
User Guide

AWS AppConfig

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS AppConfig User Guide

AWS AppConfig: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS AppConfig User Guide

Table of Contents

What is AWS AppConfig? .. 1
AWS AppConfig use cases .. 2
Benefits of using AWS AppConfig .. 2
How AWS AppConfig works ... 3
Get started with AWS AppConfig ... 5
SDKs ... 6
Pricing for AWS AppConfig .. 6
AWS AppConfig quotas ... 6

Setting up AWS AppConfig ... 7
Sign up for an AWS account .. 7
Create a user with administrative access .. 7
Grant programmatic access .. 9
Configure permissions for automatic rollback ... 10

Step 1: Create the permission policy for rollback based on CloudWatch alarms 11
Step 2: Create the IAM role for rollback based on CloudWatch alarms 12
Step 3: Add a trust relationship .. 12

Creating .. 14
About the configuration profile IAM role ... 18
Creating a namespace ... 19

Creating an AWS AppConfig application (console) .. 20
Creating an AWS AppConfig application (command line) .. 21

Creating environments .. 22
Creating an AWS AppConfig environment (console) ... 23
Creating an AWS AppConfig environment (command line) ... 23

Creating a configuration profile in AWS AppConfig ... 26
About validators .. 26
Creating a feature flag configuration profile .. 29
Creating a free form configuration profile .. 44

Other sources of configuration data .. 57
AWS Secrets Manager .. 57

Deploying ... 58
Working with deployment strategies ... 59

Predefined deployment strategies .. 61
Create a deployment strategy ... 63

iii

AWS AppConfig User Guide

Deploying a configuration .. 67
Deploy a configuration (console) ... 68
Deploy a configuration (commandline) .. 69

Deployment integration with CodePipeline ... 73
How integration works .. 73

Retrieving ... 75
About the AWS AppConfig data plane service .. 76
Simplified retrieval methods ... 77

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 78
Retrieving configuration data from Amazon EC2 instances .. 133
Retrieving configuration data from Amazon ECS and Amazon EKS .. 148
Additional retrieval features .. 160
AWS AppConfig Agent local development .. 170

Retrieving configurations by directly calling APIs ... 172
Retrieving a configuration example ... 174

Extending workflows ... 176
About AWS AppConfig extensions ... 176

Step 1: Determine what you want to do with extensions .. 177
Step 2: Determine when you want the extension to run ... 178
Step 3: Create an extension association .. 179
Step 4: Deploy a configuration and verify the extension actions are performed 179

Working with AWS authored extensions .. 180
Working with the Amazon CloudWatch Evidently extension .. 181
Working with the AWS AppConfig deployment events to Amazon EventBridge
extension .. 181
Working with the AWS AppConfig deployment events to Amazon SNS extension . 183
Working with the AWS AppConfig deployment events to Amazon SQS extension . 186
Working with the Jira extension ... 188

Walkthrough: Creating custom AWS AppConfig extensions ... 194
Creating a Lambda function for a custom AWS AppConfig extension 195
Configuring permissions for a custom AWS AppConfig extension ... 200
Creating a custom AWS AppConfig extension ... 202
Creating an extension association for a custom AWS AppConfig extension 205

Extension integration with Jira ... 206
Code samples ... 208

Creating or updating a freeform configuration stored in the hosted configuration store 208

iv

AWS AppConfig User Guide

Creating a configuration profile for a secret stored in Secrets Manager 211
Deploying a configuration profile .. 212
Using AWS AppConfig Agent to read a freeform configuration profile .. 217
Using AWS AppConfig Agent to read a specific feature flag .. 219
Using the GetLatestConfig API action to read a freeform configuration profile 220
Cleaning up your environment ... 224

Security .. 231
Implement least privilege access .. 231
Data encryption at rest for AWS AppConfig .. 232
AWS PrivateLink ... 236

Considerations ... 237
Create an interface endpoint ... 237
Create an endpoint policy .. 237

Secrets Manager key rotation ... 238
Setting up automatic rotation of Secrets Manager secrets deployed by AWS AppConfig ... 238

Monitoring ... 241
CloudTrail logs .. 241

AWS AppConfig information in CloudTrail .. 242
AWS AppConfig data events in CloudTrail .. 243
AWS AppConfig management events in CloudTrail .. 244
Understanding AWS AppConfig log file entries ... 244

Logging metrics for AWS AppConfig data plane calls ... 246
Creating an alarm for a CloudWatch metric ... 248

Document history .. 249

v

AWS AppConfig User Guide

What is AWS AppConfig?

AWS AppConfig feature flags and dynamic configurations help software builders quickly and
securely adjust application behavior in production environments without full code deployments.
AWS AppConfig speeds up software release frequency, improves application resiliency, and helps
you address emergent issues more quickly. With feature flags, you can gradually release new
capabilities to users and measure the impact of those changes before fully deploying the new
capabilities to all users. With operational flags and dynamic configurations, you can update block
lists, allow lists, throttling limits, logging verbosity, and perform other operational tuning to
quickly respond to issues in production environments.

Note

AWS AppConfig is a capability of AWS Systems Manager.

Improve efficiency and release changes faster

Using feature flags with new capabilities speeds up the process of releasing changes to
production environments. Instead of relying on long-lived development branches that require
complicated merges before a release, feature flags enable you to write software using trunk-based
development. Feature flags enable you to safely roll out pre-release code in a CI/CD pipeline that
is hidden from users. When you are ready to release the changes, you can update the feature flag
without deploying new code. After the launch is complete, the flag can still function as a block
switch to disable a new feature or capability without the need to roll back the code deployment.

Avoid unintended changes or failures with built-in safety features

AWS AppConfig offers the following safety features to help you avoid enabling feature flags or
updating configuration data that could cause application failures.

• Validators: A validator ensures that your configuration data is syntactically and semantically
correct before deploying the changes to production environments.

• Deployment strategies: A deployment strategy enables you to slowly release changes to
production environments over minutes or hours.

• Monitoring and automatic rollback: AWS AppConfig integrates with Amazon CloudWatch
to monitor changes to your applications. If your application becomes unhealthy because of a

1

AWS AppConfig User Guide

bad configuration change and that change triggers an alarm in CloudWatch, AWS AppConfig
automatically rolls back the change to minimize impact on your application users.

Secure and scalable feature flag deployments

AWS AppConfig integrates with AWS Identity and Access Management (IAM) to provide fine-
grain, role-based access to the service. AWS AppConfig also integrates with AWS Key Management
Service (AWS KMS) for encryption and AWS CloudTrail for auditing. Before being released to
external customers, all AWS AppConfig safety controls were initially developed with and validated
by internal customers that use the service at scale.

AWS AppConfig use cases

Despite the fact that application configuration content can vary greatly from application to
application, AWS AppConfig supports the following use cases, which cover a broad spectrum of
customer needs:

• Feature flags and toggles – Safely release new capabilities to your customers in a controlled
environment. Instantly roll back changes if you experience a problem.

• Application tuning – Carefully introduce application changes while testing the impact of those
changes with users in production environments.

• Allow list or block list – Control access to premium features or instantly block specific users
without deploying new code.

• Centralized configuration storage – Keep your configuration data organized and consistent
across all of your workloads. You can use AWS AppConfig to deploy configuration data stored
in the AWS AppConfig hosted configuration store, AWS Secrets Manager, Systems Manager
Parameter Store, or Amazon S3.

Benefits of using AWS AppConfig

AWS AppConfig offers the following benefits for your organization:

• Reduce unexpected down time for your customers

AWS AppConfig reduces application downtime by enabling you to create rules to validate your
configuration. Configurations that aren't valid can't be deployed. AWS AppConfig provides the
following two options for validating configurations:

AWS AppConfig use cases 2

AWS AppConfig User Guide

• For syntactic validation, you can use a JSON schema. AWS AppConfig validates your
configuration by using the JSON schema to ensure that configuration changes adhere to the
application requirements.

• For semantic validation, AWS AppConfig can call an AWS Lambda function that you own to
validate the data within your configuration.

• Quickly deploy changes across a set of targets

AWS AppConfig simplifies the administration of applications at scale by deploying configuration
changes from a central location. AWS AppConfig supports configurations stored in the AWS
AppConfig hosted configuration store, Systems Manager Parameter Store, Systems Manager
(SSM) documents, and Amazon S3. You can use AWS AppConfig with applications hosted on EC2
instances, AWS Lambda, containers, mobile applications, or IoT devices.

Targets don't need to be configured with the Systems Manager SSM Agent or the IAM instance
profile required by other Systems Manager capabilities. This means that AWS AppConfig works
with unmanaged instances.

• Update applications without interruptions

AWS AppConfig deploys configuration changes to your targets at runtime without a heavy-
weight build process or taking your targets out of service.

• Control deployment of changes across your application

When deploying configuration changes to your targets, AWS AppConfig enables you to minimize
risk by using a deployment strategy. Deployment strategies allow you to slowly roll out
configuration changes to your fleet. If you experience a problem during the deployment, you can
roll back the configuration change before it reaches the majority of yours hosts.

How AWS AppConfig works

This section provides a high-level description of how AWS AppConfig works and how you get
started.

1. Identify configuration values in code you want to manage in the cloud

Before you start creating AWS AppConfig artifacts, we recommend you identify configuration
data in your code that you want to dynamically manage using AWS AppConfig. Good examples

How AWS AppConfig works 3

AWS AppConfig User Guide

include feature flags or toggles, allow and block lists, logging verbosity, service limits, and
throttling rules, to name a few.

If your configuration data already exists in the cloud, you can take advantage of AWS AppConfig
validation, deployment, and extension features to further streamline configuration data
management.

2. Create an application namespace

To create a namespace, you create an AWS AppConfig artifact called an application. An
application is simply an organizational construct like a folder.

3. Create environments

For each AWS AppConfig application, you define one or more environments. An environment
is a logical grouping of targets, such as applications in a Beta or Production environment,
AWS Lambda functions, or containers. You can also define environments for application
subcomponents, such as the Web, Mobile, and Back-end.

You can configure Amazon CloudWatch alarms for each environment. The system monitors
alarms during a configuration deployment. If an alarm is triggered, the system rolls back the
configuration.

4. Create a configuration profile

A configuration profile includes, among other things, a URI that enables AWS AppConfig
to locate your configuration data in its stored location and a profile type. AWS AppConfig
supports two configuration profile types: feature flags and freeform configurations. Feature
flag configuration profiles store their data in the AWS AppConfig hosted configuration store
and the URI is simply hosted. For freeform configuration profiles, you can store your data in
the AWS AppConfig hosted configuration store or any AWS service that integrates with AWS
AppConfig, as described in Creating a free form configuration profile in AWS AppConfig.

A configuration profile can also include optional validators to ensure your configuration data
is syntactically and semantically correct. AWS AppConfig performs a check using the validators
when you start a deployment. If any errors are detected, the deployment rolls back to the
previous configuration data.

5. Deploy configuration data

When you create a new deployment, you specify the following:

How AWS AppConfig works 4

AWS AppConfig User Guide

• An application ID

• A configuration profile ID

• A configuration version

• An environment ID where you want to deploy the configuration data

• A deployment strategy ID that defines how fast you want the changes to take effect

When you call the StartDeployment API action, AWS AppConfig performs the following tasks:

1. Retrieves the configuration data from the underlying data store by using the location URI in
the configuration profile.

2. Verifies the configuration data is syntactically and semantically correct by using the
validators you specified when you created your configuration profile.

3. Caches a copy of the data so it is ready to be retrieved by your application. This cached copy
is called the deployed data.

6. Retrieve the configuration

You can configure AWS AppConfig Agent as a local host and have the agent poll AWS
AppConfig for configuration updates. The agent calls the StartConfigurationSession and
GetLatestConfiguration API actions and caches your configuration data locally. To retrieve
the data, your application makes an HTTP call to the localhost server. AWS AppConfig Agent
supports several use cases, as described in Simplified retrieval methods.

If AWS AppConfig Agent isn't supported for your use case, you can configure your application to
poll AWS AppConfig for configuration updates by directly calling the StartConfigurationSession
and GetLatestConfiguration API actions.

Get started with AWS AppConfig

The following resources can help you work directly with AWS AppConfig.

View more AWS videos on the Amazon Web Services YouTube Channel.

The following blogs can help you learn more about AWS AppConfig and its capabilities:

• Using AWS AppConfig feature flags

• Best Practices for validating AWS AppConfig Feature Flags and Configuration Data

Get started with AWS AppConfig 5

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_StartDeployment.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_StartConfigurationSession.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_GetLatestConfiguration.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_StartConfigurationSession.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_GetLatestConfiguration.html
https://www.youtube.com/user/AmazonWebServices
https://aws.amazon.com/blogs/mt/using-aws-appconfig-feature-flags/
https://aws.amazon.com/blogs/mt/best-practices-for-validating-aws-appconfig-feature-flags-and-configuration-data/

AWS AppConfig User Guide

SDKs

For information about AWS AppConfig language-specific SDKs, see the following resources:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Pricing for AWS AppConfig

Pricing for AWS AppConfig is pay-as-you-go based on configuration data and feature flag retrieval.
We recommend using the AWS AppConfig Agent to help optimize costs. For more information, see
AWS Systems Manager Pricing.

AWS AppConfig quotas

Information about AWS AppConfig endpoints and service quotas along with other Systems
Manager quotas is in the Amazon Web Services General Reference.

Note

For information about quotas for services that store AWS AppConfig configurations, see
About configuration store quotas and limitations.

SDKs 6

https://docs.aws.amazon.com/goto/aws-cli/appconfig-2019-10-09/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/AppConfig/NAppConfig.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-appconfig/html/namespace_aws_1_1_app_config.html
https://docs.aws.amazon.com/sdk-for-go/api/service/appconfig/
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/appconfig/package-summary.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/AppConfig.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/namespace-Aws.AppConfig.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/appconfig.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/AppConfig.html
https://aws.amazon.com/systems-manager/pricing/
https://docs.aws.amazon.com/general/latest/gr/appconfig.html

AWS AppConfig User Guide

Setting up AWS AppConfig

If you haven't already done so, sign up for an AWS account and create an administrative user.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

Sign up for an AWS account 7

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial

AWS AppConfig User Guide

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create a user with administrative access 8

https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

AWS AppConfig User Guide

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM

Grant programmatic access 9

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html

AWS AppConfig User Guide

Which user needs
programmatic access?

To By

user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Configure permissions for automatic rollback

You can configure AWS AppConfig to roll back to a previous version of a configuration in response
to one or more Amazon CloudWatch alarms. When you configure a deployment to respond
to CloudWatch alarms, you specify an AWS Identity and Access Management (IAM) role. AWS
AppConfig requires this role so that it can monitor CloudWatch alarms. This procedure is optional,
but highly recommended.

Note

The IAM role must belong to the current account. By default, AWS AppConfig can only
monitor alarms owned by the current account. If you want to configure AWS AppConfig to
roll back deployments in response to metrics from a different account, you must configure
cross account alarms. For more information, see Cross-account cross-Region CloudWatch
console in the Amazon CloudWatch User Guide.

Use the following procedures to create an IAM role that enables AWS AppConfig to rollback based
on CloudWatch alarms. This section includes the following procedures.

1. Step 1: Create the permission policy for rollback based on CloudWatch alarms

Configure permissions for automatic rollback 10

https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Cross-Account-Cross-Region.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Cross-Account-Cross-Region.html

AWS AppConfig User Guide

2. Step 2: Create the IAM role for rollback based on CloudWatch alarms

3. Step 3: Add a trust relationship

Step 1: Create the permission policy for rollback based on CloudWatch
alarms

Use the following procedure to create an IAM policy that gives AWS AppConfig permission to call
the DescribeAlarms API action.

To create an IAM permission policy for rollback based on CloudWatch alarms

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies, and then choose Create policy.

3. On the Create policy page, choose the JSON tab.

4. Replace the default content on the JSON tab with the following permission policy, and then
choose Next: Tags.

Note

To return information about CloudWatch composite alarms, the DescribeAlarms API
operation must be assigned * permissions, as shown here. You can't return information
about composite alarms if DescribeAlarms has a narrower scope.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:DescribeAlarms"
],
 "Resource": "*"
 }
]
 }

5. Enter tags for this role, and then choose Next: Review.

Step 1: Create the permission policy for rollback based on CloudWatch alarms 11

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DescribeAlarms.html

AWS AppConfig User Guide

6. On the Review page, enter SSMCloudWatchAlarmDiscoveryPolicy in the Name field.

7. Choose Create policy. The system returns you to the Policies page.

Step 2: Create the IAM role for rollback based on CloudWatch alarms

Use the following procedure to create an IAM role and assign the policy you created in the previous
procedure to it.

To create an IAM role for rollback based on CloudWatch alarms

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, and then choose Create role.

3. Under Select type of trusted entity, choose AWS service.

4. Immediately under Choose the service that will use this role, choose EC2: Allows EC2
instances to call AWS services on your behalf, and then choose Next: Permissions.

5. On the Attached permissions policy page, search for SSMCloudWatchAlarmDiscoveryPolicy.

6. Choose this policy and then choose Next: Tags.

7. Enter tags for this role, and then choose Next: Review.

8. On the Create role page, enter SSMCloudWatchAlarmDiscoveryRole in the Role name
field, and then choose Create role.

9. On the Roles page, choose the role you just created. The Summary page opens.

Step 3: Add a trust relationship

Use the following procedure to configure the role you just created to trust AWS AppConfig.

To add a trust relationship for AWS AppConfig

1. In the Summary page for the role you just created, choose the Trust Relationships tab, and
then choose Edit Trust Relationship.

2. Edit the policy to include only "appconfig.amazonaws.com", as shown in the following
example:

{
 "Version": "2012-10-17",
 "Statement": [

Step 2: Create the IAM role for rollback based on CloudWatch alarms 12

https://console.aws.amazon.com/iam/

AWS AppConfig User Guide

 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appconfig.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

3. Choose Update Trust Policy.

Step 3: Add a trust relationship 13

AWS AppConfig User Guide

Creating feature flags and free form configuration data
in AWS AppConfig

The topics in this section help you complete the following tasks in AWS AppConfig. These tasks
create important artifacts for deploying configuration data.

1. Create an application namespace

To create an application namespace, you create an AWS AppConfig artifact called an
application. An application is simply an organizational construct like a folder.

2. Create environments

For each AWS AppConfig application, you define one or more environments. An environment
is a logical deployment group of AWS AppConfig targets, such as applications in a Beta or
Production environment. You can also define environments for application subcomponents,
such as AWS Lambda functions, Containers, Web, Mobile, and Back-end.

You can configure Amazon CloudWatch alarms for each environment to automatically rollback
problematic configuration changes. The system monitors alarms during a configuration
deployment. If an alarm is triggered, the system rolls back the configuration.

3. Create a configuration profile

Configuration data is a collection of settings that influence the behavior of your application.
A configuration profile includes, among other things, a URI that enables AWS AppConfig
to locate your configuration data in its stored location and a profile type. AWS AppConfig
supports two configuration profile types: feature flags and freeform configurations. Feature
flag configuration profiles store their data in the AWS AppConfig hosted configuration store
and the URI is simply hosted. For freeform configuration profiles, you can store your data in
the AWS AppConfig hosted configuration store or another Systems Manager capability or AWS
service that integrates with AWS AppConfig, as described in Creating a free form configuration
profile in AWS AppConfig.

A configuration profile can also include optional validators to ensure your configuration data
is syntactically and semantically correct. AWS AppConfig performs a check using the validators
when you start a deployment. If any errors are detected, the deployment stops before making
any changes to the targets of the configuration.

14

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-namespace.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-environment.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-configuration-profile.html

AWS AppConfig User Guide

Note

Unless you have specific needs for storing secrets in AWS Secrets Manager or managing
data in Amazon Simple Storage Service (Amazon S3), we recommend hosting your
configuration data in the AWS AppConfig hosted configuration store as it offers the
most features and enhancements.

The following section includes feature flag and freeform configuration data samples.

Feature flag configuration data

The following feature flag configuration data enables or disables mobile payments and default
payments on a per-region basis.

JSON

{
 "allow_mobile_payments": {
 "enabled": false
 },
 "default_payments_per_region": {
 "enabled": true
 }
}

YAML

allow_mobile_payments:
 enabled: false
default_payments_per_region:
 enabled: true

Operational configuration data

The following freeform configuration data enforces limits on how an application processes
requests.

15

AWS AppConfig User Guide

JSON

{
 "throttle-limits": {
 "enabled": "true",
 "throttles": [
 {
 "simultaneous_connections": 12
 },
 {
 "tps_maximum": 5000
 }
],
 "limit-background-tasks": [
 true
]
 }
}

YAML

throttle-limits:
 enabled: 'true'
 throttles:
 - simultaneous_connections: 12
 - tps_maximum: 5000
 limit-background-tasks:
 - true

Access control list configuration data

The following access control list freeform configuration data specifies which users or groups can
access an application.

JSON

{
 "allow-list": {
 "enabled": "true",
 "cohorts": [

16

AWS AppConfig User Guide

 {
 "internal_employees": true
 },
 {
 "beta_group": false
 },
 {
 "recent_new_customers": false
 },
 {
 "user_name": "Jane_Doe"
 },
 {
 "user_name": "John_Doe"
 }
]
 }
}

YAML

allow-list:
 enabled: 'true'
 cohorts:
 - internal_employees: true
 - beta_group: false
 - recent_new_customers: false
 - user_name: Jane_Doe
 - user_name: Ashok_Kumar

Topics

• About the configuration profile IAM role

• Creating a namespace for your application in AWS AppConfig

• Creating environments for your application in AWS AppConfig

• Creating a configuration profile in AWS AppConfig

• Other sources of configuration data

17

AWS AppConfig User Guide

About the configuration profile IAM role

You can create the IAM role that provides access to the configuration data by using AWS
AppConfig. Or you can create the IAM role yourself. If you create the role by using AWS AppConfig,
the system creates the role and specifies one of the following permissions policies, depending on
which type of configuration source you choose.

Configuration source is a Secrets Manager secret

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:AWS Region:account_ID:secret:secret_name-
a1b2c3"
]
 }
]
}

Configuration source is a Parameter Store parameter

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameter"
],
 "Resource": [
 "arn:aws:ssm:AWS Region:account_ID:parameter/parameter_name"
]
 }
]
 }

About the configuration profile IAM role 18

AWS AppConfig User Guide

Configuration source is an SSM document

{

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:GetDocument"
],
 "Resource": [
 "arn:aws:ssm:AWS Region:account_ID:document/document_name"
]
 }
]
}

If you create the role by using AWS AppConfig, the system also creates the following trust
relationship for the role.

{

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appconfig.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Creating a namespace for your application in AWS AppConfig

The procedures in this section help you create an AWS AppConfig artifact called an application.
An application is simply an organizational construct like a folder that identifies the namespace
of your application. This organizational construct has a relationship with some unit of executable
code. For example, you could create an application called MyMobileApp to organize and manage

Creating a namespace 19

AWS AppConfig User Guide

configuration data for a mobile application installed by your users. You must create these artifacts
before you can use AWS AppConfig to deploy and retrieve feature flags or free form configuration
data.

Note

You can use AWS CloudFormation to create AWS AppConfig artifacts, including
applications, environments, configuration profiles, deployments, deployment strategies,
and hosted configuration versions. For more information, see AWS AppConfig resource type
reference in the AWS CloudFormation User Guide.

Topics

• Creating an AWS AppConfig application (console)

• Creating an AWS AppConfig application (command line)

Creating an AWS AppConfig application (console)

Use the following procedure to create an AWS AppConfig application by using the AWS Systems
Manager console.

To create an application

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-
manager/appconfig/.

2. In the navigation pane, choose Applications, and then choose Create application.

3. For Name, enter a name for the application.

4. For Description, enter information about the application.

5. (Optional) In the Extensions section, choose an extension from the list. For more information,
see About AWS AppConfig extensions.

6. (Optional) In the Tags section, enter a key and an optional value. You can specify a maximum
of 50 tags for a resource.

7. Choose Create application.

AWS AppConfig creates the application and then displays the Environments tab. Proceed to
Creating environments for your application in AWS AppConfig.

Creating an AWS AppConfig application (console) 20

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_AppConfig.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_AppConfig.html
https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/

AWS AppConfig User Guide

Creating an AWS AppConfig application (command line)

The following procedure describes how to use the AWS CLI (on Linux or Windows) or AWS Tools for
PowerShell to create an AWS AppConfig application.

To create an application step by step

1. Open the AWS CLI.

2. Run the following command to create an application.

Linux

aws appconfig create-application \
 --name A_name_for_the_application \
 --description A_description_of_the_application \
 --tags User_defined_key_value_pair_metadata_for_the_application

Windows

aws appconfig create-application ^
 --name A_name_for_the_application ^
 --description A_description_of_the_application ^
 --tags User_defined_key_value_pair_metadata_for_the_application

PowerShell

New-APPCApplication `
 -Name Name_for_the_application `
 -Description Description_of_the_application `
 -Tag Hashtable_type_user_defined_key_value_pair_metadata_for_the_application

The system returns information like the following.

Linux

{
 "Id": "Application ID",
 "Name": "Application name",
 "Description": "Description of the application"

Creating an AWS AppConfig application (command line) 21

AWS AppConfig User Guide

}

Windows

{
 "Id": "Application ID",
 "Name": "Application name",
 "Description": "Description of the application"
}

PowerShell

ContentLength : Runtime of the command
Description : Description of the application
HttpStatusCode : HTTP Status of the runtime
Id : Application ID
Name : Application name
ResponseMetadata : Runtime Metadata

Creating environments for your application in AWS AppConfig

For each AWS AppConfig application, you define one or more environments. An environment is a
logical deployment group of AppConfig targets, such as applications in a Beta or Production
environment, AWS Lambda functions, or containers. You can also define environments for
application subcomponents, such as the Web, Mobile, and Back-end. You can configure Amazon
CloudWatch alarms for each environment. The system monitors alarms during a configuration
deployment. If an alarm is triggered, the system rolls back the configuration.

Before You Begin

If you want to enable AWS AppConfig to roll back a configuration in response to a CloudWatch
alarm, then you must configure an AWS Identity and Access Management (IAM) role with
permissions to enable AWS AppConfig to respond to CloudWatch alarms. You choose this role in
the following procedure. For more information, see Configure permissions for automatic rollback.

Topics

• Creating an AWS AppConfig environment (console)

• Creating an AWS AppConfig environment (command line)

Creating environments 22

AWS AppConfig User Guide

Creating an AWS AppConfig environment (console)

Use the following procedure to create an AWS AppConfig environment by using the AWS Systems
Manager console.

To create an environment

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-
manager/appconfig/.

2. In the navigation pane, choose Applications, and then choose the name of an application to
open the details page.

3. Choose the Environments tab, and then choose Create environment.

4. For Name, enter a name for the environment.

5. For Description, enter information about the environment.

6. (Optional) In the Monitors section, choose the IAM role field, and then choose an IAM role
with permission to roll back a configuration if an alarm is triggered.

7. In the CloudWatch alarms list, choose one or more alarms to monitor. AWS AppConfig rolls
back your configuration deployment if one of these alarms goes into an alarm state.

8. (Optional) In the Associate extensions section, choose an extension from the list. For more
information, see About AWS AppConfig extensions.

9. (Optional) In the Tags section, enter a key and an optional value. You can specify a maximum
of 50 tags for a resource.

10. Choose Create environment.

AWS AppConfig creates the environment and then displays the Environment details page. Proceed
to Creating a configuration profile in AWS AppConfig.

Creating an AWS AppConfig environment (command line)

The following procedure describes how to use the AWS CLI (on Linux or Windows) or AWS Tools for
PowerShell to create an AWS AppConfig environment.

To create an environment step by step

1. Open the AWS CLI.

2. Run the following command to create an environment.

Creating an AWS AppConfig environment (console) 23

https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/

AWS AppConfig User Guide

Linux

aws appconfig create-environment \
 --application-id The_application_ID \
 --name A_name_for_the_environment \
 --description A_description_of_the_environment \
 --monitors
 "AlarmArn=ARN_of_the_Amazon_CloudWatch_alarm,AlarmArnRole=ARN_of_the_IAM
 role_for_AWS AppConfig_to_monitor_AlarmArn" \
 --tags User_defined_key_value_pair_metadata_of_the_environment

Windows

aws appconfig create-environment ^
 --application-id The_application_ID ^
 --name A_name_for_the_environment ^
 --description A_description_of_the_environment ^
 --monitors
 "AlarmArn=ARN_of_the_Amazon_CloudWatch_alarm,AlarmArnRole=ARN_of_the_IAM
 role_for_AWS AppConfig_to_monitor_AlarmArn" ^
 --tags User_defined_key_value_pair_metadata_of_the_environment

PowerShell

New-APPCEnvironment `
 -Name Name_for_the_environment `
 -ApplicationId The_application_ID
 -Description Description_of_the_environment `
 -Monitors
 @{"AlarmArn=ARN_of_the_Amazon_CloudWatch_alarm,AlarmArnRole=ARN_of_the_IAM
 role_for_AWS AppConfig_to_monitor_AlarmArn"} `
 -Tag Hashtable_type_user_defined_key_value_pair_metadata_of_the_environment

The system returns information like the following.

Linux

{
 "ApplicationId": "The application ID",
 "Id": "The_environment ID",

Creating an AWS AppConfig environment (command line) 24

AWS AppConfig User Guide

 "Name": "Name of the environment",
 "State": "The state of the environment",
 "Description": "Description of the environment",

 "Monitors": [
 {
 "AlarmArn": "ARN of the Amazon CloudWatch alarm",
 "AlarmRoleArn": "ARN of the IAM role for AppConfig to monitor AlarmArn"
 }
]
}

Windows

{
 "ApplicationId": "The application ID",
 "Id": "The environment ID",
 "Name": "Name of the environment",
 "State": "The state of the environment"
 "Description": "Description of the environment",

 "Monitors": [
 {
 "AlarmArn": "ARN of the Amazon CloudWatch alarm",
 "AlarmRoleArn": "ARN of the IAM role for AppConfig to monitor AlarmArn"
 }
]
}

PowerShell

ApplicationId : The application ID
ContentLength : Runtime of the command
Description : Description of the environment
HttpStatusCode : HTTP Status of the runtime
Id : The environment ID
Monitors : {ARN of the Amazon CloudWatch alarm, ARN of the IAM role for
 AppConfig to monitor AlarmArn}
Name : Name of the environment
Response Metadata : Runtime Metadata
State : State of the environment

Creating an AWS AppConfig environment (command line) 25

AWS AppConfig User Guide

Proceed to Creating a configuration profile in AWS AppConfig.

Creating a configuration profile in AWS AppConfig

Configuration data is a collection of settings that influence the behavior of your application. A
configuration profile includes, among other things, a URI that enables AWS AppConfig to locate
your configuration data in its stored location and a configure type. AWS AppConfig supports
two types of configuration profiles: feature flags and freeform configurations. A feature flag
configuration stores data in the AWS AppConfig hosted configuration store and the URI is simply
hosted. A freeform configuration can store data in the AWS AppConfig hosted configuration store,
various Systems Manager capabilities, or an AWS service that integrates with AWS AppConfig. For
more information, see Creating a free form configuration profile in AWS AppConfig.

A configuration profile can also include optional validators to ensure your configuration data
is syntactically and semantically correct. AWS AppConfig performs a check using the validators
when you start a deployment. If any errors are detected, the deployment stops before making any
changes to the targets of the configuration.

Note

If possible, we recommend hosting your configuration data in the AWS AppConfig hosted
configuration store as it offers the most features and enhancements.

Topics

• About validators

• Creating a feature flag configuration profile in AWS AppConfig

• Creating a free form configuration profile in AWS AppConfig

About validators

When you create a configuration profile, you have the option to specify up to two validators. A
validator ensures that your configuration data is syntactically and semantically correct. If you plan
to use a validator, you must create it before you create the configuration profile. AWS AppConfig
supports the following types of validators:

• AWS Lambda functions: Supported for feature flags and free form configurations.

Creating a configuration profile in AWS AppConfig 26

AWS AppConfig User Guide

• JSON Schema: Supported for free form configurations. (AWS AppConfig automatically validates
feature flags against a JSON Schema.)

Topics

• AWS Lambda function validators

• JSON Schema validators

AWS Lambda function validators

Lambda function validators must be configured with the following event schema. AWS AppConfig
uses this schema to invoke the Lambda function. The content is a base64-encoded string, and the
URI is a string.

{
 "applicationId": "The application ID of the configuration profile being
 validated",
 "configurationProfileId": "The ID of the configuration profile being validated",
 "configurationVersion": "The version of the configuration profile being validated",
 "content": "Base64EncodedByteString",
 "uri": "The configuration uri"
}

AWS AppConfig verifies that the Lambda X-Amz-Function-Error header is set in the response.
Lambda sets this header if the function throws an exception. For more information about X-Amz-
Function-Error, see Error Handling and Automatic Retries in AWS Lambda in the AWS Lambda
Developer Guide.

Here is a simple example of a Lambda response code for a successful validation.

import json

def handler(event, context):
 #Add your validation logic here
 print("We passed!")

Here is a simple example of a Lambda response code for an unsuccessful validation.

def handler(event, context):
 #Add your validation logic here

About validators 27

https://docs.aws.amazon.com/lambda/latest/dg/retries-on-errors.html

AWS AppConfig User Guide

 raise Exception("Failure!")

Here is another example that validates only if the configuration parameter is a prime number.

function isPrime(value) {
 if (value < 2) {
 return false;
 }

 for (i = 2; i < value; i++) {
 if (value % i === 0) {
 return false;
 }
 }

 return true;
}

exports.handler = async function(event, context) {
 console.log('EVENT: ' + JSON.stringify(event, null, 2));
 const input = parseInt(Buffer.from(event.content, 'base64').toString('ascii'));
 const prime = isPrime(input);
 console.log('RESULT: ' + input + (prime ? ' is' : ' is not') + ' prime');
 if (!prime) {
 throw input + "is not prime";
 }
}

AWS AppConfig calls your validation Lambda when calling the StartDeployment
and ValidateConfigurationActivity API operations. You must provide
appconfig.amazonaws.com permissions to invoke your Lambda. For more information, see
Granting Function Access to AWS Services. AWS AppConfig limits the validation Lambda run time
to 15 seconds, including start-up latency.

JSON Schema validators

If you create a configuration in an SSM document, then you must specify or create a JSON Schema
for that configuration. A JSON Schema defines the allowable properties for each application
configuration setting. The JSON Schema functions like a set of rules to ensure that new or updated
configuration settings conform to the best practices required by your application. Here is an
example.

About validators 28

https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html#permissions-resource-serviceinvoke

AWS AppConfig User Guide

 {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "id",
 "description": "BasicFeatureToggle-1",
 "type": "object",
 "additionalProperties": false,
 "patternProperties": {
 "[^\\s]+$": {
 "type": "boolean"
 }
 },
 "minProperties": 1
 }

When you create a configuration from an SSM document, the system automatically verifies that
the configuration conforms to the schema requirements. If it doesn't, AWS AppConfig returns a
validation error.

Important

Note the following important information about JSON Schema validators:

• Configuration data stored in SSM documents must validate against an associated JSON
Schema before you can add the configuration to the system. SSM parameters do not
require a validation method, but we recommend that you create a validation check for
new or updated SSM parameter configurations by using AWS Lambda.

• A configuration in an SSM document uses the ApplicationConfiguration document
type. The corresponding JSON Schema, uses the ApplicationConfigurationSchema
document type.

• AWS AppConfig supports JSON Schema version 4.X for inline schema. If your application
configuration requires a different version of JSON Schema, then you must create a
Lambda validator.

Creating a feature flag configuration profile in AWS AppConfig

You can use feature flags to enable or disable features within your applications or to configure
different characteristics of your application features using flag attributes. AWS AppConfig stores
feature flag configurations in the AWS AppConfig hosted configuration store in a feature flag

Creating a feature flag configuration profile 29

AWS AppConfig User Guide

format that contains data and metadata about your flags and the flag attributes. For more
information about the AWS AppConfig hosted configuration store, see About the AWS AppConfig
hosted configuration store section.

Topics

• Creating a feature flag configuration profile (console)

• Creating a feature flag and a feature flag configuration profile (command line)

• Type reference for AWS.AppConfig.FeatureFlags

• Create a feature flag configuration profile that uses variants

Before you begin

In the following procedure, in the optional Encryption section, you can choose an AWS Key
Management Service (AWS KMS) key. This customer managed key enables you to encrypt
new configuration data versions in the AWS AppConfig hosted configuration store. For more
information about this key, see AWS AppConfig supports customer manager keys in Security in
AWS AppConfig.

The following procedure also gives you the option to associate an extension with a feature flag
configuration profile. An extension augments your ability to inject logic or behavior at different
points during the AWS AppConfig workflow of creating or deploying a configuration. For more
information, see About AWS AppConfig extensions.

Lastly, in the Feature flag attributes section, when you enter the attribute details of a new feature
flag, you can specify constraints. Constraints ensure that any unexpected attribute values are not
deployed to your application. AWS AppConfig supports the following types of flag attributes and
their corresponding constraints.

Type Constraint Description

Regular Expression Regex pattern for the stringString

Enum List of acceptable values for
the string

Number Minimum Minimum numeric value for
the attribute

Creating a feature flag configuration profile 30

AWS AppConfig User Guide

Type Constraint Description

Maximum Maximum numeric value for
the attribute

Boolean None None

Regular Expression Regex pattern for the
elements of the array

String array

Enum List of acceptable values for
the elements of the array

Minimum Minimum numeric value for
the elements of the array

Number array

Maximum Maximum numeric value for
the elements of the array

Creating a feature flag configuration profile (console)

Use the following procedure to create an AWS AppConfig feature flag configuration profile by
using the AWS AppConfig console.

To create a configuration profile

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-
manager/appconfig/.

2. In the navigation pane, choose Applications, and then choose an application you created in
Creating a namespace for your application in AWS AppConfig.

3. Choose the Configuration profiles and feature flags tab, and then choose Create
configuration.

4. In the Configuration options section, choose Feature flag.

5. Scroll down. In the Configuration profile section, for Configuration profile name, enter a
name.

6. (Optional) Expand Description and enter a description.

7. (Optional) Expand Additional options and complete the following, as necessary.

Creating a feature flag configuration profile 31

https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/

AWS AppConfig User Guide

a. In the Encryption list, choose an AWS Key Management Service (AWS KMS) key from the
list.

b. In the Associate extensions section, choose an extension from the list.

c. In the Tags section, choose Add new tag, and then specify a key and optional value.

8. Choose Next.

9. In the Feature flag definition section, for Flag name, enter a name.

10. For Flag key enter a flag identifier to distinguish flags within the same configuration profile.
Flags within the same configuration profile can't have the same key. After the flag is created,
you can edit the flag name, but not the flag key.

11. (Optional) Expand Description and enter information about this flag.

12. Select This is a short-term flag and optionally choose a date for when the flag should be
disabled or deleted. Note that AWS AppConfig does not disable the flag.

13. In the Flag attributes section, choose Define attribute. Attributes enable you to provide
additional values within your flag.

14. For Key, specify a flag key and choose its type from the Type list. You can optionally validate
attribute values against specified constraints. The following image shows an example.

Choose Define attribute to add additional attributes.

Note

Note the following information.

• For attribute names, the word "enabled" is reserved. You can't create a feature flag
attribute called "enabled". There are no other reserved words.

• The attributes of a feature flag are only included in the GetLatestConfiguration
response if that flag is enabled.

Creating a feature flag configuration profile 32

AWS AppConfig User Guide

• Flag attribute keys for a given flag must be unique.

• Select Required value to specify whether an attribute value is required.

15. In the Feature flag value section, choose Enabled to enable the flag. Use this same toggle to
disable a flag when it reaches a specified deprecration date, if applicable.

16. Choose Next.

17. On the Review and save page, verify the details of the flag and then Save and continue to
deploy.

Proceed to Deploying feature flags and configuration data in AWS AppConfig.

Creating a feature flag and a feature flag configuration profile (command line)

The following procedure describes how to use the AWS Command Line Interface (on Linux or
Windows) or Tools for Windows PowerShell to create an AWS AppConfig feature flag configuration
profile. If you prefer, you can use AWS CloudShell to run the commands listed below. For more
information, see What is AWS CloudShell? in the AWS CloudShell User Guide.

To create a feature flags configuration step by step

1. Open the AWS CLI.

2. Create a feature flag configuration profile specifying its Type as
AWS.AppConfig.FeatureFlags. The configuration profile must use hosted for the location
URI.

Linux

aws appconfig create-configuration-profile \
 --application-id The_application_ID \
 --name A_name_for_the_configuration_profile \
 --location-uri hosted \
 --type AWS.AppConfig.FeatureFlags

Windows

aws appconfig create-configuration-profile ^
 --application-id The_application_ID ^
 --name A_name_for_the_configuration_profile ^

Creating a feature flag configuration profile 33

https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html

AWS AppConfig User Guide

 --location-uri hosted ^
 --type AWS.AppConfig.FeatureFlags

PowerShell

New-APPCConfigurationProfile `
 -Name A_name_for_the_configuration_profile `
 -ApplicationId The_application_ID `
 -LocationUri hosted `
 -Type AWS.AppConfig.FeatureFlags

3. Create your feature flag configuration data. Your data must be in a JSON format and conform
to the AWS.AppConfig.FeatureFlags JSON schema. For more information about the
schema, see Type reference for AWS.AppConfig.FeatureFlags.

4. Use the CreateHostedConfigurationVersion API to save your feature flag configuration
data to AWS AppConfig.

Linux

aws appconfig create-hosted-configuration-version \
 --application-id The_application_ID \
 --configuration-profile-id The_configuration_profile_id \
 --content-type "application/json" \
 --content file://path/to/feature_flag_configuration_data \
 file_name_for_system_to_store_configuration_data

Windows

aws appconfig create-hosted-configuration-version ^
 --application-id The_application_ID ^
 --configuration-profile-id The_configuration_profile_id ^
 --content-type "application/json" ^
 --content file://path/to/feature_flag_configuration_data ^
 file_name_for_system_to_store_configuration_data

PowerShell

New-APPCHostedConfigurationVersion `
 -ApplicationId The_application_ID `

Creating a feature flag configuration profile 34

AWS AppConfig User Guide

 -ConfigurationProfileId The_configuration_profile_id `
 -ContentType "application/json" `
 -Content file://path/to/feature_flag_configuration_data `
 file_name_for_system_to_store_configuration_data

Here's a Linux sample command.

aws appconfig create-hosted-configuration-version \
 --application-id 1a2b3cTestApp \
 --configuration-profile-id 4d5e6fTestConfigProfile \
 --content-type "application/json" \
 --content Base64Content

The content parameter uses the following base64 encoded data.

{
 "flags": {
 "flagkey": {
 "name": "WinterSpecialBanner"
 }
 },
 "values": {
 "flagkey": {
 "enabled": true
 }
 },
 "version": "1"
}

The system returns information like the following.

Linux

{
 "ApplicationId" : "1a2b3cTestApp",
 "ConfigurationProfileId" : "4d5e6fTestConfigProfile",
 "VersionNumber" : "1",
 "ContentType" : "application/json"
}

Creating a feature flag configuration profile 35

AWS AppConfig User Guide

Windows

{
 "ApplicationId" : "1a2b3cTestApp",
 "ConfigurationProfileId" : "4d5e6fTestConfigProfile",
 "VersionNumber" : "1",
 "ContentType" : "application/json"
}

PowerShell

ApplicationId : 1a2b3cTestApp
ConfigurationProfileId : 4d5e6fTestConfigProfile
VersionNumber : 1
ContentType : application/json

The service_returned_content_file contains your configuration data that includes
some AWS AppConfig generated metadata.

Note

When you create the hosted configuration version, AWS AppConfig verifies that
your data conforms to the AWS.AppConfig.FeatureFlags JSON schema. AWS
AppConfig additionally validates that each feature flag attribute in your data satisfies
the constraints you defined for those attributes.

Type reference for AWS.AppConfig.FeatureFlags

Use the AWS.AppConfig.FeatureFlags JSON schema as a reference to create your feature flag
configuration data.

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "definitions": {
 "flagSetDefinition": {
 "type": "object",
 "properties": {
 "version": {

Creating a feature flag configuration profile 36

AWS AppConfig User Guide

 "$ref": "#/definitions/flagSchemaVersions"
 },
 "flags": {
 "$ref": "#/definitions/flagDefinitions"
 },
 "values": {
 "$ref": "#/definitions/flagValues"
 }
 },
 "required": ["version", "flags"],
 "additionalProperties": false
 },
 "flagDefinitions": {
 "type": "object",
 "patternProperties": {
 "^[a-z][a-zA-Z\\d-]{0,63}$": {
 "$ref": "#/definitions/flagDefinition"
 }
 },
 "maxProperties": 100,
 "additionalProperties": false
 },
 "flagDefinition": {
 "type": "object",
 "properties": {
 "name": {
 "$ref": "#/definitions/customerDefinedName"
 },
 "description": {
 "$ref": "#/definitions/customerDefinedDescription"
 },
 "_createdAt": {
 "type": "string"
 },
 "_updatedAt": {
 "type": "string"
 },
 "_deprecation": {
 "type": "object",
 "properties": {
 "status": {
 "type": "string",
 "enum": ["planned"]
 }

Creating a feature flag configuration profile 37

AWS AppConfig User Guide

 },
 "additionalProperties": false
 },
 "attributes": {
 "$ref": "#/definitions/attributeDefinitions"
 }
 },
 "additionalProperties": false
 },
 "attributeDefinitions": {
 "type": "object",
 "patternProperties": {
 "^[a-z][a-zA-Z\\d-_]{0,63}$": {
 "$ref": "#/definitions/attributeDefinition"
 }
 },
 "maxProperties": 25,
 "additionalProperties": false
 },
 "attributeDefinition": {
 "type": "object",
 "properties": {
 "description": {
 "$ref": "#/definitions/customerDefinedDescription"
 },
 "constraints": {
 "oneOf": [
 { "$ref": "#/definitions/numberConstraints" },
 { "$ref": "#/definitions/stringConstraints" },
 { "$ref": "#/definitions/arrayConstraints" },
 { "$ref": "#/definitions/boolConstraints" }
]
 }
 },
 "additionalProperties": false
 },
 "flagValues": {
 "type": "object",
 "patternProperties": {
 "^[a-z][a-zA-Z\\d-_]{0,63}$": {
 "$ref": "#/definitions/flagValue"
 }
 },
 "maxProperties": 100,

Creating a feature flag configuration profile 38

AWS AppConfig User Guide

 "additionalProperties": false
 },
 "flagValue": {
 "type": "object",
 "properties": {
 "enabled": {
 "type": "boolean"
 },
 "_createdAt": {
 "type": "string"
 },
 "_updatedAt": {
 "type": "string"
 }
 },
 "patternProperties": {
 "^[a-z][a-zA-Z\\d-_]{0,63}$": {
 "$ref": "#/definitions/attributeValue",
 "maxProperties": 25
 }
 },
 "required": ["enabled"],
 "additionalProperties": false
 },
 "attributeValue": {
 "oneOf": [
 { "type": "string", "maxLength": 1024 },
 { "type": "number" },
 { "type": "boolean" },
 {
 "type": "array",
 "oneOf": [
 {
 "items": {
 "type": "string",
 "maxLength": 1024
 }
 },
 {
 "items": {
 "type": "number"
 }
 }
]

Creating a feature flag configuration profile 39

AWS AppConfig User Guide

 }
],
 "additionalProperties": false
 },
 "stringConstraints": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string",
 "enum": ["string"]
 },
 "required": {
 "type": "boolean"
 },
 "pattern": {
 "type": "string",
 "maxLength": 1024
 },
 "enum": {
 "type": "array",
 "maxLength": 100,
 "items": {
 "oneOf": [
 {
 "type": "string",
 "maxLength": 1024
 },
 {
 "type": "integer"
 }
]
 }
 }
 },
 "required": ["type"],
 "not": {
 "required": ["pattern", "enum"]
 },
 "additionalProperties": false
 },
 "numberConstraints": {
 "type": "object",
 "properties": {
 "type": {

Creating a feature flag configuration profile 40

AWS AppConfig User Guide

 "type": "string",
 "enum": ["number"]
 },
 "required": {
 "type": "boolean"
 },
 "minimum": {
 "type": "integer"
 },
 "maximum": {
 "type": "integer"
 }
 },
 "required": ["type"],
 "additionalProperties": false
 },
 "arrayConstraints": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string",
 "enum": ["array"]
 },
 "required": {
 "type": "boolean"
 },
 "elements": {
 "$ref": "#/definitions/elementConstraints"
 }
 },
 "required": ["type"],
 "additionalProperties": false
 },
 "boolConstraints": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string",
 "enum": ["boolean"]
 },
 "required": {
 "type": "boolean"
 }
 },

Creating a feature flag configuration profile 41

AWS AppConfig User Guide

 "required": ["type"],
 "additionalProperties": false
 },
 "elementConstraints": {
 "oneOf": [
 { "$ref": "#/definitions/numberConstraints" },
 { "$ref": "#/definitions/stringConstraints" }
]
 },
 "customerDefinedName": {
 "type": "string",
 "pattern": "^[^\\n]{1,64}$"
 },
 "customerDefinedDescription": {
 "type": "string",
 "maxLength": 1024
 },
 "flagSchemaVersions": {
 "type": "string",
 "enum": ["1"]
 }
 },
 "type": "object",
 "$ref": "#/definitions/flagSetDefinition",
 "additionalProperties": false
 }

Important

To retrieve feature flag configuration data, your application must call the
GetLatestConfiguration API. You can't retrieve feature flag configuration data
by calling GetConfiguration, which is deprecated. For more information, see
GetLatestConfiguration in the AWS AppConfig API Reference.

When your application calls GetLatestConfiguration and receives a newly deployed configuration,
the information that defines your feature flags and attributes is removed. The simplified JSON
contains a map of keys that match each of the flag keys you specified. The simplified JSON also
contains mapped values of true or false for the enabled attribute. If a flag sets enabled to
true, any attributes of the flag will be present as well. The following JSON schema describes the
format of the JSON output.

Creating a feature flag configuration profile 42

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_GetLatestConfiguration.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_GetLatestConfiguration.html

AWS AppConfig User Guide

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "patternProperties": {
 "^[a-z][a-zA-Z\\d-_]{0,63}$": {
 "$ref": "#/definitions/attributeValuesMap"
 }
 },
 "maxProperties": 100,
 "additionalProperties": false,
 "definitions": {
 "attributeValuesMap": {
 "type": "object",
 "properties": {
 "enabled": {
 "type": "boolean"
 }
 },
 "required": ["enabled"],
 "patternProperties": {
 "^[a-z][a-zA-Z\\d-_]{0,63}$": {
 "$ref": "#/definitions/attributeValue"
 }
 },
 "maxProperties": 25,
 "additionalProperties": false
 },
 "attributeValue": {
 "oneOf": [
 { "type": "string","maxLength": 1024 },
 { "type": "number" },
 { "type": "boolean" },
 {
 "type": "array",
 "oneOf": [
 {
 "items": {
 "oneOf": [
 {
 "type": "string",
 "maxLength": 1024
 }
]

Creating a feature flag configuration profile 43

AWS AppConfig User Guide

 }
 },
 {
 "items": {
 "oneOf": [
 {
 "type": "number"
 }
]
 }
 }
]
 }
],
 "additionalProperties": false
 }
 }
}

Create a feature flag configuration profile that uses variants

Feature flag variants enable you to list a set of possible flag values for a single feature flag. When
requesting a flag, your application can provide additional context that is evaluated against a set
of user-defined rules. Depending on the rules and context specified in the flag request, different
flag values (variant data) is returned to the application. Flag variants are useful for high-cardinality
segmentation. Flag variants are often used in application experimentation and rollouts based on
user IDs.

Creating a free form configuration profile in AWS AppConfig

A configuration profile includes, among other things, a URI that enables AWS AppConfig to locate
your configuration data in its stored location and a profile type. AWS AppConfig supports two
configuration profile types: feature flags and freeform configurations. Feature flag configuration
profiles store their data in the AWS AppConfig hosted configuration store and the URI is simply
hosted. For freeform configuration profiles, you can store your data in the AWS AppConfig hosted
configuration store or any of the following AWS services and Systems Manager capabilities:

Location Supported file types

AWS AppConfig hosted configuration store YAML, JSON, and text if added using the AWS
Management Console. Any file type if added

Creating a free form configuration profile 44

AWS AppConfig User Guide

Location Supported file types

using the AWS AppConfig CreateHostedConfig
urationVersion API action.

Amazon Simple Storage Service (Amazon S3) Any

AWS CodePipeline Pipeline (as defined by the service)

AWS Secrets Manager Secret (as defined by the service)

AWS Systems Manager Parameter Store Standard and secure string parameters (as
defined by Parameter Store)

AWS Systems Manager document store (SSM
documents)

YAML, JSON, text

A configuration profile can also include optional validators to ensure your configuration data
is syntactically and semantically correct. AWS AppConfig performs a check using the validators
when you start a deployment. If any errors are detected, the deployment stops before making any
changes to the targets of the configuration.

Note

If possible, we recommend hosting your configuration data in the AWS AppConfig hosted
configuration store as it offers the most features and enhancements.

For freeform configurations stored in the AWS AppConfig hosted configuration store or SSM
documents, you can create the freeform configuration by using the Systems Manager console at
the time you create a configuration profile. The process is described later in this topic.

For freeform configurations stored in Parameter Store, Secrets Manager, or Amazon S3, you must
create the parameter, secret, or object first and store it in the relevant configuration store. After
you store the configuration data, use the procedure in this topic to create the configuration profile.

Topics

• About configuration store quotas and limitations

• About the AWS AppConfig hosted configuration store

Creating a free form configuration profile 45

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateHostedConfigurationVersion.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateHostedConfigurationVersion.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/documents.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/documents.html

AWS AppConfig User Guide

• About configurations stored in Amazon S3

• Creating a freeform configuration and configuration profile

About configuration store quotas and limitations

Configuration stores supported by AWS AppConfig have the following quotas and limitations.

 AWS
AppConfig
hosted
configura
tion store

Amazon
S3

Systems
Manager
Parameter
Store

AWS
Secrets
Manager

Systems
Manager
Document
store

AWS
CodePipel
ine

Configura
tion size
limit

2 MB
default,
4 MB
maximum

2 MB

Enforced
by AWS
AppConfig,
not S3

4 KB (free
tier) / 8 KB
(advanced
parameter
s)

64 KB 64 KB 2 MB

Enforced
by AWS
AppConfig
, not
CodePipel
ine

Resource
storage
limit

1 GB Unlimited 10,000
parameter
s (free
tier) /
100,000
parameter
s
(advanced
 parameter
s)

500,000 500
documents

Limited
by the
number of
configura
tion
profiles
per
applicati
on (100
profiles
per
applicati
on)

Creating a free form configuration profile 46

AWS AppConfig User Guide

 AWS
AppConfig
hosted
configura
tion store

Amazon
S3

Systems
Manager
Parameter
Store

AWS
Secrets
Manager

Systems
Manager
Document
store

AWS
CodePipel
ine

Server-
side
encryption

Yes SSE-S3,
SSE-KMS

Yes Yes No Yes

AWS
CloudForm
ation
support

Yes Not for
creating or
updating
data

Yes Yes No Yes

Pricing Free See
Amazon S3
pricing

See AWS
Systems
Manager
pricing

See AWS
Secrets
Manager
pricing

Free See AWS
CodePipel
ine pricing

About the AWS AppConfig hosted configuration store

AWS AppConfig includes an internal or hosted configuration store. Configurations must be 2 MB or
smaller. The AWS AppConfig hosted configuration store provides the following benefits over other
configuration store options.

• You don't need to set up and configure other services such as Amazon Simple Storage Service
(Amazon S3) or Parameter Store.

• You don't need to configure AWS Identity and Access Management (IAM) permissions to use the
configuration store.

• You can store configurations in YAML, JSON, or as text documents.

• There is no cost to use the store.

• You can create a configuration and add it to the store when you create a configuration profile.

Creating a free form configuration profile 47

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://aws.amazon.com//s3/pricing/
https://aws.amazon.com//s3/pricing/
https://aws.amazon.com//systems-manager/pricing/
https://aws.amazon.com//systems-manager/pricing/
https://aws.amazon.com//systems-manager/pricing/
https://aws.amazon.com//systems-manager/pricing/
https://aws.amazon.com//secrets-manager/pricing/
https://aws.amazon.com//secrets-manager/pricing/
https://aws.amazon.com//secrets-manager/pricing/
https://aws.amazon.com//secrets-manager/pricing/
https://aws.amazon.com//codepipeline/pricing/
https://aws.amazon.com//codepipeline/pricing/
https://aws.amazon.com//codepipeline/pricing/

AWS AppConfig User Guide

About configurations stored in Amazon S3

You can store configurations in an Amazon Simple Storage Service (Amazon S3) bucket. When
you create the configuration profile, you specify the URI to a single S3 object in a bucket. You also
specify the Amazon Resource Name (ARN) of an AWS Identity and Access Management (IAM) role
that gives AWS AppConfig permission to get the object. Before you create a configuration profile
for an Amazon S3 object, be aware of the following restrictions.

Restriction Details

Size Configurations stored as S3 objects can be a
maximum of 1 MB in size.

Object encryption A configuration profile can target SSE-S3 and
SSE-KMS encrypted objects.

Storage classes AWS AppConfig supports the following S3
storage classes: STANDARD, INTELLIGE
NT_TIERING , REDUCED_REDUNDANCY

, STANDARD_IA , and ONEZONE_IA . The
following classes are not supported: All S3
Glacier classes (GLACIER and DEEP_ARCH
IVE).

Versioning AWS AppConfig requires that the S3 object
use versioning.

Configuring permissions for a configuration stored as an Amazon S3 object

When you create a configuration profile for a configuration stored as an S3 object, you must
specify an ARN for an IAM role that gives AWS AppConfig permission to get the object. The role
must include the following permissions.

Permissions to access the S3 object

• s3:GetObject

• s3:GetObjectVersion

Creating a free form configuration profile 48

AWS AppConfig User Guide

Permissions to list S3 buckets

s3:ListAllMyBuckets

Permissions to access the S3 bucket where the object is stored

• s3:GetBucketLocation

• s3:GetBucketVersioning

• s3:ListBucket

• s3:ListBucketVersions

Complete the following procedure to create a role that enables AWS AppConfig to get a
configuration stored in an S3 object.

Creating the IAM Policy for Accessing an S3 Object

Use the following procedure to create an IAM policy that enables AWS AppConfig to get a
configuration stored in an S3 object.

To create an IAM policy for accessing an S3 object

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies, and then choose Create policy.

3. On the Create policy page, choose the JSON tab.

4. Update the following sample policy with information about your S3 bucket and configuration
object. Then paste the policy into the text field on the JSON tab. Replace the placeholder
values with your own information.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET/my-configurations/my-
configuration.json"
 },

Creating a free form configuration profile 49

https://console.aws.amazon.com/iam/

AWS AppConfig User Guide

 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetBucketVersioning",
 "s3:ListBucketVersions",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET"
]
 },
 {
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "*"
 }
]
}

5. Choose Review policy.

6. On the Review policy page, type a name in the Name box, and then type a description.

7. Choose Create policy. The system returns you to the Roles page.

Creating the IAM Role for Accessing an S3 Object

Use the following procedure to create an IAM role that enables AWS AppConfig to get a
configuration stored in an S3 object.

To create an IAM role for accessing an Amazon S3 object

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, and then choose Create role.

3. On the Select type of trusted entity section, choose AWS service.

4. In the Choose a use case section, under Common use cases, choose EC2, and then choose
Next: Permissions.

5. On the Attach permissions policy page, in the search box, enter the name of the policy you
created in the previous procedure.

6. Choose the policy and then choose Next: Tags.

Creating a free form configuration profile 50

https://console.aws.amazon.com/iam/

AWS AppConfig User Guide

7. On the Add tags (optional) page, enter a key and an optional value, and then choose Next:
Review.

8. On the Review page, type a name in the Role name field, and then type a description.

9. Choose Create role. The system returns you to the Roles page.

10. On the Roles page, choose the role you just created to open the Summary page. Note the Role
Name and Role ARN. You will specify the role ARN when you create the configuration profile
later in this topic.

Creating a Trust Relationship

Use the following procedure to configure the role you just created to trust AWS AppConfig.

To add a trust relationship

1. In the Summary page for the role you just created, choose the Trust Relationships tab, and
then choose Edit Trust Relationship.

2. Delete "ec2.amazonaws.com" and add "appconfig.amazonaws.com", as shown in the
following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appconfig.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

3. Choose Update Trust Policy.

Creating a freeform configuration and configuration profile

This section describes how to create a freeform configuration and configuration profile. Before you
begin, note the following information.

Creating a free form configuration profile 51

AWS AppConfig User Guide

• The following procedure requires you to specify an IAM service role so that AWS AppConfig can
access your configuration data in the configuration store you choose. This role is not required if
you use the AWS AppConfig hosted configuration store. If you choose S3, Parameter Store, or the
Systems Manager document store, then you must either choose an existing IAM role or choose
the option to have the system automatically create the role for you. For more information, about
this role, see About the configuration profile IAM role.

• The following procedure also gives you the option to associate an extension with a feature flag
configuration profile. An extension augments your ability to inject logic or behavior at different
points during the AWS AppConfig workflow of creating or deploying a configuration. For more
information, see About AWS AppConfig extensions.

• If you want to create a configuration profile for configurations stored in S3, you must configure
permissions. For more information about permissions and other requirements for using S3 as a
configuration store, see About configurations stored in Amazon S3.

• If you want to use validators, review the details and requirements for using them. For more
information, see About validators.

Topics

• Creating an AWS AppConfig freeform configuration profile (console)

• Creating an AWS AppConfig freeform configuration profile (command line)

Creating an AWS AppConfig freeform configuration profile (console)

Use the following procedure to create an AWS AppConfig freeform configuration profile and
(optionally) a freeform-configuration by using the AWS Systems Manager console.

To create a freeform configuration profile

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-
manager/appconfig/.

2. In the navigation pane, choose Applications, and then choose an application you created in
Creating a namespace for your application in AWS AppConfig.

3. Choose the Configuration profiles and feature flags tab, and then choose Create
configuration.

4. In the Configuration options section, choose Freeform configuration.

5. For Configuration profile name, enter a name for the configuration profile.

Creating a free form configuration profile 52

https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/

AWS AppConfig User Guide

6. (Optional) Expand Description and enter a description.

7. (Optional) Expand Additional options and complete the following, as necessary.

a. In the Associate extensions section, choose an extension from the list.

b. In the Tags section, choose Add new tag, and then specify a key and optional value.

8. Choose Next.

9. On the Specify configuration data page, in the Configuration defition section, choose an
option.

10. Complete the fields for the option you selected, as described in the following table.

Option selected Details

AWS AppConfig hosted configuration Choose either Text, JSON, or YAML, and
enter your configuration in the field. Go to
Step 12 in this procedure.

Amazon S3 object Enter the object URI in the S3 object source
field and go to Step 11 in this procedure.

AWS CodePipeline Choose Next and go to Step 12 in this
procedure.

Secrets Manager secret Choose the secret from the list go to Step
11 in this procedure.

AWS Systems Manager parameter Choose the parameter from the list and go
to Step 11 in this procedure.

AWS Systems Manager document 1. Choose a document from the list or
choose Create new document.

2. If you choose Create new document, for
Document name, enter a name. Optionall
y, expand Version name and enter a
name for the document version.

3. For Application configuration schema,
either choose the JSON schema from
the list or choose Create schema. If you

Creating a free form configuration profile 53

AWS AppConfig User Guide

Option selected Details

choose Create schema, Systems Manager
opens the Create schema page. Enter the
schema details, and then choose Create
aplication configuration schema.

4. In the Content section, choose either
YAML or JSON and then enter the
configuration data in the field.

11. In the Service role section, choose New service role to have AWS AppConfig create the IAM
role that provides access to the configuration data. AWS AppConfig automatically populates
the Role name field based on the name you entered earlier. Or, choose Existing service role.
Choose the role by using the Role ARN list.

12. Optionally, on the Add validators page, choose either JSON Schema or AWS Lambda. If you
choose JSON Schema, enter the JSON Schema in the field. If you choose AWS Lambda, choose
the function Amazon Resource Name (ARN) and the version from the list.

Important

Configuration data stored in SSM documents must validate against an associated JSON
Schema before you can add the configuration to the system. SSM parameters do not
require a validation method, but we recommend that you create a validation check for
new or updated SSM parameter configurations by using AWS Lambda.

13. Choose Next.

14. On the Review and save page, choose Save and continue to deploy.

Important

If you created a configuration profile for AWS CodePipeline, then you must create a
pipeline in CodePipeline that specifies AWS AppConfig as the deploy provider. You don't
need to perform Deploying feature flags and configuration data in AWS AppConfig.
However, you must configure a client to receive application configuration updates as
described in Retrieving configurations by directly calling APIs. For information about
creating a pipeline that specifies AWS AppConfig as the deploy provider, see Tutorial:

Creating a free form configuration profile 54

https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-AppConfig.html

AWS AppConfig User Guide

Create a Pipeline that Uses AWS AppConfig as a Deployment Provider in the AWS
CodePipeline User Guide.

Proceed to Deploying feature flags and configuration data in AWS AppConfig.

Creating an AWS AppConfig freeform configuration profile (command line)

The following procedure describes how to use the AWS CLI (on Linux or Windows) or AWS Tools
for PowerShell to create an AWS AppConfig freeform configuration profile. If you prefer, you can
use AWS CloudShell to run the commands listed below. For more information, see What is AWS
CloudShell? in the AWS CloudShell User Guide.

Note

For freeform configurations hosted in the AWS AppConfig hosted configuration store, you
specify hosted for the location URI.

To create a configuration profile by using the AWS CLI

1. Open the AWS CLI.

2. Run the following command to create a freeform configuration profile.

Linux

aws appconfig create-configuration-profile \
 --application-id The_application_ID \
 --name A_name_for_the_configuration_profile \
 --description A_description_of_the_configuration_profile \
 --location-uri A_URI_to_locate_the_configuration or hosted \
 --retrieval-role-
arn The_ARN_of_the_IAM_role_with_permission_to_access_the_configuration_at_the_specified_LocationUri
 \
 --tags User_defined_key_value_pair_metadata_of_the_configuration_profile \
 --validators "Content=JSON_Schema_content_or_the_ARN_of_an_AWS
 Lambda_function,Type=JSON_SCHEMA or LAMBDA"

Creating a free form configuration profile 55

https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-AppConfig.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html

AWS AppConfig User Guide

Windows

aws appconfig create-configuration-profile ^
 --application-id The_application_ID ^
 --name A_name_for_the_configuration_profile ^
 --description A_description_of_the_configuration_profile ^
 --location-uri A_URI_to_locate_the_configuration or hosted ^
 --retrieval-role-
arn The_ARN_of_the_IAM_role_with_permission_to_access_the_configuration_at_the_specified_LocationUri
 ^
 --tags User_defined_key_value_pair_metadata_of_the_configuration_profile ^
 --validators "Content=JSON_Schema_content_or_the_ARN_of_an_AWS
 Lambda_function,Type=JSON_SCHEMA or LAMBDA"

PowerShell

New-APPCConfigurationProfile `
 -Name A_name_for_the_configuration_profile `
 -ApplicationId The_application_ID `
 -Description Description_of_the_configuration_profile `
 -LocationUri A_URI_to_locate_the_configuration or hosted `
 -
RetrievalRoleArn The_ARN_of_the_IAM_role_with_permission_to_access_the_configuration_at_the_specified_LocationUri
 `
 -
Tag Hashtable_type_user_defined_key_value_pair_metadata_of_the_configuration_profile
 `
 -Validators "Content=JSON_Schema_content_or_the_ARN_of_an_AWS
 Lambda_function,Type=JSON_SCHEMA or LAMBDA"

Important

Note the following important information.

• If you created a configuration profile for AWS CodePipeline, then you must create a
pipeline in CodePipeline that specifies AWS AppConfig as the deploy provider. You don't
need to perform Deploying feature flags and configuration data in AWS AppConfig.
However, you must configure a client to receive application configuration updates as
described in Retrieving configurations by directly calling APIs. For information about

Creating a free form configuration profile 56

AWS AppConfig User Guide

creating a pipeline that specifies AWS AppConfig as the deploy provider, see Tutorial:
Create a Pipeline that Uses AWS AppConfig as a Deployment Provider in the AWS
CodePipeline User Guide.

• If you created a configuration in the AWS AppConfig hosted configuration store, you can
create new versions of the configuration by using the CreateHostedConfigurationVersion
API operations. To view AWS CLI details and sample commands for this API operation,
see create-hosted-configuration-version in the AWS CLI Command Reference.

Proceed to Deploying feature flags and configuration data in AWS AppConfig.

Other sources of configuration data

This topic includes information about other AWS services that integrate with AWS AppConfig.

AWS AppConfig integration with AWS Secrets Manager

Secrets Manager helps you to securely encrypt, store, and retrieve credentials for your databases
and other services. Instead of hardcoding credentials in your apps, you can make calls to Secrets
Manager to retrieve your credentials whenever needed. Secrets Manager helps you protect access
to your IT resources and data by enabling you to rotate and manage access to your secrets.

When you create a freeform configuration profile, you can choose Secrets Manager as the source
of your configuration data. You must onboard with Secrets Manager and create a secret before
you create the configuration profile. For more information about Secrets Manager, see What is
AWS Secrets Manager? in the AWS Secrets Manager User Guide. For information about creating
a configuration profile that uses Secrets Manager, see Creating feature flags and free form
configuration data in AWS AppConfig.

Other sources of configuration data 57

https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-AppConfig.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-AppConfig.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateHostedConfigurationVersion.html
https://docs.aws.amazon.com/cli/latest/reference/appconfig/create-hosted-configuration-version.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

AWS AppConfig User Guide

Deploying feature flags and configuration data in AWS
AppConfig

After you create required artifacts for working with feature flags and freeform configuration data,
you can create a new deployment. When you create a new deployment, you specify the following
information:

• An application ID

• A configuration profile ID

• A configuration version

• An environment ID where you want to deploy the configuration data

• A deployment strategy ID that defines how fast you want the changes to take effect

• An AWS Key Management Service (AWS KMS) key ID to encrypt the data using a customer
managed key.

When you call the StartDeployment API action, AWS AppConfig performs the following tasks:

1. Retrieves the configuration data from the underlying data store by using the location URI in the
configuration profile.

2. Verifies the configuration data is syntactically and semantically correct by using the validators
you specified when you created your configuration profile.

3. Caches a copy of the data so it is ready to be retrieved by your application. This cached copy is
called the deployed data.

AWS AppConfig integrates with Amazon CloudWatch to monitor deployments. If a deployment
initiates an alarm in CloudWatch, AWS AppConfig automatically rolls back the deployment to
minimize impact on your application users.

Topics

• Working with deployment strategies

• Deploying a configuration

• AWS AppConfig deployment integration with CodePipeline

58

https://docs.aws.amazon.com/appconfig/latest/userguide/creating-feature-flags-and-configuration-data.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_StartDeployment.html

AWS AppConfig User Guide

Working with deployment strategies

A deployment strategy enables you to slowly release changes to production environments over
minutes or hours. An AWS AppConfig deployment strategy defines the following important aspects
of a configuration deployment.

Setting Description

Deployment type Deployment type defines how the configura
tion deploys or rolls out. AWS AppConfig
supports Linear and Exponential deployment
types.

• Linear: For this type, AWS AppConfig
processes the deployment by increments of
the growth factor evenly distributed over
the deployment. Here's an example timeline
for a 10 hour deployment that uses 20%
linear growth:

Elapsed time Deployment
progress

0 hour 0%

2 hour 20%

4 hour 40%

6 hour 60%

8 hour 80%

10 hour 100%

• Exponential: For this type, AWS AppConfig
 processes the deployment exponentially
using the following formula: G*(2^N).
In this formula, G is the step percentage

Working with deployment strategies 59

AWS AppConfig User Guide

Setting Description

specified by the user and N is the number
of steps until the configuration is deployed
to all targets. For example, if you specify a
growth factor of 2, then the system rolls out
the configuration as follows:

2*(2^0)
2*(2^1)
2*(2^2)

Expressed numerically, the deployment rolls
out as follows: 2% of the targets, 4% of the
targets, 8% of the targets, and continues
until the configuration has been deployed to
all targets.

Step percentage (growth factor) This setting specifies the percentage of callers
to target during each step of the deployment.

Note

In the SDK and the AWS AppConfig
API Reference, step percentage is
called growth factor.

Deployment time This setting specifies an amount of time
during which AWS AppConfig deploys to
hosts. This is not a timeout value. It is a
window of time during which the deployment
is processed in intervals.

Working with deployment strategies 60

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateDeploymentStrategy.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateDeploymentStrategy.html

AWS AppConfig User Guide

Setting Description

Bake time This setting specifies the amount of time AWS
AppConfig monitors for Amazon CloudWatc
h alarms after the configuration has been
deployed to 100% of its targets, before
considering the deployment to be complete.
If an alarm is triggered during this time,
AWS AppConfig rolls back the deploymen
t. You must configure permissions for AWS
AppConfig to roll back based on CloudWatch
alarms. For more information, see Configure
permissions for automatic rollback.

You can choose a predefined strategy included with AWS AppConfig or create your own.

Topics

• Predefined deployment strategies

• Create a deployment strategy

Predefined deployment strategies

AWS AppConfig includes predefined deployment strategies to help you quickly deploy a
configuration. Instead of creating your own strategies, you can choose one of the following when
you deploy a configuration.

Deployment strategy Description

AppConfig.Linear20PercentEvery6Minutes AWS recommended:

This strategy deploys the configuration to
20% of all targets every six minutes for a 30
minute deployment. The system monitors
for Amazon CloudWatch alarms for 30
minutes. If no alarms are received in this time,
the deployment is complete. If an alarm is

Predefined deployment strategies 61

AWS AppConfig User Guide

Deployment strategy Description

triggered during this time, AWS AppConfig
rolls back the deployment.

We recommend using this strategy for
production deployments because it aligns with
AWS best practices and includes additiona
l emphasis on deployment safety due to its
long duration and bake time.

AppConfig.Canary10Percent20Minutes AWS recommended:

This strategy processes the deployment
exponentially using a 10% growth factor
over 20 minutes. The system monitors
for CloudWatch alarms for 10 minutes.
If no alarms are received in this time, the
deployment is complete. If an alarm is
triggered during this time, AWS AppConfig
rolls back the deployment.

We recommend using this strategy for
production deployments because it aligns
with AWS best practices for configuration
deployments.

AppConfig.AllAtOnce Quick:

This strategy deploys the configuration to all
targets immediately. The system monitors
for CloudWatch alarms for 10 minutes.
If no alarms are received in this time, the
deployment is complete. If an alarm is
triggered during this time, AWS AppConfig
 rolls back the deployment.

Predefined deployment strategies 62

AWS AppConfig User Guide

Deployment strategy Description

AppConfig.Linear50PercentEvery30Seconds Testing/demonstration:

This strategy deploys the configuration to
half of all targets every 30 seconds for a one-
minute deployment. The system monitors
for Amazon CloudWatch alarms for 1 minute.
If no alarms are received in this time, the
deployment is complete. If an alarm is
triggered during this time, AWS AppConfig
rolls back the deployment.

We recommend using this strategy only for
testing or demonstration purposes because it
has a short duration and bake time.

Create a deployment strategy

If you don't want to use one of the predefined deployment strategies, you can create your own.
You can create a maximum of 20 deployment strategies. When you deploy a configuration, you can
choose the deployment strategy that works best for the application and the environment.

Creating an AWS AppConfig deployment strategy (console)

Use the following procedure to create an AWS AppConfig deployment strategy by using the AWS
Systems Manager console.

To create a deployment strategy

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-
manager/appconfig/.

2. In the navigation pane, choose Deployment strategies, and then choose Create deployment
strategy.

3. For Name, enter a name for the deployment strategy.

4. For Description, enter information about the deployment strategy.

5. For Deployment type, choose a type.

Create a deployment strategy 63

https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/

AWS AppConfig User Guide

6. For Step percentage, choose the percentage of callers to target during each step of the
deployment.

7. For Deployment time, enter the total duration for the deployment in minutes or hours.

8. For Bake time, enter the total time, in minutes or hours, to monitor for Amazon CloudWatch
alarms before proceeding to the next step of a deployment or before considering the
deployment to be complete.

9. In the Tags section, enter a key and an optional value. You can specify a maximum of 50 tags
for a resource.

10. Choose Create deployment strategy.

Important

If you created a configuration profile for AWS CodePipeline, then you must create a
pipeline in CodePipeline that specifies AWS AppConfig as the deploy provider. You don't
need to perform Deploying a configuration. However, you must configure a client to receive
application configuration updates as described in Retrieving configurations by directly
calling APIs. For information about creating a pipeline that specifies AWS AppConfig as the
deploy provider, see Tutorial: Create a Pipeline that Uses AWS AppConfig as a Deployment
Provider in the AWS CodePipeline User Guide.

Proceed to Deploying a configuration.

Creating an AWS AppConfig deployment strategy (command line)

The following procedure describes how to use the AWS CLI (on Linux or Windows) or AWS Tools for
PowerShell to create an AWS AppConfig deployment strategy.

To create a deployment strategy step by step

1. Open the AWS CLI.

2. Run the following command to create a deployment strategy.

Linux

aws appconfig create-deployment-strategy \
 --name A_name_for_the_deployment_strategy \
 --description A_description_of_the_deployment_strategy \

Create a deployment strategy 64

https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-AppConfig.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-AppConfig.html

AWS AppConfig User Guide

 --deployment-duration-in-minutes Total_amount_of_time_for_a_deployment_to_last
 \
 --final-bake-time-in-minutes Amount_of_time_AWS
 AppConfig_monitors_for_alarms_before_considering_the_deployment_to_be_complete
 \
 --growth-
factor The_percentage_of_targets_to_receive_a_deployed_configuration_during_each_interval
 \
 --growth-
type The_linear_or_exponential_algorithm_used_to_define_how_percentage_grows_over_time
 \
 --replicate-
to To_save_the_deployment_strategy_to_a_Systems_Manager_(SSM)_document \
 --tags User_defined_key_value_pair_metadata_of_the_deployment_strategy

Windows

aws appconfig create-deployment-strategy ^
 --name A_name_for_the_deployment_strategy ^
 --description A_description_of_the_deployment_strategy ^
 --deployment-duration-in-minutes Total_amount_of_time_for_a_deployment_to_last
 ^
 --final-bake-time-in-minutes Amount_of_time_AWS
 AppConfig_monitors_for_alarms_before_considering_the_deployment_to_be_complete
 ^
 --growth-
factor The_percentage_of_targets_to_receive_a_deployed_configuration_during_each_interval
 ^
 --growth-
type The_linear_or_exponential_algorithm_used_to_define_how_percentage_grows_over_time
 ^
 --name A_name_for_the_deployment_strategy ^
 --replicate-
to To_save_the_deployment_strategy_to_a_Systems_Manager_(SSM)_document ^
 --tags User_defined_key_value_pair_metadata_of_the_deployment_strategy

PowerShell

New-APPCDeploymentStrategy `
 --Name A_name_for_the_deployment_strategy `
 --Description A_description_of_the_deployment_strategy `
 --DeploymentDurationInMinutes Total_amount_of_time_for_a_deployment_to_last `

Create a deployment strategy 65

AWS AppConfig User Guide

 --FinalBakeTimeInMinutes Amount_of_time_AWS
 AppConfig_monitors_for_alarms_before_considering_the_deployment_to_be_complete
 `
 --
GrowthFactor The_percentage_of_targets_to_receive_a_deployed_configuration_during_each_interval
 `
 --
GrowthType The_linear_or_exponential_algorithm_used_to_define_how_percentage_grows_over_time
 `
 --
ReplicateTo To_save_the_deployment_strategy_to_a_Systems_Manager_(SSM)_document
 `
 --
Tag Hashtable_type_User_defined_key_value_pair_metadata_of_the_deployment_strategy

The system returns information like the following.

Linux

{
 "Id": "Id of the deployment strategy",
 "Name": "Name of the deployment strategy",
 "Description": "Description of the deployment strategy",
 "DeploymentDurationInMinutes": "Total amount of time the deployment lasted",
 "GrowthType": "The linear or exponential algorithm used to define how
 percentage grew over time",
 "GrowthFactor": "The percentage of targets that received a deployed
 configuration during each interval",
 "FinalBakeTimeInMinutes": "The amount of time AWS AppConfig monitored for
 alarms before considering the deployment to be complete",
 "ReplicateTo": "The Systems Manager (SSM) document where the deployment
 strategy is saved"
}

Windows

{
 "Id": "Id of the deployment strategy",
 "Name": "Name of the deployment strategy",
 "Description": "Description of the deployment strategy",
 "DeploymentDurationInMinutes": "Total amount of time the deployment lasted",

Create a deployment strategy 66

AWS AppConfig User Guide

 "GrowthType": "The linear or exponential algorithm used to define how
 percentage grew over time",
 "GrowthFactor": "The percentage of targets that received a deployed
 configuration during each interval",
 "FinalBakeTimeInMinutes": "The amount of time AWS AppConfig monitored for
 alarms before considering the deployment to be complete",
 "ReplicateTo": "The Systems Manager (SSM) document where the deployment
 strategy is saved"
}

PowerShell

ContentLength : Runtime of the command
DeploymentDurationInMinutes : Total amount of time the deployment lasted
Description : Description of the deployment strategy
FinalBakeTimeInMinutes : The amount of time AWS AppConfig monitored for
 alarms before considering the deployment to be complete
GrowthFactor : The percentage of targets that received a deployed
 configuration during each interval
GrowthType : The linear or exponential algorithm used to define
 how percentage grew over time
HttpStatusCode : HTTP Status of the runtime
Id : The deployment strategy ID
Name : Name of the deployment strategy
ReplicateTo : The Systems Manager (SSM) document where the
 deployment strategy is saved
ResponseMetadata : Runtime Metadata

Deploying a configuration

After you create required artifacts for working with feature flags and freeform configuration data,
you can create a new deployment by using the AWS Management Console, the AWS CLI, or the
SDK. Starting a deployment in AWS AppConfig calls the StartDeployment API operation. This call
includes the IDs of the AWS AppConfig application, the environment, the configuration profile,
and (optionally) the configuration data version to deploy. The call also includes the ID of the
deployment strategy to use, which determines how the configuration data is deployed.

If you deploy secrets stored in AWS Secrets Manager, Amazon Simple Storage Service (Amazon
S3) objects encrypted with a customer managed key, or secure string parameters stored in AWS
Systems Manager Parameter Store encrypted with a customer managed key, you must specify

Deploying a configuration 67

https://docs.aws.amazon.com/appconfig/latest/userguide/creating-feature-flags-and-configuration-data.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_StartDeployment.html

AWS AppConfig User Guide

a value for the KmsKeyIdentifier parameter. If your configuration is not encrypted or is
encrypted with an AWS managed key, specifying a value for the KmsKeyIdentifier parameter is
not required.

Note

The value you specify for KmsKeyIdentifier must be a customer managed key. This
doesn't have to be the same key you used to encrypt your configuration.
When you start a deployment with a KmsKeyIdentifier, the permission policy
attached to your AWS Identity and Access Management (IAM) principal must allow the
kms:GenerateDataKey operation.

AWS AppConfig monitors the distribution to all hosts and reports status. If a distribution fails, then
AWS AppConfig rolls back the configuration.

Note

You can only deploy one configuration at a time to an environment. However, you can
deploy one configuration each to different environments at the same time.

Deploy a configuration (console)

Use the following procedure to deploy an AWS AppConfig configuration by using the AWS Systems
Manager console.

To deploy a configuration by using the console

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-
manager/appconfig/.

2. In the navigation pane, choose Applications, and then choose an application you created in
Creating a namespace for your application in AWS AppConfig.

3. On the Environments tab, fill the radio button for an environment, and then choose View
details.

4. Choose Start deployment.

5. For Configuration, choose a configuration from the list.

Deploy a configuration (console) 68

https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/

AWS AppConfig User Guide

6. Depending on the source of your configuration, use the version list to choose the version you
want to deploy.

7. For Deployment strategy, choose a strategy from the list.

8. (Optional) For Deployment description, enter a description.

9. For Additional encryption options, choose a AWS Key Management Service key from the list.

10. (Optional) In the Tags section, choose Add new tag and enter a key and an optional value.
You can specify a maximum of 50 tags for a resource.

11. Choose Start deployment.

Deploy a configuration (commandline)

The following procedure describes how to use the AWS CLI (on Linux or Windows) or AWS Tools for
PowerShell to deploy an AWS AppConfig configuration.

To deploy a configuration step by step

1. Open the AWS CLI.

2. Run the following command to deploy a configuration.

Linux

aws appconfig start-deployment \
 --application-id The_application_ID \
 --environment-id The_environment_ID \
 --deployment-strategy-id The_deployment_strategy_ID \
 --configuration-profile-id The_configuration_profile_ID \
 --configuration-version The_configuration_version_to_deploy \
 --description A_description_of_the_deployment \
 --tags User_defined_key_value_pair_metadata_of_the_deployment

Windows

aws appconfig start-deployment ^
 --application-id The_application_ID ^
 --environment-id The_environment_ID ^
 --deployment-strategy-id The_deployment_strategy_ID ^
 --configuration-profile-id The_configuration_profile_ID ^
 --configuration-version The_configuration_version_to_deploy ^
 --description A_description_of_the_deployment ^

Deploy a configuration (commandline) 69

AWS AppConfig User Guide

 --tags User_defined_key_value_pair_metadata_of_the_deployment

PowerShell

Start-APPCDeployment `
 -ApplicationId The_application_ID `
 -ConfigurationProfileId The_configuration_profile_ID `
 -ConfigurationVersion The_configuration_version_to_deploy `
 -DeploymentStrategyId The_deployment_strategy_ID `
 -Description A_description_of_the_deployment `
 -EnvironmentId The_environment_ID `
 -Tag Hashtable_type_user_defined_key_value_pair_metadata_of_the_deployment

The system returns information like the following.

Linux

{
 "ApplicationId": "The ID of the application that was deployed",
 "EnvironmentId" : "The ID of the environment",
 "DeploymentStrategyId": "The ID of the deployment strategy that was
 deployed",
 "ConfigurationProfileId": "The ID of the configuration profile that was
 deployed",
 "DeploymentNumber": The sequence number of the deployment,
 "ConfigurationName": "The name of the configuration",
 "ConfigurationLocationUri": "Information about the source location of the
 configuration",
 "ConfigurationVersion": "The configuration version that was deployed",
 "Description": "The description of the deployment",
 "DeploymentDurationInMinutes": Total amount of time the deployment lasted,
 "GrowthType": "The linear or exponential algorithm used to define how
 percentage grew over time",
 "GrowthFactor": The percentage of targets to receive a deployed configuration
 during each interval,
 "FinalBakeTimeInMinutes": Time AWS AppConfig monitored for alarms before
 considering the deployment to be complete,
 "State": "The state of the deployment",

 "EventLog": [
 {
 "Description": "A description of the deployment event",

Deploy a configuration (commandline) 70

AWS AppConfig User Guide

 "EventType": "The type of deployment event",
 "OccurredAt": The date and time the event occurred,
 "TriggeredBy": "The entity that triggered the deployment event"
 }
],

 "PercentageComplete": The percentage of targets for which the deployment is
 available,
 "StartedAt": The time the deployment started,
 "CompletedAt": The time the deployment completed
}

Windows

{
 "ApplicationId": "The ID of the application that was deployed",
 "EnvironmentId" : "The ID of the environment",
 "DeploymentStrategyId": "The ID of the deployment strategy that was
 deployed",
 "ConfigurationProfileId": "The ID of the configuration profile that was
 deployed",
 "DeploymentNumber": The sequence number of the deployment,
 "ConfigurationName": "The name of the configuration",
 "ConfigurationLocationUri": "Information about the source location of the
 configuration",
 "ConfigurationVersion": "The configuration version that was deployed",
 "Description": "The description of the deployment",
 "DeploymentDurationInMinutes": Total amount of time the deployment lasted,
 "GrowthType": "The linear or exponential algorithm used to define how
 percentage grew over time",
 "GrowthFactor": The percentage of targets to receive a deployed configuration
 during each interval,
 "FinalBakeTimeInMinutes": Time AWS AppConfig monitored for alarms before
 considering the deployment to be complete,
 "State": "The state of the deployment",

 "EventLog": [
 {
 "Description": "A description of the deployment event",
 "EventType": "The type of deployment event",
 "OccurredAt": The date and time the event occurred,
 "TriggeredBy": "The entity that triggered the deployment event"
 }

Deploy a configuration (commandline) 71

AWS AppConfig User Guide

],

 "PercentageComplete": The percentage of targets for which the deployment is
 available,
 "StartedAt": The time the deployment started,
 "CompletedAt": The time the deployment completed
}

PowerShell

ApplicationId : The ID of the application that was deployed
CompletedAt : The time the deployment completed
ConfigurationLocationUri : Information about the source location of the
 configuration
ConfigurationName : The name of the configuration
ConfigurationProfileId : The ID of the configuration profile that was
 deployed
ConfigurationVersion : The configuration version that was deployed
ContentLength : Runtime of the deployment
DeploymentDurationInMinutes : Total amount of time the deployment lasted
DeploymentNumber : The sequence number of the deployment
DeploymentStrategyId : The ID of the deployment strategy that was
 deployed
Description : The description of the deployment
EnvironmentId : The ID of the environment that was deployed
EventLog : {Description : A description of the deployment
 event, EventType : The type of deployment event, OccurredAt : The date and time
 the event occurred,
 TriggeredBy : The entity that triggered the deployment event}
FinalBakeTimeInMinutes : Time AWS AppConfig monitored for alarms before
 considering the deployment to be complete
GrowthFactor : The percentage of targets to receive a deployed
 configuration during each interval
GrowthType : The linear or exponential algorithm used to define
 how percentage grew over time
HttpStatusCode : HTTP Status of the runtime
PercentageComplete : The percentage of targets for which the deployment
 is available
ResponseMetadata : Runtime Metadata
StartedAt : The time the deployment started
State : The state of the deployment

Deploy a configuration (commandline) 72

AWS AppConfig User Guide

AWS AppConfig deployment integration with CodePipeline

AWS AppConfig is an integrated deploy action for AWS CodePipeline (CodePipeline). CodePipeline
is a fully managed continuous delivery service that helps you automate your release pipelines for
fast and reliable application and infrastructure updates. CodePipeline automates the build, test,
and deploy phases of your release process every time there is a code change, based on the release
model you define. For more information, see What is AWS CodePipeline?

The integration of AWS AppConfig with CodePipeline offers the following benefits:

• Customers who use CodePipeline to manage orchestration now have a lightweight means of
deploying configuration changes to their applications without having to deploy their entire code
base.

• Customers who want to use AWS AppConfig to manage configuration deployments but are
limited because AWS AppConfig does not support their current code or configuration store, now
have additional options. CodePipeline supports AWS CodeCommit, GitHub, and BitBucket (to
name a few).

Note

AWS AppConfig integration with CodePipeline is only supported in AWS Regions where
CodePipeline is available.

How integration works

You start by setting up and configuring CodePipeline. This includes adding your configuration
to a CodePipeline-supported code store. Next, you set up your AWS AppConfig environment by
performing the following tasks:

• Create a namespace and a configuration profile

• Choose a predefined deployment strategy or create your own

After you complete these tasks, you create a pipeline in CodePipeline that specifies AWS AppConfig
as the deploy provider. You can then make a change to your configuration and upload it to your
CodePipeline code store. Uploading the new configuration automatically starts a new deployment
in CodePipeline. After the deployment completes, you can verify your changes. For information

Deployment integration with CodePipeline 73

https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/appconfig/latest/userguide/creating-feature-flags-and-configuration-data.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-deployment-strategy.html

AWS AppConfig User Guide

about creating a pipeline that specifies AWS AppConfig as the deploy provider, see Tutorial: Create
a Pipeline That Uses AWS AppConfig as a Deployment Provider in the AWS CodePipeline User Guide.

How integration works 74

https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-AppConfig.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-AppConfig.html

AWS AppConfig User Guide

Retrieving feature flags and configuration data in AWS
AppConfig

Your application retrieves feature flags and free form configuration data by establishing a
configuration session using the AWS AppConfig Data service. If you use one of the simplified
retrieval methods described in this section, either the AWS AppConfig Agent Lambda extension
or AWS AppConfig Agent manages a series of API calls and session tokens on your behalf. You
configure AWS AppConfig Agent as a local host and have the agent poll AWS AppConfig for
configuration updates. The agent calls the StartConfigurationSession and GetLatestConfiguration
API actions and caches your configuration data locally. To retrieve the data, your application makes
an HTTP call to the localhost server. AWS AppConfig Agent supports several use cases, as described
in Simplified retrieval methods.

If you prefer, you can manually call these API actions to retrieve a configuration. The API process
works as follows:

Your application establishes a configuration session using the StartConfigurationSession API
action. Your session's client then makes periodic calls to GetLatestConfiguration to check for
and retrieve the latest data available.

When calling StartConfigurationSession, your code sends identifiers (ID or name) of an AWS
AppConfig application, environment, and configuration profile that the session tracks.

In response, AWS AppConfig provides an InitialConfigurationToken to be given to the
session's client and used the first time it calls GetLatestConfiguration for that session.

When calling GetLatestConfiguration, your client code sends the most recent
ConfigurationToken value it has and receives in response:

• NextPollConfigurationToken: the ConfigurationToken value to use on the next call to
GetLatestConfiguration.

• The configuration: the latest data intended for the session. This may be empty if the client
already has the latest version of the configuration.

This section includes the following information.

Contents

75

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_StartConfigurationSession.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_GetLatestConfiguration.html

AWS AppConfig User Guide

• About the AWS AppConfig data plane service

• Simplified retrieval methods

• Retrieving configurations by directly calling APIs

About the AWS AppConfig data plane service

On Nov 18, 2021, AWS AppConfig released a new data plane service. This service replaces
the previous process of retrieving configuration data by using the GetConfiguration API
action. The data plane service uses two new API actions, StartConfigurationSession and
GetLatestConfiguration. The data plane service also uses new endpoints.

If you started using AWS AppConfig before January 28, 2022, the service might be calling
the GetConfiguration API action directly or it might be using a client provided by AWS,
such as the AWS AppConfig Agent Lambda extension, to call this API action. If you call the
GetConfiguration API action directly, take steps to use the StartConfigurationSession
and GetLatestConfiguration API actions. If you are using the AWS AppConfig Agent Lambda
extension, see the section titled How this change impacts the AWS AppConfig Agent Lambda
extension later in this topic.

The new data plane API actions offer the following benefits over the GetConfiguration API
action, which is now deprecated.

1. You don't need to manage a ClientID parameter. With the data plane service, ClientID is
managed internally by the session token created by StartConfigurationSession.

2. You no longer need to include ClientConfigurationVersion to indicate the cached version
of your configuration data. With the data plane service, ClientConfigurationVersion is
managed internally by the session token created by StartConfigurationSession.

3. The new dedicated endpoint for data plane API calls improves code structure by separating
control plane and data plane calls.

4. The new data plane service improves future extensibility for data plane operations. By utilizing
a configuration session that manages configuration data retrieval, the AWS AppConfig team can
create more powerful enhancements in the future.

Migrating from GetConfiguration to GetLatestConfiguration

About the AWS AppConfig data plane service 76

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_StartConfigurationSession.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_GetLatestConfiguration.html
https://docs.aws.amazon.com/general/latest/gr/appconfig.html#appconfigdata_data_plane

AWS AppConfig User Guide

To start using the new data plane service, you need to update your code that calls
the GetConfiguration API action. Start a configuration session by using the
StartConfigurationSession API action, and then call the GetLatestConfiguration API
action to retrieve configuration data. To improve performance, we recommend you cache your
configuration data locally. For more information, see Retrieving configurations by directly calling
APIs.

How this change impacts the AWS AppConfig Agent Lambda extension

This change has no direct impact on how the AWS AppConfig Agent Lambda extension works.
Older versions of the AWS AppConfig Agent Lambda extension called the GetConfiguration
API action on your behalf. Newer versions call the data plane API actions. If you are using the
AWS AppConfig Lambda extension, we recommend you update your extension to the most recent
Amazon Resource Name (ARN) and update permissions for the new API calls. For more information,
see Retrieving configuration data using the AWS AppConfig Agent Lambda extension.

Simplified retrieval methods

AWS AppConfig offers several simplified methods for retrieving configuration data. If you use AWS
AppConfig feature flags or free form configuration data in an AWS Lambda function, you can use
the AWS AppConfig Agent Lambda extension to retrieve configurations. If you have applications
running on Amazon EC2 instances, you can use AWS AppConfig Agent to retrieve configurations.
AWS AppConfig Agent also supports applications running on Amazon Elastic Kubernetes Service
(Amazon EKS) or Amazon Elastic Container Service (Amazon ECS) container images.

After you complete the initial set up, these methods of retrieving configuration data are simpler
than directly calling AWS AppConfig APIs. They automatically implement best practices and may
lower your cost of using AWS AppConfig as a result of fewer API calls to retrieve configurations.

Topics

• Retrieving configuration data using the AWS AppConfig Agent Lambda extension

• Retrieving configuration data from Amazon EC2 instances

• Retrieving configuration data from Amazon ECS and Amazon EKS

• Additional retrieval features

• AWS AppConfig Agent local development

Simplified retrieval methods 77

AWS AppConfig User Guide

Retrieving configuration data using the AWS AppConfig Agent Lambda
extension

An AWS Lambda extension is a companion process that augments the capabilities of a Lambda
function. An extension can start before a function is invoked, run in parallel with a function, and
continue to run after a function invocation is processed. In essence, a Lambda extension is like
a client that runs in parallel to a Lambda invocation. This parallel client can interface with your
function at any point during its lifecycle.

If you use AWS AppConfig feature flags or other dynamic configuration data in a Lambda function,
then we recommend that you add the AWS AppConfig Agent Lambda extension as a layer to your
Lambda function. This makes calling feature flags simpler, and the extension itself includes best
practices that simplify using AWS AppConfig while reducing costs. Reduced costs result from fewer
API calls to the AWS AppConfig service and shorter Lambda function processing times. For more
information about Lambda extensions, see Lambda extensions in the AWS Lambda Developer Guide.

Note

AWS AppConfig pricing is based on the number of times a configuration is called and
received. Your costs increase if your Lambda performs multiple cold starts and retrieves
new configuration data frequently.

This topic includes information about the AWS AppConfig Agent Lambda extension and the
procedure for how to configure the extension to work with your Lambda function.

How it works

If you use AWS AppConfig to manage configurations for a Lambda function without Lambda
extensions, then you must configure your Lambda function to receive configuration updates by
integrating with the StartConfigurationSession and GetLatestConfiguration API actions.

Integrating the AWS AppConfig Agent Lambda extension with your Lambda function simplifies this
process. The extension takes care of calling the AWS AppConfig service, managing a local cache of
retrieved data, tracking the configuration tokens needed for the next service calls, and periodically
checking for configuration updates in the background. The following diagram shows how it works.

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 78

https://docs.aws.amazon.com/lambda/latest/dg/runtimes-extensions-api.html
https://aws.amazon.com/systems-manager/pricing/
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_StartConfigurationSession.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_GetLatestConfiguration.html

AWS AppConfig User Guide

1. You configure the AWS AppConfig Agent Lambda extension as a layer of your Lambda function.

2. To access its configuration data, your function calls the AWS AppConfig extension at an HTTP
endpoint running on localhost:2772.

3. The extension maintains a local cache of the configuration data. If the data isn't in the cache, the
extension calls AWS AppConfig to get the configuration data.

4. Upon receiving the configuration from the service, the extension stores it in the local cache and
passes it to the Lambda function.

5. AWS AppConfig Agent Lambda extension periodically checks for updates to your configuration
data in the background. Each time your Lambda function is invoked, the extension checks the
elapsed time since it retrieved a configuration. If the elapsed time is greater than the configured
poll interval, the extension calls AWS AppConfig to check for newly deployed data, updates the
local cache if there has been a change, and resets the elapsed time.

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 79

AWS AppConfig User Guide

Note

• Lambda instantiates separate instances corresponding to the concurrency level that your
function requires. Each instance is isolated and maintains its own local cache of your
configuration data. For more information about Lambda instances and concurrency, see
Managing concurrency for a Lambda function.

• The amount of time it takes for a configuration change to appear in a Lambda function,
after you deploy an updated configuration from AWS AppConfig, depends on the
deployment strategy you used for the deployment and the polling interval you
configured for the extension.

Before you begin

Before you enable the AWS AppConfig Agent Lambda extension, do the following:

• Organize the configurations in your Lambda function so that you can externalize them into AWS
AppConfig.

• Create AWS AppConfig artifacts and configuration data, including feature flags or freeform
configuration data. For more information, see Creating feature flags and free form configuration
data in AWS AppConfig.

• Add appconfig:StartConfigurationSession and
appconfig:GetLatestConfiguration to the AWS Identity and Access Management (IAM)
policy used by the Lambda function execution role. For more information, see AWS Lambda
execution role in the AWS Lambda Developer Guide. For more information about AWS AppConfig
permissions, see Actions, resources, and condition keys for AWS AppConfig in the Service
Authorization Reference.

Adding the AWS AppConfig Agent Lambda extension

To use the AWS AppConfig Agent Lambda extension, you need to add the extension to your
Lambda. This can be done by adding the AWS AppConfig Agent Lambda extension to your Lambda
function as a layer or by enabling the extension on a Lambda function as a container image.

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 80

https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsappconfig.html

AWS AppConfig User Guide

Note

The AWS AppConfig extension is runtime agnostic and supports all runtimes.

Adding the AWS AppConfig Agent Lambda extension by using a layer and an ARN

To use the AWS AppConfig Agent Lambda extension, you add the extension to your Lambda
function as a layer. For information about how to add a layer to your function, see Configuring
extensions in the AWS Lambda Developer Guide. The name of the extension in the AWS Lambda
console is AWS-AppConfig-Extension. Also note that when you add the extension as a layer to
your Lambda, you must specify an Amazon Resource Name (ARN). Choose an ARN from one of the
following lists that corresponds with the platform and AWS Region where you created the Lambda.

• x86-64 platform

• ARM64 platform

If you want to test the extension before you add it to your function, you can verify that it works by
using the following code example.

import urllib.request

def lambda_handler(event, context):
 url = f'http://localhost:2772/applications/application_name/
environments/environment_name/configurations/configuration_name'
 config = urllib.request.urlopen(url).read()
 return config

To test it, create a new Lambda function for Python, add the extension, and then run the Lambda
function. After you run the Lambda function, the AWS AppConfig Lambda function returns the
configuration you specified for the http://localhost:2772 path. For information about creating a
Lambda function, see Create a Lambda function with the console in the AWS Lambda Developer
Guide.

To add the AWS AppConfig Agent Lambda extension as a container image, see Using a container
image to add the AWS AppConfig Agent Lambda extension.

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 81

https://docs.aws.amazon.com/lambda/latest/dg/using-extensions.html#using-extensions-config
https://docs.aws.amazon.com/lambda/latest/dg/using-extensions.html#using-extensions-config
https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html

AWS AppConfig User Guide

Configuring the AWS AppConfig Agent Lambda extension

You can configure the extension by changing the following AWS Lambda environment variables.
For more information, see Using AWS Lambda environment variables in the AWS Lambda Developer
Guide.

Prefetching configuration data

The environment variable AWS_APPCONFIG_EXTENSION_PREFETCH_LIST can improve the start-
up time of your function. When the AWS AppConfig Agent Lambda extension is initialized, it
retrieves the specified configuration from AWS AppConfig before Lambda starts to initialize your
function and invoke your handler. In some cases, the configuration data is already available in the
local cache before your function requests it.

To use the prefetch capability, set the value of the environment variable to the path corresponding
to your configuration data. For example, if your configuration corresponds to an application,
environment, and configuration profile respectively named "my_application", "my_environment",
and "my_configuration_data", the path would be /applications/my_application/
environments/my_environment/configurations/my_configuration_data. You can
specify multiple configuration items by listing them as a comma-separated list (If you have a
resource name that includes a comma, use the resource’s ID value instead of its name).

Accessing configuration data from another account

The AWS AppConfig Agent Lambda extension can retrieve configuration data from another account
by specifying an IAM role that grants permissions to the data. To set this up, follow these steps:

1. In the account where AWS AppConfig is used to manage the configuration data, create a
role with a trust policy that grants the account running the Lambda function access to the
appconfig:StartConfigurationSession and appconfig:GetLatestConfiguration
actions, along with the partial or complete ARNs corresponding to the AWS AppConfig
configuration resources.

2. In the account running the Lambda function, add the AWS_APPCONFIG_EXTENSION_ROLE_ARN
environment variable to the Lambda function with the ARN of the role created in step 1.

3. (Optional) If needed, an external ID can be specified using the
AWS_APPCONFIG_EXTENSION_ROLE_EXTERNAL_ID environment variable. Similarly, a session
name can be configured using the AWS_APPCONFIG_EXTENSION_ROLE_SESSION_NAME
environment variable.

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 82

https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_permissions-to-switch.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html

AWS AppConfig User Guide

Note

Note the following information.

• The AWS AppConfig Agent Lambda extension can only retrieve data from one account. If
you specify an IAM role, the extension will not be able to retrieve configuration data from
the account in which the Lambda function is running.

• AWS Lambda logs information about the AWS AppConfig Agent Lambda extension and
the Lambda function by using Amazon CloudWatch Logs.

Environment variable Details Default value

AWS_APPCONFIG_EXTE
NSION_HTTP_PORT

This environment variable
specifies the port on which
the local HTTP server that
hosts the extension runs.

2772

AWS_APPCONFIG_EXTE
NSION_LOG_LEVEL

This environment variable
specifies which AWS
AppConfig extension-specific
logs are sent to Amazon
CloudWatch Logs for a
function. Valid, case-inse
nsitive values are: debug,
info, warn, error, and
none. Debug includes
detailed information,
including timing information,
about the extension.

info

AWS_APPCONFIG_EXTE
NSION_MAX_CONNECTI
ONS

This environment variable
configures the maximum
number of connections the
extension uses to retrieve
configurations from AWS
AppConfig.

3

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 83

AWS AppConfig User Guide

Environment variable Details Default value

AWS_APPCONFIG_EXTE
NSION_POLL_INTERVA
L_SECONDS

This environment variable
controls how often the
extension polls AWS
AppConfig for an updated
configuration in seconds.

45

AWS_APPCONFIG_EXTE
NSION_POLL_TIMEOUT
_MILLIS

This environment variable
controls the maximum
amount of time, in milliseco
nds, the extension waits
for a response from AWS
AppConfig when refreshin
g data in the cache. If AWS
AppConfig does not respond
in the specified amount of
time, the extension skips this
poll interval and returns the
previously updated cached
data.

3000

AWS_APPCONFIG_EXTE
NSION_PREFETCH_LIST

This environment variable
specifies the configuration
data that the extension
starts to retrieve before the
function initializes and the
handler runs. It can reduce
the function's cold start time
significantly.

None

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 84

AWS AppConfig User Guide

Environment variable Details Default value

AWS_APPCONFIG_EXTE
NSION_PROXY_HEADERS

This environment variable
specifies headers required
by the proxy referenced in
the AWS_APPCONFIG_EXTE
NSION_PROXY_URL
environment variable. The
value is a comma-separated
list of headers. Each header
uses the following form:

"header: value"

None

AWS_APPCONFIG_EXTE
NSION_PROXY_URL

This environment variable
specifies the proxy URL to use
for connections from the AWS
AppConfig extension to AWS
services. HTTPS and HTTP
URLs are supported.

None

AWS_APPCONFIG_EXTE
NSION_ROLE_ARN

This environment variable
specifies the IAM role ARN
corresponding to a role that
should be assumed by the
AWS AppConfig extension to
retrieve configuration.

None

AWS_APPCONFIG_EXTE
NSION_ROLE_EXTERNA
L_ID

This environment variable
specifies the external id to
use in conjunction with the
assumed role ARN.

None

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 85

AWS AppConfig User Guide

Environment variable Details Default value

AWS_APPCONFIG_EXTE
NSION_ROLE_SESSION
_NAME

This environment variable
specifies the session name
to be associated with the
credentials for the assumed
IAM role.

None

AWS_APPCONFIG_EXTE
NSION_SERVICE_REGI
ON

This environment variable
specifies an alternative
Region the extension
 should use to call the AWS
AppConfig service. When
undefined, the extension uses
the endpoint in the current
Region.

None

AWS_APPCONFIG_EXTE
NSION_MANIFEST

This environment variable
configures AWS AppConfig
Agent to take advantage of
additional per-configuration
features like multi-account
retrievals and save configura
tion to disk. You can enter one
of the following values:

• "app:env:manifest-
config"

• "file:/fully/quali
fied/path/to/manif
est.json"

For more information about
these features, see Additional
retrieval features.

true

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 86

AWS AppConfig User Guide

Environment variable Details Default value

AWS_APPCONFIG_EXTE
NSION_WAIT_ON_MANI
FEST

This environment variable
configures AWS AppConfig
Agent to wait until the
manifest is processed before
completing startup.

true

Retrieving one or more flags from a feature flag configuration

For feature flag configurations (configurations of type AWS.AppConfig.FeatureFlags), the
Lambda extension enables you to retrieve a single flag or a subset of flags in a configuration.
Retrieving one or two flags is useful if your Lambda only needs to use a few flags from the
configuration profile. The following examples use Python.

Note

The ability to call a single feature flag or a subset of flags in a configuration is only
available in the AWS AppConfig Agent Lambda extension version 2.0.45 and higher.

You can retrieve AWS AppConfig configuration data from a local HTTP endpoint. To access a
specific flag or a list of flags, use the ?flag=flag_name query parameter for an AWS AppConfig
configuration profile.

To access a single flag and its attributes

import urllib.request

def lambda_handler(event, context):
 url = f'http://localhost:2772/applications/application_name/
environments/environment_name/configurations/configuration_name?flag=flag_name'
 config = urllib.request.urlopen(url).read()
 return config

To access multiple flags and their attributes

import urllib.request

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 87

AWS AppConfig User Guide

def lambda_handler(event, context):
 url = f'http://localhost:2772/applications/application_name/
environments/environment_name/configurations/configuration_name?
flag=flag_name_one&flag=flag_name_two'
 config = urllib.request.urlopen(url).read()
 return config

Viewing AWS AppConfig Agent Lambda extension logs

You can view log data for the AWS AppConfig Agent Lambda extension in the AWS Lambda logs.
Log entries are prefaced with appconfig agent. Here's an example.

[appconfig agent] 2024/05/07 04:19:01 ERROR retrieve failure for
 'SourceEventConfig:SourceEventConfigEnvironment:SourceEventConfigProfile':
 StartConfigurationSession: api error AccessDenied: User:
 arn:aws:sts::0123456789:assumed-role/us-east-1-LambdaRole/extension1 is not authorized
 to perform: sts:AssumeRole on resource: arn:aws:iam::0123456789:role/test1 (retry in
 60s)

Available versions of the AWS AppConfig Agent Lambda extension

This topic includes information about AWS AppConfig Agent Lambda extension versions. The AWS
AppConfig Agent Lambda extension supports Lambda functions developed for the x86-64 and
ARM64 (Graviton2) platforms. To work properly, your Lambda function must be configured to use
the specific Amazon Resource Name (ARN) for the AWS Region where it is currently hosted. You can
view AWS Region and ARN details later in this section.

Important

Note the following important details about the AWS AppConfig Agent Lambda extension.

• The GetConfiguration API action was deprecated on January 28, 2022. Calls
to receive configuration data should use the StartConfigurationSession and
GetLatestConfiguration APIs instead. If you are using a version of the AWS
AppConfig Agent Lambda extension created before January 28, 2022, you might have
to configure permission to the new APIs. For more information, see About the AWS
AppConfig data plane service.

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 88

AWS AppConfig User Guide

• AWS AppConfig supports all of the versions listed in Older extension versions. We
recommend that you periodically update to the latest version to take advantage of
extension enhancements.

Topics

• AWS AppConfig Agent Lambda Extension release notes

• Finding your Lambda extension version number

• x86-64 platform

• ARM64 platform

• Older extension versions

AWS AppConfig Agent Lambda Extension release notes

The following table describes changes made to recent versions of the AWS AppConfig Lambda
extension.

Version Launch date Notes

2.0.358 12/01/2023 Added support for the
following retrieval features:

• Multi-account retrieval:
Use AWS AppConfig Agent
from a primary or retrieval
 AWS account to retrieve
configuration data from
multiple vendor accounts.

• Write configuration copy to
disk: Use AWS AppConfig
 Agent to write configura
tion data to disk. This
feature enables customers
 with applications that read
configuration data from

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 89

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-retrieving-simplified-methods-additional-features.html

AWS AppConfig User Guide

Version Launch date Notes

disk to integrate with AWS
AppConfig.

2.0.181 08/14/2023 Added support for the Israel
(Tel Aviv) il-central-1 AWS
Region.

2.0.165 02/21/2023 Minor bug fixes. No longer
restricting extension use to
specific runtime versions via
the AWS Lambda console.
Added support for the
following AWS Regions:

• Middle East (UAE), me-
central-1

• Asia Pacific (Hyderabad),
ap-south-2

• Asia Pacific (Melbourne),
ap-southeast-4

• Europe (Spain), eu-south-2

• Europe (Zurich), eu-centra
l-2

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 90

AWS AppConfig User Guide

Version Launch date Notes

2.0.122 08/23/2022 Added support for a
tunneling proxy, which
can be configured with the
AWS_APPCONFIG_EXTE
NSION_PROXY_URL and
AWS_APPCONFIG_EXTE
NSION_PROXY_HEADER
S environment variables.
Added .NET 6 as a runtime.
For more information about
environment variables,
see Configuring the AWS
AppConfig Agent Lambda
extension.

2.0.58 05/03/2022 Improved support for
Graviton2 (ARM64) processors
in Lambda.

2.0.45 03/15/2022 Added support for calling a
single feature flag. Previousl
y, customers called feature
flags grouped into a configura
tion profile and had to parse
the response client-side. With
this release, customers can
use a flag=<flag-name>
parameter when calling the
HTTP localhost endpoint to
get the value of a single flag.
Also added initial support for
Graviton2 (ARM64) processor
s.

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 91

AWS AppConfig User Guide

Finding your Lambda extension version number

Use the following procedure to locate the version number of your currently configured AWS
AppConfig Agent Lambda extension. To work properly, your Lambda function must be configured
to use the specific Amazon Resource Name (ARN) for the AWS Region where it is currently hosted.

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose the Lambda function where you want to add the AWS-AppConfig-Extension layer.

3. In the Layers section, choose Add a layer.

4. In the Choose a layer section, choose AWS-AppConfig-Extension from the AWS layers list.

5. Use the Version list to choose a version number.

6. Choose Add.

7. Use the Test tab to test the function.

8. After the test completes, view the log output. Locate the AWS AppConfig Agent Lambda
extension version in the Details of the Execution section. This version must match the
required URLs for that version.

x86-64 platform

When you add the extension as a layer to your Lambda, you must specify an ARN. Choose an ARN
from the following table that corresponds with the AWS Region where you created the Lambda.
These ARNs are for Lambda functions developed for the x86-64 platform.

Version 2.0.358

Region ARN

US East (N. Virginia) arn:aws:lambda:us-east-1:02
7255383542:layer:AWS-AppConfig-
Extension:128

US East (Ohio) arn:aws:lambda:us-east-2:72
8743619870:layer:AWS-AppConfig-
Extension:93

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 92

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

AWS AppConfig User Guide

Region ARN

US West (N. California) arn:aws:lambda:us-west-1:95
8113053741:layer:AWS-AppConfig-
Extension:141

US West (Oregon) arn:aws:lambda:us-west-2:35
9756378197:layer:AWS-AppConfig-
Extension:161

Canada (Central) arn:aws:lambda:ca-central-1
:039592058896:layer:AWS-App
Config-Extension:93

Europe (Frankfurt) arn:aws:lambda:eu-central-1
:066940009817:layer:AWS-App
Config-Extension:106

Europe (Zurich) arn:aws:lambda:eu-central-2
:758369105281:layer:AWS-App
Config-Extension:47

Europe (Ireland) arn:aws:lambda:eu-west-1:43
4848589818:layer:AWS-AppConfig-
Extension:125

Europe (London) arn:aws:lambda:eu-west-2:28
2860088358:layer:AWS-AppConfig-
Extension:93

Europe (Paris) arn:aws:lambda:eu-west-3:49
3207061005:layer:AWS-AppConfig-
Extension:98

Europe (Stockholm) arn:aws:lambda:eu-north-1:6
46970417810:layer:AWS-AppCo
nfig-Extension:159

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 93

AWS AppConfig User Guide

Region ARN

Europe (Milan) arn:aws:lambda:eu-south-1:2
03683718741:layer:AWS-AppCo
nfig-Extension:83

Europe (Spain) arn:aws:lambda:eu-south-2:5
86093569114:layer:AWS-AppCo
nfig-Extension:44

China (Beijing) arn:aws-cn:lambda:cn-north-
1:615057806174:layer:AWS-Ap
pConfig-Extension:76

China (Ningxia) arn:aws-cn:lambda:cn-northw
est-1:615084187847:layer:AWS-
AppConfig-Extension:76

Asia Pacific (Hong Kong) arn:aws:lambda:ap-east-1:63
0222743974:layer:AWS-AppConfig-
Extension:83

Asia Pacific (Tokyo) arn:aws:lambda:ap-northeast
-1:980059726660:layer:AWS-A
ppConfig-Extension:98

Asia Pacific (Seoul) arn:aws:lambda:ap-northeast
-2:826293736237:layer:AWS-A
ppConfig-Extension:108

Asia Pacific (Osaka) arn:aws:lambda:ap-northeast
-3:706869817123:layer:AWS-A
ppConfig-Extension:101

Asia Pacific (Singapore) arn:aws:lambda:ap-southeast
-1:421114256042:layer:AWS-A
ppConfig-Extension:106

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 94

AWS AppConfig User Guide

Region ARN

Asia Pacific (Sydney) arn:aws:lambda:ap-southeast
-2:080788657173:layer:AWS-A
ppConfig-Extension:106

Asia Pacific (Jakarta) arn:aws:lambda:ap-southeast
-3:418787028745:layer:AWS-A
ppConfig-Extension:79

Asia Pacific (Melbourne) arn:aws:lambda:ap-southeast
-4:307021474294:layer:AWS-A
ppConfig-Extension:20

Asia Pacific (Mumbai) arn:aws:lambda:ap-south-1:5
54480029851:layer:AWS-AppCo
nfig-Extension:107

Asia Pacific (Hyderabad) arn:aws:lambda:ap-south-2:4
89524808438:layer:AWS-AppCo
nfig-Extension:47

South America (São Paulo) arn:aws:lambda:sa-east-1:00
0010852771:layer:AWS-AppConfig-
Extension:128

Africa (Cape Town) arn:aws:lambda:af-south-1:5
74348263942:layer:AWS-AppCo
nfig-Extension:83

Israel (Tel Aviv) arn:aws:lambda:il-central-1
:895787185223:layer:AWS-App
Config-Extension:22

Middle East (UAE) arn:aws:lambda:me-central-1
:662846165436:layer:AWS-App
Config-Extension:49

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 95

AWS AppConfig User Guide

Region ARN

Middle East (Bahrain) arn:aws:lambda:me-south-1:5
59955524753:layer:AWS-AppCo
nfig-Extension:85

AWS GovCloud (US-East) arn:aws-us-gov:lambda:us-gov-
east-1:946561847325:layer:AWS-
AppConfig-Extension:54

AWS GovCloud (US-West) arn:aws-us-gov:lambda:us-gov-
west-1:946746059096:layer:AWS-
AppConfig-Extension:54

ARM64 platform

When you add the extension as a layer to your Lambda, you must specify an ARN. Choose an ARN
from the following table that corresponds with the AWS Region where you created the Lambda.
These ARNs are for Lambda functions developed for the ARM64 platform.

Version 2.0.358

Region ARN

US East (N. Virginia) arn:aws:lambda:us-east-1:02
7255383542:layer:AWS-AppConfig-
Extension-Arm64:61

US East (Ohio) arn:aws:lambda:us-east-2:72
8743619870:layer:AWS-AppConfig-
Extension-Arm64:45

US West (N. California) arn:aws:lambda:us-west-1:95
8113053741:layer:AWS-AppConfig-
Extension-Arm64:18

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 96

AWS AppConfig User Guide

Region ARN

US West (Oregon) arn:aws:lambda:us-west-2:35
9756378197:layer:AWS-AppConfig-
Extension-Arm64:63

Canada (Central) arn:aws:lambda:ca-central-1
:039592058896:layer:AWS-App
Config-Extension-Arm64:13

Europe (Frankfurt) arn:aws:lambda:eu-central-1
:066940009817:layer:AWS-App
Config-Extension-Arm64:49

Europe (Zurich) arn:aws:lambda:eu-central-2
:758369105281:layer:AWS-App
Config-Extension-Arm64:5

Europe (Ireland) arn:aws:lambda:eu-west-1:43
4848589818:layer:AWS-AppConfig-
Extension-Arm64:63

Europe (London) arn:aws:lambda:eu-west-2:28
2860088358:layer:AWS-AppConfig-
Extension-Arm64:45

Europe (Paris) arn:aws:lambda:eu-west-3:49
3207061005:layer:AWS-AppConfig-
Extension-Arm64:17

Europe (Stockholm) arn:aws:lambda:eu-north-1:6
46970417810:layer:AWS-AppCo
nfig-Extension-Arm64:18

Europe (Milan) arn:aws:lambda:eu-south-1:2
03683718741:layer:AWS-AppCo
nfig-Extension-Arm64:11

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 97

AWS AppConfig User Guide

Region ARN

Europe (Spain) arn:aws:lambda:eu-south-2:5
86093569114:layer:AWS-AppCo
nfig-Extension-Arm64:5

Asia Pacific (Hong Kong) arn:aws:lambda:ap-east-1:63
0222743974:layer:AWS-AppConfig-
Extension-Arm64:11

Asia Pacific (Tokyo) arn:aws:lambda:ap-northeast
-1:980059726660:layer:AWS-A
ppConfig-Extension-Arm64:51

Asia Pacific (Seoul) arn:aws:lambda:ap-northeast
-2:826293736237:layer:AWS-A
ppConfig-Extension-Arm64:16

Asia Pacific (Osaka) arn:aws:lambda:ap-northeast
-3:706869817123:layer:AWS-A
ppConfig-Extension-Arm64:16

Asia Pacific (Singapore) arn:aws:lambda:ap-southeast
-1:421114256042:layer:AWS-A
ppConfig-Extension-Arm64:58

Asia Pacific (Sydney) arn:aws:lambda:ap-southeast
-2:080788657173:layer:AWS-A
ppConfig-Extension-Arm64:49

Asia Pacific (Jakarta) arn:aws:lambda:ap-southeast
-3:418787028745:layer:AWS-A
ppConfig-Extension-Arm64:16

Asia Pacific (Melbourne) arn:aws:lambda:ap-southeast
-4:307021474294:layer:AWS-A
ppConfig-Extension-Arm64:5

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 98

AWS AppConfig User Guide

Region ARN

Asia Pacific (Mumbai) arn:aws:lambda:ap-south-1:5
54480029851:layer:AWS-AppCo
nfig-Extension-Arm64:49

Asia Pacific (Hyderabad) arn:aws:lambda:ap-south-2:4
89524808438:layer:AWS-AppCo
nfig-Extension-Arm64:5

South America (São Paulo) arn:aws:lambda:sa-east-1:00
0010852771:layer:AWS-AppConfig-
Extension-Arm64:16

Africa (Cape Town) arn:aws:lambda:af-south-1:5
74348263942:layer:AWS-AppCo
nfig-Extension-Arm64:11

Middle East (UAE) arn:aws:lambda:me-central-1
:662846165436:layer:AWS-App
Config-Extension-Arm64:5

Middle East (Bahrain) arn:aws:lambda:me-south-1:5
59955524753:layer:AWS-AppCo
nfig-Extension-Arm64:13

Israel (Tel Aviv) arn:aws:lambda:il-central-1
:895787185223:layer:AWS-App
Config-Extension-Arm64:5

Older extension versions

This section lists the ARNs and AWS Regions for older versions of the AWS AppConfig Lambda
extension. This list doesn't contain information for all previous versions of the AWS AppConfig
Agent Lambda extension, but it will be updated when new versions are released.

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 99

AWS AppConfig User Guide

Older extension versions (x86-64 platform)

The following tables list ARNs and the AWS Regions for older versions of the AWS AppConfig Agent
Lambda extension developed for the x86-64 platform.

Date replaced by newer extension: 12/01/2023

Version 2.0.181

Region ARN

US East (N. Virginia) arn:aws:lambda:us-east-1:02
7255383542:layer:AWS-AppConfig-
Extension:113

US East (Ohio) arn:aws:lambda:us-east-2:72
8743619870:layer:AWS-AppConfig-
Extension:81

US West (N. California) arn:aws:lambda:us-west-1:95
8113053741:layer:AWS-AppConfig-
Extension:124

US West (Oregon) arn:aws:lambda:us-west-2:35
9756378197:layer:AWS-AppConfig-
Extension:146

Canada (Central) arn:aws:lambda:ca-central-1
:039592058896:layer:AWS-App
Config-Extension:81

Europe (Frankfurt) arn:aws:lambda:eu-central-1
:066940009817:layer:AWS-App
Config-Extension:93

Europe (Zurich) arn:aws:lambda:eu-central-2
:758369105281:layer:AWS-App
Config-Extension:32

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 100

AWS AppConfig User Guide

Region ARN

Europe (Ireland) arn:aws:lambda:eu-west-1:43
4848589818:layer:AWS-AppConfig-
Extension:110

Europe (London) arn:aws:lambda:eu-west-2:28
2860088358:layer:AWS-AppConfig-
Extension:81

Europe (Paris) arn:aws:lambda:eu-west-3:49
3207061005:layer:AWS-AppConfig-
Extension:82

Europe (Stockholm) arn:aws:lambda:eu-north-1:6
46970417810:layer:AWS-AppCo
nfig-Extension:142

Europe (Milan) arn:aws:lambda:eu-south-1:2
03683718741:layer:AWS-AppCo
nfig-Extension:73

Europe (Spain) arn:aws:lambda:eu-south-2:5
86093569114:layer:AWS-AppCo
nfig-Extension:29

China (Beijing) arn:aws-cn:lambda:cn-north-
1:615057806174:layer:AWS-Ap
pConfig-Extension:68

China (Ningxia) arn:aws-cn:lambda:cn-northw
est-1:615084187847:layer:AWS-
AppConfig-Extension:68

Asia Pacific (Hong Kong) arn:aws:lambda:ap-east-1:63
0222743974:layer:AWS-AppConfig-
Extension:73

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 101

AWS AppConfig User Guide

Region ARN

Asia Pacific (Tokyo) arn:aws:lambda:ap-northeast
-1:980059726660:layer:AWS-A
ppConfig-Extension:84

Asia Pacific (Seoul) arn:aws:lambda:ap-northeast
-2:826293736237:layer:AWS-A
ppConfig-Extension:93

Asia Pacific (Osaka) arn:aws:lambda:ap-northeast
-3:706869817123:layer:AWS-A
ppConfig-Extension:86

Asia Pacific (Singapore) arn:aws:lambda:ap-southeast
-1:421114256042:layer:AWS-A
ppConfig-Extension:91

Asia Pacific (Sydney) arn:aws:lambda:ap-southeast
-2:080788657173:layer:AWS-A
ppConfig-Extension:93

Asia Pacific (Jakarta) arn:aws:lambda:ap-southeast
-3:418787028745:layer:AWS-A
ppConfig-Extension:64

Asia Pacific (Melbourne) arn:aws:lambda:ap-southeast
-4:307021474294:layer:AWS-A
ppConfig-Extension:5

Asia Pacific (Mumbai) arn:aws:lambda:ap-south-1:5
54480029851:layer:AWS-AppCo
nfig-Extension:94

Asia Pacific (Hyderabad) arn:aws:lambda:ap-south-2:4
89524808438:layer:AWS-AppCo
nfig-Extension:32

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 102

AWS AppConfig User Guide

Region ARN

South America (São Paulo) arn:aws:lambda:sa-east-1:00
0010852771:layer:AWS-AppConfig-
Extension:113

Africa (Cape Town) arn:aws:lambda:af-south-1:5
74348263942:layer:AWS-AppCo
nfig-Extension:73

Israel (Tel Aviv) arn:aws:lambda:il-central-1
:895787185223:layer:AWS-App
Config-Extension:7

Middle East (UAE) arn:aws:lambda:me-central-1
:662846165436:layer:AWS-App
Config-Extension:34

Middle East (Bahrain) arn:aws:lambda:me-south-1:5
59955524753:layer:AWS-AppCo
nfig-Extension:73

AWS GovCloud (US-East) arn:aws-us-gov:lambda:us-gov-
east-1:946561847325:layer:AWS-
AppConfig-Extension:46

AWS GovCloud (US-West) arn:aws-us-gov:lambda:us-gov-
west-1:946746059096:layer:AWS-
AppConfig-Extension:46

Date replaced by newer extension: 08/14/2023

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 103

AWS AppConfig User Guide

Version 2.0.165

Region ARN

US East (N. Virginia) arn:aws:lambda:us-east-1:02
7255383542:layer:AWS-AppConfig-
Extension:110

US East (Ohio) arn:aws:lambda:us-east-2:72
8743619870:layer:AWS-AppConfig-
Extension:79

US West (N. California) arn:aws:lambda:us-west-1:95
8113053741:layer:AWS-AppConfig-
Extension:121

US West (Oregon) arn:aws:lambda:us-west-2:35
9756378197:layer:AWS-AppConfig-
Extension:143

Canada (Central) arn:aws:lambda:ca-central-1
:039592058896:layer:AWS-App
Config-Extension:79

Europe (Frankfurt) arn:aws:lambda:eu-central-1
:066940009817:layer:AWS-App
Config-Extension:91

Europe (Zurich) arn:aws:lambda:eu-central-2
:758369105281:layer:AWS-App
Config-Extension:29

Europe (Ireland) arn:aws:lambda:eu-west-1:43
4848589818:layer:AWS-AppConfig-
Extension:108

Europe (London) arn:aws:lambda:eu-west-2:28
2860088358:layer:AWS-AppConfig-
Extension:79

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 104

AWS AppConfig User Guide

Region ARN

Europe (Paris) arn:aws:lambda:eu-west-3:49
3207061005:layer:AWS-AppConfig-
Extension:80

Europe (Stockholm) arn:aws:lambda:eu-north-1:6
46970417810:layer:AWS-AppCo
nfig-Extension:139

Europe (Milan) arn:aws:lambda:eu-south-1:2
03683718741:layer:AWS-AppCo
nfig-Extension:71

Europe (Spain) arn:aws:lambda:eu-south-2:5
86093569114:layer:AWS-AppCo
nfig-Extension:26

China (Beijing) arn:aws-cn:lambda:cn-north-
1:615057806174:layer:AWS-Ap
pConfig-Extension:66

China (Ningxia) arn:aws-cn:lambda:cn-northw
est-1:615084187847:layer:AWS-
AppConfig-Extension:66

Asia Pacific (Hong Kong) arn:aws:lambda:ap-east-1:63
0222743974:layer:AWS-AppConfig-
Extension:71

Asia Pacific (Tokyo) arn:aws:lambda:ap-northeast
-1:980059726660:layer:AWS-A
ppConfig-Extension:82

Asia Pacific (Seoul) arn:aws:lambda:ap-northeast
-2:826293736237:layer:AWS-A
ppConfig-Extension:91

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 105

AWS AppConfig User Guide

Region ARN

Asia Pacific (Osaka) arn:aws:lambda:ap-northeast
-3:706869817123:layer:AWS-A
ppConfig-Extension:84

Asia Pacific (Singapore) arn:aws:lambda:ap-southeast
-1:421114256042:layer:AWS-A
ppConfig-Extension:89

Asia Pacific (Sydney) arn:aws:lambda:ap-southeast
-2:080788657173:layer:AWS-A
ppConfig-Extension:91

Asia Pacific (Jakarta) arn:aws:lambda:ap-southeast
-3:418787028745:layer:AWS-A
ppConfig-Extension:60

Asia Pacific (Melbourne) arn:aws:lambda:ap-southeast
-4:307021474294:layer:AWS-A
ppConfig-Extension:2

Asia Pacific (Mumbai) arn:aws:lambda:ap-south-1:5
54480029851:layer:AWS-AppCo
nfig-Extension:92

Asia Pacific (Hyderabad) arn:aws:lambda:ap-south-2:4
89524808438:layer:AWS-AppCo
nfig-Extension:29

South America (São Paulo) arn:aws:lambda:sa-east-1:00
0010852771:layer:AWS-AppConfig-
Extension:110

Africa (Cape Town) arn:aws:lambda:af-south-1:5
74348263942:layer:AWS-AppCo
nfig-Extension:71

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 106

AWS AppConfig User Guide

Region ARN

Middle East (UAE) arn:aws:lambda:me-central-1
:662846165436:layer:AWS-App
Config-Extension:31

Middle East (Bahrain) arn:aws:lambda:me-south-1:5
59955524753:layer:AWS-AppCo
nfig-Extension:71

AWS GovCloud (US-East) arn:aws-us-gov:lambda:us-gov-
east-1:946561847325:layer:AWS-
AppConfig-Extension:44

AWS GovCloud (US-West) arn:aws-us-gov:lambda:us-gov-
west-1:946746059096:layer:AWS-
AppConfig-Extension:44

Date replaced by newer extension: 02/21/2023

Version 2.0.122

Region ARN

US East (N. Virginia) arn:aws:lambda:us-east-1:02
7255383542:layer:AWS-AppConfig-
Extension:82

US East (Ohio) arn:aws:lambda:us-east-2:72
8743619870:layer:AWS-AppConfig-
Extension:59

US West (N. California) arn:aws:lambda:us-west-1:95
8113053741:layer:AWS-AppConfig-
Extension:93

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 107

AWS AppConfig User Guide

Region ARN

US West (Oregon) arn:aws:lambda:us-west-2:35
9756378197:layer:AWS-AppConfig-
Extension:114

Canada (Central) arn:aws:lambda:ca-central-1
:039592058896:layer:AWS-App
Config-Extension:59

Europe (Frankfurt) arn:aws:lambda:eu-central-1
:066940009817:layer:AWS-App
Config-Extension:70

Europe (Ireland) arn:aws:lambda:eu-west-1:43
4848589818:layer:AWS-AppConfig-
Extension:82

Europe (London) arn:aws:lambda:eu-west-2:28
2860088358:layer:AWS-AppConfig-
Extension:59

Europe (Paris) arn:aws:lambda:eu-west-3:49
3207061005:layer:AWS-AppConfig-
Extension:60

Europe (Stockholm) arn:aws:lambda:eu-north-1:6
46970417810:layer:AWS-AppCo
nfig-Extension:111

Europe (Milan) arn:aws:lambda:eu-south-1:2
03683718741:layer:AWS-AppCo
nfig-Extension:54

China (Beijing) arn:aws-cn:lambda:cn-north-
1:615057806174:layer:AWS-Ap
pConfig-Extension:52

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 108

AWS AppConfig User Guide

Region ARN

China (Ningxia) arn:aws-cn:lambda:cn-northw
est-1:615084187847:layer:AWS-
AppConfig-Extension:52

Asia Pacific (Hong Kong) arn:aws:lambda:ap-east-1:63
0222743974:layer:AWS-AppConfig-
Extension:54

Asia Pacific (Tokyo) arn:aws:lambda:ap-northeast
-1:980059726660:layer:AWS-A
ppConfig-Extension:62

Asia Pacific (Seoul) arn:aws:lambda:ap-northeast
-2:826293736237:layer:AWS-A
ppConfig-Extension:70

Asia Pacific (Osaka) arn:aws:lambda:ap-northeast
-3:706869817123:layer:AWS-A
ppConfig-Extension:59

Asia Pacific (Singapore) arn:aws:lambda:ap-southeast
-1:421114256042:layer:AWS-A
ppConfig-Extension:64

Asia Pacific (Sydney) arn:aws:lambda:ap-southeast
-2:080788657173:layer:AWS-A
ppConfig-Extension:70

Asia Pacific (Jakarta) arn:aws:lambda:ap-southeast
-3:418787028745:layer:AWS-A
ppConfig-Extension:37

Asia Pacific (Mumbai) arn:aws:lambda:ap-south-1:5
54480029851:layer:AWS-AppCo
nfig-Extension:71

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 109

AWS AppConfig User Guide

Region ARN

South America (São Paulo) arn:aws:lambda:sa-east-1:00
0010852771:layer:AWS-AppConfig-
Extension:82

Africa (Cape Town) arn:aws:lambda:af-south-1:5
74348263942:layer:AWS-AppCo
nfig-Extension:54

Middle East (Bahrain) arn:aws:lambda:me-south-1:5
59955524753:layer:AWS-AppCo
nfig-Extension:54

AWS GovCloud (US-East) arn:aws-us-gov:lambda:us-gov-
east-1:946561847325:layer:AWS-
AppConfig-Extension:29

AWS GovCloud (US-West) arn:aws-us-gov:lambda:us-gov-
west-1:946746059096:layer:AWS-
AppConfig-Extension:29

Date replaced by newer extension: 08/23/2022

Version 2.0.58

Region ARN

US East (N. Virginia) arn:aws:lambda:us-east-1:02
7255383542:layer:AWS-AppConfig-
Extension:69

US East (Ohio) arn:aws:lambda:us-east-2:72
8743619870:layer:AWS-AppConfig-
Extension:50

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 110

AWS AppConfig User Guide

Region ARN

US West (N. California) arn:aws:lambda:us-west-1:95
8113053741:layer:AWS-AppConfig-
Extension:78

US West (Oregon) arn:aws:lambda:us-west-2:35
9756378197:layer:AWS-AppConfig-
Extension:101

Canada (Central) arn:aws:lambda:ca-central-1
:039592058896:layer:AWS-App
Config-Extension:50

Europe (Frankfurt) arn:aws:lambda:eu-central-1
:066940009817:layer:AWS-App
Config-Extension:59

Europe (Ireland) arn:aws:lambda:eu-west-1:43
4848589818:layer:AWS-AppConfig-
Extension:69

Europe (London) arn:aws:lambda:eu-west-2:28
2860088358:layer:AWS-AppConfig-
Extension:50

Europe (Paris) arn:aws:lambda:eu-west-3:49
3207061005:layer:AWS-AppConfig-
Extension:51

Europe (Stockholm) arn:aws:lambda:eu-north-1:6
46970417810:layer:AWS-AppCo
nfig-Extension:98

Europe (Milan) arn:aws:lambda:eu-south-1:2
03683718741:layer:AWS-AppCo
nfig-Extension:47

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 111

AWS AppConfig User Guide

Region ARN

China (Beijing) arn:aws-cn:lambda:cn-north-
1:615057806174:layer:AWS-Ap
pConfig-Extension:46

China (Ningxia) arn:aws-cn:lambda:cn-northw
est-1:615084187847:layer:AWS-
AppConfig-Extension:46

Asia Pacific (Hong Kong) arn:aws:lambda:ap-east-1:63
0222743974:layer:AWS-AppConfig-
Extension:47

Asia Pacific (Tokyo) arn:aws:lambda:ap-northeast
-1:980059726660:layer:AWS-A
ppConfig-Extension:49

Asia Pacific (Seoul) arn:aws:lambda:ap-northeast
-2:826293736237:layer:AWS-A
ppConfig-Extension:59

Asia Pacific (Osaka) arn:aws:lambda:ap-northeast
-3:706869817123:layer:AWS-A
ppConfig-Extension:46

Asia Pacific (Singapore) arn:aws:lambda:ap-southeast
-1:421114256042:layer:AWS-A
ppConfig-Extension:51

Asia Pacific (Sydney) arn:aws:lambda:ap-southeast
-2:080788657173:layer:AWS-A
ppConfig-Extension:59

Asia Pacific (Jakarta) arn:aws:lambda:ap-southeast
-3:418787028745:layer:AWS-A
ppConfig-Extension:24

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 112

AWS AppConfig User Guide

Region ARN

Asia Pacific (Mumbai) arn:aws:lambda:ap-south-1:5
54480029851:layer:AWS-AppCo
nfig-Extension:60

South America (São Paulo) arn:aws:lambda:sa-east-1:00
0010852771:layer:AWS-AppConfig-
Extension:69

Africa (Cape Town) arn:aws:lambda:af-south-1:5
74348263942:layer:AWS-AppCo
nfig-Extension:47

Middle East (Bahrain) arn:aws:lambda:me-south-1:5
59955524753:layer:AWS-AppCo
nfig-Extension:47

AWS GovCloud (US-East) arn:aws-us-gov:lambda:us-gov-
east-1:946561847325:layer:AWS-
AppConfig-Extension:23

AWS GovCloud (US-West) arn:aws-us-gov:lambda:us-gov-
west-1:946746059096:layer:AWS-
AppConfig-Extension:23

Date replaced by newer extension: 04/21/2022

Version 2.0.45

Region ARN

US East (N. Virginia) arn:aws:lambda:us-east-1:02
7255383542:layer:AWS-AppConfig-
Extension:68

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 113

AWS AppConfig User Guide

Region ARN

US East (Ohio) arn:aws:lambda:us-east-2:72
8743619870:layer:AWS-AppConfig-
Extension:49

US West (N. California) arn:aws:lambda:us-west-1:95
8113053741:layer:AWS-AppConfig-
Extension:77

US West (Oregon) arn:aws:lambda:us-west-2:35
9756378197:layer:AWS-AppConfig-
Extension:100

Canada (Central) arn:aws:lambda:ca-central-1
:039592058896:layer:AWS-App
Config-Extension:49

Europe (Frankfurt) arn:aws:lambda:eu-central-1
:066940009817:layer:AWS-App
Config-Extension:58

Europe (Ireland) arn:aws:lambda:eu-west-1:43
4848589818:layer:AWS-AppConfig-
Extension:68

Europe (London) arn:aws:lambda:eu-west-2:28
2860088358:layer:AWS-AppConfig-
Extension:49

Europe (Paris) arn:aws:lambda:eu-west-3:49
3207061005:layer:AWS-AppConfig-
Extension:50

Europe (Stockholm) arn:aws:lambda:eu-north-1:6
46970417810:layer:AWS-AppCo
nfig-Extension:97

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 114

AWS AppConfig User Guide

Region ARN

Europe (Milan) arn:aws:lambda:eu-south-1:2
03683718741:layer:AWS-AppCo
nfig-Extension:46

China (Beijing) arn:aws-cn:lambda:cn-north-
1:615057806174:layer:AWS-Ap
pConfig-Extension:45

China (Ningxia) arn:aws-cn:lambda:cn-northw
est-1:615084187847:layer:AWS-
AppConfig-Extension:45

Asia Pacific (Hong Kong) arn:aws:lambda:ap-east-1:63
0222743974:layer:AWS-AppConfig-
Extension:46

Asia Pacific (Tokyo) arn:aws:lambda:ap-northeast
-1:980059726660:layer:AWS-A
ppConfig-Extension:48

Asia Pacific (Seoul) arn:aws:lambda:ap-northeast
-2:826293736237:layer:AWS-A
ppConfig-Extension:58

Asia Pacific (Osaka) arn:aws:lambda:ap-northeast
-3:706869817123:layer:AWS-A
ppConfig-Extension:45

Asia Pacific (Singapore) arn:aws:lambda:ap-southeast
-1:421114256042:layer:AWS-A
ppConfig-Extension:50

Asia Pacific (Sydney) arn:aws:lambda:ap-southeast
-2:080788657173:layer:AWS-A
ppConfig-Extension:58

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 115

AWS AppConfig User Guide

Region ARN

Asia Pacific (Jakarta) arn:aws:lambda:ap-southeast
-3:418787028745:layer:AWS-A
ppConfig-Extension:23

Asia Pacific (Mumbai) arn:aws:lambda:ap-south-1:5
54480029851:layer:AWS-AppCo
nfig-Extension:59

South America (São Paulo) arn:aws:lambda:sa-east-1:00
0010852771:layer:AWS-AppConfig-
Extension:68

Africa (Cape Town) arn:aws:lambda:af-south-1:5
74348263942:layer:AWS-AppCo
nfig-Extension:46

Middle East (Bahrain) arn:aws:lambda:me-south-1:5
59955524753:layer:AWS-AppCo
nfig-Extension:46

AWS GovCloud (US-East) arn:aws-us-gov:lambda:us-gov-
east-1:946561847325:layer:AWS-
AppConfig-Extension:22

AWS GovCloud (US-West) arn:aws-us-gov:lambda:us-gov-
west-1:946746059096:layer:AWS-
AppConfig-Extension:22

Date replaced by newer extension: 03/15/2022

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 116

AWS AppConfig User Guide

Version 2.0.30

Region ARN

US East (N. Virginia) arn:aws:lambda:us-east-1:02
7255383542:layer:AWS-AppConfig-
Extension:61

US East (Ohio) arn:aws:lambda:us-east-2:72
8743619870:layer:AWS-AppConfig-
Extension:47

US West (N. California) arn:aws:lambda:us-west-1:95
8113053741:layer:AWS-AppConfig-
Extension:61

US West (Oregon) arn:aws:lambda:us-west-2:35
9756378197:layer:AWS-AppConfig-
Extension:89

Canada (Central) arn:aws:lambda:ca-central-1
:039592058896:layer:AWS-App
Config-Extension:47

Europe (Frankfurt) arn:aws:lambda:eu-central-1
:066940009817:layer:AWS-App
Config-Extension:54

Europe (Ireland) arn:aws:lambda:eu-west-1:43
4848589818:layer:AWS-AppConfig-
Extension:59

Europe (London) arn:aws:lambda:eu-west-2:28
2860088358:layer:AWS-AppConfig-
Extension:47

Europe (Paris) arn:aws:lambda:eu-west-3:49
3207061005:layer:AWS-AppConfig-
Extension:48

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 117

AWS AppConfig User Guide

Region ARN

Europe (Stockholm) arn:aws:lambda:eu-north-1:6
46970417810:layer:AWS-AppCo
nfig-Extension:86

Europe (Milan) arn:aws:lambda:eu-south-1:2
03683718741:layer:AWS-AppCo
nfig-Extension:44

China (Beijing) arn:aws-cn:lambda:cn-north-
1:615057806174:layer:AWS-Ap
pConfig-Extension:43

China (Ningxia) arn:aws-cn:lambda:cn-northw
est-1:615084187847:layer:AWS-
AppConfig-Extension:43

Asia Pacific (Hong Kong) arn:aws:lambda:ap-east-1:63
0222743974:layer:AWS-AppConfig-
Extension:44

Asia Pacific (Tokyo) arn:aws:lambda:ap-northeast
-1:980059726660:layer:AWS-A
ppConfig-Extension:45

Asia Pacific (Osaka) arn:aws:lambda:ap-northeast
-3:706869817123:layer:AWS-A
ppConfig-Extension:42

Asia Pacific (Seoul) arn:aws:lambda:ap-northeast
-2:826293736237:layer:AWS-A
ppConfig-Extension:54

Asia Pacific (Singapore) arn:aws:lambda:ap-southeast
-1:421114256042:layer:AWS-A
ppConfig-Extension:45

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 118

AWS AppConfig User Guide

Region ARN

Asia Pacific (Sydney) arn:aws:lambda:ap-southeast
-2:080788657173:layer:AWS-A
ppConfig-Extension:54

Asia Pacific (Jakarta) arn:aws:lambda:ap-southeast
-3:418787028745:layer:AWS-A
ppConfig-Extension:13

Asia Pacific (Mumbai) arn:aws:lambda:ap-south-1:5
54480029851:layer:AWS-AppCo
nfig-Extension:55

South America (São Paulo) arn:aws:lambda:sa-east-1:00
0010852771:layer:AWS-AppConfig-
Extension:61

Africa (Cape Town) arn:aws:lambda:af-south-1:5
74348263942:layer:AWS-AppCo
nfig-Extension:44

Middle East (Bahrain) arn:aws:lambda:me-south-1:5
59955524753:layer:AWS-AppCo
nfig-Extension:44

AWS GovCloud (US-East) arn:aws-us-gov:lambda:us-gov-
east-1:946561847325:layer:AWS-
AppConfig-Extension:20

AWS GovCloud (US-West) arn:aws-us-gov:lambda:us-gov-
west-1:946746059096:layer:AWS-
AppConfig-Extension:20

Older extension versions (ARM64 platform)

The following tables list ARNs and the AWS Regions for older versions of the AWS AppConfig Agent
Lambda extension developed for the ARM64 platform.

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 119

AWS AppConfig User Guide

Date replaced by newer extension: 12/01/2023

Version 2.0.181

Region ARN

US East (N. Virginia) arn:aws:lambda:us-east-1:02
7255383542:layer:AWS-AppConfig-
Extension-Arm64:46

US East (Ohio) arn:aws:lambda:us-east-2:72
8743619870:layer:AWS-AppConfig-
Extension-Arm64:33

US West (N. California) arn:aws:lambda:us-west-1:95
8113053741:layer:AWS-AppConfig-
Extension-Arm64:1

US West (Oregon) arn:aws:lambda:us-west-2:35
9756378197:layer:AWS-AppConfig-
Extension-Arm64:48

Canada (Central) arn:aws:lambda:ca-central-1
:039592058896:layer:AWS-App
Config-Extension-Arm64:1

Europe (Frankfurt) arn:aws:lambda:eu-central-1
:066940009817:layer:AWS-App
Config-Extension-Arm64:36

Europe (Ireland) arn:aws:lambda:eu-west-1:43
4848589818:layer:AWS-AppConfig-
Extension-Arm64:48

Europe (London) arn:aws:lambda:eu-west-2:28
2860088358:layer:AWS-AppConfig-
Extension-Arm64:33

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 120

AWS AppConfig User Guide

Region ARN

Europe (Paris) arn:aws:lambda:eu-west-3:49
3207061005:layer:AWS-AppConfig-
Extension-Arm64:1

Europe (Stockholm) arn:aws:lambda:eu-north-1:6
46970417810:layer:AWS-AppCo
nfig-Extension-Arm64:1

Europe (Milan) arn:aws:lambda:eu-south-1:2
03683718741:layer:AWS-AppCo
nfig-Extension-Arm64:1

Asia Pacific (Hong Kong) arn:aws:lambda:ap-east-1:63
0222743974:layer:AWS-AppConfig-
Extension-Arm64:1

Asia Pacific (Tokyo) arn:aws:lambda:ap-northeast
-1:980059726660:layer:AWS-A
ppConfig-Extension-Arm64:37

Asia Pacific (Seoul) arn:aws:lambda:ap-northeast
-2:826293736237:layer:AWS-A
ppConfig-Extension-Arm64:1

Asia Pacific (Osaka) arn:aws:lambda:ap-northeast
-3:706869817123:layer:AWS-A
ppConfig-Extension-Arm64:1

Asia Pacific (Singapore) arn:aws:lambda:ap-southeast
-1:421114256042:layer:AWS-A
ppConfig-Extension-Arm64:43

Asia Pacific (Sydney) arn:aws:lambda:ap-southeast
-2:080788657173:layer:AWS-A
ppConfig-Extension-Arm64:36

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 121

AWS AppConfig User Guide

Region ARN

Asia Pacific (Jakarta) arn:aws:lambda:ap-southeast
-3:418787028745:layer:AWS-A
ppConfig-Extension-Arm64:1

Asia Pacific (Mumbai) arn:aws:lambda:ap-south-1:5
54480029851:layer:AWS-AppCo
nfig-Extension-Arm64:36

South America (São Paulo) arn:aws:lambda:sa-east-1:00
0010852771:layer:AWS-AppConfig-
Extension-Arm64:1

Africa (Cape Town) arn:aws:lambda:af-south-1:5
74348263942:layer:AWS-AppCo
nfig-Extension-Arm64:1

Middle East (Bahrain) arn:aws:lambda:me-south-1:5
59955524753:layer:AWS-AppCo
nfig-Extension-Arm64:1

Date replaced by newer extension: 03/30/2023

Version 2.0.165

Region ARN

US East (N. Virginia) arn:aws:lambda:us-east-1:02
7255383542:layer:AWS-AppConfig-
Extension-Arm64:43

US East (Ohio) arn:aws:lambda:us-east-2:72
8743619870:layer:AWS-AppConfig-
Extension-Arm64:31

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 122

AWS AppConfig User Guide

Region ARN

US West (Oregon) arn:aws:lambda:us-west-2:35
9756378197:layer:AWS-AppConfig-
Extension-Arm64:45

Europe (Frankfurt) arn:aws:lambda:eu-central-1
:066940009817:layer:AWS-App
Config-Extension-Arm64:34

Europe (Ireland) arn:aws:lambda:eu-west-1:43
4848589818:layer:AWS-AppConfig-
Extension-Arm64:46

Europe (London) arn:aws:lambda:eu-west-2:28
2860088358:layer:AWS-AppConfig-
Extension-Arm64:31

Asia Pacific (Tokyo) arn:aws:lambda:ap-northeast
-1:980059726660:layer:AWS-A
ppConfig-Extension-Arm64:35

Asia Pacific (Singapore) arn:aws:lambda:ap-southeast
-1:421114256042:layer:AWS-A
ppConfig-Extension-Arm64:41

Asia Pacific (Sydney) arn:aws:lambda:ap-southeast
-2:080788657173:layer:AWS-A
ppConfig-Extension-Arm64:34

Asia Pacific (Mumbai) arn:aws:lambda:ap-south-1:5
54480029851:layer:AWS-AppCo
nfig-Extension-Arm64:34

Date replaced by newer extension: 02/21/2023

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 123

AWS AppConfig User Guide

Version 2.0.122

Region ARN

US East (N. Virginia) arn:aws:lambda:us-east-1:02
7255383542:layer:AWS-AppConfig-
Extension-Arm64:15

US East (Ohio) arn:aws:lambda:us-east-2:72
8743619870:layer:AWS-AppConfig-
Extension-Arm64:11

US West (Oregon) arn:aws:lambda:us-west-2:35
9756378197:layer:AWS-AppConfig-
Extension-Arm64:16

Europe (Frankfurt) arn:aws:lambda:eu-central-1
:066940009817:layer:AWS-App
Config-Extension-Arm64:13

Europe (Ireland) arn:aws:lambda:eu-west-1:43
4848589818:layer:AWS-AppConfig-
Extension-Arm64:20

Europe (London) arn:aws:lambda:eu-west-2:28
2860088358:layer:AWS-AppConfig-
Extension-Arm64:11

Asia Pacific (Tokyo) arn:aws:lambda:ap-northeast
-1:980059726660:layer:AWS-A
ppConfig-Extension-Arm64:15

Asia Pacific (Singapore) arn:aws:lambda:ap-southeast
-1:421114256042:layer:AWS-A
ppConfig-Extension-Arm64:16

Asia Pacific (Sydney) arn:aws:lambda:ap-southeast
-2:080788657173:layer:AWS-A
ppConfig-Extension-Arm64:13

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 124

AWS AppConfig User Guide

Region ARN

Asia Pacific (Mumbai) arn:aws:lambda:ap-south-1:5
54480029851:layer:AWS-AppCo
nfig-Extension-Arm64:13

Date replaced by newer extension: 08/23/2022

Version 2.0.58

Region ARN

US East (N. Virginia) arn:aws:lambda:us-east-1:02
7255383542:layer:AWS-AppConfig-
Extension-Arm64:2

US East (Ohio) arn:aws:lambda:us-east-2:72
8743619870:layer:AWS-AppConfig-
Extension-Arm64:2

US West (Oregon) arn:aws:lambda:us-west-2:35
9756378197:layer:AWS-AppConfig-
Extension-Arm64:3

Europe (Frankfurt) arn:aws:lambda:eu-central-1
:066940009817:layer:AWS-App
Config-Extension-Arm64:2

Europe (Ireland) arn:aws:lambda:eu-west-1:43
4848589818:layer:AWS-AppConfig-
Extension-Arm64:7

Europe (London) arn:aws:lambda:eu-west-2:28
2860088358:layer:AWS-AppConfig-
Extension-Arm64:2

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 125

AWS AppConfig User Guide

Region ARN

Asia Pacific (Tokyo) arn:aws:lambda:ap-northeast
-1:980059726660:layer:AWS-A
ppConfig-Extension-Arm64:2

Asia Pacific (Singapore) arn:aws:lambda:ap-southeast
-1:421114256042:layer:AWS-A
ppConfig-Extension-Arm64:3

Asia Pacific (Sydney) arn:aws:lambda:ap-southeast
-2:080788657173:layer:AWS-A
ppConfig-Extension-Arm64:2

Asia Pacific (Mumbai) arn:aws:lambda:ap-south-1:5
54480029851:layer:AWS-AppCo
nfig-Extension-Arm64:2

Date replaced by newer extension: 04/21/2022

Version 2.0.45

Region ARN

US East (N. Virginia) arn:aws:lambda:us-east-1:02
7255383542:layer:AWS-AppConfig-
Extension-Arm64:1

US East (Ohio) arn:aws:lambda:us-east-2:72
8743619870:layer:AWS-AppConfig-
Extension-Arm64:1

US West (Oregon) arn:aws:lambda:us-west-2:35
9756378197:layer:AWS-AppConfig-
Extension-Arm64:2

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 126

AWS AppConfig User Guide

Region ARN

Europe (Frankfurt) arn:aws:lambda:eu-central-1
:066940009817:layer:AWS-App
Config-Extension-Arm64:1

Europe (Ireland) arn:aws:lambda:eu-west-1:43
4848589818:layer:AWS-AppConfig-
Extension-Arm64:6

Europe (London) arn:aws:lambda:eu-west-2:28
2860088358:layer:AWS-AppConfig-
Extension-Arm64:1

Asia Pacific (Tokyo) arn:aws:lambda:ap-northeast
-1:980059726660:layer:AWS-A
ppConfig-Extension-Arm64:1

Asia Pacific (Singapore) arn:aws:lambda:ap-southeast
-1:421114256042:layer:AWS-A
ppConfig-Extension-Arm64:2

Asia Pacific (Sydney) arn:aws:lambda:ap-southeast
-2:080788657173:layer:AWS-A
ppConfig-Extension-Arm64:1

Asia Pacific (Mumbai) arn:aws:lambda:ap-south-1:5
54480029851:layer:AWS-AppCo
nfig-Extension-Arm64:1

Using a container image to add the AWS AppConfig Agent Lambda extension

You can package your AWS AppConfig Agent Lambda extension as a container image to upload it
to your container registry hosted on Amazon Elastic Container Registry (Amazon ECR).

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 127

AWS AppConfig User Guide

To add the AWS AppConfig Agent Lambda extension as a Lambda container image

1. Enter the AWS Region and the Amazon Resource Name (ARN) in the AWS Command Line
Interface (AWS CLI) as shown below. Replace the Region and ARN value with your Region and
the matching ARN to retrieve a copy of the Lambda layer. AWS AppConfig provides ARNs for
x86-64 and ARM64 platforms.

aws lambda get-layer-version-by-arn \
 --region AWS Region \
 --arn extension ARN

Here's an example.

aws lambda get-layer-version-by-arn \
 --region us-east-1 \
 --arn arn:aws:lambda:us-east-1:027255383542:layer:AWS-AppConfig-Extension:128

The response looks like the following:

{
 "LayerVersionArn": "arn:aws:lambda:us-east-1:027255383542:layer:AWS-AppConfig-
Extension:128",
 "Description": "AWS AppConfig extension: Use dynamic configurations deployed via
 AWS AppConfig for your AWS Lambda functions",
 "CreatedDate": "2021-04-01T02:37:55.339+0000",
 "LayerArn": "arn:aws:lambda::layer:AWS-AppConfig-Extension",

 "Content": {
 "CodeSize": 5228073,
 "CodeSha256": "8otOgbLQbexpUm3rKlMhvcE6Q5TvwcLCKrc4Oe+vmMY=",
 "Location" : "S3-Bucket-Location-URL"
 },

 "Version": 30,
 "CompatibleRuntimes": [
 "python3.8",
 "python3.7",
 "nodejs12.x",
 "ruby2.7"
],
}

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 128

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions-versions.html#appconfig-integration-lambda-extensions-enabling-x86-64
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions-versions.html#appconfig-integration-lambda-extensions-enabling-ARM64

AWS AppConfig User Guide

2. In the above response, the value returned for Location is the URL of the Amazon Simple
Storage Service (Amazon S3) bucket that contains the Lambda extension. Paste the URL into
your web browser to download the Lambda extension .zip file.

Note

The Amazon S3 bucket URL is available for only 10 minutes.

(Optional) Alternatively, you can also use the following curl command to download the
Lambda extension.

curl -o extension.zip "S3-Bucket-Location-URL"

(Optional) Alternatively, you can combine Step 1 and Step 2 to retrieve the ARN and download
the .zip extension file all at once.

aws lambda get-layer-version-by-arn \
 --arn extension ARN \
 | jq -r '.Content.Location' \
 | xargs curl -o extension.zip

3. Add the following lines in your Dockerfile to add the extension to your container image.

COPY extension.zip extension.zip
RUN yum install -y unzip \
 && unzip extension.zip /opt \
 && rm -f extension.zip

4. Ensure that the Lambda function execution role has the appconfig:GetConfiguration
permission set.

Example

This section includes an example for enabling the AWS AppConfig Agent Lambda extension on a
container image-based Python Lambda function.

1. Create a Dockerfile that is similar to the following.

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 129

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_GetConfiguration.html

AWS AppConfig User Guide

FROM public.ecr.aws/lambda/python:3.8 AS builder
COPY extension.zip extension.zip
RUN yum install -y unzip \
 && unzip extension.zip -d /opt \
 && rm -f extension.zip

FROM public.ecr.aws/lambda/python:3.8
COPY --from=builder /opt /opt
COPY index.py ${LAMBDA_TASK_ROOT}
CMD ["index.handler"]

2. Download the extension layer to the same directory as the Dockerfile.

aws lambda get-layer-version-by-arn \
 --arn extension ARN \
 | jq -r '.Content.Location' \
 | xargs curl -o extension.zip

3. Create a Python file named index.py in the same directory as the Dockerfile.

import urllib.request

def handler(event, context):
 return {
 # replace parameters here with your application, environment, and
 configuration names
 'configuration': get_configuration('myApp', 'myEnv', 'myConfig'),
 }

def get_configuration(app, env, config):
 url = f'http://localhost:2772/applications/{app}/environments/{env}/
configurations/{config}'
 return urllib.request.urlopen(url).read()

4. Run the following steps to build the docker image and upload it to Amazon ECR.

// set environment variables
export ACCOUNT_ID = <YOUR_ACCOUNT_ID>
export REGION = <AWS_REGION>

// create an ECR repository
aws ecr create-repository --repository-name test-repository

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 130

AWS AppConfig User Guide

// build the docker image
docker build -t test-image .

// sign in to AWS
aws ecr get-login-password \
 | docker login \
 --username AWS \
 --password-stdin "$ACCOUNT_ID.dkr.ecr.$REGION.amazonaws.com"

// tag the image
docker tag test-image:latest "$ACCOUNT_ID.dkr.ecr.$REGION.amazonaws.com/test-
repository:latest"

// push the image to ECR
docker push "$ACCOUNT_ID.dkr.ecr.$REGION.amazonaws.com/test-repository:latest"

5. Use the Amazon ECR image that you created above to create the Lambda function. For more
information about a Lambda function as a container, see Create a Lambda function defined as a
container image.

6. Ensure that the Lambda function execution role has the appconfig:GetConfiguration permission
set.

Integrating with OpenAPI

You can use the following YAML specification for OpenAPI to create an SDK using a tool
like OpenAPI Generator. You can update this specification to include hardcoded values for
Application, Environment, or Configuration. You can also add additional paths (if you have multiple
configuration types) and include configuration schemas to generate configuration-specific typed
models for your SDK clients. For more information about OpenAPI (which is also known as
Swagger), see the OpenAPI specification.

openapi: 3.0.0
info:
 version: 1.0.0
 title: AppConfig Agent Lambda extension API
 description: An API model for the AppConfig Agent Lambda extension.
servers:
 - url: https://localhost:{port}/
 variables:

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 131

https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html#gettingstarted-images-function
https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html#gettingstarted-images-function
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_GetConfiguration.html
https://github.com/OpenAPITools/openapi-generator
https://swagger.io/specification/

AWS AppConfig User Guide

 port:
 default:
 '2772'
paths:
 /applications/{Application}/environments/{Environment}/configurations/
{Configuration}:
 get:
 operationId: getConfiguration
 tags:
 - configuration
 parameters:
 - in: path
 name: Application
 description: The application for the configuration to get. Specify either the
 application name or the application ID.
 required: true
 schema:
 type: string
 - in: path
 name: Environment
 description: The environment for the configuration to get. Specify either the
 environment name or the environment ID.
 required: true
 schema:
 type: string
 - in: path
 name: Configuration
 description: The configuration to get. Specify either the configuration name
 or the configuration ID.
 required: true
 schema:
 type: string
 responses:
 200:
 headers:
 ConfigurationVersion:
 schema:
 type: string
 content:
 application/octet-stream:
 schema:
 type: string
 format: binary
 description: successful config retrieval

Retrieving configuration data using the AWS AppConfig Agent Lambda extension 132

AWS AppConfig User Guide

 400:
 description: BadRequestException
 content:
 application/text:
 schema:
 $ref: '#/components/schemas/Error'
 404:
 description: ResourceNotFoundException
 content:
 application/text:
 schema:
 $ref: '#/components/schemas/Error'
 500:
 description: InternalServerException
 content:
 application/text:
 schema:
 $ref: '#/components/schemas/Error'
 502:
 description: BadGatewayException
 content:
 application/text:
 schema:
 $ref: '#/components/schemas/Error'
 504:
 description: GatewayTimeoutException
 content:
 application/text:
 schema:
 $ref: '#/components/schemas/Error'

components:
 schemas:
 Error:
 type: string
 description: The response error

Retrieving configuration data from Amazon EC2 instances

You can integrate AWS AppConfig with applications running on your Amazon Elastic Compute
Cloud (Amazon EC2) Linux instances by using AWS AppConfig Agent. The agent enhances
application processing and management in the following ways:

Retrieving configuration data from Amazon EC2 instances 133

AWS AppConfig User Guide

• The agent calls AWS AppConfig on your behalf by using an AWS Identity and Access
Management (IAM) role and managing a local cache of configuration data. By pulling
configuration data from the local cache, your application requires fewer code updates to manage
configuration data, retrieves configuration data in milliseconds, and isn't affected by network
issues that can disrupt calls for such data.*

• The agent offers a native experience for retrieving and resolving AWS AppConfig feature flags.

• Out of the box, the agent provides best practices for caching strategies, polling intervals, and
availability of local configuration data while tracking the configuration tokens needed for
subsequent service calls.

• While running in the background, the agent periodically polls the AWS AppConfig data plane for
configuration data updates. Your application can retrieve the data by connecting to localhost on
port 2772 (a customizable default port value) and calling HTTP GET to retrieve the data.

*AWS AppConfig Agent caches data the first time the service retrieves your configuration data. For
this reason, the first call to retrieve data is slower than subsequent calls.

Topics

• Step 1: (Required) Creating resources and configuring permissions

• Step 2: (Required) Installing and starting AWS AppConfig Agent on Amazon EC2 instances

• Step 3: (Optional, but recommended) Sending log files to CloudWatch Logs

• Step 4: (Optional) Using environment variables to configure AWS AppConfig Agent for Amazon
EC2

• Step 5: (Required) Retrieving configuration data

• Step 6 (Optional, but recommended): Automating updates to AWS AppConfig Agent

Step 1: (Required) Creating resources and configuring permissions

To integrate AWS AppConfig with applications running on your Amazon EC2 instances, you
must create AWS AppConfig artifacts and configuration data, including feature flags or freeform
configuration data. For more information, see Creating feature flags and free form configuration
data in AWS AppConfig.

To retrieve configuration data hosted by AWS AppConfig, your applications must be configured
with access to the AWS AppConfig data plane. To give your applications access, update the IAM

Retrieving configuration data from Amazon EC2 instances 134

AWS AppConfig User Guide

permissions policy that is assigned to the Amazon EC2 instance role. Specifically, you must add
the appconfig:StartConfigurationSession and appconfig:GetLatestConfiguration
actions to the policy. Here is an example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appconfig:StartConfigurationSession",
 "appconfig:GetLatestConfiguration"
],
 "Resource": "*"
 }
]
}

For more information about adding permissions to a policy, see Adding and removing IAM identity
permissions in the IAM User Guide.

Step 2: (Required) Installing and starting AWS AppConfig Agent on Amazon EC2
instances

AWS AppConfig Agent is hosted in an Amazon Simple Storage Service (Amazon S3) bucket that is
managed by AWS. Use the following procedure to install the latest version of the agent on your
Linux instance. If your application is distributed across multiple instances, then you must perform
this procedure on each instance that hosts the application.

Note

Note the following information:

• AWS AppConfig Agent is available for Linux operating systems running kernel version
4.15 or greater. Debian-based systems, such as Ubuntu, are not supported.

• The agent supports x86_64 and ARM64 architectures.

• For distributed applications, we recommend adding the install and startup commands
to the Amazon EC2 user data of your Auto Scaling group. If you do, each instance runs
the commands automatically. For more information, see Run commands on your Linux
instance at launch in the Amazon EC2 User Guide. Additionally, see Tutorial: Configure

Retrieving configuration data from Amazon EC2 instances 135

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/tutorial-lifecycle-hook-instance-metadata.html

AWS AppConfig User Guide

user data to retrieve the target lifecycle state through instance metadata in the Amazon
EC2 Auto Scaling User Guide.

• The procedures throughout this topic describe how to perform actions like installing the
agent by logging into the instance to run the command. You can run the commands from
a local client machine and target one or more instances by using Run Command, which is
a capability of AWS Systems Manager. For more information, see AWS Systems Manager
Run Command in the AWS Systems Manager User Guide.

• AWS AppConfig Agent on Amazon EC2 Linux instances is a systemd service.

To install and start AWS AppConfig Agent on an instance

1. Log into your Linux instance.

2. Open a terminal and run the following command with Administrator permissions for x86_64
architectures:

sudo yum install https://s3.amazonaws.com/aws-appconfig-downloads/aws-appconfig-
agent/linux/x86_64/latest/aws-appconfig-agent.rpm

For ARM64 architectures, run the following command:

sudo yum install https://s3.amazonaws.com/aws-appconfig-downloads/aws-appconfig-
agent/linux/arm64/latest/aws-appconfig-agent.rpm

If you want to install a specific version of AWS AppConfig Agent, replace latest in the URL
with a specific version number. Here's an example for x86_64:

sudo yum install https://s3.amazonaws.com/aws-appconfig-downloads/aws-appconfig-
agent/linux/x86_64/2.0.2/aws-appconfig-agent.rpm

3. Run the following command to start the agent:

sudo systemctl start aws-appconfig-agent

4. Run the following command to verify the agent is running:

sudo systemctl status aws-appconfig-agent

Retrieving configuration data from Amazon EC2 instances 136

https://docs.aws.amazon.com/autoscaling/ec2/userguide/tutorial-lifecycle-hook-instance-metadata.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/run-command.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/run-command.html

AWS AppConfig User Guide

If successful, the command returns information like the following:

aws-appconfig-agent.service - aws-appconfig-agent
 ...
 Active: active (running) since Mon 2023-07-26 00:00:00 UTC; 0s ago
 ...

Note

To stop the agent, run the following command:

sudo systemctl stop aws-appconfig-agent

Step 3: (Optional, but recommended) Sending log files to CloudWatch Logs

By default, AWS AppConfig Agent publishes logs to STDERR. Systemd redirects STDOUT and
STDERR for all services running on the Linux instance to the systemd journal. You can view and
manage log data in the systemd journal if you're running AWS AppConfig Agent on only one or
two instances. A better solution, a solution we highly recommend for distributed applications, is
to write log files to disk and then use Amazon CloudWatch agent to upload the log data to the
AWS cloud. Additionally, you can configure the CloudWatch agent to delete old log files from your
instance, which prevents your instance from running out of disk space.

To enable logging to disk, you must set the LOG_PATH environment variable, as described in Step
4: (Optional) Using environment variables to configure AWS AppConfig Agent for Amazon EC2.

To get started with the CloudWatch agent, see Collect metrics and logs from Amazon EC2 instances
and on-premises servers with the CloudWatch agent in the Amazon CloudWatch User Guide. You
can use Quick Setup, a capability of Systems Manager to quickly install the CloudWatch agent. For
more information, see Quick Setup Host Management in the AWS Systems Manager User Guide.

Warning

If you choose to write log files to disk without using the CloudWatch agent, you must
delete old log files. AWS AppConfig Agent automatically rotates log files every hour. If you
don't delete old log files, your instance can run out of disk space.

Retrieving configuration data from Amazon EC2 instances 137

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/quick-setup-host-management.html

AWS AppConfig User Guide

After you install the CloudWatch agent on your instance, create a CloudWatch agent configuration
file. The configuration file instructs CloudWatch agent on how to work with AWS AppConfig Agent
log files. For more information about creating a CloudWatch agent configuration file, see Create
the CloudWatch agent configuration file.

Add the following logs section to the CloudWatch agent configuration file on the instance and
save your changes:

"logs": {
 "logs_collected": {
 "files": {
 "collect_list": [
 {
 "file_path": "/path_you_specified_for_logging",
 "log_group_name": "${YOUR_LOG_GROUP_NAME}/aws-appconfig-agent.log",
 "auto_removal": true
 },
 ...
]
 },
 ...
 },
 ...
}

If the value of auto_removal is true, the CloudWatch agent automatically deletes rotated AWS
AppConfig Agent log files.

Step 4: (Optional) Using environment variables to configure AWS AppConfig
Agent for Amazon EC2

You can configure AWS AppConfig Agent for Amazon EC2 by using environment variables. To set
environment variables for a systemd service, you create a drop-in unit file. The following example
shows how to create drop-in unit file to set the AWS AppConfig Agent logging level to DEBUG.

Example of how to create a drop-in unit file for environment variables

1. Log into your Linux instance.

2. Open a terminal and run the following command with Administrator permissions. The
command creates a configuration directory:

Retrieving configuration data from Amazon EC2 instances 138

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file.html

AWS AppConfig User Guide

sudo mkdir /etc/systemd/system/aws-appconfig-agent.service.d

3. Run the following command to create the drop-in unit file. Replace file_name with a name
for the file. The extension must be .conf:

sudo touch /etc/systemd/system/aws-appconfig-agent.service.d/file_name.conf

4. Enter information in the drop-in unit file. The following example adds a Service section that
defines an environment variable. The example sets AWS AppConfig Agent log level to DEBUG.

[Service]
Environment=LOG_LEVEL=DEBUG

5. Run the following command to reload the systemd configuration:

sudo systemctl daemon-reload

6. Run the following command to restart AWS AppConfig Agent:

sudo systemctl restart aws-appconfig-agent

You can configure AWS AppConfig Agent for Amazon EC2 by specifying the following environment
variables in a drop-in unit file.

Environment variable Details Default value

ACCESS_TOKEN This environment variable
defines a token that must be
provided when requesting
configuration data from the
agent HTTP server. The value
of the token must be set in
the HTTP request authoriza
tion header with an authoriza
tion type of Bearer. Here is
an example.

None

Retrieving configuration data from Amazon EC2 instances 139

AWS AppConfig User Guide

Environment variable Details Default value

GET /applications/my_a
pp/...
 Host:
 localhost:2772

 Authorization: Bearer
 <token value>

BACKUP_DIRECTORY This environment variable
enables AWS AppConfig
Agent to save a backup of
each configuration it retrieves
to the specified directory.

Important

Configurations
backed up to disk
are not encrypted. If
your configuration
contains sensitive
data, AWS AppConfig
recommends that you
practice the principle
of least privilege
with your filesyste
m permissions. For
more information,
see Security in AWS
AppConfig.

None

HTTP_PORT This environment variable
specifies the port on which
the HTTP server for the agent
runs.

2772

Retrieving configuration data from Amazon EC2 instances 140

AWS AppConfig User Guide

Environment variable Details Default value

LOG_LEVEL This environment variable
specifies the level of detail
that the agent logs. Each level
includes the current level and
all higher levels. The variables
are case sensitive. From most
to least detailed, the log
levels are: debug, info,
warn, error, and none.
Debug includes detailed
information, including timing
information, about the agent.

info

LOG_PATH The disk location where logs
are written. If not specified,
logs are written to stderr.

None

Retrieving configuration data from Amazon EC2 instances 141

AWS AppConfig User Guide

Environment variable Details Default value

MANIFEST This environment variable
configures AWS AppConfig
Agent to take advantage of
additional per-configuration
features like multi-account
retrievals and save configura
tion to disk. You can enter one
of the following values:

• "app:env:manifest-
config"

• "file:/fully/quali
fied/path/to/manif
est.json"

For more information about
these features, see Additional
retrieval features.

true

MAX_CONNECTIONS This environment variable
configures the maximum
number of connections that
the agent uses to retrieve
configurations from AWS
AppConfig.

3

Retrieving configuration data from Amazon EC2 instances 142

AWS AppConfig User Guide

Environment variable Details Default value

POLL_INTERVAL This environment variable
controls how often the
agent polls AWS AppConfig
for updated configuration
data. You can specify a
number of seconds for the
interval. You can also specify
a number with a time unit: s
for seconds, m for minutes,
and h for hours. If a unit isn't
specified, the agent defaults
to seconds. For example, 60,
60s, and 1m result in the
same poll interval.

45 seconds

PREFETCH_LIST This environment variable
specifies the configuration
data the agent requests from
AWS AppConfig as soon as it
starts.

None

Retrieving configuration data from Amazon EC2 instances 143

AWS AppConfig User Guide

Environment variable Details Default value

PRELOAD_BACKUPS If set to true, AWS
AppConfig Agent loads
configuration backups found
in the BACKUP_DIRECTORY
into memory and immediate
ly checks to see if a newer
version exists from the
service. If set to false, AWS
AppConfig Agent only loads
the contents from a configura
tion backup if it cannot
retrieve configuration data
from the service, for example
if there is a problem with your
network.

true

PROXY_HEADERS This environment variable
specifies headers that
are required by the proxy
referenced in the PROXY_URL

 environment variable. The
value is a comma-separated
list of headers. Each header
uses the following form.

"header: value"

None

PROXY_URL This environment variable
specifies the proxy URL to
use for connections from
the agent to AWS services,
including AWS AppConfig.
HTTPS and HTTP URLs are
supported.

None

Retrieving configuration data from Amazon EC2 instances 144

AWS AppConfig User Guide

Environment variable Details Default value

REQUEST_TIMEOUT This environment variable
controls the amount of time
the agent waits for a response
from AWS AppConfig. If the
service does not respond, the
request fails.

If the request is for the initial
data retrieval, the agent
returns an error to your
application.

If the timeout occurs during
a background check for
updated data, the agent logs
the error and tries again after
a short delay.

You can specify the number
of milliseconds for the
timeout. You can also specify
a number with a time unit:
ms for milliseconds and s
for seconds. If a unit isn't
specified, the agent defaults
to milliseconds. As an
example, 5000, 5000ms and
5s result in the same request
timeout value.

3000 milliseconds

Retrieving configuration data from Amazon EC2 instances 145

AWS AppConfig User Guide

Environment variable Details Default value

ROLE_ARN This environment variable
specifies the Amazon
Resource Name (ARN) of an
IAM role. AWS AppConfig
Agent assumes this role to
retrieve configuration data.

None

ROLE_EXTERNAL_ID This environment variable
specifies the external ID to
use with the assumed role
ARN.

None

ROLE_SESSION_NAME This environment variable
specifies the session name
to be associated with the
credentials for the assumed
IAM role.

None

SERVICE_REGION This environment variable
specifies an alternative AWS
Region that AWS AppConfig
 Agent uses to call the
AWS AppConfig service. If
left undefined, the agent
attempts to determine the
current Region. If it can't, the
agent fails to start.

None

WAIT_ON_MANIFEST This environment variable
configures AWS AppConfig
Agent to wait until the
manifest is processed before
completing startup.

true

Retrieving configuration data from Amazon EC2 instances 146

AWS AppConfig User Guide

Step 5: (Required) Retrieving configuration data

You can retrieve configuration data from AWS AppConfig Agent by using an HTTP localhost call.
The following examples use curl with an HTTP client. You can call the agent using any available
HTTP client supported by your application language or available libraries, including an AWS SDK.

To retrieve the full content of any deployed configuration

$ curl "http://localhost:2772/applications/application_name/
environments/environment_name/configurations/configuration_name"

To retrieve a single flag and its attributes from an AWS AppConfig configuration of type
Feature Flag

$ curl "http://localhost:2772/applications/application_name/
environments/environment_name/configurations/configuration_name?flag=flag_name"

To access multiple flags and their attributes from an AWS AppConfig configuration of type
Feature Flag

$ curl "http://localhost:2772/applications/application_name/
environments/environment_name/configurations/configuration_name?
flag=flag_name_one&flag=flag_name_two"

Step 6 (Optional, but recommended): Automating updates to AWS AppConfig
Agent

AWS AppConfig Agent is updated periodically. To ensure you are running the latest version of AWS
AppConfig Agent on your instances, we recommend that you add the following commands to your
Amazon EC2 user data. You can add the commands to the user data on either the instance or the
EC2 Auto Scaling group. The script installs and starts the latest version of the agent each time an
instance starts or reboots.

#!/bin/bash
install the latest version of the agent
yum install -y https://s3.amazonaws.com/aws-appconfig-downloads/aws-appconfig-agent/
linux/x86_64/latest/aws-appconfig-agent.rpm

Retrieving configuration data from Amazon EC2 instances 147

AWS AppConfig User Guide

optional: configure the agent
mkdir /etc/systemd/system/aws-appconfig-agent.service.d
echo "${MY_AGENT_CONFIG}" > /etc/systemd/system/aws-appconfig-agent.service.d/
overrides.conf
systemctl daemon-reload
start the agent
systemctl start aws-appconfig-agent

Retrieving configuration data from Amazon ECS and Amazon EKS

You can integrate AWS AppConfig with Amazon Elastic Container Service (Amazon ECS) and
Amazon Elastic Kubernetes Service (Amazon EKS) by using AWS AppConfig Agent. The agent
functions as a sidecar container running alongside your Amazon ECS and Amazon EKS container
applications. The agent enhances containerized application processing and management in the
following ways:

• The agent calls AWS AppConfig on your behalf by using an AWS Identity and Access
Management (IAM) role and managing a local cache of configuration data. By pulling
configuration data from the local cache, your application requires fewer code updates to manage
configuration data, retrieves configuration data in milliseconds, and isn't affected by network
issues that can disrupt calls for such data.*

• The agent offers a native experience for retrieving and resolving AWS AppConfig feature flags.

• Out of the box, the agent provides best practices for caching strategies, polling intervals,
and local configuration data availability while tracking the configuration tokens needed for
subsequent service calls.

• While running in the background, the agent periodically polls the AWS AppConfig data plane for
configuration data updates. Your containerized application can retrieve the data by connecting to
localhost on port 2772 (a customizable default port value) and calling HTTP GET to retrieve the
data.

• AWS AppConfig Agent updates configuration data in your containers without having to restart or
recycle those containers.

*AWS AppConfig Agent caches data the first time the service retrieves your configuration data. For
this reason, the first call to retrieve data is slower than subsequent calls.

Topics

• Before you begin

Retrieving configuration data from Amazon ECS and Amazon EKS 148

AWS AppConfig User Guide

• Starting the AWS AppConfig agent for Amazon ECS integration

• Starting the AWS AppConfig agent for Amazon EKS integration

• Using environment variables to configure AWS AppConfig Agent for Amazon ECS and Amazon
EKS

• Retrieving configuration data

Before you begin

To integrate AWS AppConfig with your container applications, you must create AWS AppConfig
artifacts and configuration data, including feature flags or freeform configuration data. For more
information, see Creating feature flags and free form configuration data in AWS AppConfig.

To retrieve configuration data hosted by AWS AppConfig, your container applications must
be configured with access to the AWS AppConfig data plane. To give your applications
access, update the IAM permissions policy that is used by your container service IAM
role. Specifically, you must add the appconfig:StartConfigurationSession and
appconfig:GetLatestConfiguration actions to the policy. Container service IAM roles include
the following:

• The Amazon ECS task role

• The Amazon EKS node role

• The AWS Fargate (Fargate) pod execution role (if your Amazon EKS containers use Fargate for
compute processing)

For more information about adding permissions to a policy, see Adding and removing IAM identity
permissions in the IAM User Guide.

Starting the AWS AppConfig agent for Amazon ECS integration

The AWS AppConfig Agent sidecar container is automatically available in your Amazon ECS
environment. To use the AWS AppConfig Agent sidecar container, you must start it.

To start Amazon ECS (console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. Choose the task definition for your application, and then select the latest revision.

Retrieving configuration data from Amazon ECS and Amazon EKS 149

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://console.aws.amazon.com/ecs/v2

AWS AppConfig User Guide

4. Choose Create new revision, Create new revision.

5. Choose Add more containers.

6. For Name, enter a unique name for the AWS AppConfig Agent container.

7. For Image URI, enter: public.ecr.aws/aws-appconfig/aws-appconfig-agent:2.x

8. For Essential container, choose Yes.

9. In the Port mappings section, choose Add port mapping.

10. For Container port, enter 2772.

Note

AWS AppConfig Agent runs on port 2772, by default. You can specify a different port.

11. Choose Create. Amazon ECS creates a new container revision and displays the details.

12. In the navigation pane, choose Clusters, and then choose your application cluster in the list.

13. On the Services tab, select the service for your application.

14. Choose Update.

15. Under Deployment configuration, for Revision, choose the latest revision.

16. Choose Update. Amazon ECS deploys the latest task definition.

17. After the deployment finishes, you can verify that AWS AppConfig Agent is running on the
Configuration and tasks tab. On the Tasks tab, choose the running task.

18. In the Containers section, verify that the AWS AppConfig Agent container is listed.

19. To verify that AWS AppConfig Agent started, choose the Logs tab. Locate a statement like
the following for the AWS AppConfig Agent container: [appconfig agent] 1970/01/01
00:00:00 INFO serving on localhost:2772

Note

You can adjust the default behavior of AWS AppConfig Agent by entering or changing
environment variables. For information about the available environment variables, see
Using environment variables to configure AWS AppConfig Agent for Amazon ECS and
Amazon EKS. For information about how to change environment variables in Amazon ECS,
see Passing environment variables to a container in the Amazon Elastic Container Service
Developer Guide.

Retrieving configuration data from Amazon ECS and Amazon EKS 150

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/taskdef-envfiles.html

AWS AppConfig User Guide

Starting the AWS AppConfig agent for Amazon EKS integration

The AWS AppConfig Agent sidecar container is automatically available in your Amazon EKS
environment. To use the AWS AppConfig Agent sidecar container, you must start it. The following
procedure describes how to use the Amazon EKS kubectl command line tool to make changes in
the kubeconfig file for your container application. For more information about creating or editing
a kubeconfig file, see Creating or updating a kubeconfig file for an Amazon EKS cluster in the
Amazon EKS User Guide.

To start AWS AppConfig Agent (kubectl command line tool)

1. Open your kubeconfig file and verify that your Amazon EKS application is running as a
single-container deployment. The contents of the file should look similar to the following.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-app
 namespace: my-namespace
 labels:
 app: my-application-label
spec:
 replicas: 1
 selector:
 matchLabels:
 app: my-application-label
 template:
 metadata:
 labels:
 app: my-application-label
 spec:
 containers:
 - name: my-app
 image: my-repo/my-image
 imagePullPolicy: IfNotPresent

2. Add the AWS AppConfig Agent container definition details to your YAML deployment file.

- name: appconfig-agent
 image: public.ecr.aws/aws-appconfig/aws-appconfig-agent:2.x
 ports:
 - name: http

Retrieving configuration data from Amazon ECS and Amazon EKS 151

https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html

AWS AppConfig User Guide

 containerPort: 2772
 protocol: TCP
 env:
 - name: SERVICE_REGION
 value: region
 imagePullPolicy: IfNotPresent

Note

Note the following information.

• AWS AppConfig Agent runs on port 2772, by default. You can specify a different
port.

• You can adjust the default behavior of AWS AppConfig Agent by entering
environment variables. For more information, see Using environment variables to
configure AWS AppConfig Agent for Amazon ECS and Amazon EKS.

• For SERVICE_REGION, specify the AWS Region code (for example, us-west-1)
where AWS AppConfig Agent retrieves configuration data.

3. Run the following command in the kubectl tool to apply the changes to your cluster.

kubectl apply -f my-deployment.yml

4. After the deployment finishes, verify that AWS AppConfig Agent is running. Use the following
command to view the application pod log file.

kubectl logs -n my-namespace -c appconfig-agent my-pod

Locate a statement like the following for the AWS AppConfig Agent container: [appconfig
agent] 1970/01/01 00:00:00 INFO serving on localhost:2772

Note

You can adjust the default behavior of AWS AppConfig Agent by entering or changing
environment variables. For information about the available environment variables, see
Using environment variables to configure AWS AppConfig Agent for Amazon ECS and
Amazon EKS.

Retrieving configuration data from Amazon ECS and Amazon EKS 152

AWS AppConfig User Guide

Using environment variables to configure AWS AppConfig Agent for Amazon ECS
and Amazon EKS

You can configure AWS AppConfig Agent by changing the following environment variables for your
agent container.

Environment variable Details Default value

ACCESS_TOKEN This environment variable
defines a token that must be
provided when requesting
configuration data from the
agent HTTP server. The value
of the token must be set in
the HTTP request authoriza
tion header with an authoriza
tion type of Bearer. Here is
an example.

GET /applications/my_a
pp/...
 Host:
 localhost:2772

 Authorization: Bearer
 <token value>

None

BACKUP_DIRECTORY This environment variable
enables AWS AppConfig
Agent to save a backup of
each configuration it retrieves
to the specified directory.

Important

Configurations
backed up to disk
are not encrypted. If

None

Retrieving configuration data from Amazon ECS and Amazon EKS 153

AWS AppConfig User Guide

Environment variable Details Default value

your configuration
contains sensitive
data, AWS AppConfig
recommends that you
practice the principle
of least privilege
with your filesyste
m permissions. For
more information,
see Security in AWS
AppConfig.

HTTP_PORT This environment variable
specifies the port on which
the HTTP server for the agent
runs.

2772

LOG_LEVEL This environment variable
specifies the level of detail
that the agent logs. Each level
includes the current level and
all higher levels. The variables
are case sensitive. From most
to least detailed, the log
levels are: debug, info,
warn, error, and none.
Debug includes detailed
information, including timing
information, about the agent.

info

Retrieving configuration data from Amazon ECS and Amazon EKS 154

AWS AppConfig User Guide

Environment variable Details Default value

MANIFEST This environment variable
configures AWS AppConfig
Agent to take advantage of
additional per-configuration
features like multi-account
retrievals and save configura
tion to disk. You can enter one
of the following values:

• "app:env:manifest-
config"

• "file:/fully/quali
fied/path/to/manif
est.json"

For more information about
these features, see Additional
retrieval features.

true

MAX_CONNECTIONS This environment variable
configures the maximum
number of connections that
the agent uses to retrieve
configurations from AWS
AppConfig.

3

Retrieving configuration data from Amazon ECS and Amazon EKS 155

AWS AppConfig User Guide

Environment variable Details Default value

POLL_INTERVAL This environment variable
controls how often the
agent polls AWS AppConfig
for updated configuration
data. You can specify a
number of seconds for the
interval. You can also specify
a number with a time unit: s
for seconds, m for minutes,
and h for hours. If a unit isn't
specified, the agent defaults
to seconds. For example, 60,
60s, and 1m result in the
same poll interval.

45 seconds

PREFETCH_LIST This environment variable
specifies the configuration
data the agent requests from
AWS AppConfig as soon as it
starts.

None

Retrieving configuration data from Amazon ECS and Amazon EKS 156

AWS AppConfig User Guide

Environment variable Details Default value

PRELOAD_BACKUPS If set to true, AWS
AppConfig Agent loads
configuration backups found
in the BACKUP_DIRECTORY
into memory and immediate
ly checks to see if a newer
version exists from the
service. If set to false, AWS
AppConfig Agent only loads
the contents from a configura
tion backup if it cannot
retrieve configuration data
from the service, for example
if there is a problem with your
network.

true

PROXY_HEADERS This environment variable
specifies headers that
are required by the proxy
referenced in the PROXY_URL

 environment variable. The
value is a comma-separated
list of headers. Each header
uses the following form.

"header: value"

None

PROXY_URL This environment variable
specifies the proxy URL to
use for connections from
the agent to AWS services,
including AWS AppConfig.
HTTPS and HTTP URLs are
supported.

None

Retrieving configuration data from Amazon ECS and Amazon EKS 157

AWS AppConfig User Guide

Environment variable Details Default value

REQUEST_TIMEOUT This environment variable
controls the amount of time
the agent waits for a response
from AWS AppConfig. If the
service does not respond, the
request fails.

If the request is for the initial
data retrieval, the agent
returns an error to your
application.

If the timeout occurs during
a background check for
updated data, the agent logs
the error and tries again after
a short delay.

You can specify the number
of milliseconds for the
timeout. You can also specify
a number with a time unit:
ms for milliseconds and s
for seconds. If a unit isn't
specified, the agent defaults
to milliseconds. As an
example, 5000, 5000ms and
5s result in the same request
timeout value.

3000 milliseconds

Retrieving configuration data from Amazon ECS and Amazon EKS 158

AWS AppConfig User Guide

Environment variable Details Default value

ROLE_ARN This environment variable
specifies the Amazon
Resource Name (ARN) of an
IAM role. AWS AppConfig
Agent assumes this role to
retrieve configuration data.

None

ROLE_EXTERNAL_ID This environment variable
specifies the external ID to
use with the assumed role
ARN.

None

ROLE_SESSION_NAME This environment variable
specifies the session name
to be associated with the
credentials for the assumed
IAM role.

None

SERVICE_REGION This environment variable
specifies an alternative AWS
Region that AWS AppConfig
 Agent uses to call the
AWS AppConfig service. If
left undefined, the agent
attempts to determine the
current Region. If it can't, the
agent fails to start.

None

WAIT_ON_MANIFEST This environment variable
configures AWS AppConfig
Agent to wait until the
manifest is processed before
completing startup.

true

Retrieving configuration data from Amazon ECS and Amazon EKS 159

AWS AppConfig User Guide

Retrieving configuration data

You can retrieve configuration data from AWS AppConfig Agent by using an HTTP localhost call.
The following examples use curl with an HTTP client. You can call the agent using any available
HTTP client supported by your application language or available libraries.

Note

To retrieve configuration data if your application uses a forward slash, for example "test-
backend/test-service", you will need to use URL encoding.

To retrieve the full content of any deployed configuration

$ curl "http://localhost:2772/applications/application_name/
environments/environment_name/configurations/configuration_name"

To retrieve a single flag and its attributes from an AWS AppConfig configuration of type
Feature Flag

$ curl "http://localhost:2772/applications/application_name/
environments/environment_name/configurations/configuration_name?flag=flag_name"

To access multiple flags and their attributes from an AWS AppConfig configuration of type
Feature Flag

$ curl "http://localhost:2772/applications/application_name/
environments/environment_name/configurations/configuration_name?
flag=flag_name_one&flag=flag_name_two"

Additional retrieval features

AWS AppConfig Agent offers the following additional features to help you retrieve configurations
for your applications.

• Multi-account retrieval: Use AWS AppConfig Agent from a primary or retrieval AWS account to
retrieve configuration data from multiple vendor accounts.

Additional retrieval features 160

AWS AppConfig User Guide

• Write configuration copy to disk: Use AWS AppConfig Agent to write configuration data to disk.
This feature enables customers with applications that read configuration data from disk to
integrate with AWS AppConfig.

About agent manifests

To enable these AWS AppConfig Agent features, you create a manifest. A manifest is a set of
configuration data that you provide to control actions the agent can perform. A manifest is written
in JSON. It contains a set of top-level keys that correspond to different configurations you’ve
deployed using AWS AppConfig.

A manifest can include multiple configurations. Furthermore, each configuration in the manifest
can identify one or more agent features to use for the specified configuration. The content of the
manifest uses the following format:

{
 "application_name:environment_name:configuration_name": {
 "agent_feature_to_enable_1": {
 "feature-setting-key": "feature-setting-value"
 },
 "agent_feature_to_enable_2": {
 "feature-setting-key": "feature-setting-value"
 }
 }
}

Here is example JSON for a manifest with two configurations. The first configuration (MyApp)
doesn't use any AWS AppConfig Agent features. The second configuration (My2ndApp) uses the
write configuration copy to disk and the multi-account retrieval features:

{
 "MyApp:Test:MyAllowListConfiguration": {},

 "My2ndApp:Beta:MyEnableMobilePaymentsFeatureFlagConfiguration": {
 "credentials": {
 "roleArn": "arn:us-west-1:iam::123456789012:role/MyTestRole",
 "roleExternalId": "00b148e2-4ea4-46a1-ab0f-c422b54d0aac",
 "roleSessionName": "AwsAppConfigAgent",
 "credentialsDuration": "2h"
 },

Additional retrieval features 161

AWS AppConfig User Guide

 "writeTo": {
 "path": "/tmp/aws-appconfig/my-2nd-app/beta/my-enable-payments-feature-
flag-configuration.json"
 }
 }
 }

How to supply an agent manifest

You can store the manifest as a file in a location where AWS AppConfig Agent can read it. Or, you
can store the manifest as an AWS AppConfig configuration and point the agent to it. To supply an
agent manifest, you must set a MANIFEST environment variable with one of the following values:

Manifest location Environment variable value Use case

File file:/path/to/agent-manifes
t.json

Use this method if your
manifest won't change often.

AWS AppConfig configuration application-
name:environment-
name:configuration-
name

Use this method for dynamic
updates. You can update and
deploy a manifest stored
in AWS AppConfig as a
configuration in the same
ways you store other AWS
AppConfig configurations.

Environment variable Manifest content (JSON) Use this method if your
manifest won't change often.
This method is useful in
container environments
where it's easier to set an
environment variable than it
is to expose a file.

For more information about setting variables for AWS AppConfig Agent, see the relevant topic for
your use case:

• Configuring the AWS AppConfig Agent Lambda extension

Additional retrieval features 162

AWS AppConfig User Guide

• Using AWS AppConfig Agent with Amazon EC2

• Using AWS AppConfig Agent with Amazon ECS and Amazon EKS

Multi-account retrieval

You can configure AWS AppConfig Agent to retrieve configurations from multiple AWS accounts
by entering credential overrides in the AWS AppConfig Agent manifest. Credential overrides include
the Amazon Resource Name (ARN) of an AWS Identity and Access Management (IAM) role, a role ID,
a session name, and a duration for how long the agent can assume the role.

You enter these details in a "credentials" section in the manifest. The "credentials" section uses the
following format:

{
 "application_name:environment_name:configuration_name": {
 "credentials": {
 "roleArn": "arn:partition:iam::account_ID:role/roleName",
 "roleExternalId": "string",
 "roleSessionName": "string",
 "credentialsDuration": "time_in_hours"
 }
 }
}

Here is an example:

{
 "My2ndApp:Beta:MyEnableMobilePaymentsFeatureFlagConfiguration": {
 "credentials": {
 "roleArn": "arn:us-west-1:iam::123456789012:role/MyTestRole",
 "roleExternalId": "00b148e2-4ea4-46a1-ab0f-c422b54d0aac",
 "roleSessionName": "AWSAppConfigAgent",
 "credentialsDuration": "2h"
 }
 }
}

Before retrieving a configuration, the agent reads the credential details for the configuration from
the manifest and then assumes the IAM role specified for that configuration. You can specify a
different set of credential overrides for different configurations in a single manifest. The following

Additional retrieval features 163

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-ec2.html#appconfig-integration-ec2-configuring
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-containers-agent.html#appconfig-integration-containers-agent-configuring

AWS AppConfig User Guide

diagram shows how AWS AppConfig Agent, while running in Account A (the retrieval account),
assumes separate roles specified for Accounts B and C (the vendor accounts) and then calls the
GetLatestConfiguration API operation to retrieve configuration data from AWS AppConfig running
in those accounts:

Configure permissions to retrieve configuration data from vendor accounts

AWS AppConfig Agent running in the retrieval account needs permission to retrieve configuration
data from the vendor accounts. You give the agent permission by creating an AWS Identity and
Access Management (IAM) role in each of the vendor accounts. AWS AppConfig Agent in the
retrieval account assumes this role to get data from vendor accounts. Complete the procedures
in this section to create an IAM permissions policy, an IAM role, and add agent overrides to the
manifest.

Before you begin

Collect the following information before you create a permission policy and a role in IAM.

Additional retrieval features 164

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_GetLatestConfiguration.html

AWS AppConfig User Guide

• The IDs for each AWS account. The retrieval account is the account that will call other accounts
for configuration data. The vendor accounts are the accounts that will vend configuration data to
the retrieval account.

• The name of the IAM role used by AWS AppConfig in the retrieval account. Here's a list of the
roles used by AWS AppConfig, by default:

• For Amazon Elastic Compute Cloud (Amazon EC2), AWS AppConfig uses the instance role.

• For AWS Lambda, AWS AppConfig uses the Lambda execution role.

• For Amazon Elastic Container Service (Amazon ECS) and Amazon Elastic Kubernetes Service
(Amazon EKS), AWS AppConfig uses the container role.

If you configured AWS AppConfig Agent to use a different IAM role by specifying the ROLE_ARN
environment variable, make a note of that name.

Create the permissions policy

Use the following procedure to create a permissions policy using the IAM console. Complete the
procedure in each AWS account that will vend configuration data for the retrieval account.

To create an IAM policy

1. Sign in to the AWS Management Console in a vendor account.

2. Open the IAM console at https://console.aws.amazon.com/iam/.

3. In the navigation pane, choose Policies, and then choose Create policy.

4. Choose the JSON option.

5. In the Policy editor, replace the default JSON with the following policy statement. Update
each example resource placeholder with vendor account details.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "appconfig:StartConfigurationSession",
 "appconfig:GetLatestConfiguration"
],
 "Resource":
 "arn:partition:appconfig:region:vendor_account_ID:application/

Additional retrieval features 165

https://console.aws.amazon.com/iam/

AWS AppConfig User Guide

vendor_application_ID/environment/vendor_environment_ID/
configuration/vendor_configuration_ID"
 }
]
}

Here's an example:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "appconfig:StartConfigurationSession",
 "appconfig:GetLatestConfiguration"
],
 "Resource": "arn:aws:appconfig:us-east-2:111122223333:application/abc123/
environment/def456/configuration/hij789"
 }
]
}

6. Choose Next.

7. In the Policy name field, enter a name.

8. (Optional) For Add tags, add one or more tag-key value pairs to organize, track, or control
access for this policy.

9. Choose Create policy. The system returns you to the Policies page.

10. Repeat this procedure in each AWS account that will vend configuration data for the retrieval
account.

Create the IAM role

Use the following procedure to create an IAM role using the IAM console. Complete the procedure
in each AWS account that will vend configuration data for the retrieval account.

To create an IAM role

1. Sign in to the AWS Management Console in a vendor account.

2. Open the IAM console at https://console.aws.amazon.com/iam/.

Additional retrieval features 166

https://console.aws.amazon.com/iam/

AWS AppConfig User Guide

3. In the navigation pane, choose Roles, and then choose Create policy.

4. For Trusted entity type, choose AWS account.

5. In the AWS account section, choose Another AWS account.

6. In the Account ID field, enter the retrieval account ID.

7. (Optional) As a security best practice for this assume role, choose Require external ID and
enter a string.

8. Choose Next.

9. On the Add permissions page, use the Search field to locate the policy you created in the
previous procedure. Select the check box next to its name.

10. Choose Next.

11. For Role name, enter a name.

12. (Optional) For Description, enter a description.

13. For Step 1: Select trusted entities, choose Edit. Replace the default JSON trust policy with
the following policy. Update each example resource placeholder with information from
your retrieval account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS":
 "arn:aws:iam::retrieval_account_ID:role/appconfig_role_in_retrieval_account"
 },
 "Action": "sts:AssumeRole"
 }
]
}

14. (Optional) For Tags, add one or more tag-key value pairs to organize, track, or control access
for this role.

15. Choose Create role. The system returns you to the Roles page.

16. Search for the role you just created. Choose it. In the ARN section, copy the ARN. You'll specify
this information in the next procedure.

Additional retrieval features 167

AWS AppConfig User Guide

Add credential overrides to the manifest

After you create the IAM role in your vendor account, update the manifest in the retrieval account.
Specifically, add the credentials block and the IAM role ARN for retrieving configuration data from
the vendor account. Here is the JSON format:

{
 "vendor_application_name:vendor_environment_name:vendor_configuration_name": {
 "credentials": {
 "roleArn":
 "arn:partition:iam::vendor_account_ID:role/name_of_role_created_in_vendor_account",
 "roleExternalId": "string",
 "roleSessionName": "string",
 "credentialsDuration": "time_in_hours"
 }
 }
}

Here is an example:

{
 "My2ndApp:Beta:MyEnableMobilePaymentsFeatureFlagConfiguration": {
 "credentials": {
 "roleArn": "arn:us-west-1:iam::123456789012:role/MyTestRole",
 "roleExternalId": "00b148e2-4ea4-46a1-ab0f-c422b54d0aac",
 "roleSessionName": "AwsAppConfigAgent",
 "credentialsDuration": "2h"
 }
 }
}

Validate that multi-account retrieval is working

You can validate that that agent is able to retrieve configuration data from multiple accounts
by reviewing the AWS AppConfig agent logs. The INFO level log for retrieved initial data for
'YourApplicationName:YourEnvironmentName:YourConfigurationName' is the best
indicator for successful retrievals. If retrievals are failing, you should see an ERROR level log
indicating the failure reason. Here is an example for a successful retrieval from a vendor account:

[appconfig agent] 2023/11/13 11:33:27 INFO AppConfig Agent 2.0.x
[appconfig agent] 2023/11/13 11:33:28 INFO serving on localhost:2772

Additional retrieval features 168

AWS AppConfig User Guide

[appconfig agent] 2023/11/13 11:33:28 INFO retrieved initial data for
 'MyTestApplication:MyTestEnvironment:MyDenyListConfiguration' in XX.Xms

Write configuration copy to disk

You can configure AWS AppConfig Agent to automatically store a copy of a configuration to disk in
plain text. This feature enables customers with applications that read configuration data from disk
to integrate with AWS AppConfig.

This feature is not designed to be used as a configuration backup feature. AWS AppConfig Agent
doesn't read from the configuration files copied to disk. If you want to back up configurations to
disk, see the BACKUP_DIRECTORY and PRELOAD_BACKUP environment variables for Using AWS
AppConfig Agent with Amazon EC2 or Using AWS AppConfig Agent with Amazon ECS and Amazon
EKS.

Warning

Note the following important information about this feature:

• Configurations saved to disk are stored in plain text and are human readable. Don't
enable this feature for configurations that include sensitive data.

• This feature writes to the local disk. Use the principle of least privilege for filesystem
permissions. For more information, see Implement least privilege access.

To enable write configuration copy to disk

1. Edit the manifest.

2. Choose the configuration that you want AWS AppConfig to write to disk and add a writeTo
element. Here is an example:

{
 "application_name:environment_name:configuration_name": {
 "writeTo": {
 "path": "path_to_configuration_file"
 }
 }
}

Additional retrieval features 169

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-ec2.html#appconfig-integration-ec2-configuring
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-ec2.html#appconfig-integration-ec2-configuring
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-containers-agent.html#appconfig-integration-containers-agent-configuring
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-containers-agent.html#appconfig-integration-containers-agent-configuring

AWS AppConfig User Guide

Here is an example:

{
 "MyTestApp:MyTestEnvironment:MyNewConfiguration": {
 "writeTo": {
 "path": "/tmp/aws-appconfig/mobile-app/beta/enable-mobile-payments"
 }
 }
}

3. Save your changes. The configuration.json file will be updated each time new configuration
data is deployed.

Validate that write configuration copy to disk is working

You can validate that copies of a configuration are being written to disk by looking by reviewing
the AWS AppConfig agent logs. The INFO log entry with the phrasing "INFO wrote configuration
'application:environment:configuration' to file_path" indicates that AWS AppConfig
Agent writes configuration copies to disk.

Here is an example:

[appconfig agent] 2023/11/13 11:33:27 INFO AppConfig Agent 2.0.x
[appconfig agent] 2023/11/13 11:33:28 INFO serving on localhost:2772
[appconfig agent] 2023/11/13 11:33:28 INFO retrieved initial data for
 'MobileApp:Beta:EnableMobilePayments' in XX.Xms
[appconfig agent] 2023/11/13 17:05:49 INFO wrote configuration
 'MobileApp:Beta:EnableMobilePayments' to /tmp/configs/your-app/your-env/your-
config.json

AWS AppConfig Agent local development

AWS AppConfig Agent supports a local development mode. If you enable local development
mode, the agent reads configuration data from a specified directory on disk. It doesn't retrieve
configuration data from AWS AppConfig. You can simulate configuration deployments by updating
files in the specified directory. We recommend local development mode for the following use
cases:

• Test different configuration versions before deploying them using AWS AppConfig.

AWS AppConfig Agent local development 170

AWS AppConfig User Guide

• Test different configuration options for a new feature before committing changes to your code
repository.

• Test different configuration scenarios to verify they work as expected.

Warning

Don't use local development mode in production environments. This mode doesn't support
important AWS AppConfig safety features like deployment validation and automated
rollbacks.

Use the following procedure to configure AWS AppConfig Agent for local development mode.

To configure AWS AppConfig Agent for local development mode

1. Install the agent using the method described for your compute environment. AWS AppConfig
Agent works with the following AWS services:

• AWS Lambda

• Amazon EC2

• Amazon ECS and Amazon EKS

2. If the agent is running, stop it.

3. Add LOCAL_DEVELOPMENT_DIRECTORY to the list of environment variables. Specify a
directory on the filesystem that provides the agent with read permissions. For example, /tmp/
local_configs.

4. Create a file in the directory. The file name must use the following format:

application_name:environment_name:configuration_profile_name

Here is an example:

Mobile:Development:EnableMobilePaymentsFeatureFlagConfiguration

AWS AppConfig Agent local development 171

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-ec2.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-containers-agent.html

AWS AppConfig User Guide

Note

(Optional) You can control the content type the agent returns for your configuration
data based on the extension you give the file. For example, if you name the file with
a .json extension, the agent returns a content type of application/json when
your application requests it. If you omit the extension, the agent uses application/
octet-stream for the content type. If you need precise control, you can provide
an extension in the format .type%subtype. The agent will return a content type of
.type/subtype.

5. Run the following command to restart the agent and request the configuration data.

curl http://localhost:2772/applications/application_name/
environments/environment_name/configurations/configuration_name

The agent checks for changes to the local file at the poll interval specified for the agent. If the poll
interval isn't specified, the agent uses the default interval of 45 seconds. This check at the poll
interval ensures that the agent behaves the same in a local development environment as it does
when configured to interact with the AWS AppConfig service.

Note

To deploy a new version of a local development configuration file, update the file with new
data.

Retrieving configurations by directly calling APIs

Your application retrieves configuration data by first establishing a configuration session using
the StartConfigurationSession API operation. Your session's client then makes periodic calls to
GetLatestConfiguration to check for and retrieve the latest data available.

When calling StartConfigurationSession, your code sends the following information:

• Identifiers (ID or name) of an AWS AppConfig application, environment, and configuration profile
that the session tracks.

Retrieving configurations by directly calling APIs 172

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_StartConfigurationSession.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_GetLatestConfiguration.html

AWS AppConfig User Guide

• (Optional) The minimum amount of time the session's client must wait between calls to
GetLatestConfiguration.

In response, AWS AppConfig provides an InitialConfigurationToken to be given to the
session's client and used the first time it calls GetLatestConfiguration for that session.

Important

This token should only be used once in your first call to GetLatestConfiguration.
You must use the new token in the GetLatestConfiguration
response (NextPollConfigurationToken) in each subsequent call to
GetLatestConfiguration. To support long poll use cases, the tokens are valid for up to
24 hours. If a GetLatestConfiguration call uses an expired token, the system returns
BadRequestException.

When calling GetLatestConfiguration, your client code sends the most recent
ConfigurationToken value it has and receives in response:

• NextPollConfigurationToken: the ConfigurationToken value to use on the next call to
GetLatestConfiguration.

• NextPollIntervalInSeconds: the duration the client should wait before making its next call
to GetLatestConfiguration.

• The configuration: the latest data intended for the session. This may be empty if the client
already has the latest version of the configuration.

Important

Note the following important information.

• The StartConfigurationSession API should only be called once per application,
environment, configuration profile, and client to establish a session with the service.
This is typically done in the startup of your application or immediately prior to the first
retrieval of a configuration.

Retrieving configurations by directly calling APIs 173

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_StartConfigurationSession.html

AWS AppConfig User Guide

• If your configuration is deployed using a KmsKeyIdentifier, your request to receive
the configuration must include permission to call kms:Decrypt. For more information,
see Decrypt in the AWS Key Management Service API Reference.

• The API operation previously used to retrieve configuration data, GetConfiguration,
is deprecated. The GetConfiguration API operation does not support encrypted
configurations.

Retrieving a configuration example

The following AWS CLI example demonstrates how to retrieve configuration data by using the
AWS AppConfig Data StartConfigurationSession and GetLatestConfiguration API
operations. The first command starts a configuration session. This call includes the IDs (or names)
of the AWS AppConfig application, the environment, and the configuration profile. The API returns
an InitialConfigurationToken used to fetch your configuration data.

aws appconfigdata start-configuration-session \
 --application-identifier application_name_or_ID \
 --environment-identifier environment_name_or_ID \
 --configuration-profile-identifier configuration_profile_name_or_ID

The system responds with information in the following format.

{
 "InitialConfigurationToken": initial configuration token
}

After starting a session, use InitialConfigurationToken to call GetLatestConfiguration to fetch your
configuration data. The configuration data is saved to the mydata.json file.

aws appconfigdata get-latest-configuration \
 --configuration-token initial configuration token mydata.json

The first call to GetLatestConfiguration uses the ConfigurationToken obtained from
StartConfigurationSession. The following information is returned.

{
 "NextPollConfigurationToken" : next configuration token,

Retrieving a configuration example 174

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_StartConfigurationSession.html#API_appconfigdata_StartConfigurationSession_ResponseSyntax
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_GetLatestConfiguration.html

AWS AppConfig User Guide

 "ContentType" : content type of configuration,
 "NextPollIntervalInSeconds" : 60
}

Subsequent calls to GetLatestConfiguration must provide NextPollConfigurationToken
from the previous response.

aws appconfigdata get-latest-configuration \
 --configuration-token next configuration token mydata.json

Important

Note the following important details about the GetLatestConfiguration API operation:

• The GetLatestConfiguration response includes a Configuration section that
shows the configuration data. The Configuration section only appears if the system
finds new or updated configuration data. If the system doesn't find new or updated
configuration data, then the Configuration data is empty.

• You receive a new ConfigurationToken in every response from
GetLatestConfiguration.

• We recommend tuning the polling frequency of your GetLatestConfiguration API
calls based on your budget, the expected frequency of your configuration deployments,
and the number of targets for a configuration.

Retrieving a configuration example 175

AWS AppConfig User Guide

Extending workflows using extensions

An extension augments your ability to inject logic or behavior at different points during the AWS
AppConfig workflow of creating or deploying a configuration. For example, you can use extensions
to perform the following types of tasks (to name a few):

• Send a notification to an Amazon Simple Notification Service (Amazon SNS) topic when a
configuration profile is deployed.

• Scrub the contents of a configuration profile for sensitive data before a deployment starts.

• Create or update an Atlassian Jira issue whenever a change is made to a feature flag.

• Merge content from a service or data source into your configuration data when you start a
deployment.

• Back up a configuration to an Amazon Simple Storage Service (Amazon S3) bucket whenever a
configuration is deployed.

You can associate these types of tasks with AWS AppConfig applications, environments, and
configuration profiles.

Contents

• About AWS AppConfig extensions

• Working with AWS authored extensions

• Walkthrough: Creating custom AWS AppConfig extensions

• AWS AppConfig extension integration with Atlassian Jira

About AWS AppConfig extensions

This topic introduces AWS AppConfig extension concepts and terminology. The information is
discussed in the context of each step required to set up and use AWS AppConfig extensions.

Topics

• Step 1: Determine what you want to do with extensions

• Step 2: Determine when you want the extension to run

• Step 3: Create an extension association

• Step 4: Deploy a configuration and verify the extension actions are performed

About AWS AppConfig extensions 176

AWS AppConfig User Guide

Step 1: Determine what you want to do with extensions

Do you want to receive a notification to a webhook that sends messages to Slack anytime an AWS
AppConfig deployment completes? Do you want to back up a configuration profile to an Amazon
Simple Storage Service (Amazon S3) bucket before a configuration is deployed? Do you want to
scrub configuration data for sensitive information before the configuration is deployed? You can
use extensions to perform these types of tasks and more. You can create custom extensions or use
the AWS authored extensions included with AWS AppConfig.

Note

For most use cases, to create a custom extension, you must create an AWS Lambda
function to perform any computation and processing defined in the extension. For more
information, see Walkthrough: Creating custom AWS AppConfig extensions.

The following AWS authored extensions can help you quickly integrate configuration deployments
with other services. You can use these extensions in the AWS AppConfig console or by calling
extension API actions directly from the AWS CLI, AWS Tools for PowerShell, or the SDK.

Extension Description

Amazon CloudWatch Evidently A/B testing This extension allows your application to
assign variations to user sessions locally
instead of by calling the EvaluateFeature
operation. For more information, see Working
with the Amazon CloudWatch Evidently
extension.

AWS AppConfig deployment events to
EventBridge

This extension sends events to the EventBrid
ge default event bus when a configuration is
deployed.

AWS AppConfig deployment events to
Amazon Simple Notification Service (Amazon
SNS)

This extension sends messages to an Amazon
SNS topic that you specify when a configura
tion is deployed.

Step 1: Determine what you want to do with extensions 177

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_Operations.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-evidently
https://docs.aws.amazon.com/cloudwatchevidently/latest/APIReference/API_EvaluateFeature.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-notification-eventbridge.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-notification-eventbridge.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-notification-sns.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-notification-sns.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-notification-sns.html

AWS AppConfig User Guide

Extension Description

AWS AppConfig deployment events to
Amazon Simple Queue Service (Amazon SQS)

This extension enqueues messages into your
Amazon SQS queue when a configuration is
deployed.

Integration extension—Atlassian Jira This extensions allows AWS AppConfig to
create and update issues whenever you make
changes to a feature flag.

Step 2: Determine when you want the extension to run

An extension defines one or more actions that it performs during an AWS AppConfig workflow. For
example, the AWS authored AWS AppConfig deployment events to Amazon SNS extension
includes an action to send a notification to an Amazon SNS topic. Each action is invoked either
when you interact with AWS AppConfig or when AWS AppConfig is performing a process on your
behalf. These are called action points. AWS AppConfig extensions support the following action
points:

• PRE_CREATE_HOSTED_CONFIGURATION_VERSION

• PRE_START_DEPLOYMENT

• ON_DEPLOYMENT_START

• ON_DEPLOYMENT_STEP

• ON_DEPLOYMENT_BAKING

• ON_DEPLOYMENT_COMPLETE

• ON_DEPLOYMENT_ROLLED_BACK

Extension actions configured on PRE_* action points are applied after request validation, but
before AWS AppConfig performs the activity that corresponds to the action point name. These
action invocations are processed at the same time as a request. If more than one request is made,
action invocations run sequentially. Also note that PRE_* action points receive and can change
the contents of a configuration. PRE_* action points can also respond to an error and prevent an
action from happening.

Step 2: Determine when you want the extension to run 178

https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-notification-sqs.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-notification-sqs.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-jira.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-configuration-and-profile.html#appconfig-creating-configuration-and-profile-feature-flags

AWS AppConfig User Guide

An extension can also run in parallel with an AWS AppConfig workflow by using an ON_* action
point. ON_* action points are invoked asynchronously. ON_* action points don't receive the
contents of a configuration. If an extension experiences an error during an ON_* action point, the
service ignores the error and continues the workflow.

Step 3: Create an extension association

To create an extension, or configure an AWS authored extension, you define the action points
that invoke an extension when a specific AWS AppConfig resource is used. For example, you can
choose to run the AWS AppConfig deployment events to Amazon SNS extension and
receive notifications on an Amazon SNS topic anytime a configuration deployment is started for a
specific application. Defining which action points invoke an extension for a specific AWS AppConfig
resource is called an extension association. An extension association is a specified relationship
between an extension and an AWS AppConfig resource, such as an application or a configuration
profile.

A single AWS AppConfig application can include multiple environments and configuration profiles.
If you associate an extension to an application or an environment, AWS AppConfig invokes the
extension for any workflows that relate to the application or environment resources, if applicable.

For example, say you have an AWS AppConfig application called MobileApps that includes
a configuration profile called AccessList. And say the MobileApps application includes Beta,
Integration, and Production environments. You create an extension association for the AWS
authored Amazon SNS notification extension and associate the extension to the MobileApps
application. The Amazon SNS notification extension is invoked anytime the configuration is
deployed for the application to any of the three environments.

Note

You don't have to create an extension to use AWS authored extensions, but you do have to
create an extension association.

Step 4: Deploy a configuration and verify the extension actions are
performed

After you create an association, when a hosted configuration is created or a configuration is
deployed, AWS AppConfig invokes the extension and performs the specified actions. When

Step 3: Create an extension association 179

AWS AppConfig User Guide

an extension is invoked, if the system experiences an error during a PRE-* action point, AWS
AppConfig returns information about that error.

Working with AWS authored extensions

AWS AppConfig includes the following AWS authored extensions. These extensions can help you
integrate the AWS AppConfig workflow with other services. You can use these extensions in the
AWS Management Console or by calling extension API actions directly from the AWS CLI, AWS
Tools for PowerShell, or the SDK.

Extension Description

Amazon CloudWatch Evidently A/B testing This extension allows your application to
assign variations to user sessions locally
instead of by calling the EvaluateFeature
operation. For more information, see Working
with the Amazon CloudWatch Evidently
extension.

AWS AppConfig deployment events to
EventBridge

This extension sends events to the EventBrid
ge default event bus when a configuration is
deployed.

AWS AppConfig deployment events to
Amazon Simple Notification Service (Amazon
SNS)

This extension sends messages to an Amazon
SNS topic that you specify when a configura
tion is deployed.

AWS AppConfig deployment events to
Amazon Simple Queue Service (Amazon SQS)

This extension enqueues messages into your
Amazon SQS queue when a configuration is
deployed.

Integration extension—Atlassian Jira This extensions allows AWS AppConfig to
create and update issues whenever you make
changes to a feature flag.

Working with AWS authored extensions 180

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_Operations.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-evidently
https://docs.aws.amazon.com/cloudwatchevidently/latest/APIReference/API_EvaluateFeature.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-notification-eventbridge.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-notification-eventbridge.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-notification-sns.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-notification-sns.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-notification-sns.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-notification-sqs.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined-notification-sqs.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-jira.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-configuration-and-profile.html#appconfig-creating-configuration-and-profile-feature-flags

AWS AppConfig User Guide

Working with the Amazon CloudWatch Evidently extension

You can use Amazon CloudWatch Evidently to safely validate new features by serving them to a
specified percentage of your users while you roll out the feature. You can monitor the performance
of the new feature to help you decide when to ramp up traffic to your users. This helps you reduce
risk and identify unintended consequences before you fully launch the feature. You can also
conduct A/B experiments to make feature design decisions based on evidence and data.

The AWS AppConfig extension for CloudWatch Evidently allows your application to assign
variations to user sessions locally instead of by calling the EvaluateFeature operation. A local
session mitigates the latency and availability risks that come with an API call. For information
about how to configure and use the extension, see Perform launches and A/B experiments with
CloudWatch Evidently in the Amazon CloudWatch User Guide.

Working with the AWS AppConfig deployment events to Amazon
EventBridge extension

The AWS AppConfig deployment events to Amazon EventBridge extension is an
AWS authored extension that helps you monitor and act on the AWS AppConfig configuration
deployment workflow. The extension sends event notifications to the EventBridge default events
bus whenever a configuration is deployed. After you’ve associated the extension to one of your
AWS AppConfig applications, environments, or configuration profiles, AWS AppConfig sends event
notifications to the event bus after every configuration deployment start, end, and rollback.

If you want more control over which action points send EventBridge notifications, you can create a
custom extension and enter the EventBridge default events bus Amazon Resource Name (ARN) for
the URI field. For information about creating an extension, see Walkthrough: Creating custom AWS
AppConfig extensions.

Important

This extension supports only the EventBridge default events bus.

Using the extension

To use the AWS AppConfig deployment events to Amazon EventBridge extension,
you first attach the extension to one of your AWS AppConfig resources by creating an
extension association. You create the association by using the AWS AppConfig console or the

Working with the Amazon CloudWatch Evidently extension 181

https://docs.aws.amazon.com/cloudwatchevidently/latest/APIReference/API_EvaluateFeature.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Evidently.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Evidently.html

AWS AppConfig User Guide

CreateExtensionAssociation API action. When you create the association, you specify the ARN of an
AWS AppConfig application, environment, or configuration profile. If you associate the extension
to an application or an environment, an event notification is sent for any configuration profile
contained within the specified application or environment.

After you create the association, when a configuration for the specified AWS AppConfig resource
is deployed, AWS AppConfig invokes the extension and sends notifications according to the action
points specified in the extension.

Note

This extension is invoked by the following action points:

• ON_DEPLOYMENT_START

• ON_DEPLOYMENT_COMPLETE

• ON_DEPLOYMENT_ROLLED_BACK

You can't customize the actions points for this extension. To invoke different action points,
you can create your own extension. For more information, see Walkthrough: Creating
custom AWS AppConfig extensions.

Use the following procedures to create an AWS AppConfig extension association by using either the
AWS Systems Manager console or the AWS CLI.

To create an extension association (console)

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-
manager/appconfig/.

2. In the navigation pane, choose AWS AppConfig.

3. On the Extensions tab, choose Add to resource.

4. In the Extension resource details section, for Resource type, choose an AWS AppConfig
resource type. Depending on the resource you choose, AWS AppConfig prompts you to choose
other resources.

5. Choose Create association to resource.

Here's a sample event sent to EventBridge when the extension is invoked.

Working with the AWS AppConfig deployment events to Amazon EventBridge extension 182

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateExtensionAssociation.html
https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/

AWS AppConfig User Guide

{
 "version":"0",
 "id":"c53dbd72-c1a0-2302-9ed6-c076e9128277",
 "detail-type":"On Deployment Complete",
 "source":"aws.appconfig",
 "account":"111122223333",
 "time":"2022-07-09T01:44:15Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:appconfig:us-east-1:111122223333:extensionassociation/z763ff5"
],
 "detail":{
 "InvocationId":"5tfjcig",
 "Parameters":{

 },
 "Type":"OnDeploymentComplete",
 "Application":{
 "Id":"ba8toh7",
 "Name":"MyApp"
 },
 "Environment":{
 "Id":"pgil2o7",
 "Name":"MyEnv"
 },
 "ConfigurationProfile":{
 "Id":"ga3tqep",
 "Name":"MyConfigProfile"
 },
 "DeploymentNumber":1,
 "ConfigurationVersion":"1"
 }
}

Working with the AWS AppConfig deployment events to Amazon
SNS extension

The AWS AppConfig deployment events to Amazon SNS extension is an AWS authored
extension that helps you monitor and act on the AWS AppConfig configuration deployment
workflow. The extension publishes messages to an Amazon SNS topic whenever a configuration
is deployed. After you associate the extension to one of your AWS AppConfig applications,

Working with the AWS AppConfig deployment events to Amazon SNS extension 183

AWS AppConfig User Guide

environments, or configuration profiles, AWS AppConfig publishes a message to the topic after
every configuration deployment start, end, and rollback.

If you want more control over which action points send Amazon SNS notifications, you can create a
custom extension and enter an Amazon SNS topic Amazon Resource Name (ARN) for the URI field.
For information about creating an extension, see Walkthrough: Creating custom AWS AppConfig
extensions.

Using the extension

This section describes how to use the AWS AppConfig deployment events to Amazon SNS
extension.

Step 1: Configure AWS AppConfig to publish messages to a topic

Add an access control policy to your Amazon SNS topic granting AWS AppConfig
(appconfig.amazonaws.com) publish permissions (sns:Publish). For more information, see
Example cases for Amazon SNS access control.

Step 2: Create an extension association

Attach the extension to one of your AWS AppConfig resources by creating an extension association.
You create the association by using the AWS AppConfig console or the CreateExtensionAssociation
API action. When you create the association, you specify the ARN of an AWS AppConfig application,
environment, or configuration profile. If you associate the extension to an application or an
environment, a notification is sent for any configuration profile contained within the specified
application or environment. When you create the association, you must enter a value for the
topicArn parameter that contains the ARN of the Amazon SNS topic you want to use.

After you create the association, when a configuration for the specified AWS AppConfig resource
is deployed, AWS AppConfig invokes the extension and sends notifications according to the action
points specified in the extension.

Note

This extension is invoked by the following action points:

• ON_DEPLOYMENT_START

• ON_DEPLOYMENT_COMPLETE

• ON_DEPLOYMENT_ROLLED_BACK

Working with the AWS AppConfig deployment events to Amazon SNS extension 184

https://docs.aws.amazon.com/sns/latest/dg/sns-access-policy-use-cases.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateExtensionAssociation.html

AWS AppConfig User Guide

You can't customize the actions points for this extension. To invoke different action points,
you can create your own extension. For more information, see Walkthrough: Creating
custom AWS AppConfig extensions.

Use the following procedures to create an AWS AppConfig extension association by using either the
AWS Systems Manager console or the AWS CLI.

To create an extension association (console)

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-
manager/appconfig/.

2. In the navigation pane, choose AWS AppConfig.

3. On the Extensions tab, choose Add to resource.

4. In the Extension resource details section, for Resource type, choose an AWS AppConfig
resource type. Depending on the resource you choose, AWS AppConfig prompts you to choose
other resources.

5. Choose Create association to resource.

Here's a sample of the message sent to the Amazon SNS topic when the extension is invoked.

{
 "Type": "Notification",
 "MessageId": "ae9d702f-9a66-51b3-8586-2b17932a9f28",
 "TopicArn": "arn:aws:sns:us-east-1:111122223333:MySNSTopic",
 "Message": {
 "InvocationId": "7itcaxp",
 "Parameters": {
 "topicArn": "arn:aws:sns:us-east-1:111122223333:MySNSTopic"
 },
 "Application": {
 "Id": "1a2b3c4d",
 "Name": MyApp
 },
 "Environment": {
 "Id": "1a2b3c4d",
 "Name": MyEnv
 },

Working with the AWS AppConfig deployment events to Amazon SNS extension 185

https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/

AWS AppConfig User Guide

 "ConfigurationProfile": {
 "Id": "1a2b3c4d",
 "Name": "MyConfigProfile"
 },
 "Description": null,
 "DeploymentNumber": "3",
 "ConfigurationVersion": "1",
 "Type": "OnDeploymentComplete"
 },
 "Timestamp": "2022-06-30T20:26:52.067Z",
 "SignatureVersion": "1",
 "Signature": "<...>",
 "SigningCertURL": "<...>",
 "UnsubscribeURL": "<...>",
 "MessageAttributes": {
 "MessageType": {
 "Type": "String",
 "Value": "OnDeploymentStart"
 }
 }
}

Working with the AWS AppConfig deployment events to Amazon
SQS extension

The AWS AppConfig deployment events to Amazon SQS extension is an AWS authored
extension that helps you monitor and act on the AWS AppConfig configuration deployment
workflow. The extension enqueues messages into your Amazon Simple Queue Service (Amazon
SQS) queue whenever a configuration is deployed. After you associate the extension to one of your
AWS AppConfig applications, environments, or configuration profiles, AWS AppConfig enqueues a
message into the queue after every configuration deployment start, end, and rollback.

If you want more control over which action points send Amazon SQS notifications, you can create a
custom extension and enter an Amazon SQS queue Amazon Resource Name (ARN) for the URI field.
For information about creating an extension, see Walkthrough: Creating custom AWS AppConfig
extensions.

Using the extension

This section describes how to use the AWS AppConfig deployment events to Amazon SQS
extension.

Working with the AWS AppConfig deployment events to Amazon SQS extension 186

AWS AppConfig User Guide

Step 1: Configure AWS AppConfig to enqueue messages

Add an Amazon SQS policy to your Amazon SQS queue granting AWS AppConfig
(appconfig.amazonaws.com) send message permissions (sqs:SendMessage). For more
information, see Basic examples of Amazon SQS policies.

Step 2: Create an extension association

Attach the extension to one of your AWS AppConfig resources by creating an extension association.
You create the association by using the AWS AppConfig console or the CreateExtensionAssociation
API action. When you create the association, you specify the ARN of an AWS AppConfig application,
environment, or configuration profile. If you associate the extension to an application or an
environment, a notification is sent for any configuration profile contained within the specified
application or environment. When you create the association, you must enter a Here parameter
that contains the ARN of the Amazon SQS queue you want to use.

After you create the association, when a configuration for the specified AWS AppConfig resource
is created or deployed, AWS AppConfig invokes the extension and sends notifications according to
the action points specified in the extension.

Note

This extension is invoked by the following action points:

• ON_DEPLOYMENT_START

• ON_DEPLOYMENT_COMPLETE

• ON_DEPLOYMENT_ROLLED_BACK

You can't customize the actions points for this extension. To invoke different action points,
you can create your own extension. For more information, see Walkthrough: Creating
custom AWS AppConfig extensions.

Use the following procedures to create an AWS AppConfig extension association by using either the
AWS Systems Manager console or the AWS CLI.

Working with the AWS AppConfig deployment events to Amazon SQS extension 187

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-basic-examples-of-sqs-policies.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateExtensionAssociation.html

AWS AppConfig User Guide

To create an extension association (console)

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-
manager/appconfig/.

2. In the navigation pane, choose AWS AppConfig.

3. On the Extensions tab, choose Add to resource.

4. In the Extension resource details section, for Resource type, choose an AWS AppConfig
resource type. Depending on the resource you choose, AWS AppConfig prompts you to choose
other resources.

5. Choose Create association to resource.

Here's an example of the message sent to the Amazon SQS queue when the extension is invoked.

{
 "InvocationId":"7itcaxp",
 "Parameters":{
 "queueArn":"arn:aws:sqs:us-east-1:111122223333:MySQSQueue"
 },
 "Application":{
 "Id":"1a2b3c4d",
 "Name":MyApp
 },
 "Environment":{
 "Id":"1a2b3c4d",
 "Name":MyEnv
 },
 "ConfigurationProfile":{
 "Id":"1a2b3c4d",
 "Name":"MyConfigProfile"
 },
 "Description":null,
 "DeploymentNumber":"3",
 "ConfigurationVersion":"1",
 "Type":"OnDeploymentComplete"
}

Working with the Atlassian Jira extension for AWS AppConfig

By integrating with Atlassian Jira, AWS AppConfig can create and update issues in the Atlassian
console whenever you make changes to a feature flag in your AWS account for the specified AWS

Working with the Jira extension 188

https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-configuration-and-profile.html#appconfig-creating-configuration-and-profile-feature-flags

AWS AppConfig User Guide

Region. Each Jira issue includes the flag name, application ID, configuration profile ID, and flag
values. After you update, save, and deploy your flag changes, Jira updates the existing issues with
the details of the change.

Note

Jira updates issues whenever you create or update a feature flag. Jira also updates issues
when you delete a child-level flag attribute from a parent-level flag. Jira does not record
information when you delete a parent-level flag.

To configure integration, you must do the following:

• Configuring permissions for AWS AppConfig Jira integration

• Configuring the AWS AppConfig Jira integration application

Configuring permissions for AWS AppConfig Jira integration

When you configure AWS AppConfig integration with Jira, you specify credentials for a user.
Specifically, you enter the user's access key ID and secret key in the AWS AppConfig for Jira
application. This user gives Jira permission to communicate with AWS AppConfig. AWS AppConfig
uses these credentials one time to establish an association between AWS AppConfig and Jira. The
credentials are not stored. You can remove the association by uninstalling the AWS AppConfig for
Jira application.

The user account requires a permission policy that includes the following actions:

• appconfig:CreateExtensionAssociation

• appconfig:GetConfigurationProfile

• appconfig:ListApplications

• appconfig:ListConfigurationProfiles

• appconfig:ListExtensionAssociations

• sts:GetCallerIdentity

Working with the Jira extension 189

AWS AppConfig User Guide

Complete the following tasks to create an IAM permission policy and a user for AWS AppConfig and
Jira integration:

Tasks

• Task 1: Create an IAM permission policy for AWS AppConfig and Jira integration

• Task 2: Create a user for AWS AppConfig and Jira integration

Task 1: Create an IAM permission policy for AWS AppConfig and Jira integration

Use the following procedure to create an IAM permission policy that allows Atlassian Jira to
communicate with AWS AppConfig. We recommend that you create a new policy and attach this
policy to a new IAM role. Adding the required permission to an existing IAM policy and role goes
against the principle of least privilege and is not recommended.

To create an IAM policy for AWS AppConfig and Jira integration

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies, and then choose Create policy.

3. On the Create policy page, choose the JSON tab and replace the default content with the
following policy. In the following policy, replace Region, account_ID, application_ID,
and configuration_profile_ID with information from your AWS AppConfig feature flag
environment.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appconfig:CreateExtensionAssociation",
 "appconfig:ListExtensionAssociations",
 "appconfig:GetConfigurationProfile"
],
 "Resource": [

 "arn:aws:appconfig:Region:account_ID:application/application_ID",

 "arn:aws:appconfig:Region:account_ID:application/application_ID/
configurationprofile/configuration_profile_ID"

Working with the Jira extension 190

https://console.aws.amazon.com/iam/

AWS AppConfig User Guide

]
 },
 {
 "Effect": "Allow",
 "Action": [
 "appconfig:ListApplications"

],
 "Resource": [
 "arn:aws:appconfig:Region:account_ID:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "appconfig:ListConfigurationProfiles"
],
 "Resource": [

 "arn:aws:appconfig:Region:account_ID:application/application_ID"
]
 },
 {
 "Effect": "Allow",
 "Action": "sts:GetCallerIdentity",
 "Resource": "*"
 }
]
}

4. Choose Next: Tags.

5. (Optional) Add one or more tag-key value pairs to organize, track, or control access for this
policy, and then choose Next: Review.

6. On the Review policy page, enter a name in the Name box, such as AppConfigJiraPolicy,
and then enter an optional description.

7. Choose Create policy.

Working with the Jira extension 191

AWS AppConfig User Guide

Task 2: Create a user for AWS AppConfig and Jira integration

Use the following procedure to create a user for AWS AppConfig and Atlassian Jira integration.
After you create the user, you can copy the access key ID and secret key, which you will specify
when you complete the integration.

To create a user for AWS AppConfig and Jira integration

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users, and then choose Add users.

3. In the User name field, enter a name, such as AppConfigJiraUser.

4. For Select AWS credential type, choose Access key - Programmatic access.

5. Choose Next: Permissions.

6. Under Set permissions page, choose Attach existing policies directly. Search for and select
the check box for the policy that you created in Task 1: Create an IAM permission policy for
AWS AppConfig and Jira integration, and then choose Next: Tags.

7. On the Add tags (optional) page, add one or more tag-key value pairs to organize, track, or
control access for this user. Choose Next: Review.

8. On the Review page, verify the user details.

9. Choose Create user. The system displays the user's access key ID and secret key. Either
download the .csv file or copy these credentials to a separate location. You will specify these
credentials when you configure integration.

Configuring the AWS AppConfig Jira integration application

Use the following procedure to configure required options in the AWS AppConfig for Jira
application. After you complete this procedure, Jira creates a new issue for each feature flag in
your AWS account for the specified AWS Region. If you make changes to a feature flag in AWS
AppConfig, Jira records the details in the existing issues.

Note

An AWS AppConfig feature flag can include multiple child-level flag attributes. Jira creates
one issue for each parent-level feature flag. If you change a child-level flag attribute, you
can view the details of that change in the Jira issue for the parent-level flag.

Working with the Jira extension 192

https://console.aws.amazon.com/iam/

AWS AppConfig User Guide

To configure integration

1. Log in to the Atlassian Marketplace.

2. Type AWS AppConfig in the search field and press Enter.

3. Install the application on your Jira instance.

4. In the Atlassian console, choose Manage apps, and then choose AWS AppConfig for Jira.

5. Choose Configure.

6. Under Configuration details, choose Jira project and then choose the project that you want to
associate with your AWS AppConfig feature flag.

7. Choose AWS Region, and then choose the Region where your AWS AppConfig feature flag is
located.

8. In the Application ID field, enter the name of the AWS AppConfig application that contains
your feature flag.

9. In the Configuration profile ID field, enter the name of the AWS AppConfig configuration
profile for your feature flag.

10. In the Access key ID and Secret key fields, enter the credentials you copied in Task 2: Create a
user for AWS AppConfig and Jira integration. Optionally, you can also specify a session token.

11. Choose Submit.

12. In the Atlassian console, choose Projects, and then choose the project you selected for AWS
AppConfig integration. The Issues page displays an issue for each feature flag in the specified
AWS account and AWS Region.

Deleting the AWS AppConfig for Jira application and data

If you no longer want to use Jira integration with AWS AppConfig feature flags, you can delete the
AWS AppConfig for Jira application in the Atlassian console. Deleting the integration application
does the following:

• Deletes the association between your Jira instance and AWS AppConfig

• Deletes your Jira instance details from AWS AppConfig

To delete the AWS AppConfig for Jira application

1. In the Atlassian console, choose Manage apps.

Working with the Jira extension 193

https://marketplace.atlassian.com/

AWS AppConfig User Guide

2. Choose AWS AppConfig for Jira.

3. Choose Uninstall.

Walkthrough: Creating custom AWS AppConfig extensions

To create a custom AWS AppConfig extension, complete the following tasks. Each task is described
in more detail in later topics.

Note

You can view samples of custom AWS AppConfig extensions on GitHub:

• Sample extension that prevents deployments with a blocked day moratorium calendar
using Systems Manager Change Calendar

• Sample extension that prevents secrets from leaking into configuration data using git-
secrets

• Sample extension that prevents personally identifiable information (PII) from leaking
into configuration data using Amazon Comprehend

1. Create an AWS Lambda function

For most use cases, to create a custom extension, you must create an AWS Lambda function
to perform any computation and processing defined in the extension. An exception to this rule
is if you create custom versions of the AWS authored notification extensions to add or remove
action points. For more details about this exception, see Creating a custom AWS AppConfig
extension.

2. Configure permissions for your custom extension

To configure permissions for your custom extension, you can do one of the following:

• Create an AWS Identity and Access Management (IAM) service role that includes
InvokeFunction permissions.

• Create a resource policy by using the Lambda AddPermission API action.

This walkthrough describes how to create the IAM service role.

Walkthrough: Creating custom AWS AppConfig extensions 194

https://github.com/aws-samples/aws-appconfig-change-calendar-extn
https://github.com/aws-samples/aws-appconfig-change-calendar-extn
https://github.com/aws-samples/aws-appconfig-git-secrets-extn
https://github.com/aws-samples/aws-appconfig-git-secrets-extn
https://github.com/aws-samples/aws-appconfig-pii-extn
https://github.com/aws-samples/aws-appconfig-pii-extn
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined.html
https://docs.aws.amazon.com/lambda/latest/dg/API_AddPermission.html

AWS AppConfig User Guide

3. Create an extension

You can create an extension by using the AWS AppConfig console or by calling the
CreateExtension API action from the AWS CLI, AWS Tools for PowerShell, or the SDK. The
walkthrough uses the console.

4. Create an extension association

You can create an extension association by using the AWS AppConfig console or by calling the
CreateExtensionAssociation API action from the AWS CLI, AWS Tools for PowerShell, or the SDK.
The walkthrough uses the console.

5. Perform an action that invokes the extension

After you create the association, AWS AppConfig invokes the extension when the action points
defined by the extension occur for that resource. For example, if you associate an extension that
contains a PRE_CREATE_HOSTED_CONFIGURATION_VERSION action, the extension is invoked
every time you create a new hosted configuration version.

The topics in this section describe each task involved in creating a custom AWS AppConfig
extension. Each task is described in the context of a use case where a customer wants to
create an extension that automatically backs up a configuration to an Amazon Simple Storage
Service (Amazon S3) bucket. The extension runs whenever a hosted configuration is created
(PRE_CREATE_HOSTED_CONFIGURATION_VERSION) or deployed (PRE_START_DEPLOYMENT).

Topics

• Creating a Lambda function for a custom AWS AppConfig extension

• Configuring permissions for a custom AWS AppConfig extension

• Creating a custom AWS AppConfig extension

• Creating an extension association for a custom AWS AppConfig extension

Creating a Lambda function for a custom AWS AppConfig extension

For most use-cases, to create a custom extension, you must create an AWS Lambda function to
perform any computation and processing defined in the extension. This section includes Lambda
function sample code for a custom AWS AppConfig extension. This section also includes payload
request and response reference details. For information about creating a Lambda function, see
Getting started with Lambda in the AWS Lambda Developer Guide.

Creating a Lambda function for a custom AWS AppConfig extension 195

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateExtension.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateExtensionAssociation.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html

AWS AppConfig User Guide

Sample code

The following sample code for a Lambda function, when invoked, automatically backs up an AWS
AppConfig configuration to an Amazon S3 bucket. The configuration is backed up whenever a new
configuration is created or deployed. The sample uses extension parameters so the bucket name
doesn't have to be hardcoded in the Lambda function. By using extension parameters, the user can
attach the extension to multiple applications and back up configurations to different buckets. The
code sample includes comments to further explain the function.

Sample Lambda function for an AWS AppConfig extension

from datetime import datetime
import base64
import json

import boto3

def lambda_handler(event, context):
 print(event)

 # Extensions that use the PRE_CREATE_HOSTED_CONFIGURATION_VERSION and
 PRE_START_DEPLOYMENT
 # action points receive the contents of AWS AppConfig configurations in Lambda
 event parameters.
 # Configuration contents are received as a base64-encoded string, which the lambda
 needs to decode
 # in order to get the configuration data as bytes. For other action points, the
 content
 # of the configuration isn't present, so the code below will fail.
 config_data_bytes = base64.b64decode(event["Content"])

 # You can specify parameters for extensions. The CreateExtension API action lets
 you define
 # which parameters an extension supports. You supply the values for those
 parameters when you
 # create an extension association by calling the CreateExtensionAssociation API
 action.
 # The following code uses a parameter called S3_BUCKET to obtain the value
 specified in the
 # extension association. You can specify this parameter when you create the
 extension
 # later in this walkthrough.

Creating a Lambda function for a custom AWS AppConfig extension 196

AWS AppConfig User Guide

 extension_association_params = event.get('Parameters', {})
 bucket_name = extension_association_params['S3_BUCKET']
 write_backup_to_s3(bucket_name, config_data_bytes)

 # The PRE_CREATE_HOSTED_CONFIGURATION_VERSION and PRE_START_DEPLOYMENT action
 points can
 # modify the contents of a configuration. The following code makes a minor change
 # for the purposes of a demonstration.
 old_config_data_string = config_data_bytes.decode('utf-8')
 new_config_data_string = old_config_data_string.replace('hello', 'hello!')
 new_config_data_bytes = new_config_data_string.encode('utf-8')

 # The lambda initially received the configuration data as a base64-encoded string
 # and must return it in the same format.
 new_config_data_base64string =
 base64.b64encode(new_config_data_bytes).decode('ascii')

 return {
 'statusCode': 200,
 # If you want to modify the contents of the configuration, you must include the
 new contents in the
 # Lambda response. If you don't want to modify the contents, you can omit the
 'Content' field shown here.
 'Content': new_config_data_base64string
 }

def write_backup_to_s3(bucket_name, config_data_bytes):
 s3 = boto3.resource('s3')
 new_object = s3.Object(bucket_name,
 f"config_backup_{datetime.now().isoformat()}.txt")
 new_object.put(Body=config_data_bytes)

If you want to use this sample during this walkthrough, save it with the name
MyS3ConfigurationBackUpExtension and copy the Amazon Resource Name (ARN) for the
function. You specify the ARN when you create the AWS Identity and Access Management (IAM)
assume role in the next section. You specify the ARN and the name when you create the extension.

Payload reference

This section includes payload request and response reference details for working with custom AWS
AppConfig extensions.

Creating a Lambda function for a custom AWS AppConfig extension 197

AWS AppConfig User Guide

Request structure

PreCreateHostedConfigurationVersion

{
 'InvocationId': 'vlns753', // id for specific invocation
 'Parameters': {
 'ParameterOne': 'ValueOne',
 'ParameterTwo': 'ValueTwo'
 },
 'ContentType': 'text/plain',
 'ContentVersion': '2',
 'Content': 'SGVsbG8gZWFydGgh', // Base64 encoded content
 'Application': {
 'Id': 'abcd123',
 'Name': 'ApplicationName'
 },
 'ConfigurationProfile': {
 'Id': 'ijkl789',
 'Name': 'ConfigurationName'
 },
 'Description': '',
 'Type': 'PreCreateHostedConfigurationVersion',
 'PreviousContent': {
 'ContentType': 'text/plain',
 'ContentVersion': '1',
 'Content': 'SGVsbG8gd29ybGQh'
 }
}

PreStartDeployment

{
 'InvocationId': '765ahdm',
 'Parameters': {
 'ParameterOne': 'ValueOne',
 'ParameterTwo': 'ValueTwo'
 },
 'ContentType': 'text/plain',
 'ContentVersion': '2',
 'Content': 'SGVsbG8gZWFydGgh',
 'Application': {
 'Id': 'abcd123',

Creating a Lambda function for a custom AWS AppConfig extension 198

AWS AppConfig User Guide

 'Name': 'ApplicationName'
 },
 'Environment': {
 'Id': 'ibpnqlq',
 'Name': 'EnvironmentName'
 },
 'ConfigurationProfile': {
 'Id': 'ijkl789',
 'Name': 'ConfigurationName'
 },
 'DeploymentNumber': 2,
 'Description': 'Deployment description',
 'Type': 'PreStartDeployment'
}

Asynchronous events

OnStartDeployment, OnDeploymentStep, OnDeployment

{
 'InvocationId': 'o2xbtm7',
 'Parameters': {
 'ParameterOne': 'ValueOne',
 'ParameterTwo': 'ValueTwo'
 },
 'Type': 'OnDeploymentStart',
 'Application': {
 'Id': 'abcd123'
 },
 'Environment': {
 'Id': 'efgh456'
 },
 'ConfigurationProfile': {
 'Id': 'ijkl789',
 'Name': 'ConfigurationName'
 },
 'DeploymentNumber': 2,
 'Description': 'Deployment description',
 'ConfigurationVersion': '2'
}

Response structure

Creating a Lambda function for a custom AWS AppConfig extension 199

AWS AppConfig User Guide

The following examples show what your Lambda fuction returns in response to the request from a
custom AWS AppConfig extension.

Synchronous events - successful response

If you want to transform the content, use the following:

"Content": "SomeBase64EncodedByteArray"

If you don't want to transform the content, return nothing.

Asynchronous events - successful response

Return nothing.

All error events

{
 "Error": "BadRequestError",
 "Message": "There was malformed stuff in here",
 "Details": [{
 "Type": "Malformed",
 "Name": "S3 pointer",
 "Reason": "S3 bucket did not exist"
 }]
 }

Configuring permissions for a custom AWS AppConfig extension

Use the following procedure to create and configure an AWS Identity and Access Management
(IAM) service role (or assume role). AWS AppConfig uses this role to invoke the Lambda function.

To create an IAM service role and allow AWS AppConfig to assume it

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, and then choose Create role.

3. Under Select type of trusted entity, choose Custom trust policy.

4. Paste the following JSON policy into the Custom trust policy field.

{
 "Version": "2012-10-17",

Configuring permissions for a custom AWS AppConfig extension 200

https://console.aws.amazon.com/iam/

AWS AppConfig User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appconfig.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Choose Next.

5. On the Add permissions page, choose Create policy. The Create policy page opens in a new
tab.

6. Choose the JSON tab, and then paste the following permission policy into the
editor. The lambda:InvokeFunction action is used for PRE_* action points. The
lambda:InvokeAsync action is used for ON_* action points. Replace Your Lambda ARN
with the Amazon Resource Name (ARN) of your Lambda.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:InvokeAsync"
],
 "Resource": "Your Lambda ARN"
 }
]
}

7. Choose Next: Tags.

8. On the Add tags (Optional) page, add one or more key-value pairs and then choose Next:
Review.

9. On the Review policy page enter a name and a description, and then choose Create policy.

10. On the browser tab for your custom trust policy, choose the Refresh icon and then search for
the permission policy you just created.

Configuring permissions for a custom AWS AppConfig extension 201

AWS AppConfig User Guide

11. Select the check box for your permission policy and then choose Next.

12. On the Name, review, and create page, enter a name in the Role name box, and then enter a
description.

13. Choose Create role. The system returns you to the Roles page. Choose View role in the
banner.

14. Copy the ARN. You specify this ARN when you create the extension.

Creating a custom AWS AppConfig extension

An extension defines one or more actions that it performs during an AWS AppConfig workflow. For
example, the AWS authored AWS AppConfig deployment events to Amazon SNS extension
includes an action to send a notification to an Amazon SNS topic. Each action is invoked either
when you interact with AWS AppConfig or when AWS AppConfig is performing a process on your
behalf. These are called action points. AWS AppConfig extensions support the following action
points:

• PRE_CREATE_HOSTED_CONFIGURATION_VERSION

• PRE_START_DEPLOYMENT

• ON_DEPLOYMENT_START

• ON_DEPLOYMENT_STEP

• ON_DEPLOYMENT_BAKING

• ON_DEPLOYMENT_COMPLETE

• ON_DEPLOYMENT_ROLLED_BACK

Extension actions configured on PRE_* action points are applied after request validation, but
before AWS AppConfig performs the activity that corresponds to the action point name. These
action invocations are processed at the same time as a request. If more than one request is made,
action invocations run sequentially. Also note that PRE_* action points receive and can change
the contents of a configuration. PRE_* action points can also respond to an error and prevent an
action from happening.

An extension can also run in parallel with an AWS AppConfig workflow by using an ON_* action
point. ON_* action points are invoked asynchronously. ON_* action points don't receive the

Creating a custom AWS AppConfig extension 202

AWS AppConfig User Guide

contents of a configuration. If an extension experiences an error during an ON_* action point, the
service ignores the error and continues the workflow.

The following sample extension defines one action that calls the
PRE_CREATE_HOSTED_CONFIGURATION_VERSION action point. In the Uri field, the action
specifies the Amazon Resource Name (ARN) of the MyS3ConfigurationBackUpExtension
Lambda function created earlier in this walkthrough. The action also specifies the AWS Identity and
Access Management (IAM) assume role ARN created earlier in this walkthrough.

Sample AWS AppConfig extension

{
 "Name": "MySampleExtension",
 "Description": "A sample extension that backs up configurations to an S3 bucket.",
 "Actions": {
 "PRE_CREATE_HOSTED_CONFIGURATION_VERSION": [
 {
 "Name": "PreCreateHostedConfigVersionActionForS3Backup",
 "Uri": "arn:aws:lambda:aws-
region:111122223333:function:MyS3ConfigurationBackUpExtension",
 "RoleArn": "arn:aws:iam::111122223333:role/ExtensionsTestRole"
 }
]
 },
 "Parameters" : {
 "S3_BUCKET": {
 "Required": false
 }
 }
}

Note

To view request syntax and field descriptions when creating an extension, see the
CreateExtension topic in the AWS AppConfig API Reference.

To create an extension (console)

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-
manager/appconfig/.

Creating a custom AWS AppConfig extension 203

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateExtension.html
https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/

AWS AppConfig User Guide

2. In the navigation pane, choose AWS AppConfig.

3. On the Extensions tab, choose Create extension.

4. For Extension name, enter a unique name. For the purposes of this walkthrough, enter
MyS3ConfigurationBackUpExtension. Optionally, enter a description.

5. In the Actions section, choose Add new action.

6. For Action name, enter a unique name. For the purposes of this walkthrough, enter
PreCreateHostedConfigVersionActionForS3Backup. This name describes the action
point used by the action and the extension purpose.

7. In the Action point list, choose PRE_CREATE_HOSTED_CONFIGURATION_VERSION.

8. For Uri, choose Lambda function and then choose the function in the Lambda function list. If
you don't see your function, verify that you are in the same AWS Region where you created the
function.

9. For IAM Role, choose the role you created earlier in this walkthrough.

10. In the Extension parameters (optional) section, choose Add new parameter.

11. For Parameter name, enter a name. For the purposes of this walkthrough, enter S3_BUCKET.

12. Repeat steps 5–11 to create a second action for the PRE_START_DEPLOYMENT action point.

13. Choose Create extension.

Customizing AWS authored notification extensions

You don't have to create a Lambda or an extension to use AWS authored notification extensions.
You can simply create an extension association and then perform an operation that calls one of
the supported action points. By default, the AWS authored notification extensions support the
following actions points:

• ON_DEPLOYMENT_START

• ON_DEPLOYMENT_COMPLETE

• ON_DEPLOYMENT_ROLLED_BACK

If you create custom versions of the AWS AppConfig deployment events to Amazon SNS
extension and AWS AppConfig deployment events to Amazon SQS extensions, you can
specify the action points for which you want to receive notifications.

Creating a custom AWS AppConfig extension 204

https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-about-predefined.html

AWS AppConfig User Guide

Note

The AWS AppConfig deployment events to EventBridge extension doesn't
support the PRE_* action points. You can create a custom version if you want to remove
some of the default actions points assigned to the AWS authored version.

You don't need to create a Lambda function if you create custom versions of the AWS authored
notification extensions. You only need to specify an Amazon Resource Name (ARN) in the Uri field
for the new extension version.

• For a custom EventBridge notification extension, enter the ARN of the EventBridge default
events in the Uri field.

• For a custom Amazon SNS notification extension, enter the ARN of an Amazon SNS topic in the
Uri field.

• For a custom Amazon SQS notification extension, enter the ARN of an Amazon SQS message
queue in the Uri field.

Creating an extension association for a custom AWS AppConfig
extension

To create an extension, or configure an AWS authored extension, you define the action points
that invoke an extension when a specific AWS AppConfig resource is used. For example, you can
choose to run the AWS AppConfig deployment events to Amazon SNS extension and
receive notifications on an Amazon SNS topic anytime a configuration deployment is started for a
specific application. Defining which action points invoke an extension for a specific AWS AppConfig
resource is called an extension association. An extension association is a specified relationship
between an extension and an AWS AppConfig resource, such as an application or a configuration
profile.

A single AWS AppConfig application can include multiple environments and configuration profiles.
If you associate an extension to an application or an environment, AWS AppConfig invokes the
extension for any workflows that relate to the application or environment resources, if applicable.

For example, say you have an AWS AppConfig application called MobileApps that includes
a configuration profile called AccessList. And say the MobileApps application includes Beta,
Integration, and Production environments. You create an extension association for the AWS

Creating an extension association for a custom AWS AppConfig extension 205

AWS AppConfig User Guide

authored Amazon SNS notification extension and associate the extension to the MobileApps
application. The Amazon SNS notification extension is invoked anytime the configuration is
deployed for the application to any of the three environments.

Use the following procedures to create an AWS AppConfig extension association by using the AWS
AppConfig console.

To create an extension association (console)

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-
manager/appconfig/.

2. In the navigation pane, choose AWS AppConfig.

3. On the Extensions tab, choose an option button for an extension and then choose Add to
resource. For the purposes of this walkthrough, choose MyS3ConfigurationBackUpExtension.

4. In the Extension resource details section, for Resource type, choose an AWS AppConfig
resource type. Depending on the resource you choose, AWS AppConfig prompts you to choose
other resources. For the purposes of this walkthrough, choose Application.

5. Choose an application in the list.

6. In the Parameters section, verify that S3_BUCKET is listed in the Key field. In the Value
field, paste the ARN of the Lambda extensions. For example: arn:aws:lambda:aws-
region:111122223333:function:MyS3ConfigurationBackUpExtension.

7. Choose Create association to resource.

After you create the association, you can invoke the MyS3ConfigurationBackUpExtension
extension by creating a new configuration profile that specifies hosted for its SourceUri.
As a part of the workflow to create the new configuration, AWS AppConfig encounters the
PRE_CREATE_HOSTED_CONFIGURATION_VERSION action point. Encountering this action point
invokes the MyS3ConfigurationBackUpExtension extension, which automatically backs up the
newly created configuration to the S3 bucket specified in the Parameter section of the extension
association.

AWS AppConfig extension integration with Atlassian Jira

AWS AppConfig integrates with Atlassian Jira. Integration allows AWS AppConfig to create and
update issues in the Atlassian console whenever you make changes to a feature flag in your AWS
account for the specified AWS Region. Each Jira issue includes the flag name, application ID,

Extension integration with Jira 206

https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/

AWS AppConfig User Guide

configuration profile ID, and flag values. After you update, save, and deploy your flag changes, Jira
updates the existing issues with the details of the change. For more information, see Working with
the Atlassian Jira extension for AWS AppConfig.

Extension integration with Jira 207

AWS AppConfig User Guide

Code samples for performing common AWS AppConfig
tasks

This section includes code samples for programmatically performing common AWS AppConfig
actions. We recommend you use these samples with the Java, Python, and JavaScript SDKs to
perform the actions in a test environment. This section includes a code sample for cleaning up your
test environment after you finish.

Topics

• Creating or updating a freeform configuration stored in the hosted configuration store

• Creating a configuration profile for a secret stored in Secrets Manager

• Deploying a configuration profile

• Using AWS AppConfig Agent to read a freeform configuration profile

• Using AWS AppConfig Agent to read a specific feature flag

• Using the GetLatestConfig API action to read a freeform configuration profile

• Cleaning up your environment

Creating or updating a freeform configuration stored in the
hosted configuration store

Each of the following samples includes comments about the actions performed by the code. The
samples in this section call the following APIs:

• CreateApplication

• CreateConfigurationProfile

• CreateHostedConfigurationVersion

Java

public CreateHostedConfigurationVersionResponse createHostedConfigVersion() {
 AppConfigClient appconfig = AppConfigClient.create();

 // Create an application

Creating or updating a freeform configuration stored in the hosted configuration store 208

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/appconfig/package-summary.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/appconfig.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/AppConfig.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateApplication.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateConfigurationProfile.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateHostedConfigurationVersion.html

AWS AppConfig User Guide

 CreateApplicationResponse app = appconfig.createApplication(req ->
 req.name("MyDemoApp"));

 // Create a hosted, freeform configuration profile
 CreateConfigurationProfileResponse configProfile =
 appconfig.createConfigurationProfile(req -> req
 .applicationId(app.id())
 .name("MyConfigProfile")
 .locationUri("hosted")
 .type("AWS.Freeform"));

 // Create a hosted configuration version
 CreateHostedConfigurationVersionResponse hcv =
 appconfig.createHostedConfigurationVersion(req -> req
 .applicationId(app.id())
 .configurationProfileId(configProfile.id())
 .contentType("text/plain; charset=utf-8")
 .content(SdkBytes.fromUtf8String("my config data")));

 return hcv;
 }

Python

import boto3

appconfig = boto3.client('appconfig')

create an application
application = appconfig.create_application(Name='MyDemoApp')

create a hosted, freeform configuration profile
config_profile = appconfig.create_configuration_profile(
 ApplicationId=application['Id'],
 Name='MyConfigProfile',
 LocationUri='hosted',
 Type='AWS.Freeform')

create a hosted configuration version
hcv = appconfig.create_hosted_configuration_version(
 ApplicationId=application['Id'],
 ConfigurationProfileId=config_profile['Id'],
 Content=b'my config data',

Creating or updating a freeform configuration stored in the hosted configuration store 209

AWS AppConfig User Guide

 ContentType='text/plain')

JavaScript

import {
 AppConfigClient,
 CreateApplicationCommand,
 CreateConfigurationProfileCommand,
 CreateHostedConfigurationVersionCommand,
} from "@aws-sdk/client-appconfig";

const appconfig = new AppConfigClient();

// create an application
const application = await appconfig.send(
 new CreateApplicationCommand({ Name: "MyDemoApp" })
);

// create a hosted, freeform configuration profile
const profile = await appconfig.send(
 new CreateConfigurationProfileCommand({
 ApplicationId: application.Id,
 Name: "MyConfigProfile",
 LocationUri: "hosted",
 Type: "AWS.Freeform",
 })
);

// create a hosted configuration version
await appconfig.send(
 new CreateHostedConfigurationVersionCommand({
 ApplicationId: application.Id,
 ConfigurationProfileId: profile.Id,
 ContentType: "text/plain",
 Content: "my config data",
 })
);

Creating or updating a freeform configuration stored in the hosted configuration store 210

AWS AppConfig User Guide

Creating a configuration profile for a secret stored in Secrets
Manager

Each of the following samples includes comments about the actions performed by the code. The
samples in this section call the following APIs:

• CreateApplication

• CreateConfigurationProfile

Java

private void createSecretsManagerConfigProfile() {
 AppConfigClient appconfig = AppConfigClient.create();

 // Create an application
 CreateApplicationResponse app = appconfig.createApplication(req ->
 req.name("MyDemoApp"));

 // Create a configuration profile for Secrets Manager Secret
 CreateConfigurationProfileResponse configProfile =
 appconfig.createConfigurationProfile(req -> req
 .applicationId(app.id())
 .name("MyConfigProfile")
 .locationUri("secretsmanager://MySecret")
 .retrievalRoleArn("arn:aws:iam::000000000000:role/
RoleTrustedByAppConfigThatCanRetrieveSecret")
 .type("AWS.Freeform"));
 }

Python

import boto3

appconfig = boto3.client('appconfig')

create an application
application = appconfig.create_application(Name='MyDemoApp')

create a configuration profile for Secrets Manager Secret
config_profile = appconfig.create_configuration_profile(

Creating a configuration profile for a secret stored in Secrets Manager 211

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateApplication.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateConfigurationProfile.html

AWS AppConfig User Guide

 ApplicationId=application['Id'],
 Name='MyConfigProfile',
 LocationUri='secretsmanager://MySecret',
 RetrievalRoleArn='arn:aws:iam::000000000000:role/
RoleTrustedByAppConfigThatCanRetrieveSecret',
 Type='AWS.Freeform')

JavaScript

import {
 AppConfigClient,
 CreateConfigurationProfileCommand,
} from "@aws-sdk/client-appconfig";

const appconfig = new AppConfigClient();

// create an application
const application = await appconfig.send(
 new CreateApplicationCommand({ Name: "MyDemoApp" })
);

// create a configuration profile for Secrets Manager Secret
await appconfig.send(
 new CreateConfigurationProfileCommand({
 ApplicationId: application.Id,
 Name: "MyConfigProfile",
 LocationUri: "secretsmanager://MySecret",
 RetrievalRoleArn: "arn:aws:iam::000000000000:role/
RoleTrustedByAppConfigThatCanRetrieveSecret",
 Type: "AWS.Freeform",
 })
);

Deploying a configuration profile

Each of the following samples includes comments about the actions performed by the code. The
samples in this section call the following APIs:

• CreateApplication

• CreateConfigurationProfile

• CreateHostedConfigurationVersion

Deploying a configuration profile 212

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateApplication.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateConfigurationProfile.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateHostedConfigurationVersion.html

AWS AppConfig User Guide

• CreateEnvironment

• StartDeployment

• GetDeployment

Java

private void createDeployment() throws InterruptedException {
 AppConfigClient appconfig = AppConfigClient.create();

 // Create an application
 CreateApplicationResponse app = appconfig.createApplication(req ->
 req.name("MyDemoApp"));

 // Create a hosted, freeform configuration profile
 CreateConfigurationProfileResponse configProfile =
 appconfig.createConfigurationProfile(req -> req
 .applicationId(app.id())
 .name("MyConfigProfile")
 .locationUri("hosted")
 .type("AWS.Freeform"));

 // Create a hosted configuration version
 CreateHostedConfigurationVersionResponse hcv =
 appconfig.createHostedConfigurationVersion(req -> req
 .applicationId(app.id())
 .configurationProfileId(configProfile.id())
 .contentType("text/plain; charset=utf-8")
 .content(SdkBytes.fromUtf8String("my config data")));

 // Create an environment
 CreateEnvironmentResponse env = appconfig.createEnvironment(req -> req
 .applicationId(app.id())
 .name("Beta")
 // If you have CloudWatch alarms that monitor the health of your
 service, you can add them here and they
 // will trigger a rollback if they fire during an appconfig deployment
 //.monitors(Monitor.builder().alarmArn("arn:aws:cloudwatch:us-
east-1:520900602629:alarm:MyAlarm")
 //
 .alarmRoleArn("arn:aws:iam::520900602629:role/MyAppConfigAlarmRole").build())
);

Deploying a configuration profile 213

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateEnvironment.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_StartDeployment.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_GetDeployment.html

AWS AppConfig User Guide

 // Start a deployment
 StartDeploymentResponse deploymentResponse = appconfig.startDeployment(req -
> req
 .applicationId(app.id())
 .configurationProfileId(configProfile.id())
 .environmentId(env.id())
 .configurationVersion(hcv.versionNumber().toString())
 .deploymentStrategyId("AppConfig.Linear50PercentEvery30Seconds")
);

 // Wait for deployment to complete
 List<DeploymentState> nonFinalDeploymentStates = Arrays.asList(
 DeploymentState.DEPLOYING,
 DeploymentState.BAKING,
 DeploymentState.ROLLING_BACK,
 DeploymentState.VALIDATING);
 GetDeploymentRequest getDeploymentRequest =
 GetDeploymentRequest.builder().applicationId(app.id())

 .environmentId(env.id())

 .deploymentNumber(deploymentResponse.deploymentNumber()).build();
 GetDeploymentResponse deployment =
 appconfig.getDeployment(getDeploymentRequest);
 while (nonFinalDeploymentStates.contains(deployment.state())) {
 System.out.println("Waiting for deployment to complete: " + deployment);
 Thread.sleep(1000L);
 deployment = appconfig.getDeployment(getDeploymentRequest);
 }

 System.out.println("Deployment complete: " + deployment);
 }

Python

import boto3

appconfig = boto3.client('appconfig')

create an application
application = appconfig.create_application(Name='MyDemoApp')

Deploying a configuration profile 214

AWS AppConfig User Guide

create an environment
environment = appconfig.create_environment(
 ApplicationId=application['Id'],
 Name='MyEnvironment')

create a configuration profile
config_profile = appconfig.create_configuration_profile(
 ApplicationId=application['Id'],
 Name='MyConfigProfile',
 LocationUri='hosted',
 Type='AWS.Freeform')

create a hosted configuration version
hcv = appconfig.create_hosted_configuration_version(
 ApplicationId=application['Id'],
 ConfigurationProfileId=config_profile['Id'],
 Content=b'my config data',
 ContentType='text/plain')

start a deployment
deployment = appconfig.start_deployment(
 ApplicationId=application['Id'],
 EnvironmentId=environment['Id'],
 ConfigurationProfileId=config_profile['Id'],
 ConfigurationVersion=str(hcv['VersionNumber']),
 DeploymentStrategyId='AppConfig.Linear20PercentEvery6Minutes')

JavaScript

import {
 AppConfigClient,
 CreateApplicationCommand,
 CreateEnvironmentCommand,
 CreateConfigurationProfileCommand,
 CreateHostedConfigurationVersionCommand,
 StartDeploymentCommand,
} from "@aws-sdk/client-appconfig";

const appconfig = new AppConfigClient();

// create an application
const application = await appconfig.send(
 new CreateApplicationCommand({ Name: "MyDemoApp" })

Deploying a configuration profile 215

AWS AppConfig User Guide

);

// create an environment
const environment = await appconfig.send(
 new CreateEnvironmentCommand({
 ApplicationId: application.Id,
 Name: "MyEnvironment",
 })
);

// create a configuration profile
const config_profile = await appconfig.send(
 new CreateConfigurationProfileCommand({
 ApplicationId: application.Id,
 Name: "MyConfigProfile",
 LocationUri: "hosted",
 Type: "AWS.Freeform",
 })
);

// create a hosted configuration version
const hcv = await appconfig.send(
 new CreateHostedConfigurationVersionCommand({
 ApplicationId: application.Id,
 ConfigurationProfileId: config_profile.Id,
 Content: "my config data",
 ContentType: "text/plain",
 })
);

// start a deployment
await appconfig.send(
 new StartDeploymentCommand({
 ApplicationId: application.Id,
 EnvironmentId: environment.Id,
 ConfigurationProfileId: config_profile.Id,
 ConfigurationVersion: hcv.VersionNumber.toString(),
 DeploymentStrategyId: "AppConfig.Linear20PercentEvery6Minutes",
 })
);

Deploying a configuration profile 216

AWS AppConfig User Guide

Using AWS AppConfig Agent to read a freeform configuration
profile

Each of the following samples includes comments about the actions performed by the code.

Java

public void retrieveConfigFromAgent() throws Exception {
 /*
 In this sample, we will retrieve configuration data from the AWS AppConfig
 Agent.
 The agent is a sidecar process that handles retrieving configuration data
 from AppConfig
 for you in a way that implements best practices like configuration caching.

 For more information about the agent, see Simplified retrieval methods
 */

 // The agent runs a local HTTP server that serves configuration data
 // Make a GET request to the agent's local server to retrieve the
 configuration data
 URL url = new URL("http://localhost:2772/applications/MyDemoApp/
environments/Beta/configurations/MyConfigProfile");
 HttpURLConnection con = (HttpURLConnection) url.openConnection();
 con.setRequestMethod("GET");
 StringBuilder content;
 try (BufferedReader in = new BufferedReader(new
 InputStreamReader(con.getInputStream()))) {
 content = new StringBuilder();
 int ch;
 while ((ch = in.read()) != -1) {
 content.append((char) ch);
 }
 }
 con.disconnect();
 System.out.println("Configuration from agent via HTTP: " + content);
 }

Python

in this sample, we will retrieve configuration data from the AWS AppConfig Agent.

Using AWS AppConfig Agent to read a freeform configuration profile 217

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-retrieving-simplified-methods.html

AWS AppConfig User Guide

the agent is a sidecar process that handles retrieving configuration data from AWS
 AppConfig
for you in a way that implements best practices like configuration caching.

for more information about the agent, see
Simplified retrieval methods

import requests

application_name = 'MyDemoApp'
environment_name = 'MyEnvironment'
config_profile_name = 'MyConfigProfile'

the agent runs a local HTTP server that serves configuration data
make a GET request to the agent's local server to retrieve the configuration data
response = requests.get(f"http://localhost:2772/applications/{application_name}/
environments/{environment_name}/configurations/{config_profile_name}")
config = response.content

JavaScript

// in this sample, we will retrieve configuration data from the AWS AppConfig Agent.
// the agent is a sidecar process that handles retrieving configuration data from
 AppConfig
// for you in a way that implements best practices like configuration caching.

// for more information about the agent, see
// Simplified retrieval methods

const application_name = "MyDemoApp";
const environment_name = "MyEnvironment";
const config_profile_name = "MyConfigProfile";

// the agent runs a local HTTP server that serves configuration data
// make a GET request to the agent's local server to retrieve the configuration data
const url = `http://localhost:2772/applications/${application_name}/environments/
${environment_name}/configurations/${config_profile_name}`;
const response = await fetch(url);
const config = await response.text(); // (use `await response.json()` if your config
 is json)

Using AWS AppConfig Agent to read a freeform configuration profile 218

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-retrieving-simplified-methods.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-retrieving-simplified-methods.html

AWS AppConfig User Guide

Using AWS AppConfig Agent to read a specific feature flag

Each of the following samples includes comments about the actions performed by the code.

Java

public void retrieveSingleFlagFromAgent() throws Exception {
 /*
 You can retrieve a single flag's data from the agent by providing the
 "flag" query string parameter.
 Note: the configuration's type must be AWS.AppConfig.FeatureFlags
 */

 URL url = new URL("http://localhost:2772/applications/MyDemoApp/
environments/Beta/configurations/MyFlagsProfile?flag=myFlagKey");
 HttpURLConnection con = (HttpURLConnection) url.openConnection();
 con.setRequestMethod("GET");
 StringBuilder content;
 try (BufferedReader in = new BufferedReader(new
 InputStreamReader(con.getInputStream()))) {
 content = new StringBuilder();
 int ch;
 while ((ch = in.read()) != -1) {
 content.append((char) ch);
 }
 }
 con.disconnect();
 System.out.println("MyFlagName from agent: " + content);
 }

Python

import requests

application_name = 'MyDemoApp'
environment_name = 'MyEnvironment'
config_profile_name = 'MyConfigProfile'
flag_key = 'MyFlag'

retrieve a single flag's data by providing the "flag" query string parameter
note: the configuration's type must be AWS.AppConfig.FeatureFlags

Using AWS AppConfig Agent to read a specific feature flag 219

AWS AppConfig User Guide

response = requests.get(f"http://localhost:2772/applications/{application_name}/
environments/{environment_name}/configurations/{config_profile_name}?
flag={flag_key}")
config = response.content

JavaScript

const application_name = "MyDemoApp";
const environment_name = "MyEnvironment";
const config_profile_name = "MyConfigProfile";
const flag_name = "MyFlag";

// retrieve a single flag's data by providing the "flag" query string parameter
// note: the configuration's type must be AWS.AppConfig.FeatureFlags
const url = `http://localhost:2772/applications/${application_name}/environments/
${environment_name}/configurations/${config_profile_name}?flag=${flag_name}`;
const response = await fetch(url);
const flag = await response.json(); // { "enabled": true/false }

Using the GetLatestConfig API action to read a freeform
configuration profile

Each of the following samples includes comments about the actions performed by the code. The
samples in this section call the following APIs:

• GetLatestConfiguration

• StartConfigurationSession

Java

public void retrieveConfigFromApi() {
 /*
 The example below uses two AppConfigData APIs: StartConfigurationSession and
 GetLatestConfiguration.
 For more information on these APIs, see AWS AppConfig Data */
 AppConfigDataClient appConfigData = AppConfigDataClient.create();

 /*

Using the GetLatestConfig API action to read a freeform configuration profile 220

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_GetLatestConfiguration.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_StartConfigurationSession.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_Operations_AWS_AppConfig_Data.html

AWS AppConfig User Guide

 Start a new configuration session using the StartConfigurationSession API.
 This operation does not return configuration data.
 Rather, it returns an initial configuration token that should be passed to
 GetLatestConfiguration.
 IMPORTANT: This operation should only be performed once (per configuration),
 prior to the first GetLatestConfiguration
 call you preform. Each GetLatestConfiguration will return a new
 configuration token that you should then use in the
 next GetLatestConfiguration call.
 */
 StartConfigurationSessionResponse session =
 appConfigData.startConfigurationSession(req -> req
 .applicationIdentifier("MyDemoApp")
 .configurationProfileIdentifier("MyConfigProfile")
 .environmentIdentifier("Beta"));

 /*
 Retrieve configuration data using the GetLatestConfiguration API. The first
 time you call this API your configuration
 data will be returned. You should cache that data (and the configuration
 token) and update that cache asynchronously
 by regularly polling the GetLatestConfiguration API in a background thread.
 If you already have the latest configuration
 data, subsequent GetLatestConfiguration calls will return an empty response.
 If you then deploy updated configuration
 data the next time you call GetLatestConfiguration it will return that
 updated data.

 You can also avoid all the complexity around writing this code yourself by
 leveraging our agent instead.
 For more information about the agent, see Simplified retrieval methods
 */

 // The first getLatestConfiguration call uses the token from
 StartConfigurationSession
 String configurationToken = session.initialConfigurationToken();
 GetLatestConfigurationResponse configuration =

 appConfigData.getLatestConfiguration(GetLatestConfigurationRequest.builder().configurationToken(configurationToken).build());

 System.out.println("Configuration retrieved via API: " +
 configuration.configuration().asUtf8String());

Using the GetLatestConfig API action to read a freeform configuration profile 221

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-retrieving-simplified-methods.html

AWS AppConfig User Guide

 // You'll want to hold on to the token in the getLatestConfiguration
 response because you'll need to use it
 // the next time you call
 configurationToken = configuration.nextPollConfigurationToken();
 configuration =

 appConfigData.getLatestConfiguration(GetLatestConfigurationRequest.builder().configurationToken(configurationToken).build());

 // Try creating a new deployment at this point to see how the output below
 changes.
 if (configuration.configuration().asByteArray().length != 0) {
 System.out.println("Configuration contents have changed
 since the last GetLatestConfiguration call, new contents = " +
 configuration.configuration().asUtf8String());
 } else {
 System.out.println("GetLatestConfiguration returned an empty response
 because we already have the latest configuration");
 }
 }

Python

the example below uses two AppConfigData APIs: StartConfigurationSession and
 GetLatestConfiguration.

for more information on these APIs, see
AWS AppConfig Data

import boto3

application_name = 'MyDemoApp'
environment_name = 'MyEnvironment'
config_profile_name = 'MyConfigProfile'

appconfigdata = boto3.client('appconfigdata')

start a new configuration session.
this operation does not return configuration data.
rather, it returns an initial configuration token that should be passed to
 GetLatestConfiguration.

note: this operation should only be performed once (per configuration).

Using the GetLatestConfig API action to read a freeform configuration profile 222

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_Operations_AWS_AppConfig_Data.html

AWS AppConfig User Guide

all subsequent calls to AppConfigData should be via GetLatestConfiguration.
scs = appconfigdata.start_configuration_session(
 ApplicationIdentifier=application_name,
 EnvironmentIdentifier=environment_name,
 ConfigurationProfileIdentifier=config_profile_name)
initial_token = scs['InitialConfigurationToken']

retrieve configuration data from the session.
this operation returns your configuration data.
each invocation of this operation returns a unique token that should be passed to
 the subsequent invocation.

note: this operation does not always return configuration data after the first
 invocation.
data is only returned if the configuration has changed within AWS AppConfig
 (i.e. a deployment occurred).
therefore, you should cache the data returned by this call so that you can use
 it later.
glc = appconfigdata.get_latest_configuration(ConfigurationToken=initial_token)
config = glc['Configuration'].read()

JavaScript

// the example below uses two AppConfigData APIs: StartConfigurationSession and
 GetLatestConfiguration.

// for more information on these APIs, see
// AWS AppConfig Data

import {
 AppConfigDataClient,
 GetLatestConfigurationCommand,
 StartConfigurationSessionCommand,
} from "@aws-sdk/client-appconfigdata";

const appconfigdata = new AppConfigDataClient();

const application_name = "MyDemoApp";
const environment_name = "MyEnvironment";
const config_profile_name = "MyConfigProfile";

// start a new configuration session.
// this operation does not return configuration data.

Using the GetLatestConfig API action to read a freeform configuration profile 223

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_Operations_AWS_AppConfig_Data.html

AWS AppConfig User Guide

// rather, it returns an initial configuration token that should be passed to
 GetLatestConfiguration.
//
// note: this operation should only be performed once (per configuration).
// all subsequent calls to AppConfigData should be via GetLatestConfiguration.
const scs = await appconfigdata.send(
 new StartConfigurationSessionCommand({
 ApplicationIdentifier: application_name,
 EnvironmentIdentifier: environment_name,
 ConfigurationProfileIdentifier: config_profile_name,
 })
);
const { InitialConfigurationToken } = scs;

// retrieve configuration data from the session.
// this operation returns your configuration data.
// each invocation of this operation returns a unique token that should be passed to
 the subsequent invocation.
//
// note: this operation does not always return configuration data after the first
 invocation.
// data is only returned if the configuration has changed within AWS AppConfig
 (i.e. a deployment occurred).
// therefore, you should cache the data returned by this call so that you can use
 it later.
const glc = await appconfigdata.send(
 new GetLatestConfigurationCommand({
 ConfigurationToken: InitialConfigurationToken,
 })
);
const config = glc.Configuration.transformToString();

Cleaning up your environment

If you ran one or more of the code samples in this section, we recommend you use one of the
following samples to locate and delete the AWS AppConfig resources created by those code
samples. The samples in this section call the following APIs:

• ListApplications

• DeleteApplication

• ListEnvironments

Cleaning up your environment 224

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_ListApplications.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_DeleteApplication.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_ListEnvironments.html

AWS AppConfig User Guide

• DeleteEnvironments

• ListConfigurationProfiles

• DeleteConfigurationProfile

• ListHostedConfigurationVersions

• DeleteHostedConfigurationVersion

Java

/*
 This sample provides cleanup code that deletes all the AWS AppConfig resources
 created in the samples above.

 WARNING: this code will permanently delete the given application and all of its
 sub-resources, including
 configuration profiles, hosted configuration versions, and environments. DO NOT
 run this code against
 an application that you may need in the future.
 */

 public void cleanUpDemoResources() {
 AppConfigClient appconfig = AppConfigClient.create();

 // The name of the application to delete
 // IMPORTANT: verify this name corresponds to the application you wish to
 delete
 String applicationToDelete = "MyDemoApp";

 appconfig.listApplicationsPaginator(ListApplicationsRequest.builder().build()).items().forEach(app
 -> {
 if (app.name().equals(applicationToDelete)) {
 System.out.println("Deleting App: " + app);
 appconfig.listConfigurationProfilesPaginator(req ->
 req.applicationId(app.id())).items().forEach(cp -> {
 System.out.println("Deleting Profile: " + cp);
 appconfig
 .listHostedConfigurationVersionsPaginator(req -> req
 .applicationId(app.id())
 .configurationProfileId(cp.id()))
 .items()
 .forEach(hcv -> {

Cleaning up your environment 225

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_DeleteEnvironment.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_ListConfigurationProfiles.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_DeleteConfigurationProfile.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_ListHostedConfigurationVersions.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_DeleteHostedConfigurationVersion.html

AWS AppConfig User Guide

 System.out.println("Deleting HCV: " + hcv);
 appconfig.deleteHostedConfigurationVersion(req -> req
 .applicationId(app.id())
 .configurationProfileId(cp.id())
 .versionNumber(hcv.versionNumber()));
 });
 appconfig.deleteConfigurationProfile(req -> req
 .applicationId(app.id())
 .configurationProfileId(cp.id()));
 });

 appconfig.listEnvironmentsPaginator(req-
>req.applicationId(app.id())).items().forEach(env -> {
 System.out.println("Deleting Environment: " + env);
 appconfig.deleteEnvironment(req-
>req.applicationId(app.id()).environmentId(env.id()));
 });

 appconfig.deleteApplication(req -> req.applicationId(app.id()));
 }
 });
 }

Python

this sample provides cleanup code that deletes all the AWS AppConfig resources
 created in the samples above.
#
WARNING: this code will permanently delete the given application and all of its
 sub-resources, including
configuration profiles, hosted configuration versions, and environments. DO NOT
 run this code against
an application that you may need in the future.
#

import boto3

the name of the application to delete
IMPORTANT: verify this name corresponds to the application you wish to delete
application_name = 'MyDemoApp'

create and iterate over a list paginator such that we end up with a list of pages,
 which are themselves lists of applications

Cleaning up your environment 226

AWS AppConfig User Guide

e.g. [[{'Name':'MyApp1',...},{'Name':'MyApp2',...}], [{'Name':'MyApp3',...}]]
list_of_app_lists = [page['Items'] for page in
 appconfig.get_paginator('list_applications').paginate()]
retrieve the target application from the list of lists
application = [app for apps in list_of_app_lists for app in apps if app['Name'] ==
 application_name][0]
print(f"deleting application {application['Name']} (id={application['Id']})")

delete all configuration profiles
list_of_config_lists = [page['Items'] for page in
 appconfig.get_paginator('list_configuration_profiles').paginate(ApplicationId=application['Id'])]
for config_profile in [config for configs in list_of_config_lists for config in
 configs]:
 print(f"\tdeleting configuration profile {config_profile['Name']}
 (Id={config_profile['Id']})")

 # delete all hosted configuration versions
 list_of_hcv_lists = [page['Items'] for page in
 appconfig.get_paginator('list_hosted_configuration_versions').paginate(ApplicationId=application['Id'],
 ConfigurationProfileId=config_profile['Id'])]
 for hcv in [hcv for hcvs in list_of_hcv_lists for hcv in hcvs]:

 appconfig.delete_hosted_configuration_version(ApplicationId=application['Id'],
 ConfigurationProfileId=config_profile['Id'], VersionNumber=hcv['VersionNumber'])
 print(f"\t\tdeleted hosted configuration version {hcv['VersionNumber']}")

 # delete the config profile itself
 appconfig.delete_configuration_profile(ApplicationId=application['Id'],
 ConfigurationProfileId=config_profile['Id'])
 print(f"\tdeleted configuration profile {config_profile['Name']}
 (Id={config_profile['Id']})")

delete all environments
list_of_env_lists = [page['Items'] for page in
 appconfig.get_paginator('list_environments').paginate(ApplicationId=application['Id'])]
for environment in [env for envs in list_of_env_lists for env in envs]:
 appconfig.delete_environment(ApplicationId=application['Id'],
 EnvironmentId=environment['Id'])
 print(f"\tdeleted environment {environment['Name']} (Id={environment['Id']})")

delete the application itself
appconfig.delete_application(ApplicationId=application['Id'])
print(f"deleted application {application['Name']} (id={application['Id']})")

Cleaning up your environment 227

AWS AppConfig User Guide

JavaScript

// this sample provides cleanup code that deletes all the AWS AppConfig resources
 created in the samples above.

// WARNING: this code will permanently delete the given application and all of its
 sub-resources, including
// configuration profiles, hosted configuration versions, and environments. DO NOT
 run this code against
// an application that you may need in the future.

import {
 AppConfigClient,
 paginateListApplications,
 DeleteApplicationCommand,
 paginateListConfigurationProfiles,
 DeleteConfigurationProfileCommand,
 paginateListHostedConfigurationVersions,
 DeleteHostedConfigurationVersionCommand,
 paginateListEnvironments,
 DeleteEnvironmentCommand,
} from "@aws-sdk/client-appconfig";

const client = new AppConfigClient();

// the name of the application to delete
// IMPORTANT: verify this name corresponds to the application you wish to delete
const application_name = "MyDemoApp";

// iterate over all applications, deleting ones that have the name defined above
for await (const app_page of paginateListApplications({ client }, {})) {
 for (const application of app_page.Items) {

 // skip applications that dont have the name thats set
 if (application.Name !== application_name) continue;

 console.log(`deleting application ${application.Name} (id=${application.Id})`);

 // delete all configuration profiles
 for await (const config_page of paginateListConfigurationProfiles({ client },
 { ApplicationId: application.Id })) {
 for (const config_profile of config_page.Items) {
 console.log(`\tdeleting configuration profile ${config_profile.Name} (Id=
${config_profile.Id})`);

Cleaning up your environment 228

AWS AppConfig User Guide

 // delete all hosted configuration versions
 for await (const hosted_page of
 paginateListHostedConfigurationVersions({ client },
 { ApplicationId: application.Id, ConfigurationProfileId:
 config_profile.Id }
)) {
 for (const hosted_config_version of hosted_page.Items) {
 await client.send(
 new DeleteHostedConfigurationVersionCommand({
 ApplicationId: application.Id,
 ConfigurationProfileId: config_profile.Id,
 VersionNumber: hosted_config_version.VersionNumber,
 })
);
 console.log(`\t\tdeleted hosted configuration version
 ${hosted_config_version.VersionNumber}`);
 }
 }

 // delete the config profile itself
 await client.send(
 new DeleteConfigurationProfileCommand({
 ApplicationId: application.Id,
 ConfigurationProfileId: config_profile.Id,
 })
);
 console.log(`\tdeleted configuration profile ${config_profile.Name} (Id=
${config_profile.Id})`)
 }

 // delete all environments
 for await (const env_page of paginateListEnvironments({ client },
 { ApplicationId: application.Id })) {
 for (const environment of env_page.Items) {
 await client.send(
 new DeleteEnvironmentCommand({
 ApplicationId: application.Id,
 EnvironmentId: environment.Id,
 })
);
 console.log(`\tdeleted environment ${environment.Name} (Id=
${environment.Id})`)
 }

Cleaning up your environment 229

AWS AppConfig User Guide

 }
 }

 // delete the application itself
 await client.send(
 new DeleteApplicationCommand({ ApplicationId: application.Id })
);
 console.log(`deleted application ${application.Name} (id=${application.Id})`)
 }
}

Cleaning up your environment 230

AWS AppConfig User Guide

Security in AWS AppConfig

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to AWS Systems
Manager, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

AWS AppConfig is a capability of AWS Systems Manager. To understand how to apply the shared
responsibility model when using AWS AppConfig, see Security in AWS Systems Manager. That
section describes how to configure Systems Manager to meet the security and compliance
objectives for AWS AppConfig.

Implement least privilege access

As a security best practice, grant the minimum required permissions that identities require to
perform specific actions on specific resources under specific conditions. AWS AppConfig Agent
offers two features that enable the agent to access the filesystem of an instance or container:
backup and write to disk. If you enable these features, verify that only the AWS AppConfig Agent
has permissions to write to the designated configuration files on the filesystem. Also verify
that only the processes required to read from these configuration files have the ability to do so.
Implementing least privilege access is fundamental in reducing security risk and the impact that
could result from errors or malicious intent.

For more information about implementing least privilege access, see SEC03-BP02 Grant least
privilege access in the AWS Well-Architected Tool User Guide. For more information about the AWS
AppConfig Agent features mentioned in this section, see Additional retrieval features.

Implement least privilege access 231

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/systems-manager/latest/userguide/security.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/sec_permissions_least_privileges.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/sec_permissions_least_privileges.html

AWS AppConfig User Guide

Data encryption at rest for AWS AppConfig

AWS AppConfig provides encryption by default to protect customer data at rest using AWS owned
keys.

AWS owned keys — AWS AppConfig uses these keys by default to automatically encrypt data
deployed by the service and hosted in the AWS AppConfig data store. You can't view, manage, or
use AWS owned keys, or audit their use. However, you don't have to take any action or change any
programs to protect the keys that encrypt your data. For more information, see AWS owned keys in
the AWS Key Management Service Developer Guide.

While you can't disable this layer of encryption or select an alternate encryption type, you can
specify a customer managed key to be used when you save configuration data hosted in the AWS
AppConfig data store and when you deploy your configuration data.

Customer managed keys — AWS AppConfig supports the use of a symmetric customer managed
key that you create, own, and manage to add a second layer of encryption over the existing AWS
owned key. Because you have full control of this layer of encryption, you can perform such tasks as:

• Establishing and maintaining key policies and grants

• Establishing and maintaining IAM policies

• Enabling and disabling key policies

• Rotating key cryptographic material

• Adding tags

• Creating key aliases

• Scheduling keys for deletion

For more information, see Customer managed key in the AWS Key Management Service Developer
Guide.

AWS AppConfig supports customer managed keys

AWS AppConfig offers support for customer managed key encryption for configuration data.
For configuration versions saved to the AWS AppConfig hosted data store, customers can set
a KmsKeyIdentifier on the corresponding configuration profile. Each time a new version
of configuration data is created using the CreateHostedConfigurationVersion API
operation, AWS AppConfig generates an AWS KMS data key from the KmsKeyIdentifier

Data encryption at rest for AWS AppConfig 232

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

AWS AppConfig User Guide

to encrypt the data before storing it. When the data is later accessed, either during the
GetHostedConfigurationVersion or StartDeployment API operations, AWS AppConfig
decrypts the configuration data using information about the generated data key.

AWS AppConfig also offers support for customer managed key encryption for deployed
configuration data. To encrypt configuration data, customers can provide a KmsKeyIdentifier to
their deployment. AWS AppConfig generates the AWS KMS data key with this KmsKeyIdentifier
to encrypt data on the StartDeployment API operation.

AWS AppConfig encryption access

When creating a customer managed key, use the following key policy to ensure that the key can be
used.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::account_ID:role/role_name"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*"
 }
]

To encrypt hosted configuration data with a customer managed key, the identity calling
CreateHostedConfigurationVersion needs the following policy statement which can be
assigned to a user, group, or role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kms:GenerateDataKey,

Data encryption at rest for AWS AppConfig 233

AWS AppConfig User Guide

 "Resource": "arn:aws:kms:Region:account_ID:key_ID"
 }
]
}

If you are using a Secrets Manager secret or any other configuration data encrypted with a
customer managed key, your retrievalRoleArn will need kms:Decrypt to decrypt and retrieve
the data.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kms:Decrypt",
 "Resource": "arn:aws:kms:Region:account_ID:configuration source/object"
 }
]
}

When calling the AWS AppConfig StartDeployment API operation, the identity calling
StartDeployment needs the following IAM policy which can be assigned to a user, group, or role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey*"
],
 "Resource": "arn:aws:kms:Region:account_ID:key_ID"
 }
]
}

When calling the AWS AppConfig GetLatestConfiguration API operation, the identity calling
GetLatestConfiguration needs the following policy which can be assigned to a user, group, or
role:

{

Data encryption at rest for AWS AppConfig 234

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_StartDeployment.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_GetLatestConfiguration.html

AWS AppConfig User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kms:Decrypt,
 "Resource": "arn:aws:kms:Region:account_ID:key_ID"
 }
]
}

Encryption context

An encryption context is an optional set of key-value pairs that contain additional contextual
information about the data.

AWS KMS uses the encryption context as additional authenticated data to support authenticated
encryption. When you include an encryption context in a request to encrypt data, AWS KMS binds
the encryption context to the encrypted data. To decrypt data, you include the same encryption
context in the request.

AWS AppConfig encryption context: AWS AppConfig uses an encryption context in all AWS KMS
cryptographic operations for encrypted hosted configuration data and deployments. The context
contains a key corresponding to the type of data and a value that identifies the specific data item.

Monitoring your encryption keys for AWS

When you use an AWS KMS customer managed keys with AWS AppConfig, you can use AWS
CloudTrail or Amazon CloudWatch Logs to track requests that AWS AppConfig sends to AWS KMS.

The following example is a CloudTrail event for Decrypt to monitor AWS KMS operations called by
AWS AppConfig to access data encrypted by your customer managed key:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "appconfig.amazonaws.com"
 },
 "eventTime": "2023-01-03T02:22:28z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "Region",

Data encryption at rest for AWS AppConfig 235

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-authenticated-encryption
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-authenticated-encryption

AWS AppConfig User Guide

 "sourceIPAddress": "172.12.34.56",
 "userAgent": "ExampleDesktop/1.0 (V1; OS)",
 "requestParameters": {
 "encryptionContext": {
 "aws:appconfig:deployment:arn":
 "arn:aws:appconfig:Region:account_ID:application/application_ID/
environment/environment_ID/deployment/deployment_ID"
 },
 "keyId": "arn:aws:kms:Region:account_ID:key/key_ID",
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT"
 },
 "responseElements": null,
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": true,
 "resources": [
 {
 "accountId": "account_ID",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:Region:account_ID:key_ID"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "account_ID",
 "sharedEventID": "dc129381-1d94-49bd-b522-f56a3482d088"
}

Access AWS AppConfig using an interface endpoint (AWS
PrivateLink)

You can use AWS PrivateLink to create a private connection between your VPC and AWS
AppConfig. You can access AWS AppConfig as if it were in your VPC, without the use of an internet
gateway, NAT device, VPN connection, or AWS Direct Connect connection. Instances in your VPC
don't need public IP addresses to access AWS AppConfig.

You establish this private connection by creating an interface endpoint, powered by AWS
PrivateLink. We create an endpoint network interface in each subnet that you enable for the
interface endpoint. These are requester-managed network interfaces that serve as the entry point
for traffic destined for AWS AppConfig.

AWS PrivateLink 236

AWS AppConfig User Guide

For more information, see Access AWS services through AWS PrivateLink in the AWS PrivateLink
Guide.

Considerations for AWS AppConfig

Before you set up an interface endpoint for AWS AppConfig, review Considerations in the AWS
PrivateLink Guide.

AWS AppConfig supports making calls to the appconfig and appconfigdata services through
the interface endpoint.

Create an interface endpoint for AWS AppConfig

You can create an interface endpoint for AWS AppConfig using either the Amazon VPC console
or the AWS Command Line Interface (AWS CLI). For more information, see Create an interface
endpoint in the AWS PrivateLink Guide.

Create an interface endpoint for AWS AppConfig using the following service names:

com.amazonaws.region.appconfig

com.amazonaws.region.appconfigdata

If you enable private DNS for the interface endpoint, you can make API requests to AWS AppConfig
using its default Regional DNS name. For example, appconfig.us-east-1.amazonaws.com and
appconfigdata.us-east-1.amazonaws.com.

Create an endpoint policy for your interface endpoint

An endpoint policy is an IAM resource that you can attach to an interface endpoint. The default
endpoint policy allows full access to AWS AppConfig through the interface endpoint. To control the
access allowed to AWS AppConfig from your VPC, attach a custom endpoint policy to the interface
endpoint.

An endpoint policy specifies the following information:

• The principals that can perform actions (AWS accounts, IAM users, and IAM roles).

• The actions that can be performed.

Considerations 237

https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#considerations-interface-endpoints
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_Operations_Amazon_AppConfig.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_Operations_AWS_AppConfig_Data.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws

AWS AppConfig User Guide

• The resources on which the actions can be performed.

For more information, see Control access to services using endpoint policies in the AWS PrivateLink
Guide.

Example: VPC endpoint policy for AWS AppConfig actions

The following is an example of a custom endpoint policy. When you attach this policy to your
interface endpoint, it grants access to the listed AWS AppConfig actions for all principals on all
resources.

{
 "Statement": [
 {
 "Principal": "*",
 "Effect": "Allow",
 "Action": [
 "appconfig:CreateApplication",
 "appconfig:CreateEnvironment",
 "appconfig:CreateConfigurationProfile",
 "appconfig:StartDeployment",
 "appconfig:GetLatestConfiguration"
 "appconfig:StartConfigurationSession"
],
 "Resource":"*"
 }
]
}

Secrets Manager key rotation

This section describes important security information about AWS AppConfig integration with
Secrets Manager. For information about Secrets Manager, see What is AWS Secrets Manager? in the
AWS Secrets Manager User Guide.

Setting up automatic rotation of Secrets Manager secrets deployed by
AWS AppConfig

Rotation is the process of periodically updating a secret stored in Secrets Manager. When you
rotate a secret, you update the credentials in both the secret and the database or service. You

Secrets Manager key rotation 238

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

AWS AppConfig User Guide

can configure automatic secrets rotation in Secrets Manager by using an AWS Lambda function
to update the secret and the database. For more information, see Rotate AWS Secrets Manager
secrets in the AWS Secrets Manager User Guide.

To enable key rotation of Secrets Manager secrets deployed by AWS AppConfig, update your
rotation Lambda function and deploy the rotated secret.

Note

Deploy you AWS AppConfig configuration profile after your secret has been rotated and
fully updated to the new version. You can determine if the secret rotated because the
status of VersionStage changes from AWSPENDING to AWSCURRENT. Secret rotation
completion occurs within the Secrets Manager Rotation Templates finish_secret
function.

Here is an example function that starts an AWS AppConfig deployment after a secret is rotated.

import time
import boto3
client = boto3.client('appconfig')

def finish_secret(service_client, arn, new_version):
 """Finish the rotation by marking the pending secret as current
 This method finishes the secret rotation by staging the secret staged AWSPENDING
 with the AWSCURRENT stage.
 Args:
 service_client (client): The secrets manager service client
 arn (string): The secret ARN or other identifier
 new_version (string): The new version to be associated with the secret
 """
 # First describe the secret to get the current version
 metadata = service_client.describe_secret(SecretId=arn)
 current_version = None
 for version in metadata["VersionIdsToStages"]:
 if "AWSCURRENT" in metadata["VersionIdsToStages"][version]:
 if version == new_version:
 # The correct version is already marked as current, return
 logger.info("finishSecret: Version %s already marked as AWSCURRENT for
 %s" % (version, arn))
 return
 current_version = version

Setting up automatic rotation of Secrets Manager secrets deployed by AWS AppConfig 239

https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html

AWS AppConfig User Guide

 break

 # Finalize by staging the secret version current
 service_client.update_secret_version_stage(SecretId=arn, VersionStage="AWSCURRENT",
 MoveToVersionId=new_version, RemoveFromVersionId=current_version)

 # Deploy rotated secret
 response = client.start_deployment(
 ApplicationId='TestApp',
 EnvironmentId='TestEnvironment',
 DeploymentStrategyId='TestStrategy',
 ConfigurationProfileId='ConfigurationProfileId',
 ConfigurationVersion=new_version,
 KmsKeyIdentifier=key,
 Description='Deploy secret rotated at ' + str(time.time())
)

 logger.info("finishSecret: Successfully set AWSCURRENT stage to version %s for
 secret %s." % (new_version, arn))

Setting up automatic rotation of Secrets Manager secrets deployed by AWS AppConfig 240

AWS AppConfig User Guide

Monitoring AWS AppConfig

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS
AppConfig and your other AWS solutions. AWS provides the following monitoring tools to watch
AWS AppConfig, report when something is wrong, and take automatic actions when appropriate:

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see the AWS CloudTrail User Guide.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon
EC2 instances, CloudTrail, and other sources. CloudWatch Logs can monitor information in the
log files and notify you when certain thresholds are met. You can also archive your log data in
highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

Topics

• Logging AWS AppConfig API calls using AWS CloudTrail

• Logging metrics for AWS AppConfig data plane calls

Logging AWS AppConfig API calls using AWS CloudTrail

AWS AppConfig is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in AWS AppConfig. CloudTrail captures all API calls for
AWS AppConfig as events. The calls captured include calls from the AWS AppConfig console and
code calls to the AWS AppConfig API operations. If you create a trail, you can enable continuous
delivery of CloudTrail events to an Amazon S3 bucket, including events for AWS AppConfig. If you
don't configure a trail, you can still view the most recent events in the CloudTrail console in Event
history. Using the information collected by CloudTrail, you can determine the request that was
made to AWS AppConfig, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

CloudTrail logs 241

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

AWS AppConfig User Guide

AWS AppConfig information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
AWS AppConfig, that activity is recorded in a CloudTrail event along with other AWS service events
in Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing events with CloudTrail Event history.

For an ongoing record of events in your AWS account, including events for AWS AppConfig, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All AWS AppConfig actions are logged by CloudTrail and are documented in the AWS AppConfig
API Reference. For example, calls to the CreateApplication, GetApplication and
ListApplications actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

AWS AppConfig information in CloudTrail 242

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/Welcome.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/Welcome.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS AppConfig User Guide

AWS AppConfig data events in CloudTrail

Data events provide information about the resource operations performed on or in a resource (for
example, retrieving the latest deployed configuration by calling GetLatestConfiguration). These
are also known as data plane operations. Data events are often high-volume activities. By default,
CloudTrail doesn’t log data events. The CloudTrail Event history doesn't record data events.

Additional charges apply for data events. For more information about CloudTrail pricing, see AWS
CloudTrail Pricing.

You can log data events for the AWS AppConfig resource types by using the CloudTrail console,
AWS CLI, or CloudTrail API operations. The table in this section shows the resource types available
for AWS AppConfig.

• To log data events using the CloudTrail console, create a trail or event data store to log data
events, or update an existing trail or event data store to log data events.

1. Choose Data events to log data events.

2. From the Data event type list, choose AWS AppConfig.

3. Choose the log selector template you want to use. You can log all data events for the
resource type, log all readOnly events, log all writeOnly events, or create a custom log
selector template to filter on the readOnly, eventName, and resources.ARN fields.

4. For Selector name, enter AppConfigDataEvents. For information about enabling Amazon
CloudWatch Logs for your data event trail, see Logging metrics for AWS AppConfig data
plane calls.

• To log data events using the AWS CLI, configure the --advanced-event-selectors
parameter to set the eventCategory field equal to Data and the resources.type field
equal to the resource type value (see table). You can add conditions to filter on the values of the
readOnly, eventName, and resources.ARN fields.

• To configure a trail to log data events, run the put-event-selectors command. For more
information, see Logging data events for trails with the AWS CLI.

• To configure an event data store to log data events, run the create-event-data-store command
to create a new event data store to log data events, or run the update-event-data-store
command to update an existing event data store. For more information, see Logging data
events for event data stores with the AWS CLI.

AWS AppConfig data events in CloudTrail 243

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events
https://aws.amazon.com/cloudtrail/pricing/
https://aws.amazon.com/cloudtrail/pricing/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html#creating-a-trail-in-the-console
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/query-event-data-store-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console
https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/put-event-selectors.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-CLI-trail-examples
https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/create-event-data-store.html
https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/update-event-data-store.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-CLI-eds-examples
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-CLI-eds-examples

AWS AppConfig User Guide

The following table lists the AWS AppConfig resource types. The Data event type (console)
column shows the value to choose from the Data event type list on the CloudTrail console. The
resources.type value column shows the resources.type value, which you would specify when
configuring advanced event selectors using the AWS CLI or CloudTrail APIs. The Data APIs logged
to CloudTrail column shows the API calls logged to CloudTrail for the resource type.

Data event type (console) resources.type value Data APIs logged to
CloudTrail*

AWS AppConfig AWS::AppConfig::Co
nfiguration

• GetLatestConfiguration

• StartConfigurationSession

*You can configure advanced event selectors to filter on the eventName, readOnly, and
resources.ARN fields to log only those events that are important to you. For more information
about these fields, see AdvancedFieldSelector.

AWS AppConfig management events in CloudTrail

Management events provide information about management operations that are performed on
resources in your AWS account. These are also known as control plane operations. By default,
CloudTrail logs management events.

AWS AppConfig logs all AWS AppConfig control plane operations as management events. For a list
of the AWS AppConfig control plane operations that AWS AppConfig logs to CloudTrail, see the
AWS AppConfig API Reference.

Understanding AWS AppConfig log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the
StartConfigurationSession action.

{

AWS AppConfig management events in CloudTrail 244

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_GetLatestConfiguration.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_StartConfigurationSession.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html#logging-management-events
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_Operations_Amazon_AppConfig.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_StartConfigurationSession.html

AWS AppConfig User Guide

 "eventVersion": "1.09",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/Administrator",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {},
 "attributes": {
 "creationDate": "2024-01-11T14:37:02Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2024-01-11T14:45:15Z",
 "eventSource": "appconfig.amazonaws.com",
 "eventName": "StartConfigurationSession",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "Boto3/1.34.11 md/Botocore#1.34.11 ua/2.0 os/macos#22.6.0
 md/arch#x86_64 lang/python#3.11.4 md/pyimpl#CPython cfg/retry-mode#legacy
 Botocore/1.34.11",
 "requestParameters": {
 "applicationIdentifier": "rrfexample",
 "environmentIdentifier": "mexampleqe0",
 "configurationProfileIdentifier": "3eexampleu1"
 },
 "responseElements": null,
 "requestID": "a1b2c3d4-5678-90ab-cdef-aaaaaEXAMPLE",
 "eventID": "a1b2c3d4-5678-90ab-cdef-bbbbbEXAMPLE",
 "readOnly": false,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::AppConfig::Configuration",
 "ARN": "arn:aws:appconfig:us-east-1:123456789012:application/rrfexample/
environment/mexampleqe0/configuration/3eexampleu1"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "123456789012",
 "eventCategory": "Data",

Understanding AWS AppConfig log file entries 245

AWS AppConfig User Guide

 "tlsDetails": {
 "tlsVersion": "TLSv1.3",
 "cipherSuite": "TLS_AES_128_GCM_SHA256",
 "clientProvidedHostHeader": "appconfigdata.us-east-1.amazonaws.com"
 }
 }

Logging metrics for AWS AppConfig data plane calls

If you configured AWS CloudTrail to log AWS AppConfig data events, you can enable Amazon
CloudWatch Logs to log metrics for calls to the AWS AppConfig data plane. You can then search
and filter log data in CloudWatch Logs by creating one or more metric filters. Metric filters define
the terms and patterns to look for in log data as it is sent to CloudWatch Logs. CloudWatch Logs
uses metric filters to turn log data into numerical CloudWatch metrics. You can graph metrics or
configure them with an alarm.

Before you begin

Enable logging of AWS AppConfig data events in AWS CloudTrail. The following procedure
describes how to enable metric logging for an existing AWS AppConfig trail in CloudTrail. For
information about how to enable CloudTrail logging for AWS AppConfig data plan calls, see AWS
AppConfig data events in CloudTrail.

Use the following procedure to enable CloudWatch Logs to log metrics for calls to the AWS
AppConfig data plane.

To enable CloudWatch Logs to log metrics for calls to the AWS AppConfig data plane

1. Open the CloudTrail console at https://console.aws.amazon.com/cloudtrail/.

2. On the dashboard, choose your AWS AppConfig trail.

3. In the CloudWatch Logs section, choose Edit.

4. Choose Enabled.

5. For Log group name, either leave the default name or enter a name. Make a note of the name.
You will choose the log group in the CloudWatch Logs console later.

6. For Role name, enter a name.

7. Choose Save changes.

Logging metrics for AWS AppConfig data plane calls 246

https://console.aws.amazon.com/cloudtrail/

AWS AppConfig User Guide

Use the following procedure to create a metric and a metric filter for AWS AppConfig in
CloudWatch Logs. The procedure describes how to create a metric filter for calls by operation
and (optionally) calls by operation and Amazon Resource Name (ARN).

To create a metric and a metric filter for AWS AppConfig in CloudWatch Logs

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, and then choose Log groups.

3. Choose the checkbox beside the AWS AppConfig log group.

4. Choose Actions, and then choose Create metric filter.

5. For Filter name, enter a name.

6. For Filter pattern, enter the following:

{ $.eventSource = "appconfig.amazonaws.com" }

7. (Optional) In the Test pattern section, choose your log group from the Select log data to test
list. If CloudTrail hasn't logged any calls, you can skip this step.

8. Choose Next.

9. For Metric namespace, enter AWS AppConfig.

10. For Metric name, enter Calls.

11. For Metric value, enter 1.

12. Skip Default value and Unit.

13. For Dimension name, enter operation.

14. For Dimension value, enter $.eventName.

(Optional) You can enter a second dimension that includes the Amazon Resource Name (ARN)
making the call. To add a second dimension, for Dimension name, enter resource. For
Dimension value, enter $.resources[0].ARN.

Choose Next.

15. Review the details of the filter and Create metric filter.

(Optional) You can repeat this procedure to create a new metric filter for a specific error code like
AccessDenied. If you do, enter the following details:

1. For Filter name, enter a name.

Logging metrics for AWS AppConfig data plane calls 247

https://console.aws.amazon.com/cloudwatch/

AWS AppConfig User Guide

2. For Filter pattern, enter the following:

{ $.errorCode = "codename" }

For example

{ $.errorCode = "AccessDenied" }

3. For Metric namespace, enter AWS AppConfig.

4. For Metric name, enter Errors.

5. For Metric value, enter 1.

6. For Default value, enter a zero (0).

7. Skip Unit, Dimensions, and Alarms.

After CloudTrail logs API calls, you can view metrics in CloudWatch. For more information,
see Viewing your metrics and logs in the console in the Amazon CloudWatch User Guide. For
information about how to locate a metric you created, see Search for available metrics.

Note

If you set up the error metric with no dimension, as described here, you can view those
metrics on the Metrics with no dimension page.

Creating an alarm for a CloudWatch metric

After you create metrics, you can create metric alarms in CloudWatch. For example, you can create
an alarm for the AWS AppConfig calls metric you created in the previous procedure. Specifically,
you can create an alarm for calls to the AWS AppConfig StartConfigurationSession API
action that surpass a threshold. For information about how to create an alarm for a metric, see
Create a CloudWatch alarm based on a static threshold in the Amazon CloudWatch User Guide. For
information about default limits for calls to the AWS AppConfig data plane, see Data plane default
limits in the Amazon Web Services General Reference.

Creating an alarm for a CloudWatch metric 248

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_View.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/finding_metrics_with_cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html
https://docs.aws.amazon.com/general/latest/gr/appconfig.html#limits_appconfig
https://docs.aws.amazon.com/general/latest/gr/appconfig.html#limits_appconfig

AWS AppConfig User Guide

AWS AppConfig User Guide document history

The following table describes the important changes to the documentation since the last release of
AWS AppConfig.

Current API version: 2019-10-09

Change Description Date

AWS AppConfig custom
extension samples

The Walkthrough: Creating
custom AWS AppConfig
extensions topic now includes
links to the following sample
extensions on GitHub:

• Sample extension that
prevents deployments with
a blocked day moratoriu
m calendar using Systems
Manager Change Calendar

• Sample extension that
prevents secrets from
leaking into configuration
data using git-secrets

• Sample extension that
prevents personally
identifiable information
(PII) from leaking into
configuration data using
Amazon Comprehend

February 28, 2024

New topic: Logging AWS
AppConfig API calls using
AWS CloudTrail

AWS AppConfig is integrate
d with AWS CloudTrail, a
service that provides a record
of actions taken by a user,
role, or an AWS service in
AWS AppConfig. CloudTrai

January 18, 2024

249

https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-creating-custom.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-creating-custom.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-creating-custom.html
https://github.com/aws-samples/aws-appconfig-change-calendar-extn
https://github.com/aws-samples/aws-appconfig-change-calendar-extn
https://github.com/aws-samples/aws-appconfig-change-calendar-extn
https://github.com/aws-samples/aws-appconfig-change-calendar-extn
https://github.com/aws-samples/aws-appconfig-change-calendar-extn
https://github.com/aws-samples/aws-appconfig-git-secrets-extn
https://github.com/aws-samples/aws-appconfig-git-secrets-extn
https://github.com/aws-samples/aws-appconfig-git-secrets-extn
https://github.com/aws-samples/aws-appconfig-git-secrets-extn
https://github.com/aws-samples/aws-appconfig-pii-extn
https://github.com/aws-samples/aws-appconfig-pii-extn
https://github.com/aws-samples/aws-appconfig-pii-extn
https://github.com/aws-samples/aws-appconfig-pii-extn
https://github.com/aws-samples/aws-appconfig-pii-extn
https://github.com/aws-samples/aws-appconfig-pii-extn

AWS AppConfig User Guide

l captures all API calls for
AWS AppConfig as events.
This new topic provides AWS
AppConfig-specific content
rather than linking to the
corresponding content in the
AWS Systems Manager User
Guide. For more information,
see Logging AWS AppConfig
API calls using AWS CloudTrai
l.

AWS AppConfig now supports
AWS PrivateLink

You can use AWS PrivateLink
to create a private connectio
n between your VPC and AWS
AppConfig. You can access
AWS AppConfig as if it were
in your VPC, without the use
of an internet gateway, NAT
device, VPN connection, or
AWS Direct Connect connectio
n. Instances in your VPC don't
need public IP addresses
to access AWS AppConfig.
For more information, see
Access AWS AppConfig using
an interface endpoint (AWS
PrivateLink).

December 6, 2023

250

https://docs.aws.amazon.com/appconfig/latest/userguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/appconfig/latest/userguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/appconfig/latest/userguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-security.html#vpc-interface-endpoints
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-security.html#vpc-interface-endpoints
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-security.html#vpc-interface-endpoints

AWS AppConfig User Guide

Additional AWS AppConfig
Agent retrieval features and a
new local development mode

AWS AppConfig Agent offers
the following additional
features to help you retrieve
configurations for your
applications.

Additional retrieval features

• Multi-account retrieval:
Use AWS AppConfig Agent
from a primary or retrieval
 AWS account to retrieve
configuration data from
multiple vendor accounts.

• Write configuration copy to
disk: Use AWS AppConfig
Agent to write configura
tion data to disk. This
feature enables customers
with applications that read
configuration data from
disk to integrate with AWS
AppConfig.

Note

Write configuration to
disk is not designed
as a configuration
backup feature.
AWS AppConfig
Agent doesn't read
from the configura
tion files copied to
disk. If you want to
back up configura

December 1, 2023

251

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-retrieving-simplified-methods-additional-features.html

AWS AppConfig User Guide

tions to disk, see the
BACKUP_DIRECTORY
and PRELOAD_B
ACKUP environme
nt variables for Using
AWS AppConfig Agent
with Amazon EC2 or
Using AWS AppConfig
Agent with Amazon
ECS and Amazon EKS.

Local development mode

AWS AppConfig Agent
supports a local developme
nt mode. If you enable local
development mode, the agent
reads configuration data
from a specified directory
on disk. It doesn't retrieve
configuration data from AWS
AppConfig. You can simulate
configuration deployments by
updating files in the specified
directory. We recommend
local development mode for
the following use cases:

• Test different configuration
versions before deploying
them using AWS AppConfig
.

• Test different configuration
options for a new feature
before commiting changes
to your code repository.

252

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-ec2.html#appconfig-integration-ec2-configuring
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-ec2.html#appconfig-integration-ec2-configuring
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-ec2.html#appconfig-integration-ec2-configuring
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-containers-agent.html#appconfig-integration-containers-agent-configuring
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-containers-agent.html#appconfig-integration-containers-agent-configuring
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-containers-agent.html#appconfig-integration-containers-agent-configuring
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-retrieving-simplified-methods-local-development.html

AWS AppConfig User Guide

• Test different configura
tion scenarios to verify they
work as expected.

New code samples topic Added a new code samples
topic to this guide. The topic
includes examples in Java,
Python, and JavaScript for
programmatically performin
g six common AWS AppConfig
 actions.

November 17, 2023

Revised table of contents to
better reflect AWS AppConfig
 workflow

Content in this user guide
is now grouped under the
headings Creating, Deploying
, Retrieving, and Extending
workflows. This organization
better reflects the workflow
for using AWS AppConfig and
aims to help make content
more discoverable.

November 7, 2023

Payload reference added The Creating a Lambda
function for a custom AWS
AppConfig extension topic
now includes a request and
response payload reference.

November 7, 2023

New AWS predefined
deployment strategy

AWS AppConfig now offers
and recommends the
AppConfig.Linear20
PercentEvery6Minut
es predefined deployment
strategy. For more informati
on, see Predefined deploymen
t strategies.

August 11, 2023

253

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-code-samples.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-creating-custom-lambda
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-creating-custom-lambda
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions-creating-custom-lambda
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-deployment-strategy.html#appconfig-creating-deployment-strategy-predefined
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-deployment-strategy.html#appconfig-creating-deployment-strategy-predefined

AWS AppConfig User Guide

AWS AppConfig integration
with Amazon EC2

You can integrate AWS
AppConfig with applications
running on your Amazon
Elastic Compute Cloud
(Amazon EC2) Linux instances
by using AWS AppConfig
Agent. The agent supports
x86_64 and ARM64 architect
ures for Amazon EC2. For
more information, see AWS
AppConfig integration with
Amazon EC2.

July 20, 2023

AWS CloudFormation support
for new AWS AppConfig
resources and a feature flag
example

AWS CloudFormation now
supports the AWS::AppC
onfig::Extension and
AWS::AppConfig::ExtensionAs
sociation resources to help
you get started with AWS
AppConfig extensions.

The AWS::AppConfig::Co
nfigurationProfile and
AWS::AppConfig::HostedConfi
gurationVersion resources
now include an example
for creating a feature flag
configuration profile in the
AWS AppConfig hosted
configuration store.

April 12, 2023

254

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-ec2.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-ec2.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-ec2.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-appconfig-extension.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-appconfig-extension.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-appconfig-extensionassociation.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-appconfig-extensionassociation.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-appconfig-configurationprofile.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-appconfig-configurationprofile.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-appconfig-hostedconfigurationversion.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-appconfig-hostedconfigurationversion.html

AWS AppConfig User Guide

AWS AppConfig integration
with AWS Secrets Manager

AWS AppConfig integrates
with AWS Secrets Manager.
Secrets Manager helps you
to securely encrypt, store,
and retrieve credentials
for your databases and
other services. Instead of
hardcoding credentials in your
apps, you can make calls to
Secrets Manager to retrieve
your credentials whenever
needed. Secrets Manager
helps you protect access to
your IT resources and data
by enabling you to rotate
and manage access to your
secrets.

When you create a freeform
configuration profile, you can
choose Secrets Manager as
the source of your configura
tion data. You must onboard
with Secrets Manager and
create a secret before you
create the configuration
profile. For more informati
on about Secrets Manager,
see What is AWS Secrets
Manager? in the AWS Secrets
Manager User Guide. For
information about creating
a configuration profile, see
Creating a freeform configura
tion profile.

February 2, 2023

255

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-configuration-and-profile.html#appconfig-creating-configuration-and-profile-free-form-configurations
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-configuration-and-profile.html#appconfig-creating-configuration-and-profile-free-form-configurations

AWS AppConfig User Guide

AWS AppConfig integrati
on with Amazon ECS and
Amazon EKS

You can integrate AWS
AppConfig with Amazon
Elastic Container Service
(Amazon ECS) and Amazon
Elastic Kubernetes Service
(Amazon EKS) by using
the AWS AppConfig agent.
The agent functions as a
sidecar container running
alongside your Amazon ECS
and Amazon EKS container
 applications. The agent
enhances containerized
application processing and
management in the following
ways:

• The agent calls AWS
AppConfig on your behalf
by using an AWS Identity
and Access Management
(IAM) role and managing
a local cache of configura
tion data. By pulling
configuration data from
the local cache, your
application requires
fewer code updates to
manage configuration data,
retrieves configuration data
in milliseconds, and isn't
affected by network issues
that can disrupt calls for
such data.

• The agent offers a native
experience for retrievin

December 2, 2022

256

AWS AppConfig User Guide

g and resolving AWS
AppConfig feature flags.

• Out of the box, the agent
provides best practices
for caching strategies,
polling intervals, and
local configuration data
availability while tracking
the configuration tokens
needed for subsequent
service calls.

• While running in the
background, the agent
periodically polls the AWS
AppConfig data plane for
configuration data updates.
Your containerized applicati
on can retrieve the data
by connecting to localhost
on port 2772 (a customiza
ble default port value)
and calling HTTP GET to
retrieve the data.

• The AWS AppConfig agent
updates configuration data
in your containers without
having to restart or recycle
those containers.

For more information, see
AWS AppConfig integrati
on with Amazon ECS and
Amazon EKS.

257

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-containers-agent.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-containers-agent.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-containers-agent.html

AWS AppConfig User Guide

New extension: AWS
AppConfig extension for
CloudWatch Evidently

You can use Amazon
CloudWatch Evidently to
safely validate new features
by serving them to a specified
percentage of your users
while you roll out the
feature. You can monitor
the performance of the new
feature to help you decide
when to ramp up traffic to
your users. This helps you
reduce risk and identify
unintended consequences
before you fully launch the
feature. You can also conduct
A/B experiments to make
feature design decisions
based on evidence and data.

The AWS AppConfig extension
for CloudWatch Evidently
allows your application to
assign variations to user
sessions locally instead of by
calling the EvaluateFeature
operation. A local session
mitigates the latency and
availability risks that come
with an API call. For informati
on about how to configure
and use the extension, see
Perform launches and A/B
experiments with CloudWatc
h Evidently in the Amazon
CloudWatch User Guide.

September 13, 2022

258

https://docs.aws.amazon.com/cloudwatchevidently/latest/APIReference/API_EvaluateFeature.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Evidently.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Evidently.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Evidently.html

AWS AppConfig User Guide

Deprecation of the
GetConfiguration API
action

On Nov 18, 2021, AWS
AppConfig released a
new data plane service.
This service replaces the
previous process of retrievin
g configuration data by using
the GetConfiguration API
action. The data plane service
uses two new API actions,
StartConfigurationSession
and GetLatestConfiguration.
The data plane service also
uses new endpoints.

For more information, see
About the AWS AppConfig
data plane service.

September 13, 2022

New version of the AWS
AppConfig Agent Lambda
extension

Version 2.0.122 of the AWS
AppConfig Agent Lambda
extension is now available
. The new extension uses
different Amazon Resource
Names (ARNs). For more
information, see AWS
AppConfig Agent Lambda
extension release notes.

August 23, 2022

259

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_StartConfigurationSession.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_GetLatestConfiguration.html
https://docs.aws.amazon.com/general/latest/gr/appconfig.html#appconfigdata_data_plane
https://docs.aws.amazon.com/appconfig/latest/userguide/about-data-plane.html
https://docs.aws.amazon.com/appconfig/latest/userguide/about-data-plane.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions-versions.html#appconfig-integration-lambda-extensions-versions-release-notes
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions-versions.html#appconfig-integration-lambda-extensions-versions-release-notes
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions-versions.html#appconfig-integration-lambda-extensions-versions-release-notes

AWS AppConfig User Guide

Launch of AWS AppConfig
extensions

An extension augments
your ability to inject logic or
behavior at different points
during the AWS AppConfig
workflow of creating or
deploying a configuration.
You can use AWS-authored
extensions or create your
own. For more informati
on, see Working with AWS
AppConfig extensions.

July 12, 2022

New version of the AWS
AppConfig Agent Lambda
extension

Version 2.0.58 of the
AWS AppConfig Agent
Lambda extension is now
available. The new extension
uses different Amazon
Resource Names (ARNs).
For more information, see
Available versions of the AWS
AppConfig Lambda extension.

May 3, 2022

260

https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions.html
https://docs.aws.amazon.com/appconfig/latest/userguide/working-with-appconfig-extensions.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions-versions.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions-versions.html

AWS AppConfig User Guide

AWS AppConfig integration
with Atlassian Jira

Integrating with Atlassian
Jira allows AWS AppConfig
to create and update issues
in the Atlassian console
whenever you make changes
to a feature flag in your AWS
account for the specified
AWS Region. Each Jira issue
includes the flag name,
application ID, configuration
profile ID, and flag values.
After you update, save, and
deploy your flag changes,
Jira updates the existing
issues with the details of the
change. For more informati
on, see AWS AppConfig
integration with Atlassian Jira.

April 7, 2022

261

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-configuration-and-profile.html#appconfig-creating-configuration-and-profile-feature-flags
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-jira.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-jira.html

AWS AppConfig User Guide

General availability of feature
flags and Lambda extension
 support for ARM64 (Graviton
2) processors

With AWS AppConfig feature
flags, you can develop a
new feature and deploy it
to production while hiding
the feature from users. You
start by adding the flag to
AWS AppConfig as configura
tion data. Once the feature is
ready to be released, you can
update the flag configuration
data without deploying any
code. This feature improves
the safety of your dev-ops
environment because you
don't need to deploy new
code to release the feature.
For more information, see
Creating a feature flag
configuration profile.

General availability of feature
flags in AWS AppConfig
 includes the following
enhancements:

• The console includes an
option to designate a flag
as a short term flag. You
can filter and sort the list of
flags on short-term flags.

• For customers using feature
flags in AWS Lambda, the
new Lambda extension
allows you to call individua
l feature flags by using
an HTTP endpoint. For
more information, see see

March 15, 2022

262

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-configuration-and-profile.html#appconfig-creating-configuration-and-profile-feature-flags
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-configuration-and-profile.html#appconfig-creating-configuration-and-profile-feature-flags

AWS AppConfig User Guide

Retrieving one or more
flags from a feature flag
configuration.

This update also provides
support for AWS Lambda
extensions developed for
ARM64 (Graviton2) processor
s. For more information, see
see Available versions of the
AWS AppConfig Lambda
extension.

The GetConfiguration API
action is deprecated

The GetConfiguration
API action is deprecated. Calls
to receive configuration data
should use the StartConf
igurationSession and
GetLatestConfigura
tion APIs instead. For more
information about these APIs
and how to use them, see
Retrieving the configuration.

January 28, 2022

New region ARN for AWS
AppConfig Lambda extension

AWS AppConfig Lambda
extension is available in the
new Asia Pacific (Osaka)
region. The Amazon Resource
Name (ARN) is required
to create a Lambda in the
region. For more information
about the Asia Pacific (Osaka)
region ARN, see Adding the
AWS AppConfig Lambda
extension.

March 4, 2021

263

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions-retrieving-flags.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions-retrieving-flags.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions-retrieving-flags.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions-versions.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions-versions.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions-versions.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-retrieving-the-configuration.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions.html#appconfig-integration-lambda-extensions-enabling
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions.html#appconfig-integration-lambda-extensions-enabling
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions.html#appconfig-integration-lambda-extensions-enabling

AWS AppConfig User Guide

AWS AppConfig Lambda
extension

If you use AWS AppConfig
to manage configurations
for a Lambda function, then
we recommend that you add
the AWS AppConfig Lambda
extension. This extension
includes best practices that
simplify using AWS AppConfig
while reducing costs. Reduced
costs result from fewer API
calls to the AWS AppConfig
service and, separately,
reduced costs from shorter
Lambda function processing
times. For more information,
see AWS AppConfig integrati
on with Lambda extensions.

October 8, 2020

New section Added a new section that
provides instructions for
setting up AWS AppConfig
. For more information, see
Setting up AWS AppConfig.

September 30, 2020

Added commandline
procedures

Procedures in this user guide
now include commandline
steps for the AWS Command
Line Interface (AWS CLI) and
Tools for Windows PowerShel
l. For more information, see
Working with AWS AppConfig.

September 30, 2020

264

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions.html
https://docs.aws.amazon.com/appconfig/latest/userguide/setting-up-appconfig.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-application.html

AWS AppConfig User Guide

Launch of AWS AppConfig
user guide

Use AWS AppConfig, a
capability of AWS Systems
Manager, to create, manage,
and quickly deploy applicati
on configurations. AWS
AppConfig supports controlle
d deployments to applicati
ons of any size and includes
built-in validation checks and
monitoring. You can use AWS
AppConfig with applications
hosted on EC2 instances, AWS
Lambda, containers, mobile
applications, or IoT devices.

July 31, 2020

265

	AWS AppConfig
	Table of Contents
	What is AWS AppConfig?
	AWS AppConfig use cases
	Benefits of using AWS AppConfig
	How AWS AppConfig works
	Get started with AWS AppConfig
	SDKs
	Pricing for AWS AppConfig
	AWS AppConfig quotas

	Setting up AWS AppConfig
	Sign up for an AWS account
	Create a user with administrative access
	Grant programmatic access
	Configure permissions for automatic rollback
	Step 1: Create the permission policy for rollback based on CloudWatch alarms
	Step 2: Create the IAM role for rollback based on CloudWatch alarms
	Step 3: Add a trust relationship

	Creating feature flags and free form configuration data in AWS AppConfig
	About the configuration profile IAM role
	Creating a namespace for your application in AWS AppConfig
	Creating an AWS AppConfig application (console)
	Creating an AWS AppConfig application (command line)

	Creating environments for your application in AWS AppConfig
	Creating an AWS AppConfig environment (console)
	Creating an AWS AppConfig environment (command line)

	Creating a configuration profile in AWS AppConfig
	About validators
	AWS Lambda function validators
	JSON Schema validators

	Creating a feature flag configuration profile in AWS AppConfig
	Creating a feature flag configuration profile (console)
	Creating a feature flag and a feature flag configuration profile (command line)
	Type reference for AWS.AppConfig.FeatureFlags
	Create a feature flag configuration profile that uses variants

	Creating a free form configuration profile in AWS AppConfig
	About configuration store quotas and limitations
	About the AWS AppConfig hosted configuration store
	About configurations stored in Amazon S3
	Configuring permissions for a configuration stored as an Amazon S3 object

	Creating a freeform configuration and configuration profile
	Creating an AWS AppConfig freeform configuration profile (console)
	Creating an AWS AppConfig freeform configuration profile (command line)

	Other sources of configuration data
	AWS AppConfig integration with AWS Secrets Manager

	Deploying feature flags and configuration data in AWS AppConfig
	Working with deployment strategies
	Predefined deployment strategies
	Create a deployment strategy
	Creating an AWS AppConfig deployment strategy (console)
	Creating an AWS AppConfig deployment strategy (command line)

	Deploying a configuration
	Deploy a configuration (console)
	Deploy a configuration (commandline)

	AWS AppConfig deployment integration with CodePipeline
	How integration works

	Retrieving feature flags and configuration data in AWS AppConfig
	About the AWS AppConfig data plane service
	Simplified retrieval methods
	Retrieving configuration data using the AWS AppConfig Agent Lambda extension
	How it works
	Before you begin
	Adding the AWS AppConfig Agent Lambda extension
	Adding the AWS AppConfig Agent Lambda extension by using a layer and an ARN

	Configuring the AWS AppConfig Agent Lambda extension
	Retrieving one or more flags from a feature flag configuration
	Viewing AWS AppConfig Agent Lambda extension logs

	Available versions of the AWS AppConfig Agent Lambda extension
	AWS AppConfig Agent Lambda Extension release notes
	Finding your Lambda extension version number
	x86-64 platform
	ARM64 platform
	Older extension versions
	Older extension versions (x86-64 platform)
	Older extension versions (ARM64 platform)

	Using a container image to add the AWS AppConfig Agent Lambda extension
	Example

	Integrating with OpenAPI

	Retrieving configuration data from Amazon EC2 instances
	Step 1: (Required) Creating resources and configuring permissions
	Step 2: (Required) Installing and starting AWS AppConfig Agent on Amazon EC2 instances
	Step 3: (Optional, but recommended) Sending log files to CloudWatch Logs
	Step 4: (Optional) Using environment variables to configure AWS AppConfig Agent for Amazon EC2
	Step 5: (Required) Retrieving configuration data
	Step 6 (Optional, but recommended): Automating updates to AWS AppConfig Agent

	Retrieving configuration data from Amazon ECS and Amazon EKS
	Before you begin
	Starting the AWS AppConfig agent for Amazon ECS integration
	Starting the AWS AppConfig agent for Amazon EKS integration
	Using environment variables to configure AWS AppConfig Agent for Amazon ECS and Amazon EKS
	Retrieving configuration data

	Additional retrieval features
	About agent manifests
	Multi-account retrieval
	Configure permissions to retrieve configuration data from vendor accounts

	Write configuration copy to disk

	AWS AppConfig Agent local development

	Retrieving configurations by directly calling APIs
	Retrieving a configuration example

	Extending workflows using extensions
	About AWS AppConfig extensions
	Step 1: Determine what you want to do with extensions
	Step 2: Determine when you want the extension to run
	Step 3: Create an extension association
	Step 4: Deploy a configuration and verify the extension actions are performed

	Working with AWS authored extensions
	Working with the Amazon CloudWatch Evidently extension
	Working with the AWS AppConfig deployment events to Amazon EventBridge extension
	Using the extension

	Working with the AWS AppConfig deployment events to Amazon SNS extension
	Using the extension

	Working with the AWS AppConfig deployment events to Amazon SQS extension
	Using the extension

	Working with the Atlassian Jira extension for AWS AppConfig
	Configuring permissions for AWS AppConfig Jira integration
	Task 1: Create an IAM permission policy for AWS AppConfig and Jira integration
	Task 2: Create a user for AWS AppConfig and Jira integration

	Configuring the AWS AppConfig Jira integration application
	Deleting the AWS AppConfig for Jira application and data

	Walkthrough: Creating custom AWS AppConfig extensions
	Creating a Lambda function for a custom AWS AppConfig extension
	Sample code
	Payload reference

	Configuring permissions for a custom AWS AppConfig extension
	Creating a custom AWS AppConfig extension
	Customizing AWS authored notification extensions

	Creating an extension association for a custom AWS AppConfig extension

	AWS AppConfig extension integration with Atlassian Jira

	Code samples for performing common AWS AppConfig tasks
	Creating or updating a freeform configuration stored in the hosted configuration store
	Creating a configuration profile for a secret stored in Secrets Manager
	Deploying a configuration profile
	Using AWS AppConfig Agent to read a freeform configuration profile
	Using AWS AppConfig Agent to read a specific feature flag
	Using the GetLatestConfig API action to read a freeform configuration profile
	Cleaning up your environment

	Security in AWS AppConfig
	Implement least privilege access
	Data encryption at rest for AWS AppConfig
	Access AWS AppConfig using an interface endpoint (AWS PrivateLink)
	Considerations for AWS AppConfig
	Create an interface endpoint for AWS AppConfig
	Create an endpoint policy for your interface endpoint

	Secrets Manager key rotation
	Setting up automatic rotation of Secrets Manager secrets deployed by AWS AppConfig

	Monitoring AWS AppConfig
	Logging AWS AppConfig API calls using AWS CloudTrail
	AWS AppConfig information in CloudTrail
	AWS AppConfig data events in CloudTrail
	AWS AppConfig management events in CloudTrail
	Understanding AWS AppConfig log file entries

	Logging metrics for AWS AppConfig data plane calls
	Creating an alarm for a CloudWatch metric

	AWS AppConfig User Guide document history

