to anyone else. Instead, create individual users for anyone who needs access
to your AWS account.

3. Use groups or roles to assign permissions to IAM Users

Instead of defining permissions for individual IAM users, it's usually more convenient to
create groups that relate to job functions (administrators, developers, accounting, etc.)
or roles that relate to specific tasks.

4. Grant least privilege

When you create IAM policies, follow the standard security advice of granting least
privilege, or granting only the permissions required to perform a task. Determine what
users (and roles) need to do and then craft policies that allow them to perform only
those tasks.

We recommend that you create a general purpose IAM group that can run all of the commands
except commands that are run with the --deploy option.

If you plan to use App2Container to deploy your containers or create pipelines, then you should
create a separate IAM user for deployments. The deployment user needs to be able to create or
update AWS objects for container management services (Amazon ECR, Amazon ECS, Amazon
EKS, and App Runner), and to create pipelines with AWS CodeStar services. This requires elevated
permissions that should only be used for deployment.

Identity and access management 165

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS App2Container User Guide

Set up IAM resources for App2Container

• Create IAM resources for general use

• Create IAM resources for deployment

Create IAM resources for general use

Follow best practices by using the following steps to create an IAM group with access to perform
specific tasks, using specific resources, and to assign users to the group.

Note

Alternatively, you can create an IAM role and EC2 instance profile to grant permissions
to applications that run on an Amazon EC2 instance. For more information about using
instance profiles, see Using an IAM role to grant permissions to applications running on
Amazon EC2 instances in the IAM User Guide.

1. Create a customer managed IAM policy

You can create a customer managed IAM policy for your general purpose user or group, using
one of the example policies on this page after you have customized the JSON to refer to your
resources. To create a policy using the AWS console, see Creating policies on the JSON tab in
the IAM User Guide. To create a policy using the AWS CLI, use the create-policy command.

Tip

Review your policy periodically, to add actions required for newer features, and to
ensure that the policy continues to meet your needs.

2. Create IAM users and a group

Every user who will run app2container commands needs to have an IAM user created for
accessing AWS resources under your account. To follow best practices, you can create an IAM
group with the policy attached, and assign users to it.

To create an IAM user, see Creating an IAM User in Your AWS Account in the IAM User Guide. Be
sure to select programmatic access to AWS when you create the IAM user.

Create IAM resources for general use 166

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html#access_policies_create-json-editor
https://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console

AWS App2Container User Guide

Perform the following steps to create an IAM group and assign users to it.

a. To create an IAM group, see Creating IAM Groups in the IAM User Guide.

b. Ensure that every person who will run app2container commands has an IAM user defined
for AWS access.

c. To assign the users to the group that you created in step 1a, see Adding Permissions to a
User (Console), or Adding and Removing a User's Permissions (AWS CLI or AWS API) in the
IAM User Guide.

3. Save your AWS access keys

Save the access keys for your new or existing IAM user in a safe place. You'll need them to
configure your AWS profile as part of getting set up for App2Container.

4. Attach or assign the policy

Use one of the following methods to assign permissions to your IAM users.

• Attach the policy to the IAM group

Attach the policy that you created in step 1 to the group that you created in step 2. See
Attaching a Policy to an IAM Group in the IAM User Guide.

• Embed the policy inline for an IAM user

Embed the policy that you created in step 1 inline for your IAM user. See the section that
begins with "To embed an inline policy" in Adding Permissions to a User (Console), or Adding
and Removing a User's Permissions (AWS CLI or AWS API) in the IAM User Guide.

Example IAM policies

You can use one of the policy templates in this section as a starting point to configure the access
that App2Container uses on your behalf to generate the deployment artifacts for your application
containers.

Choose the policy resources and actions that you need

The following sections in the example policies depend on choices you've made for your
containerization environment and workflow:

• AWS CodeCommit

Create IAM resources for general use 167

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-programmatic
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_manage_attach-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-programmatic
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-programmatic

AWS App2Container User Guide

SectionForCodeCommitAccess – If you use App2Container to generate a container pipeline, you
must grant access to interact with your CodeCommit code repository.

• FireLens log routing to Amazon Data Firehose

SectionForFirelensFirehoseIAMPolicyAccess,
SectionForFirelensFirehoseIAMRoleAccess, and
SectionForFirelensFirehoseStreamsAccess – If you use FireLens for log file routing, and
you configure FireLens to route to Firehose, you must grant access for App2Container to create
a new Firehose delivery stream. You must also grant access for App2Container to create an IAM
policy and role so that FireLens can access the delivery stream.

• FireLens log routing to Amazon Kinesis Data Streams

SectionForFirelensKinesisStreamsAccess – if you use FireLens for log file routing,
and you configure FireLens to route to Kinesis Data Streams you must grant access for
App2Container to create a new Kinesis data stream.

• AWS Secrets Manager

SectionForSecretManagerAccess – If you configured your environment to run remote
workflows, App2Container requires you to use Secrets Manager for connection secrets to access
application servers from the worker machine. You must grant access to retrieve secrets in the
policy.

• Amazon S3

SectionForS3Access and SectionForS3ReadAccess – If you set up an S3 bucket for
application or deployment artifacts, you must grant access to your bucket in the policy.

You must also ensure that only authorized users can access the bucket. We recommend that you
use server-side encryption for your bucket. See Protecting data using server-side encryption in
the Amazon Simple Storage Service User Guide for more information about how to set it up.

• Upload support bundle

SectionForUploadSupportBundleService – If you chose to have App2Container logs and
command-generated artifacts uploaded automatically for failed commands when you ran the
init command, you must grant access to upload the application support bundles.

• Usage metrics

Create IAM resources for general use 168

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html

AWS App2Container User Guide

SectionForMetricsService – If you gave consent for App2Container to collect and export
application usage metrics when you ran the init command, you must grant access to upload the
metric data.

• Amazon VPC

SectionForByoVPC – If you specify your own VPC or want to reuse an existing VPC that
App2Container created for a prior deployment, you must grant access to associated describe
actions in the policy.

Other policy sections in the examples are required for App2Container to generate application
deployment artifacts, or to integrate with Jenkins pipelines.

IAM policy for Amazon ECS

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SectionForS3Access",
 "Action": [
 "s3:DeleteObject",
 "s3:GetBucketAcl",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:GetObjectAcl",
 "s3:ListAllMyBuckets",
 "s3:ListBucket",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Effect": "Allow",
 "Resource": "<destination-bucket-ARN>"
 },
 {
 "Sid": "SectionForS3ReadAccess",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketAcl"
],
 "Resource": "arn:aws:s3:::*"

Create IAM resources for general use 169

AWS App2Container User Guide

 },
 {
 "Sid": "SectionForECRAccess",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchDeleteImage",
 "ecr:BatchGetImage",
 "ecr:CompleteLayerUpload",
 "ecr:CreateRepository",
 "ecr:DeleteRepository",
 "ecr:DescribeImages",
 "ecr:DescribeRepositories",
 "ecr:GetAuthorizationToken",
 "ecr:GetDownloadUrlForLayer",
 "ecr:GetRepositoryPolicy",
 "ecr:InitiateLayerUpload",
 "ecr:ListImages",
 "ecr:PutImage",
 "ecr:TagResource",
 "ecr:UntagResource",
 "ecr:UploadLayerPart"
],
 "Effect": "Allow",
 "Resource": "<resource-ARNs>"
 },
 {
 "Sid": "SectionForECRAccess2",
 "Action": [
 "ecr:GetAuthorizationToken"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "SectionForECSWriteAccess",
 "Action": [
 "ecs:CreateCluster",
 "ecs:CreateService",
 "ecs:CreateTaskSet",
 "ecs:DeleteCluster",
 "ecs:DeleteService",
 "ecs:DeleteTaskSet",
 "ecs:DeregisterTaskDefinition",
 "ecs:Poll",

Create IAM resources for general use 170

AWS App2Container User Guide

 "ecs:RegisterContainerInstance",
 "ecs:RegisterTaskDefinition",
 "ecs:RunTask",
 "ecs:StartTask",
 "ecs:StopTask",
 "ecs:SubmitContainerStateChange",
 "ecs:SubmitTaskStateChange",
 "ecs:UpdateContainerInstancesState",
 "ecs:UpdateService",
 "ecs:UpdateServicePrimaryTaskSet",
 "ecs:UpdateTaskSet"
],
 "Effect": "Allow",
 "Resource": "<resource-ARNs>"
 },
 {
 "Sid": "SectionForPassRoleToECS",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "<ARN for ecsTaskExecutionRole>"
 },
 {
 "Sid": "SectionForECSReadAccess",
 "Action": [
 "ecs:DescribeClusters",
 "ecs:DescribeContainerInstances",
 "ecs:DescribeServices",
 "ecs:DescribeTaskDefinition",
 "ecs:DescribeTaskSets",
 "ecs:DescribeTasks",
 "ecs:ListClusters",
 "ecs:ListContainerInstances",
 "ecs:ListServices",
 "ecs:ListTaskDefinitionFamilies",
 "ecs:ListTaskDefinitions",
 "ecs:ListTasks"
],
 "Effect": "Allow",
 "Resource": "<resource-ARNs>"
 },
 {
 "Sid": "SectionForFirelensIAMRoleAccess",
 "Action": [
 "iam:CreateRole",

Create IAM resources for general use 171

AWS App2Container User Guide

 "iam:GetRole",
 "iam:AttachRolePolicy"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::<your account ID>:role/A2CEcsFirelensRole"
 },
 {
 "Sid": "SectionForFirelensIAMPolicyAccess",
 "Action": [
 "iam:CreatePolicy"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::<your account ID>:policy/service-role/
A2CEcsFirelensPolicy"
 },
 {
 "Sid": "SectionForFirelensFirehoseIAMPolicyAccess",
 "Action": [
 "iam:CreatePolicy",
 "iam:GetPolicy"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::<your account ID>:policy/*a2c-
KinesisFirehosePolicy-*"
 },
 {
 "Sid": "SectionForFirelensFirehoseIAMRoleAccess",
 "Action": [
 "iam:CreateRole",
 "iam:GetRole",
 "iam:AttachRolePolicy"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::<your account ID>:role/*a2c-FirehoseRole-*"
 },
 {
 "Sid": "SectionForFirelensFirehoseStreamsAccess",
 "Action": [
 "firehose:DescribeDeliveryStream",
 "firehose:CreateDeliveryStream"
],
 "Effect": "Allow",
 "Resource": "arn:aws:firehose:*:<your account ID>:deliverystream/*"
 },

Create IAM resources for general use 172

AWS App2Container User Guide

 {
 "Sid": "SectionForFirelensKinesisStreamsAccess",
 "Action": [
 "kinesis:CreateStream"
],
 "Effect": "Allow",
 "Resource": "arn:aws:kinesis:*:<your account ID>:stream/*"
 },
 {
 "Sid": "SectionForCodeCommitAccess",
 "Effect": "Allow",
 "Action": [
 "codecommit:GetRepository",
 "codecommit:GetBranch",
 "codecommit:CreateRepository",
 "codecommit:CreateCommit",
 "codecommit:TagResource"
],
 "Resource": "arn:aws:codecommit:*:*:*"
 },
 {
 "Sid": "SectionForByoVPC",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeInternetGateways",
 "ec2:DescribeRouteTables",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs"
],
 "Resource": "<resource-ARNs>"
 },
 {
 "Sid": "SectionForEC2",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeKeyPairs",
 "ec2:CreateKeyPair",
 "ec2:DescribeAvailabilityZones"
],
 "Resource": "<resource-ARNs>"
 },
 {
 "Sid": "SectionForMetricsService",
 "Effect": "Allow",

Create IAM resources for general use 173

AWS App2Container User Guide

 "Action": "application-transformation:PutMetricData",
 "Resource": "*"
 },
 {
 "Sid": "SectionForUploadSupportBundleService",
 "Effect": "Allow",
 "Action": "application-transformation:PutLogData",
 "Resource": "*"
 },
 {
 "Sid": "SectionForSecretManagerAccess",
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret"
],
 "Effect": "Allow",
 "Resource": "arn:aws:secretsmanager:<your region>:<your account
 ID>:secret:a2c/*"
 },
 {
 "Sid": "SectionForCloudFormation",
 "Action": [
 "cloudformation:DescribeStacks"
],
 "Effect": "Allow",
 "Resource": "arn:aws:cloudformation:*:<your account ID>:stack/a2c-*"
 }
]
}

IAM policy for Amazon EKS

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SectionForS3Access",
 "Action": [
 "s3:DeleteObject",
 "s3:GetBucketAcl",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:GetObjectAcl",

Create IAM resources for general use 174

AWS App2Container User Guide

 "s3:ListAllMyBuckets",
 "s3:ListBucket",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Effect": "Allow",
 "Resource": "<destination-bucket-ARN>"
 },
 {
 "Sid": "SectionForS3ReadAccess",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketAcl"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Sid": "SectionForECRAccess",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchDeleteImage",
 "ecr:BatchGetImage",
 "ecr:CompleteLayerUpload",
 "ecr:CreateRepository",
 "ecr:DeleteRepository",
 "ecr:DescribeImages",
 "ecr:DescribeRepositories",
 "ecr:GetDownloadUrlForLayer",
 "ecr:GetRepositoryPolicy",
 "ecr:InitiateLayerUpload",
 "ecr:ListImages",
 "ecr:PutImage",
 "ecr:TagResource",
 "ecr:UntagResource",
 "ecr:UploadLayerPart"
],
 "Effect": "Allow",
 "Resource": "<resource-ARNs>"
 },
 {
 "Sid": "SectionForECRAccess2",
 "Action": [
 "ecr:GetAuthorizationToken"

Create IAM resources for general use 175

AWS App2Container User Guide

],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "SectionForEKS",
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "lambda:GetFunction"
],
 "Resource": [
 "arn:aws:iam::*:role/eks-quickstart-ResourceReader",
 "arn:aws:lambda:<target Region>:*:function:eks-quickstart-
ResourceReader"
]
 },
 {
 "Sid": "SectionForCodeCommitAccess",
 "Effect": "Allow",
 "Action": [
 "codecommit:GetRepository",
 "codecommit:GetBranch",
 "codecommit:CreateRepository",
 "codecommit:CreateCommit",
 "codecommit:TagResource"
],
 "Resource": "arn:aws:codecommit:*:*:*"
 },
 {
 "Sid": "SectionForByoVPC",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeInternetGateways",
 "ec2:DescribeRouteTables",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs"
],
 "Resource": "<resource-ARNs>"
 },
 {
 "Sid": "SectionForEC2",
 "Effect": "Allow",
 "Action": [

Create IAM resources for general use 176

AWS App2Container User Guide

 "ec2:DescribeKeyPairs",
 "ec2:CreateKeyPair",
 "ec2:DescribeAvailabilityZones"
],
 "Resource": "<resource-ARNs>"
 },
 {
 "Sid": "SectionForMetricsService",
 "Effect": "Allow",
 "Action": "application-transformation:PutMetricData",
 "Resource": "*"
 },
 {
 "Sid": "SectionForUploadSupportBundleService",
 "Effect": "Allow",
 "Action": "application-transformation:PutLogData",
 "Resource": "*"
 },
 {
 "Sid": "SectionForSecretManagerAccess",
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret"
],
 "Effect": "Allow",
 "Resource": "arn:aws:secretsmanager:<your region>:<your account
 ID>:secret:a2c/*"
 },
 {
 "Sid": "SectionForIAMAccess",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:GetRole",
 "iam:ListRoles (https://docs.aws.amazon.com/IAM/latest/APIReference/
API_ListRoles.html)",
 "iam:ListRoleTags (https://docs.aws.amazon.com/IAM/latest/APIReference/
API_ListRoleTags.html)"
],
 "Effect": "Allow",
 "Resource": "<resource-ARNs>"
 },
 {
 "Sid": "SectionForCloudFormation",

Create IAM resources for general use 177

AWS App2Container User Guide

 "Action": [
 "cloudformation:DescribeStacks"
],
 "Effect": "Allow",
 "Resource": "arn:aws:cloudformation:*:<your account ID>:stack/a2c-*"
 }
]
}

IAM policy for AWS App Runner

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SectionForAppRunnerAccess",
 "Action": [
 "apprunner:List*",
 "apprunner:Describe*"
],
 "Effect": "Allow",
 "Resource": "<resource-ARNs>"
 },
 {
 "Sid": "SectionForECRAccess",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchDeleteImage",
 "ecr:BatchGetImage",
 "ecr:CompleteLayerUpload",
 "ecr:CreateRepository",
 "ecr:DeleteRepository",
 "ecr:DescribeImages",
 "ecr:DescribeRepositories",
 "ecr:GetDownloadUrlForLayer",
 "ecr:GetRepositoryPolicy",
 "ecr:InitiateLayerUpload",
 "ecr:ListImages",
 "ecr:PutImage",
 "ecr:TagResource",
 "ecr:UntagResource",
 "ecr:UploadLayerPart"
],

Create IAM resources for general use 178

AWS App2Container User Guide

 "Effect": "Allow",
 "Resource": "<resource-ARNs>"
 },
 {
 "Sid": "SectionForECRAccess2",
 "Action": [
 "ecr:GetAuthorizationToken"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "SectionForCodeCommitAccess",
 "Effect": "Allow",
 "Action": [
 "codecommit:GetRepository",
 "codecommit:GetBranch",
 "codecommit:CreateRepository",
 "codecommit:CreateCommit",
 "codecommit:TagResource"
],
 "Resource": "arn:aws:codecommit:*:*:*"
 },
 {
 "Sid": "SectionForMetricsService",
 "Effect": "Allow",
 "Action": "application-transformation:PutMetricData",
 "Resource": "*"
 },
 {
 "Sid": "SectionForUploadSupportBundleService",
 "Effect": "Allow",
 "Action": "application-transformation:PutLogData",
 "Resource": "*"
 },
 {
 "Sid": "SectionForSecretManagerAccess",
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret"
],
 "Effect": "Allow",
 "Resource": "arn:aws:secretsmanager:us-east-1:*:secret:a2c/*"
 },

Create IAM resources for general use 179

AWS App2Container User Guide

 {
 "Sid": "SectionForCloudFormation",
 "Action": [
 "cloudformation:DescribeStacks"
],
 "Effect": "Allow",
 "Resource": "arn:aws:cloudformation:*:<your account ID>:stack/a2c-*"
 }
]
}

IAM policy for Azure DevOps pipelines

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AzureDevOpsAWS",
 "Effect": "Allow",
 "Action": [
 "ecr:DescribeRepositories",
 "ecr:GetAuthorizationToken",
 "ecr:UploadLayerPart",
 "ecr:PutImage",
 "ecr:CompleteLayerUpload",
 "ecr:InitiateLayerUpload",
 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer",
 "ecs:UpdateService",
 "eks:DescribeCluster"
],
 "Resource": "*"
 }
]
}

IAM policy for Jenkins pipelines

{
 "Version": "2012-10-17",
 "Statement": [
 {

Create IAM resources for general use 180

AWS App2Container User Guide

 "Sid": "JenkinsAWS",
 "Effect": "Allow",
 "Action": [
 "ecr:GetDownloadUrlForLayer",
 "iam:ListRoles",
 "ecr:GetAuthorizationToken",
 "ecr:UploadLayerPart",
 "ecr:PutImage",
 "ecs:UpdateService",
 "sts:AssumeRole",
 "ecr:BatchGetImage",
 "ecr:CompleteLayerUpload",
 "eks:DescribeCluster",
 "ecr:InitiateLayerUpload",
 "ecr:BatchCheckLayerAvailability"
],
 "Resource": "*"
 }
]
}

Create IAM resources for deployment

The AdministratorAccess policy grants an IAM user full access to AWS. Therefore, IAM users with
this policy can deploy a containerized application using any of the AWS services for deployment
that are supported by App2Container.

1. Create an IAM user

You can create an IAM user with full access to AWS API actions and resources. Be sure to grant
the user programmatic access to AWS and to attach the AdministratorAccess policy. For more
information, see Creating IAM users in the IAM User Guide.

2. Save your AWS access keys

Save the access keys for the IAM user in a safe place. You'll need them to configure your AWS
profile as part of getting set up for App2Container.

Create IAM resources for deployment 181

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console

AWS App2Container User Guide

Update management for App2Container

App2Container detects what version of the CLI you are using when you run a command. It notifies
you if there are published updates available. You can install the latest version of App2Container
using the upgrade command.

Update management 182

AWS App2Container User Guide

App2Container command reference

Tip

To containerize your applications with a console-based experience and deploy them on
Amazon ECS on AWS Fargate, you can use the Replatform applications to Amazon ECS
template on the AWS Migration Hub Orchestrator console. For more information, see
Replatform applications to Amazon ECS in the AWS Migration Hub Orchestrator User Guide.

AWS App2Container is a command line tool that transforms supported legacy applications running
on physical servers or virtual machines into applications that run in Docker containers on Amazon
ECS, Amazon EKS, or AWS App Runner.

Important

Running App2Container commands on a Linux server requires elevated permissions. Prefix
the command syntax with sudo, or run the sudo su command one time when you log in
before running the commands as shown in the syntax for the commands linked below.

Containerization phases

The containerization process has several phases.

Phases

• Initialize

• Analyze

• Transform

• Deploy

Initialize

The init command performs one-time initialization tasks for App2Container. This interactive
command prompts for the information required to set up the local App2Container environment.

Containerization phases 183

https://console.aws.amazon.com/migrationhub/orchestrator?region=us-east-1#/templates
https://docs.aws.amazon.com/migrationhub-orchestrator/latest/userguide/replatform-to-ecs.html

AWS App2Container User Guide

Run this command before you run any other App2Container commands. If you are using a worker
machine to run commands remotely on application servers, you must also run the remote
configure command on the worker machine.

init

Run the init command to configure the AWS App2Container workspace on your application
servers and worker machines. If you are using a worker machine, and running commands
remotely, the init command is only required on the worker machine.

remote configure

After setting up remote access for the worker machine on your application server (see Enable
remote access for a worker machine (optional)), run the remote configure command on the
worker machine to configure the connections needed to run remote workflows on application
servers. This interactive command prompts for the required information for each application
server that you enter.

Analyze

After you have completed setup and initialization tasks on your servers, you can begin the analyze
phase. Run the version of these commands that applies to your server setup:

Run commands directly on application servers

inventory

Run the inventory command to produce an inventory of applications that are running on your
application servers, and to assign each one a unique ID to use when you run other commands.

analyze

Run the analyze command to analyze your running applications and to identify dependencies
that are required for containerization. This command creates the analysis.json file that
feeds into the Transform phase commands.

Analyze 184

AWS App2Container User Guide

Run commands remotely from a worker machine

remote inventory

Run the remote inventory command from your worker machine to produce an inventory of
applications that are running on your target application server and to assign each one a unique
ID to use when you run other commands.

remote analyze

Run the remote analyze command from your worker machine to analyze the applications
running on your target application server, and to identify dependencies that are required for
containerization. This command creates the analysis.json file that feeds into the Transform
phase commands.

Transform

The transform phase creates containers for your applications that have gone through analysis. Run
the version of these commands that applies to your server setup:

Run the extract directly on application servers, or run the remote extract from a worker
machine

extract

Run the extract command on your application server to generate an application archive
based on the analysis.json file, created by the analyze command. Transfer the archive
to the worker machine for the remaining steps that require the operating system to support
containers.

remote extract

Run the remote extract command from your worker machine to generate an application archive
for the applications running on your target application server, based on the analysis.json
file that was created by the analyze command.

Transform 185

AWS App2Container User Guide

Run all remaining commands directly on application servers or on a worker machine

containerize

Run the containerize command for the application specified in the --application id
parameter to do the following:

• Extract application artifacts or read from an extract archive for the specified application.
For complex, multi-component Windows applications, this also applies to any additional
applications or services that run in the same container.

• Generate Docker container artifacts, including a Dockerfile and container image, based on the
application artifacts, and the application settings in the analysis.json file.

• Create the deployment.json file for input to the generate app-deployment command

Deploy

The deploy phase consists of deploying an application to your target container management
environment (Amazon ECR with Amazon ECS, Amazon EKS, or AWS App Runner), and optionally
creating a CI/CD pipeline to automate future deployments.

generate app-deployment

Option 1: Generate deployment artifacts and deploy directly

Run the generate app-deployment command with the --deploy option to generate container
deployment artifacts and to deploy them to your target environment all in one step.

Option 2: Generate deployment artifacts and customize

• Run the generate app-deployment command without the deployment option to generate
deployment artifacts.

• Review and customize the generated Amazon ECS, Amazon EKS, or AWS App Runner
deployment artifacts.

• Deploy to your target environment using the AWS CLI or AWS console.

generate pipeline (optional)

Option 1: Generate CI/CD pipeline artifacts and deploy directly

Run the generate pipeline command with the --deploy option to generate CI/CD pipeline
artifacts and to deploy them with AWS CodePipeline all in one step.

Deploy 186

AWS App2Container User Guide

Option 2: Generate CI/CD pipeline artifacts and customize

• Run the generate pipeline command without the deployment option to generate pipeline
artifacts.

• Review and customize the generated pipeline artifacts.

• Deploy to your target environment using the AWS CLI or AWS console.

Utility commands

The following additional commands help you maintain AWS App2Container in your environment.

upgrade

Run the upgrade command to upgrade your existing installation of App2Container. This
command checks if there is a newer version of App2Container available, and automatically
upgrades if doing so will not break backwards compatibility with previously generated
container artifacts.

upload-support-bundle

Run the upload-support-bundle command for assistance from the AWS App2Container team
for troubleshooting a command failure. This command securely uploads App2Container logs
and supporting artifacts, and an optional message for your troubleshooting request to the AWS
App2Container team.

app2container analyze command

Analyzes the specified application and generates a report.

Note

If the command fails, an error message is displayed in the console, followed by additional
messaging to help you troubleshoot.
When you ran the init command, if you chose to automatically upload logs to
App2Container support if an error occurs, App2Container notifies you of the success of the
automatic upload of your application support bundle.
Otherwise, App2Container messaging directs you to upload application artifacts by running
the upload-support-bundle command for additional support.

Utility commands 187

AWS App2Container User Guide

Syntax

app2container analyze --application-id id [--help]

Parameters and options

Parameters

--application-id id

The application ID (required). After you run the inventory command, you can find the
application ID in the inventory.json file in one of the following locations:

• Linux: /root/inventory.json

• Windows: C:\Users\Administrator\AppData\Local\.app2container-config
\inventory.json

Options

--help

Displays the command help.

Output

The analyze command creates files and directories for each application. Output varies slightly,
depending on your application language and the application server operating system.

The application directory is created in the output location that you specified when you ran the
init command. Each application has its own directory named for the application ID. The directory
contains analysis output and editable application configuration files. The files are stored in
subdirectories that match the application structure on the server.

An analysis.json file is created for the application that is specified in the --application-
id parameter. The file contains information about the application found during analysis, and
configurable fields for container settings. See Configuring application containers, and choose the
platform that your application container runs on for more information about configurable fields,
and for an example of what the file looks like.

Syntax 188

AWS App2Container User Guide

For .NET applications and Windows services, App2Container detects connection strings and
produces the report.txt file. The report location is specified in the analysis.json file, in
the reportPath attribute of the analysisInfo section. You can use this report to identify
the changes that you need to make in application configuration files to connect your application
container to new database endpoints, if needed. The report also contains the locations of other
configuration files that might need changes.

Examples

Choose the operating system platform tab for the application server or worker machine where you
run the command.

Linux

The following example shows the analyze command with the --application-id parameter
and no additional options.

$ sudo app2container analyze --application-id java-tomcat-9e8e4799
√ Created artifacts folder /root/app2container/java-tomcat-9e8e4799
√ Generated analysis data in /root/app2container/java-tomcat-9e8e4799/analysis.json
Analysis successful for application java-tomcat-9e8e4799
Please examine the application analysis file at /root/app2container/java-
tomcat-9e8e4799/analysis.json,
make appropriate edits and initiate containerization using "app2container
 containerize --application-id java-tomcat-9e8e4799

Windows

The following example shows the analyze command with the --application-id parameter
and no additional options.

PS> app2container analyze --application-id iis-smarts-51d2dbf8
√ Created artifacts folder C:\Users\Administrator\AppData\Local\app2container\iis-
smarts-51d2dbf8
√ Generated analysis data in C:\Users\Administrator\AppData\Local\app2container\iis-
smarts-51d2dbf8\analysis.json
Analysis successful for application iis-smarts-51d2dbf8
Please examine the application analysis file at C:\Users\Administrator\AppData\Local
\app2container\iis-smarts-51d2dbf8\analysis.json,
make appropriate edits and initiate containerization using "app2container
 containerize --application-id iis-smarts-51d2dbf8

Examples 189

AWS App2Container User Guide

app2container containerize command

When you run this command, it creates a Docker container image for your application. The is based
on the parameters in the analysis.json file that is generated by the analyze command, along
with any customizations you have made. By default, the image is pre-validated to ensure that the
application container runs and returns a successful response, as expected.

See Configuring application containers for more information about configuring the
analysis.json file.

Note

If the command fails, an error message is displayed in the console, followed by additional
messaging to help you troubleshoot.
When you ran the init command, if you chose to automatically upload logs to
App2Container support if an error occurs, App2Container notifies you of the success of the
automatic upload of your application support bundle.
Otherwise, App2Container messaging directs you to upload application artifacts by running
the upload-support-bundle command for additional support.

Syntax

app2container containerize {--application-id id | --input-archive extraction-file} [--
no-validate] [--help]

Parameters and options

Parameters

--application-id id

The application ID (required). After you run the inventory command, you can find the
application ID in the inventory.json file in one of the following locations:

• Linux: /root/inventory.json

• Windows: C:\Users\Administrator\AppData\Local\.app2container-config
\inventory.json

containerize 190

AWS App2Container User Guide

--input-archive extraction-file

The file path or Amazon S3 key (for example, s3://bucket/archive-key) for the application
archive. If you specify an application archive, the command downloads and opens the archive,
and then builds the container image.

--profile admin-profile

Use this option to specify a named profile to run this command. For more information about
named profiles in AWS, see Named profiles in the AWS Command Line Interface User Guide

Options

--build-only

Builds container images based on the existing Dockerfile and artifacts.

--force

Bypasses the disk space prerequisite check.

--no-validate

Bypasses pre-validation of the generated container image.

--help

Displays the command help.

Output

This command generates a Dockerfile, a container image, and a deployment.json file that
you can use with the generate app-deployment command.

It also generates a Dockerfile.update file that you can use to make updates to your
containerized application. The generate pipeline command adds this Dockerfile to your
CodeCommit repository and deploys updates to your CodePipeline infrastructure.

See deployment.json file for more information about configuration, and for an example of what
the deployment.json file looks like.

Output 191

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

AWS App2Container User Guide

Examples

Choose the operating system platform tab for the application server or worker machine where you
run the command.

Linux

The following example shows the containerize command with the --application-id
parameter and no additional options.

$ sudo app2container containerize --application-id java-tomcat-9e8e4799
√ AWS pre-requisite check succeeded
√ Docker pre-requisite check succeeded
√ Extracted container artifacts for application
√ Entry file generated
√ Dockerfile generated under /root/app2container/java-tomcat-9e8e4799/Artifacts
√ Generated dockerfile.update under /root/app2container/java-tomcat-9e8e4799/
Artifacts
√ Generated deployment file at /root/app2container/java-tomcat-9e8e4799/
deployment.json
√ Deployment artifacts generated.
√ Pre-validation succeeded.
Containerization successful. Generated docker image java-tomcat-9e8e4799

You're all set to test and deploy your container image.

Next Steps:
1. View the container image with \"docker images\" and test the application.
2. When you're ready to deploy to AWS, please edit the deployment file as needed
 at /root/app2container/java-tomcat-9e8e4799/deployment.json.
3. Generate deployment artifacts using app2container generate app-deployment --
application-id java-tomcat-9e8e4799
Please use "docker images" to view the generated container image.

The following example shows the containerize command with the --input-archive option.

$ sudo app2container containerize --input-archive /var/aws/java-tomcat-9e8e4799/
java-tomcat-9e8e4799-extraction.tar

Examples 192

AWS App2Container User Guide

Windows

The following example shows the containerize command with the --application-id
parameter and no additional options.

PS> app2container containerize --application-id iis-smarts-51d2dbf8
√ AWS pre-requisite check succeeded
√ Docker pre-requisite check succeeded
√ Extracted container artifacts for application
√ Entry file generated
√ Dockerfile generated under C:\Users\Administrator\AppData\Local\app2container\iis-
smarts-51d2dbf8\Artifacts
√ Generated dockerfile.update under C:\Users\Administrator\AppData\Local
\app2container\iis-smarts-51d2dbf8\Artifacts
√ Generated deployment file at C:\Users\Administrator\AppData\Local\app2container
\iis-smarts-51d2dbf8\deployment.json
Containerization successful. Generated docker image iis-smarts-51d2dbf8

You're all set to test and deploy your container image.

Next Steps:
1. View the container image with \"docker images\" and test the application.
2. When you're ready to deploy to AWS, please edit the deployment file
 as needed at C:\Users\Administrator\AppData\Local\app2container\iis-
smarts-51d2dbf8\deployment.json.
3. Generate deployment artifacts using app2container generate app-deployment --
application-id iis-smarts-51d2dbf8
Please use "docker images" to view the generated container image.

The following example shows the containerize command with the --input-archive option.

PS> app2container containerize --input-archive archive C:\Users\Administrator
\Downloads\iis-smarts-51d2dbf8.zip
√ AWS pre-requisite check succeeded
√ Docker pre-requisite check succeeded
√ Dockerfile generated under C:\Users\Administrator\AppData\Local\app2container\iis-
smarts-51d2dbf8\Artifacts
√ Generated dockerfile.update under C:\Users\Administrator\AppData\Local
\app2container\iis-smarts-51d2dbf8\Artifacts
√ Generated deployment file at C:\Users\Administrator\AppData\Local\app2container
\iis-smarts-51d2dbf8\deployment.json
Containerization successful. Generated docker image iis-smarts-51d2dbf8

Examples 193

AWS App2Container User Guide

You're all set to test and deploy your container image.

Next Steps:
1. View the container image with \"docker images\" and test the application.
2. When you're ready to deploy to AWS, please edit the deployment file
 as needed at C:\Users\Administrator\AppData\Local\app2container\iis-
smarts-51d2dbf8\deployment.json.
3. Generate deployment artifacts using app2container generate app-deployment --
application-id iis-smarts-51d2dbf8
To have gMSA related artifacts generated with CloudFormation, please edit gMSAParams
 inside deployment file.
Otherwise look at C:\Users\Administrator\AppData\Local\app2container\iis-
smarts-51d2dbf8\Artifacts\WindowsAuthSetupInstructions.md for setup instructions on
 Windows Authentication
Please use "docker images" to view the generated container image.

app2container extract command

Generates an application archive for the specified application. Before you call this command, you
must call the analyze command.

Note

If the command fails, an error message is displayed in the console, followed by additional
messaging to help you troubleshoot.
When you ran the init command, if you chose to automatically upload logs to
App2Container support if an error occurs, App2Container notifies you of the success of the
automatic upload of your application support bundle.
Otherwise, App2Container messaging directs you to upload application artifacts by running
the upload-support-bundle command for additional support.

Syntax

app2container extract --application-id id [--output s3] [--help]

extract 194

AWS App2Container User Guide

Parameters and options

Parameters

--application-id id

The application ID (required). After you run the inventory command, you can find the
application ID in the inventory.json file in one of the following locations:

• Linux: /root/inventory.json

• Windows: C:\Users\Administrator\AppData\Local\.app2container-config
\inventory.json

--profile admin-profile

Use this option to specify a named profile to run this command. For more information about
named profiles in AWS, see Named profiles in the AWS Command Line Interface User Guide

Options

--output s3

If specified, this option writes the archive file to the Amazon S3 bucket that you specified when
you ran the init command.

--force

Bypasses the disk space prerequisite check.

--help

Displays the command help.

Output

This command creates an archive file. When you use the --output s3 option, the archive is
written to the Amazon S3 bucket that you specified when you ran the init command. Otherwise,
the archive is written to the output location that you specified when you ran the init command.

Examples

Choose the operating system platform tab for the application server or worker machine where you
run the command.

Parameters and options 195

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

AWS App2Container User Guide

Linux

The following example shows the extract command with the --application-id parameter
and no additional options.

$ sudo app2container extract --application-id java-tomcat-9e8e4799
√ Extracted container artifacts for application
√ Application archive file created at: /root/app2container/java-tomcat-9e8e4799/
java-tomcat-9e8e4799-extraction.tar
Extraction successful for application java-tomcat-9e8e4799

Please transfer this tar file to your worker machine and run, "app2container
 containerize --input-archive <extraction-tar-filepath>"

Windows

The following example shows the extract command with the --application-id parameter
and no additional options.

PS> app2container extract --application-id iis-smarts-51d2dbf8
√ Extracted container artifacts for application
Extraction successful for application iis-smarts-51d2dbf8

app2container generate app-deployment command

When you run this command, it generates the artifacts needed to deploy your application
container in AWS. App2Container pre-fills key values in the artifacts based on your profile, the
application analysis, your App2Container workflow, and best practices.

Note

For Windows applications, App2Container chooses the base image for your application
container and Amazon ECS cluster, based on the worker machine or application server OS
where you run the containerization command. Windows application containers running on
Amazon EKS use Windows Server Core 2019 for the base image.

You have three options for deployment to your target container management environment, all of
which use Amazon ECR as the container registry (Amazon ECS, Amazon EKS, or App Runner):

generate app-deployment 196

AWS App2Container User Guide

• You can use the --deploy option to deploy directly to your target environment. When your
initial deployment uses this option, you can refresh your image by running the command with
the deploy option again.

• You can review and customize deployment artifacts, and then deploy using the AWS CLI or AWS
console.

This command accesses AWS resources to generate and deploy artifacts to your target
environment. The IAM user with administrator access that you created during security setup is
required to run the command with the --deploy option. See Identity and access management in
App2Container for more information about setting up IAM users for App2Container.

The command uses the deployment.json file that is generated by the containerize command.
You can edit the deployment.json file to specify parameters for your deployment, such as:

• An image repository name for Amazon ECR

• Task definition parameters for Amazon ECS

• The Kubernetes app name

• The App Runner service name

See Configuring container deployment for more information about configuring the
deployment.json file.

Note

If the command fails, an error message is displayed in the console, followed by additional
messaging to help you troubleshoot.
When you ran the init command, if you chose to automatically upload logs to
App2Container support if an error occurs, App2Container notifies you of the success of the
automatic upload of your application support bundle.
Otherwise, App2Container messaging directs you to upload application artifacts by running
the upload-support-bundle command for additional support.

generate app-deployment 197

AWS App2Container User Guide

Syntax

app2container generate app-deployment --application-id id [--deploy] [--profile admin-
profile] [--help]

Parameters and options

Parameters

--application-id id

The application ID (required). After you run the inventory command, you can find the
application ID in the inventory.json file in one of the following locations:

• Linux: /root/inventory.json

• Windows: C:\Users\Administrator\AppData\Local\.app2container-config
\inventory.json

--profile admin-profile

Use this option to specify a named profile to run this command. For more information about
named profiles in AWS, see Named profiles in the AWS Command Line Interface User Guide

Options

--deploy

Use this option to deploy directly to your target container management environment (Amazon
ECR with Amazon ECS, Amazon EKS, or App Runner).

Note

When you use the --deploy option to deploy directly to target environments, we
recommend that you use the --profile option to specify a named profile that has
elevated permissions.

--help

Displays the command help.

Syntax 198

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

AWS App2Container User Guide

Output

You have two options for deploying a container to your target environment using the generate
app-deployment command.

• You can use the --deploy option to deploy directly. This option also allows you to create
deployments iteratively. For example, after you create an initial Amazon ECS deployment with
the --deploy option, then you can rerun the command with --deploy to update your image in
Amazon ECS.

• You can review and customize deployment artifacts, and then deploy using the AWS CLI or AWS
console.

Generate container deployment artifacts for customization

app2container generate app-deployment --application-id id

To see the steps App2Container performs and the artifacts that it creates to generate an
application deployment for your target container management service, choose the tab that
matches your environment:

Amazon ECS

App2Container performs the following tasks and creates artifacts for deployment to Amazon
ECS:

Note

You must set the createEcsArtifacts parameter in the deployment.json file
to true to generate Amazon ECS artifacts. See Configuring container deployment for
more information on how to configure the deployment.json file.

• Checks for AWS and Docker prerequisites.

• Creates an Amazon ECR repository.

• Pushes the container image to the Amazon ECR repository.

• Generates an Amazon ECS task definition template.

• Generates a pipeline.json file.

Output 199

AWS App2Container User Guide

Amazon EKS

App2Container performs the following tasks and creates artifacts for deployment to Amazon
EKS:

Note

You must set the createEksArtifacts parameter in the deployment.json file to
true to generate Amazon EKS artifacts. See Configuring container deployment for
more information on how to configure the deployment.json file.

• Checks for AWS and Docker prerequisites.

• Creates an Amazon ECR repository.

• Pushes the container image to the Amazon ECR repository.

• Generates a CloudFormation template (eks-master.yml) that creates an EKS cluster, pulls
your application container images from Amazon ECR, and deploys your application to the
cluster.

• Generates Kubernetes manifests (eks_deployment.yaml, eks_service.yaml, and
eks_ingress.yaml), for post-deployment customizations using a tool such as kubectl.

• Generates a pipeline.json file.

AWS App Runner

App2Container performs the following tasks and creates artifacts for deployment to AWS App
Runner:

Note

You must set the createAppRunnerArtifacts parameter in the deployment.json
file to true to generate App Runner artifacts. See Configuring container deployment
for more information on how to configure the deployment.json file.
App Runner deployment is currently available for Linux applications only.

• Checks for AWS and Docker prerequisites.

• Creates an Amazon ECR repository.

Output 200

AWS App2Container User Guide

• Pushes the container image to the Amazon ECR repository.

• Generates the apprunner.yaml CloudFormation template.

• Generates a pipeline.json file.

Deploy directly to target environments

app2container generate app-deployment --application-id id --deploy --profile admin-
profile

When you run this command with the --deploy option, App2Container uses the same process
to validate and customize your deployment resources as it does when you deploy manually.
Additionally, it performs the following steps to complete the deployment:

• Uploads AWS CloudFormation resources to an Amazon S3 bucket, if configured.

• Creates a CloudFormation stack and deploys your application.

See pipeline.json file for more information about pipeline configuration, and for an example of the
deployment.json file.

Examples

Choose the operating system platform tab for the application server or worker machine where you
run the command.

Linux

The following example shows the generate app-deployment command with the --
application-id parameter.

$ sudo app2container generate app-deployment --application-id java-tomcat-9e8e4799
√ AWS prerequisite check succeeded
√ Docker prerequisite check succeeded
√ Processing application java-tomcat-9e8e4799...
√ Created ECR Repository 123456789012.dkr.ecr.us-west-2.amazonaws.com/java-
tomcat-9e8e4799
√ Pushed docker image to ECR repository
√ Created ECR repository 123456789012.dkr.ecr.us-west-2.amazonaws.com/java-
tomcat-9e8e4799-fluent-bit

Examples 201

AWS App2Container User Guide

√ Pushed docker image 123456789012.dkr.ecr.us-west-2.amazonaws.com/java-
tomcat-9e8e4799-fluent-bit:latest to ECR repository
√ Local ECS Task Definition file created
√ Uploaded CloudFormation resources to S3 Bucket: app2container-example
√ Generated CloudFormation Master template at: /root/app2container/java-
tomcat-9e8e4799/EcsDeployment/ecs-master.yml
√ Initiated CloudFormation stack creation. This may take a few minutes. To track
 progress, open the AWS CloudFormation console
√ Deploying AWS CloudFormation Stack: <link to stack>
√ Stack a2c-java-tomcat-9e8e4799-ECS deployed successfully!
√ Updating service

Deployment successful for application java-tomcat-9e8e4799

Successfully created ECS infrastructure stack app2container-java-tomcat-9e8e4799-
ECS.
The URL to your Load Balancer Endpoint is:
<your endpoint>.us-east-1.elb.amazonAWS.com
The URL to your application log group on CloudWatch is: <log group link>>

Set up a pipeline for your application stack using app2container:
app2container generate pipeline —application-id java-tomcat-9e8e4799

The following example shows the generate app-deployment command with the --
application-id parameter for an application that is deployed to AWS App Runner.

$ sudo app2container generate app-deployment --application-id java-tomcat-9e8e4799
√ AWS pre-requisite check succeeded
√ Docker pre-requisite check succeeded
√ Created ECR repository 123456789012.dkr.ecr.us-west-2.amazonaws.com/java-
tomcat-9e8e4799 already
√ Pushed docker image to 123456789012.dkr.ecr.us-west-2.amazonaws.com/java-
tomcat-9e8e4799:latest to ECR repository
√ Generated AWS App Runner CloudFormation template at /root/app2container/java-
tomcat-9e8e4799/AppRunnerDeployment/apprunner.yml

CloudFormation templates and additional deployment artifacts generated successfully
 for application java-tomcat-9e8e4799

You're all set to use AWS CloudFormation to manage your application stack.

Next Steps:
1. Edit the CloudFormation template as necessary.

Examples 202

AWS App2Container User Guide

2. Create an application stack using the AWS CLI or the AWS Console. AWS CLI
 command:

aws cloudformation deploy --template-file /root/app2container/java-tomcat-9e8e4799/
AppRunnerDeployment/apprunner.yml --capabilities CAPABILITY_IAM --stack-name a2c-
java-tomcat-9e8e4799-AppRunner

3. Set up a pipeline for your application stack using app2container:
app2container generate pipeline --application-id java-tomcat-9e8e4799

The following example shows the generate app-deployment command with the --
application-id parameter and the --deploy option.

$ sudo app2container generate app-deployment --deploy --application-id java-
tomcat-9e8e4799 --profile admin-profile
√ AWS prerequisite check succeeded
√ Docker prerequisite check succeeded
√ Processing application java-tomcat-9e8e4799...
√ Created ECR Repository 123456789012.dkr.ecr.us-west-2.amazonaws.com/java-
tomcat-9e8e4799
√ Pushed docker image to ECR repository
√ Created ECR repository 123456789012.dkr.ecr.us-west-2.amazonaws.com/java-
tomcat-9e8e4799-fluent-bit
√ Pushed docker image 123456789012.dkr.ecr.us-west-2.amazonaws.com/java-
tomcat-9e8e4799-fluent-bit:latest to ECR repository
√ Local ECS Task Definition file created
√ Uploaded CloudFormation resources to S3 Bucket: app2container-example
√ Generated CloudFormation Master template at: /root/app2container/java-
tomcat-9e8e4799/EcsDeployment/ecs-master.yml
√ Updating CloudFormation stack
√ Initiated CloudFormation stack creation. This may take a few minutes. To track
 progress, open the AWS CloudFormation console
√ Deploying AWS CloudFormation Stack: <link to stack>
√ Stack a2c-java-tomcat-9e8e4799-ECS deployed successfully!
√ Updating service

Deployment successful for application java-tomcat-9e8e4799

Successfully created ECS infrastructure stack app2container-java-tomcat-9e8e4799-
ECS.
The URL to your Load Balancer Endpoint is:
<your endpoint>.us-east-1.elb.amazonaws.com
The URL to your application log group on CloudWatch is: <log group link>>

Examples 203

AWS App2Container User Guide

Set up a pipeline for your application stack using app2container:
app2container generate pipeline —application-id java-tomcat-9e8e4799

The following example shows the generate app-deployment command with the --
application-id parameter and the --deploy option for an application that is deployed to
AWS App Runner.

$ sudo app2container generate app-deployment --application-id java-tomcat-9e8e4799
 --deploy
√ AWS pre-requisite check succeeded
√ Docker pre-requisite check succeeded
√ Created ECR repository 123456789012.dkr.ecr.us-west-2.amazonaws.com/java-
tomcat-9e8e4799
√ Pushed docker image to 123456789012.dkr.ecr.us-west-2.amazonaws.com/java-
tomcat-9e8e4799:latest to ECR repository
√ Generated AWS App Runner CloudFormation template at /root/app2container/java-
tomcat-9e8e4799/AppRunnerDeployment/apprunner.yml

Deployment successful for application java-tomcat-9e8e4799
Access your newly deployed App Runner service at the following URL:
https://xyz123abc4.us-west-2.awsapprunner.com
Stack deployed successfully!

Set up a pipeline for your application stack using app2container:
app2container generate pipeline --application-id java-tomcat-9e8e4799

Windows

The following example shows the generate app-deployment command with the --
application-id parameter.

PS> app2container generate app-deployment --application-id iis-smarts-51d2dbf8
√ AWS pre-requisite check succeeded
√ Docker pre-requisite check succeeded
√ Created ECR Repository
√ Registered ECS Task Definition with ECS
√ Uploaded CloudFormation resources to S3 Bucket: app2container\-testing
√ Generated CloudFormation Master template at: C:\Users\Administrator\AppData\Local
\app2container\iis-smarts-51d2dbf8\EcsDeployment\ecs-master.yml
CloudFormation templates and additional deployment artifacts generated successfully
 for application iis-smarts-51d2dbf8

Examples 204

AWS App2Container User Guide

You're all set to use AWS CloudFormation to manage your application stack.

Next Steps:
1. Edit the CloudFormation template as necessary.
2. Create an application stack using the AWS CLI or the AWS Console. AWS CLI
 command:
aws cloudformation deploy --template-file C:\Users\Administrator\AppData\Local
\app2container\iis-smarts-51d2dbf8\EcsDeployment\ecs-master.yml --capabilities
 CAPABILITY_NAMED_IAM --stack-name app2container-iis-smarts-51d2dbf8-ECS
3. Set up a pipeline for your application stack using app2container:
app2container generate pipeline --application-id iis-smarts-51d2dbf8

The following example shows the generate app-deployment command with the --
application-id parameter and the --deploy option.

PS> app2container generate app-deployment --deploy --application-id iis-
smarts-51d2dbf8 --profile admin-profile
√ AWS prerequisite check succeeded
√ Docker prerequisite check succeeded
√ Created ECR Repository
√ Registered ECS Task Definition with ECS
√ Uploaded CloudFormation resources to S3 Bucket: app2container-example
√ Generated CloudFormation Master template at: C:\Users\Administrator\AppData\Local
\app2container\iis-smarts-51d2dbf8\EcsDeployment\ecs-master.yml
√ Initiated CloudFormation stack creation. This may take a few minutes. Please visit
 the AWS CloudFormation Console to track progress.
ECS deployment successful for application iis-smarts-51d2dbf8

The URL to your Load Balancer Endpoint is:
<your endpoint>.us-east-1.elb.amazonaws.com
Successfully created ECS stack app2container-iis-smarts-51d2dbf8-ECS. Check the AWS
 CloudFormation Console for additional details.

app2container generate pipeline command

When you run the generate pipeline command, it generates the artifacts that you need to create
a CI/CD pipeline with CodePipeline, Jenkins, or Microsoft Azure DevOps services. Your application
pipeline settings and deployment artifacts determine the artifacts that you create.

generate pipeline 205

AWS App2Container User Guide

Note

For Windows applications, App2Container chooses the base image for your application
container and Amazon ECS cluster, based on the worker machine or application server OS
where you run the containerization command. Windows application containers running on
Amazon EKS use Windows Server Core 2019 for the base image.

You have two options for creating your pipeline:

• You can use the --deploy option to create your pipeline directly.

• You can review and customize pipeline artifacts, and then create your pipeline, with the AWS
CLI or the AWS Management Console for CodePipeline. You can also create your pipeline in the
native environments for Jenkins or Microsoft Azure DevOps pipelines.

When the generate pipeline command generates artifacts and creates CI/CD pipelines, it accesses
AWS resources, even if your application integrates with an external pipeline tool or service.
App2Container needs administrator access to run the command with the --deploy option. For
information on how to set up AWS Identity and Access Management (IAM) users for App2Container,
see Identity and access management in App2Container.

The generate pipeline command uses the pipeline.json file that App2Container generates
when you run the generate app-deployment command. You can edit the pipeline.json file
to specify your container repository and target environments for Amazon ECS, Amazon EKS, or
App Runner. For more information on how to configure the pipeline.json file, see Configuring
container pipelines.

Note

If the command fails, an error message is displayed in the console, followed by additional
messaging to help you troubleshoot.
When you ran the init command, if you chose to automatically upload logs to
App2Container support if an error occurs, App2Container notifies you of the success of the
automatic upload of your application support bundle.
Otherwise, App2Container messaging directs you to upload application artifacts by running
the upload-support-bundle command for additional support.

generate pipeline 206

AWS App2Container User Guide

Syntax

app2container generate pipeline --application-id id [--deploy] [--profile admin-
profile] [--help]

Parameters and options

Parameters

--application-id id

The application ID (required). After you run the inventory command, you can find the
application ID in the inventory.json file in one of the following locations:

• Linux: /root/inventory.json

• Windows: C:\Users\Administrator\AppData\Local\.app2container-config
\inventory.json

--profile admin-profile

Use this option to specify a named profile to run this command. For more information about
named profiles in AWS, see Named profiles in the AWS Command Line Interface User Guide

Options

--deploy

Use this option to create your CI/CD pipeline directly.

Note

When you use the --deploy option to create your CI/CD pipeline directly, we
recommend that you use the --profile option to specify a named profile that has
elevated permissions.

--help

Displays the command help.

Syntax 207

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

AWS App2Container User Guide

Output

You have two options for creating your CI/CD pipeline using the generate pipeline command.

• You can use the --deploy option to create your pipeline directly.

• You can review and customize pipeline artifacts, and then create your pipeline, with the AWS
CLI or the AWS Management Console for CodePipeline. You can also create your pipeline in the
native environments for Jenkins or Microsoft Azure DevOps pipelines.

When you run the generate pipeline command, App2Container generates the following artifacts
and performs the following tasks.

CodePipeline

Generates pipeline artifacts for customization

• Generates CI/CD artifacts generate pipeline --application-id id

• Checks for AWS and Docker prerequisites

• Creates a CodeCommit repository, if one doesn't already exist

• Generates a buildspec file

• Generates CloudFormation templates for a two-step pipeline to commit and build your
application

Creates pipeline directly with deploy option

• When you run this command with the --deploy option, App2Container uses the same
process to validate and customize your pipeline resources as it does when you deploy
manually. Then it uses the settings from the files that it generated to create the pipeline for
you: generate pipeline --application-id id --deploy --profile admin-profile

• Performs all steps to validate and customize pipeline resources

• Creates the CloudFormation stack for your pipeline

Jenkins

Generates pipeline artifacts for customization

• Generates CI/CD artifacts generate pipeline --application-id id

Output 208

AWS App2Container User Guide

• Checks for AWS and Docker prerequisites

• Creates a CodeCommit repository, if one doesn't exist already

• Generates the following files for your pipeline definition: the Jenkinsfile, and the
config.xml file that you can use with the Jenkins REST API

• If your application runs on Amazon EKS, App2Container generates a CloudFormation
template for a two-step pipeline to commit and build your application

Creates pipeline directly with deploy option

• When you run this command with the --deploy option, App2Container uses the same
process to validate and customize your pipeline resources as it does when you deploy
manually. App2Container then creates the pipeline for you with the settings from the files
that it generates: generate pipeline --application-id id --deploy --profile
admin-profile

• Performs all steps to validate and customize pipeline resources

• Creates the pipeline in Jenkins, and starts the pipeline build

Azure DevOps

Generate pipeline artifacts for customization

• Generates CI/CD artifacts: generate pipeline --application-id id

• Checks for AWS, Microsoft Azure DevOps, and Docker prerequisites

• Creates the Azure Repos Git repository, if it doesn't already exist

• Commits updated files to the Azure Repos Git repository

• Generates the following files for your pipeline definition: main.yaml, build.yaml,
release.yaml, pre-req.sh (Linux) or pre-req.ps1 (Windows), and install-pre-
req.sh

Creates pipeline directly with deploy option

• When you run this command with the --deploy option, App2Container uses the same
process to validate and customize your pipeline resources as it does when you deploy
manually. Then it uses the settings from the files that it generated to create the pipeline for
you: generate pipeline --application-id id --deploy --profile admin-profile.

Output 209

AWS App2Container User Guide

• Performs all steps to validate and customize pipeline resources

• Uses the configuration in pipeline.json to create an Azure DevOps pipeline, and initiate
an Azure DevOps pipeline build

Examples

To see examples of how to use the generate pipeline command, choose your target environment.

CodePipeline

Linux:

The following Linux example shows the generate pipeline command with the --
application-id parameter that you use to create CodeCommit pipeline resources for your
application.

$ sudo app2container generate pipeline --application-id java-tomcat-9e8e4799
√ Created CodeCommit repository
√ Generated buildspec file(s)
√ Generated CloudFormation templates
√ Committed files to CodeCommit repository
Pipeline resource template generation successful for application java-
tomcat-9e8e4799

You're all set to use AWS CloudFormation to manage your pipeline stack.

Next Steps:
1. Edit the CloudFormation template as necessary.
2. Create a pipeline stack using the AWS CLI or the AWS Console. AWS CLI command:

aws cloudformation deploy --template-file /root/app2container/java-tomcat-9e8e4799/
Artifacts/Pipeline/CodePipeline/ecs-pipeline-master.yml --capabilities
 CAPABILITY_NAMED_IAM --stack-name app2container-java-tomcat-9e8e4799-ecs-pipeline-
stack

The following Linux example shows the generate pipeline command with the --
application-id parameter and the --deploy option that you use to create a CodeCommit
pipeline for your application.

$ sudo app2container generate pipeline --deploy --application-id java-
tomcat-9e8e4799

Examples 210

AWS App2Container User Guide

√ Generated buildspec file(s)
√ Generated CloudFormation templates
√ Committed files to CodeCommit repository
√ Initiated CloudFormation stack creation. This may take a few minutes. Please visit
 the AWS CloudFormation Console to track progress.
√ Deployed pipeline through CloudFormation
Pipeline deployment successful for application --application-id java-tomcat-9e8e4799

Successfully created AWS CodePipeline stack 'app2container---application-id java-
tomcat-9e8e4799-ecs-pipeline-stack' for application. Check the AWS CloudFormation
 Console for additional details.

The following Linux example shows the generate pipeline command with the --
application-id parameter and the --deploy option that you use to create a pipeline for an
application that runs on AWS App Runner.

$ sudo app2container generate pipeline --deploy --application-id java-
tomcat-9e8e4799
√ Created CodeCommit repository
√ Generated buildspec file(s)
√ Generated CloudFormation templates
√ Committed files to CodeCommit repository
√ Initiated CloudFormation stack creation. This may take a few minutes. To track
 progress, open the AWS CloudFormation console.
√ Deployed pipeline through CloudFormation
Pipeline deployment successful for application java-tomcat-9e8e4799

Successfully created AWS CodePipeline stack 'a2c---application-id java-
tomcat-9e8e4799-ecs-pipeline-stack' for application. Check the AWS CloudFormation
 Console for additional details.

Windows:

The following Tools for Windows PowerShell example shows the generate pipeline command
with the --application-id parameter that you use to create CodeCommit pipeline resources
for your application.

PS> app2container generate pipeline --application-id iis-smarts-51d2dbf8
√ Created CodeCommit repository
√ Generated buildspec file(s)
√ Generated CloudFormation templates
√ Committed files to CodeCommit repository

Examples 211

AWS App2Container User Guide

Pipeline resource template generation successful for application --application-
id iis-smarts-51d2dbf8

You're all set to use AWS CloudFormation to manage your pipeline stack.

Next Steps:
1. Edit the CloudFormation template as necessary.
2. Create a pipeline stack using the AWS CLI or the AWS Console. AWS CLI command:

aws cloudformation deploy --template-file C:\Users\Administrator\AppData\Local
\app2container\--application-id iis-smarts-51d2dbf8\Artifacts\Pipeline\CodePipeline
\ecs-pipeline-master.yml --capabilities CAPABILITY_NAMED_IAM --stack-name
 app2container---application-id iis-smarts-51d2dbf8-652becbe-ecs-pipeline-stack

The following Tools for Windows PowerShell example shows the generate pipeline command
with the --application-id parameter and the --deploy option that you use to create a
CodeCommit pipeline for your application.

PS> app2container generate pipeline --deploy --application-id iis-smarts-51d2dbf8
√ Generated buildspec file(s)
√ Generated CloudFormation templates
√ Committed files to CodeCommit repository
√ Initiated CloudFormation stack creation. This may take a few minutes. Please visit
 the AWS CloudFormation Console to track progress.
√ Deployed pipeline through CloudFormation
Pipeline deployment successful for application --application-id iis-smarts-51d2dbf8

Successfully created AWS CodePipeline stack 'app2container---application-id iis-
smarts-51d2dbf8-ecs-pipeline-stack' for application. Check the AWS CloudFormation
 Console for additional details.

Jenkins

Linux:

The following Linux example shows the generate pipeline command with the --
application-id parameter that you use to create Jenkins pipeline resources for your
application.

$ sudo app2container generate pipeline --application-id java-tomcat-9e8e4799
√ Discovered existing CodeCommit repository
√ Generated Jenkins pipeline configuration file

Examples 212

AWS App2Container User Guide

√ Generated Jenkinsfile
√ Committed files to source repository
Pipeline resource template generation successful for application java-
tomcat-9e8e4799

You're all set to use Jenkins to manage your pipeline.

Next Steps:
1. Edit the Jenkinsfile as necessary.
2. Create a Jenkins Pipeline using the Jenkins REST API or the Jenkins Dashboard.
 Jenkins API command:

 curl -k -XPOST https://ec2-1-234-567-890.<Region>.compute.amazonaws.com:8443/
createItem?name=a2c-java-tomcat-9e8e4799-eks-pipeline-stack -u
 a2c:1164afa1fe791a4c86fd3117d7bc5d93e2 --data-binary @/home/ubuntu/app2container/
java-tomcat-9e8e4799/Artifacts/Pipeline/Jenkins/config.xml -H "Content-Type:text/
xml"

The following Linux example shows the generate pipeline command with the --
application-id parameter and the --deploy option that you use to create a Jenkins
pipeline for your application.

$ sudo app2container generate pipeline --deploy --application-id java-
tomcat-9e8e4799
√ Discovered existing CodeCommit repository
√ Generated Jenkins pipeline configuration file
√ Generated Jenkinsfile
√ Committed files to source repository
√ Initiated Jenkins pipeline creation
√ Deployed pipeline through Jenkins
Pipeline deployment successful for application java-tomcat-9e8e4799

Successfully created Jenkins Pipeline 'a2c-java-tomcat-9e8e4799-eks-pipeline' for
 application. Started a build of the pipeline.
Build link: https://ec2-1-234-567-890.<Region>.compute.amazonaws.com:8443/job/a2c-
java-tomcat-9e8e4799-eks-pipeline/1

Windows:

The following Tools for Windows PowerShell example shows the generate pipeline command
with the --application-id parameter and the --deploy option that you use to create a
Jenkins pipeline for your application.

Examples 213

AWS App2Container User Guide

PS> app2container generate pipeline --deploy --application-id iis-smarts-51d2dbf8
√ Validated Jenkins Nodes and Labels
√ Generated Jenkins pipeline configuration file
√ Generated Jenkinsfile
√ Committed files to source repository
√ Initiated Jenkins pipeline creation
√ Deployed pipeline through Jenkins
Pipeline deployment successful for application iis-smarts-51d2dbf8

Successfully created Jenkins Pipeline 'iis-smarts-51d2dbf8-eks-pipeline' for
 application. Started a build of the pipeline.
Build link: https://ec2-1-234-567-890.<Region>.compute.amazonaws.com:8443/job/iis-
smarts-51d2dbf8-eks-pipeline/1

Azure DevOps

Linux:

The following Linux example shows the generate pipeline command with the --
application-id parameter that you use to create Microsoft Azure DevOps pipeline resources
for your application.

$ sudo app2container generate pipeline --application-id java-tomcat-9e8e4799
Discovered existing Azure repository
Discovered existing Azure branch
Generated pre-requisite installation scripts
Generated pipeline definition files
Committed artifacts to Microsoft Azure DevOps repository
Pipeline resource template generation successful for application java-
tomcat-9e8e4799

You're all set to use pipeline definition files in /root/app2container/java-
tomcat-9e8e4799/Artifacts/Pipeline/AzureDevOps to create your Azure DevOps pipeline.

Next Steps:
1. Edit the pipeline definition files as necessary.
2. Created a new Azure git repository at https://dev.azure.com/a2c-azure-org/a2c-
project/_git/a2c-java-tomcat-9e8e4799
3. Go to your Microsoft Azure DevOps web console https://dev.azure.com/a2c-azure-
org/a2c-project/_build and click on "New Pipeline".
4. For Repositories select "Azure Repos Git" and select the repo with name a2c-java-
tomcat-9e8e4799
5. For "Configure your pipeline" step choose "Existing Azure Pipelines YAML file"

Examples 214

AWS App2Container User Guide

6. In the options for "branch" select main and for "path" select /pipeline.yaml
7. Click "continue" and then click "Run"

The following Linux example shows the generate pipeline command with the --
application-id parameter and the --deploy option that you use to create a Microsoft
Azure DevOps pipeline for your application.

$ sudo app2container generate pipeline --deploy --application-id java-
tomcat-9e8e4799
Discovered existing Azure repository
Discovered existing Azure branch
Generated pre-requisite installation scripts
Generated pipeline definition files
Committed artifacts to Microsoft Azure DevOps repository
Initiated Microsoft Azure DevOps pipeline creation
Deployed pipeline through Microsoft Azure DevOps
Pipeline deployment successful for application java-tomcat-9e8e4799

Successfully created and ran Microsoft Azure DevOps Pipeline 'a2c-java-
tomcat-9e8e4799-pipeline' for the application, url: https://dev.azure.com/a2c-azure-
org/a2c-project/_build?definitionId=152

Windows:

The following Windows example shows the generate pipeline command with the --
application-id parameter that you use to create Microsoft Azure DevOps pipeline resources
for your application.

PS> app2container generate pipeline iis-smarts-51d2dbf8
Discovered existing Azure repository
Discovered existing Azure branch
Generated pre-requisite installation scripts
Generated pipeline definition files
Committed artifacts to Microsoft Azure DevOps repository
Pipeline resource template generation successful for application iis-smarts-51d2dbf8

You're all set to use pipeline definition files in C:\Users\Administrator\AppData
\Local\app2container\iis-smarts-51d2dbf8\Artifacts\Pipeline\AzureDevOps to create
 your Azure DevOps pipeline.

Next Steps:
1. Edit the pipeline definition files as necessary.

Examples 215

AWS App2Container User Guide

2. Created a new Azure git repository at https://dev.azure.com/a2c-azure-org/a2c-
project/_git/a2c-iis-smarts-51d2dbf8
3. Go to your Microsoft Azure DevOps web console https://dev.azure.com/a2c-azure-
org/a2c-project/_build and click on "New Pipeline".
4. For Repositories select "Azure Repos Git" and select the repo with name a2c-iis-
smarts-51d2dbf8
5. For "Configure your pipeline" step choose "Existing Azure Pipelines YAML file"
6. In the options for "branch" select main and for "path" select /pipeline.yaml
7. Click "continue" and then click "Run"

The following Windows example shows the generate pipeline command with the --
application-id parameter and the --deploy option that you use to create a Microsoft
Azure DevOps pipeline for your application.

PS> app2container generate pipeline --deploy iis-smarts-51d2dbf8
Discovered existing Azure repository
Discovered existing Azure branch
Generated pre-requisite installation scripts
Generated pipeline definition files
Committed artifacts to Microsoft Azure DevOps repository
Initiated Microsoft Azure DevOps pipeline creation
Deployed pipeline through Microsoft Azure DevOps
Pipeline deployment successful for application iis-smarts-51d2dbf8

Successfully created and ran Microsoft Azure DevOps Pipeline 'a2c-iis-
smarts-51d2dbf8-pipeline' for the application, url: https://dev.azure.com/a2c-azure-
org/a2c-project/_build?definitionId=151

app2container help command

Lists the commands for App2Container, grouped into the phases where they would normally run.

Note

Commands are shown in alphabetical order within the phases where they run. For example,
in the Analyze phase, you would run the inventory command first, then the analyze
command. Utility commands are included after the containerization phases.

help 216

AWS App2Container User Guide

Syntax

app2container help

Parameters and options

None

Output

The list of app2container commands.

Examples

app2container help
App2Container is an application from Amazon Web Services (AWS),
that provides commands to discover and containerize applications.

Commands
 Getting Started
 init Sets up workspace for artifacts

 Analyze
 analyze Analyzes the selected application to identify dependencies
 required for containerization
 inventory Lists all applications that can be containerized

 Transform
 containerize Generates Dockerfile, container images, and deployment
 metadata
 extract Creates an archive of application artifacts for
 containerization

 Deploy
 generate Generates ECS, EKS, or Pipeline artifacts

 Settings
 upgrade Upgrades app2container CLI to latest version
 upload-support-bundle Uploads user's app2container logs and supporting artifacts to
 the support team

Syntax 217

AWS App2Container User Guide

Flags
 --debug enable debug logging
 -h, --help help for app2container
 --version version for app2container

app2container init command

The init command performs one-time initialization tasks for App2Container. This interactive
command prompts for the information required to set up the local App2Container environment.
Run this command before you run any other App2Container commands.

Note

If the command fails, an error message is displayed in the console, followed by additional
messaging to help you troubleshoot.
When you ran the init command, if you chose to automatically upload logs to
App2Container support if an error occurs, App2Container notifies you of the success of the
automatic upload of your application support bundle.
Otherwise, App2Container messaging directs you to upload application artifacts by running
the upload-support-bundle command for additional support.

Syntax

app2container init [--advanced] [--help]

Parameters and options

Options

--advanced

This option allows you to use features that are in the experimental phase, if any exist.

--help

Displays the command help.

init 218

AWS App2Container User Guide

Output

The init command prompts you for the information that it needs for initialization.

You must provide a local directory for application containerization artifacts. Ensure that only
authorized users can access the local directory. If you do not specify a local directory, one is created
for you at the default output location. The default locations are as follows:

• Linux: /root/app2container

• Windows: C:\Users\Administrator\AppData\Local\app2container

You can optionally provide an Amazon S3 bucket for application containerization artifacts. If you
choose to set up an Amazon S3 bucket, you must ensure that only authorized users can access the
bucket. We recommend that you use server-side encryption for your bucket. See Protecting data
using server-side encryption in the Amazon Simple Storage Service User Guide for more information
about how to set it up.

You can optionally upload logs and command-generated artifacts automatically to App2Container
support when an app2container command crashes or encounters internal errors. Log files are
retained for 90 days.

You can optionally consent to allow App2Container to collect and export the following metrics to
AWS each time that you run an app2container command:

• Host OS name

• Host OS version

• Application stack type

• Application stack version

• JRE version (Linux only, for Java applications)

• App2Container CLI version

• Command that ran

• Command status

• Command duration

• Command features and flags

• Command errors

Output 219

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html

AWS App2Container User Guide

• Container base image

Examples

Choose the operating system platform tab for the application server or worker machine where you
run the command.

Linux

The following example shows the init command with no additional options.

$ sudo app2container init
Please enter a workspace directory path to use for artifacts[default: /root/
app2container]:
Please enter an AWS Profile to use. (The same can be configured with 'aws configure
 --profile <name>')[default: default]:
Please provide an S3 bucket to store application artifacts (Optional):
Automatically upload logs and App2Container generated artifacts on crashes and
 internal errors? (Y/N):
Please confirm permission to report usage metrics to AWS (Y/N)[default: y]:
Would you like to enforce the use of only signed images using Docker Content Trust
 (DCT)? (Y/N)[default: n]:
All application artifacts will be created under the above workspace. Please ensure
 that the folder permissions are secure.
Init configuration saved

The following example shows the init command with the --advanced option and default
values.

PS> sudo app2container init --advanced
Please enter a workspace directory path to use for artifacts[default: /root/
app2container]:
Please enter an AWS Profile to use. (The same can be configured with 'aws configure
 --profile <name>')[default: default]:
Please provide an S3 bucket to store application artifacts (Optional):
Automatically upload logs and App2Container generated artifacts on crashes and
 internal errors? (Y/N):
Please confirm permission to report usage metrics to AWS (Y/N)[default: y]:
Would you like to enforce the use of only signed images using Docker Content Trust
 (DCT)? (Y/N)[default: n]:
Would you like to enable experimental features? (Y/N)[default: n]:

Examples 220

AWS App2Container User Guide

All application artifacts will be created under the above workspace. Please ensure
 that the folder permissions are secure.
Init configuration saved

Windows

The following example shows the init command with no additional options.

PS> app2container init
Please enter a workspace directory path to use for artifacts[default: C:\Users
\Administrator\AppData\Local\app2container]:
Please enter an AWS Profile to use. (The same can be configured with 'aws configure
 --profile <name>')[default: default]:
Please provide an S3 bucket to store application artifacts (Optional):
Automatically upload logs and App2Container generated artifacts on crashes and
 internal errors? (Y/N):
Please confirm permission to report usage metrics to AWS (Y/N)[default: y]:
Would you like to enforce the use of only signed images using Docker Content Trust
 (DCT)? (Y/N)[default: n]:
All application artifacts will be created under the above workspace. Please ensure
 that the folder permissions are secure.
Init configuration saved

The following example shows the init command with the --advanced option and default
values.

PS> app2container init --advanced
Please enter a workspace directory path to use for artifacts[default: C:\Users
\Administrator\AppData\Local\app2container]:
Please enter an AWS Profile to use. (The same can be configured with 'aws configure
 --profile <name>')[default: default]:
Please provide an S3 bucket to store application artifacts (Optional):
Automatically upload logs and App2Container generated artifacts on crashes and
 internal errors? (Y/N):
Please confirm permission to report usage metrics to AWS (Y/N)[default: y]:
Would you like to enforce the use of only signed images using Docker Content Trust
 (DCT)? (Y/N)[default: n]:
Please enter if we can enable checking for upgrades automatically (Y/N)[default:
 y]:
Would you like to enable experimental features? (Y/N)[default: n]:
All application artifacts will be created under the above workspace. Please ensure
 that the folder permissions are secure.

Examples 221

AWS App2Container User Guide

Init configuration saved

app2container inventory command

Records all Java or .Net processes (Linux) or all IIS websites and Windows services (Windows) that
are running on the application server.

Syntax

app2container inventory --type [iis | service | java | dotnet] [--nofilter] [--help]

Parameters and options

Parameters

--type [iis | service | java | dotnet]

Use this parameter to specify the application type (required), as follows.

• For .NET applications running on Windows, you can specify an IIS web application (iis), or a
Windows service (service).

• For Java applications running on Linux, you must specify java.

• For .NET applications running on Linux, you must specify dotnet.

Options

--nofilter

For applications running on Windows, this option prevents App2Container from filtering out
default system services when building the inventory output. This can be used for complex
Windows .NET applications that have dependent web apps that need to be included in the
container.

--help

Displays the command help.

inventory 222

AWS App2Container User Guide

Output

Information about the Java processes, .NET applications, or IIS websites is saved to the
inventory.json file in one of the following locations:

• Linux: /root/inventory.json

• Windows: C:\Users\Administrator\AppData\Local\.app2container-config
\inventory.json

The application ID that is used by other App2Container commands is the key for each application
object in the JSON file. The application objects are slightly different depending on your application
language and the application server operating system. Choose the operating system platform for
your application in the Examples section to see the differences.

Examples

Expand the section that matches the operating system platform for the application server or
worker machine where you run the command.

Linux examples

Each Java process or ASP.NET application running on Linux has a unique application ID (for
example, java-tomcat-9e8e4799, or dotnet-single-c2930d3132). You can use this application
ID with other AWS App2Container commands. Inventory information is saved to /root/
inventory.json.

Java

The following example shows the inventory command with results for Java processes running
on Linux, with no additional options.

$ sudo app2container inventory
{
 "java-jboss-5bbe0bec": {
 "processId": 27366,
 "cmdline": "java ...",
 "applicationType": "java-jboss"
 },
 "java-tomcat-9e8e4799": {

Output 223

AWS App2Container User Guide

 "processId": 2537,
 "cmdline": "/usr/bin/java ...",
 "applicationType": "java-tomcat"
 }
}

ASP.NET

The following example shows the inventory command with results for .NET applications
running on Linux, with no additional options.

$ sudo app2container inventory
{
 "dotnet-single-c2930d3132": {
 processId": 1,
 "cmdline": "./MyCoreWebApp.3.1 ...",
 "applicationType": "dotnet-single",
 "webApp": ""
 },
 "dotnet-generic-a27b2829": {
 processId": 2,
 "cmdline": "./MyCoreWebApp.3.1 ...",
 "applicationType": "dotnet-generic",
 "webApp": ""
 }
}

Windows examples

Each IIS website has a unique application ID (for example, iis-smarts-51d2dbf8). You can use this
application ID with other AWS App2Container commands. Inventory information is saved to C:
\Users\Administrator\AppData\Local\.app2container-config\inventory.json.

The following example shows the inventory command with results for .NET applications running in
IIS on Windows, with no additional options.

PS> app2container inventory
{
 "iis-smarts-51d2dbf8": {
 "siteName": "Default Web Site",
 "bindings": "http/*:80:,net.tcp/808:*",

Examples 224

AWS App2Container User Guide

 "applicationType": "iis",
 "discoveredWebApps": []
 },
 "iis-smart-544e2d61": {
 "siteName": "smart",
 "bindings": "http/*:82:",
 "applicationType": "iis",
 "discoveredWebApps": []
 },
 "service-colorwindowsservice-69f90194": {
 "serviceName": "colorwindowsservice",
 "applicationType": "service"
 }
}

app2container remote analyze command

Run this command from a worker machine to analyze the specified application on the target
application server, and generate a report. The target application server is specified by its IP address
or Fully Qualified Domain Name (FQDN).

Note

If the command fails, an error message is displayed in the console, followed by additional
messaging to help you troubleshoot.
When you ran the init command, if you chose to automatically upload logs to
App2Container support if an error occurs, App2Container notifies you of the success of the
automatic upload of your application support bundle.
Otherwise, App2Container messaging directs you to upload application artifacts by running
the upload-support-bundle command for additional support.

Syntax

app2container remote analyze --application-id id --target IP/FQDN [--help]

remote analyze 225

AWS App2Container User Guide

Parameters and options

Parameters

--application-id id

The application ID (required). After you run the remote inventory command, you can find the
application ID in the inventory.json file in one of the following locations:

• Linux: <workspace>/remote/<target server IP or FQDN>/inventory.json

• Windows: <workspace>\remote\<target server IP or FQDN>\.app2container-
config\inventory.json

--target IP/FQDN

Specifies the IP address or FQDN of the application server targeted for the inventory (required).

Options

--help

Displays the command help.

Output

The remote analyze command creates files and directories on the worker machine for the specified
application on the target application server. Each application has its own directory, named for the
application ID. Output varies slightly, depending on your application language and the application
server operating system.

The application directory contains analysis output and editable application configuration files. The
files are stored in subdirectories that match the application structure on the application server.

An analysis.json file is created for the application that is specified in the --application-
id parameter. The file contains information about the application found during analysis, and
configurable fields for container settings. See Configuring application containers, and choose the
platform that your application container runs on for more information about configurable fields,
and for an example of what the file looks like.

For .NET applications and Windows services, App2Container detects connection strings and
produces the report.txt file. The report location is specified in the analysis.json file, in

Parameters and options 226

AWS App2Container User Guide

the reportPath attribute of the analysisInfo section. You can use this report to identify
the changes that you need to make in application configuration files to connect your application
container to new database endpoints, if needed. The report also contains the locations of other
configuration files that might need changes.

Examples

Choose the operating system platform tab for the application server or worker machine where you
run the command.

Linux

The following example shows the remote analyze command with the --target and --
application-id parameters and no additional options.

$ sudo app2container remote analyze --target 192.0.2.0 --application-id java-
tomcat-9e8e4799
 Analysis successful for application java-tomcat-9e8e4799

 Next Steps:
1. View the application analysis file at <workspace>/remote/<target server IP or
 FQDN>/java-tomcat-9e8e4799/analysis.json.
2. Edit the application analysis file as needed.
3. Start the extraction process using the following command: app2container remote
 extract --target 192.0.2.0 java-tomcat-9e8e4799

Windows

The following example shows the remote analyze command with the --target and --
application-id parameters and no additional options.

PS> app2container remote analyze --target 192.0.2.0 --application-id iis-
smarts-51d2dbf8
 Analysis successful for application iis-smarts-51d2dbf8;

 Next Steps:
1. View the application analysis file at <workspace>\remote\<target server IP or
 FQDN>/iis-smarts-51d2dbf8/analysis.json.
2. Edit the application analysis file as needed.
3. Start the extraction process using the following command: app2container remote
 extract --target 192.0.2.0 iis-smarts-51d2dbf8

Examples 227

AWS App2Container User Guide

app2container remote configure command

Run this command from a worker machine to configure the connections needed to run remote
workflows on application servers. This interactive command prompts for the required information
for each application server that you enter, or you can provide a JSON input file with your
connection information by specifying the --input-json parameter when you run the command.

Note

For the remote configure command prompts, if you specify the Fully Qualified Domain
Name (FQDN), the server IP address is optional and is not used by App2Container.

Syntax

app2container remote configure [--input-json myhosts.json] [--help]

Parameters and options

Parameters

--input-json

Uses the provided JSON file as input to configure connections to application servers for the
worker machine to run remote commands.

Options

--help

Displays the command help.

Input

To see the input file format, choose the system platform that matches your configuration. For key/
value pairs that do not apply to your configuration, set string values to an empty string.

remote configure 228

AWS App2Container User Guide

Linux remote hosts file

The Linux remote_hosts.json file contains an array of Linux platform hosts, with connection
information. The key for each host is the host IP address or FQDN, with an array of strings for the
connection information. Each host includes the following content:

• Fqdn (string, conditionally required) – the fully qualified domain name of the host, used as the
identifier for connecting. If an IP address is used as the host identifier, this must be empty. If the
FQDN has a value, the IP address is ignored.

• Ip (string, conditionally required) – the IP address of the host, used as the identifier for
connecting. Required if the FQDN is empty.

• SecretArn (string, required) – the Amazon Resource Name (ARN) that identifies the Secrets
Manager secret to use for credentials.

• AuthMethod (string, required) – the authentication method used to connect to the host. Valid
values include "cert" and "key".

The following example shows a remote_hosts.json file for a Java application running on Linux.

{
 "10.10.10.10": {
 "Fqdn": "",
 "Ip": "10.10.10.10",
 "SecretArn": "arn:aws:secretsmanager:us-
west-2:123456789012:secret:linux-cert-Abcdef",
 "AuthMethod": "cert"
 },
 "myhost.mydomain.com": {
 "Fqdn": "myhost.mydomain.com",
 "Ip": "",
 "SecretArn": "arn:aws:secretsmanager:us-
west-2:987654321098:secret:linux-cert-Ghijkl",
 "AuthMethod": "key"
 }
}

Windows remote hosts file

The Windows remote_hosts.json file contains an array of Windows Server platform hosts, with
connection information. The key for each host is the host IP address or FQDN, with an array of
strings for the connection information. Each host includes the following content:

Input 229

AWS App2Container User Guide

• fqdn (string, conditionally required) – the fully qualified domain name of the host, used as the
identifier for connecting. If an IP address is used as the host identifier, this must be empty. If the
FQDN has a value, the IP address is ignored.

• ip (string, conditionally required) – the IP address of the host, used as the identifier for
connecting. Required if the FQDN is empty.

• secretArn (string, required) – the Amazon Resource Name (ARN) that identifies the Secrets
Manager secret to use for credentials.

The following example shows a remote_hosts.json file for a .NET application running on
Windows Server.

{
 "10.10.10.10": {
 "fqdn": "",
 "ip": "10.10.10.10",
 "secretArn": "arn:aws:secretsmanager:us-
west-2:123456789012:secret:windows-cred-Abcdef"
 }
}

Output

This command does not produce a configurable output file. For troubleshooting purposes, or if you
need to verify what was entered during the interactive command dialog, you can find the entries
in the remote_hosts.json file by searching the folder structure on the server where you ran the
command.

Examples

Choose the operating system platform tab for the application server or worker machine where you
run the command.

Linux

The following example shows the remote configure command with no additional options.

$ sudo app2container remote configure
Server IP address: 10.10.10.10

Output 230

AWS App2Container User Guide

Server FQDN (Fully Qualified Domain Name):
Authentication method to be used key/cert: cert
Secret ARN for remote connection credentials: arn:aws:secretsmanager:us-
west-2:123456789012:secret:linux-cert-Abcdef
Continue to configure servers? (y/N)[default: n]: y
Server IP address:
Server FQDN (Fully Qualified Domain Name): fqdn2
Authentication method to be used key/cert: key
Secret ARN for remote connection credentials: arn:aws:secretsmanager:us-
west-2:987654321098:secret:linux-cert-Ghijkl
Continue to configure servers? (y/N)[default: n]: n

Windows

The following example shows the remote configure command with no additional options.

PS> app2container remote configure
Server IP address: 10.10.10.10
Server FQDN (Fully Qualified Domain Name):
Authentication method to be used key/cert: cert
Secret ARN for remote connection credentials: arn:aws:secretsmanager:us-
west-2:123456789012:secret:windows-cred-Abcdef
Continue to configure servers? (y/N)[default: n]: y
Server IP address:
Server FQDN (Fully Qualified Domain Name): fqdn2
Authentication method to be used key/cert: key
Secret ARN for remote connection credentials: arn:aws:secretsmanager:us-
west-2:987654321098:secret:windows-cred-Ghijkl
Continue to configure servers? (y/N)[default: n]: n

app2container remote extract command

Run this command from a worker machine to generate an application archive for the specified
application on the target application server. The target application server is specified by its IP
address or Fully Qualified Domain Name (FQDN). Before you call this command, you must call the
remote analyze command.

Note

If the command fails, an error message is displayed in the console, followed by additional
messaging to help you troubleshoot.

remote extract 231

AWS App2Container User Guide

When you ran the init command, if you chose to automatically upload logs to
App2Container support if an error occurs, App2Container notifies you of the success of the
automatic upload of your application support bundle.
Otherwise, App2Container messaging directs you to upload application artifacts by running
the upload-support-bundle command for additional support.

Syntax

app2container remote extract --application-id id --target IP/FQDN [--help]

Parameters and options

--application-id id

The application ID (required). After you run the remote inventory command, you can find the
application ID in the inventory.json file in one of the following locations:

• Linux: <workspace>/remote/<target server IP or FQDN>/inventory.json

• Windows: <workspace>\remote\<target server IP or FQDN>\.app2container-
config\inventory.json

--target IP/FQDN

Specifies the IP address or FQDN of the application server targeted for the inventory (required).

Options

--help

Displays the command help.

Output

This command creates an archive file. The archive is written to the output location that you
specified when you ran the init command.

Syntax 232

AWS App2Container User Guide

Examples

Choose the operating system platform tab for the application server or worker machine where you
run the command.

Linux

The following example shows the remote extract command with the --target and --
application-id parameters and no additional options.

$ sudo app2container extract --target 192.0.2.0 --application-id java-
tomcat-9e8e4799
Extraction successful for application java-tomcat-9e8e4799
 Next Steps:
1. Please initiate containerization using "app2container containerize --input-
archive <workspace>/remote/<target server IP or FQDN>/java-tomcat-9e8e4799/java-
tomcat-9e8e4799-extraction.tar"

Windows

The following example shows the remote extract command with the --target and --
application-id parameters and no additional options.

PS> app2container extract --target 192.0.2.0 --application-id iis-smarts-51d2dbf8
Extraction successful for application iis-smarts-51d2dbf8

 Next Steps:
1. Please initiate containerization using "app2container containerize --input-
archive <workspace>\remote\<target server IP or FQDN>/iis-smarts-51d2dbf8/iis-
smarts-51d2dbf8.zip"

app2container remote inventory command

Run this command from a worker machine to retrieve an inventory of all Java or .Net processes
(Linux) or all IIS websites and Windows services (Windows) that are running on the application
server specified in the --target parameter. The target application server is specified by its
IP address or Fully Qualified Domain Name (FQDN). The inventory details are captured in the
inventory.json file and stored on the worker machine under the target server folder.

Examples 233

AWS App2Container User Guide

Syntax

app2container remote inventory --target IP/FQDN --type [iis | service | java | dotnet]
 [--nofilter] [--help]

Parameters and options

Parameters

--target IP/FQDN

Specifies the IP address or FQDN of the application server targeted for the inventory (required).

--type [iis | service | java | dotnet]

Use this parameter to specify the application type (required), as follows.

• For .NET applications running on Windows, you can specify an IIS web application (iis), or a
Windows service (service).

• For Java applications running on Linux, you must specify java.

• For .NET applications running on Linux, you must specify dotnet.

Options

--nofilter

For applications running on Windows, this option prevents App2Container from filtering out
default system services when building the inventory output. This can be used for complex
Windows .NET applications that have dependent web apps that need to be included in the
container.

--help

Displays the command help.

Output

Information about the Java processes, .NET applications, or IIS websites is saved to
inventory.jsonfile in one of the following locations:

• Linux: <workspace>/remote/<target server IP or FQDN>/inventory.json

Syntax 234

AWS App2Container User Guide

• Windows: <workspace>\remote\<target server IP or FQDN>\.app2container-
config\inventory.json

The application ID that is used by other App2Container commands is the key for each application
object in the JSON file. The application objects are slightly different depending on your application
language and the application server operating system. Choose the operating system platform for
your application in the Examples section to see the differences.

Examples

Expand the section that matches the operating system platform for the worker machine where you
run the command.

Linux examples

Each Java process or ASP.NET application running on Linux has a unique application ID (for
example, java-tomcat-9e8e4799, or dotnet-single-c2930d3132). You can use this application
ID with other AWS App2Container commands. Inventory information is saved to /root/
inventory.json.

Java

The following example shows the remote inventory command with results for Java processes
running on Linux, with no additional options.

$ sudo app2container remote inventory --target IP/FQDN
: Retrieving inventory from remote server 192.0.2.0
√ Server inventory has been stored under <workspace>/remote/<target server IP or
 FQDN>/inventory.json
Remote inventory retrieved successfully

Sample inventory data:

{
 "java-jboss-5bbe0bec": {
 "processId": 27366,
 "cmdline": "java ...",
 "applicationType": "java-jboss"
 },
 "java-tomcat-9e8e4799": {
 "processId": 2537,

Examples 235

AWS App2Container User Guide

 "cmdline": "/usr/bin/java ...",
 "applicationType": "java-tomcat"
 }
}

ASP.NET

The following example shows the remote inventory command with results for .NET
applications running on Linux, with no additional options.

$ sudo app2container remote inventory --target IP/FQDN
: Retrieving inventory from remote server 192.0.2.0
√ Server inventory has been stored under <workspace>/remote/<target server IP or
 FQDN>/inventory.json
Remote inventory retrieved successfully

Sample inventory data:

{
 "dotnet-single-c2930d3132": {
 processId": 1,
 "cmdline": "./MyCoreWebApp.3.1 ...",
 "applicationType": "dotnet-single",
 "webApp": ""
 },
 "dotnet-generic-a27b2829": {
 processId": 2,
 "cmdline": "./MyCoreWebApp.3.1 ...",
 "applicationType": "dotnet-generic",
 "webApp": ""
 }
}

Windows examples

Each IIS website has a unique application ID (for example, iis-smarts-51d2dbf8). You can use this
application ID with other AWS App2Container commands. Inventory information is saved to C:
\Users\Administrator\AppData\Local\.app2container-config\inventory.json.

The following example shows the remote inventory command with results for .NET applications
running in IIS on Windows, with no additional options.

Examples 236

AWS App2Container User Guide

PS> app2container remote inventory --target IP/FQDN

: Retrieving inventory from remote server 192.0.2.0
√ Server inventory has been stored under <workspace>\remote\<target server IP or
 FQDN>\inventory.json
Remote inventory retrieved successfully

Sample inventory data:

{
 "iis-smarts-51d2dbf8": {
 "siteName": "Default Web Site",
 "bindings": "http/*:80:,net.tcp/808:*",
 "applicationType": "iis",
 "discoveredWebApps": []
 },
 "iis-smart-544e2d61": {
 "siteName": "smart",
 "bindings": "http/*:82:",
 "applicationType": "iis",
 "discoveredWebApps": []
 },
 "service-colorwindowsservice-69f90194": {
 "serviceName": "colorwindowsservice",
 "applicationType": "service"
 }
}

app2container upgrade command

Run this command to upgrade your existing installation of App2Container.

If a newer version of AWS App2Container will break backwards compatibility with previously
generated container artifacts when you do an upgrade, the upgrade command notifies you and
requests permission to continue. If you choose to continue with the upgrade, you will be required
to restart any ongoing analysis and containerization workflows for your applications.

Syntax

app2container upgrade [--help]

upgrade 237

AWS App2Container User Guide

Options

--help

Displays the command help.

Output

Console output is included in the Examples section for this command.

Examples

Choose the operating system platform tab for the application server or worker machine where you
run the command.

Linux

Run the command shown below to upgrade your existing App2Container for Linux.

$ sudo app2container upgrade
Using version 1.0
Version 1.1 available for download
Starting Download...
Starting Installation...
Installation successful!

Windows

Run the command shown below to upgrade your existing App2Container for Windows.

PS> app2container upgrade
Using version 0.0
Version 2.0 available for download Starting Download...
Starting Installation...Installation successful!

app2container upload-support-bundle command

For assistance with troubleshooting, run this command to securely upload App2Container logs and
supporting artifacts to the AWS App2Container support team. The following list shows the types of
files that you can upload with the upload-support-bundle command:

Options 238

AWS App2Container User Guide

• App2Container logs

• The analysis.json file

• The Dockerfile

• The deployment.json file

• The EcsDeployment.yml or ecs-master.yml deployment artifacts

Syntax

app2container upload-support-bundle [--application-id id] [--support-message "message"]
 [--help]

Options

--application-id id

The application ID (required). After you run the inventory command, you can find the
application ID in the inventory.json file in one of the following locations:

• Linux: /root/inventory.json

• Windows: C:\Users\Administrator\AppData\Local\.app2container-config
\inventory.json

--support-message

Include a message for the App2Container support team with your bundle.

--help

Displays the command help.

Output

Console output is included in the Examples section for this command.

Examples

Choose the operating system platform tab for the application server or worker machine where you
run the command.

Syntax 239

AWS App2Container User Guide

Linux

Run the following command to upload a support bundle from a Linux operating system,
including the application ID and a message for the support team.

$ sudo app2container upload-support-bundle --application-id java-tomcat-9e8e4799 --
support-message "I ran into an issue during deployment ..."
Support Message: I ran into an issue during deployment ...
[displays while bundle is uploading] Uploading logs and supporting artifacts to
 App2Container support
Support bundle upload successful

Windows

Run the following command to upload a support bundle from a Windows operating system,
including the application ID and a message for the support team.

PS> app2container upload-support-bundle --application-id iis-smarts-51d2dbf8 --
support-message "I ran into an issue during deployment ..."
Support Message: I ran into an issue during deployment ...
[displays while bundle is uploading] Uploading logs and supporting artifacts to
 App2Container support
Support bundle upload successful

Examples 240

AWS App2Container User Guide

Troubleshooting App2Container issues

The following documentation can help you troubleshoot problems that you might have with the
App2Container CLI.

Contents

• Access App2Container logs on your server

• Access application logs inside of a running container

• AWS resource creation fails for the generate command

• Troubleshoot Java applications on Linux

• Troubleshoot .NET applications on Windows

• Troubleshoot generate pipeline build for Jenkins

Access App2Container logs on your server

A common first step in troubleshooting issues with any application is reviewing application logs.
App2Container logs contain a history of the information and error messages that are produced by
the commands that you run. If you opted out of metrics during initialization, the metrics messages
are also logged in the local application log file.

Review log files in one of the following locations, depending on where you are running the
command that needs troubleshooting:

Application logs

• Linux: /root/app2container/log/app2container.log

• Windows: C:\Users\Administrator\AppData\Local\app2container\log
\app2container.log

Upgrade logs

• Linux: /usr/local/app2container/log/app2container_upgrade.log

• Windows: C:\Users\Administrator\app2container\log
\app2container_upgrade.log

Access App2Container logs on your server 241

AWS App2Container User Guide

If there is more than one log file, it means that the first log file reached its maximum size, and a
new log file was created to continue logging. Choose the most recent log file to troubleshoot.

Access application logs inside of a running container

You can access application logs on your running container by running a command shell from
the container host that attaches to your container. Choose the tab that matches your container
operating system to see the command.

Linux

From the host server, run an interactive bash shell on your running container.

$ docker exec -it container-id bash

Using the bash shell, you can then navigate to the location where your application logs are
stored.

Windows

From the host server, run an interactive PowerShell session attached to your running container.

PS> docker exec -it container-id powershell.exe

Using the PowerShell session, you can then navigate to the location where your application logs
are stored.

To look up Docker commands, use the Docker command line reference. See Use the Docker
command line.

AWS resource creation fails for the generate command

Description

When you run the generate app-deployment or generate pipeline command, you receive an error
message saying AWS resource creation has failed.

Access application logs inside of a running container 242

https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/

AWS App2Container User Guide

Cause

App2Container requires permission to access and create AWS resources when it generates and
deploys application containers or pipelines. If the permission has not been configured in your IAM
policy, or if you are using the default AWS profile for a command using the --deploy option, the
command will fail.

Solution

Verify your IAM resources and AWS profile settings and adjust as necessary, depending on the
command that failed and the details shown in your error message. For more information and
instructions about how to set up IAM resources for App2Container, see Identity and access
management in App2Container.

Troubleshoot Java applications on Linux

This section contains issues you might have with using App2Container for Java applications
running on Linux servers.

Note

The App2Container containerize command creates a Dockerfile, along with other
deployment artifacts. To reduce container sizes for Java applications, the Dockerfile installs
the Java Runtime Environment (JRE) on your container by default. If your application
requires the Java Development Kit (JDK) instead, you can edit your Dockerfile to change it.
Your container size will be affected.
Edit the Dockerfile in your application directory (<app2container workspace>/<app
ID>/Artifacts/Dockerfile) as follows:

Configure Dockerfile to use JDK

1. Locate the line that installs the JRE and change it to install the JDK. The change that
you make depends on your container base image. For example, if your container
uses an Ubuntu or Debian base image, you would change the package name from
openjdk-<version>-jre to openjdk-<version>-jdk.

2. Re-run the containerize command, using the --build-only option, which instructs
App2Container to recreate the container using the existing build artifacts.

Cause 243

AWS App2Container User Guide

$ sudo app2container containerize --application-id java-tomcat-9e8e4799 --
build-only

Application container image size is very large

Description

Your application container image is much larger than expected.

Cause

The application container image includes a kernel image with the application bits layered on top.
The size of the image depends on both the size of the container operating system and the size of
the application.

To catch all potential dependencies for Java applications on Linux that are not using JBoss or
Tomcat frameworks, the container initially includes everything except the files that are already
included in the kernel image.

Solution

Follow these steps to reduce the size of your application container image.

1. Use the appExcludedFiles section in your analysis.json file to exclude specific file and
directory paths from the containerization process, and save the file when you are done.

2. Run the containerize command again to create a new application container image with the
updates that you specified.

You can repeat this process as needed to further reduce the size.

Error: Insufficient disk space

Description

When you run the containerize command, it fails with the following error message: Error:
Insufficient disk space.

Troubleshoot Java applications on Linux 244

AWS App2Container User Guide

Cause

For Java applications running on Linux, App2Container calculates the disk space that is required
to generate the application container, and produces this error message if there is not enough free
space. The calculation includes the space needed for the application archive (including all non-
system files on the server), plus the space needed for docker build actions.

Solution

The error message generated by the containerize command includes the estimated space it needs
to run successfully. There are many ways to address an insufficient space issue on Linux.

One way to ensure that your containerize command runs successfully is to reduce the size of the
container that you are creating. Follow these steps to reduce the size of your application container
image.

1. Use the appExcludedFiles section in your analysis.json file to exclude specific file and
directory paths from the containerization process, and save the file when you are done.

2. Run the containerize command again to create a new application container image with the
updates that you specified.

You can repeat this process as needed to further reduce the size.

Troubleshoot .NET applications on Windows

This section contains issues you might have with using App2Container for .NET applications
running in IIS on Windows servers.

Application container image size is very large

Description

Your application container image is much larger than expected.

Cause

The application container image includes a kernel image with the application bits layered on top.
The size of the image depends on both the size of the container operating system and the size of
the application. The Windows Server Core image can be quite large, especially for versions prior to
Windows Server Core 2019.

Troubleshoot .NET applications on Windows 245

AWS App2Container User Guide

Solution

We recommend that you use Windows Server Core 2019 for your container operating system to
create the smallest base container size possible.

Follow these steps to reduce the size of your application container image if you are not currently
using Windows Server Core 2019 as your base image. To ensure that you get the correct version,
specify the version tag as shown below. The repository for Windows base images does not support
the concept of "latest" to target the most recent image version.

1. Use the containerBaseImage section in your analysis.json file to target the Windows
Server Core 2019 base image tagged as ltsc2019 and save the file when you are done.

The containerBaseImage value includes both the image name and the ltsc2019 tag,
separated by a colon (:). For example: "containerBaseImage": "mcr.microsoft.com/
dotnet/framework/aspnet:4.7.2-windowsservercore-ltsc2019".

2. Run the containerize command again to create a new application container image. It will use
the container operating system image that you specify in the containerBaseImage of your
analysis.json file to build a new application container image.

Troubleshoot generate pipeline build for Jenkins

This section contains issues you might have for your App2Container pipeline build that is
configured for Jenkins. As with any other troubleshooting scenario, the first step should be to
review your application logs. For more information, see Access App2Container logs on your server.

Unable to negotiate with x.x.x.x port 22: no matching host key type found.
(Windows)

Description

Your Jenkins Windows agent, or the Jenkins server, if it's running on Windows is not able to
connect to your CodeCommit repository to perform Git operations.

Cause

Pre-conditions:

• You are running the generate pipeline command with the --deploy option to deploy a Jenkins
pipeline.

Troubleshoot generate pipeline build for Jenkins 246

AWS App2Container User Guide

• You are deploying the pipeline for a Windows application.

• You have CodeCommit configured as your Jenkins code repository.

When the generate pipeline command runs with the --deploy option, App2Container detects
the code repository that you have configured for Jenkins. If CodeCommit is your Jenkins code
repository, App2Container generates an SSH-RSA key for the Jenkins server or Windows agent to
connect to the CodeCommit repository for Git operations.

If OpenSSH on your Jenkins server or Windows agent is not configured to accept RSA-encrypted
keys, your generate pipeline build fails with an error message that is similar to this example:

Unable to negotiate with 11.22.333.444 port 22: no matching host key type found. Their
 offer: ssh-rsa

Solution

To configure OpenSSH in your Jenkins environment, add the following configuration to your user
profile %userprofile%/.ssh/config on Jenkins Windows agents, and also on the Jenkins
server, if it is running on Windows.

Host git-codecommit.*.amazonaws.com
 HostkeyAlgorithms +ssh-rsa
 PubkeyAcceptedKeyTypes +ssh-rsa

Note

• If your Jenkins server is running on Windows, update the user profile that you ran the
Jenkins setup with.

• For Jenkins Windows agents, update the user profile that has your connection to the
Jenkins server configured.

Troubleshoot generate pipeline build for Jenkins 247

AWS App2Container User Guide

Release notes for AWS App2Container

The following table describes the release history for AWS App2Container in descending date order.

Release date Version Details

June 14,
2024

1.41 Added support for Windows Server 2022 as a container host
operating system.

June 10,
2024

1.40 •
Changed the default deployed version of Amazon Elastic
Kubernetes Service (Amazon EKS) clusters to 1.30.

•
Updated the analyze command to use CentOS Stream 9 as
the default base image on CentOS application server.

•
Added bug fixes, including the following:

•
Improved error handling when customized base images
are used in the containerization process.

May 21, 2024 1.39 This release improves the detection of connection strings and
 configuration files for IIS .NET applications and Windows
services.

May 2, 2024 1.38 Added bug fixes, including the following:

•
Improved error handling for insufficient disk space errors en
countered during the containerization phase.

•
Improved detection for Windows authentication during the
 analysis phase.

March 8,
2024

1.37 Updated additional AWS Lambda functions for Amazon Elastic
Kubernetes Service (Amazon EKS) deployments to use Python
3.9 and runtimes provided by Amazon Linux 2 (AL2).

•

248

AWS App2Container User Guide

Release date Version Details

Added bug fixes, including the following:

•
Improved error handling when customized base images
are used in the containerization process.

February 22,
2024

1.36 Added bug fixes, including the following:

•
Fixed an issue where App2Container version 1.35 couldn’t
run or be installed on Windows Server 2008.

249

AWS App2Container User Guide

Release date Version Details

February 14,
2024

1.35 •
Updated the AWS CloudFormation custom resources to use
Node.js 18.

•
Updated the AWS Lambda functions for Amazon Elastic
Container Service (Amazon ECS) and Amazon Elastic
Kubernetes Service (Amazon EKS) deployments to use
Python 3.9.

•
Clarified error messaging when containerization fails due to
 the host operating system and container operating system
being incompatible.

•
Added detection for the command used to invoke Windows
 services when you use the analyze command.

•
Added bug fixes, including the following:

•
Fixed an issue where Windows deployments to Amazon
ECS on Amazon EC2 could fail.

•
Fixed an issue where the analyze command would fail
due to having wildcard expressions which contain square
bracket characters ([or]) in the application's name. For
more information, see about_Wildcards in the Microsoft
 documentation.

November
16, 2023

1.34 Added support for .NET 8 applications.

250

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_wildcards?view=powershell-7.4

AWS App2Container User Guide

Release date Version Details

October 20,
2023

1.33 •
Added bug fixes, including the following:

•
Fixed an issue where the generate app-de
ployment command could fail if the container image
was untagged.

•
Fixed an issue where the inventory command could
encounter a runtime exception.

August 28,
2023

1.32 •
Adopted a new telemetry endpoint to collect metrics, logs,
and command-generated artifacts.

•
Updated the SectionForMetricsService and
 SectionForUploadSupportBundleService
statements in the example IAM policies for Amazon EKS,
Amazon ECS, and App Runner to support the new telemetry
endpoint. For more information, see Example IAM policies.

•
Added bug fixes, including the following:

•
Fixed an issue where generating a pipeline in AWS
CodePipeline for Windows applications could fail.

•
Fixed an issue where containerization doesn’t wait long
enough for health checks to pass.

•
Improved error handling for missing IAM permissions duri
ng deployment.

•
Fixed a bug with handling quotation marks in the paths f
or Windows services.

251

AWS App2Container User Guide

Release date Version Details

August 1,
2023

1.31 •
Changed the Windows build instances for AWS CodePipeline
integration to use ECS-optimized AMIs.

•
Added bug fixes, including the following:

•
Fixed an issue with generated pipelines in AWS CodePipel
ine where builds could fail.

•
Fixed an issue where deployments to Amazon Elastic
Kubernetes Service would fail in some newer AWS regions.

•
Fixed an issue where Application Load Balancers would not
be created when deploying to Amazon EKS.

252

AWS App2Container User Guide

Release date Version Details

June 30,
2023

1.30 •
Added support to deploy Microsoft Azure DevOps pipelines
from servers with operating systems other than Ubuntu.

•
Changed the default cluster instance type to c5.4xlarge
when deploying to Amazon ECS with EC2 instances.

•
Changed the instance type to t3.medium for Windows
container pipelines created in AWS CodePipeline.

•
Changed the default AWS CodeBuild environment type to
Amazon Linux 2023 for all container pipelines created in
CodePipeline.

•
Added bug fixes, including the following:

•
Fixed a bug where the remote analyze command was
unable to access files on the application server if they
required a second hop to a network drive.

•
Fixed a bug where remote workflows weren't successfully
completing with Microsoft Azure DevOps pipelines, even
with Windows Server 2019 worker machines.

•
Fixed a bug where deployments to Amazon EKS could
indicate they were successful when the application
container didn't function properly.

•
Improved error handling for when the operating system
or architecture of the container image doesn't match that
of the server running the Docker engine.

253

AWS App2Container User Guide

Release date Version Details

May 26, 2023 1.29 •
Changed the default deployed version of Amazon Elastic
Kubernetes Service (Amazon EKS) to 1.26.

•
Added bug fixes, including the following:

•
Fixed a bug where the containerize command failed
to handle Linux applications with the \n, \r, \t, \b, \f,
or \v characters defined in environment variables.

•
Fixed a bug where deploying to Amazon EKS was failing
when the existing stack could not be updated.

•
Fixed a bug where some App2Container commands would
not complete for machines without internet connectivity.

254

AWS App2Container User Guide

Release date Version Details

May 4, 2023 1.28 •
Changed the Amazon Simple Storage Service (Amazon S3)
object key prefix that App2Container uses when you upload
 AWS CloudFormation templates to Amazon S3 with either
the generate app-deployment or generate
pipeline command.

•
Changed the instance metadata version of Windows
build instances to IMDSv2 when they integrate with AWS
CodePipeline.

•
Added support for Amazon Linux 2023.

•
Changed the default installation from Java Development
Kit (JDK) 11 to Amazon Corretto 11 when App2Container
generates a Dockerfile.

•
Added bug fixes, including the following:

•
Removed the unnecessary creation of an Amazon EC2 key
pair when you deploy to Amazon Elastic Container Service
(Amazon ECS) on AWS Fargate (Fargate).

•
Improved how errors are handled when AWS CloudForm
ation fails to create and update stacks.

•
Fixed a bug that caused the analysis phase to fail during
discovery of database connection files over networked
drives.

•
Fixed a bug that prevented detection of all ports for Win
dows services.

•
Changed how quotation marks are handled in the paths
for Windows services.

•

255

AWS App2Container User Guide

Release date Version Details

Fixed a bug that caused Windows services to use an
incorrect health check.

•
Changed how arguments are handled for the executable
 that a Windows services is using.

•
Fixed a bug that caused the generated name of S3 buckets
for CodePipeline integration to be too long.

•
Fixed a bug that caused Azure DevOps pipelines for Linux
applications to use an unsupported agent image.

•
Fixed a bug where a named profile would be required for
the containerize command, even when you don't use
an input archive from Amazon S3.

•
Fixed a bug so that you can use the generate app-
deployment command while you specify the --
deploy flag to prevent failure of S3 bucket validation.

April 20,
2023

1.27 Announcement

App2Container version 1.27 has been rolled back due to an
issue with analyzing applications on Linux. We recommend
that you run the app2container upgrade command to
install the latest generally available version. For more informati
on, see app2container upgrade command.

256

AWS App2Container User Guide

Release date Version Details

February 23,
2023

1.26 •
Changed the default instance metadata version to IMDSv2
for cluster instances when you create Amazon ECS and
Amazon EKS clusters.

•
Introduced the generation of machine-based application IDs
to ensure uniqueness of the application.

•
Added a bug fix, as follows:

•
Fixed a containerization issue when the application runs as
a non-root user.

January 11,
2023

1.25 •
Changed default .NET Framework base image to version 4.8.

•
Added bug fixes, including the following:

•
Clarified error messaging when the containerize command
fails while using the --build-only flag.

•
Clarified error messaging related to analyze command
failures in Windows.

•
Fixed an issue causing a duplicate s3 pipeline bucket name
across different accounts with same app id.

December
11, 2022

1.24 •
Added support for .NET 7 application.

•
Added bug fixes, including the following:

•
Fixed an issue when containerizing an application running
as a different user on Linux.

257

AWS App2Container User Guide

Release date Version Details

November
15, 2022

1.23 •
Enhanced Amazon EKS deployment features to help you
configure the deployment.json file with existing
clusters more conveniently, as follows:

•
Added properties for CPU and memory limit configurat
ion.

•
Added properties for ingress configuration with an
AWS Application Load Balancer or using NGINX with an
Network Load Balancer.

•
Added properties to set up DNS records for the deployed
application.

•
Added properties to use with an AWS Certificate Manager
(ACM) certificate for HTTPS deployments.

•
To better reflect inclusive language, the default git branch
name is now main.

•
Added bug fixes, including the following:

•
Fixed a duplicate port issue with the analyze command.

•
Fixed an issue with uploading large log files with the
 upload-support-bundle command.

•
Fixed an issue with Firelens logging for Linux ECS dep
loyments.

258

AWS App2Container User Guide

Release date Version Details

October 10,
2022

1.22 Added bug fixes, including the following:

•
Fixed an issue with the analyze command for complex
Windows applications that include an IIS application that
resides on a shared network drive.

•
Changed the containerize command so that it no longer
adds IIS web applications to the default application pool
when it generates containers for complex Windows a
pplications.

•
The remote analyze and remote extract commands no
longer require AWS Tools for Windows PowerShell to run on
the remote application server.

•
Fixed a deployment validation issue for Amazon EKS
application containers that specify an existing VPC.

•
Fixed an issue where App2Container doesn't update an
application deployment if the AWS CloudFormation stack is
not in a complete state.

September
16, 2022

1.21 •
Changed new Amazon EKS deployment version default to
Amazon EKS version 1.22.

•
Added bug fixes, including the following:

•
Fixed an Amazon EKS deployment issue where Windows
 applications could be stuck in the ContainerCreating
state.

•
Fixed an issue that can happen when App2Container
deploys new application containers to Amazon EKS within
an existing VPC.

259

AWS App2Container User Guide

Release date Version Details

September 9,
2022

1.20 Added bug fixes, including the following:

•
Fixed an analyze command issue for Java Tomcat applicati
ons on Linux that have a non-default web application
directory.

August 30,
2022

1.19 Added bug fixes, including the following:

•
Fixed an issue with Windows applications where the local
input archive path fails validation and causes an internal
error.

•
Fixed an issue with the --input-json parameter for
the remote configure command that affected Linux and
Windows platforms.

•
Added validation for the generate pipeline command that
returns an error if the Dockerfile.update file is missin
g.

260

AWS App2Container User Guide

Release date Version Details

August 2,
2022

1.18 •
Enhanced Azure DevOps support so that Amazon EKS
deployments work without a kubectl-specific IAM user.

•
Added bug fixes, including the following:

•
Improved run time exception handling for AWS Secrets
Manager secret retrieval.

•
Fixed a containerization issue for complex applications
that use a cooperating application.

•
Fixed a Windows application issue that occurs when the fil
e path is longer than 260 characters.

•
Fixed an issue that can occur when App2Container
archives input from S3 URLs during containerization.

•
Fixed a containerization issue for Java 17 applications on
Amazon Linux 2.

June 20,
2022

1.17 •
Support Microsoft Azure DevOps as a deployment pipeline.

•
Added bug fixes, including the following:

•
Added an error message response when you attempt to
 install App2Container from a version of the PowerShel
l command line interface that App2Container doesn't
support. To run commands in PowerShell, App2Container
requires version 5.0 or above.

•
Fixed an issue when Kubernetes authenticates with the lat
est version of the AWS CLI.

261

AWS App2Container User Guide

Release date Version Details

May 9, 2022 1.16 •
Added bug fixes, including the following:

•
Addressed an issue that occurs when analyzing ports used
by the Windows Service.

•
Addressed an issue with application analysis when some
Linux applications might not progress during a port
connectivity test.

•
Addressed an issue with large Windows applications that
caused the Windows CodePipeline to fail.

April 14,
2022

1.15 •
Optimized AWS App2Container installer size.

•
Deprecated MD5 checksum validation for the App2Conta
iner installer.

•
Made AWS profile setup optional during init.

•
Added bug fixes, including the following:

•
Added validation for S3 bucket name during init.

262

AWS App2Container User Guide

Release date Version Details

March 31,
2022

1.14 Added bug fixes, including the following:

•
Fixed an issue that caused the containerize command with
the --build-only option specified to fail.

•
Fixed issue with missing path references that caused
 analyze command to fail.

•
Corrected upload issue for the support bundle when a panic
 error occurs.

•
Fixed null pointer issues for the following commands:

•
generate app-deployment

•
remote configure

•
Clarified messaging for AWS CloudFormation access denied
error.

March 2,
2022

1.13 Added bug fixes, including the following:

•
Fixed an issue that caused the containerize command to fail
when the --build-only option was specified.

•
Fixed JDK version check failures.

•
Fixed an issue with environment variables used in the appli
cation path for Windows servers.

•
Fixed incorrect container image tag assignment for some
 operating systems.

•
Fixed an issue that reported success metrics when the
remote command failed.

263

AWS App2Container User Guide

Release date Version Details

February 16,
2022

1.12 Fixed an issue that caused remote execution commands to fail
in Windows.

February 09,
2022

1.11 Added bug fixes, including the following:

•
Use CentOS Stream as the base image for applications conta
inerized on the CentOS platform.

•
Added an explicit check for the tar command on Linux.

•
Fixed an issue related to checking application images in
 Amazon ECR.

•
Fixed an issue related to early container removal for pre-v
alidation.

January 14,
2022

1.10 •
Removed dependencies on Amazon ECR and Docker plugins
for Jenkins pipelines.

•
Added bug fixes, including the following:

•
Added validation for PowerShell Version less than 5.0.

•
Fixed analyze command to handle paths with
 %SystemDrive% .

264

AWS App2Container User Guide

Release date Version Details

December 8,
2021

1.9 •
Added end-to-end workflow support for ASP.NET Core appl
ications running on Linux, including single file applications.

•
Added bug fixes, including the following:

•
Fixed publicApp parameter issue in the deploymen
t.json file.

•
Added user validation for existing Jenkins pipelines.

•
Fixed an issue with incremental deployments on failed
CloudFormation stacks.

•
Fixed intermittent failure of Amazon EKS deployments on
 Windows.

265

AWS App2Container User Guide

Release date Version Details

November
24, 2021

1.8 •
Added support for Jenkins pipeline deployment.

•
Added support for incremental deployments of service and
 infrastructure changes to Amazon ECS, Amazon EKS, and
App Runner auto-deployments.

•
Added automatic pre-validation for the containerize
command, with the --no-validate option to skip that
step.

•
Added bug fixes, including the following:

•
Fixed an issue with the upgrade command that caused
the download to time-out.

•
Fixed an Amazon ECS deployment issue caused by the
wrong version of Windows 2016 being used as the base
 AMI.

•
Fixed an issue with selecting the container image for Ama
zon ECS when Firelens logging is enabled.

•
Fixed issue with application analysis that missed applicati
on ports bound to a loopback.

November 4,
2021

1.7 Upgraded AWS Lambda Node.js runtime to 14.x in CloudForm
ation templates to fix Amazon ECS deployment issue.

266

AWS App2Container User Guide

Release date Version Details

October 28,
2021

1.6 •
Added support for Windows application deployment to ECS
 Fargate.

•
Optimized Docker image sizes on Linux by using the Java
JRE instead of the JDK.

If your application needs to use the JDK, you can edit the
 Dockerfile that is produced by the containerize command.
For more information, see Troubleshoot Java applications on
Linux.

•
Updated default version for new Amazon EKS deployments
to Amazon EKS version 1.19.

•
Added automatic filtering for the inventory command on
Linux, to suppress reporting of standard Java processes that
are running on the application server.

•
Added bug fixes, including the following:

•
Improved tagging for EC2 instances created by SSM doc
uments.

•
Fixed containerize command issue with lowercase
Windows drive names.

•
Fixed deployment issue for Docker image tags.

•
Fixed repeated ports in the analysis.json file.

•
Fixed server backup issue for IIS site with encrypted
 password.

•
Fixed Windows Active Directory issue for containerization
and deployment.

267

AWS App2Container User Guide

Release date Version Details

July 26, 2021 1.5 •
Added support for containerizing complex Windows a
pplications.

•
Added support for Amazon EKS tagging.

•
Added support for pipeline tagging.

•
Added bug fixes, including the following:

•
Reclassified DockerInvalidImageError for clarity.

•
Fixed App Runner deployment error that occurs when the
local App Runner container is still running at deployment
 time.

•
Fixed containerization error when analysis.json has esc
aped characters.

May 20, 2021 1.4 •
Added support for deployments to AWS App Runner.

•
Added support for reuse of existing Active Directory security
 groups with gMSA.

•
Added bug fixes, including the following:

•
Fixed containerization of Windows applications that use a
secondary drive mount.

•
Clarified some messaging on actionable errors.

•
Fixed an issue that resulted in incorrect analysis of RHEL
Java processes.

•
Fixed issues related to symbolic links in the application
server that resulted in larger than necessary image sizes.

268

AWS App2Container User Guide

Release date Version Details

March 29,
2021

1.3 •
Added support for Amazon EC2 instance profiles.

•
Added support for Amazon EC2 Nitro instance types in
App2Container deployments for Windows applications.

•
Added support for Windows Server Core Version 2004 base
images for containerized Windows applications.

•
The container base image for Windows applications now
defaults to match the OS version for the server that runs
 containerization.

•
The base image for Windows Amazon ECS deployment
artifacts matches the container base image.

•
Added bug fixes, including the following:

•
Fixed issue related to symbolic links during container
ization.

•
Fixed issue related to spaces in paths in Dockerfiles.

•
Fixed issues related to the Windows remote setup script.

269

AWS App2Container User Guide

Release date Version Details

December
21, 2020

1.2 •
Added capability to run commands remotely.

•
Added custom tag support for deployment resources.

•
Added support for HTTPS endpoints and ACM-based certifica
te management for Amazon ECS deployments.

•
Added bug fixes, including the following:

•
Fixed containerization issue on Linux when unidentified
base image uses default image.

•
Added exclusion for AWS credentials when containerizing
Linux applications.

270

AWS App2Container User Guide

Release date Version Details

November
24, 2020

1.1 •
Added support for Active Directory authenticated Windows
 application deployments to Amazon EKS using gMSA.

•
Added support for named profile overrides to commands
that interact with AWS.

•
Enabled automatic log upload and adjusted console
messaging when errors occur (requires IAM policy update).

•
Added capability to manually upload logs and other artifacts
 with the upload-support-bundle command (requires IAM
policy update).

•
Added bug fixes, including the following:

•
Updated CloudFormation templates for Amazon EKS
deployments to address previous issues.

•
Fixed internal/user error classification.

•
Fixed upgrade errors to point to the correct log file.

•
Added an explicit check to validate use of Docker version
17.07 or above.

271

AWS App2Container User Guide

Release date Version Details

September
15, 2020

1.0.2 •
Added FireLens logging support.

•
Added container image validation to pipeline generation.

•
Added bug fixes, including the following:

•
Removed execution role in template if Windows is spec
ified.

•
Fixed template to reflect CloudFormation API change.

•
Fixed autocomplete installation bug.

•
Fixed dark font for Windows errors.

•
Improved error messaging for command execution errors.

•
Fixed containerize error where included file is not valid.

272

AWS App2Container User Guide

Release date Version Details

August 5,
2020

1.0.1 •
Improved memory usage while archiving in Windows.

•
Added support for containerizing individual applications
 running in Tomcat and JBoss standalone frameworks.

•
Added schema version and unhealthy version checks.

•
Added bug fixes, including the following:

•
Fixed handling for .NET Windows app running on alte
rnative drives (not C).

•
Fixed COPY command failure in DockerFile.

•
Access denied error now throws user error.

•
Added automatic removal of characters that are not all
owed in AppId.

•
Optimized Windows container image size for websites
 with multiple apps.

•
Fixed error handling for input arguments validation.

•
Fixed Dockerfile generation failure when dynamic logging
is enabled.

•
EKS CloudFormation templates are now compatible with
 the new CloudFormation custom resource API.

June 30,
2020

1.0.0 Initial release.

273

AWS App2Container User Guide

Document history for AWS App2Container

The following table describes important changes to the documentation by date. For detailed
updates to AWS App2Container, see Release notes for AWS App2Container.

You can subscribe to the RSS feed on this page to receive notifications about updates to the
documentation.

Change Description Date

App2Container version 1.41 This release added a new
supported operating system
for container hosts.

June 14, 2024

App2Container version 1.40 This release changed the
default deployment version
of Amazon Elastic Kubernete
s Service (Amazon EKS)
and updated the analyze
command to a different
default base image on
CentOS applications servers.
This release also includes
miscellaneous bug fixes.

June 10, 2024

App2Container version 1.39 This release improves the
detection of connection
strings and configuration files
for IIS .NET applications and
Windows services.

May 21, 2024

App2Container version 1.38 This release includes
miscellaneous bug fixes.

May 2, 2024

App2Container version 1.37 This release includes updates
for additional AWS Lambda
functions for Amazon
Elastic Kubernetes Service

March 8, 2024

274

AWS App2Container User Guide

(Amazon EKS) deploymen
ts. This release also includes
miscellaneous bug fixes.

App2Container version 1.36 This release includes a bug fix
that affects Windows Server
2008.

February 22, 2024

App2Container version 1.35 This release changed the
Node.js version used by AWS
CloudFormation, updated
the AWS Lambda functions
to use Python 3.9, improved
error messaging, and added
detection for the command
line used to invoke Windows
services. This release also
includes miscellaneous bug
fixes.

February 14, 2024

App2Container version 1.34 This release added support
for .NET 8 applications.

November 16, 2023

275

AWS App2Container User Guide

AWS Systems Manager
automation runbook

The AWSApp2Container-
ReplatformApplicati
ons Automation runbook is
available for use on Amazon
EC2 instances. The automatio
n performs the installation
of App2Container as well as
the initialize, analyze, and
transform phases for replatfor
ming supported applications.
It can also push the container
ized application to Amazon
Elastic Container Registry
(Amazon ECR). For more
information, see App2Conta
iner Automation runbook.

November 2, 2023

App2Container version 1.33 This is a maintenance release
that contains miscellaneous
bug fixes.

October 20, 2023

App2Container version 1.32 This release adopted a new
telemetry endpoint to collect
metrics, logs, and command-
generated artifacts. The
example IAM policies were
also revised to support this
new telemetry endpoint.
This release also includes
miscellaneous bug fixes.

August 28, 2023

App2Container version 1.31 This release changed to using
ECS-optimized AMIs for
Windows build instances for
AWS CodePipeline integrati
on. This release also includes
miscellaneous bug fixes.

August 1, 2023

276

https://docs.aws.amazon.com/app2container/latest/UserGuide/automation-runbook.html
https://docs.aws.amazon.com/app2container/latest/UserGuide/automation-runbook.html

AWS App2Container User Guide

App2Container version 1.30 This release includes support
to deploy Microsoft Azure
DevOps for some operating
 systems, changed the default
instance type used when
deploying to Amazon ECS on
EC2 instances, changed the
instance type for Windows
container pipelines created
in AWS CodePipeline, and
changed the default AWS
CodeBuild environment type.
This release also includes
miscellaneous bug fixes.

June 30, 2023

App2Container version 1.29 This release changed the
default deployed version of
Amazon Elastic Kubernetes
Service (Amazon EKS) to 1.26
and includes miscellaneous
bug fixes.

May 26, 2023

Documentation addition –
compatibility guide

Added a section to the
documentation to detail
App2Container compatibi
lity for operating systems,
software, and tooling. For
more information, see
App2Container compatibility.

May 22, 2023

277

https://docs.aws.amazon.com/app2container/latest/UserGuide/compatibility-a2c.html

AWS App2Container User Guide

App2Container version 1.28 This release causes
App2Container to change
the Amazon Simple Storage
Service (Amazon S3) object
key prefix when you use
certain commands to upload
AWS CloudFormation
templates to Amazon S3.
The release also changed the
instance metadata version of
Windows build instances to
IMDSv2 when they integrate
with AWS CodePipeline and
includes miscellaneous bug
fixes.

May 4, 2023

App2Container version 1.27 This release was rolled back
due to an issue with analyzing
applications on Linux.

April 20, 2023

Documentation addition –
AWS CodePipeline

Added a section to the
documentation for how to
integrate AWS CodePipeline
with AWS App2Container.

April 18, 2023

App2Container version 1.26 This release changed the
instance metadata version to
IMDSv2 for cluster instances
when you create Amazon
Elastic Container Service and
Amazon Elastic Kubernetes
Service clusters. This release
also includes the creation of
machine-based application
IDs to ensure uniqueness of
the application, and miscellan
eous bug fixes.

February 23, 2023

278

AWS App2Container User Guide

App2Container version 1.25 This release causes
App2Container to default
to .NET Framework version
4.8 for base images, and
miscellaneous bug fixes.

January 23, 2023

App2Container version 1.24 This release includes support
for the .NET 7 application,
and miscellaneous bug fixes.

December 11, 2022

App2Container version 1.23 This release includes support
for clusters created by EKS
Blueprints, and miscellaneous
bug fixes.

November 15, 2022

App2Container version 1.22 This is a maintenance release
that contains miscellaneous
bug fixes.

October 10, 2022

App2Container version 1.21 This release includes
miscellaneous bug fixes and
changes the new Amazon EKS
deployment version default to
Amazon EKS version 1.22.

September 16, 2022

App2Container version 1.20 This is a maintenance release
that contains miscellaneous
bug fixes.

September 9, 2022

App2Container version 1.19 This is a maintenance release
that contains miscellaneous
bug fixes.

August 30, 2022

279

AWS App2Container User Guide

App2Container version 1.18 This release includes
miscellaneous bug fixes and
enhanced Azure DevOps so
that Amazon EKS deploymen
ts can work without a kubectl-
specific IAM user.

August 2, 2022

App2Container version 1.17 This release includes
miscellaneous bug fixes and
adds support for Microsoft
Azure DevOps as a deploymen
t pipeline.

June 20, 2022

Documentation update –
Manage secrets

Updated information about
storing secrets using Secrets
Manager to reflect changes to
the console.

May 31, 2022

App2Container version 1.16 This is a maintenance release
that contains miscellaneous
bug fixes.

May 9, 2022

Documentation improvement
– getting started

Reorganized setup and
getting started sections
to reduce confusion for
people who are just getting
started with App2Container.
Steps and prerequisites are
now clearly labeled in the
navigation panel.

April 14, 2022

280

AWS App2Container User Guide

App2Container version 1.15 This release includes the
following changes, along
with miscellaneous bug fixes:
optimized AWS App2Conta
iner installer size, deprecated
MD5 checksum validation for
the App2Container installer
, made AWS profile setup
optional during init.

April 14, 2022

App2Container version 1.14 This is a maintenance release
that contains miscellaneous
bug fixes.

March 31, 2022

App2Container version 1.13 This is a maintenance release
that contains miscellaneous
bug fixes.

March 2, 2022

App2Container version 1.12 Fixed an issue that caused
remote execution commands
to fail on Windows.

February 16, 2022

App2Container version 1.11 This is a maintenance release
that contains miscellaneous
bug fixes.

February 9, 2022

App2Container version 1.10 This release includes the
following changes, along
with miscellaneous bug fixes:
removed dependencies on
Amazon ECR and Docker
plugins for Jenkins pipelines.

January 14, 2022

Docs-only: IAM policy
adjustments

Updated example policy to
include FireLens permissio
ns. Updated permissions list
order to alphabetical for more
intuitive search.

January 3, 2022

281

AWS App2Container User Guide

Docs-only: Jenkins troublesh
ooting

Added troubleshooting
scenario for Jenkins.

December 20, 2021

App2Container version 1.9 This release includes the
following changes, along
with miscellaneous bug fixes:
workflow support for for
ASP.NET Core applications
running on Linux, including
single file applications.

December 8, 2021

App2Container version 1.8 This release includes the
following changes, along
with miscellaneous bug fixes:
support for Jenkins pipeline
deployment, support for
incremental deployments
of service and infrastru
cture changes for automatic
deployments to Amazon
ECR, Amazon EKS, and App
Runner, plus automatic pre-
validation for the container
ize command, with the --no-
validate option to skip
that step.

November 26, 2021

App2Container version 1.7 Upgraded AWS Lambda
Node.js runtime to 14.x in
CloudFormation templates to
fix Amazon ECS deployment
issue.

November 4, 2021

282

AWS App2Container User Guide

App2Container version 1.6 This release includes the
following changes, along
with miscellaneous bug
fixes: Windows application
deployment to AWS Fargate,
optimization of Docker image
sizes on Linux, improved
filtering for standard Java
processes reported by the
inventory command, and
updated Amazon EKS default
version to 1.19.

October 28, 2021

App2Container version 1.5 This release includes the
following changes, along
with miscellaneous bug fixes:
support for containerizing
complex Windows applicati
ons, and tagging support for
Amazon EKS and pipelines.

July 26, 2021

App2Container version 1.4 This release includes the
following changes, along
with miscellaneous bug fixes:
support for deployments to
AWS App Runner, and support
for reuse of existing Active
Directory security groups with
gMSA.

May 20, 2021

283

AWS App2Container User Guide

App2Container version 1.3 This release includes the
following changes, along
with miscellaneous bug
fixes: support for Amazon
EC2 instance profiles, and
enhancements for Windows
 application containers
(support for Amazon EC2
Nitro instance types in
App2Container deployme
nts, support for Windows
Server Core Version 2004
base images, container bas
e image defaults to match
the OS version for the server
that runs containerization,
and Amazon ECS deploymen
t artifacts to match the
container base image).

March 29, 2021

Docs-only: applicationMode
settings

Describe container configura
tion applicationMode settings
in more detail.

March 19, 2021

Docs-only: IAM policy sections Add content to describe
optional sections of the IAM
policy templates.

February 18, 2021

Docs-only: IAM update Update IAM policy examples
for Amazon EKS and Amazon
ECS to reflect recent changes
and adjust S3 section to
remove problematic permissio
n.

January 12, 2021

284

AWS App2Container User Guide

App2Container version 1.2 This release includes the
following changes, along
with miscellaneous bug fixes:
capability to run commands
remotely, custom tag support
for deployment resources,
support for HTTPS endpoints
and ACM-based certificate
management for Amazon ECS
deployments, and exclusion
of AWS credentials when
containerizing Linux applicati
ons. Note: remote command
capability requires an IAM
policy update.

December 21, 2020

App2Container version 1.1 This release includes the
following changes, along
with miscellaneous bug
fixes: Added support
for Amazon EKS gMSA,
introduced named profile
overrides for commands that
interact with AWS, enabled
automatic log uploads for
command failures, and added
a command to upload a
support bundle for help
with troubleshooting from
App2Container support. Note:
uploads for log and support
file bundles require an IAM
policy update.

November 24, 2020

285

AWS App2Container User Guide

App2Container version 1.0.2 Added FireLens logging
support, plus patches for AWS
App2Container version 1.0.2.

September 15, 2020

App2Container version 1.0.1 Added Release notes page
with version 1.0.1 changes for
AWS App2Container.

August 5, 2020

Docs-only: configuration and
IAM updates

A chapter was added to
describe configurable fields in
files generated by App2Conta
iner commands, and the
security section was updated
with an IAM best practices
summary and guidance for
setting up IAM general use
resources for App2Container.

August 1, 2020

Initial release This release introduces AWS
App2Container.

June 30, 2020

286

	AWS App2Container
	Table of Contents
	What is AWS App2Container?
	How App2Container works
	Accessing AWS through App2Container
	Pricing

	App2Container compatibility
	Operating system compatibility
	Containerization features
	Deployment features
	Pipeline support

	Applications you can containerize using AWS App2Container
	Supported applications for Linux
	Supported applications for Windows
	Containerizing complex Windows .NET applications with App2Container
	Step 1: Setup and initialization
	Step 2: Analysis phase
	Step 3: Containerization
	Step 4: Deployment

	Getting started with AWS App2Container
	Understand Docker containers
	Decide where containerization will run
	Prerequisites: Set up your servers
	Sign up for AWS
	Grant permissions to run AWS App2Container commands
	Enable remote access for a worker machine (optional)
	Configure your AWS profile
	Install the Docker engine

	Step 1: Install App2Container
	Step 2: Initialize App2Container
	Step 3: Analyze your application
	Step 4: Transform your application
	Step 5: Deploy your application
	Step 6: Clean up

	App2Container Automation runbook
	Prerequisites
	Create policies and roles for the automation
	Creating policies and roles with AWS CloudFormation
	Creating policies and roles manually
	Creating policies to run the automation
	Creating the IAM service role for running the automation
	Creating the instance profile role

	Attaching the IAM role

	Run the automation
	Runbook parameters
	Running the automation
	Reviewing output from the automation

	Complete the modernization process

	Configuring your application
	Manage secrets for AWS App2Container
	Create remote access secrets
	Create secrets for Jenkins pipelines
	Authentication secret for Git
	Authentication secret for Jenkins server
	Generate a Jenkins authentication token
	Store your Jenkins authentication token in Secrets Manager

	Create secrets for Microsoft Azure DevOps pipelines
	Generate a Microsoft Azure Personal Access Token (PAT)
	Store your PAT in Secrets Manager

	Configuring application containers
	Containers running on Linux
	Containers running on Windows

	Configuring container deployment
	deployment.json file
	Examples
	Linux Java application deployed to Amazon ECS
	Windows .NET application deployed to AWS Fargate
	Complex Windows .NET application deployed to Amazon ECS

	Configuring container pipelines
	pipeline.json file

	Product and service integrations for AWS App2Container
	Automatic storage and registration using Amazon Elastic Container Registry
	Deploy application containers to Amazon Elastic Container Service with AWS App2Container
	Prerequisites
	Amazon ECS integration for App2Container workflow

	Deploy application containers to Amazon EKS with AWS App2Container
	Prerequisites
	Amazon EKS integration for App2Container workflow

	Deploy application containers to AWS App Runner with AWS App2Container
	Prerequisites
	App Runner integration for App2Container workflow

	Set up CI/CD pipelines with AWS CodePipeline
	Validation
	Output

	Set up CI/CD pipelines with Jenkins
	Prerequisites
	Jenkins integration for App2Container workflow

	Set up CI/CD pipelines with Microsoft Azure DevOps
	Prerequisites
	Azure DevOps integration for App2Container workflow
	Validation
	Output

	Setting up FireLens log file routing for containers with AWS App2Container
	FireLens log routing for Linux
	Prerequisites
	Step 1: Identify log locations for the container
	Step 2: Configure log deployment parameters
	Step 3: Validate deployment artifacts
	Example: Amazon ECS task definition FireLens parameters
	Example: AWS CloudFormation template FireLens parameters

	Step 4: Deploy your application to Amazon ECS
	Step 5: Verify log routing

	Security in AWS App2Container
	Data protection in App2Container
	Data encryption
	Internetwork traffic privacy

	Identity and access management in App2Container
	Create IAM resources for general use
	Example IAM policies
	IAM policy for Amazon ECS
	IAM policy for Amazon EKS
	IAM policy for AWS App Runner
	IAM policy for Azure DevOps pipelines
	IAM policy for Jenkins pipelines

	Create IAM resources for deployment

	Update management for App2Container

	App2Container command reference
	Containerization phases
	Initialize
	Analyze
	Transform
	Deploy

	Utility commands
	app2container analyze command
	Syntax
	Parameters and options
	Output
	Examples

	app2container containerize command
	Syntax
	Parameters and options
	Output
	Examples

	app2container extract command
	Syntax
	Parameters and options
	Output
	Examples

	app2container generate app-deployment command
	Syntax
	Parameters and options
	Output
	Examples

	app2container generate pipeline command
	Syntax
	Parameters and options
	Output
	Examples

	app2container help command
	Syntax
	Parameters and options
	Output
	Examples

	app2container init command
	Syntax
	Parameters and options
	Output
	Examples

	app2container inventory command
	Syntax
	Parameters and options
	Output
	Examples
	Linux examples
	Windows examples

	app2container remote analyze command
	Syntax
	Parameters and options
	Output
	Examples

	app2container remote configure command
	Syntax
	Parameters and options
	Input
	Linux remote hosts file
	Windows remote hosts file

	Output
	Examples

	app2container remote extract command
	Syntax
	Parameters and options
	Output
	Examples

	app2container remote inventory command
	Syntax
	Parameters and options
	Output
	Examples
	Linux examples
	Windows examples

	app2container upgrade command
	Syntax
	Options
	Output
	Examples

	app2container upload-support-bundle command
	Syntax
	Options
	Output
	Examples

	Troubleshooting App2Container issues
	Access App2Container logs on your server
	Access application logs inside of a running container
	AWS resource creation fails for the generate command
	Description
	Cause
	Solution

	Troubleshoot Java applications on Linux
	Application container image size is very large
	Description
	Cause
	Solution

	Error: Insufficient disk space
	Description
	Cause
	Solution

	Troubleshoot .NET applications on Windows
	Application container image size is very large
	Description
	Cause
	Solution

	Troubleshoot generate pipeline build for Jenkins
	Unable to negotiate with x.x.x.x port 22: no matching host key type found. (Windows)
	Description
	Cause
	Solution

	Release notes for AWS App2Container
	Document history for AWS App2Container

