
Developer Guide

AWS Application Composer

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Application Composer Developer Guide

AWS Application Composer: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Application Composer Developer Guide

Table of Contents

What is Application Composer? .. 1
Compose your architecture .. 2
Define your templates ... 4
Integrate with your workflows .. 5
Ways to access Application Composer ... 6
Learn more ... 8
Next steps .. 8

Concepts ... 9
Cards .. 9

What are enhanced component cards? .. 10
What are standard (IaC) resource cards? ... 11
What are standard component cards? ... 12

Card connections .. 15
Connections between cards .. 15
Connections between enhanced component cards ... 16
Connections to and from standard IaC resource cards ... 17

Serverless concepts .. 17
Serverless concepts .. 17

Getting started .. 19
Set up ... 19

Sign up for an AWS account .. 20
Create a user with administrative access ... 20
Next steps ... 21

Take a tour of the console ... 22
Tutorial 1: Load and modify the demo ... 22

Step 1: Open the demo .. 23
Step 2: Explore the visual canvas .. 23
Step 3: Expand your architecture .. 27
Step 4: Save your application .. 28
Next steps ... 29

Tutorial 2: Build your first application ... 29
Resource properties .. 30
Step 1: Create your project .. 30
Add cards .. 33

iii

AWS Application Composer Developer Guide

Step 3: Configure your REST API .. 34
Step 4: Configure your functions .. 35
Step 5: Connect your cards .. 36
Step 6: Organize the canvas .. 37
Add a DynamoDB table ... 38
Step 8: Review your template .. 39
Step 9: Integrate into your workflows ... 40
Next steps ... 40

Where to compose ... 41
Application Composer console .. 41

Accessing Application Composer from the AWS Management Console 41
Visual overview .. 42
Manage your project .. 50
Using Application Composer with your local IDE .. 55

CloudFormation console mode ... 57
Why use this mode? ... 58
How to access this mode .. 58
How to use this mode ... 59

AWS Toolkit for Visual Studio Code ... 62
Accessing Application Composer from the AWS Toolkit for Visual Studio Code 63
Visual overview .. 64
Manage your project .. 66
Deploy your application .. 66
Using Application Composer with CodeWhisperer .. 68

Importing functions from Lambda console .. 71
How to compose .. 72

Select and connect cards ... 72
Select a card to design with .. 72
Group cards together ... 73
Connect cards .. 74
Arrange cards on your canvas .. 79

Configure cards ... 80
Enhanced component cards ... 80
Standard cards ... 96

View code updates .. 101
What is the Change Inspector? .. 101

iv

AWS Application Composer Developer Guide

Using the Change Inspector ... 102
Benefits of the Change Inspector ... 104
Learn more ... 104

Reference external files .. 105
Create an external file reference ... 105
Load a project that contains an external file reference ... 106
Best practices .. 107
Examples ... 107

Additional Features .. 114
Amazon VPC .. 114

Shortcuts and controls ... 127
Keyboard shortcuts .. 127
Zoom in and out of your canvas ... 128

How to deploy your application ... 130
Deploy with AWS SAM .. 130

What is AWS SAM? ... 130
AWS SAM prerequisites ... 132
Using Application Composer with the AWS SAM CLI .. 132
Examples ... 134

Reference .. 143
File System Access API ... 143

What is the File System Access API? .. 143
What is the local sync mode? .. 144
What web browsers are supported? ... 144
What does Application Composer gain access to? .. 144

Card reference .. 144
Enhanced component cards ... 145
Future enhanced component card support ... 146

Troubleshooting ... 146
Error messages .. 146
Submit feedback ... 148

Security .. 150
Data protection .. 150

Data encryption .. 152
Encryption in transit .. 152
Key management .. 152

v

AWS Application Composer Developer Guide

Inter-network traffic privacy .. 152
Identity and access management ... 152

Audience ... 153
Authenticating with identities ... 153
Managing access using policies ... 156
How AWS Application Composer works with IAM ... 158

Compliance validation .. 165
Resilience ... 167

Document history .. 168

vi

AWS Application Composer Developer Guide

What is AWS Application Composer?

AWS Application Composer allows you to visually compose modern applications on AWS. More
specifically, you can use Application Composer to visualize, build, and deploy modern applications
from all AWS services that are supported by AWS CloudFormation without needing to be an expert
in AWS CloudFormation.

As you compose your AWS CloudFormation infrastructure, through a delightful drag-and-drop
interface, Application Composer creates your infrastructure as code (IaC) templates, all while
following AWS best practices. The following image shows how easy it is to drag, drop, configure,
and connect resources on Application Composer's visual canvas.

Application Composer can be used from the Application Composer console, the AWS Toolkit for
Visual Studio Code, and in CloudFormation console mode.

Topics

• Compose your application architecture

• Define your infrastructure as code (IaC) templates

• Integrate with your existing workflows

• Ways to access Application Composer

1

AWS Application Composer Developer Guide

• Learn more

• Next steps

Compose your application architecture

Build with cards

Place cards on the Application Composer canvas to visualize and build your application
architecture.

Connect cards together

Configure how your resources interact with each other by visually connecting them together.
Specify their properties further through a curated properties panel.

Compose your architecture 2

AWS Application Composer Developer Guide

Work with any AWS CloudFormation resource

Drag any AWS CloudFormation resource onto the canvas to compose your application
architecture. Application Composer provides a starting IaC template that you can use to specify
the properties of your resource. To learn more, see Configure Application Composer cards.

Compose your architecture 3

AWS Application Composer Developer Guide

Access additional capabilities with featured AWS services

Application Composer features AWS services that are commonly used or configured together
when building applications. To learn more, see Additional Features.

The following is an example of the AWS Step Functions feature, which provides an integration
to launch Step Functions Workflow Studio directly within the Application Composer canvas.

Define your infrastructure as code (IaC) templates

Application Composer creates your infrastructure code

As you compose, Application Composer automatically creates your AWS CloudFormation and
AWS Serverless Application Model (AWS SAM) templates, following AWS best practices. You
can view and modify your templates directly from within Application Composer. Application
Composer automatically syncs changes between the visual canvas and your template code.

Define your templates 4

AWS Application Composer Developer Guide

Integrate with your existing workflows

Import existing templates and projects

Import existing AWS CloudFormation and AWS SAM templates to visualize them for better
understanding and modify their design. Export the templates that you create within Application
Composer and integrate them into your existing workflows towards deployment.

Integrate with your workflows 5

AWS Application Composer Developer Guide

Ways to access Application Composer

From the Application Composer console

Access Application Composer through the Application Composer console to get started quickly.
Additionally, you can use local sync mode to automatically sync and save Application Composer
with your local machine.

Ways to access Application Composer 6

AWS Application Composer Developer Guide

From the AWS CloudFormation console

The Application Composer console also supports CloudFormation console mode, an
improvement from CloudFormation Designer that is integrated with the AWS CloudFormation
stack workflow. This new tool is now the recommended tool to visualize your CloudFormation
templates.

From the Lambda console

With Application Composer, you can also import Lambda functions from the Lambda console.
To learn more, see Importing functions from the Lambda console.

From the AWS Toolkit for Visual Studio Code

Access Application Composer through the Toolkit for VS Code extension to bring Application
Composer into your local development environment.

Ways to access Application Composer 7

AWS Application Composer Developer Guide

Learn more

To continue learning about Application Composer, see the following resources:

• Application Composer concepts

• Visually compose and create serverless applications | Serverless Office Hours – Overview and
demo of Application Composer.

Next steps

To set up Application Composer, see Getting started with Application Composer console.

Learn more 8

https://www.youtube.com/watch?v=G7Gp2pzSMYY

AWS Application Composer Developer Guide

Application Composer concepts

Application Composer simplifies the process or writing infrastructure as code (IaC) for AWS
CloudFormation resources. To effectively use Application Composer, there are two basic concepts
you should first understand: Application Composer cards and card connections. This section
provides details on what these are. Additionally, this section includes an overview of serverless
concepts.

Topics

• What are Application Composer cards?

• What are card connections in Application Composer?

• Serverless concepts

What are Application Composer cards?

In Application Composer, cards represent AWS CloudFormation resources. there are two general
categories of cards:

• Enhanced component card – A collection of AWS CloudFormation resources that have been
combined into a single curated card that enhances ease of use, functionality, and are designed
for a wide variety of use cases. Enhanced component cards are the first cards listed in the
Resources palette in Application Composer.

• Standard IaC resource card – represents a single AWS CloudFormation resource. Each standard
IaC resource card, once dragged onto the canvas, is labeled Standard component.

Note

Depending on the card, a Standard IaC resource card may be labeled a Standard
component card after it has been dragged onto the visual canvas. This simply means the
card is a collection of one or more standard IaC resource cards.

While some types of cards are available from the Resources palette, cards can also appear on the
canvas when you import an existing AWS CloudFormation or AWS Serverless Application Model

Cards 9

AWS Application Composer Developer Guide

(AWS SAM) template into Application Composer. The following image is an example of an imported
application that contains various card types:

Topics

• What are enhanced component cards?

• What are standard (IaC) resource cards?

• What are standard component cards?

What are enhanced component cards?

An enhanced component card contains a collection of AWS CloudFormation resources that are
commonly used together. They are available from the Resources palette, under the Enhanced
components section.

The following is an example of an S3 Bucket enhanced component:

When you drag an S3 Bucket component card onto the canvas and view your template, you will see
the following two AWS CloudFormation resources added to your template:

What are enhanced component cards? 10

AWS Application Composer Developer Guide

• AWS::S3::Bucket

• AWS::S3::BucketPolicy

The S3 Bucket enhanced component card represents two AWS CloudFormation resources that are
both required for an Amazon Simple Storage Service (Amazon S3) bucket to interact with other
services in your application.

Enhanced component cards are created and managed by Application Composer. Each card contains
AWS CloudFormation resources that are commonly used together when building applications on
AWS. Their infrastructure code is created by Application Composer following AWS best practices.
Enhanced components are a great place to start designing your applications with.

What are standard (IaC) resource cards?

A standard (IaC) resource card represents a single AWS CloudFormation resource. Each standard
IaC resource card, once dragged onto the canvas, is labeled Standard component, and may be
combined to represent multiple AWS CloudFormation resources.

What are standard (IaC) resource cards? 11

AWS Application Composer Developer Guide

Each standard IaC resource card can be identified by its AWS CloudFormation resource type. The
following is an example of a standard IaC resource card that represents an AWS::ECS::Cluster
AWS CloudFormation resource type:

What are standard component cards?

A standard component card represents one or more standard IaC resource cards. Standard
component cards are not available from the Resources palette. When you drag a standard IaC
resource card onto the canvas, Application Composer becomes a standard component card. Also,
when you import an existing application template, Application Composer may visualize AWS
CloudFormation resources as standard component cards on the canvas.

Standard component cards are labeled on the canvas. Each standard component card visualizes
the AWS CloudFormation resources that it contains. The following is an example of a standard
component card that includes two standard IaC resources:

As you configure the properties of your standard component cards, Application Composer may
combine related cards together. For example, here are two standard component cards:

What are standard component cards? 12

AWS Application Composer Developer Guide

In the Resource properties panel of the standard component card representing an
AWS::Lambda::Function resource, we reference the AWS Identity and Access Management (IAM)
role by its logical ID:

What are standard component cards? 13

AWS Application Composer Developer Guide

After saving our template, the two standard component cards combine into a single standard
component card.

What are standard component cards? 14

AWS Application Composer Developer Guide

What are card connections in Application Composer?

In AWS Application Composer, a connection between two cards is visually displayed by a line. These
lines represent event-driven relationships within your application.

Topics

• Connections between cards

• Connections between enhanced component cards

• Connections to and from standard IaC resource cards

Connections between cards

How you connect cards together varies depending on the card type. Each enhanced card has at
least one connector port. To connect them, you simply select one connector port and drag it to
the port of another card, and Application Composer will connect the two resources or display a
message stating this configuration isn’t supported.

As seen above, lines between enhanced component cards are solid. Conversely, standard IaC
resource cards (also referred to as standard component cards) do not have connector ports. For
these cards, you must specify these event-driven relationships in your application's template, and
Application Composer will automatically detect their connections and visualize them with a dotted
line between your cards.

Card connections 15

AWS Application Composer Developer Guide

To learn more, see the sections below.

Connections between enhanced component cards

In Application Composer, a connection between two enhanced component cards is visually
displayed by a solid line. These lines represent event-driven relationships within your application.

To connect two cards, click on a port from one card and drag it onto a port on another card.

Note

Standard IaC resource cards do not have connector ports. For these cards, you must specify
their event-driven relationships in your application's template, and Application Composer
will automatically detect their connections and visualize them with a dotted line between
your cards.

Connections between enhanced component cards 16

AWS Application Composer Developer Guide

For more information, see Connect cards.

Connections to and from standard IaC resource cards

All AWS CloudFormation resources are available to use as standard IaC resource cards from the
Resources palette. When you drag a standard IaC resource card onto the canvas, a standard IaC
resource card becomes a standard component card, and this prompts Application Composer to
create a starting template for your resource in your application.

For more information, see Standard IaC resource cards (standard component cards).

Serverless concepts

Learn about basic serverless concepts before using AWS Application Composer.

Serverless concepts

Event-driven architecture

A serverless application consists of individual AWS services, such as AWS Lambda for compute
and Amazon DynamoDB for database management, that each perform a specialized role. These
services are then loosely integrated with each other through an event-driven architecture. To
learn more about event-driven architecture, see What is an Event-Driven Architecture?.

Infrastructure as Code (IaC)

Infrastructure as Code (IaC) is a way of treating infrastructure in the same way that developers
treat code, applying the same rigor of application code development to infrastructure
provisioning. You define your infrastructure in a template file, deploy it to AWS, and AWS
creates the resources for you. With IAC, you define in code what you want AWS to provision.
For more information, see Infrastructure as Code in the Introduction to DevOps on AWS AWS
Whitepaper.

Serverless technologies

With AWS serverless technologies, you can build and run applications without having to
manage your own servers. All server management is done by AWS, providing many benefits
such as automatic scaling and built-in high availability, letting you take your idea to production
quickly. Using serverless technologies, you can focus on the core of your product without having
to worry about managing and operating servers. To learn more about serverless, see Serverless
on AWS.

Connections to and from standard IaC resource cards 17

https://aws.amazon.com/event-driven-architecture/
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/infrastructure-as-code.html
https://aws.amazon.com/serverless/
https://aws.amazon.com/serverless/

AWS Application Composer Developer Guide

For a basic introduction to the core AWS serverless services, see Serverless 101: Understanding
the serverless services at Serverless Land.

Serverless concepts 18

https://serverlessland.com/learn/serverless-101
https://serverlessland.com/learn/serverless-101

AWS Application Composer Developer Guide

Getting started with Application Composer console

Use the topics in this section to set up AWS Application Composer and learn how to design an
application using its visual canvas.

The tour and tutorials in this section are shown in the Application Composer console, which is the
default user experience. Application Composer is also available from the AWS Toolkit for Visual
Studio Code and in CloudFormation console mode. Experiences between tools are generally the
same but there are some differences between each. For details on using Application Composer in
each of these tools, see Where you can use Application Composer.

Topics

• Set up Application Composer

• Take a tour in the Application Composer console

• Tutorial 1: Load and modify the Application Composer demo project

• Tutorial 2: Build your first application with Application Composer

Set up Application Composer

Before using AWS Application Composer for the first time, complete the set up tasks in this section.

Note

Access to Application Composer from the AWS Management Console requires, at minimum,
read-only access to the AWS Management Console. If you're an existing AWS user and
meet those requirements, see Where you can use Application Composer. If you don't have
an AWS account, then we recommend that you complete the following steps to access
Application Composer.

Topics

• Sign up for an AWS account

• Create a user with administrative access

• Next steps

Set up 19

AWS Application Composer Developer Guide

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Sign up for an AWS account 20

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html

AWS Application Composer Developer Guide

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Next steps

To learn what you can do with Application Composer, see Take a tour in the Application Composer
console.

Next steps 21

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

AWS Application Composer Developer Guide

Take a tour in the Application Composer console

Go through an embedded tour of AWS Application Composer to learn what you can do with the
service.

To take a tour of Application Composer

1. Sign in to the Application Composer console.

2. On the Home page, choose Open demo.

3. In the upper-right corner, in the Take a quick tour of Composer window, choose Start.

4. In the Composer tour window, do the following:

• To move to the next step, choose Next.

• To return to the previous step, choose Previous.

• On the final step, to finish the tour, choose End.

Tutorial 1: Load and modify the Application Composer demo
project

This tutorial guides you through creating a demo application to learn the user interface of AWS
Application Composer.

For this tutorial, we use Application Composer in the AWS Management Console.

Topics

• Step 1: Open the demo

• Step 2: Explore the visual canvas of Application Composer

• Step 3: Expand your application architecture

• Step 4: Save your application

• Next steps

Take a tour of the console 22

https://console.aws.amazon.com/composer

AWS Application Composer Developer Guide

Step 1: Open the demo

Start using Application Composer by creating a demo project.

To create a demo project

1. Sign in to the Application Composer console.

2. On the Home page, choose Open demo.

The demo application is a basic CRUD serverless application that includes:

• An Amazon API Gateway resource with five routes.

• Five AWS Lambda functions.

• An Amazon DynamoDB table.

Step 2: Explore the visual canvas of Application Composer

Learn the features of the visual canvas to build out your Application Composer demo project. For
an overview of the visual canvas layout, see Visual overview.

To explore the features of the visual canvas

1. When you open a new or existing application project, Application Composer loads the canvas
view, as indicated above the main view area.

Step 1: Open the demo 23

https://console.aws.amazon.com/composer

AWS Application Composer Developer Guide

To show your application's infrastructure code in the main view area, choose Template. For
example, here is the AWS Serverless Application Model (AWS SAM) template view of the
Application Composer demo project.

2. To show the canvas view of your application again, choose Canvas.

3. To show your application's resources organized in a tree view, choose List.

Step 2: Explore the visual canvas 24

AWS Application Composer Developer Guide

4. To show the resource palette, choose Resources. This palette features cards that you can use
to expand your application architecture. You can search for cards or scroll through the list.

Step 2: Explore the visual canvas 25

AWS Application Composer Developer Guide

5. To move around the visual canvas, use basic gestures. For more information, see Select and
connect cards.

Step 2: Explore the visual canvas 26

AWS Application Composer Developer Guide

Step 3: Expand your application architecture

In this step, you will expand your application architecture by adding a Lambda function to your
DynamoDB table.

To add a Lambda function to your DynamoDB table

1. From the resource palette (Resources), drag the Lambda Function enhanced component card
onto the canvas, to the right of the DynamoDB Table card.

2. Connect the DynamoDB table to the Lambda function. To connect them, click the right port of
the DynamoDB Table card and drag it onto the left port of the Lambda Function card.

3. Choose Arrange to organize the cards in the canvas view.

Step 3: Expand your architecture 27

AWS Application Composer Developer Guide

4. Configure your Lambda function. To configure it, do either of the following:

• In the canvas view, modify the function's properties on the Resource properties panel.
To open the panel, double-click the Lambda Function card. Or, select the card, and then
choose Details. For more information about the configurable Lambda function properties
listed in the Resource properties panel, see the AWS Lambda Developer Guide.

• In the template view, modify the code for your function
(AWS::Serverless::Function). Application Composer automatically syncs your
changes to the canvas. For more information about the function resource in an AWS SAM
template, see AWS::Serverless::Function in the AWS SAM resource and property reference.

Step 4: Save your application

Save your application by manually saving your application template to your local machine or by
activating local sync.

To manually save your application template

1. From the menu, select Save > Save template file.

2. Provide a name for your template and choose a location on your local machine to save your
template. Press Save.

Step 4: Save your application 28

https://docs.aws.amazon.com/lambda/latest/dg/index.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html

AWS Application Composer Developer Guide

For instructions on activating local sync, see Automatically sync and save your project.

Next steps

To get started with building your first application, see Tutorial 2: Build your first application.

Tutorial 2: Build your first application with Application
Composer

In this tutorial, you use AWS Application Composer to create a CRUD serverless application that
manages users in a database.

For this tutorial, we use Application Composer in the AWS Management Console. We recommend
that you use Google Chrome or Microsoft Edge, and a full-screen browser window.

Are you new to serverless?

We recommend a basic understanding of the following topics:

• Event-driven architecture

• Infrastructure as Code (IaC)

• Serverless technologies

To learn more, see Serverless concepts.

Topics

• Resource properties reference

• Step 1: Create your project

• Step 2: Add cards to the canvas

• Step 3: Configure your API Gateway REST API

• Step 4: Configure your Lambda functions

• Step 5: Connect your cards

• Step 6: Organize the canvas

Next steps 29

AWS Application Composer Developer Guide

• Step 7: Add and connect a DynamoDB table

• Step 8: Review your AWS CloudFormation template

• Step 9: Integrate into your development workflows

• Next steps

Resource properties reference

While building your application, use this table for reference to configure the properties of your
Amazon API Gateway and AWS Lambda resources.

Method Path Function name

GET /items getItems

GET /items/{id} getItem

PUT /items/{id} updateItem

POST /item addItem

DELETE /items/{id} deleteItem

Step 1: Create your project

To get started with your CRUD serverless application, create a new project in Application Composer
and activate local sync.

To create a new blank project

1. Sign in to the Application Composer console.

2. On the Home page, choose Create project.

Application Composer loads a starting application template and opens the visual canvas.

Resource properties 30

https://console.aws.amazon.com/composer/home

AWS Application Composer Developer Guide

To activate local sync

1. From the Application Composer menu, select Save > Activate local sync.

Step 1: Create your project 31

AWS Application Composer Developer Guide

Step 1: Create your project 32

AWS Application Composer Developer Guide

2. For Project location, press Select folder and choose a directory. This is where Application
Composer will save and sync your template files and folders as you design.

The project location must not contain an existing application template.

Note

Local sync requires a browser that supports the File System Access API. For more
information, see What is the File System Access API?.

3. When prompted to allow access, select View files.

4. Press Activate to turn on local sync. When prompted to save changes, select Save changes.

When activated, the Autosave indicator will be displayed in the upper-left area of your canvas.

Step 2: Add cards to the canvas

Start to design your application architecture using enhanced component cards, beginning with an
API Gateway REST API and five Lambda functions.

To add API Gateway and Lambda cards to the canvas

From the Resources palette, under the Enhanced components section, do the following:

1. Drag an API Gateway card onto the canvas.

2. Drag a Lambda Function card onto the canvas. Repeat until you've added five Lambda
Function cards to the canvas.

Add cards 33

AWS Application Composer Developer Guide

Step 3: Configure your API Gateway REST API

Next, add five routes within your API Gateway card.

To add routes to the API Gateway card

1. Open the Resource properties panel for the API Gateway card. To open the panel, double-
click the card. Or, select the card, and then choose Details.

2. In the Resource properties panel, under Routes, do the following:

Note

For each of the following routes, use the HTTP method and path values specified in the
resource properties reference table.

a. For Method, choose the specified HTTP method. For example, GET.

b. For Path, enter the specified path. For example, /items.

c. Choose Add route.

d. Repeat the previous steps until you've added all five specified routes.

3. Choose Save.

Step 3: Configure your REST API 34

AWS Application Composer Developer Guide

Step 4: Configure your Lambda functions

Name each of the five Lambda functions as specified in the resource properties reference table.

To name the Lambda functions

1. Open the Resource properties panel of a Lambda Function card. To open the panel, double-
click the card. Or, select the card, and then choose Details.

2. In the Resource properties panel, for Logical ID, enter a specified function name. For example,
getItems.

3. Choose Save.

4. Repeat the previous steps until you've named all five functions.

Step 4: Configure your functions 35

AWS Application Composer Developer Guide

Step 5: Connect your cards

Connect each route on your API Gateway card to its related Lambda Function card, as specified in
the resource properties reference table.

To connect your cards

1. Click a right port on the API Gateway card and drag it to the left port of the specified Lambda
Function card. For example, click the GET /items port and drag it to the left port of getItems.

2. Repeat the previous step until you've connected all five routes on the API Gateway card to
corresponding Lambda Function cards.

Step 5: Connect your cards 36

AWS Application Composer Developer Guide

Step 6: Organize the canvas

Organize the visual canvas by grouping together your Lambda functions and arranging all the
cards.

To group together your functions

1. Press and hold Shift, then select each Lambda Function card on the canvas.

2. Choose Group.

To name your group

1. Double-click the top of the group, near the group name (Group).

The Group properties panel opens.

2. On the Group properties panel, for Group name, enter API.

3. Choose Save.

To arrange your cards

On the canvas, above the main view area, choose Arrange.

Step 6: Organize the canvas 37

AWS Application Composer Developer Guide

Application Composer arranges and aligns all cards on the visual canvas, including your new group
(API), as shown here:

Step 7: Add and connect a DynamoDB table

Now, add a DynamoDB table to your application architecture and connect it to your Lambda
functions.

To add and connect a DynamoDB table

1. From the resource palette (Resources), under the Enhanced components section, drag a
DynamoDB Table card onto the canvas.

2. Click the right port on a Lambda Function card and drag it to the left port of the DynamoDB
Table card.

3. Repeat the previous step until you've connected all five Lambda Function cards to the
DynamoDB Table card.

4. (Optional) To reorganize and realign the cards on the canvas, choose Arrange.

Add a DynamoDB table 38

AWS Application Composer Developer Guide

Step 8: Review your AWS CloudFormation template

Congratulations! You've successfully designed a serverless application that's ready for deployment.
Finally, choose Template to review the AWS CloudFormation template that Application Composer
has automatically generated for you.

In the template, Application Composer has defined the following:

• The Transform declaration, which specifies the template as an AWS Serverless Application
Model (AWS SAM) template. For more information, see AWS SAM template anatomy in the AWS
Serverless Application Model Developer Guide.

• An AWS::Serverless::Api resource, which specifies your API Gateway REST API with its five
routes.

• Five AWS::Serverless::Function resources, which specify your Lambda functions'
configurations, including their environment variables and permissions policies.

• An AWS::DynamoDB::Table resource, which specifies your DynamoDB table and its properties.

• The Metadata section, which contains information about your resource group (API). For more
information about this section, see Metadata in the AWS CloudFormation User Guide.

Step 8: Review your template 39

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification-template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/metadata-section-structure.html

AWS Application Composer Developer Guide

Step 9: Integrate into your development workflows

Use the template file and project directories that Application Composer created for further testing
and deployment.

• With local sync, you can connect Application Composer to the IDE on your local machine to
speed up development. To learn more, see Using Application Composer with your local IDE.

• With local sync, you can use the AWS Serverless Application Model Command Line Interface
(AWS SAM CLI) on your local machine to test and deploy your application. To learn more, see Use
AWS SAM to deploy your application to AWS CloudFormation.

Next steps

You're now ready to build your own applications with Application Composer.

Step 9: Integrate into your workflows 40

AWS Application Composer Developer Guide

Where you can use Application Composer

You can use Application Composer from its console, from AWS Toolkit for Visual Studio Code, and
in Application Composer in CloudFormation console mode. While each varies for slightly different
use cases, overall they are similar experiences. This section provides details of each experience.
Using the AWS Application Composer console provides a comprehensive overview of the console
experience, while CloudFormation console mode and AWS Toolkit for Visual Studio Code focus
on what makes them different from Application Composer console. Additionally, you can use the
Lambda console to import your functions directly into the Application Composer console, which is
what Importing functions from Lambda console provides guidance on.

Topics

• Using the AWS Application Composer console

• Using Application Composer in CloudFormation console mode

• Using Application Composer from the AWS Toolkit for Visual Studio Code

• Importing functions from the Lambda console

Using the AWS Application Composer console

This section provides details on accessing and using AWS Application Composer from the
Application Composer console.

For general documentation on using Application Composer, see How to compose.

Topics

• Accessing Application Composer from the AWS Management Console

• AWS Application Composer console visual overview

• Manage your project in AWS Application Composer from the AWS Management Console

• Using Application Composer with your local IDE

Accessing Application Composer from the AWS Management Console

Use any modern web browser. For the best experience, we recommend using Google Chrome
or Microsoft Edge, which both support the Application Composer local sync mode. This mode

Application Composer console 41

AWS Application Composer Developer Guide

requires a browser that supports the File System Access API, which allows web applications to read,
write, and save files in your local file system. For more information about the File System Access
API, see File System Access API.

To access Application Composer through the AWS Management Console

1. Sign in to the AWS Management Console with an AWS account.

2. In the navigation bar, choose an AWS Region.

3. In the navigation bar, search for and choose Application Composer.

AWS Application Composer console visual overview

This section provides a visual overview of AWS Application Composer from the AWS Management
Console.

Topics

• Home page

• Visual designer

• Export canvas

• Local sync mode

• Undo and redo

Visual overview 42

https://console.aws.amazon.com/
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/select-region.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/start-service.html

AWS Application Composer Developer Guide

Home page

1. Documentation – Go to Application Composer documentation.

2. Canvas – Go to the canvas and create or load a project.

3. Demo – Open the Application Composer demo application.

4. Create project – Create or load a project.

5. Start building – Quick links to start building an application.

6. Feedback – Go here to submit feedback.

Visual overview 43

AWS Application Composer Developer Guide

Visual designer

1. Resource palette – Displays cards that you can design with.

2. Resource search bar – Search for cards that you can add to the canvas.

3. List – Displays a tree view of your application resources.

4. Home – Select here to go to the Application Composer homepage.

5. Save status – Indicates whether Application Composer changes are saved to your local machine.
States include:

• Autosave – Local sync is activated and your project is being automatically synced and saved.

• Changes saved – Your application template is saved to your local machine.

• Unsaved changes – Your application template has changes that are not saved to your local
machine.

6. Resources – Displays the resource palette.

7. Canvas – Displays the canvas view of your application in the main view area.

8. Template – Displays the template view of your application in the main view area.

9. Arrange – Arranges your application architecture in the canvas.

10.Undo and redo – Perform undo and redo actions when supported.

Visual overview 44

AWS Application Composer Developer Guide

11.Template name – Indicates the name of the template you are designing.

12.Main view area – Displays either the canvas or template based on your selection.

13.Resource properties panel – Displays relevant properties for the card that’s been selected in the
canvas. This panel is dynamic. Properties displayed will change as you configure your card.

14.Menu – Provides general options such as the following:

• Create a project

• Open a template file or project

• Save a template file

• Activate local sync

• Export canvas

• Get support

• Keyboard shortcuts

15.Card – Displays a view of your card on the canvas.

16.Line – Represents a connection between cards.

17.Group – Groups selected cards together for visual organization.

18.Card actions – Provides actions you can take on your card.

a. Details – Brings up the resource property panel.

b. Group – Group selected cards together.

c. Delete – Deletes the card from your canvas.

19.Port – Connection points to other cards.

20.Resource property fields – A curated set of property fields to configure for your cards.

21.Re-center – Re-center your application diagram on the visual canvas.

22.Zoom – Zoom in and out on your canvas.

23.Feedback – Go here to submit feedback.

Export canvas

This topic describes the AWS Application Composer console export canvas feature.

For a visual overview of all Application Composer features, see AWS Application Composer console
visual overview.
Visual overview 45

AWS Application Composer Developer Guide

About export canvas

The export canvas feature exports your application’s canvas as an image to your local machine.

• Application Composer removes the visual designer UI elements and exports only your
application’s diagram.

• The default image file format is png.

• The file is exported to your local machine’s default download location.

You can access the export canvas feature from the Menu.

Visual overview 46

AWS Application Composer Developer Guide

Exporting canvas

When you export your canvas, Application Composer displays a status message.

If the export is successful, you will see the following message:

If the export was unsuccessful, you will see an error message. If you receive an error, try exporting
again.

Local sync mode

This topic describes the AWS Application Composer console local sync mode.

For a visual overview of all Application Composer features, see AWS Application Composer console
visual overview.

About local sync mode

Local sync mode automatically syncs and saves the following to your local machine:

• Application template file – The AWS CloudFormation or AWS Serverless Application Model (AWS
SAM) template that contains your infrastructure as code (IaC).

• Project folders – A general directory structure that organizes your AWS Lambda functions.

• Backup directory – A backup directory named .aws-composer, created at the root of your
project location. This directory contains a backup copy of your application template file and
project folders.

Visual overview 47

AWS Application Composer Developer Guide

• External files – Supported external files that you can use within Application Composer. To learn
more, see Work with templates that reference external files.

Browser requirements

Local sync mode requires a browser that supports the File System Access API. For more
information, see AWS Application Composer and the File System Access API.

Activating local sync mode

Local sync mode is deactivated by default. You can activate Local sync mode through the
Application Composer menu.

Visual overview 48

AWS Application Composer Developer Guide

For instructions on activating and using local sync, see Automatically sync and save your project.

Undo and redo

This topic describes the AWS Application Composer console undo and redo features.

For a visual overview of all Application Composer features, see AWS Application Composer console
visual overview.

About undo and redo

The undo and redo features are available as buttons on the Application Composer canvas.

• Undo – Revert the most recent action.

• Redo – Re-apply the most recently undone action.

You can also use the following keyboard shortcuts:

• Undo – Control-Z | Command-Z.

• Redo – Control-Shift-Z | Command-Shift-Z.

The redo feature becomes available when you perform an undo. Once you begin performing new
actions, redo becomes unavailable until you perform an undo again.

Undo and redo support

You can undo and redo the following types of actions.

Application design changes in the visual canvas

This includes any modifications that you make to your application through the visual canvas.
For example, dragging new resources onto the canvas or connecting resources together.

Application arrangement actions

This includes using the Arrange button or manually arranging a resource or group.

Application template changes

This includes any modifications to your application template from the Template view.

Visual overview 49

AWS Application Composer Developer Guide

External file changes

When you modify a supported external file from within Application Composer, you can undo
and redo these actions. These include changes that you make to external files within the
Application Composer visual canvas, Template view, and Resource properties panel.

Application Composer remembers the last 100 actions. You can undo and redo changes up to this
amount.

Local IDE support

When using Application Composer with your local IDE, Application Composer won’t undo and redo
any actions that you perform in your IDE. We recommend using the undo and redo features within
your IDE to manage those actions.

When you use the undo and redo features of your local IDE, Application Composer will reset
its memory of recent actions. This makes the Application Composer undo and redo features
temporarily unavailable. Application Composer does this to prevent unintended changes that could
occur when using multiple undo and redo services at the same time. As you start modifying your
application in Application Composer again, the undo and redo features will become available until
you use your IDE’s undo and redo features again.

Manage your project in AWS Application Composer from the AWS
Management Console

This topic describes how to manage your project using AWS Application Composer from the AWS
Management Console.

To begin using Application Composer, you can create a new project or load an existing project.
Application Composer also provides tools to integrate with your local development machine.

• For instructions on accessing Application Composer, see Set up Application Composer.

• For an overview of the visual elements mentioned on this page, see AWS Application Composer
console visual overview.

Topics

• Manage project templates and folders

• Create a new project

Manage your project 50

AWS Application Composer Developer Guide

• Import an existing project folder

• Import an existing project template

• Save an existing project template

• Automatically sync and save your project

Manage project templates and folders

Application Composer supports applications that consist of the following:

• Template – An AWS CloudFormation or AWS Serverless Application Model (AWS SAM) template
that defines your infrastructure code.

• Folders – A folder structure that organizes your project files, such as AWS Lambda function code,
configuration files, and build folders.

If your browser supports Local sync mode, you can use Application Composer to manage your
templates and folders. After activating local sync mode, you can do the following:

• Create a new project that consists of a starting template and folder structure.

• Load an existing project by choosing a parent folder that contains your project template and
files.

With local sync mode, Application Composer automatically saves your project’s template and
folder changes to your local machine.

If your browser doesn’t support local sync mode, or if you prefer to use Application Composer
without local sync mode activated, you can create a new template or load an existing template. To
save changes, you must export the template to your local machine.

Create a new project

When you create a new project, Application Composer generates a starting template. As you design
your application on the canvas, your template is modified. To save your work, you must export your
template or activate local sync mode.

To create a new project

1. Sign in to the Application Composer console.

Manage your project 51

https://console.aws.amazon.com/composer/home

AWS Application Composer Developer Guide

2. On the Home page, choose Create project.

For instructions on activating local sync mode, see Automatically sync and save your project.

Import an existing project folder

Using local sync mode, you can import the parent folder of an existing project. If your project
contains multiple templates, you can choose the template to load.

To import an existing project from the Home page

1. Sign in to the Application Composer console.

2. On the Home page, choose Load a CloudFormation template.

3. For Project location, choose Select folder. Select your project’s parent folder and choose
Select.

Note

If you do not receive this prompt, your browser may not support the File System Access
API, which is required for local sync mode. For more information, see AWS Application
Composer and the File System Access API.

4. When prompted by your browser, select View files.

5. For Template file, choose your template from the dropdown list. If your project contains a
single template, Application Composer automatically selects it for you.

6. Choose Create.

To import an existing project from the canvas

1. From the canvas, choose Menu to open the menu.

2. In the Open section, choose Project folder.

Note

If the Project folder option is unavailable, your browser may not support the File
System Access API, which is required for local sync mode. For more information, see
AWS Application Composer and the File System Access API.

Manage your project 52

https://console.aws.amazon.com/composer/home

AWS Application Composer Developer Guide

3. For Project location, choose Select folder. Select your project’s parent folder and choose
Select.

4. When prompted by your browser, select View files.

5. For Template file, choose your template from the dropdown list. If your project contains a
single template, Application Composer automatically selects it for you.

6. Choose Create.

When you import an existing project folder, Application Composer activates local sync mode.
Changes made to your project’s template or files are automatically saved to your local machine.

Import an existing project template

When you import an existing AWS CloudFormation or AWS SAM template, Application Composer
automatically generates a visualization of your application architecture on the canvas.

You can import a project template from your local machine.

To import an existing project template

1. Sign in to the Application Composer console.

2. Choose Create project to open a blank canvas.

3. Choose Menu to open the menu.

4. In the Open section, choose Template file.

5. Select your template and choose Open.

To save changes to your template, you must export your template or activate local sync mode.

Save an existing project template

If you don't use local sync mode, you must export your template to save your changes. If you
have local sync mode activated, manually saving your template is not required. Changes are
automatically saved to your local machine.

To save an existing project template

1. From the Application Composer canvas, choose Menu to open the menu.

Manage your project 53

https://console.aws.amazon.com/composer/home

AWS Application Composer Developer Guide

2. In the Save section, choose Save template file.

3. Provide a name for your template.

4. Select a location to save your template.

5. Choose Save.

Automatically sync and save your project

Use Application Composer local sync to automatically sync and save your project to your local
machine. For more information about local sync, see Local sync mode.

We recommend that you use local sync for the following reasons:

• By default, you need to manually save your application template as you design. Use local sync to
automatically save your application template to your local machine as you make changes.

• Local sync manages and automatically syncs your project folders, backup folder, and supported
external files to your local machine.

• When using local sync, you can connect Application Composer with your local IDE to speed up
development. To learn more, see Using Application Composer with your local IDE.

You can activate local sync for a new project, or load an existing project with local sync activated.

To activate local sync for a new project

1. From the Application Composer home page, select Create project.

2. From the Application Composer menu, select Activate local sync.

3. For Project location, press Select folder and choose a directory. This is where Application
Composer will save and sync your template files and folders as you design.

Note

The project location must not contain an existing application template.

4. When prompted to allow access, select View files.

5. Press Activate. When prompted to save changes, select Save changes.

When activated, the Autosave indicator will be displayed in the upper-left area of your canvas.

Manage your project 54

AWS Application Composer Developer Guide

To load an existing project with local sync activated

1. From the Application Composer home page, select Load a AWS CloudFormation template.

2. From the Application Composer menu, select Open > Project folder.

3. For Project location, press Select folder and choose the root folder of your project.

4. When prompted to allow access, select View files.

5. For Template file, select your application template and press Create.

6. When prompted to save changes, select Save changes.

When activated, the Autosave indicator will be displayed in the upper-left area of your canvas.

Using Application Composer with your local IDE

Use AWS Application Composer from the AWS Management Console with local sync mode to
connect with your local integrated development environment (IDE).

• For more information about local sync mode, see Local sync mode.

• For instructions on using local sync mode, see Automatically sync and save your project.

Benefits of using Application Composer with your local IDE

As you design in Application Composer, your local template and project directory are automatically
synced and saved.

You can use your local IDE to view changes and modify your templates. Changes that you make
locally are automatically synced to Application Composer.

You can use local tools such as the AWS Serverless Application Model Command Line Interface
(AWS SAM CLI) to build, test, deploy your application, and more.

Using Application Composer with your local IDE 55

AWS Application Composer Developer Guide

Integrate Application Composer with your local IDE

To integrate Application Composer with your local IDE

1. In Application Composer, create or load a project with local sync activated.

2. In your local IDE, open the same project folder as Application Composer.

3. Use Application Composer with your local IDE. Updates made in Application Composer will
automatically sync with your local machine. Here are some examples of what you can do:

a. Use your version control system of choice to track updates being performed by
Application Composer.

Using Application Composer with your local IDE 56

AWS Application Composer Developer Guide

b. Use the AWS SAM CLI locally to build, test, deploy your application, and more. To learn
more, see Use AWS SAM to deploy your application to AWS CloudFormation.

Using Application Composer in CloudFormation console mode

Application Composer in CloudFormation console mode is an improvement from CloudFormation
Designer. This new tool is now the recommended tool to visualize your CloudFormation templates.
You can also use this tool to create and edit CloudFormation templates.

CloudFormation console mode 57

AWS Application Composer Developer Guide

For general documentation on using Application Composer, see How to compose.

Topics

• How is this mode different than the Application Composer console?

• How to access Application Composer in CloudFormation console mode

• How to use Application Composer in CloudFormation console mode

How is this mode different than the Application Composer console?

Application Composer in CloudFormation console mode generally has the same functionality as the
standard Application Composer console, but there are a few differences to note.

• This mode is integrated with the stack workflow in the AWS CloudFormation console. This allows
you to use Application Composer directly in AWS CloudFormation.

• Local sync mode, a feature that automatically syncs and saves data to your local machine, is not
supported.

• Lambda-related cards (Lambda Function and Lambda Layer) require code builds and packaging
solutions that are not available in this mode.

Note

These cards and local sync can be used in the Application Composer Console or the Toolkit
for VS Code.

How to access Application Composer in CloudFormation console mode

Application Composer in CloudFormation console mode is an upgrade from AWS CloudFormation
Designer. We recommend using Application Composer to visualize your AWS CloudFormation
templates. You can also use this tool to create and edit AWS CloudFormation templates.

To access this mode, follow these steps:

1. Go to the Cloudformation console and log in.

2. Select Application Composer from the left-side navigation menu. This will take you to
Application Composer in CloudFormation console mode.

Why use this mode? 58

https://aws.amazon.com/application-composer/
https://console.aws.amazon.com/cloudformation/home

AWS Application Composer Developer Guide

Note

For information on using Application Composer in CloudFormation console mode, see
Using Application Composer in CloudFormation console mode.

How to use Application Composer in CloudFormation console mode

When you Open Application Composer from the AWS CloudFormation console, Application
Composer opens in CloudFormation console mode. In this mode, you can use Application
Composer to visualize, create, and update your templates.

Note

For general information on using Application Composer, refer to Where you can use
Application Composer.

Topics

• Visualize a deployed stack/template

• Create and visualize a new template

• Update an existing template/stack

Visualize a deployed stack/template

1. Go to the AWS CloudFormation console and log in.

2. Select the stack you want to edit.

3. Select the Template tab.

4. Select Application Composer.

Application Composer will visualize your stack/template. Changes can be made here as well.

Create and visualize a new template

1. Go to the AWS CloudFormation console and log in.

How to use this mode 59

https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation

AWS Application Composer Developer Guide

2. Select Application Composer from the left-side navigation menu. This will open Application
Composer in CloudFormation console mode.

3. Drag, drop, configure, and connect the resources (cards) you need from the Resources pallete.

Note

See How to compose for details on using Application Composer, and note that
Lambda-related cards (Lambda Function and Lambda Layer) require code builds and
packaging solutions that are not available in Application Composer in CloudFormation
console mode. These cards can be used in the Application Composer console or the
AWS Toolkit for VS Code. For information on using these tools, refer to Where you can
use Application Composer.

4. Double click cards to use the Resource properties panel to specify how cards are configured.

5. Connect your cards to specify your application’s event-driven workflow.

6. Select Template to view and edit your infrastructure code. Changes are automatically synced
with your canvas view.

7. Once your template is ready to be exported into a stack, select Create template.

8. Select the Confirm and export to CloudFormation button. This will take you back to the
create stack workflow with a message confirming your template was successfully imported.

Note

Only templates with resources in them can be exported.

9. In the Create stack workflow, select Next.

10. Provide a stack name, review any listed parameters, and select Next.

Note

The stack name must start with a letter and contain only letters, numbers, dashes.

11. Select Next after providing the following information:

• Tags associated with the stack

• Stack permissions

• The stack's failure options

How to use this mode 60

https://aws.amazon.com/application-composer/

AWS Application Composer Developer Guide

Note

Advanced options are available for your stack. For details on advanced options, see
Setting AWS CloudFormation stack options in the AWS CloudFormation User Guide.

12. Confirm your stack details are correct, check acknowledgements at the bottom of the page,
and select the Submit button.

AWS CloudFormation will begin creating the stack based on the data in your template.

Update an existing template/stack

Note

If your file is saved locally, we recommend using AWS Toolkit for Visual Studio Code.

1. Go to the AWS CloudFormation console and log in.

2. Select the stack you want to edit.

3. Select the Update button. Doing this will take you to the update stack wizard.

4. On the right, select Edit in Application Composer.

5. Select the button below that's labeled Edit in Application Composer. This will take you to
Application Composer in CloudFormation console mode.

6. Here, you can drag, drop, configure, and connect resources (cards) from the Resources pallete.

Note

See How to compose for details on using Application Composer, and note that
Lambda-related cards (Lambda Function and Lambda Layer) require code builds and
packaging solutions that are not available in Application Composer in CloudFormation
console mode. These cards can be used in the Application Composer console or the
AWS Toolkit for VS Code. For information on using these tools, refer to Where you can
use Application Composer.

7. When you’re ready to export changes to AWS CloudFormation, select Update template.

How to use this mode 61

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html
https://console.aws.amazon.com/cloudformation
https://aws.amazon.com/application-composer/

AWS Application Composer Developer Guide

8. Select Confirm and continue to CloudFormation. This will take you back to the Update stack
workflow with a message confirming your template was successfully imported.

Note

Only templates with resources in them can be exported.

9. In the Update stack workflow, select Next.

10. Review any listed parameters and select Next.

11. Select Next after providing the following information:

• Tags associated with the stack

• Stack permissions

• The stack's failure options

Note

Advanced options are available for your stack. For details on advanced options, see
Setting AWS CloudFormation stack options in the AWS CloudFormation User Guide.

12. Confirm your stack details are correct, check acknowledgements at the bottom of the page,
and select the Submit button.

AWS CloudFormation will begin updating the stack based on the updates you made in your
template.

Using Application Composer from the AWS Toolkit for Visual
Studio Code

This section covers the specific use cases of using AWS Application Composer from the AWS Toolkit
for Visual Studio Code.

For general documentation on using Application Composer, see How to compose.

Topics

• Accessing Application Composer from the AWS Toolkit for Visual Studio Code

AWS Toolkit for Visual Studio Code 62

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html
https://aws.amazon.com/visualstudiocode/
https://aws.amazon.com/visualstudiocode/

AWS Application Composer Developer Guide

• AWS Application Composer from the AWS Toolkit for Visual Studio Code visual overview

• Manage your project in AWS Application Composer from the Toolkit for VS Code

• Deploy your application with sam sync

• Using AWS Application Composer with Amazon CodeWhisperer

Accessing Application Composer from the AWS Toolkit for Visual Studio
Code

To install Application Composer from the Toolkit for VS Code

• Download and install the Toolkit for VS Code. For instructions, see Downloading the Toolkit
for VS Code.

To access Application Composer from the Toolkit for VS Code

You can access Application Composer in any of the following ways:

1. By selecting the Application Composer button from any AWS CloudFormation or AWS SAM
template.

2. Through the context menu by right-clicking on your AWS CloudFormation or AWS SAM
template.

3. From the VS Code Command Palette.

The following is an example of accessing Application Composer from the Application Composer
button:

Accessing Application Composer from the AWS Toolkit for Visual Studio Code 63

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/downloads.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/downloads.html

AWS Application Composer Developer Guide

For more information on accessing Application Composer, see Accessing AWS Application
Composer from the Toolkit.

AWS Application Composer from the AWS Toolkit for Visual Studio
Code visual overview

This section provides a visual overview of AWS Application Composer from the AWS Toolkit for
Visual Studio Code.

Topics

• Visual designer

Visual overview 64

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/appcomposer-overview.html#appcomposer-overview-access
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/appcomposer-overview.html#appcomposer-overview-access

AWS Application Composer Developer Guide

Visual designer

1. Resource palette – Displays cards that you can design with.

2. Card categories – Cards are organized by categories unique to Application Composer.

3. Resource search bar – Search for cards that you can add to the canvas.

4. List – Displays a tree view of your application resources.

5. Resources – Displays the resource palette.

6. Left pane toggle – Hide or show the left pane.

7. Arrange – Arranges your application architecture in the canvas.

8. Sync – Initiates the AWS Serverless Application Model (AWS SAM) CLI sam sync command to
deploy your application.

9. Menu – Provides general options such as the following:

• Export canvas

• Tour the canvas

• Links to Documentation

• Keyboard shortcuts

10.Resource properties panel – Displays relevant properties for the card that’s been selected in the
canvas. This panel is dynamic. Properties displayed will change as you configure your card.

Visual overview 65

AWS Application Composer Developer Guide

11.Card – Displays a view of your card on the canvas.

12.Line – Represents a connection between cards.

13.Group – A group of cards. You can group cards for visual organization.

14.Port – Connection points to other cards.

15.Card actions – Provides actions you can take on your card.

• Details – Brings up the Resource properties panel.

• Group – Group selected cards together.

• Delete – Deletes the card from your canvas and template.

16.Re-center – Re-center your application diagram on the visual canvas.

17.Zoom – Zoom in and out on your canvas.

Manage your project in AWS Application Composer from the Toolkit for
VS Code

This topic describes how to manage your project using AWS Application Composer from the AWS
Toolkit for Visual Studio Code.

To visualize your application in Application Composer, you can launch Application Composer from
any AWS CloudFormation or AWS Serverless Application Model (AWS SAM) template in VS Code.
For instructions, see Accessing Application Composer from the AWS Toolkit for Visual Studio Code.

Deploy your application with sam sync

Use the sync button in AWS Application Composer from the AWS Toolkit for Visual Studio Code to
deploy your application to the AWS Cloud.

The sync button initiates the AWS Serverless Application Model Command Line Interface (AWS
SAM CLI) sam sync command.

Topics

• What is sam sync?

• Setting up

• Syncing your application

Manage your project 66

AWS Application Composer Developer Guide

What is sam sync?

The sam sync command can deploy new applications or quickly sync changes that you make
locally to the AWS Cloud. Running sam sync may include the following:

• Building your application with sam build to prepare your local application files for deployment
by creating or updating a local .aws-sam directory.

• For resources that support AWS service APIs, the AWS SAM CLI will use the APIs to deploy your
changes. The AWS SAM CLI does this to quickly update your resources in the cloud.

• If necessary, the AWS SAM CLI performs an AWS CloudFormation deployment to update your
entire stack through a change set.

The sam sync command is best suited for rapid development environments when quickly
updating your cloud resources can benefit your development and testing workflows.

To learn more about sam sync, see Using sam sync in the AWS Serverless Application Model
Developer Guide.

Setting up

To use the sync feature in Application Composer, you must have the AWS SAM CLI installed on your
local machine. For instructions, see Installing the AWS SAM CLI in the AWS Serverless Application
Model Developer Guide.

When you use the sync feature in Application Composer, the AWS SAM CLI references your
configuration file for the information it needs to sync your application to the AWS Cloud. For
instructions on creating, modifying, and using configuration files, see Configure project settings in
the AWS Serverless Application Model Developer Guide.

Syncing your application

To sync your application to the AWS Cloud

1. Select the sync button on the Application Composer canvas.

2. You may receive a prompt to confirm that you are working with a development stack. Select
OK to continue.

3. Application Composer may prompt you to configure the following options:

Deploy your application 67

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-sync.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-configure.html#using-sam-cli-configure-project

AWS Application Composer Developer Guide

• AWS Region – The region to sync your application to.

• AWS CloudFormation stack name – The name of your AWS CloudFormation stack. You can
select an existing stack name or create a new one.

• Amazon Simple Storage Service (Amazon S3) bucket – The name of your Amazon S3
bucket. The AWS SAM CLI will package and store your application files and function code
here. You can select an existing bucket or create a new one.

Application Composer will initiate the AWS SAM CLI sam sync command and open a terminal
window in your IDE to output its progress.

Using AWS Application Composer with Amazon CodeWhisperer

AWS Application Composer from the AWS Toolkit for Visual Studio Code provides an integration
with Amazon CodeWhisperer. You can use CodeWhisperer within Application Composer to generate
the infrastructure code for your AWS resources as you design your application.

CodeWhisperer is a general purpose, machine learning-powered code generator. To learn more, see
What is CodeWhisperer? in the Amazon CodeWhisperer User Guide.

Topics

• What is CodeWhisperer support in Application Composer?

• Setting up

• Using CodeWhisperer in Application Composer

• Learn more

What is CodeWhisperer support in Application Composer?

For standard resource and standard component cards, you can use CodeWhisperer to generate
infrastructure code suggestions for your resources.

Using Application Composer with CodeWhisperer 68

https://docs.aws.amazon.com/codewhisperer/latest/userguide/what-is-cwspr.html

AWS Application Composer Developer Guide

Standard resource and standard component cards can represent an AWS CloudFormation
resource or a collection of AWS CloudFormation resources. To learn more, see Configure
Application Composer cards.

Using Application Composer with CodeWhisperer 69

AWS Application Composer Developer Guide

Setting up

To use CodeWhisperer in Application Composer, you must authenticate with CodeWhisperer in the
Toolkit. For instructions, see Getting started with CodeWhisperer in VS Code and JetBrains in the
Amazon CodeWhisperer User Guide.

Using CodeWhisperer in Application Composer

You can use CodeWhisperer from the Resource properties panel of any standard resource or
standard component card.

To use CodeWhisperer in Application Composer

1. From a standard resource or standard component card, open the Resource properties panel.

2. Locate the Resource configuration field. This field contains the infrastructure code for the
card.

3. Select the Generate suggestions button. CodeWhisperer will generate a suggestion.

Note

Code generated at this stage will not overwrite existing infrastructure code from your
template.

4. To generate more suggestions, select Regenerate. You can toggle through the samples to
compare results.

5. To select an option, choose Select. You can modify the code here before saving it to your
application. To exit without saving, select the exit icon (X).

6. To save the code to your application template, select Save from the Resource properties
panel.

Learn more

To learn more about CodeWhisperer, see What is CodeWhisperer? in the Amazon CodeWhisperer
User Guide.

Using Application Composer with CodeWhisperer 70

https://docs.aws.amazon.com/codewhisperer/latest/userguide/whisper-setup-ide-devs.html
https://docs.aws.amazon.com/codewhisperer/latest/userguide/what-is-cwspr.html

AWS Application Composer Developer Guide

Importing functions from the Lambda console

Application Composer provides an integration with the AWS Lambda console. You can import a
Lambda function from the Lambda console into Application Composer. Then, use the Application
Composer canvas to design your application architecture further.

• This integration requires a browser that supports the File System Access API. For more
information, see AWS Application Composer and the File System Access API.

• When you import your Lambda function into Application Composer, you must activate local sync
mode to save any changes. For more information, see Automatically sync and save your project.

To get started with using this integration, see Using AWS Lambda with AWS Application Composer
in the AWS Lambda Developer Guide.

Importing functions from Lambda console 71

https://docs.aws.amazon.com/lambda/latest/dg/services-appcomposer.html

AWS Application Composer Developer Guide

How to compose in AWS Application Composer

This section covers the basics of using Application Composer from the Application Composer
console, CloudFormation console mode, and the AWS Toolkit for Visual Studio Code. Note that the
above links for provide details on what's unique for each of these experiences and how you can
access them.

Topics

• Select, group, organize, and connect cards

• Configure Application Composer cards

• View code updates with the Change Inspector

• Work with templates that reference external files

• Additional Features

• Keyboard shortcuts and controls in Application Composer

Select, group, organize, and connect cards

This section describes how you select, group, connect, and organize Application Composer cards in
its visual canvas.

Topics

• Select a card to design with

• Group cards together

• Connect cards

• Arrange cards on your canvas

Select a card to design with

To add a card to your application, select it from the resource palette and drag it onto the canvas.

Select and connect cards 72

AWS Application Composer Developer Guide

Group cards together

There are two ways to group cards together:

• While pressing Shift, select cards to group. Then, choose Group from the resource actions menu.

• select a card you want in a group. From the menu that appears, select Group. This will create a
group that you can drag and drop other cards into.

Group cards together 73

AWS Application Composer Developer Guide

Connect cards

Connecting enhanced component cards

On enhanced component cards, ports visually identify where connections can be made.

• A port on the right side of a card indicates an opportunity for the card to invoke another card.

• A port on the left side of a card indicates an opportunity for the card to be invoked by another
card.

Connect cards together by clicking on a the right port of one card and dragging it onto a left port
on another card.

Connect cards 74

AWS Application Composer Developer Guide

When you connect enhanced component cards together, Application Composer automatically
creates the infrastructure code in your template to provision the event-driven relationship between
your resources.

Disconnecting enhanced component cards

To disconnect enhanced component cards, select the line and choose Disconnect.

Application Composer will automatically modify your template to remove the event-driven
relationship from your application.

Supported connections

When you create a connection, a message will display, letting you know if the connection was
successfully made. Select the message to see what Application Composer changed to provision a
connection. If the connection was unsuccessful, you can select Template view to manually update
your infrastructure code to provision the connection.

• When successful, click on the message to view the Change inspector. Here, you can see what
Application Composer modified to provision your connection.

• When unsuccessful, a message will display. You can select the Template view and manually
update your infrastructure code to provision the connection.

Connect cards 75

AWS Application Composer Developer Guide

What enhanced component cards provision

Connections between two cards, visually indicated by a line, provision the following when
necessary:

• AWS Identity and Access Management (IAM) policies

• Environment variables

• Events

IAM policies

When a resource needs permission to invoke another resource, Application Composer provisions
resource-based policies using AWS Serverless Application Model (AWS SAM) policy templates.

• To learn more about IAM permissions and policies, see Overview of access management:
Permissions and policies in the IAM User Guide.

• To learn more about AWS SAM policy templates, see AWS SAM policy templates in the AWS
Serverless Application Model Developer Guide.

Connect cards 76

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-templates.html

AWS Application Composer Developer Guide

Environment variables

Environment variables are temporary values that can be changed to affect the behavior of your
resources. When necessary, Application Composer defines the infrastructure code to utilize
environment variables between resources.

Events

Resources can invoke another resource through different types of events. When necessary,
Application Composer defines the infrastructure code necessary for resources to interact through
event types.

Connecting standard component cards (Standard IaC resource cards)

Standard IaC resource cards do not include ports to create connections with other resources.
During card configuration, you specify event-driven relationships in the template of your
application, Application Composer will automatically detect these connections and visualize them
with a dotted line between your cards. The following is an example of a connection between a
standard component card and an enhanced component card:

For more information on connecting cards, see Standard IaC resource cards (standard component
cards).

Examples

Invoke an AWS Lambda function when an item is placed in an Amazon Simple Storage Service
(Amazon S3) bucket

In this example, an Amazon S3 bucket card is connected to a Lambda function card. When an
item is placed in the Amazon S3 bucket, the function is invoked. The function can then be used to
process the item or trigger other events in your application.

Connect cards 77

AWS Application Composer Developer Guide

This interaction requires that an event be defined for the function. Here is what Application
Composer provisions:

Transform: AWS::Serverless-2016-10-31
...
Resources:
 MyBucket:
 Type: AWS::S3::Bucket
 ...
 MyBucketBucketPolicy:
 Type: AWS::S3::BucketPolicy
 ...
 MyFunction:
 Type: AWS::Serverless::Function
 Properties:
 ...
 Events:
 MyBucket:
 Type: S3
 Properties:
 Bucket: !Ref MyBucket
 Events:
 - s3:ObjectCreated:* # Event that triggers invocation of function
 - s3:ObjectRemoved:* # Event that triggers invocation of function

Invoke an Amazon S3 bucket from a Lambda function

In this example, a Lambda function card invokes an Amazon S3 bucket card. The Lambda function
can be used to perform CRUD operations on items in the Amazon S3 bucket.

This interaction requires the following, which is provisioned by Application Composer:

• IAM policies that allow the Lambda function to interact with the Amazon S3 bucket.

• Environment variables that influence the behavior of the Lambda function.

Transform: AWS::Serverless-2016-10-31
...

Connect cards 78

AWS Application Composer Developer Guide

Resources:
 MyBucket:
 Type: AWS::S3::Bucket
 ...
 MyBucketBucketPolicy:
 Type: AWS::S3::BucketPolicy
 ...
 MyFunction:
 Type: AWS::Serverless::Function
 Properties:
 ...
 Environment:
 Variables:
 BUCKET_NAME: !Ref MyBucket
 BUCKET_ARN: !GetAtt MyBucket.Arn
 Policies:
 - S3CrudPolicy:
 BucketName: !Ref MyBucket

Arrange cards on your canvas

Select Arrange to visually arrange and organize the canvas.

Arrange cards on your canvas 79

AWS Application Composer Developer Guide

Configure Application Composer cards

Use cards in AWS Application Composer to design your application architecture.

This topic describes how to use Application Composer from the Application Composer Console,
the AWS Toolkit for Visual Studio Code extension, and while in Application Composer in
CloudFormation console mode. For reference information on Application Composer cards, see
Application Composer card reference.

Note

Note: Lambda-related cards (Lambda Function and Lambda Layer) require code builds
and packaging solutions that are not available in Application Composer in CloudFormation
console mode. For more information, see Using Application Composer in CloudFormation
console mode.

Topics

• Enhanced component cards

• Standard IaC resource cards (standard component cards)

Enhanced component cards

To configure enhanced component cards, Application Composer provides a form in the Resource
properties panel. This form is curated uniquely to guide you through configuring each enhanced
component card. As you fill out the form, Application Composer modifies your infrastructure code.

Additionally, some enhanced component cards do have additional features. This section reviews
the basics of using enhanced component cards and offers details on cards with additional features.

Topics

• Configure enhanced component cards from the Resource panel

• Enhanced componenet cards with additional features

Configure cards 80

AWS Application Composer Developer Guide

Configure enhanced component cards from the Resource panel

The Resource properties panel works for all cards but is most helpful with enhanced component
cards. This panel streamlines configuration and adds guiderails that simplifies card configuration.
To use this panel, perform the following steps:

• Double-click on a card to bring up the Resource properties panel.

• Click on a card and select Details to bring up the resource properties panel.

• For Application Composer from the AWS Management Console, select Template to show your
application code. Configure directly from here.

Enhanced componenet cards with additional features

While Application Composer offers a variety of enhanced componenet cards that can configured
from the Resource properties panel and the Template tab, some enhanced component cards do
have additional features. The following sections document what those features are and how to use
them.

Topics

• Using Application Composer with Amazon Relational Database Service (Amazon RDS)

Enhanced component cards 81

AWS Application Composer Developer Guide

• Using AWS Application Composer with AWS Step Functions

Using Application Composer with Amazon Relational Database Service (Amazon RDS)

AWS Application Composer features an integration with Amazon Relational Database Service
(Amazon RDS). Using the RDS Database (External) enhanced component card in Application
Composer, you can connect your application to Amazon RDS DB clusters, instances, and proxies
that are defined on another AWS CloudFormation or AWS Serverless Application Model (AWS SAM)
template.

Topics

• What is the RDS Database (External) enhanced component card?

• How do I connect my application to an external Amazon RDS DB cluster, instance, or proxy?

• Requirements

• Connecting to an external Amazon RDS DB cluster, instance, or proxy.

• How Application Composer creates your connection

What is the RDS Database (External) enhanced component card?

The RDS Database (External) enhanced component card represents Amazon RDS resources that
are defined on another template. This includes:

• Amazon RDS DB cluster or instance that is defined on another template

• Amazon RDS DB proxy

The RDS Database (External) enhanced component card is available from the Resources palette.
To use it, drag it onto the Application Composer canvas, configure it, and connect it to other
resources.

You can connect your application to the external Amazon RDS DB cluster or instance through an
Lambda function.

Enhanced component cards 82

AWS Application Composer Developer Guide

How do I connect my application to an external Amazon RDS DB cluster, instance, or proxy?

When designing in Application Composer, you can connect an AWS Lambda function from the
canvas to the external Amazon RDS DB cluster, instance, or proxy. The following is an overview of
how to do this:

1. Create a new project in Application Composer.

2. Drag an RDS Database (external) enhanced component card onto the canvas and specify its
properties.

3. Drag a Lambda Function enhanced component card onto the canvas.

4. Connect the right port of the Lambda Function card to the left port of the RDS Database
(external) card.

From here, you can design your application on the canvas and connect to your Amazon RDS
resource through the Lambda function.

Requirements

To use this feature, you must meet the following requirements:

1. Your external Amazon RDS DB cluster, instance, or proxy must be using AWS Secrets Manager
to manage the user password. To learn more, see Password management with Amazon RDS and
AWS Secrets Manager in the Amazon RDS User Guide.

2. Your application in Application Composer must be a new project or must have been originally
created in Application Composer.

Connecting to an external Amazon RDS DB cluster, instance, or proxy.

Step 1: Configure the external RDS Database card

From the Resources palette, drag an RDS Database (external) enhanced component card onto the
canvas.

Select the card and choose Details or double-click on the card to bring up the Resource properties
panel.

Enhanced component cards 83

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html

AWS Application Composer Developer Guide

You can configure the following here:

• Logical ID – A unique name for your external Amazon RDS DB cluster, instance, or proxy. This ID
does not have to match the logical ID value of your external Amazon RDS DB resource.

• Database secret – An identifier for the AWS Secrets Manager secret that is associated with your
Amazon RDS DB cluster, instance, or proxy. This field accepts the following values:

• Static value – A unique identifier of the database secret, such as the secret ARN. The following
is an example: arn:aws:secretsmanager:us-west-2:123456789012:secret:my-
path/my-secret-name-1a2b3c. For more information, see AWS Secrets Manager concepts
in the AWS Secrets Manager User Guide.

Enhanced component cards 84

https://docs.aws.amazon.com/secretsmanager/latest/userguide/getting-started.html

AWS Application Composer Developer Guide

• Output value – When a Secrets Manager secret is deployed to AWS CloudFormation, an output
value is created. You can specify the output value here using the Fn::ImportValue intrinsic
function. For example, !ImportValue MySecret.

• Value from the SSM Parameter Store – You can store your secret in the SSM Parameter Store
and specify its value using a dynamic reference. For example, {{resolve:ssm:MySecret}}.
For more information, see SSM parameters in the AWS CloudFormation User Guide.

• Database hostname – The hostname that can be used to connect to your Amazon RDS DB
cluster, instance, or proxy. This value is specified in the external template that defines your
Amazon RDS resource. The following values are accepted:

• Static value – A unique identifier of the database hostname, such as the endpoint address.
The following is an example: mystack-mydb-1apw1j4phylrk.cg034hpkmmjt.us-
east-2.rds.amazonaws.com.

• Output value – The output value of a deployed Amazon RDS DB cluster, instance, or proxy. You
can specify the output value using the Fn::ImportValue intrinsic function. For example, !
ImportValue myStack-myDatabase-abcd1234.

• Value from the SSM Parameter Store – You can store the database hostname in the
SSM Parameter Store and specify its value using a dynamic reference. For example,
{{resolve:ssm:MyDatabase}}.

• Database port – The port number that can be used to connect to your Amazon RDS DB cluster,
instance, or proxy. This value is specified in the external template that defines your Amazon RDS
resource. The following values are accepted:

• Static value – The database port. For example, 3306.

• Output value – The output value of a deployed Amazon RDS DB cluster, instance, or proxy. For
example, !ImportValue myStack-MyRDSInstancePort.

• Value from SSM Parameter Store – You can store the database hostname in the
SSM Parameter Store and specify its value using a dynamic reference. For example,
{{resolve:ssm:MyRDSInstancePort}}.

Note

Only the logical ID value must be configured here. You can configure the other properties
at deployment time if you prefer.

Enhanced component cards 85

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html#dynamic-references-ssm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html

AWS Application Composer Developer Guide

Step 2: Connect a Lambda Function card

From the Resources palette, drag a Lambda Function enhanced component card onto the canvas.

Connect the left port of the Lambda Function card to the right port of the RDS Database
(external) card. Application Composer will provision your template to facilitate this connection.

How Application Composer creates your connection

Specifying the external Amazon RDS DB cluster, instance, or proxy

When you drag an RDS Database (external) card onto the canvas, Application Composer updates
the Metadata and Parameters sections of your template as needed. The following is an example:

Metadata:
 AWS::Composer::ExternalResources:
 ExternalRDS:
 Type: externalRDS
 Settings:
 Port: !Ref ExternalRDSPort
 Hostname: !Ref ExternalRDSHostname
 SecretArn: !Ref ExternalRDSSecretArn
Parameters:
 ExternalRDSPort:
 Type: Number
 ExternalRDSHostname:
 Type: String
 ExternalRDSSecretArn:
 Type: String

Metadata is an AWS CloudFormation template section that is used to store details about
your template. Metadata that is specific to Application Composer is stored under the
AWS::Composer::ExternalResources metadata key. Here, Application Composer stores the
values that you specify for your Amazon RDS DB cluster, instance, or proxy.

The Parameters section of an AWS CloudFormation template is used to store custom values
that can be inserted throughout your template at deployment. Depending on the type of values

Enhanced component cards 86

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/metadata-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html

AWS Application Composer Developer Guide

that you provide, Application Composer may store values here for your Amazon RDS DB cluster,
instance, or proxy and specify them throughout your template.

String values in the Metadata and Parameters section use the logical ID value that you specify
on your RDS Database (external) card. If you update the logical ID, the string values will change.

Connecting the Lambda function to your database

When you connect a Lambda Function card to the RDS Database (external) card, Application
Composer provisions environment variables and AWS Identity and Access Management (IAM)
policies. The following is an example:

Resources:
 Function:
 Type: AWS::Serverless::Function
 Properties:
 ...
 Environment:
 Variables:
 EXTERNALRDS_PORT: !Ref ExternalRDSPort
 EXTERNALRDS_HOSTNAME: !Ref ExternalRDSHostname
 EXTERNALRDS_SECRETARN: !Ref ExternalRDSSecretArn
 Policies:
 - AWSSecretsManagerGetSecretValuePolicy:
 SecretArn: !Ref ExternalRDSSecretArn

Environment variables are variables that can be used by your function at runtime. To learn more,
see Using Lambda environment variables in the AWS Lambda Developer Guide.

Policies provision permissions for your function. Here, Application Composer creates a policy to
allow read access from your function to Secrets Manager to obtain your password for access to the
Amazon RDS DB cluster, instance, or proxy.

Using AWS Application Composer with AWS Step Functions

AWS Application Composer features an integration with AWS Step Functions Workflow Studio. Use
Application Composer to do the following:

• Launch Step Functions Workflow Studio directly within Application Composer.

• Create and manage new workflows or import existing workflows into Application Composer.

• Integrate your workflows with other AWS resources using the Application Composer canvas.

Enhanced component cards 87

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-environment
https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-policies
https://docs.aws.amazon.com/step-functions/latest/dg/workflow-studio.html

AWS Application Composer Developer Guide

With Step Functions Workflow Studio in Application Composer, you can use the benefits of
two powerful visual designers in a single place. As you design your workflow and application,
Application Composer creates your infrastructure as code (IaC) to guide you towards deployment.

Topics

• Getting started with Step Functions Workflow Studio in Application Composer

• Using Step Functions Workflow Studio in Application Composer

• Learn more

Getting started with Step Functions Workflow Studio in Application Composer

To get started, you can create new workflows or import existing workflows.

Create a new workflow

To create a new workflow

1. From the Resources palette, drag a Step Functions State machine enhanced component card
onto the canvas.

When you drag a Step Functions State machine card onto the canvas, Application Composer
creates the following:

Enhanced component cards 88

AWS Application Composer Developer Guide

• An AWS::Serverless::StateMachine resource that defines your state machine. By
default, Application Composer creates a standard workflow. To create an express workflow,
change the Type value in your template from STANDARD to EXPRESS.

• An AWS::Logs::LogGroup resource that defines an Amazon CloudWatch log group for
your state machine.

2. Open the card’s Resource properties panel and select Edit in Workflow Studio to open
Workflow Studio within Application Composer.

Step Functions Workflow Studio opens in Design mode. To learn more, see Design mode in the
AWS Step Functions Developer Guide.

Note

You can modify Application Composer to save your state machine definition in an
external file. To learn more, see Working with external files.

3. Create your workflow and choose Save. To exit Workflow Studio, choose Return to Application
Composer.

Application Composer defines your workflow using the Defintion property of the
AWS::Serverless::StateMachine resource.

4. You can modify your workflow by doing any of the following:

• Open Workflow Studio again and modify your workflow.

• For Application Composer from the console, you can open the Template view of your
application and modify your template. If using local sync, you can modify your workflow in
your local IDE. Application Composer will detect your changes and update your workflow in
Application Composer.

• For Application Composer from the Toolkit for VS Code, you can directly modify your
template. Application Composer will detect your changes and update your workflow in
Application Composer.

Import existing workflows

You can import workflows from applications that are defined using AWS Serverless
Application Model (AWS SAM) templates. Any state machine defined using the

Enhanced component cards 89

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-statemachine.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-logs-loggroup.html
https://docs.aws.amazon.com/step-functions/latest/dg/workflow-studio-components.html#wfs-interface-design-mode

AWS Application Composer Developer Guide

AWS::Serverless::StateMachine resource type will visualize as a Step Functions State
machine enhanced component card that you can use to launch Workflow Studio.

The AWS::Serverless::StateMachine resource can define workflows using either of the
following properties:

• Definition – The workflow is defined within the AWS SAM template as an object.

• DefinitionUri – The workflow is defined on an external file using the Amazon States
Language. The file’s local path is then specified with this property.

Definition property

Application Composer from the console

For workflows defined using the Definition property, you can import a single template or the
entire project.

• Template – For instructions on importing a template, see Import an existing project template.
To save changes that you make within Application Composer, you must export your template.

• Project – When you import a project, you must activate local sync. Changes that you make
are automatically saved to your local machine. For instructions on importing a project, see
Import an existing project folder.

Application Composer from the Toolkit for VS Code

For workflows defined using the Definition property, you can open Application Composer
from your template. For instructions, see Accessing Application Composer from the AWS Toolkit
for Visual Studio Code.

DefinitionUri property

Application Composer from the console

For workflows defined using the DefinitionUri property, you must import the project and
activate local sync. For instructions on importing a project, see Import an existing project
folder.

Enhanced component cards 90

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-statemachine.html#sam-statemachine-definition
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-statemachine.html#sam-statemachine-definitionuri
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html

AWS Application Composer Developer Guide

Application Composer from the Toolkit for VS Code

For workflows defined using the DefinitionUri property, you can open Application
Composer from your template. For instructions, see Accessing Application Composer from the
AWS Toolkit for Visual Studio Code.

Using Step Functions Workflow Studio in Application Composer

Build workflows

Application Composer uses definition substitutions to map workflow tasks to resources in your
application. To learn more about definition substitutions, see DefinitionSubstitutions in
the AWS Serverless Application Model Developer Guide.

When you create tasks in Workflow Studio, specify a definition substitution for each task. You can
then connect tasks to resources on the Application Composer canvas.

To specify a definition substitution in Workflow Studio

1. Open the Configuration tab of the task and locate the API Parameters field.

2. If the API Parameters field has a drop down option, choose Enter a AWS CloudFormation
substitution. Then, provide a unique name.

Enhanced component cards 91

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-statemachine.html#sam-statemachine-definitionsubstitutions

AWS Application Composer Developer Guide

For tasks that connect to the same resource, specify the same definition substitution for
each task. To use an existing definition substitution, choose Select a AWS CloudFormation
substitution and select the substitution to use.

3. If the API Parameters field contains a JSON object, modify the entry that specifies the
resource name to use a definition substitution. In the following example, we change
"MyDynamoDBTable" to "${RecordTransaction}".

4. Select Save and Return to Application Composer.

The tasks from your workflow will visualize on the Step Functions State machine card.

Enhanced component cards 92

AWS Application Composer Developer Guide

Connect resources to workflow tasks

You can create connections in Application Composer between supported workflow tasks and
supported Application Composer cards.

• Supported workflow tasks – Tasks for AWS services that are optimized for Step Functions. To
learn more, see Optimized integrations for Step Functions in the AWS Step Functions Developer
Guide.

• Supported Application Composer cards – Enhanced component cards are supported. To learn
more about cards in Application Composer, see Configure Application Composer cards.

When creating a connection, the AWS service of the task and card must match. For example, you
can connect a workflow task that invokes a Lambda function to a Lambda Function enhanced
component card.

To create a connection, click and drag the port of a task to the left port of an enhanced component
card.

Enhanced component cards 93

https://docs.aws.amazon.com/step-functions/latest/dg/connect-supported-services.html

AWS Application Composer Developer Guide

Application Composer will automatically update your DefinitionSubstitution value to define
your connection. The following is an example:

Transform: AWS::Serverless-2016-10-31
Resources:
 StateMachine:
 Type: AWS::Serverless::StateMachine
 Properties:
 Definition:
 StartAt: Check Stock Value
 States:
 Check Stock Value:
 Type: Task
 Resource: arn:aws:states:::lambda:invoke
 Parameters:
 Payload.$: $
 FunctionName: ${CheckStockValue}
 Next: Choice
 ...
 DefinitionSubstitutions:
 CheckStockValue: !GetAtt CheckStockValue.Arn
 ...
 CheckStockValue:
 Type: AWS::Serverless::Function
 Properties:
 ...

Enhanced component cards 94

AWS Application Composer Developer Guide

IAM policies

When you connect tasks from your workflow to resources, Application Composer automatically
creates the AWS Identity and Access Management (IAM) policies required to authorize the
interaction between your resources. The following is an example:

Transform: AWS::Serverless-2016-10-31
Resources:
 StockTradingStateMachine:
 Type: AWS::Serverless::StateMachine
 Properties:
 ...
 Policies:
 - LambdaInvokePolicy:
 FunctionName: !Ref CheckStockValue
 ...
 CheckStockValue:
 Type: AWS::Serverless::Function
 ...

If necessary, you can add more IAM policies to your template.

Working with external files

When you create a workflow from the Step Functions State machine card, Application Composer
saves your state machine definition within your template using the Definition property. You can
configure Application Composer to save your state machine definition on an external file.

Note

To use this feature with Application Composer from the AWS Management Console, you
must have local sync activated. For more information, see Automatically sync and save
your project.

To save your state machine definition on an external file

1. Open the Resource properties panel of your Step Functions State machine card.

2. Select the Use external file for state machine definition option.

3. Provide a relative path and name for your state machine definition file.

Enhanced component cards 95

AWS Application Composer Developer Guide

4. Choose Save.

Application Composer will do the following:

1. Move your state machine definition from the Definition field to your external file.

2. Save your state machine definition in an external file using the Amazon States Language.

3. Modify your template to reference the external file using the DefinitionUri field.

Learn more

To learn more about Step Functions in Application Composer, see the following:

• Using Workflow Studio in Application Composer in the AWS Step Functions Developer Guide.

• DefinitionSubstitutions in AWS SAM templates in the AWS Step Functions Developer Guide.

Standard IaC resource cards (standard component cards)

All AWS CloudFormation resources are available to use as standard IaC resource cards from the
Resources palette. After being dragged onto the visual canvas, a standard IaC resource card
becomes a standard component card. This simply means the card is one or more standard IaC
resource cards. For further examples and details, see the topics in this section.

Topics

• Standard IaC resource cards

• Standard component cards

• Delete standard component cards

Standard IaC resource cards

All AWS CloudFormation resources are available to use as standard IaC resource cards from the
Resources palette. When you drag a standard IaC resource card onto the canvas, a standard IaC
resource card becomes a standard component card, and this prompts Application Composer to
create a starting template for your resource in your application. The following is an example
starting template of an Alexa::ASK::Skill standard IaC resource:

Resources:

Standard cards 96

https://docs.aws.amazon.com/step-functions/latest/dg/use-wfs-in-app-composer.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-sam-sfn.html#sam-definition-substitution-eg

AWS Application Composer Developer Guide

 Skill:
 Type: Alexa::ASK::Skill
 Properties:
 AuthenticationConfiguration:
 RefreshToken: <String>
 ClientSecret: <String>
 ClientId: <String>
 VendorId: <String>
 SkillPackage:
 S3Bucket: <String>
 S3Key: <String>

A standard IaC resource card starting template consists of the following:

• The AWS CloudFormation resource type.

• Required or commonly used properties.

• The required type of the value to provide for each property.

Using Amazon CodeWhisperer to generate infrastructure code

You can use CodeWhisperer to generate infrastructure code suggestions for standard resource
cards. To learn more, see Using AWS Application Composer with Amazon CodeWhisperer.

Standard component cards

You can modify the infrastructure code for each resource in a standard component card through
the Resource properties panel.

To modify a standard component card

1. Open the Resource properties panel of the standard IaC component card.

2. In the Editing field, select the standard IaC resource to edit from the dropdown list.

3. Modify your infrastructure code and Save.

Topics

• Group a standard component card into another

• Connect standard component cards

• Using Amazon CodeWhisperer to generate infrastructure code

Standard cards 97

AWS Application Composer Developer Guide

Group a standard component card into another

The following example shows one way a one standard component card can be grouped into
another card from the Resource properties panel:

In The Resource configuration field on the Resource properties panel, the Role has been
referenced in the Lambda function. This results in the Role card being grouped into the Function
card on the canvas.

Standard cards 98

AWS Application Composer Developer Guide

Connect standard component cards

Standard component cards do not include connector ports, so they cannot be connected the way
enhanced component cards can. During card configuration, you specify event-driven relationships
in the template of your application, Application Composer then automatically detects these
relationships and visualizes them with a dotted line connections between your cards.

The following example shows how a Lambda function can be connected with an Amazon API
Gateway rest API:

AWSTemplateFormatVersion: '2010-09-09'
Resources:
 MyApi:
 Type: 'AWS::ApiGateway::RestApi'
 Properties:
 Name: MyApi

 ApiGatewayMethod:
 Type: 'AWS::ApiGateway::Method'
 Properties:
 HttpMethod: POST # Specify the HTTP method you want to use (e.g., GET, POST,
 PUT, DELETE)
 ResourceId: !GetAtt MyApi.RootResourceId
 RestApiId: !Ref MyApi
 AuthorizationType: NONE
 Integration:
 Type: AWS_PROXY
 IntegrationHttpMethod: POST
 Uri: !Sub
 - arn:aws:apigateway:${AWS::Region}:lambda:path/2015-03-31/functions/
${LambdaFunctionArn}/invocations
 - { LambdaFunctionArn: !GetAtt MyLambdaFunction.Arn }
 MethodResponses:
 - StatusCode: 200

 MyLambdaFunction:
 Type: 'AWS::Lambda::Function'
 Properties:
 Handler: index.handler
 Role: !GetAtt LambdaExecutionRole.Arn
 Runtime: nodejs14.x
 Code:
 S3Bucket: your-bucket-name

Standard cards 99

AWS Application Composer Developer Guide

 S3Key: your-lambda-zip-file.zip

 LambdaExecutionRole:
 Type: 'AWS::IAM::Role'
 Properties:
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service: lambda.amazonaws.com
 Action: 'sts:AssumeRole'
 Policies:
 - PolicyName: LambdaExecutionPolicy
 PolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Action:
 - 'logs:CreateLogGroup'
 - 'logs:CreateLogStream'
 - 'logs:PutLogEvents'
 Resource: 'arn:aws:logs:*:*:*'
 - Effect: Allow
 Action:
 - 'lambda:InvokeFunction'
 Resource: !GetAtt MyLambdaFunction.Arn

In the above example, the snippet of code listed in ApiGatewayMethod: under Integration:
specifies the event-driven relationship that connects the two cards.

You can also modify your infrastructure code through the Template view.

Using Amazon CodeWhisperer to generate infrastructure code

You can use CodeWhisperer to generate infrastructure code suggestions for standard component
cards. To learn more, see Using AWS Application Composer with Amazon CodeWhisperer.

Delete standard component cards

To delete standard component cards, you must manually remove the infrastructure code for each
AWS CloudFormation resource from your template. The following is a simple way to accomplish
this:

Standard cards 100

AWS Application Composer Developer Guide

1. Take note of the logical ID for the resource to delete.

2. On your template, locate the resource by its logical ID from the Resources or Outputs section.

3. Delete the resource from your template. This includes the resource logical ID and its nested
values, such as Type and Properties.

4. Check the Canvas view to verify that the resource has been removed from your canvas.

View code updates with the Change Inspector

As you design in Application Composer console, your infrastructure code is automatically created.
Use the Change Inspector to view your template code updates and learn what Application
Composer is creating for you.

This topic covers using Application Composer from the AWS Management Console or the AWS
Toolkit for Visual Studio Code extension.

Topics

• What is the Change Inspector?

• Using the Change Inspector

• Benefits of the Change Inspector

• Learn more

What is the Change Inspector?

The Change Inspector is a visual tool within Application Composer that shows you recent code
updates.

• As you design your application, messages display at the bottom of the visual canvas. These
messages provide commentary on the actions you are performing.

• When supported, you can expand a message to view the Change Inspector.

• The Change Inspector displays code changes from your most recent interaction.

View code updates 101

AWS Application Composer Developer Guide

Using the Change Inspector

To use the Change Inspector

1. Expand a message to bring up the Change Inspector.

2. View the code that has been automatically composed for you.

Using the Change Inspector 102

AWS Application Composer Developer Guide

a. Code highlighted green indicate newly added code.

b. Code highlighted red indicate newly removed code.

c. Line numbers indicate the location within your template.

3. When multiple sections of your template have been updated, the Change Inspector organizes
them. Select the Previous and Next buttons to view all changes.

Using the Change Inspector 103

AWS Application Composer Developer Guide

Note

For Application Composer from the console, you can view code changes in the context of
your entire template, by using the Template View. You can also sync Application Composer
with a local IDE and view your entire template on your local machine. To learn more, see
Using Application Composer with your local IDE.

Benefits of the Change Inspector

The Change Inspector is a great way to view the template code that Application Composer creates
for you. It is also a great way to learn how to write infrastructure code. As you design applications
in Application Composer, view code updates in the Change Inspector to learn about the code
needed to provision your design.

Learn more

For more information about the code that Application Composer creates, see the following:

• What are card connections in Application Composer?.

Benefits of the Change Inspector 104

AWS Application Composer Developer Guide

Work with templates that reference external files

You can use external files with your AWS Serverless Application Model (AWS SAM) templates to
reuse repeated code and organize your projects. For example, you may have multiple Amazon API
Gateway REST API resources that are described by an OpenAPI specification. Instead of replicating
the OpenAPI specification code in your template, you can create one external file and reference it
for each of your resources.

AWS Application Composer supports the following external file use cases:

• API Gateway REST API resources defined by external OpenAPI specification files.

• AWS Step Functions state machine resources defined by external state machine definition files.

To learn more about configuring external files for supported resources, see the following:

• DefinitionBody for AWS::Serverless::Api.

• DefinitionUri for AWS::Serverless::StateMachine.

Note

To reference external files with Application Composer from the Application Composer
console, you must use Application Composer in local sync mode. For more information, see
Local sync mode.

Topics

• Create an external file reference

• Load a project that contains an external file reference

• Best practices

• Examples

Create an external file reference

You can create an external file reference from the resource properties panel of supported
resources.

Reference external files 105

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-api.html#sam-api-definitionbody
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-statemachine.html#sam-statemachine-definitionuri

AWS Application Composer Developer Guide

To create an external file reference

1. From an API Gateway or Step Functions enhanced component card, select Details to bring up
the resource properties panel.

2. Locate and select the Use external file option.

3. Specify the relative path to the external file. This is the path from your template.yaml file to
the external file.

For example, to reference the api-spec.yaml external file from the following project’s
structure, specify ./api-spec.yaml as your relative path.

demo
api-spec.yaml
src
Function
index.js
package.json
template.yaml

Note

If the external file and its specified path does not exist, Application Composer will
create it.

4. Save your changes.

Load a project that contains an external file reference

Application Composer from the Application Composer console

When you load a project, the following occurs:

• If your browser supports the File System Access API, Application Composer will prompt you
to connect to the root folder of your project. Application Composer will open your project in
local sync mode to support your external file.

• If the referenced external file is not supported, you will receive an error message. For more
information about error messages, see Troubleshooting.

Load a project that contains an external file reference 106

AWS Application Composer Developer Guide

Application Composer from the Toolkit for VS Code

When you access Application Composer from a template, Application Composer will
automatically detect your external file. If the referenced external file is not supported, you will
receive an error message. For more information about error messages, see Troubleshooting.

Best practices

For Application Composer from the Application Composer console, use
Application Composer with a local IDE

When you use Application Composer with a local IDE in local sync mode, you can use your local
IDE to view and modify external files. Content from supported external files that are referenced on
your template will automatically update in the Application Composer canvas. To learn more, see
Using Application Composer with your local IDE.

Keep external files within your project’s parent directory

You can create subdirectories within your project’s parent directory to organize your external files.
Application Composer can’t access external files that are stored in a directory outside of your
project’s parent directory.

Deploy your application using the AWS SAM CLI

When deploying your application to the AWS Cloud, local external files need to first be uploaded
to an accessible location, such as Amazon Simple Storage Service (Amazon S3). You can use the
AWS SAM CLI to automatically facilitate this process. To learn more, see Upload local files at
deployment in the AWS Serverless Application Model Developer Guide.

Examples

Reference an OpenAPI specification external file

In this example, we use Application Composer from the console to reference an external
OpenAPI specification file that defines our API Gateway REST API.

First, we create a new project from the Application Composer home page.

Best practices 107

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/deploy-upload-local-files.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/deploy-upload-local-files.html

AWS Application Composer Developer Guide

Next, we activate local sync by selecting Activate local sync from the Menu. We create a new
folder named demo, allow the prompt to view files, and select Activate. When prompted, we select
Save changes.

Next, we drag an Amazon API Gateway card onto the canvas. We select Details to bring up the
Resource properties panel.

From the Resource properties panel, we configure the following and save.

• Select the Use external file for api definition option.

• Input ./api-spec.yaml as the relative path to external file

Examples 108

AWS Application Composer Developer Guide

This creates the following directory on our local machine:

demo
api-spec.yaml

Now, we can configure the external file on our local machine. Using our IDE, we open the api-
spec.yaml located in our project folder. We replace its contents with the following:

openapi: '3.0'
info: {}
paths:
 /:
 get:
 responses: {}
 post:
 x-amazon-apigateway-integration:
 credentials:
 Fn::GetAtt:
 - ApiQueuesendmessageRole
 - Arn
 httpMethod: POST
 type: aws
 uri:
 Fn::Sub: arn:${AWS::Partition}:apigateway:${AWS::Region}:sqs:path/
${AWS::AccountId}/${Queue.QueueName}

Examples 109

AWS Application Composer Developer Guide

 requestParameters:
 integration.request.header.Content-Type: '''application/x-www-form-
urlencoded'''
 requestTemplates:
 application/json: Action=SendMessage&MessageBody={"data":$input.body}
 responses:
 default:
 statusCode: 200
 responses:
 '200':
 description: 200 response

In the Application Composer Template view, we can see that Application Composer has
automatically updated our template to reference the external file.

Create an application using the AWS SAM CLI and load it in Application Composer

In this example, we use the AWS SAM CLI to create an application that references an external
file for its state machine definition. We then load our project in Application Composer with our
external file properly referenced.

First, we use the AWS SAM CLI sam init command to initialize a new application named demo.
During the interactive flow, we select the Multi-step workflow quick start template.

$ sam init

Examples 110

AWS Application Composer Developer Guide

...

Which template source would you like to use?
 1 - AWS Quick Start Templates
 2 - Custom Template Location
Choice: 1

Choose an AWS Quick Start application template
 1 - Hello World Example
 2 - Multi-step workflow
 3 - Serverless API
 4 - Scheduled task
 ...
Template: 2

Which runtime would you like to use?
 1 - dotnet6
 2 - dotnetcore3.1
 ...
 15 - python3.7
 16 - python3.10
 17 - ruby2.7
Runtime: 16

Based on your selections, the only Package type available is Zip.
We will proceed to selecting the Package type as Zip.

Based on your selections, the only dependency manager available is pip.
We will proceed copying the template using pip.

Would you like to enable X-Ray tracing on the function(s) in your application? [y/
N]: ENTER

Would you like to enable monitoring using CloudWatch Application Insights?
For more info, please view https://docs.aws.amazon.com/AmazonCloudWatch/latest/
monitoring/cloudwatch-application-insights.html [y/N]: ENTER

Project name [sam-app]: demo

 Generating application:

 Name: demo

Examples 111

AWS Application Composer Developer Guide

 Runtime: python3.10
 Architectures: x86_64
 Dependency Manager: pip
 Application Template: step-functions-sample-app
 Output Directory: .
 Configuration file: demo/samconfig.toml

 Next steps can be found in the README file at demo/README.md

...

This application references an external file for the state machine definition.

...
Resources:
 StockTradingStateMachine:
 Type: AWS::Serverless::StateMachine
 Properties:
 DefinitionUri: statemachine/stock_trader.asl.json
...

The external file is located in the statemachine subdirectory of our application.

demo
README.md
__init__.py
functions
__init__.py
stock_buyer
stock_checker
stock_seller
samconfig.toml
statemachine
stock_trader.asl.json
template.yaml
tests

Next, we load our application in Application Composer from the console. From the Application
Composer home page, we select Load a CloudFormation template.

We select our demo project folder and allow the prompt to view files. We select our
template.yaml file and select Create. When prompted, we select Save changes.

Examples 112

AWS Application Composer Developer Guide

Application Composer automatically detects the external state machine definition file and loads
it. We select our StockTradingStateMachine resource and choose Details to show the Resource
properties panel. Here, we can see that Application Composer has automatically connected to our
external state machine definition file.

Examples 113

AWS Application Composer Developer Guide

Any changes made to the state machine definition file will be automatically reflected in Application
Composer.

Additional Features

In addition to using Application Composer to design and build modern applications from AWS
CloudFormation resources (which are represented as standard IaC resource cards), you can also
integrate Application Composer with featured AWS services. This section provides details on what
those services are and how to use them in Application Composer.

Note

The integrations featured in this section can only be used from the Application Composer
console and the AWS Toolkit for Visual Studio Code.

Topics

• Using Application Composer with Amazon Virtual Private Cloud (Amazon VPC)

Using Application Composer with Amazon Virtual Private Cloud
(Amazon VPC)

AWS Application Composer features an integration with the Amazon Virtual Private Cloud (Amazon
VPC) service. Using Application Composer, you can do the following:

• Identify the resources on your canvas that are in a VPC through a visual VPC tag.

• Configure AWS Lambda functions with VPCs from an external template.

To learn more about Amazon VPC, see What is Amazon VPC? in the Amazon VPC User Guide.

Additional Features 114

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

AWS Application Composer Developer Guide

Topics

• Identify resources in a VPC with the VPC tag

• Configure Lambda functions with external VPCs

• Importing a template with parameters

• Examples

Identify resources in a VPC with the VPC tag

Application Composer visualizes resources in a VPC using a VPC tag. This tag is applied to cards on
the canvas. The following is an example of a Lambda function with a VPC tag:

VPC tags are applied to cards on the canvas when you do the following:

• Configure a Lambda function with a VPC in Application Composer.

• Import a template that contains resources configured with a VPC.

Configure Lambda functions with external VPCs

To start configuring a Lambda function with a VPC that is defined on another template, use the
Lambda Function enhanced component card. This card represents a Lambda function using the
AWS Serverless Application Model (AWS SAM) AWS::Serverless::Function resource type.

To configure a Lambda function with a VPC from an external template

1. From the Lambda Function resource properties panel, expand the VPC settings (advanced)
dropdown section.

2. Select Assign to external VPC.

3. Provide values for the security groups and subnets to configure for the Lambda function.

4. Save your changes.

Amazon VPC 115

AWS Application Composer Developer Guide

Security group and subnet identifiers

A Lambda function can be configured with multiple security groups and subnets. To configure a
security group or subnet for a Lambda function, provide a value and type.

• Value – An identifier for the security group or subnet. Accepted values will vary based on the
type.

• Type – The following types of values are allowed:

• Parameter name

• AWS Systems Manager (SSM) Parameter Store

• Static value

Parameter type

The Parameters section of an AWS CloudFormation template can be used to store resource
information across multiple templates. For more information on parameters, see Parameters in the
AWS CloudFormation User Guide.

For the Parameter type, you can provide a parameter name. In the following example, we provide a
PrivateSubnet1 parameter name value:

When you provide a parameter name, Application Composer defines it in the Parameters section
of your template. Then, Application Composer references the parameter in your Lambda function
resource. The following is an example:

...
Resources:
 Function:
 Type: AWS::Serverless::Function
 Properties:
 ...

Amazon VPC 116

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html

AWS Application Composer Developer Guide

 VpcConfig:
 SubnetIds:
 - !Ref PrivateSubnet1
Parameters:
 PrivateSubnet1:
 Type: AWS::EC2::Subnet::Id
 Description: Parameter is generated by Application Composer

SSM type

The SSM Parameter Store provides a secure, hierarchical storage for configuration data
management and secrets management. For more information, see AWS Systems Manager
Parameter Store in the AWS Systems Manager User Guide.

For the SSM type, you can provide the following values:

• Dynamic reference to a value from the SSM Parameter Store.

• Logical ID of an AWS::SSM::Parameter resource defined in your template.

Dynamic reference

You can reference a value from the SSM Parameter Store using a dynamic reference in the
following format: {{resolve:ssm:reference-key}}. For more information, see SSM
parameters in the AWS CloudFormation User Guide.

Application Composer creates the infrastructure code to configure your Lambda function with the
value from the SSM Parameter Store. The following is an example:

...
Resources:
 Function:
 Type: AWS::Serverless::Function
 Properties:
 ...
 VpcConfig:
 SecurityGroupIds:
 - '{{resolve:ssm:demo-app/sg-0b61d5c742dc2c773}}'
 ...

Logical ID

You can reference an AWS::SSM::Parameter resource in the same template by logical ID.

Amazon VPC 117

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html#dynamic-references-ssm
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html#dynamic-references-ssm

AWS Application Composer Developer Guide

The following is an example of an AWS::SSM::Parameter resource named
PrivateSubnet1Parameter that stores the subnet ID for PrivateSubnet1:

...
Resources:
 PrivateSubnet1Parameter:
 Type: AWS::SSM::Parameter
 Properties:
 Name: /MyApp/VPC/SubnetIds
 Description: Subnet ID for PrivateSubnet1
 Type: String
 Value: subnet-04df123445678a036

The following is an example of this resource value being provided by logical ID for the Lambda
function:

Application Composer creates the infrastructure code to configure your Lambda function with the
SSM parameter:

...
Resources:
 Function:
 Type: AWS::Serverless::Function
 Properties:
 ...
 VpcConfig:
 SubnetIds:
 - !Ref PrivateSubnet1Parameter
 ...
 PrivateSubnet1Parameter:
 Type: AWS::SSM::Parameter
 Properties:
 ...

Amazon VPC 118

AWS Application Composer Developer Guide

Static value type

When a security group or subnet is deployed to AWS CloudFormation, an ID value is created. You
can provide this ID as a static value.

For the static value type, the following are valid values:

• For security groups, provide the GroupId. For more information, see Return values in the AWS
CloudFormation User Guide. The following is an example: sg-0b61d5c742dc2c773.

• For subnets, provide the SubnetId. For more information, see Return values in the AWS
CloudFormation User Guide. The following is an example: subnet-01234567890abcdef.

Application Composer creates the infrastructure code to configure your Lambda function with the
static value. The following is an example:

...
Resources:
 Function:
 Type: AWS::Serverless::Function
 Properties:
 ...
 VpcConfig:
 SecurityGroupIds:
 - subnet-01234567890abcdef
 SubnetIds:
 - sg-0b61d5c742dc2c773
 ...

Using multiple types

For security groups and subnets, you can use multiple types together. The following is an example
that configures three security groups for a Lambda function by providing values of different types:

Amazon VPC 119

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-security-group.html#aws-properties-ec2-security-group-return-values
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-subnet.html#aws-resource-ec2-subnet-return-values

AWS Application Composer Developer Guide

Application Composer references all three values under the SecurityGroupIds property:

...
Resources:
 Function:
 Type: AWS::Serverless::Function
 Properties:
 ...
 VpcConfig:
 SecurityGroupIds:
 - !Ref MySecurityGroup
 - sg-0b61d5c742dc2c773
 - '{{resolve::ssm::demo/sg-0b61d5c742dc23}}'

Amazon VPC 120

AWS Application Composer Developer Guide

 ...
Parameters:
 MySecurityGroup:
 Type: AWS::EC2::SecurityGroup::Id
 Description: Parameter is generated by Application Composer

Importing a template with parameters

When you import an existing template with parameters defined for the security groups and
subnets of an external VPC, Application Composer provides a dropdown list to select your
parameters from.

The following is an example of the Parameters section of an imported template:

...
Parameters:
 VPCSecurityGroups:
 Description: Security group IDs generated by Application Composer
 Type: List<AWS::EC2::SecurityGroup::Id>
 VPCSubnets:
 Description: Subnet IDs generated by Application Composer
 Type: List<AWS::EC2::Subnet::Id>
 VPCSubnet:
 Description: Subnet Id generated by Application Composer
 Type: AWS::EC2::Subnet::Id
...

When configuring an external VPC for a new Lambda function on the canvas, these parameters will
be available from a dropdown list. The following is an example:

Amazon VPC 121

AWS Application Composer Developer Guide

Limitations when importing list parameter types

Normally, you can specify multiple security group and subnet identifiers for each
Lambda function. If your existing template contains list parameter types, such as
List<AWS::EC2::SecurityGroup::Id> or List<AWS::EC2::Subnet::Id>, you can only
specify one identifier.

For more information on parameter lists type, see Supported AWS-specific parameter types in the
AWS CloudFormation User Guide.

The following is an example of a template that defines VPCSecurityGroups as a list parameter
type:

...
Parameters:
 VPCSecurityGroups:
 Description: Security group IDs generated by Application Composer
 Type: List<AWS::EC2::SecurityGroup::Id>
...

In Application Composer, if you select the VPCSecurityGroups value as a security group
identifier for a Lambda function, you will see the following message:

This limitation occurs because the SecurityGroupIds and SubnetIds properties of an
AWS::Lambda::Function VpcConfig object both accept only a list of string values. Since
a single list parameter type contains a list of strings, it can be the only object provided when
specified.

Amazon VPC 122

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html#aws-specific-parameter-types

AWS Application Composer Developer Guide

For list parameter types, the following is an example of how they are defined in the template when
configured with a Lambda function:

...
Parameters:
 VPCSecurityGroups:
 Description: Security group IDs generated by Application Composer
 Type: List<AWS::EC2::SecurityGroup::Id>
 VPCSubnets:
 Description: Subnet IDs generated by Application Composer
 Type: List<AWS::EC2::Subnet::Id>
Resources:
 ...
 MyFunction:
 Type: AWS::Serverless::Function
 Properties:
 ...
 VpcConfig:
 SecurityGroupIds: !Ref VPCSecurityGroups
 SubnetIds: !Ref VPCSubnets

Adding new parameters to imported templates

When you import an existing template with parameters defined, you can also create new
parameters. Instead of selecting an existing parameter from the dropdown list, provide a new type
and value. The following is an example that creates a new parameter named MySecurityGroup:

Amazon VPC 123

AWS Application Composer Developer Guide

For all new values that you provide in the Resource properties panel for the Lambda function,
Application Composer defines them in a list under the SecurityGroupIds or SubnetIds
properties of a Lambda function. The following is an example:

...
Resources:
 MyFunction:
 Type: AWS::Serverless::Function
 Properties:
 ...
 VpcConfig:
 SecurityGroupIds:
 - sg-94b3a1f6
 SubnetIds:
 - !Ref SubnetParameter
 - !Ref VPCSubnet

If you want to reference the logical ID of a list parameter type from an external template, we
recommend that you use the Template view and directly modify your template. The logical ID of a
list parameter type should always be provided as a single value and as the only value.

...
Parameters:
 VPCSecurityGroups:
 Description: Security group IDs generated by Application Composer
 Type: List<AWS::EC2::SecurityGroup::Id>
 VPCSubnets:
 Description: Subnet IDs generated by Application Composer
 Type: List<AWS::EC2::Subnet::Id>
Resources:
 ...
 MyFunction:
 Type: AWS::Serverless::Function
 Properties:
 ...
 VpcConfig:
 SecurityGroupIds: !Ref VPCSecurityGroups # Valid syntax
 SubnetIds:
 - !Ref VPCSubnets # Not valid syntax

Amazon VPC 124

AWS Application Composer Developer Guide

Examples

Configure a Lambda function with a VPC defined on another template

In this example, we configure a Lambda function in Application Composer with a VPC defined on
another template.

We start by dragging a Lambda Function enhanced component card onto the canvas.

Next, we open the card’s Resource properties panel and expand the VPC settings (advanced)
dropdown section.

Next, we select Assign to external VPC to begin configuring a VPC from an external template.

In this example, we reference a security group ID and subnet ID. These values are created when the
template defining the VPC is deployed. We choose the Static value type and input the value of our
IDs. We select Save when done.

Amazon VPC 125

AWS Application Composer Developer Guide

Now that our Lambda function is configured with our VPC, the VPC tag is displayed on our card.

Application Composer has created the infrastructure code to configure our Lambda function with
the security group and subnet of the external VPC.

Transform: AWS::Serverless-2016-10-31
Resources:
 Function:
 Type: AWS::Serverless::Function
 Properties:
 Description: !Sub
 - Stack ${AWS::StackName} Function ${ResourceName}
 - ResourceName: Function
 CodeUri: src/Function

Amazon VPC 126

AWS Application Composer Developer Guide

 Handler: index.handler
 Runtime: nodejs18.x
 MemorySize: 3008
 Timeout: 30
 Tracing: Active
 VpcConfig:
 SecurityGroupIds:
 - sg-10f35d07e1be09e15
 SubnetIds:
 - subnet-0d80727ca90325716
 FunctionLogGroup:
 Type: AWS::Logs::LogGroup
 DeletionPolicy: Retain
 Properties:
 LogGroupName: !Sub /aws/lambda/${Function}

Keyboard shortcuts and controls in Application Composer

This section describes the keyboard shortcuts Application Composer supports. Shortcuts typically
provide an alternative to using a mouse that’s usually faster but less discoverable.

Keyboard shortcuts are supported in the Application Composer console, AWS Toolkit for Visual
Studio Code, and in Application Composer in CloudFormation console mode.

Topics

• Keyboard shortcuts

• Zoom in and out of your canvas

Keyboard shortcuts

For a list of keyboard shorcuts, select Keyboard shortcuts from the Application Composer menu.

Shortcuts and controls 127

AWS Application Composer Developer Guide

Zoom in and out of your canvas

Use the zoom controls to zoom in and out of your canvas. You can also use a multi-touch trackpad,
with the general pinch-to-zoom gestures.

Zoom in and out of your canvas 128

AWS Application Composer Developer Guide

Zoom in and out of your canvas 129

AWS Application Composer Developer Guide

How to deploy your application

Use Application Composer to design deployment-ready serverless applications. To deploy, use any
AWS CloudFormation compatible service. We recommend using the AWS Serverless Application
Model.

Topics

• Use AWS SAM to deploy your application to AWS CloudFormation

Use AWS SAM to deploy your application to AWS
CloudFormation

Use AWS Application Composer to design deployment-ready serverless applications. To deploy, use
any AWS CloudFormation compatible service. We recommend using the AWS Serverless Application
Model (AWS SAM).

Topics

• What is AWS SAM?

• AWS SAM prerequisites

• Using Application Composer with the AWS SAM CLI

• Examples

What is AWS SAM?

AWS SAM is an open-source framework that provides developer tools for building and running
serverless applications on AWS. The AWS SAM toolkit consists of two primary parts:

1. AWS SAM template specification

2. AWS SAM Command Line Interface (AWS SAM CLI)

AWS SAM template specification

The AWS SAM template specification contains a short-hand syntax and structure that you can use
to define the infrastructure of your AWS serverless applications.

Deploy with AWS SAM 130

AWS Application Composer Developer Guide

• AWS SAM templates can be defined in JSON and YAML.

• Its syntax is short-hand, making it quicker to learn and code. Less code means fewer errors and
faster development.

AWS SAM templates are an extension of AWS CloudFormation, which is a service that provisions
resources at AWS.

• AWS SAM templates are automatically transformed into the AWS CloudFormation template
syntax at deployment.

• You can deploy AWS SAM templates directly to AWS CloudFormation to create your application
resources.

When you design your application in Application Composer, AWS SAM templates are automatically
created for you. You can select the Template view to view and modify your AWS SAM template.

AWS SAM CLI

The AWS SAM CLI is a command line tool that helps you manage your serverless applications
through their entire development lifecycle. You can use the AWS SAM CLI to:

• Prepare your application for deployment.

• Perform local debugging and testing.

• Deploy your application.

• Develop and sync local changes to the cloud.

• And more!

The AWS SAM CLI is a great companion to Application Composer. Use Application Composer to
design deployment-ready applications. Then use the AWS SAM CLI to deploy and manage your
applications.

To learn more about AWS SAM, see What is AWS SAM? in the AWS Serverless Application Model
Developer Guide.

What is AWS SAM? 131

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-is-sam.html

AWS Application Composer Developer Guide

AWS SAM prerequisites

Install the AWS CLI

We recommend installing and setting up the AWS CLI before installing the AWS SAM CLI. For
instructions, see AWS SAM prerequisites in the AWS Serverless Application Model Developer Guide.

Note

After installing the AWS CLI, you must configure AWS credentials. To learn more, see Quick
setup in the AWS Command Line Interface User Guide.

Install the AWS SAM CLI

To install the AWS SAM CLI, see Installing the AWS SAM CLI in the AWS Serverless Application Model
Developer Guide.

Using Application Composer with the AWS SAM CLI

Application Composer from the console

If you use Application Composer from the AWS Management Console, you have the following
options to use the AWS SAM CLI.

Activate local sync mode

With local sync mode, your project folder, including the AWS SAM template, are automatically
saved to your local machine. Application Composer structures your project directory in a way
that AWS SAM recognizes. You can run the AWS SAM CLI from the root directory of your project.

For more information about local sync mode, see Local sync mode.

Export your template

You can export your template to your local machine. Then, run the AWS SAM CLI from the
parent folder that contains the template. You can also use the --template-file option with
any AWS SAM CLI command and provide the path to your template.

AWS SAM prerequisites 132

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/prerequisites.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html

AWS Application Composer Developer Guide

Use Application Composer from the AWS Toolkit for Visual Studio Code

You can use Application Composer from the Toolkit for VS Code to bring Application Composer
to your local machine. Then, use Application Composer and the AWS SAM CLI from VS Code.

Build your application

Building your application involves taking your AWS SAM template, AWS Lambda function code,
and any language-specific files and dependencies, and placing these build artifacts in the proper
structure and location for deployment. You can use the sam build command to build your
application.

To learn more about building applications with AWS SAM, see the following from the AWS
Serverless Application Model Developer Guide:

• Building serverless applications.

• Using sam build.

Deploy your application

Deploy your application to AWS CloudFormation to provision the resources and infrastructure
defined in your AWS SAM templates. You can use the sam deploy command to deploy your
application.

• You can deploy to create new resources or update existing resources.

• The AWS SAM CLI saves your deployment preferences in a configuration file.

• A deployed application in AWS CloudFormation is called a stack. To learn more, see Working with
stacks in the AWS CloudFormation User Guide.

To learn more about deploying applications with AWS SAM, see the following from the AWS
Serverless Application Model Developer Guide:

• Deploying serverless applications.

• Using sam deploy.

Using Application Composer with the AWS SAM CLI 133

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-building.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-build.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-deploying.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-deploy.html

AWS Application Composer Developer Guide

Test your application locally

Use the AWS SAM CLI to test your application locally. You can simulate events, start up APIs, invoke
functions, and more.

Local testing requires Docker on your local machine. For more information, see Installing Docker to
use with the AWS SAM CLI in the AWS Serverless Application Model Developer Guide.

To learn more about testing locally, see the following from the AWS Serverless Application Model
Developer Guide:

• Testing and debugging serverless applications.

• Using sam local

Sync local changes to the cloud

As you design your application in Application Composer, you can use the sam sync command
to have the AWS SAM CLI automatically detect local changes and deploy those changes to AWS
CloudFormation.

To learn more, see the following from the AWS Serverless Application Model Developer Guide:

• Using sam sync.

Examples

Build and deploy a serverless application

In this example, we build and deploy the Application Composer demo application.

Examples 134

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-docker.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-docker.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-local.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-sync.html

AWS Application Composer Developer Guide

• To learn more about the demo application, see Tutorial 1: Load and modify the Application
Composer demo project.

• For this example, we will be using Application Composer with local sync activated.

Use the sam build command to build the application.

$ sam build
...
Build Succeeded

Built Artifacts : .aws-sam/build
Built Template : .aws-sam/build/template.yaml

Commands you can use next
=========================
[*] Validate SAM template: sam validate
[*] Invoke Function: sam local invoke
[*] Test Function in the Cloud: sam sync --stack-name {{stack-name}} --watch
[*] Deploy: sam deploy --guided

The AWS SAM CLI creates the ./aws-sam directory in the project folder. This directory contains
build artifacts for the application’s Lambda functions. Here is an output of the project directory:

Examples 135

AWS Application Composer Developer Guide

.
README.md
samconfig.toml
src
CreateItem
index.js
package.json
DeleteItem
index.js
package.json
GetItem
index.js
package.json
ListItems
index.js
package.json
UpdateItem
index.js
package.json
template.yaml

Now, the application is ready to be deployed. We will use sam deploy --guided. This prepares your
application for deployment through a series of prompts.

$ sam deploy --guided
...
Configuring SAM deploy
======================

 Looking for config file [samconfig.toml] : Found
 Reading default arguments : Success

 Setting default arguments for 'sam deploy'
 ===
 Stack Name [aws-app-composer-basic-api]:
 AWS Region [us-west-2]:
 #Shows you resources changes to be deployed and require a 'Y' to initiate deploy
 Confirm changes before deploy [y/N]:
 #SAM needs permission to be able to create roles to connect to the resources in
 your template
 Allow SAM CLI IAM role creation [Y/n]:
 #Preserves the state of previously provisioned resources when an operation fails
 Disable rollback [y/N]:

Examples 136

AWS Application Composer Developer Guide

 ListItems may not have authorization defined, Is this okay? [y/N]: y
 CreateItem may not have authorization defined, Is this okay? [y/N]: y
 GetItem may not have authorization defined, Is this okay? [y/N]: y
 UpdateItem may not have authorization defined, Is this okay? [y/N]: y
 DeleteItem may not have authorization defined, Is this okay? [y/N]: y
 Save arguments to configuration file [Y/n]:
 SAM configuration file [samconfig.toml]:
 SAM configuration environment [default]:

The AWS SAM CLI displays a summary of what will be deployed:

Deploying with following values
 ===============================
 Stack name : aws-app-composer-basic-api
 Region : us-west-2
 Confirm changeset : False
 Disable rollback : False
 Deployment s3 bucket : aws-sam-cli-managed-default-
samclisourcebucket-1b3x26zbcdkqr
 Capabilities : ["CAPABILITY_IAM"]
 Parameter overrides : {}
 Signing Profiles : {}

The AWS SAM CLI deploys the application, first by creating an AWS CloudFormation changeset:

Initiating deployment
=====================
Uploading to aws-app-composer-basic-api/4181c909ee2440a728a7a129dafb83d4.template
 7087 / 7087 (100.00%)

Waiting for changeset to be created..
CloudFormation stack changeset

Operation LogicalResourceId ResourceType
 Replacement

+ Add ApiDeploymentcc153d135b
 AWS::ApiGateway::Deployment N/A
+ Add ApiProdStage
 AWS::ApiGateway::Stage N/A
+ Add Api
 AWS::ApiGateway::RestApi N/A

Examples 137

AWS Application Composer Developer Guide

+ Add CreateItemApiPOSTitemsPermissionP
 AWS::Lambda::Permission N/A
 rod
+ Add CreateItemRole AWS::IAM::Role
 N/A
+ Add CreateItem
 AWS::Lambda::Function N/A
+ Add DeleteItemApiDELETEitemsidPermiss
 AWS::Lambda::Permission N/A
 ionProd
+ Add DeleteItemRole AWS::IAM::Role
 N/A
+ Add DeleteItem
 AWS::Lambda::Function N/A
+ Add GetItemApiGETitemsidPermissionPro
 AWS::Lambda::Permission N/A
 d
+ Add GetItemRole AWS::IAM::Role
 N/A
+ Add GetItem
 AWS::Lambda::Function N/A
+ Add Items
 AWS::DynamoDB::Table N/A
+ Add ListItemsApiGETitemsPermissionPro
 AWS::Lambda::Permission N/A
 d
+ Add ListItemsRole AWS::IAM::Role
 N/A
+ Add ListItems
 AWS::Lambda::Function N/A
+ Add UpdateItemApiPUTitemsidPermission
 AWS::Lambda::Permission N/A
 Prod
+ Add UpdateItemRole AWS::IAM::Role
 N/A
+ Add UpdateItem
 AWS::Lambda::Function N/A

Changeset created successfully. arn:aws:cloudformation:us-
west-2:513423067560:changeSet/samcli-deploy1677472539/967ab543-f916-4170-b97d-
c11a6f9308ea

Examples 138

AWS Application Composer Developer Guide

Then, the AWS SAM CLI deploys the application:

CloudFormation events from stack operations (refresh every 0.5 seconds)

ResourceStatus ResourceType
 LogicalResourceId ResourceStatusReason

CREATE_IN_PROGRESS AWS::DynamoDB::Table Items
 -
CREATE_IN_PROGRESS AWS::DynamoDB::Table Items
 Resource creation Initiated
CREATE_COMPLETE AWS::DynamoDB::Table Items
 -
CREATE_IN_PROGRESS AWS::IAM::Role DeleteItemRole
 -
CREATE_IN_PROGRESS AWS::IAM::Role ListItemsRole
 -
CREATE_IN_PROGRESS AWS::IAM::Role UpdateItemRole
 -
CREATE_IN_PROGRESS AWS::IAM::Role GetItemRole
 -
CREATE_IN_PROGRESS AWS::IAM::Role CreateItemRole
 -
CREATE_IN_PROGRESS AWS::IAM::Role DeleteItemRole
 Resource creation Initiated
CREATE_IN_PROGRESS AWS::IAM::Role ListItemsRole
 Resource creation Initiated
CREATE_IN_PROGRESS AWS::IAM::Role GetItemRole
 Resource creation Initiated
CREATE_IN_PROGRESS AWS::IAM::Role UpdateItemRole
 Resource creation Initiated
CREATE_IN_PROGRESS AWS::IAM::Role CreateItemRole
 Resource creation Initiated
CREATE_COMPLETE AWS::IAM::Role DeleteItemRole
 -
CREATE_COMPLETE AWS::IAM::Role ListItemsRole
 -
CREATE_COMPLETE AWS::IAM::Role GetItemRole
 -
CREATE_COMPLETE AWS::IAM::Role UpdateItemRole
 -
CREATE_COMPLETE AWS::IAM::Role CreateItemRole
 -

Examples 139

AWS Application Composer Developer Guide

CREATE_IN_PROGRESS AWS::Lambda::Function DeleteItem
 -
CREATE_IN_PROGRESS AWS::Lambda::Function CreateItem
 -
CREATE_IN_PROGRESS AWS::Lambda::Function ListItems
 -
CREATE_IN_PROGRESS AWS::Lambda::Function UpdateItem
 -
CREATE_IN_PROGRESS AWS::Lambda::Function DeleteItem
 Resource creation Initiated
CREATE_IN_PROGRESS AWS::Lambda::Function GetItem
 -
CREATE_IN_PROGRESS AWS::Lambda::Function ListItems
 Resource creation Initiated
CREATE_IN_PROGRESS AWS::Lambda::Function CreateItem
 Resource creation Initiated
CREATE_IN_PROGRESS AWS::Lambda::Function UpdateItem
 Resource creation Initiated
CREATE_IN_PROGRESS AWS::Lambda::Function GetItem
 Resource creation Initiated
CREATE_COMPLETE AWS::Lambda::Function DeleteItem
 -
CREATE_COMPLETE AWS::Lambda::Function ListItems
 -
CREATE_COMPLETE AWS::Lambda::Function CreateItem
 -
CREATE_COMPLETE AWS::Lambda::Function UpdateItem
 -
CREATE_COMPLETE AWS::Lambda::Function GetItem
 -
CREATE_IN_PROGRESS AWS::ApiGateway::RestApi Api
 -
CREATE_IN_PROGRESS AWS::ApiGateway::RestApi Api
 Resource creation Initiated
CREATE_COMPLETE AWS::ApiGateway::RestApi Api
 -
CREATE_IN_PROGRESS AWS::Lambda::Permission
 GetItemApiGETitemsidPermissionPro -
 d
CREATE_IN_PROGRESS AWS::Lambda::Permission
 ListItemsApiGETitemsPermissionPro -
 d
CREATE_IN_PROGRESS AWS::Lambda::Permission
 DeleteItemApiDELETEitemsidPermiss -

Examples 140

AWS Application Composer Developer Guide

 ionProd
CREATE_IN_PROGRESS AWS::ApiGateway::Deployment
 ApiDeploymentcc153d135b -
CREATE_IN_PROGRESS AWS::Lambda::Permission
 UpdateItemApiPUTitemsidPermission -
 Prod
CREATE_IN_PROGRESS AWS::Lambda::Permission
 CreateItemApiPOSTitemsPermissionP -
 rod
CREATE_IN_PROGRESS AWS::Lambda::Permission
 GetItemApiGETitemsidPermissionPro Resource creation Initiated
 d
CREATE_IN_PROGRESS AWS::Lambda::Permission
 UpdateItemApiPUTitemsidPermission Resource creation Initiated
 Prod
CREATE_IN_PROGRESS AWS::Lambda::Permission
 CreateItemApiPOSTitemsPermissionP Resource creation Initiated
 rod
CREATE_IN_PROGRESS AWS::Lambda::Permission
 ListItemsApiGETitemsPermissionPro Resource creation Initiated
 d
CREATE_IN_PROGRESS AWS::Lambda::Permission
 DeleteItemApiDELETEitemsidPermiss Resource creation Initiated
 ionProd
CREATE_IN_PROGRESS AWS::ApiGateway::Deployment
 ApiDeploymentcc153d135b Resource creation Initiated
CREATE_COMPLETE AWS::ApiGateway::Deployment
 ApiDeploymentcc153d135b -
CREATE_IN_PROGRESS AWS::ApiGateway::Stage ApiProdStage
 -
CREATE_IN_PROGRESS AWS::ApiGateway::Stage ApiProdStage
 Resource creation Initiated
CREATE_COMPLETE AWS::ApiGateway::Stage ApiProdStage
 -
CREATE_COMPLETE AWS::Lambda::Permission
 CreateItemApiPOSTitemsPermissionP -
 rod
CREATE_COMPLETE AWS::Lambda::Permission
 UpdateItemApiPUTitemsidPermission -
 Prod
CREATE_COMPLETE AWS::Lambda::Permission
 ListItemsApiGETitemsPermissionPro -
 d

Examples 141

AWS Application Composer Developer Guide

CREATE_COMPLETE AWS::Lambda::Permission
 DeleteItemApiDELETEitemsidPermiss -
 ionProd
CREATE_COMPLETE AWS::Lambda::Permission
 GetItemApiGETitemsidPermissionPro -
 d
CREATE_COMPLETE AWS::CloudFormation::Stack aws-app-
composer-basic-api -

Finally, a message is displayed, informing you that deployment was successful:

Successfully created/updated stack - aws-app-composer-basic-api in us-west-2

Delete an AWS CloudFormation stack

To delete an AWS CloudFormation stack, use the sam delete command:

$ sam delete
 Are you sure you want to delete the stack aws-app-composer-basic-api in the region us-
west-2 ? [y/N]: y
 Do you want to delete the template file 30439348c0be6e1b85043b7a935b34ab.template in
 S3? [y/N]: y
 - Deleting S3 object with key eb226ca86d1bc4e9914ad85eb485fed8
 - Deleting S3 object with key 875e4bcf4b10a6a1144ad83158d84b6d
 - Deleting S3 object with key 20b869d98d61746dedd9aa33aa08a6fb
 - Deleting S3 object with key c513cedc4db6bc184ce30e94602741d6
 - Deleting S3 object with key c7a15d7d8d1c24b77a1eddf8caebc665
 - Deleting S3 object with key e8b8984f881c3732bfb34257cdd58f1e
 - Deleting S3 object with key 3185c59b550594ee7fca7f8c36686119.template
 - Deleting S3 object with key 30439348c0be6e1b85043b7a935b34ab.template
 - Deleting Cloudformation stack aws-app-composer-basic-api

Deleted successfully

Examples 142

AWS Application Composer Developer Guide

Application Composer reference

This section contains reference information for AWS Application Composer.

Topics

• AWS Application Composer and the File System Access API

• Application Composer card reference

• AWS Application Composer troubleshooting

AWS Application Composer and the File System Access API

To use the AWS Application Composer local sync mode, a web browser that supports the File
System Access API is required.

Topics

• What is the File System Access API?

• What is the local sync mode?

• What web browsers are supported?

• What does Application Composer gain access to?

What is the File System Access API?

The File System Access API lets web pages gain access to your local file system in order to read,
write, or save files. This feature is off by default and requires your permission through a visual
prompt to allow it. Once granted, this access remains for the duration of your web page’s browser
session.

To learn more about the File System Access API, see:

• File System Access API in the mdn web docs.

• The File System Access API: simplifying access to local files in the web.dev website.

File System Access API 143

https://developer.mozilla.org/en-US/docs/Web/API/File_System_Access_API
https://web.dev/file-system-access/

AWS Application Composer Developer Guide

What is the local sync mode?

Local sync mode lets you automatically sync and save your template files and project folders
locally as you design in Application Composer. To use this feature, a web browser that supports the
File System Access API is required.

What web browsers are supported?

Any recent version of Google Chrome and Microsoft Edge support all capabilities of the File System
Access API and can be used with local sync mode in Application Composer.

What does Application Composer gain access to?

Application Composer gains read and write access to the project folder you allow, along with any
child folders of that project folder. This access is used to create, update, and save any template
files, project folders, and backup directories that are generated as you design. Data accessed by
Application Composer is not used for any other purpose and is not stored anywhere beyond your
local file system.

Access to sensitive data

The File System Access API excludes or limits access to specific directories that may contain
sensitive data. An error will occur if you select one of these directories to use with Application
Composer local sync mode. You can choose another local directory to connect with or use
Application Composer in its default mode with local sync deactivated.

For more information, including examples of sensitive directories, see Users giving access to more,
or more sensitive files than they intended in the File System Access W3C Draft Community Group
Report.

If you use Windows Subsystem for Linux (WSL), the File System Access API excludes access to the
entire Linux directory because of its location within your Windows system. You can use Application
Composer with local sync deactivated or configure a solution to sync project files from your WSL
directory to a working directory in Windows. Then, use Application Composer local sync mode with
your Windows directory.

Application Composer card reference

This topic contains reference information for cards in AWS Application Composer. To learn about
using cards, see Configure Application Composer cards.

What is the local sync mode? 144

https://wicg.github.io/file-system-access/#privacy-wide-access
https://wicg.github.io/file-system-access/#privacy-wide-access

AWS Application Composer Developer Guide

Topics

• Enhanced component cards

• Future enhanced component card support

Enhanced component cards

Enhanced component cards are those available from the Resources palette. They can be fully
configured and used within Application Composer to design and build your serverless applications.
We recommend using enhanced component cards when designing your applications from scratch.

This table displays our enhanced components with links to the AWS CloudFormation or AWS
Serverless Application Model (AWS SAM) template specification of the card’s featured resource:

Card Reference

Amazon API Gateway AWS::Serverless::API

Amazon Cognito UserPool AWS::Cognito::UserPool

Amazon Cognito UserPoolClient AWS::Cognito::UserPoolClient

Amazon DynamoDB Table AWS::DynamoDB::Table

Amazon EventBridge Event rule AWS::Events::Rule

EventBridge Schedule AWS::Scheduler::Schedule

Amazon Kinesis Stream AWS::Kinesis::Stream

AWS Lambda Function AWS::Serverless::Function

Lambda Layer AWS::Serverless::LayerVersion

Amazon Simple Storage Service (Amazon S3)
Bucket

AWS::S3::Bucket

Amazon Simple Notification Service (Amazon
SNS) Topic

AWS::SNS::Topic

Enhanced component cards 145

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-api.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cognito-userpool.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cognito-userpoolclient.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-rule.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-scheduler-schedule.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesis-stream.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-layerversion.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-s3-bucket.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sns-topic.html

AWS Application Composer Developer Guide

Card Reference

Amazon Simple Queue Service (Amazon SQS)
Queue

AWS::SQS::Queue

AWS Step Functions State machine AWS::Serverless::StateMachine

Future enhanced component card support

When prioritizing enhanced component cards to feature, we consider those that are popular in
usage, powerful in combination with others, and challenging to configure. This is where Application
Composer’s visual features are most beneficial.

To provide feedback on enhanced component cards you’d like to see featured, please contact us
through the feedback link located at the bottom-left corner of Application Composer.

AWS Application Composer troubleshooting

Troubleshoot error messages when using AWS Application Composer.

Topics

• Error messages

• Submit feedback

Error messages

"Can't open this folder"

Example error:

Future enhanced component card support 146

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sqs-queue.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-statemachine.html

AWS Application Composer Developer Guide

Possible cause: Application Composer is unable to access a sensitive directory using local sync
mode.

To learn more about this error, see What does Application Composer gain access to?.

Try connecting to a different local directory or using Application Composer with local sync
deactivated.

"Incompatible template"

Example error: When loading a new project in Application Composer, you see the following:

Possible cause: Your project contains an externally referenced file that isn’t supported in
Application Composer.

To learn about supported external files in Application Composer, see Reference external files.

If you’d like Application Composer to support your use case, submit feedback.

Possible cause: Your project links to an external file in a different local directory.

Move your externally referenced file to a subdirectory of the directory that you select to use
with Application Composer local sync mode.

"The provided folder contains an existing template.yaml"

When attempting to activate local sync, you see the following error:

Error messages 147

AWS Application Composer Developer Guide

Possible cause: Your selected folder already contains a template.yaml file.

Select another directory that doesn’t contain an application template, or create a new directory.

"Your browser doesn't have permissions to save your project in that folder..."

Possible cause: Application Composer is unable to access a sensitive directory using local sync
mode.

To learn more about this error, see What does Application Composer gain access to?.

Try connecting to a different local directory or use Application Composer with local sync
deactivated.

Submit feedback

To submit feedback in Application Composer

1. Select the Feedback link within Application Composer.

2. Fill out the feedback form and Submit.

Submit feedback 148

AWS Application Composer Developer Guide

Submit feedback 149

AWS Application Composer Developer Guide

Security in AWS Application Composer

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to AWS Application
Composer, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Application Composer. The following topics show you how to configure Application
Composer to meet your security and compliance objectives. You also learn how to use other AWS
services that help you to monitor and secure your Application Composer resources.

Topics

• Data protection in AWS Application Composer

• Identity and access management for AWS Application Composer

• Compliance validation for AWS Application Composer

• Resilience in AWS Application Composer

Data protection in AWS Application Composer

The AWS shared responsibility model applies to data protection in AWS Application Composer. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks

Data protection 150

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Application Composer Developer Guide

for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Application Composer or other AWS services using the console, API, AWS
CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names may
be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly
recommend that you do not include credentials information in the URL to validate your request to
that server.

Note

All data that you input into Application Composer is used for the sole purpose of providing
functionality within Application Composer and generating project files and directories that
are saved locally to your machine. Application Composer does not save, store or transmit
any of this data.

Data protection 151

https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

AWS Application Composer Developer Guide

Data encryption

Application Composer does not encrypt customer content since data is not saved, stored or
transmitted.

Encryption at rest

Application Composer does not encrypt customer content since data is not saved, stored or
transmitted.

Encryption in transit

Application Composer does not encrypt customer content since data is not saved, stored or
transmitted.

Key management

Application Composer does not support key management since customer content is not saved,
stored or transmitted.

Inter-network traffic privacy

Application Composer does not generate traffic with on-premise clients and applications.

Identity and access management for AWS Application
Composer

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Application Composer resources. IAM is an AWS service
that you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS Application Composer works with IAM

Data encryption 152

AWS Application Composer Developer Guide

Audience

Application Composer requires, at minimum, read-only access to the AWS Management Console.
Any user with this authorization can use all features of Application Composer. Granular access to
specific features of Application Composer is not supported.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.

Audience 153

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

AWS Application Composer Developer Guide

We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

Authenticating with identities 154

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose

AWS Application Composer Developer Guide

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

Authenticating with identities 155

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html

AWS Application Composer Developer Guide

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A

Managing access using policies 156

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

AWS Application Composer Developer Guide

user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Managing access using policies 157

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

AWS Application Composer Developer Guide

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS Application Composer works with IAM

AWS Application Composer requires, at minimum, read-only access to the AWS Management
Console. Any user with this authorization can use all features of Application Composer. Granular
access to specific features of Application Composer is not supported.

How AWS Application Composer works with IAM 158

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

AWS Application Composer Developer Guide

When you deploy your project template and files to AWS CloudFormation, you will need the
necessary permissions to be in place. To learn more, see Controlling access with AWS Identity and
Access Management in the AWS CloudFormation User Guide.

IAM features you can use with AWS Application Composer

IAM feature Application Composer support

Identity-based policies No

Resource-based policies No

Policy actions No

Policy resources No

Policy condition keys No

ACLs No

ABAC (tags in policies) No

Temporary credentials Yes

Principal permissions No

Service roles No

Service-linked roles No

To get a high-level view of how Application Composer and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for Application Composer

Supports identity-based policies No

How AWS Application Composer works with IAM 159

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-iam-template.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-iam-template.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Application Composer Developer Guide

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Resource-based policies within Application Composer

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Application Composer

Supports policy actions No

How AWS Application Composer works with IAM 160

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS Application Composer Developer Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Application Composer actions, see Actions Defined by AWS Application Composer in
the Service Authorization Reference.

Policy actions in Application Composer use the following prefix before the action:

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 ":action1",
 ":action2"
]

Policy resources for Application Composer

Supports policy resources No

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

How AWS Application Composer works with IAM 161

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Application Composer Developer Guide

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Application Composer resource types and their ARNs, see Resources Defined by AWS
Application Composer in the Service Authorization Reference. To learn with which actions you can
specify the ARN of each resource, see Actions Defined by AWS Application Composer .

Policy condition keys for Application Composer

Supports service-specific policy condition keys No

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of Application Composer condition keys, see Condition Keys for AWS Application
Composer in the Service Authorization Reference. To learn with which actions and resources you
can use a condition key, see Actions Defined by AWS Application Composer .

How AWS Application Composer works with IAM 162

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions

AWS Application Composer Developer Guide

ACLs in Application Composer

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Application Composer

Supports ABAC (tags in policies) No

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with Application Composer

Supports temporary credentials Yes

How AWS Application Composer works with IAM 163

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

AWS Application Composer Developer Guide

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

You can use temporary credentials to access Application Composer through the AWS Management
Console. For an example, see Enabling custom identity broker access to the AWS console in the IAM
User Guide.

Cross-service principal permissions for Application Composer

Supports forward access sessions (FAS) No

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Application Composer

Supports service roles No

How AWS Application Composer works with IAM 164

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_enable-console-custom-url.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html

AWS Application Composer Developer Guide

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Application Composer
functionality. Edit service roles only when Application Composer provides guidance to do
so.

Service-linked roles for Application Composer

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Compliance validation for AWS Application Composer

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

Compliance validation 165

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

AWS Application Composer Developer Guide

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Compliance validation 166

https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html

AWS Application Composer Developer Guide

Resilience in AWS Application Composer

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

All data that you input into Application Composer is used for the sole purpose of providing
functionality within Application Composer and generating project files and directories that are
saved locally to your machine. Application Composer does not save or store any of this data.

Resilience 167

https://aws.amazon.com/about-aws/global-infrastructure/

AWS Application Composer Developer Guide

Document history for Application Composer

The following table describes important documentation releases for Application Composer. For
notifications about updates to this documentation, you can subscribe to an RSS feed.

• Latest documentation update: November 30, 2023

Change Description Date

Added documentation for
using Application Composer
in CloudFormation console
mode and restructured
the Application Composer
Developer Guide.

AWS Application Composer
can now be used in AWS
CloudFormation console
mode. To learn more, see
Using Application Composer
in CloudFormation console
mode. Additionally, much
of the content in the user
guide has been reorganiz
ed to create a streamlined
experience.

March 28, 2024

Added documentation for
the Application Composer
integration with CodeWhisp
erer

AWS Application Composer
from the Toolkit for VS Code
provides an integration with
Amazon CodeWhisperer. To
learn more, see Using AWS
Application Composer with
Amazon CodeWhisperer.

November 30, 2023

Added documentation for
deploying your application
with Application Composer
from the AWS Toolkit for
Visual Studio Code

Use the sync button from the
Application Composer canvas
to deploy your applicati
on to the AWS Cloud. To
learn more, see Deploy your
application with sam sync.

November 30, 2023

168

https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-console-cfn-mode.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-console-cfn-mode.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-console-cfn-mode.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-ide-cw.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-ide-cw.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-ide-cw.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-ide-sync.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-ide-sync.html

AWS Application Composer Developer Guide

Added documentation for
Application Composer from
the AWS Toolkit for Visual
Studio Code

You can now use Application
Composer from VS Code with
the AWS Toolkit for Visual
Studio Code. To learn more,
see Using AWS Applicati
on Composer from the AWS
Toolkit for Visual Studio Code.

November 30, 2023

Added Step Functions
Workflow Studio integration

Launch Step Functions
Workflow Studio from the
Application Composer canvas.
To learn more, see Using AWS
Application Composer with
AWS Step Functions.

November 27, 2023

Added Lambda console
and Application Composer
integration

Launch the Application
Composer canvas from
the Lambda console. To
learn more, see Using AWS
Application Composer with
the AWS Lambda console.

November 14, 2023

Added Amazon VPC as
a featured service with
Application Composer

Application Composer
introduces a VPC tag to
visualize resources configure
d with a VPC. You can also
configure Lambda functions
with VPCs defined on an
external template. To learn
more, see Using Application
Composer with Amazon VPC.

October 17, 2023

169

https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-ide.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-ide.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-ide.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-services-sf.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-services-sf.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-services-sf.html
https://docs.aws.amazon.com/application-composer/latest/dg/other-services-lambda.html
https://docs.aws.amazon.com/application-composer/latest/dg/other-services-lambda.html
https://docs.aws.amazon.com/application-composer/latest/dg/other-services-lambda.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-services-vpc.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-services-vpc.html

AWS Application Composer Developer Guide

Added Amazon RDS as
a featured service with
Application Composer

Connect your Application
Composer application to an
Amazon RDS DB cluster or
instance that is defined on an
external template. To learn
more, see Using Application
Composer with Amazon RDS.

October 17, 2023

Added Application Composer
support to design with
all AWS CloudFormation
resources

Select any AWS CloudForm
ation resource from the
Resources palette to design
your applications with. To
learn more, see Work with
any AWS CloudFormation
resource.

September 26, 2023

Added documentation
for cards in Application
Composer

Application Composer
supports multiple types
of cards that you can use
to design and build your
application. To learn more,
see Designing with cards in
Application Composer.

September 20, 2023

Added documentation for
undo and redo feature

Use the undo and redo
buttons on the Application
Composer canvas. To learn
more, see Undo and redo.

August 1, 2023

Added documentation for
local sync mode

Use local sync mode to
automatically sync and save
your project to your local
machine. To learn more, see
Local sync mode.

August 1, 2023

170

https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-services-rds.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-services-rds.html
https://docs.aws.amazon.com/application-composer/latest/dg/what-is-composer.html#what-is-composer-any
https://docs.aws.amazon.com/application-composer/latest/dg/what-is-composer.html#what-is-composer-any
https://docs.aws.amazon.com/application-composer/latest/dg/what-is-composer.html#what-is-composer-any
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-cards.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-cards.html
https://docs.aws.amazon.com/application-composer/latest/dg/reference-features-undo.html
https://docs.aws.amazon.com/application-composer/latest/dg/reference-features-local-sync.html

AWS Application Composer Developer Guide

Added documentation for
export canvas feature

Use the export canvas feature
to export your application's
canvas as an image to your
local machine. To learn more,
see Export canvas.

August 1, 2023

Application Composer
support for external file
references

Reference external files
for supported resources in
Application Composer. To
learn more, see Working with
templates that reference
external files.

May 17, 2023

New documentation on
connecting resources

Connect resources together to
define event-driven relations
hips between resources in
your application. To learn
more, see Connecting
resources together using the
Application Composer visual
canvas.

March 7, 2023

New Change Inspector feature Use the Change Inspector
 to view your template code
updates and learn what
Application Composer is
creating for you. To learn
more, see View code updates
with the Change Inspector.

March 7, 2023

Expanded on benefits of
using connected mode

Use Application Composer
in connected mode with
your local IDE to speed
up development. To learn
more, see Using Application
Composer with your local IDE.

March 7, 2023

171

https://docs.aws.amazon.com/application-composer/latest/dg/reference-features-export.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-external-files.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-external-files.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-external-files.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-connecting.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-connecting.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-connecting.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-connecting.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-change-inspector.html
https://docs.aws.amazon.com/application-composer/latest/dg/using-change-inspector.html
https://docs.aws.amazon.com/application-composer/latest/dg/other-services-ide.html
https://docs.aws.amazon.com/application-composer/latest/dg/other-services-ide.html

AWS Application Composer Developer Guide

Application Composer now
generally available

AWS Application Composer
is now generally available
. To learn more, see AWS
Application Composer now
generally available - Visually
build serverless applications
quickly.

March 7, 2023

Updated topic on using other
AWS services to deploy your
application

Use Application Composer
to design deployment-
ready serverless applicati
ons. Use AWS SAM to deploy
your serverless application.
To learn more, see Using
Application Composer with
AWS CloudFormation and
AWS SAM.

March 3, 2023

Added serverless concepts
section

Learn about basic serverles
s concepts before using
Application Composer. To
learn more, see Serverless
concepts.

March 2, 2023

Public release Initial public release of
Application Composer.

December 1, 2022

172

https://aws.amazon.com/blogs/aws/aws-application-composer-now-generally-available-visually-build-serverless-applications-quickly/
https://aws.amazon.com/blogs/aws/aws-application-composer-now-generally-available-visually-build-serverless-applications-quickly/
https://aws.amazon.com/blogs/aws/aws-application-composer-now-generally-available-visually-build-serverless-applications-quickly/
https://aws.amazon.com/blogs/aws/aws-application-composer-now-generally-available-visually-build-serverless-applications-quickly/
https://aws.amazon.com/blogs/aws/aws-application-composer-now-generally-available-visually-build-serverless-applications-quickly/
https://docs.aws.amazon.com/application-composer/latest/dg/other-services-cfn.html
https://docs.aws.amazon.com/application-composer/latest/dg/other-services-cfn.html
https://docs.aws.amazon.com/application-composer/latest/dg/other-services-cfn.html
https://docs.aws.amazon.com/application-composer/latest/dg/other-services-cfn.html
https://docs.aws.amazon.com/application-composer/latest/dg/what-is-concepts.html
https://docs.aws.amazon.com/application-composer/latest/dg/what-is-concepts.html

	AWS Application Composer
	Table of Contents
	What is AWS Application Composer?
	Compose your application architecture
	Define your infrastructure as code (IaC) templates
	Integrate with your existing workflows
	Ways to access Application Composer
	Learn more
	Next steps

	Application Composer concepts
	What are Application Composer cards?
	What are enhanced component cards?
	What are standard (IaC) resource cards?
	What are standard component cards?

	What are card connections in Application Composer?
	Connections between cards
	Connections between enhanced component cards
	Connections to and from standard IaC resource cards

	Serverless concepts
	Serverless concepts

	Getting started with Application Composer console
	Set up Application Composer
	Sign up for an AWS account
	Create a user with administrative access
	Next steps

	Take a tour in the Application Composer console
	Tutorial 1: Load and modify the Application Composer demo project
	Step 1: Open the demo
	Step 2: Explore the visual canvas of Application Composer
	Step 3: Expand your application architecture
	Step 4: Save your application
	Next steps

	Tutorial 2: Build your first application with Application Composer
	Resource properties reference
	Step 1: Create your project
	Step 2: Add cards to the canvas
	Step 3: Configure your API Gateway REST API
	

	Step 4: Configure your Lambda functions
	Step 5: Connect your cards
	Step 6: Organize the canvas
	Step 7: Add and connect a DynamoDB table
	Step 8: Review your AWS CloudFormation template
	Step 9: Integrate into your development workflows
	Next steps

	Where you can use Application Composer
	Using the AWS Application Composer console
	Accessing Application Composer from the AWS Management Console
	AWS Application Composer console visual overview
	Home page
	Visual designer
	Export canvas
	About export canvas
	Exporting canvas

	Local sync mode
	About local sync mode
	Browser requirements

	Activating local sync mode

	Undo and redo
	About undo and redo
	Undo and redo support
	Local IDE support

	Manage your project in AWS Application Composer from the AWS Management Console
	Manage project templates and folders
	Create a new project
	Import an existing project folder
	Import an existing project template
	Save an existing project template
	Automatically sync and save your project

	Using Application Composer with your local IDE
	Benefits of using Application Composer with your local IDE
	Integrate Application Composer with your local IDE

	Using Application Composer in CloudFormation console mode
	How is this mode different than the Application Composer console?
	How to access Application Composer in CloudFormation console mode
	How to use Application Composer in CloudFormation console mode
	Visualize a deployed stack/template
	Create and visualize a new template
	Update an existing template/stack

	Using Application Composer from the AWS Toolkit for Visual Studio Code
	Accessing Application Composer from the AWS Toolkit for Visual Studio Code
	AWS Application Composer from the AWS Toolkit for Visual Studio Code visual overview
	Visual designer

	Manage your project in AWS Application Composer from the Toolkit for VS Code
	Deploy your application with sam sync
	What is sam sync?
	Setting up
	Syncing your application

	Using AWS Application Composer with Amazon CodeWhisperer
	What is CodeWhisperer support in Application Composer?
	Setting up
	Using CodeWhisperer in Application Composer
	Learn more

	Importing functions from the Lambda console

	How to compose in AWS Application Composer
	Select, group, organize, and connect cards
	Select a card to design with
	Group cards together
	Connect cards
	Connecting enhanced component cards
	Disconnecting enhanced component cards
	Supported connections
	What enhanced component cards provision
	IAM policies
	Environment variables
	Events

	Connecting standard component cards (Standard IaC resource cards)
	Examples
	Invoke an AWS Lambda function when an item is placed in an Amazon Simple Storage Service (Amazon S3) bucket
	Invoke an Amazon S3 bucket from a Lambda function

	Arrange cards on your canvas

	Configure Application Composer cards
	Enhanced component cards
	Configure enhanced component cards from the Resource panel
	Enhanced componenet cards with additional features
	Using Application Composer with Amazon Relational Database Service (Amazon RDS)
	What is the RDS Database (External) enhanced component card?
	How do I connect my application to an external Amazon RDS DB cluster, instance, or proxy?
	Requirements
	Connecting to an external Amazon RDS DB cluster, instance, or proxy.
	Step 1: Configure the external RDS Database card
	Step 2: Connect a Lambda Function card

	How Application Composer creates your connection
	Specifying the external Amazon RDS DB cluster, instance, or proxy
	Connecting the Lambda function to your database

	Using AWS Application Composer with AWS Step Functions
	Getting started with Step Functions Workflow Studio in Application Composer
	Create a new workflow
	Import existing workflows
	Definition property
	DefinitionUri property

	Using Step Functions Workflow Studio in Application Composer
	Build workflows
	Connect resources to workflow tasks
	IAM policies
	Working with external files

	Learn more

	Standard IaC resource cards (standard component cards)
	Standard IaC resource cards
	Using Amazon CodeWhisperer to generate infrastructure code

	Standard component cards
	Group a standard component card into another
	Connect standard component cards
	Using Amazon CodeWhisperer to generate infrastructure code

	Delete standard component cards

	View code updates with the Change Inspector
	What is the Change Inspector?
	Using the Change Inspector
	Benefits of the Change Inspector
	Learn more

	Work with templates that reference external files
	Create an external file reference
	Load a project that contains an external file reference
	Best practices
	For Application Composer from the Application Composer console, use Application Composer with a local IDE
	Keep external files within your project’s parent directory
	Deploy your application using the AWS SAM CLI

	Examples
	Reference an OpenAPI specification external file
	Create an application using the AWS SAM CLI and load it in Application Composer

	Additional Features
	Using Application Composer with Amazon Virtual Private Cloud (Amazon VPC)
	Identify resources in a VPC with the VPC tag
	Configure Lambda functions with external VPCs
	Security group and subnet identifiers
	Parameter type
	SSM type
	Dynamic reference
	Logical ID

	Static value type
	Using multiple types

	Importing a template with parameters
	Limitations when importing list parameter types
	Adding new parameters to imported templates

	Examples
	Configure a Lambda function with a VPC defined on another template

	Keyboard shortcuts and controls in Application Composer
	Keyboard shortcuts
	Zoom in and out of your canvas

	How to deploy your application
	Use AWS SAM to deploy your application to AWS CloudFormation
	What is AWS SAM?
	AWS SAM template specification
	AWS SAM CLI

	AWS SAM prerequisites
	Install the AWS CLI
	Install the AWS SAM CLI

	Using Application Composer with the AWS SAM CLI
	Application Composer from the console
	Build your application
	Deploy your application
	Test your application locally
	Sync local changes to the cloud

	Examples
	Build and deploy a serverless application
	Delete an AWS CloudFormation stack

	Application Composer reference
	AWS Application Composer and the File System Access API
	What is the File System Access API?
	What is the local sync mode?
	What web browsers are supported?
	What does Application Composer gain access to?
	Access to sensitive data

	Application Composer card reference
	Enhanced component cards
	Future enhanced component card support

	AWS Application Composer troubleshooting
	Error messages
	"Can't open this folder"
	"Incompatible template"
	"The provided folder contains an existing template.yaml"
	"Your browser doesn't have permissions to save your project in that folder..."

	Submit feedback

	Security in AWS Application Composer
	Data protection in AWS Application Composer
	Data encryption
	Encryption at rest

	Encryption in transit
	Key management
	Inter-network traffic privacy

	Identity and access management for AWS Application Composer
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS Application Composer works with IAM
	Identity-based policies for Application Composer
	Resource-based policies within Application Composer
	Policy actions for Application Composer
	Policy resources for Application Composer
	Policy condition keys for Application Composer
	ACLs in Application Composer
	ABAC with Application Composer
	Using temporary credentials with Application Composer
	Cross-service principal permissions for Application Composer
	Service roles for Application Composer
	Service-linked roles for Application Composer

	Compliance validation for AWS Application Composer
	Resilience in AWS Application Composer

	Document history for Application Composer

