
Developer Guide

Amazon Braket

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Braket Developer Guide

Amazon Braket: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Braket Developer Guide

Table of Contents

What is Amazon Braket? ... 1
Amazon Braket terms and concepts ... 3

AWS terminology and tips for Amazon Braket ... 7
Pricing ... 8

Near real-time cost tracking ... 8
Best practices for cost savings ... 10

How it works .. 12
Amazon Braket quantum task flow .. 13
Third-party data processing ... 14
Core repositories and plugins for Braket .. 14

Core repositories ... 14
Plugins ... 14

Supported devices .. 15
IonQ ... 19
IQM ... 19
Rigetti .. 20
QuEra ... 20
Local state vector simulator (braket_sv) .. 21
Local density matrix simulator (braket_dm) ... 21
Local AHS simulator (braket_ahs) ... 22
State vector simulator (SV1) .. 22
Density matrix simulator (DM1) ... 23
Tensor network simulator (TN1) .. 24
Embedded simulators .. 25
Compare simulators ... 26
Regions and endpoints .. 30

When will my quantum task run? .. 31
Status change notifications in email or SMS .. 31
QPU availability windows and status ... 32
Queue visibility .. 32

Get started ... 35
Enable Amazon Braket .. 35

Prerequisites ... 35
Steps to enable Amazon Braket .. 36

iii

Amazon Braket Developer Guide

Create an Amazon Braket notebook instance .. 37
Run your first circuit using the Amazon Braket Python SDK .. 39
Run your first quantum algorithms ... 44

Work with Amazon Braket .. 45
Hello AHS: Run your first Analog Hamiltonian Simulation ... 46

AHS .. 46
Interacting spin chain .. 47
Arrangement .. 48
Interaction .. 50
Driving field .. 51
AHS program ... 53
Running on local simulator .. 54
Analyzing simulator results .. 54
Running on QuEra’s Aquila QPU ... 57
Analyzing QPU results ... 59
Next .. 60

Construct circuits in the SDK ... 60
Gates and circuits ... 61
Partial Measurement .. 67
Manual qubit allocation .. 68
Verbatim compilation ... 68
Noise simulation .. 69
Inspecting the circuit ... 71
Result types .. 73

Submitting quantum tasks to QPUs and simulators .. 77
Example quantum tasks on Amazon Braket ... 79
Submitting quantum tasks to a QPU ... 84
Running a quantum task with the local simulator .. 86
Quantum task batching ... 88
Set up SNS notifications (optional) .. 90
Inspecting compiled circuits ... 90

Run your circuits with OpenQASM 3.0 .. 91
What is OpenQASM 3.0? ... 92
When to use OpenQASM 3.0 ... 92
How OpenQASM 3.0 works .. 93
Prerequisites ... 93

iv

Amazon Braket Developer Guide

What OpenQASM features does Braket support? .. 93
Create and submit an example OpenQASM 3.0 quantum task ... 99
Support for OpenQASM on different Braket Devices ... 102
Simulate noise with OpenQASM 3.0 .. 111
Qubit rewiring with OpenQASM 3.0 .. 113
Verbatim Compilation with OpenQASM 3.0 ... 113
The Braket console ... 114
More resources .. 114
Computing gradients with OpenQASM 3.0 ... 114
Measuring specific qubits with OpenQASM 3.0 ... 115

Submit an analog program using QuEra’s Aquila ... 116
Hamiltonian ... 116
Braket AHS program schema ... 117
Braket AHS task result schema ... 123
QuEra device properties schema ... 129

Working with Boto3 .. 134
Turn on the Amazon Braket Boto3 client .. 135
Configure AWS CLI profiles for Boto3 and the Amazon Braket SDK .. 139

Pulse control on Amazon Braket .. 141
Braket Pulse .. 141

Frames ... 141
Ports .. 141
Waveforms ... 142

Roles of frames and ports ... 143
Rigetti .. 143

Hello Pulse .. 145
Hello Pulse using OpenPulse ... 149

Accessing native gates using pulses .. 156
Amazon Braket Hybrid Jobs ... 158

What is a Hybrid Job? ... 159
When to use Amazon Braket Hybrid Jobs .. 159
Run your local code as a hybrid job .. 160

Create a hybrid job from local Python code .. 160
Install additional Python packages and source code .. 163
Save and load data into a hybrid job instance ... 164
Best practices for hybrid job decorators .. 10

v

Amazon Braket Developer Guide

Run a hybrid job with Amazon Braket Hybrid Jobs .. 168
Create your first Hybrid Job .. 170

Set permissions ... 170
Create and run .. 174
Monitor results .. 178

Inputs, outputs, environmental variables, and helper functions .. 179
Inputs .. 180
Outputs ... 181
Environmental variables .. 182
Helper functions ... 182

Save job results .. 183
Save and restart hybrid jobs using checkpoints .. 185
Define the environment for your algorithm script ... 186
Use hyperparameters .. 188
Configure the hybrid job instance to run your algorithm script .. 190
Cancel a Hybrid Job .. 194
Using parametric compilation to speed up Hybrid Jobs ... 195
Use PennyLane with Amazon Braket ... 197

Amazon Braket with PennyLane .. 197
Hybrid algorithms in Amazon Braket example notebooks .. 199
Hybrid algorithms with embedded PennyLane simulators .. 199
Adjoint gradient on PennyLane with Amazon Braket simulators ... 200

Use Amazon Braket Hybrid Jobs and PennyLane to run a QAOA algorithm 201
Accelerate your hybrid workloads with embedded simulators from PennyLane 204

Using lightning.gpu for Quantum Approximate Optimization Algorithm workloads 204
Quantum machine learning and data parallelism ... 207

Build and debug a hybrid job with local mode ... 211
Bring your own container (BYOC) .. 212

When is bringing my own container the right decision? .. 212
Recipe for bringing your own container .. 214
Running Braket hybrid jobs in your own container ... 219

Configure the default bucket in AwsSession .. 220
Interact with hybrid jobs directly using the API .. 221

Error mitigation ... 225
Error mitigation on IonQ Aria ... 225

Sharpening ... 226

vi

Amazon Braket Developer Guide

Braket Direct .. 227
Reservations .. 227

Create a reservation ... 228
Run your workload with a reservation ... 229
Cancel or reschedule an existing reservation ... 233

Expert advice .. 233
Experimental capabilities ... 234

Reservation-only access to IonQ Forte .. 234
Access to local detuning on QuEra Aquila .. 235
Access to tall geometries on QuEra Aquila ... 236
Access to tight geometries on QuEra Aquila .. 236

Logging and Monitoring ... 237
Tracking quantum tasks from the Amazon Braket SDK .. 237
Monitoring quantum tasks through the Amazon Braket console .. 240
Tagging resources .. 242

Using tags .. 242
More about AWS and tags ... 243
Supported resources in Amazon Braket .. 243
Tag restrictions .. 243
Managing tags in Amazon Braket ... 244
Example of CLI tagging in Amazon Braket ... 245
Tagging with the Amazon Braket API .. 245

Amazon Braket Events with EventBridge ... 246
Monitor quantum task status with EventBridge .. 247
Example Amazon Braket EventBridge event .. 248

Monitor with CloudWatch .. 249
Amazon Braket Metrics and Dimensions .. 249
Supported Devices .. 250

Logging with CloudTrail ... 250
Amazon Braket Information in CloudTrail ... 250
Understanding Amazon Braket Log File Entries .. 251

Create a Braket notebook using CloudFormation ... 253
Step 1: Create an Amazon SageMaker lifecycle configuration script 254
Step 2: Create the IAM role assumed by Amazon SageMaker ... 255
Step 3: Create an Amazon SageMaker notebook instance with the prefix amazon-
braket- ... 256

vii

Amazon Braket Developer Guide

Advanced logging .. 257
Security .. 260

Shared responsibility for security ... 260
Data protection .. 260
Data retention .. 261
Managing access to Amazon Braket .. 262

Amazon Braket resources .. 262
Notebooks and roles .. 262
About the AmazonBraketFullAccess policy ... 264
About the AmazonBraketJobsExecutionPolicy policy ... 269
Restrict user access to certain devices ... 272
Amazon Braket updates to AWS managed policies ... 273
Restrict user access to certain notebook instances ... 274
Restrict user access to certain S3 buckets .. 275

Service-linked role ... 276
Service-linked role permissions for Amazon Braket .. 276

Resilience ... 278
Compliance validation .. 278
Infrastructure Security .. 279
Third Party Security .. 279
VPC endpoints (PrivateLink) .. 280

Considerations for Amazon Braket VPC endpoints ... 280
Set up Braket and PrivateLink ... 280
More about creating an endpoint ... 282
Control access with Amazon VPC endpoint policies ... 282

Troubleshooting ... 284
AccessDeniedException ... 284
An error occurred (ValidationException) when calling the CreateQuantumTask operation 284
An SDK feature does not work ... 285
Hybrid job fails due to ServiceQuotaExceededException .. 285
Components stopped working in notebook instance .. 286
Quotas .. 286

Additional quotas and limits .. 333
Troubleshoot OpenQASM ... 333

Include statement error .. 334
Non-contiguous qubits error .. 334

viii

Amazon Braket Developer Guide

Mixing physical qubits with virtual qubits error .. 334
Requesting result types and measuring qubits in the same program error 335
Classical and qubit register limits exceeded error ... 335
Box not preceded by a verbatim pragma error .. 335
Verbatim boxes missing native gates error ... 336
Verbatim boxes missing physical qubits error .. 336
The verbatim pragma is missing "braket" error ... 336
Single qubits cannot be indexed error .. 337
The physical qubits in a two qubit gate are not connected error .. 337
GetDevice does not return OpenQASM results error .. 337
Local simulator support warning .. 339

API and SDK Reference ... 340
Document history .. 341
AWS Glossary ... 349

ix

Amazon Braket Developer Guide

What is Amazon Braket?

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

Amazon Braket is a fully managed AWS service that helps researchers, scientists, and developers
get started with quantum computing. Quantum computing has the potential to solve
computational problems that are beyond the reach of classical computers because it harnesses the
laws of quantum mechanics to process information in new ways.

Gaining access to quantum computing hardware can be expensive and inconvenient. Limited access
makes it difficult to run algorithms, optimize designs, evaluate the current state of the technology,
and plan for when to invest your resources for maximum benefit. Braket helps you overcome these
challenges.

Braket offers a single point of access to a variety of quantum computing technologies. With Braket,
you can:

• Explore and design quantum and hybrid algorithms.

• Test algorithms on different quantum circuit simulators.

• Run algorithms on different types of quantum computers.

• Create proof of concept applications.

Defining quantum problems and programming quantum computers to solve them requires a new
set of skills. To help you gain these skills, Braket offers different environments to simulate and run
your quantum algorithms. You can find the approach that best suits your requirements and get
started quickly with a set of example environments called notebooks.

Braket development has three stages — build, test, and run:

Build - Braket provides fully managed Jupyter notebook environments that make it easy to get
started. Braket notebooks are pre-installed with sample algorithms, resources, and developer
tools, including the Amazon Braket SDK. With the Amazon Braket SDK, you can build quantum

1

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path

Amazon Braket Developer Guide

algorithms and then test and run them on different quantum computers and simulators by
changing a single line of code.

Test - Braket provides access to fully managed, high-performance quantum circuit simulators.
You can test and validate your circuits. Braket handles all the underlying software components
and Amazon Elastic Compute Cloud (Amazon EC2) clusters to take away the burden of simulating
quantum circuits on classical high performance computing (HPC) infrastructure.

Run - Braket provides secure, on-demand access to different types of quantum computers. You
have access to gate-based quantum computers from IonQ, IQM, and Rigetti, as well as an Analog
Hamiltonian Simulator from QuEra. You also have no upfront commitment, and no need to procure
access through individual providers.

About quantum computing and Braket

Quantum computing is in its early developmental stage. It’s important to understand that
no universal, fault-tolerant quantum computer exists at present. Therefore, certain types of
quantum hardware are better suited for each use case and it’s crucial to have access to a variety of
computing hardware. Braket offers a variety of hardware through third-party providers.

Existing quantum hardware is limited due to noise, which introduces errors. The industry is in the
Noisy Intermediate Scale Quantum (NISQ) era. In the NISQ era, quantum computing devices are
too noisy to sustain pure quantum algorithms, such as Shor’s algorithm or Grover’s algorithm. Until
better quantum error correction is available, the most practical quantum computing requires the
combination of classical (traditional) computing resources with quantum computers to create
hybrid algorithms. Braket helps you work with hybrid quantum algorithms.

In hybrid quantum algorithms, quantum processing units (QPUs) are used as co-processors for
CPUs, thus speeding up specific calculations in a classical algorithm. These algorithms utilize
iterative processing, in which computation moves between classical and quantum computers. For
example, current applications of quantum computing in chemistry, optimization, and machine
learning are based on variational quantum algorithms, which are a type of hybrid quantum
algorithm. In variational quantum algorithms, classical optimization routines adjust the parameters
of a parameterized quantum circuit iteratively, much in the same way the weights of a neural
network are adjusted iteratively based on the error in a machine learning training set. Braket offers
access to the PennyLane open source software library, which assists you with variational quantum
algorithms.

Quantum computing is gaining traction for computations in four main areas:

2

Amazon Braket Developer Guide

• Number theory — including factoring and cryptography (for example, Shor’s algorithm is a
primary quantum method for number theory computations)

• Optimization — including constraint satisfaction, solving linear systems, and machine learning

• Oracular computing — including search, hidden subgroups, and order finding (for example,
Grover’s algorithm is a primary quantum method for oracular computations)

• Simulation — including direct simulation, knot invariants, and quantum approximate
optimization algorithm (QAOA) applications

Applications for these categories of computations can be found in financial services, biotechnology,
manufacturing, and pharmaceuticals, to name a few. Braket offers capabilities and example
notebooks that can already be applied to many proof of concept problems in addition to certain
practical problems.

Amazon Braket terms and concepts

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

The following terms and concepts are used in Braket:

Analog Hamiltonian Simulation

Analog Hamiltonian Simulation (AHS) is a distinct quantum computing paradigm for direct
simulation of time-dependent quantum dynamics of many-body systems. In AHS, users directly
specify a time-dependent Hamiltonian and the quantum computer is tuned in such a way
that it directly emulates the continuous time evolution under this Hamiltonian. AHS devices
are typically special-purpose devices and not universal quantum computers like gate-based
devices. They are limited to a class of Hamiltonians they can simulate. However, since these
Hamiltonians are naturally implemented on the device, AHS does not suffer from the overhead
required to formulate algorithms as circuits and implement gate operations.

Amazon Braket terms and concepts 3

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path

Amazon Braket Developer Guide

Braket

We named the Braket service after the bra-ket notation, a standard notation in quantum
mechanics. It was introduced by Paul Dirac in 1939 to describe the state of quantum systems,
and it is also known as the Dirac notation.

Braket hybrid job

Amazon Braket has a feature called Amazon Braket Hybrid Jobs that provides fully managed
executions of hybrid algorithms. A Braket hybrid job consists of three components:

1. The definition of your algorithm, which can be provided as a script, Python module, or
Docker container.

2. The hybrid job instance, based on Amazon EC2, on which to run your algorithm. The default is
an ml.m5.xlarge instance.

3. The quantum device on which to run the quantum tasks that are part of your algorithm. A
single hybrid job typically contains a collection of many quantum tasks.

Device

In Amazon Braket, a device is a backend that can run quantum tasks. A device can be a QPU or a
quantum circuit simulator. To learn more, see Amazon Braket supported devices.

Gate-based quantum computing

In gate-based quantum computing (QC), also called circuit-based QC, computations are broken
down into elementary operations (gates). Certain sets of gates are universal, meaning that
every computation can be expressed as a finite sequence of those gates. Gates are the building
blocks of quantum circuits and are analogous to the logic gates of classical digital circuits.

Hamiltonian

The quantum dynamics of a physical system are determined by its Hamiltonian, which encodes
all information about the interactions between constituents of the system and the effects of
exogenous driving forces. The Hamiltonian of an N-qubit system is commonly represented as a
2N by 2N matrix of complex numbers on classical machines. By running an Analog Hamiltonian
Simulation on a quantum device, you can avoid these exponential resource requirements.

Pulse

A pulse is a transient physical signal transmitted to the qubits. It is described by a waveform
played in a frame that serves as a support for the carrier signal and is bound to the hardware
channel or port. Customers can design their own pulses by providing the analog envelope that
modulates the high-frequency sinusoidal carrier signal. The frame is uniquely described by a

Amazon Braket terms and concepts 4

https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation

Amazon Braket Developer Guide

frequency and a phase that are often chosen to be on resonance with the energy separation
between the energy levels for |0⟩ and |1⟩ of the qubit. Gates are thus enacted as pulses with a
predetermined shape and calibrated parameters such as its amplitude, frequency and duration.
Use cases that are not covered by template waveforms will be enabled via custom waveforms
which will be specified at the single sample resolution by providing a list of values separated by
a fixed, physical cycle-time.

Quantum circuit

A quantum circuit is the instruction set that defines a computation on a gate-based
quantum computer. A quantum circuit is a sequence of quantum gates, which are reversible
transformations on a qubit register, together with measurement instructions.

Quantum circuit simulator

A quantum circuit simulator is a computer program that runs on classical computers and
calculates the measurement outcomes of a quantum circuit. For general circuits, the resource
requirements of a quantum simulation grow exponentially with the number of qubits to
simulate. Braket provides access to both managed (accessed through the Braket API) and local
(part of the Amazon Braket SDK) quantum circuit simulators.

Quantum computer

A quantum computer is a physical device that uses quantum-mechanical phenomena, such as
superposition and entanglement, to perform computations. There are different paradigms to
quantum computing (QC), such as gate-based QC.

Quantum processing unit (QPU)

A QPU is a physical quantum computing device that can run on a quantum task. QPUs can be
based on different QC paradigms, such as gate-based QC. To learn more, see Amazon Braket
supported devices.

QPU native gates

QPU native gates can be directly mapped to control pulses by the QPU control system. Native
gates can be run on the QPU device without further compilation. Subset of QPU supported
gates. You can find the native gates of a device on the Devices page in the Amazon Braket
console and through the Braket SDK.

QPU supported gates

QPU supported gates are the gates accepted by the QPU device. These gates might not be able
to directly run on the QPU, meaning that they might need to be decomposed into native gates.

Amazon Braket terms and concepts 5

Amazon Braket Developer Guide

You can find the supported gates of a device on the Devices page in the Amazon Braket console
and through the Amazon Braket SDK.

Quantum task

In Braket, a quantum task is the atomic request to a device. For gate-based QC devices, this
includes the quantum circuit (including the measurement instructions and number of shots) and
other request metadata. You can create quantum tasks through the Amazon Braket SDK or by
using the CreateQuantumTask API operation directly. After you create a quantum task, it will
be queued until the requested device becomes available. You can view your quantum tasks on
the Quantum Tasks page of the Amazon Braket console or by using the GetQuantumTask or
SearchQuantumTasks API operations.

Qubit

The basic unit of information in a quantum computer is called a qubit (quantum bit), much
like a bit in classical computing. A qubit is a two-level quantum system that can be realized
by different physical implementations, such as superconducting circuits or individual ions and
atoms. Other qubit types are based on photons, electronic or nuclear spins, or more exotic
quantum systems.

Queue depth

Queue depth refers to the number of quantum tasks and hybrid jobs queued for a particular
device. A device’s quantum task and hybrid job queue count are accessible through the Braket
Software Development Kit (SDK) or Amazon Braket Management Console.

1. Task queue depth refers to the total number of quantum tasks currently waiting to run in
normal priority.

2. Priority task queue depth refers to the total number of submitted quantum tasks waiting to
run through Amazon Braket Hybrid Jobs. These tasks get priority over standalone tasks once
a hybrid job starts.

3. Hybrid jobs queue depth refers to the total number of hybrid jobs currently queued on a
device. Quantum tasks submitted as part of a hybrid job have priority, and are aggregated in
the Priority Task Queue.

Queue position

Queue position refers to the current position of your quantum task or hybrid job within a
respective device queue. It can be obtained for quantum tasks or hybrid jobs through the Braket
Software Development Kit (SDK) or Amazon Braket Management Console.

Amazon Braket terms and concepts 6

Amazon Braket Developer Guide

Shots

Since quantum computing is inherently probabilistic, any circuit needs to be evaluated multiple
times to get an accurate result. A single circuit execution and measurement is called a shot. The
number of shots (repeated executions) for a circuit is chosen based on the desired accuracy for
the result.

AWS terminology and tips for Amazon Braket

IAM policies

An IAM policy is a document that allows or denies permissions to AWS services and resources.
IAM policies enable you to customize users' levels of access to resources. For example, you can
allow users access to all of the Amazon S3 buckets within your AWS account, or only a specific
bucket.

• Best practice: Follow the security principle of least privilege when granting permissions. By
following this principle, you help to prevent users or roles from having more permissions than
needed to perform their quantum tasks. For example, if an employee needs access to only a
specific bucket, specify the bucket in the IAM policy instead of granting the employee access
to all of the buckets in your AWS account.

IAM roles

An IAM role is an identity that you can assume to gain temporary access to permissions. Before
a user, application, or service can assume an IAM role, they must be granted permissions to
switch to the role. When someone assumes an IAM role, they abandon all previous permissions
that they had under a previous role and assume the permissions of the new role.

• Best practice: IAM roles are ideal for situations in which access to services or resources needs
to be granted temporarily, instead of long-term.

Amazon S3 bucket

Amazon Simple Storage Service (Amazon S3) is an AWS service that lets you store data as
objects in buckets. Amazon S3 buckets offer unlimited storage space. The maximum size for
an object in an Amazon S3 bucket is 5 TB. You can upload any type of file data to an Amazon
S3 bucket, such as images, videos, text files, backup files, media files for a website, archived
documents, and your Braket quantum task results.

• Best practice: You can set permissions to control access to your S3 bucket. For more
information, see Bucket policies and user policies in the Amazon S3 documentation.

AWS terminology and tips for Amazon Braket 7

https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-iam-policies.html

Amazon Braket Developer Guide

Amazon Braket pricing

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

With Amazon Braket, you have access to quantum computing resources on demand without
upfront commitment. You pay only for what you use. To learn more about pricing, please visit our
pricing page.

Near real-time cost tracking

The Braket SDK offers you the option to add a near real-time cost tracking to your quantum
workloads. Each of our example notebooks includes cost tracking code to provide you with a
maximum cost estimate on Braket’s quantum processing units (QPUs) and on-demand simulators.
Maximum cost estimates will be shown in USD and are not inclusive of any credits or discounts.

Note

Charges shown are estimates based on your Amazon Braket simulator and quantum
processing unit (QPU) task usage. Estimated charges shown may differ from your actual
charges. Estimated charges do not factor in any discounts or credits and you may
experience additional charges based on your use of other services such as Amazon Elastic
Compute Cloud (Amazon EC2).

Cost tracking for SV1

In order to demonstrate how the cost tracking function can be used, we will be constructing a Bell
State circuit and running it on our SV1 simulator. Begin by importing the Braket SDK modules,
defining a Bell State and adding the Tracker() function to our circuit:

#import any required modules
from braket.aws import AwsDevice
from braket.circuits import Circuit

Pricing 8

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://aws.amazon.com/braket/pricing/

Amazon Braket Developer Guide

from braket.tracking import Tracker

#create our bell circuit
circ = Circuit().h(0).cnot(0,1)
device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")
with Tracker() as tracker:
 task = device.run(circ, shots=1000).result()

#Your results
print(task.measurement_counts)

When you run your Notebook, you can expect the following output for your Bell State simulation.
The tracker function will show you the number of shots sent, quantum tasks completed, the
execution duration, the billed execution duration, and your maximum cost in USD. Your execution
time may vary for each simulation.

tracker.quantum_tasks_statistics()
{'arn:aws:braket:::device/quantum-simulator/amazon/sv1':
 {'shots': 1000,
 'tasks': {'COMPLETED': 1},
 'execution_duration': datetime.timedelta(microseconds=4000),
 'billed_execution_duration': datetime.timedelta(seconds=3)}}

tracker.simulator_tasks_cost()
$0.00375

Using the cost tracker to set maximum costs

You can use the cost tracker to set maximum costs on a program. You may have a maximum
threshold for how much you want to spend on a given program. In this way, you can use the cost
tracker to build out cost control logic in your execution code. The following example takes the
same circuit on a Rigetti QPU and limits the cost to 1 USD. The cost to run one iteration of the
circuit in our code is 0.37 USD. We have set the logic to repeat the iterations until the total cost
exceeds 1 USD; hence, the code snippet will run three times until the next iteration exceeds 1 USD.
Generally, a program would continue to iterate until it reaches your desired maximum cost, in this
case - three iterations.

device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3")
with Tracker() as tracker:
 while tracker.qpu_tasks_cost() < 1:
 result = device.run(circ, shots=200).result()

Near real-time cost tracking 9

Amazon Braket Developer Guide

print(tracker.quantum_tasks_statistics())
print(tracker.qpu_tasks_cost(), "USD")

{'arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3': {'shots': 600, 'tasks':
 {'COMPLETED': 3}}}
1.11 USD

Note

The cost tracker will not track duration for failed TN1 quantum tasks. During a TN1
simulation, if your rehearsal completes, but the contraction step fails, your rehearsal charge
will not be shown in the cost tracker.

Best practices for cost savings

Consider the following best practices for using Amazon Braket. Save time, minimize costs, and
avoid common errors.

Verify with simulators

• Verify your circuits using a simulator before you run it on a QPU, so you can fine-tune your circuit
without incurring charges for QPU usage.

• Although the results from running the circuit on a simulator may not be identical to the results
from running the circuit on a QPU, you can identify coding errors or configuration issues using a
simulator.

Restrict user access to certain devices

• You can set up restrictions that keep unauthorized users from submitting quantum tasks on
certain devices. The recommended method for restricting access is with AWS IAM. For more
information about how to do that, see Restrict access.

• We recommend that you do not use your admin account as a way to give or restrict user access
to Amazon Braket devices.

Set billing alarms

Best practices for cost savings 10

https://docs.aws.amazon.com/braket/latest/developerguide/braket-manage-access.html#restrict-access

Amazon Braket Developer Guide

• You can set a billing alarm to notify you when your bill reaches a preset limit. The recommended
way to set up an alarm is through AWS Budgets. You can set custom budgets and receive alerts
when your costs or usage may exceed your budgeted amount. Information is available at AWS
Budgets.

Test TN1 quantum tasks with low shot counts

• Simulators cost less than QHPs, but certain simulators can be expensive if quantum tasks are run
with high shot counts. We recommend that you test your TN1 tasks with a low shot count. Shot
count does not affect the cost for SV1 and local simulator tasks.

Check all Regions for quantum tasks

• The console displays quantum tasks only for your current AWS Region. When looking for billable
quantum tasks that have been submitted, be sure to check all Regions.

• You can view a list of devices and their associated Regions on the Supported Devices
documentation page.

Best practices for cost savings 11

https://aws.amazon.com/aws-cost-management/aws-budgets
https://aws.amazon.com/aws-cost-management/aws-budgets

Amazon Braket Developer Guide

How Amazon Braket works

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

Amazon Braket provides on-demand access to quantum computing devices, including on-demand
circuit simulators and different types of QPUs. In Amazon Braket, the atomic request to a device
is a quantum task. For gate-based QC devices, this request includes the quantum circuit (including
the measurement instructions and number of shots) and other request metadata. For Analog
Hamiltonian Simulators, the quantum task contains the physical layout of the quantum register
and the time- and space-dependence of the manipulating fields.

In this section, we are going to learn about the high-level flow of running quantum tasks on
Amazon Braket.

12

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path

Amazon Braket Developer Guide

Amazon Braket quantum task flow

With Jupyter notebooks, you can conveniently define, submit, and monitor your quantum tasks
from the Amazon Braket Console or using the Amazon Braket SDK. You can build your quantum
circuits directly in the SDK. However, for Analog Hamiltonian Simulators, you define the register
layout and the controlling fields. After your quantum task is defined, you can choose a device
to run it on and submit it to the Amazon Braket API (2). Depending on the device you chose, the
quantum task is queued until the device becomes available and the task is sent to the QPU or
simulator for implementation (3). Amazon Braket gives you access to different types of QPUs
(IonQ, IQM, QuEra, Rigetti), three on-demand simulators (SV1, DM1, TN1), two local simulators,
and one embedded simulator. To learn more, see Amazon Braket supported devices.

After processing your quantum task, Amazon Braket returns the results to an Amazon S3 bucket,
where the data is stored in your AWS account (4). At the same time, the SDK polls for the results
in the background and loads them into the Jupyter notebook at quantum task completion. You
can also view and manage your quantum tasks on the Quantum Tasks page in the Amazon Braket
console or by using the GetQuantumTask operation of the Amazon Braket API.

Amazon Braket quantum task flow 13

https://us-west-1.console.aws.amazon.com/console/home?region=us-west-1#
https://github.com/aws/amazon-braket-sdk-python

Amazon Braket Developer Guide

Amazon Braket is integrated with AWS Identity and Access Management (IAM), Amazon
CloudWatch, AWS CloudTrail and Amazon EventBridge for user access management, monitoring
and logging as well as for event based processing (5).

Third-party data processing

Quantum tasks that are submitted to a QPU device are processed on quantum computers located
in facilities operated by third party providers. To learn more about security and third-party
processing in Amazon Braket, see Security of Amazon Braket Hardware Providers.

Core repositories and plugins for Braket

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

Core repositories

The following displays a list of core repositories that contain key packages that are used for Braket:

• Braket Python SDK - Use the Braket Python SDK to set up your code on Jupyter notebooks in the
Python programming language. After your Jupyter notebooks are set up, you can run your code
on Braket devices and simulators

• Braket Schemas - The contract between the Braket SDK and the Braket service.

• Braket Default Simulator - All our local quantum simulators for Braket (state vector and density
matrix).

Plugins

Then there are the various plugins that are used along with various devices and programming
tools. These include Braket supported plugins as well as plugins that are supported by third parties
as shown below.

Amazon Braket supported:

Third-party data processing 14

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://github.com/aws/amazon-braket-sdk-python
https://github.com/aws/amazon-braket-schemas-python
https://github.com/aws/amazon-braket-default-simulator-python

Amazon Braket Developer Guide

• Amazon Braket algorithm library - A catalog of pre-built quantum algorithms written in Python.
Run them as they are or use them as a starting point to build more complex algorithms.

• Braket-PennyLane plugin - Use PennyLane as the QML framework on Braket.

Third-party (Braket team monitors and contributes):

• Qiskit-Braket provider - Use the Qiskit SDK to access Braket resources.

• Braket-Julia SDK - (EXPERIMENTAL) A Julia native version of the Braket SDK

Amazon Braket supported devices

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

In Amazon Braket, a device represents a QPU or simulator that you can call to run quantum tasks.
Amazon Braket provides access to QPU devices from IonQ, IQM, QuEra, and Rigetti, three on-
demand simulators, three local simulators, and one embedded simulator. For all devices, you
can find further device properties, such as device topology, calibration data, and native gate
sets, on the Devices tab of the Amazon Braket console or by means of the GetDevice API.
When constructing a circuit with the simulators, Amazon Braket currently requires that you use
contiguous qubits or indices. If you are working with the Amazon Braket SDK, you have access to
device properties as shown in the following code example.

from braket.aws import AwsDevice
from braket.devices import LocalSimulator

device = AwsDevice('arn:aws:braket:::device/quantum-simulator/amazon/sv1')
 #SV1
device = LocalSimulator()
 #Local State Vector Simulator
device = LocalSimulator("default")
 #Local State Vector Simulator
device = LocalSimulator(backend="default")
 #Local State Vector Simulator

Supported devices 15

https://github.com/aws-samples/amazon-braket-algorithm-library
https://github.com/aws/amazon-braket-pennylane-plugin-python
https://github.com/qiskit-community/qiskit-braket-provider
https://github.com/awslabs/Braket.jl
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path

Amazon Braket Developer Guide

device = LocalSimulator(backend="braket_sv")
 #Local State Vector Simulator
device = LocalSimulator(backend="braket_dm")
 #Local Density Matrix Simulator
device = LocalSimulator(backend="braket_ahs")
 #Local Analog Hamiltonian Simulation
device = AwsDevice('arn:aws:braket:::device/quantum-simulator/amazon/tn1')
 #TN1
device = AwsDevice('arn:aws:braket:::device/quantum-simulator/amazon/dm1')
 #DM1
device = AwsDevice('arn:aws:braket:us-east-1::device/qpu/ionq/Harmony')
 #IonQ
device = AwsDevice('arn:aws:braket:us-east-1::device/qpu/ionq/Aria-1')
 #IonQ
device = AwsDevice('arn:aws:braket:us-east-1::device/qpu/ionq/Aria-2')
 #IonQ
device = AwsDevice('arn:aws:braket:us-east-1::device/qpu/ionq/Forte-1')
 #IonQ
device = AwsDevice('arn:aws:braket:eu-north-1::device/qpu/iqm/Garnet')
 #IQM Garnet
device = AwsDevice('arn:aws:braket:us-east-1::device/qpu/quera/Aquila')
 #QuEra Aquila
device = AwsDevice('arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3')
 #Rigetti Aspen-M-3

get device properties
device.properties

Supported quantum hardware providers

• IonQ

• IQM

• QuEra Computing

• Rigetti

Supported simulators

• Local state vector simulator (braket_sv) ('Default Simulator')

• Local density matrix simulator (braket_dm)

• Local AHS simulator

Supported devices 16

Amazon Braket Developer Guide

• State vector simulator (SV1)

• Density matrix simulator (DM1)

• Tensor network simulator (TN1)

• PennyLane’s Lightning Simulators

Choose the best simulator for your quantum task

• Compare simulators

Note

To view the available AWS Regions for each device, scroll right across the following table.

Amazon Braket devices

Provider Device Name Paradigm Type Device ARN Region

IonQ Aria 1 gate-
based

QPU arn:aws:braket:us-
east-1::device/qpu/
ionq/Aria-1

us-east-1

IonQ Aria 2 gate-
based

QPU arn:aws:braket:us-
east-1::device/qpu/
ionq/Aria-2

us-east-1

IonQ Forte 1 gate-
based

QPU
(reservat
ion-only)

arn:aws:braket:us-
east-1::device/qpu/
ionq/Forte-1

us-east-1

IonQ Harmony gate-
based

QPU arn:aws:braket:us-
east-1::device/qpu/
ionq/Harmony

us-east-1

IQM Garnet gate-
based

QPU arn:aws:braket:eu-
north-1::device/qpu/
iqm/Garnet

eu-
north-1

Supported devices 17

Amazon Braket Developer Guide

Provider Device Name Paradigm Type Device ARN Region

QuEra Aquila Analog
Hamiltoni
an
Simulatio
n

QPU arn:aws:braket:us-
east-1::device/qpu/
quera/Aquila

us-east-1

Rigetti Aspen M-3 gate-
based

QPU arn:aws:braket:us-
west-1::device/qpu/
rigetti/Aspen-M-3

us-
west-1

AWS braket_sv gate-
based

Local
simulator

N/A (local simulator
in Braket SDK)

N/A

AWS braket_dm gate-
based

Local
simulator

N/A (local simulator
in Braket SDK)

N/A

AWS SV1 gate-
based

On-
demand
simulator

arn:aws:braket:::d
evice/quantum-simu
lator/amazon/sv1

All
Regions
where
Amazon
Braket is
available.

AWS DM1 gate-
based

On-
demand
simulator

arn:aws:braket:::d
evice/quantum-simu
lator/amazon/dm1

All
Regions
where
Amazon
Braket is
available.

AWS TN1 gate-
based

On-
demand
simulator

arn:aws:braket:::d
evice/quantum-simu
lator/amazon/tn1

us-
west-2,
us-east-1
, and eu-
west-2

Supported devices 18

Amazon Braket Developer Guide

Note

Certain QPUs can only be accessed using reservations via Braket Direct, see Reservations.

To view additional details about the QPUs you can use with Amazon Braket, see Amazon Braket
Hardware Providers.

IonQ

IonQ offers gate-based QPUs based on ion trap technology. IonQ’s trapped ion QPUs are built on
a chain of trapped 171Yb+ ions that are spatially confined by means of a microfabricated surface
electrode trap within a vacuum chamber.

IonQ devices support the following quantum gates.

'x', 'y', 'z', 'rx', 'ry', 'rz', 'h', 'cnot', 's', 'si', 't', 'ti', 'v', 'vi', 'xx',
 'yy', 'zz', 'swap'

With verbatim compilation, the IonQ QPUs support the following native gates.

'gpi', 'gpi2', 'ms'

If you only specify two phase parameters when using the native MS gate, a fully- entangling MS
gate runs. A fully-entangling MS gate always performs a π/2 rotation. To specify a different angle
and run a partially-entangling MS gate, you specify the desired angle by adding a third parameter.
For more information, see the braket.circuits.gate module.

These native gates can only be used with verbatim compilation. To learn more about verbatim
compilation, see Verbatim Compilation.

IQM

IQM quantum processors are universal and gate-model devices based on superconducting
transmon qubits. The IQM Garnet device is a 20-qubit device with a square lattice topology.

The IQM devices support the following quantum gates.

IonQ 19

https://docs.aws.amazon.com/braket/latest/developerguide/braket-reservations.html
https://aws.amazon.com/braket/hardware-providers/
https://aws.amazon.com/braket/hardware-providers/
https://amazon-braket-sdk-python.readthedocs.io/en/latest/_apidoc/braket.circuits.gate.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-constructing-circuit.html?tag=local002-20#verbatim-compilation

Amazon Braket Developer Guide

"ccnot", "cnot", "cphaseshift", "cphaseshift00", "cphaseshift01", "cphaseshift10",
 "cswap", "swap", "iswap", "pswap", "ecr", "cy", "cz", "xy", "xx", "yy", "zz", "h",
 "i", "phaseshift", "rx", "ry", "rz", "s", "si", "t", "ti", "v", "vi", "x", "y", "z"

With verbatim compilation, the IQM devices support the following native gates.

'cz', 'prx'

Rigetti

Rigetti quantum processors are universal, gate-model machines based on all-tunable
superconducting qubits. The 79-qubit Aspen-M-3 device leverages their proprietary multi-chip
technology and is assembled from 2 40-qubit processors.

The Rigetti device supports the following quantum gates.

'cz', 'xy', 'ccnot', 'cnot', 'cphaseshift', 'cphaseshift00', 'cphaseshift01',
 'cphaseshift10', 'cswap', 'h', 'i', 'iswap', 'phaseshift', 'pswap', 'rx', 'ry', 'rz',
 's', 'si', 'swap', 't', 'ti', 'x', 'y', 'z'

With verbatim compilation, the Rigetti devices support the following native gates.

'rx', 'rz', 'cz', 'cphaseshift', 'xy'

Rigetti superconducting quantum processors can run the 'rx' gate with only the angles of ±π/2 or
±π.

Pulse-level control is available on the Rigetti devices, which support a set of predefined frames of
the following types:

'rf', 'rf_f12', 'ro_rx', 'ro_rx', 'cz', 'cphase', 'xy'

For more information about these frames, see Roles of frames and ports.

QuEra

QuEra offers neutral-atom based devices that can run Analog Hamiltonian Simulation (AHS)
quantum tasks. These special-purpose devices faithfully reproduce the time-dependent quantum
dynamics of hundreds of simultaneously interacting qubits.

Rigetti 20

Amazon Braket Developer Guide

One can program these devices in the paradigm of Analog Hamiltonian Simulation by prescribing
the layout of the qubit register and the temporal and spatial dependence of the manipulating
fields. Amazon Braket provides utilities to construct such programs via the AHS module of the
python SDK, braket.ahs.

For more information, see the Analog Hamiltonian Simulation example notebooks or the Submit
an analog program using QuEra’s Aquila page.

Local state vector simulator (braket_sv)

The local state vector simulator (braket_sv) is part of the Amazon Braket SDK that runs
locally in your environment. It is well-suited for rapid prototyping on small circuits (up to 25
qubits) depending on the hardware specifications of your Braket notebook instance or your local
environment.

The local simulator supports all gates in the Amazon Braket SDK, but QPU devices support a
smaller subset. You can find the supported gates of a device in the device properties.

Note

The local simulator supports advanced OpenQASM features which may not be supported
on QPU devices or other simulators. For more information on supported features, see the
examples provided in the OpenQASM Local Simulator notebook.

For more information about how to work with simulators, see the Amazon Braket examples.

Local density matrix simulator (braket_dm)

The local density matrix simulator (braket_dm) is part of the Amazon Braket SDK that runs locally
in your environment. It is well-suited for rapid prototyping on small circuits with noise (up to 12
qubits) depending on the hardware specifications of your Braket notebook instance or your local
environment.

You can build common noisy circuits from the ground up using gate noise operations such as bit-
flip and depolarizing error. You can also apply noise operations to specific qubits and gates of
existing circuits that are intended to run both with and without noise.

The braket_dm local simulator can provide the following results, given the specified number of
shots:

Local state vector simulator (braket_sv) 21

https://github.com/aws/amazon-braket-examples/tree/main/examples/analog_hamiltonian_simulation
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Simulating_Advanced_OpenQASM_Programs_with_the_Local_Simulator.ipynb
https://github.com/aws/amazon-braket-examples/blob/main/examples/getting_started/1_Running_quantum_circuits_on_simulators/1_Running_quantum_circuits_on_simulators.ipynb

Amazon Braket Developer Guide

• Reduced density matrix: Shots = 0

Note

The local simulator supports advanced OpenQASM features, which may not be supported
on QPU devices or other simulators. For more information about supported features, see
the examples provided in the OpenQASM Local Simulator notebook.

To learn more about the local density matrix simulator, see the Braket introductory noise simulator
example.

Local AHS simulator (braket_ahs)

The local AHS (Analog Hamiltonian Simulation) simulator (braket_ahs) is part of the Amazon
Braket SDK that runs locally in your environment. It can be used to simulate results from an AHS
program. It is well-suited for prototyping on small registers (up to 10-12 atoms) depending on the
hardware specifications of your Braket notebook instance or your local environment.

The local simulator supports AHS programs with one uniform driving field, one (non-uniform)
shifting field, and arbitrary atom arrangements. For details, please refer to the Braket AHS class
and the Braket AHS program schema.

To learn more about the local AHS simulator, see the Hello AHS: Run your first Analog Hamiltonian
Simulation page and the Analog Hamiltonian Simulation example notebooks.

State vector simulator (SV1)

SV1 is an on-demand, high-performance, universal state vector simulator. It can simulate circuits
of up to 34 qubits. You can expect a 34-qubit, dense, and square circuit (circuit depth = 34) to take
approximately 1–2 hours to complete, depending on the type of gates used and other factors.
Circuits with all-to-all gates are well suited for SV1. It returns results in forms such as a full state
vector or an array of amplitudes.

SV1 has a maximum runtime of 6 hours. It has a default of 35 concurrent quantum tasks, and a
maximum of 100 (50 in us-west-1 and eu-west-2) concurrent quantum tasks.

SV1 results

SV1 can provide the following results, given the specified number of shots:

Local AHS simulator (braket_ahs) 22

https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Simulating_Advanced_OpenQASM_Programs_with_the_Local_Simulator.ipynb
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Simulating_Noise_On_Amazon_Braket.ipynb
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Simulating_Noise_On_Amazon_Braket.ipynb
https://github.com/aws/amazon-braket-sdk-python/blob/main/src/braket/ahs/analog_hamiltonian_simulation.py#L29
https://github.com/aws/amazon-braket-schemas-python/blob/main/src/braket/ir/ahs/program_v1.py
https://github.com/aws/amazon-braket-examples/tree/main/examples/analog_hamiltonian_simulation

Amazon Braket Developer Guide

• Sample: Shots > 0

• Expectation: Shots >= 0

• Variance: Shots >= 0

• Probability: Shots > 0

• Amplitude: Shots = 0

• Adjoint Gradient: Shots = 0

For more about results, see Result types.

SV1 is always available, it runs your circuits on demand, and it can run multiple circuits in parallel.
The runtime scales linearly with the number of operations and exponentially with the number
of qubits. The number of shots has a small impact on the runtime. To learn more, visit Compare
simulators.

Simulators support all gates in the Braket SDK, but QPU devices support a smaller subset. You can
find the supported gates of a device in the device properties.

Density matrix simulator (DM1)

DM1 is an on-demand, high-performance, density matrix simulator. It can simulate circuits of up to
17 qubits.

DM1 has a maximum runtime of 6 hours, a default of 35 concurrent quantum tasks, and a
maximum of 50 concurrent quantum tasks.

DM1 results

DM1 can provide the following results, given the specified number of shots:

• Sample: Shots > 0

• Expectation: Shots >= 0

• Variance: Shots >= 0

• Probability: Shots > 0

• Reduced density matrix: Shots = 0, up to max 8 qubits

For more information about results, see Result types.

Density matrix simulator (DM1) 23

https://docs.aws.amazon.com/braket/latest/developerguide/braket-result-types.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#choose-a-simulator
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#choose-a-simulator
https://docs.aws.amazon.com/braket/latest/developerguide/braket-result-types.html

Amazon Braket Developer Guide

DM1 is always available, it runs your circuits on demand, and it can run multiple circuits in parallel.
The runtime scales linearly with the number of operations and exponentially with the number
of qubits. The number of shots has a small impact on the runtime. To learn more, see Compare
simulators.

Noise gates and limitations

AmplitudeDamping
 Probability has to be within [0,1]
BitFlip
 Probability has to be within [0,0.5]
Depolarizing
 Probability has to be within [0,0.75]
GeneralizedAmplitudeDamping
 Probability has to be within [0,1]
PauliChannel
 The sum of the probabilities has to be within [0,1]
Kraus
 At most 2 qubits
 At most 4 (16) Kraus matrices for 1 (2) qubit
PhaseDamping
 Probability has to be within [0,1]
PhaseFlip
 Probability has to be within [0,0.5]
TwoQubitDephasing
 Probability has to be within [0,0.75]
TwoQubitDepolarizing
 Probability has to be within [0,0.9375]

Tensor network simulator (TN1)

TN1 is an on-demand, high-performance, tensor network simulator. TN1 can simulate certain
circuit types with up to 50 qubits and a circuit depth of 1,000 or smaller. TN1 is particularly
powerful for sparse circuits, circuits with local gates, and other circuits with special structure, such
as quantum Fourier transform (QFT) circuits. TN1 operates in two phases. First, the rehearsal phase
attempts to identify an efficient computational path for your circuit, so TN1 can estimate the
runtime of the next stage, which is called the contraction phase. If the estimated contraction time
exceeds the TN1 simulation runtime limit, TN1 does not attempt contraction.

TN1 has a runtime limit of 6 hours. It is limited to a maximum of 10 (5 in eu-west-2) concurrent
quantum tasks.

Tensor network simulator (TN1) 24

https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#choose-a-simulator
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#choose-a-simulator

Amazon Braket Developer Guide

TN1 results

The contraction phase consists of a series of matrix multiplications. The series of multiplications
continues until a result is reached or until it is determined that a result cannot be reached.

Note: Shots must be > 0.

Result types include:

• Sample

• Expectation

• Variance

For more about results, see Result types.

TN1 is always available, it runs your circuits on demand, and it can run multiple circuits in parallel.
To learn more, see Compare simulators.

Simulators support all gates in the Braket SDK, but QPU devices support a smaller subset. You can
find the supported gates of a device in the device properties.

Visit the Amazon Braket GitHub repository for a TN1 example notebook to help you get started
with TN1.

Best practices for working with TN1

• Avoid all-to-all circuits.

• Test a new circuit or class of circuits with a small number of shots, to learn the circuit’s
"hardness" for TN1.

• Split large shot simulations over multiple quantum tasks.

Embedded simulators

Embedded simulators work by having the simulation embedded with the algorithm code in the
same container and executing the simulation on the hybrid job instance directly. This can be useful
for removing bottlenecks associated with having the simulation communicate with a remote
device. This can result in significantly lower memory usage, reduced number of circuit executions to
achieve a desired result, and an improved performance of ten times or more. For more information
about embedded simulators, see the Run a hybrid job with Amazon Braket Hybrid Jobs page.

Embedded simulators 25

https://docs.aws.amazon.com/braket/latest/developerguide/braket-result-types.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#choose-a-simulator
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Using_the_tensor_network_simulator_TN1.ipynb
https://docs.aws.amazon.com/braket/latest/developerguide/braket-jobs-works.html

Amazon Braket Developer Guide

PennyLane’s lightning simulators

You can use PennyLane’s lightning simulators as embedded simulators on Braket. With
PennyLane’s lightning simulators, you can leverage advanced gradient computation methods, such
as adjoint differentiation, to evaluate gradients faster. The lightning.qubit simulator is available as
a device via Braket NBIs and as an embedded simulator, whereas the lightning.gpu simulator needs
to be run as an embedded simulator with a GPU instance. See the Embedded simulators in Braket
Hybrid Jobs notebook for an example of using lightning.gpu.

Compare simulators

This section helps you select the Amazon Braket simulator that’s best suited for your quantum task,
by describing some concepts, limitations, and use cases.

Choosing between local simulators and on-demand simulators (SV1, TN1, DM1)

The performance of local simulators depends on the hardware that hosts the local environment,
such as a Braket notebook instance, used to run your simulator. On-demand simulators run in the
AWS cloud and are designed to scale beyond typical local environments. On-demand simulators
are optimized for larger circuits, but add some latency overhead per quantum task or batch of
quantum tasks. This can imply a trade-off if many quantum tasks are involved. Given these general
performance characteristics, the following guidance can help you choose how to run simulations,
including ones with noise.

For simulations:

• When employing fewer than 18 qubits, use a local simulator.

• When employing 18–24 qubits, choose a simulator based on the workload.

• When employing more than 24 qubits, use an on-demand simulator.

For noise simulations:

• When employing fewer than 9 qubits, use a local simulator.

• When employing 9–12 qubits, choose a simulator based on the workload.

• When employing more than 12 qubits, use DM1.

What is a state vector simulator?

Compare simulators 26

https://pennylane.readthedocs.io/en/stable/introduction/interfaces.html#simulation-based-differentiation
https://docs.pennylane.ai/projects/lightning/en/stable/lightning_qubit/device.html
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/4_Embedded_simulators_in_Braket_Hybrid_Jobs/Embedded_simulators_in_Braket_Hybrid_Jobs.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/4_Embedded_simulators_in_Braket_Hybrid_Jobs/Embedded_simulators_in_Braket_Hybrid_Jobs.ipynb

Amazon Braket Developer Guide

SV1 is a universal state vector simulator. It stores the full wave function of the quantum state
and sequentially applies gate operations to the state. It stores all possibilities, even the extremely
unlikely ones. The SV1 simulator’s run time for a quantum task increases linearly with the number
of gates in the circuit.

What is a density matrix simulator?

DM1 simulates quantum circuits with noise. It stores the full density matrix of the system and
sequentially applies the gates and noise operations of the circuit. The final density matrix contains
complete information about the quantum state after the circuit runs. The runtime generally scales
linearly with the number of operations and exponentially with the number of qubits.

What is a tensor network simulator?

TN1 encodes quantum circuits into a structured graph.

• The nodes of the graph consist of quantum gates, or qubits.

• The edges of the graph represent connections between gates.

As a result of this structure, TN1 can find simulated solutions for relatively large and complex
quantum circuits.

TN1 requires two phases

Typically, TN1 operates in a two-phase approach to simulating quantum computation.

• The rehearsal phase: In this phase, TN1 comes up with a way to traverse the graph in an efficient
manner, which involves visiting every node so that you can obtain the measurement you desire.
As a customer, you do not see this phase because TN1 performs both phases together for you.
It completes the first phase and determines whether to perform the second phase on its own
based on practical constraints. You have no input into that decision after the simulation has
begun.

• The contraction phase: This phase is analogous to the execution phase of a computation in a
classical computer. The phase consists of a series of matrix multiplications. The order of these
multiplications has a great effect on the difficulty of the computation. Therefore, the rehearsal
phase is accomplished first in order to find the most effective computation paths across the
graph. After it finds the contraction path during the rehearsal phase, TN1 contracts together the
gates of your circuit to produce the results of the simulation.

Compare simulators 27

Amazon Braket Developer Guide

TN1 graphs are analogous to a map

Metaphorically, you can compare the underlying TN1 graph to the streets of a city. In a city with
a planned grid, it is easy to find a route to your destination using a map. In a city with unplanned
streets, duplicate street names, and so forth, it can be difficult to find a route to your destination
by looking at a map.

If TN1 did not perform the rehearsal phase, it would be like walking around the streets of the city
to find your destination, instead of looking at a map first. It can really pay off in terms of walking
time to spend more time looking at the map. Similarly, the rehearsal phase provides valuable
information.

You might say that the TN1 has a certain “awareness” of the structure of the underlying circuit that
it traverses. It gains this awareness during the rehearsal phase.

Types of problems best suited for each of these types of simulators

SV1 is well-suited for any class of problems that rely primarily on having a certain number of
qubits and gates. Generally, the time required grows linearly with the number of gates, while it
does not depend on the number of shots. SV1 is generally faster than TN1 for circuits under 28
qubits.

SV1 can be slower for higher qubit numbers because it actually simulates all possibilities, even the
extremely unlikely ones. It has no way to determine which outcomes are likely. Thus, for a 30-qubit
evaluation, SV1 must calculate 2^30 configurations. The limit of 34 qubits for the Amazon Braket
SV1 simulator is a practical constraint due to memory and storage limitations. You can think of it
like this: Each time you add a qubit to SV1, the problem becomes twice as hard.

For many classes of problems, TN1 can evaluate much larger circuits in realistic time than SV1
because TN1 takes advantage of the structure of the graph. It essentially tracks the evolution
of solutions from its starting place and it retains only the configurations that contribute to an
efficient traversal. Put another way, it saves the configurations to create an ordering of matrix
multiplication that results in a simpler evaluation process.

For TN1, the number of qubits and gates matters, but the structure of the graph matters a
lot more. For example, TN1 is very good at evaluating circuits (graphs) in which the gates are
short-range (that is, each qubit is connected by gates only to its nearest neighbour qubits), and
circuits (graphs) in which the connections (or gates) have similar range. A typical range for TN1 is
having each qubit talk only to other qubits that are 5 qubits away. If most of the structure can be

Compare simulators 28

Amazon Braket Developer Guide

decomposed into simpler relationships such as these, which can be represented in more, smaller, or
more uniform matrices, TN1 performs the evaluation easily.

Limitations of TN1

TN1 can be slower than SV1 depending on the graph’s structural complexity. For certain graphs,
TN1 terminates the simulation after the rehearsal stage, and shows a status of FAILED, for either
of these two reasons:

• Cannot find a path — If the graph is too complex, it is too difficult to find a good traversal path
and the simulator gives up on the computation. TN1 cannot perform the contraction. You may
see an error message similar to this one: No viable contraction path found.

• Contraction stage is too difficult — In some graphs, TN1 can find a traversal path, but it is very
long and extremely time-consuming to evaluate. In this case, the contraction is so expensive
that the cost would be prohibitive and instead, TN1 exits after the rehearsal phase. You may see
an error message similar to this one: Predicted runtime based on best contraction
path found exceeds TN1 limit.

Note

You are billed for the rehearsal stage of TN1 even if contraction is not performed and you
see a FAILED status.

The predicted runtime also depends on the shot count. In worst-case scenarios, TN1 contraction
time depends linearly on the shot count. The circuit may be contractable with fewer shots. For
example, you might submit a quantum task with 100 shots, which TN1 decides is uncontractable,
but if you resubmit with only 10, the contraction proceeds. In this situation, to attain 100 samples,
you could submit 10 quantum tasks of 10 shots for the same circuit and combine the results in the
end.

As a best practice, we recommend that you always test your circuit or circuit class with a few shots
(for example, 10) to find out how hard your circuit is for TN1, before you proceed with a higher
number of shots.

Compare simulators 29

Amazon Braket Developer Guide

Note

The series of multiplications that forms the contraction phase begins with small, NxN
matrices. For example, a 2-qubit gate requires a 4x4 matrix. The intermediate matrices
required during a contraction that is adjudged to be too difficult are gigantic. Such a
computation would require days to complete. That’s why Amazon Braket does not attempt
extremely complex contractions.

Concurrency

All Braket simulators give you the ability to run multiple circuits concurrently. Concurrency limits
vary by simulator and region. For more information on concurrency limits, see the Quotas page.

Amazon Braket Regions and endpoints

Amazon Braket is available in the following AWS Regions:

Region availability of Amazon Braket

Region Name Region Braket Endpoint QPUs & Simulators

US East (N. Virginia) us-east-1 braket.us-east-1.a
mazonaws.com

IonQ, QuEra, SV1,
DM1, TN1

US West (N. Californi
a)

us-west-1 braket.us-west-1.a
mazonaws.com

Rigetti, SV1, DM1

EU North 1 (Stockhol
m)

eu-north-1 braket.eu-north-1.
amazonaws.com

IQM, SV1, DM1

EU West 2 (London) eu-west-2 braket.eu-west-2.a
mazonaws.com

SV1, DM1, TN1

Quantum tasks that run on a QPU device can be viewed in the Amazon Braket console in the
Region of that device. If you are using the Amazon Braket SDK, you can submit quantum tasks to
any QPU device, regardless of the Region in which you are working. The SDK automatically creates
a session to the Region for the QPU specified.

Regions and endpoints 30

https://docs.aws.amazon.com/braket/latest/developerguide/braket-quotas.html

Amazon Braket Developer Guide

For general information about how AWS works with Regions and endpoints, see AWS service
endpoints in the AWS General Reference.

When will my quantum task run?

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

When you submit a circuit, Amazon Braket sends it to the device you specify. Quantum Processing
Unit (QPU) and on-demand simulator quantum tasks are queued and processed in the order they
are received. The time required to process your quantum task after you submit it varies depending
on the number and complexity of tasks submitted by other Amazon Braket customers and the
availability of the QPU selected.

Status change notifications in email or SMS

Amazon Braket sends events to Amazon EventBridge when the availability of a QPU changes or
when your quantum task’s state changes. Follow these steps to receive device and quantum task
status change notifications by email or SMS message:

1. Create an Amazon SNS topic and a subscription to email or SMS. Availability of email or SMS
depends on your Region. For more information, see Getting started with Amazon SNS and
Sending SMS messages.

2. Create a rule in EventBridge that triggers the notifications to your SNS topic. For more
information, see Monitoring Amazon Braket with Amazon EventBridge.

Quantum task completion alerts

You can set up notifications through the Amazon Simple Notification Service (SNS) so that you
receive an alert when your Amazon Braket quantum task is complete. Active notifications are useful
if you expect a long wait time — for example, when you submit a large task or when you submit a
task outside of a device’s availability window. If you do not want to wait for the task to complete,
you can set up an SNS notification.

When will my quantum task run? 31

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html
https://docs.aws.amazon.com/sns/latest/dg/sns-mobile-phone-number-as-subscriber.html

Amazon Braket Developer Guide

An Amazon Braket notebook walks you through the setup steps. For more information, see the
Amazon Braket example notebook for setting up notifications.

QPU availability windows and status

QPU availability varies from device to device.

In the Devices page of the Amazon Braket console, you can see the current and upcoming
availability windows and device status. Additionally, each device page shows individual queue
depths for quantum tasks and hybrid jobs.

A device is considered offline if is not available to customers, regardless of availability window. For
example, it could be offline due to scheduled maintenance, upgrades, or operational issues.

Queue visibility

Before submitting a quantum task or hybrid job, you can view how many quantum tasks or hybrid
jobs are in front of you by checking device queue depth.

Queue depth

Queue depth refers to the number of quantum tasks and hybrid jobs queued for a particular
device. A device’s quantum task and hybrid job queue count are accessible through the Braket
Software Development Kit (SDK) or Amazon Braket Management Console.

1. Task queue depth refers to the total number of quantum tasks currently waiting to run in normal
priority.

2. Priority task queue depth refers to the total number of submitted quantum tasks waiting to run
through Amazon Braket Hybrid Jobs. These tasks run before standalone tasks.

3. Hybrid jobs queue depth refers to the total number of hybrid jobs currently queued on a device.
Quantum tasks submitted as part of a hybrid job have priority, and are aggregated in the Priority
Task Queue.

Customers wishing to view queue depth via the Braket SDK can modify the following code snippet
to get the queue position of their quantum task or hybrid job:

device = AwsDevice("arn:aws:braket:us-east-1::device/qpu/ionq/Harmony")

returns the number of quantum tasks queued on the device

QPU availability windows and status 32

https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Getting_notifications_when_a_quantum_task_completes/Getting_notifications_when_a_quantum_task_completes.ipynb

Amazon Braket Developer Guide

print(device.queue_depth().quantum_tasks)
{<QueueType.NORMAL: 'Normal'>: '0', <QueueType.PRIORITY: 'Priority'>: '0'}

returns the number of hybrid jobs queued on the device
print(device.queue_depth().jobs)
'3'

Submitting a quantum task or hybrid job to a QPU may result in your workload being in a QUEUED
state. Amazon Braket provides customers visibility into their quantum task and hybrid job queue
position.

Queue position

Queue position refers to the current position of your quantum task or hybrid job within a
respective device queue. It can be obtained for quantum tasks or hybrid jobs through the Braket
Software Development Kit (SDK) or Amazon Braket Management Console.

Customers wishing to view queue position via the Braket SDK can modify the following code
snippet to get the queue position of their quantum task or hybrid job:

choose the device to run your circuit
device = AwsDevice("arn:aws:braket:us-east-1::device/qpu/ionq/Harmony")

#execute the circuit
task = device.run(bell, s3_folder, shots=100)

retrieve the queue position information
print(task.queue_position().queue_position)

Returns the number of Quantum Tasks queued ahead of you
'2'

from braket.aws import AwsQuantumJob

job = AwsQuantumJob.create(
 "arn:aws:braket:us-east-1::device/qpu/ionq/Harmony",
 source_module="algorithm_script.py",
 entry_point="algorithm_script:start_here",
 wait_until_complete=False
)

Queue visibility 33

Amazon Braket Developer Guide

retrieve the queue position information
print(job.queue_position().queue_position)
'3' # returns the number of hybrid jobs queued ahead of you

Queue visibility 34

Amazon Braket Developer Guide

Get started with Amazon Braket

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

After you have followed the instructions in Enable Amazon Braket , you can get started with
Amazon Braket.

The steps to get started include:

• Enable Amazon Braket

• Create an Amazon Braket notebook instance

• Run your first circuit using the Amazon Braket Python SDK

• Run your first quantum algorithms

Enable Amazon Braket

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

You can enable Amazon Braket in your account through the AWS console.

Prerequisites

To enable and run Amazon Braket, you must have a user or role with permission to initiate Amazon
Braket actions. These permissions are included in the AmazonBraketFullAccess IAM policy
(arn:aws:iam::aws:policy/AmazonBraketFullAccess).

Enable Amazon Braket 35

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
http://console.aws.amazon.com/

Amazon Braket Developer Guide

Note

If you are an administrator:
To give other users access to Amazon Braket, grant users permissions by attaching the
AmazonBraketFullAccess policy or by attaching a custom policy that you create. To learn
more about the permissions necessary to use Amazon Braket, see Managing access to
Amazon Braket .

Steps to enable Amazon Braket

1. Sign in to the Amazon Braket console with your AWS account.

2. Open the Amazon Braket console.

3. From the Braket landing page, click Get Started to be taken to the Service Dashboard page.
The alert at the top of your service dashboard will walk you through the following three steps:

a. Creating service-linked roles (SLR)

b. Enabling access to third-party quantum computers

c. Creating a new Jupyter notebook instance

In order to use third-party quantum devices, you need to agree to certain conditions regarding data
transfer between yourself, AWS, and those devices. The terms and conditions of this agreement are
provided on the General tab of the Permissions and settings page in the Amazon Braket console.

Note

Quantum devices that don’t involve any third-parties, such as the Braket local simulators
or on-demand simulators, can be used without agreeing to the Enable third-party devices
agreement.
Accepting these terms to enable use of third-party devices only needs to be done once per
account if you are accessing third-party hardware.

Steps to enable Amazon Braket 36

https://console.aws.amazon.com/braket/

Amazon Braket Developer Guide

Create an Amazon Braket notebook instance

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

Amazon Braket provides fully-managed Jupyter notebooks to get you started. The Amazon
Braket notebook instances are based on Amazon SageMaker notebook instances. The following
instructions outline the steps required to create a new notebook instance for new and existing
customers.

New Amazon Braket customers

1. Open the Amazon Braket console and navigate to the Dashboard page in the left pane.

2. Click Get Started on the Welcome to Amazon Braket modal, located in the center of your
dashboard page, to provide a notebook name. This will create a default Jupyter notebook.

3. It can take several minutes to create your notebook. Your notebook will be listed on the
Notebooks page with a status of Pending. When your notebook instance is ready to use, the
status changes to InService. You might need to refresh the page to display the updated status
for the notebook.

Existing Amazon Braket customers

1. Open the Amazon Braket console, select Notebooks in the left pane, choose Create notebook
instance. If you have zero notebooks, select the Standard setup to create a default Jupyter
notebook and enter a Notebook instance name using only alphanumeric and hyphen characters
and select your preferred visual mode. Then, enable or disable the inactivity manager for your
notebook.

a. If enabled, select the desired idle duration time before the notebook is reset. When a
notebook is reset the compute charges will stop incurring, but the storage charges will
continue.

b. To view the remaining idle time in your notebook instance, navigate to the command bar and
select the Braket tab, followed by the Inactivity Manager tab.

Create an Amazon Braket notebook instance 37

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html
https://console.aws.amazon.com/braket/home

Amazon Braket Developer Guide

Note

To save your work from being lost consider integrating your SageMaker notebook
instance with a git repository. As an alternative, moving your work outside of the /
Braket Algorithms and /Braket Examples folders will prevent the file from being
overwritten by the notebook instance restarting.

2. (Optional) With Advanced setup you can create a notebook with access permissions, additional
configurations, and network access settings:

a. In Notebook configuration choose your instance type. The standard, cost-effective instance
type, ml.t3.medium is chosen by default. To learn more about instance pricing, see Amazon
SageMaker pricing. If you want to associate a public Github repository with your notebook
instance, click on the Git repository dropdown and select Clone a public git repository from
url from the Repository dropdown menu. Enter the URL of the repo in the Git repository URL
text bar.

b. In Permissions, configure any optional IAM roles, root access, and encryption keys.

c. In Network, configure custom network and access settings for your Jupyter Notebook
instance.

3. Review your settings, set any tags to identify your notebook instance, and click Launch.

Note

You can view and manage your Amazon Braket notebook instances in the Amazon Braket
and Amazon SageMaker consoles. Additional Amazon Braket notebook settings are
available through the SageMaker console.

If you’re working in the Amazon Braket console within AWS the Amazon Braket SDK and plugins
are preloaded in the notebooks you created. If you want to run on your own machine, you can
install the SDK and plugins when you run the command pip install amazon-braket-sdk or
when you run the command pip install amazon-braket-pennylane-plugin for use with
PennyLane plugins.

Create an Amazon Braket notebook instance 38

https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://console.aws.amazon.com/sagemaker/

Amazon Braket Developer Guide

Run your first circuit using the Amazon Braket Python SDK

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

After your notebook instance has launched, open the instance with a standard Jupyter interface by
choosing the notebook you just created.

Amazon Braket notebook instances are pre-installed with the Amazon Braket SDK and all its
dependencies. Start by creating a new notebook with conda_braket kernel.

Run your first circuit using the Amazon Braket Python SDK 39

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path

Amazon Braket Developer Guide

You can start with a simple “Hello, world!” example. First, construct a circuit that prepares a Bell
state, and then run that circuit on different devices to obtain the results.

Begin by importing the Amazon Braket SDK modules and defining a simple Bell State circuit.

import boto3
from braket.aws import AwsDevice
from braket.devices import LocalSimulator
from braket.circuits import Circuit

create the circuit
bell = Circuit().h(0).cnot(0, 1)

You can visualize the circuit with this command:

print(bell)

Run your circuit on the local simulator

Run your first circuit using the Amazon Braket Python SDK 40

Amazon Braket Developer Guide

Next, choose the quantum device on which to run the circuit. The Amazon Braket SDK comes with
a local simulator for rapid prototyping and testing. We recommend using the local simulator for
smaller circuits, which can be up to 25 qubits (depending on your local hardware).

Here’s how to instantiate the local simulator:

instantiate the local simulator
local_sim = LocalSimulator()

and run the circuit:

run the circuit
result = local_sim.run(bell, shots=1000).result()
counts = result.measurement_counts
print(counts)

You should see a result something like this:

Counter({'11': 503, '00': 497})

The specific Bell state you have prepared is an equal superposition of |00> and |11>, and you’ll
find a roughly equal (up to shot noise) distribution of 00 and 11 as measurement outcomes, as
expected.

Run your circuit on an on-demand simulator

Amazon Braket also provides access to an on-demand, high-performance simulator, SV1, for
running larger circuits. SV1 is an on-demand state-vector simulator that allows for simulation
of quantum circuits of up to 34 qubits. You can find more information on SV1 in the Supported
Devices section and in the AWS console. When running quantum tasks on SV1 (and on TN1 or
any QPU), the results of your quantum task are stored in an S3 bucket in your account. If you
do not specify a bucket, the Braket SDK creates a default bucket amazon-braket-{region}-
{accountID} for you. To learn more, see Managing access to Amazon Braket .

Note

Fill in your actual, existing bucket name where the following example shows example-
bucket as your bucket name. Bucket names for Amazon Braket always begin with

Run your first circuit using the Amazon Braket Python SDK 41

Amazon Braket Developer Guide

amazon-braket- followed by other identifying characters you add. If you need
information on how to set up an S3 bucket, see Getting started with Amazon S3.

get the account ID
aws_account_id = boto3.client("sts").get_caller_identity()["Account"]
the name of the bucket
my_bucket = "example-bucket"
the name of the folder in the bucket
my_prefix = "simulation-output"
s3_folder = (my_bucket, my_prefix)

To run a circuit on SV1, you must provide the location of the S3 bucket you previously selected as a
positional argument in the .run() call.

choose the cloud-based on-demand simulator to run your circuit
device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")

run the circuit
task = device.run(bell, s3_folder, shots=100)
display the results
print(task.result().measurement_counts)

The Amazon Braket console provides further information about your quantum task. Navigate to
the Quantum Tasks tab in the console and your quantum task should be on the top of the list.
Alternatively, you can search for your quantum task using the unique quantum task ID or other
criteria.

Note

After 90 days, Amazon Braket automatically removes all quantum task IDs and other
metadata associated with your quantum tasks. For more information, see Data retention.

Running on a QPU

With Amazon Braket, you can run the previous quantum circuit example on a physical quantum
computer by just changing a single line of code. Amazon Braket provides access to QPU devices
from IonQ, Oxford Quantum Circuits, QuEra, and Rigetti. You can find information about the

Run your first circuit using the Amazon Braket Python SDK 42

https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://docs.aws.amazon.com/braket/latest/developerguide/security.html#braket-data-retention

Amazon Braket Developer Guide

different devices and availability windows in the Supported Devices section, and in the AWS
console under the Devices tab. The following example shows how to instantiate a Rigetti device.

choose the Rigetti hardware to run your circuit
device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3")

Choose an IonQ device with this code:

choose the Ionq device to run your circuit
device = AwsDevice("arn:aws:braket:us-east-1::device/qpu/ionq/Harmony")

After selecting a device and before running your workload, you can query device queue depth
with the following code to determine the number of quantum tasks or hybrid jobs. Additionally,
customers can view device specific queue depths on the Devices page of the Amazon Braket
Management Console.

Print your queue depth
print(device.queue_depth().quantum_tasks)
returns the number of quantum tasks queued on the device
{<QueueType.NORMAL: 'Normal'>: '0', <QueueType.PRIORITY: 'Priority'>: '0'}

print(device.queue_depth().jobs)
'2' # returns the number of hybrid jobs queued on the device

When you run your task, the Amazon Braket SDK polls for a result (with a default timeout of 5
days). You can change this default by modifying the poll_timeout_seconds parameter in the
the .run() command as shown in the example that follows. Keep in mind that if your polling
timeout is too short, results may not be returned within the polling time, such as when a QPU
is unavailable and a local timeout error is returned. You can restart the polling by calling the
task.result() function.

define quantum task with 1 day polling timeout
task = device.run(bell, s3_folder, poll_timeout_seconds=24*60*60)
print(task.result().measurement_counts)

Additionally, after submitting your quantum task or hybrid job, you can call the
queue_position() function to check your queue position.

print(task.queue_position().queue_position)

Run your first circuit using the Amazon Braket Python SDK 43

Amazon Braket Developer Guide

Return the number of quantum tasks queued ahead of you
'2'

Run your first quantum algorithms

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

The Amazon Braket algorithm library is a catalog of pre-built quantum algorithms written in
Python. You can run these algorithms as they are or use them as a starting point to build more
complex algorithms. You can access the algorithm library from the Braket console. You can also
access the Braket algorithm library on Github: https://github.com/aws-samples/amazon-braket-
algorithm-library.

The Braket console provides a description of each available algorithm in the algorithm library.
Choose a GitHub link to see the details of each algorithm, or choose Open notebook to open or
create a notebook that contains all of the available algorithms. If you choose the notebook option,
you can then find the Braket algorithm library in the root folder of your notebook.

Run your first quantum algorithms 44

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://github.com/aws-samples/amazon-braket-algorithm-library
https://github.com/aws-samples/amazon-braket-algorithm-library

Amazon Braket Developer Guide

Work with Amazon Braket

This section shows you how to design quantum circuits, submit these problems as quantum tasks
to devices, and monitor the quantum tasks with the Amazon Braket SDK.

The following are the main means of interacting with resources on Amazon Braket.

• The Amazon Braket Console provides device information and status to help you create, manage,
and monitor your resources and quantum tasks.

• Submit and run quantum tasks through the Amazon Braket Python SDK, as well as through the
console. The SDK is accessible through preconfigured Amazon Braket notebooks.

• The Amazon Braket API is accessible through the Amazon Braket Python SDK and notebooks.
You can make calls directly to the API if you’re building applications that work with quantum
computing programmatically.

The examples throughout this section demonstrate how you can work with the Amazon Braket API
directly using the Amazon Braket Python SDK along with the AWS Python SDK for Braket (Boto3).

More about the Amazon Braket Python SDK

To work with the Amazon Braket Python SDK, first install the AWS Python SDK for Braket (Boto3)
so that you can communicate with the AWS API. You can think of the Amazon Braket Python SDK
as a convenient wrapper around Boto3 for quantum customers.

• Boto3 contains interfaces you need to tap into the AWS API. (Note that Boto3 is a large Python
SDK that talks to the AWS API. Most AWS services support a Boto3 interface.)

• The Amazon Braket Python SDK contains software modules for circuits, gates, devices, result
types, and other parts of a quantum task. Each time you create a program, you import the
modules you need for that quantum task.

• The Amazon Braket Python SDK is accessible through notebooks, which are pre-loaded with all
of the modules and dependencies you need for running quantum tasks.

• You can import modules from the Amazon Braket Python SDK into any Python script if you do
not wish to work with notebooks.

After you’ve installed Boto3, an overview of steps for creating a quantum task through the Amazon
Braket Python SDK resembles the following:

45

https://console.aws.amazon.com/braket/home
https://github.com/aws/amazon-braket-sdk-python
https://docs.aws.amazon.com/braket/latest/APIReference/Welcome.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/braket.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html

Amazon Braket Developer Guide

1. (Optionally) Open your notebook.

2. Import the SDK modules you need for your circuits.

3. Specify a QPU or simulator.

4. Instantiate the circuit.

5. Run the circuit.

6. Collect the results.

The examples in this section show details of each step.

For more examples, see the Amazon Braket Examples repository on GitHub.

In this section:

• Hello AHS: Run your first Analog Hamiltonian Simulation

• Construct circuits in the SDK

• Submitting quantum tasks to QPUs and simulators

• Run your circuits with OpenQASM 3.0

• Submit an analog program using QuEra’s Aquila

• Working with Boto3

Hello AHS: Run your first Analog Hamiltonian Simulation

AHS

Analog Hamiltonian Simulation (AHS) is a paradigm of quantum computing different from
quantum circuits: instead of a sequence of gates, each acting only on a couple of qubits at a time,
an AHS program is defined by the time- and space-dependent parameters of the Hamiltonian in
question. The Hamiltonian of a system encodes its energy levels and the effects of external forces,
which together govern the time evolution of its states. For an N-qubit systems, the Hamiltonian
can be represented by a 2NX2N square matrix of complex numbers.

Quantum devices capable of performing AHS will tune their parameters (for example amplitude
and detuning of a coherent driving field) to closely approximate the time evolution of the quantum
system under the custom Hamiltonian. The AHS paradigm is suitable for simulating static and
dynamic properties of quantum systems of many interacting particles. Purpose-built QPUs, such

Hello AHS: Run your first Analog Hamiltonian Simulation 46

https://github.com/aws/amazon-braket-examples
https://en.wikipedia.org/wiki/Hamiltonian_simulation
https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)

Amazon Braket Developer Guide

as the Aquila device from QuEra can simulate the time evolution of systems with sizes that are
otherwise infeasible on classical hardware.

Interacting spin chain

For a canonical example of a system of many interacting particles, let us consider a ring of eight
spins (each of which can be in “up” ∣↑# and “down” ∣↓# states). Albeit small, this model system
already exhibits a handful of interesting phenomena of naturally occurring magnetic materials. In
this example, we will show how to prepare a so-called anti-ferromagnetic order, where consecutive
spins point in opposite directions.

Interacting spin chain 47

https://aws.amazon.com/braket/quantum-computers/quera/

Amazon Braket Developer Guide

Arrangement

We will use one neutral atom to stand for each spin, and the “up” and “down” spin states will be
encoded in excited Rydberg state and ground state of the atoms, respectively. First, we create the
2-d arrangement. We can program the above ring of spins with the following code.

Arrangement 48

Amazon Braket Developer Guide

Prerequisites: You need to pip install the Braket SDK. (If you are using a Braket hosted notebook
instance, this SDK comes pre-installed with the notebooks.) To reproduce the plots, you also need
to separately install matplotlib with the shell command pip install matplotlib.

import numpy as np
import matplotlib.pyplot as plt # required for plotting

from braket.ahs.atom_arrangement import AtomArrangement

a = 5.7e-6 # nearest-neighbor separation (in meters)

register = AtomArrangement()
register.add(np.array([0.5, 0.5 + 1/np.sqrt(2)]) * a)
register.add(np.array([0.5 + 1/np.sqrt(2), 0.5]) * a)
register.add(np.array([0.5 + 1/np.sqrt(2), - 0.5]) * a)
register.add(np.array([0.5, - 0.5 - 1/np.sqrt(2)]) * a)
register.add(np.array([-0.5, - 0.5 - 1/np.sqrt(2)]) * a)
register.add(np.array([-0.5 - 1/np.sqrt(2), - 0.5]) * a)
register.add(np.array([-0.5 - 1/np.sqrt(2), 0.5]) * a)
register.add(np.array([-0.5, 0.5 + 1/np.sqrt(2)]) * a)

which we can also plot with

fig, ax = plt.subplots(1, 1, figsize=(7,7))
xs, ys = [register.coordinate_list(dim) for dim in (0, 1)]
ax.plot(xs, ys, 'r.', ms=15)
for idx, (x, y) in enumerate(zip(xs, ys)):
 ax.text(x, y, f" {idx}", fontsize=12)
plt.show() # this will show the plot below in an ipython or jupyter session

Arrangement 49

https://github.com/aws/amazon-braket-sdk-python#installing-the-amazon-braket-python-sdk

Amazon Braket Developer Guide

Interaction

To prepare the anti-ferromagnetic phase, we need to induce interactions between neighboring
spins. We use the van der Waals interaction for this, which is natively implemented by neutral atom

Interaction 50

https://en.wikipedia.org/wiki/Van_der_Waals_force

Amazon Braket Developer Guide

devices (such as the Aquila device from QuEra). Using the spin-representation, the Hamiltonian
term for this interaction can be expressed as a sum over all spin pairs (j,k).

Here, nj =∣↑j⟩⟨#j∣ is an operator that takes the value of 1 only if spin j is in the “up” state, and 0
otherwise. The strength is Vj,k=C6/(dj,k)6, where C6 is the fixed coefficient, and dj,k is the Euclidean
distance between spins j and k. The immediate effect of this interaction term is that any state
where both spin j and spin k are “up” have elevated energy (by the amount Vj,k). By carefully
designing the rest of the AHS program, this interaction will prevent neighboring spins from both
being in the “up” state, an effect commonly known as "Rydberg blockade."

Driving field

At the beginning of the AHS program, all spins (by default) start in their “down” state, they are in
a so-called ferromagnetic phase. Keeping an eye on our goal to prepare the anti-ferromagnetic
phase, we specify a time-dependent coherent driving field that smoothly transitions the spins
from this state to a many-body state where the “up” states are preferred. The corresponding
Hamiltonian can be written as

where Ω(t),ϕ(t),Δ(t) are the time-dependent, global amplitude (aka Rabi frequency), phase, and
detuning of the driving field affecting all spins uniformly. Here S−,k=∣↓k⟩⟨#k∣and S+,k=(S−,k)†=∣↑k⟩⟨#k

∣ are the lowering and raising operators of spin k, respectively, and nk=∣↑k⟩⟨#k∣ is the same operator
as before. The Ω part of the driving field coherently couples the “down” and the “up” states of all
spins simultaneously, while the Δ part controls the energy reward for “up” states.

To program a smooth transition from the ferromagnetic phase to the anti-ferromagnetic phase, we
specify the driving field with the following code.

from braket.timings.time_series import TimeSeries
from braket.ahs.driving_field import DrivingField

smooth transition from "down" to "up" state
time_max = 4e-6 # seconds
time_ramp = 1e-7 # seconds

Driving field 51

https://en.wikipedia.org/wiki/Rabi_frequency

Amazon Braket Developer Guide

omega_max = 6300000.0 # rad / sec
delta_start = -5 * omega_max
delta_end = 5 * omega_max

omega = TimeSeries()
omega.put(0.0, 0.0)
omega.put(time_ramp, omega_max)
omega.put(time_max - time_ramp, omega_max)
omega.put(time_max, 0.0)

delta = TimeSeries()
delta.put(0.0, delta_start)
delta.put(time_ramp, delta_start)
delta.put(time_max - time_ramp, delta_end)
delta.put(time_max, delta_end)

phi = TimeSeries().put(0.0, 0.0).put(time_max, 0.0)

drive = DrivingField(
 amplitude=omega,
 phase=phi,
 detuning=delta
)

We can visualize the time series of the driving field with the following script.

fig, axes = plt.subplots(3, 1, figsize=(12, 7), sharex=True)

ax = axes[0]
time_series = drive.amplitude.time_series
ax.plot(time_series.times(), time_series.values(), '.-');
ax.grid()
ax.set_ylabel('Omega [rad/s]')

ax = axes[1]
time_series = drive.detuning.time_series
ax.plot(time_series.times(), time_series.values(), '.-');
ax.grid()
ax.set_ylabel('Delta [rad/s]')

ax = axes[2]
time_series = drive.phase.time_series
Note: time series of phase is understood as a piecewise constant function

Driving field 52

Amazon Braket Developer Guide

ax.step(time_series.times(), time_series.values(), '.-', where='post');
ax.set_ylabel('phi [rad]')
ax.grid()
ax.set_xlabel('time [s]')

plt.show() # this will show the plot below in an ipython or jupyter session

AHS program

The register, the driving field, (and the implicit van der Waals interactions) make up the Analog
Hamiltonian Simulation program ahs_program.

from braket.ahs.analog_hamiltonian_simulation import AnalogHamiltonianSimulation

ahs_program = AnalogHamiltonianSimulation(
 register=register,
 hamiltonian=drive
)

AHS program 53

Amazon Braket Developer Guide

Running on local simulator

Since this example is small (less than 15 spins), before running it on an AHS-compatible QPU, we
can run it on the local AHS simulator which comes with the Braket SDK. Since the local simulator
is available for free with the Braket SDK, this is best practice to ensure that our code can correctly
execute.

Here, we can set the number of shots to a high value (say, 1 million) because the local simulator
tracks the time evolution of the quantum state and draws samples from the final state; hence,
increasing the number of shots, while increasing the total runtime only marginally.

from braket.devices import LocalSimulator
device = LocalSimulator("braket_ahs")

result_simulator = device.run(
 ahs_program,
 shots=1_000_000
).result() # takes about 5 seconds

Analyzing simulator results

We can aggregate the shot results with the following function that infers the state of each spin
(which may be “d” for “down”, “u” for “up”, or “e” for empty site), and counts how many times each
configuration occurred across the shots.

from collections import Counter

def get_counts(result):
 """Aggregate state counts from AHS shot results

 A count of strings (of length = # of spins) are returned, where
 each character denotes the state of a spin (site):
 e: empty site
 u: up state spin
 d: down state spin

 Args:
 result
 (braket.tasks.analog_hamiltonian_simulation_quantum_task_result.AnalogHamiltonianSimulationQuantumTaskResult)

 Returns

Running on local simulator 54

Amazon Braket Developer Guide

 dict: number of times each state configuration is measured

 """
 state_counts = Counter()
 states = ['e', 'u', 'd']
 for shot in result.measurements:
 pre = shot.pre_sequence
 post = shot.post_sequence
 state_idx = np.array(pre) * (1 + np.array(post))
 state = "".join(map(lambda s_idx: states[s_idx], state_idx))
 state_counts.update((state,))
 return dict(state_counts)

counts_simulator = get_counts(result_simulator) # takes about 5 seconds
print(counts_simulator)

{'udududud': 330944, 'dudududu': 329576, 'dududdud': 38033, ...}

Here counts is a dictionary that counts the number of times each state configuration is observed
across the shots. We can also visualize them with the following code.

from collections import Counter

def has_neighboring_up_states(state):
 if 'uu' in state:
 return True
 if state[0] == 'u' and state[-1] == 'u':
 return True
 return False

def number_of_up_states(state):
 return Counter(state)['u']

def plot_counts(counts):
 non_blockaded = []
 blockaded = []
 for state, count in counts.items():
 if not has_neighboring_up_states(state):
 collection = non_blockaded
 else:
 collection = blockaded
 collection.append((state, count, number_of_up_states(state)))

Analyzing simulator results 55

Amazon Braket Developer Guide

 blockaded.sort(key=lambda _: _[1], reverse=True)
 non_blockaded.sort(key=lambda _: _[1], reverse=True)

 for configurations, name in zip((non_blockaded,
 blockaded),
 ('no neighboring "up" states',
 'some neighboring "up" states')):
 plt.figure(figsize=(14, 3))
 plt.bar(range(len(configurations)), [item[1] for item in configurations])
 plt.xticks(range(len(configurations)))
 plt.gca().set_xticklabels([item[0] for item in configurations], rotation=90)
 plt.ylabel('shots')
 plt.grid(axis='y')
 plt.title(f'{name} configurations')
 plt.show()

plot_counts(counts_simulator)

From the plots, we can read the following observations the verify that we successfully prepared the
anti-ferromagnetic phase.

Analyzing simulator results 56

Amazon Braket Developer Guide

1. Generally, non-blockaded states (where no two neighboring spins are in the “up” state) are more
common than states where at least one pair of neighboring spins are both in “up” states.

2. Generally, states with more "up" excitations are favored, unless the configuration is blockaded.

3. The most common states are indeed the perfect anti-ferromagnetic states "dudududu" and
"udududud".

4. The second most common states are the ones where there is only 3 “up” excitations with
consecutive separations of 1, 2, 2. This shows that the van der Waals interaction has an affect
(albeit much smaller) on next-nearest neighbors too.

Running on QuEra’s Aquila QPU

Prerequisites: Apart from pip installing the Braket SDK, if you are new to Amazon Braket, please
make sure that you have completed the necessary Get Started steps.

Note

If you are using a Braket hosted notebook instance, the Braket SDK comes pre-installed
with the instance.

With all dependencies installed, we can connect to the Aquila QPU.

from braket.aws import AwsDevice

aquila_qpu = AwsDevice("arn:aws:braket:us-east-1::device/qpu/quera/Aquila")

To make our AHS program suitable for the QuEra machine, we need to round all values to
comply with the levels of precision allowed by the Aquila QPU. (These requirements are governed
by the device parameters with “Resolution” in their name. We can see them by executing
aquila_qpu.properties.dict() in a notebook. For more details of capabilities and
requirements of Aquila, see the Introduction to Aquila notebook.) We can do this by calling the
discretize method.

discretized_ahs_program = ahs_program.discretize(aquila_qpu)

Now we can run the program (running only 100 shots for now) on the Aquila QPU.

Running on QuEra’s Aquila QPU 57

https://github.com/aws/amazon-braket-sdk-python#installing-the-amazon-braket-python-sdk
https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started.html
https://github.com/aws/amazon-braket-examples/blob/main/examples/analog_hamiltonian_simulation/01_Introduction_to_Aquila.ipynb

Amazon Braket Developer Guide

Note

Running this program on the Aquila processor will incur a cost. The Amazon Braket SDK
includes a Cost Tracker that enables customers to set cost limits as well as track their costs
in near real-time.

task = aquila_qpu.run(discretized_ahs_program, shots=100)

metadata = task.metadata()
task_arn = metadata['quantumTaskArn']
task_status = metadata['status']

print(f"ARN: {task_arn}")
print(f"status: {task_status}")

task ARN: arn:aws:braket:us-east-1:123456789012:quantum-task/12345678-90ab-
cdef-1234-567890abcdef
task status: CREATED

Due to the large variance of how long a quantum task may take to run (depending on availability
windows and QPU utilization), it is a good idea to note down the quantum task ARN, so we can
check its status at a later time with the following code snippet.

Optionally, in a new python session

from braket.aws import AwsQuantumTask

SAVED_TASK_ARN = "arn:aws:braket:us-east-1:123456789012:quantum-task/12345678-90ab-
cdef-1234-567890abcdef"

task = AwsQuantumTask(arn=SAVED_TASK_ARN)
metadata = task.metadata()
task_arn = metadata['quantumTaskArn']
task_status = metadata['status']

print(f"ARN: {task_arn}")
print(f"status: {task_status}")

[Output]

Running on QuEra’s Aquila QPU 58

https://aws.amazon.com/blogs/quantum-computing/managing-the-cost-of-your-experiments-in-amazon-braket/

Amazon Braket Developer Guide

task ARN: arn:aws:braket:us-east-1:123456789012:quantum-task/12345678-90ab-
cdef-1234-567890abcdef
task status: COMPLETED

Once the status is COMPLETED (which can also be checked from the quantum tasks page of the
Amazon Braket console), we can query the results with:

result_aquila = task.result()

Analyzing QPU results

Using the same get_counts functions as before, we can compute the counts:

counts_aquila = get_counts(result_aquila)
print(counts_aquila)

[Output]
{'udududud': 24, 'dudududu': 17, 'dududdud': 3, ...}

and plot them with plot_counts:

plot_counts(counts_aquila)

Analyzing QPU results 59

https://us-east-1.console.aws.amazon.com/braket/home?region=us-east-1#/tasks

Amazon Braket Developer Guide

Note that a small fraction of shots have empty sites (marked with “e”). This is due to a 1—2% per
atom preparation imperfections of the Aquila QPU. Apart from this, the results match with the
simulation within the expected statistical fluctuation due to small number of shots.

Next

Congratulations, you have now run your first AHS workload on Amazon Braket using the local AHS
simulator and the Aquila QPU.

To learn more about Rydberg physics, Analog Hamiltonian Simulation and the Aquila device, refer
to our example notebooks.

Construct circuits in the SDK

This section provides examples of defining a circuit, viewing available gates, extending a circuit,
and viewing gates that each device supports. It also contains instructions on how to manually
allocate qubits, instruct the compiler to run your circuits exactly as defined, and build noisy circuits
with a noise simulator.

Next 60

https://github.com/aws/amazon-braket-examples/tree/main/examples/analog_hamiltonian_simulation

Amazon Braket Developer Guide

You can also work at the pulse level in Braket for various gates with certain QPUs. For more
information, see Pulse Control on Amazon Braket.

In this section:

• Gates and circuits

• Partial Measurement

• Manual qubit allocation

• Verbatim compilation

• Noise simulation

• Inspecting the circuit

• Result types

Gates and circuits

Quantum gates and circuits are defined in the braket.circuits class of the Amazon Braket
Python SDK. From the SDK, you can instantiate a new circuit object by calling Circuit().

Example: Define a circuit

The example starts by defining a sample circuit of four qubits (labelled q0, q1, q2, and q3)
consisting of standard, single-qubit Hadamard gates and two-qubit CNOT gates. You can visualize
this circuit by calling the print function as the following example shows.

import the circuit module
from braket.circuits import Circuit

define circuit with 4 qubits
my_circuit = Circuit().h(range(4)).cnot(control=0, target=2).cnot(control=1, target=3)
print(my_circuit)

T : |0| 1 |

q0 : -H-C---
 |
q1 : -H-|-C-
 | |
q2 : -H-X-|-
 |

Gates and circuits 61

https://github.com/aws/amazon-braket-sdk-python/blob/main/src/braket/circuits/circuit.py

Amazon Braket Developer Guide

q3 : -H---X-

T : |0| 1 |

Example: Define a parameterized circuit

In this example, we define a circuit with gates that depend on free parameters. We can specify
the values of these parameters to create a new circuit, or, when submitting the circuit, to run as a
quantum task on certain devices.

from braket.circuits import Circuit, FreeParameter

#define a FreeParameter to represent the angle of a gate
alpha = FreeParameter("alpha")

#define a circuit with three qubits
my_circuit = Circuit().h(range(3)).cnot(control=0, target=2).rx(0, alpha).rx(1, alpha)
print(my_circuit)

You can create a new, non-parametrized circuit from a parametrized one by supplying either a
single float (which is the value all free parameters will take) or keyword arguments specifying
each parameter’s value to the circuit as follows.

my_fixed_circuit = my_circuit(1.2)
my_fixed_circuit = my_circuit(alpha=1.2)

Note that my_circuit is unmodified, so you can use it to instantiate many new circuits with fixed
parameter values.

Example: Modify gates in a circuit

The following example defines a circuit with gates that use control and power modifiers. You can
use these modifications to create new gates, such as the controlled Ry gate.

from braket.circuits import Circuit

Create a bell circuit with a controlled x gate
my_circuit = Circuit().h(0).x(control=0, target=1)

Add a multi-controlled Ry gate of angle .13
my_circuit.ry(angle=.13, target=2, control=(0, 1))

Gates and circuits 62

Amazon Braket Developer Guide

Add a 1/5 root of X gate
my_circuit.x(0, power=1/5)

print(my_circuit)

Gate modifiers are supported only on the local simulator.

Example: See all available gates

The following example shows how to look at all the available gates in Amazon Braket.

from braket.circuits import Gate
print all available gates in Amazon Braket
gate_set = [attr for attr in dir(Gate) if attr[0].isupper()]
print(gate_set)

The output from this code lists all of the gates.

['CCNot', 'CNot', 'CPhaseShift', 'CPhaseShift00', 'CPhaseShift01', 'CPhaseShift10',
 'CSwap', 'CV', 'CY', 'CZ', 'ECR', 'GPi', 'GPi2', 'H', 'I', 'ISwap', 'MS', 'PSwap',
 'PhaseShift', 'PulseGate', 'Rx', 'Ry', 'Rz', 'S', 'Si', 'Swap', 'T', 'Ti', 'Unitary',
 'V', 'Vi', 'X', 'XX', 'XY', 'Y', 'YY', 'Z', 'ZZ']

Any of these gates can be appended to a circuit by calling the method for that type of circuit. For
example, you’d call circ.h(0), to add a Hadamard gate to the first qubit.

Note

Gates are appended in place, and the example that follows adds all of the gates listed in
the previous example to the same circuit.

circ = Circuit()
toffoli gate with q0, q1 the control qubits and q2 the target.
circ.ccnot(0, 1, 2)
cnot gate
circ.cnot(0, 1)
controlled-phase gate that phases the |11> state, cphaseshift(phi) =
 diag((1,1,1,exp(1j*phi))), where phi=0.15 in the examples below
circ.cphaseshift(0, 1, 0.15)

Gates and circuits 63

Amazon Braket Developer Guide

controlled-phase gate that phases the |00> state, cphaseshift00(phi) =
 diag([exp(1j*phi),1,1,1])
circ.cphaseshift00(0, 1, 0.15)
controlled-phase gate that phases the |01> state, cphaseshift01(phi) =
 diag([1,exp(1j*phi),1,1])
circ.cphaseshift01(0, 1, 0.15)
controlled-phase gate that phases the |10> state, cphaseshift10(phi) =
 diag([1,1,exp(1j*phi),1])
circ.cphaseshift10(0, 1, 0.15)
controlled swap gate
circ.cswap(0, 1, 2)
swap gate
circ.swap(0,1)
phaseshift(phi)= diag([1,exp(1j*phi)])
circ.phaseshift(0,0.15)
controlled Y gate
circ.cy(0, 1)
controlled phase gate
circ.cz(0, 1)
Echoed cross-resonance gate applied to q0, q1
circ = Circuit().ecr(0,1)
X rotation with angle 0.15
circ.rx(0, 0.15)
Y rotation with angle 0.15
circ.ry(0, 0.15)
Z rotation with angle 0.15
circ.rz(0, 0.15)
Hadamard gates applied to q0, q1, q2
circ.h(range(3))
identity gates applied to q0, q1, q2
circ.i([0, 1, 2])
iswap gate, iswap = [[1,0,0,0],[0,0,1j,0],[0,1j,0,0],[0,0,0,1]]
circ.iswap(0, 1)
pswap gate, PSWAP(phi) = [[1,0,0,0],[0,0,exp(1j*phi),0],[0,exp(1j*phi),0,0],
[0,0,0,1]]
circ.pswap(0, 1, 0.15)
X gate applied to q1, q2
circ.x([1, 2])
Y gate applied to q1, q2
circ.y([1, 2])
Z gate applied to q1, q2
circ.z([1, 2])
S gate applied to q0, q1, q2
circ.s([0, 1, 2])

Gates and circuits 64

Amazon Braket Developer Guide

conjugate transpose of S gate applied to q0, q1
circ.si([0, 1])
T gate applied to q0, q1
circ.t([0, 1])
conjugate transpose of T gate applied to q0, q1
circ.ti([0, 1])
square root of not gate applied to q0, q1, q2
circ.v([0, 1, 2])
conjugate transpose of square root of not gate applied to q0, q1, q2
circ.vi([0, 1, 2])
exp(-iXX theta/2)
circ.xx(0, 1, 0.15)
exp(i(XX+YY) theta/4), where theta=0.15 in the examples below
circ.xy(0, 1, 0.15)
exp(-iYY theta/2)
circ.yy(0, 1, 0.15)
exp(-iZZ theta/2)
circ.zz(0, 1, 0.15)
IonQ native gate GPi with angle 0.15 applied to q0
circ.gpi(0, 0.15)
IonQ native gate GPi2 with angle 0.15 applied to q0
circ.gpi2(0, 0.15)
IonQ native gate MS with angles 0.15, 0.15, 0.15 applied to q0, q1
circ.ms(0, 1, 0.15, 0.15, 0.15)

Apart from the pre-defined gate set, you also can apply self-defined unitary gates to the circuit.
These can be single-qubit gates (as shown in the following source code) or multi-qubit gates
applied to the qubits defined by the targets parameter.

import numpy as np
apply a general unitary
my_unitary = np.array([[0, 1],[1, 0]])
circ.unitary(matrix=my_unitary, targets=[0])

Example: Extend existing circuits

You can extend existing circuits by adding instructions. An Instruction is a quantum directive
that describes the quantum task to perform on a quantum device. Instruction operators include
objects of type Gate only.

import the Gate and Instruction modules
from braket.circuits import Gate, Instruction

Gates and circuits 65

Amazon Braket Developer Guide

add instructions directly.
circ = Circuit([Instruction(Gate.H(), 4), Instruction(Gate.CNot(), [4, 5])])

or with add_instruction/add functions
instr = Instruction(Gate.CNot(), [0, 1])
circ.add_instruction(instr)
circ.add(instr)

specify where the circuit is appended
circ.add_instruction(instr, target=[3, 4])
circ.add_instruction(instr, target_mapping={0: 3, 1: 4})

print the instructions
print(circ.instructions)
if there are multiple instructions, you can print them in a for loop
for instr in circ.instructions:
 print(instr)

instructions can be copied
new_instr = instr.copy()
appoint the instruction to target
new_instr = instr.copy(target=[5])
new_instr = instr.copy(target_mapping={0: 5})

Example: View the gates that each device supports

Simulators support all gates in the Braket SDK, but QPU devices support a smaller subset. You can
find the supported gates of a device in the device properties. The following shows an example with
an IonQ device:

import the device module
from braket.aws import AwsDevice

device = AwsDevice("arn:aws:braket:us-east-1::device/qpu/ionq/Harmony")

get device name
device_name = device.name
show supportedQuantumOperations (supported gates for a device)
device_operations = device.properties.dict()['action']['braket.ir.openqasm.program']
['supportedOperations']
print('Quantum Gates supported by {}:\n {}'.format(device_name, device_operations))

Gates and circuits 66

Amazon Braket Developer Guide

Quantum Gates supported by the Harmony device:
 ['x', 'y', 'z', 'rx', 'ry', 'rz', 'h', 'cnot', 's', 'si', 't', 'ti', 'v', 'vi', 'xx',
 'yy', 'zz', 'swap', 'i']

Supported gates may need to be compiled into native gates before they can run on quantum
hardware. When you submit a circuit, Amazon Braket performs this compilation automatically.

Example: Programmatically retrieve the fidelity of native gates supported by a device

You can view the fidelity information on the Devices page of the Braket console. Sometimes it is
helpful to access the same information programmatically. The following code shows how to extract
the two qubit gate fidelity between two gates of a QPU.

import the device module
from braket.aws import AwsDevice

device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3")

#specify the qubits
a=10
b=113
print(f"Fidelity of the XY gate between qubits {a} and {b}: ",
 device.properties.provider.specs["2Q"][f"{a}-{b}"]["fXY"])

Partial Measurement

Following the previous examples, we have measured all the qubits in the quantum circuit. However,
it is possible to measure individual qubits or a subset of qubits.

Example: Measure a subset of qubits

In this example, we demonstrate a partial measurement by adding a measure instruction with the
target qubits to the end of the circuit.

Use the local state vector simulator
device = LocalSimulator()

Define an example bell circuit and measure qubit 0
circuit = Circuit().h(0).cnot(0, 1).measure(0)

Run the circuit

Partial Measurement 67

Amazon Braket Developer Guide

task = device.run(circuit, shots=10)

Get the results
result = task.result()

Print the circuit and measured qubits
print(circuit)
print()
print("Measured qubits: ", result.measured_qubits)

Manual qubit allocation

When you run a quantum circuit on quantum computers from Rigetti, you can optionally use
manual qubit allocation to control which qubits are used for your algorithm. The Amazon Braket
Console and the Amazon Braket SDK help you to inspect the most recent calibration data of
your selected quantum processing unit (QPU) device, so you can select the best qubits for your
experiment.

Manual qubit allocation enables you to run circuits with greater accuracy and to investigate
individual qubit properties. Researchers and advanced users optimize their circuit design based on
the latest device calibration data and can obtain more accurate results.

The following example demonstrates how to allocate qubits explicitly.

circ = Circuit().h(0).cnot(0, 7) # Indices of actual qubits in the QPU
my_task = device.run(circ, s3_location, shots=100, disable_qubit_rewiring=True)

For more information, see the Amazon Braket examples on GitHub, or more specifically, this
notebook: Allocating Qubits on QPU Devices.

Verbatim compilation

When you run a quantum circuit on gate-based quantum computers you can direct the compiler
to run your circuits exactly as defined without any modifications. Using verbatim compilation, you
can specify either that an entire circuit be preserved precisely as specified or that only specific
parts of it be preserved (supported by Rigetti only). When developing algorithms for hardware
benchmarking or error mitigation protocols, you need have the option to exactly specify the gates
and circuit layouts that you’re running on the hardware. Verbatim compilation gives you direct
control over the compilation process by turning off certain optimization steps, thereby ensuring
that your circuits run exactly as designed.

Manual qubit allocation 68

https://console.aws.amazon.com/braket/home
https://console.aws.amazon.com/braket/home
https://github.com/aws/amazon-braket-sdk-python
https://github.com/aws/amazon-braket-examples
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Allocating_Qubits_on_QPU_Devices.ipynb

Amazon Braket Developer Guide

Verbatim compilation is currently supported on the Rigetti, IonQ, and IQM devices and requires the
use of native gates. When using verbatim compilation, it is advisable to check the topology of the
device to ensure that gates are called on connected qubits and that the circuit uses the native gates
supported on the hardware. The following example shows how to programmatically access the list
of native gates supported by a device.

device.properties.paradigm.nativeGateSet

For Rigetti, qubit rewiring must be turned off by setting disableQubitRewiring=True for use
with verbatim compilation. If disableQubitRewiring=False is set when using verbatim boxes
in a compilation, the quantum circuit fails validation and does not run.

If verbatim compilation is enabled for a circuit and run on a QPU that does not support it, an
error is generated indicating that an unsupported operation has caused the task to fail. As more
quantum hardware natively support compiler functions, this feature will be expanded to include
these devices. Devices that support verbatim compilation include it as a supported operation when
queried with the following code.

from braket.aws import AwsDevice
from braket.device_schema.device_action_properties import DeviceActionType
device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3")
device.properties.action[DeviceActionType.OPENQASM].supportedPragmas

There is no additional cost associated with using verbatim compilation. You continue to be
charged for quantum tasks executed on Braket QPU devices, notebook instances, and on-demand
simulators based on current rates as specified on the Amazon Braket Pricing page. For more
information, see the Verbatim compilation example notebook.

Note

If you are using OpenQASM to write your circuits for the IonQ devices, and you wish to
map your circuit directly to the physical qubits, you need to use the #pragma braket
verbatim as the disableQubitRewiring flag is completely ignored by OpenQASM.

Noise simulation

To instantiate the local noise simulator you can change the backend as follows.

Noise simulation 69

https://aws.amazon.com/braket/pricing/
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Verbatim_Compilation.ipynb

Amazon Braket Developer Guide

device = LocalSimulator(backend="braket_dm")

You can build noisy circuits in two ways:

1. Build the noisy circuit from the bottom up.

2. Take an existing, noise-free circuit and inject noise throughout.

The following example shows the approaches using a simple circuit with depolarizing noise and a
custom Kraus channel.

Bottom up approach
apply depolarizing noise to qubit 0 with probability of 0.1
circ = Circuit().x(0).x(1).depolarizing(0, probability=0.1)

create an arbitrary 2-qubit Kraus channel
E0 = scipy.stats.unitary_group.rvs(4) * np.sqrt(0.8)
E1 = scipy.stats.unitary_group.rvs(4) * np.sqrt(0.2)
K = [E0, E1]

apply a two-qubit Kraus channel to qubits 0 and 2
circ = circ.kraus([0,2], K)

Inject noise approach
define phase damping noise
noise = Noise.PhaseDamping(gamma=0.1)
the noise channel is applied to all the X gates in the circuit
circ = Circuit().x(0).y(1).cnot(0,2).x(1).z(2)
circ_noise = circ.copy()
circ_noise.apply_gate_noise(noise, target_gates = Gate.X)

Running a circuit is the same user experience as before, as shown in the following two examples.

Example 1

task = device.run(circ, s3_location)

Or

Example 2

Noise simulation 70

Amazon Braket Developer Guide

task = device.run(circ_noise, s3_location)

For more examples, see the Braket introductory noise simulator example

Inspecting the circuit

Quantum circuits in Amazon Braket have a pseudo-time concept called Moments. Each qubit can
experience a single gate per Moment. The purpose of Moments is to make circuits and their gates
easier to address and to provide a temporal structure.

Note

Moments generally do not correspond to the real time at which gates are executed on a
QPU.

The depth of a circuit is given by the total number of Moments in that circuit. You can view the
circuit depth calling the method circuit.depth as shown in the following example.

define a circuit with parametrized gates
circ = Circuit().rx(0, 0.15).ry(1, 0.2).cnot(0,2).zz(1, 3, 0.15).x(0)
print(circ)
print('Total circuit depth:', circ.depth)

T : | 0 | 1 |2|

q0 : -Rx(0.15)-C----------X-
 |
q1 : -Ry(0.2)--|-ZZ(0.15)---
 | |
q2 : ----------X-|----------
 |
q3 : ------------ZZ(0.15)---

T : | 0 | 1 |2|
Total circuit depth: 3

The total circuit depth of the circuit above is 3 (shown as moments 0, 1, and 2). You can check the
gate operation for each moment.

Inspecting the circuit 71

https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Simulating_Noise_On_Amazon_Braket.ipynb

Amazon Braket Developer Guide

Moments functions as a dictionary of key-value pairs.

• The key is MomentsKey(), which contains pseudo-time and qubit information.

• The value is assigned in the type of Instructions().

moments = circ.moments
for key, value in moments.items():
 print(key)
 print(value, "\n")

MomentsKey(time=0, qubits=QubitSet([Qubit(0)]))
Instruction('operator': Rx('angle': 0.15, 'qubit_count': 1), 'target':
 QubitSet([Qubit(0)]))

MomentsKey(time=0, qubits=QubitSet([Qubit(1)]))
Instruction('operator': Ry('angle': 0.2, 'qubit_count': 1), 'target':
 QubitSet([Qubit(1)]))

MomentsKey(time=1, qubits=QubitSet([Qubit(0), Qubit(2)]))
Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(0),
 Qubit(2)]))

MomentsKey(time=1, qubits=QubitSet([Qubit(1), Qubit(3)]))
Instruction('operator': ZZ('angle': 0.15, 'qubit_count': 2), 'target':
 QubitSet([Qubit(1), Qubit(3)]))

MomentsKey(time=2, qubits=QubitSet([Qubit(0)]))
Instruction('operator': X('qubit_count': 1), 'target': QubitSet([Qubit(0)]))

You can also add gates to a circuit through Moments.

new_circ = Circuit()
instructions = [Instruction(Gate.S(), 0),
 Instruction(Gate.CZ(), [1,0]),
 Instruction(Gate.H(), 1)
]
new_circ.moments.add(instructions)
print(new_circ)

T : |0|1|2|

Inspecting the circuit 72

Amazon Braket Developer Guide

q0 : -S-Z---
 |
q1 : ---C-H-

T : |0|1|2|

Result types

Amazon Braket can return different types of results when a circuit is measured using ResultType.
A circuit can return the following types of results.

• AdjointGradient returns the gradient (vector derivative) of the expectation value of a
provided observable. This observable is acting on a provided target with respect to specified
parameters using the adjoint differentiation method. You can only use this method when
shots=0.

• Amplitude returns the amplitude of specified quantum states in the output wave function. It is
available on the SV1 and local simulators only.

• Expectation returns the expectation value of a given observable, which can be specified with
the Observable class introduced later in this chapter. The target qubits used to measure the
observable must be specified, and the number of specified targets must equal the number of
qubits on which the observable acts. If no targets are specified, the observable must operate
only on 1 qubit and it is applied to all qubits in parallel.

• Probability returns the probabilities of measuring computational basis states. If no targets
are specified, Probability returns the probability of measuring all basis states. If targets
are specified, only the marginal probabilities of the basis vectors on the specified qubits are
returned.

• Reduced density matrix returns a density matrix for a subsystem of specified target qubits
from a system of qubits. To limit the size of this result type, Braket limits the number of target
qubits to a maximum of 8.

• StateVector returns the full state vector. It is available on the local simulator.

• Sample returns the measurement counts of a specified target qubit set and observable. If no
targets are specified, the observable must operate only on 1 qubit and it is applied to all qubits
in parallel. If targets are specified, the number of specified targets must equal the number of
qubits on which the observable acts.

Result types 73

Amazon Braket Developer Guide

• Variance returns the variance (mean([x-mean(x)]2)) of the specified target qubit set and
observable as the requested result type. If no targets are specified, the observable must operate
only on 1 qubit and it is applied to all qubits in parallel. Otherwise, the number of targets
specified must equal the number of qubits to which the observable can be applied.

The supported result types for different devices:

 Local sim SV1 DM1 TN1 Rigetti IonQ

Adjoint
Gradient

N Y N N N N

Amplitude Y Y N N N N

Expectati
on

Y Y Y Y Y Y

Probabili
ty

Y Y Y N Y* Y

Reduced
density
matrix

Y N Y N N N

State
vector

Y N N N N N

Sample Y Y Y Y Y Y

Variance Y Y Y Y Y Y

Note

* Rigetti only supports probability result types of up to 40 qubits.

You can check the supported result types by examining the device properties, as shown in the
following example.

Result types 74

Amazon Braket Developer Guide

device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3")

print the result types supported by this device
for iter in device.properties.action['braket.ir.jaqcd.program'].supportedResultTypes:
 print(iter)

name='Sample' observables=['x', 'y', 'z', 'h', 'i'] minShots=10 maxShots=100000
name='Expectation' observables=['x', 'y', 'z', 'h', 'i'] minShots=10 maxShots=100000
name='Variance' observables=['x', 'y', 'z', 'h', 'i'] minShots=10 maxShots=100000
name='Probability' observables=None minShots=10 maxShots=100000

To call a ResultType, append it to a circuit, as shown in the following example.

from braket.circuits import Observable

circ = Circuit().h(0).cnot(0, 1).amplitude(state=["01", "10"])
circ.probability(target=[0, 1])
circ.probability(target=0)
circ.expectation(observable=Observable.Z(), target=0)
circ.sample(observable=Observable.X(), target=0)
circ.state_vector()
circ.variance(observable=Observable.Z(), target=0)

print one of the result types assigned to the circuit
print(circ.result_types[0])

Note

Some devices provide measurements (for instance Rigetti) as results and others provide
probabilities as results (for instance IonQ). The SDK provides a measurements property on
results, but for the devices that return probabilities, it is post-computed. Thus, devices like
those provided by IonQ have measurement results determined by probability since per shot
measurements are not returned. You can check if a result is post-computed by viewing the
measurements_copied_from_device on the result object as shown in this file.

Observables

Amazon Braket includes an Observable class, which can be used to specify an observable to be
measured.

Result types 75

https://github.com/aws/amazon-braket-sdk-python/blob/ca5b08dada4839ca31c012ff50aa20b656fd1879/src/braket/tasks/gate_model_quantum_task_result.py#L70-L72

Amazon Braket Developer Guide

You can apply at most one unique non-identity observable to each qubit. If you specify two or
more different non-identity observables to the same qubit, you see an error. For this purpose, each
factor of a tensor product counts as an individual observable, so it is permissible to have multiple
tensor products acting on the same qubit, provided that the factor acting on that qubit is the same.

You can also scale an observable and add observables (scaled or not). This creates a Sum which can
be used in the AdjointGradient result type.

The Observable class includes the following observables.

Observable.I()
Observable.H()
Observable.X()
Observable.Y()
Observable.Z()

get the eigenvalues of the observable
print("Eigenvalue:", Observable.H().eigenvalues)
or whether to rotate the basis to be computational basis
print("Basis rotation gates:",Observable.H().basis_rotation_gates)

get the tensor product of observable for the multi-qubit case
tensor_product = Observable.Y() @ Observable.Z()
view the matrix form of an observable by using
print("The matrix form of the observable:\n",Observable.Z().to_matrix())
print("The matrix form of the tensor product:\n",tensor_product.to_matrix())

also factorize an observable in the tensor form
print("Factorize an observable:",tensor_product.factors)

self-define observables given it is a Hermitian
print("Self-defined Hermitian:",Observable.Hermitian(matrix=np.array([[0, 1],[1, 0]])))

print("Sum of other (scaled) observables:", 2.0 * Observable.X() @ Observable.X() + 4.0
 * Observable.Z() @ Observable.Z())

Eigenvalue: [1 -1]
Basis rotation gates: (Ry('angle': -0.7853981633974483, 'qubit_count': 1),)
The matrix form of the observable:
 [[1.+0.j 0.+0.j]
 [0.+0.j -1.+0.j]]
The matrix form of the tensor product:

Result types 76

Amazon Braket Developer Guide

 [[0.+0.j 0.+0.j 0.-1.j 0.-0.j]
 [0.+0.j -0.+0.j 0.-0.j 0.+1.j]
 [0.+1.j 0.+0.j 0.+0.j 0.+0.j]
 [0.+0.j -0.-1.j 0.+0.j -0.+0.j]]
Factorize an observable: (Y('qubit_count': 1), Z('qubit_count': 1))
Self-defined Hermitian: Hermitian('qubit_count': 1, 'matrix': [[0.+0.j 1.+0.j], [1.+0.j
 0.+0.j]])
Sum of other (scaled) observables: Sum(TensorProduct(X('qubit_count': 1),
 X('qubit_count': 1)), TensorProduct(Z('qubit_count': 1), Z('qubit_count': 1)))

Parameters

Circuits may include free parameters, which you can be use in a “construct once - run many times”
manner and to compute gradients. Free parameters have a string-encoded name that you can use
to specify their values or to determine whether to differentiate with respect to them.

from braket.circuits import Circuit, FreeParameter, Observable
theta = FreeParameter("theta")
phi = FreeParameter("phi")
circ = Circuit().h(0).rx(0, phi).ry(0, phi).cnot(0, 1).xx(0, 1, theta)
circ.adjoint_gradient(observable=Observable.Z() @ Observable.Z(), target=[0, 1],
 parameters = ["phi", theta]

For the parameters you want to differentiate, specify them either by using their name (as a string)
or by direct reference. Note that computing the gradient using the AdjointGradient result type
is done with respect to the expectation value of the observable.

Note: If you have fixed the values of free parameters by passing them as arguments to the
parameterized circuit, running a circuit with AdjointGradient as a result type and parameters
specified will produce an error. This is because the parameters we are using to differentiate with are
no longer present. See the following example.

device.run(circ(0.2), shots=0) # will error, as no free parameters will be present
device.run(circ, shots=0, inputs={'phi'=0.2, 'theta'=0.2) # will succeed

Submitting quantum tasks to QPUs and simulators

Amazon Braket provides access to several devices that can run quantum tasks. You can submit
quantum tasks individually or you can set up quantum task batching.

Submitting quantum tasks to QPUs and simulators 77

Amazon Braket Developer Guide

QPUs

You can submit quantum tasks to QPUs at any time, but the task runs within certain availability
windows that are displayed on the Devices page of the Amazon Braket console. You can retrieve
the results of the quantum task with the quantum task ID, which is introduced in the next section.

• IonQ Aria 1 : arn:aws:braket:us-east-1::device/qpu/ionq/Aria-1

• IonQ Aria 2 : arn:aws:braket:us-east-1::device/qpu/ionq/Aria-2

• IonQ Forte 1 (reservation only) : arn:aws:braket:us-east-1::device/qpu/ionq/
Forte-1

• IonQ Harmony : arn:aws:braket:us-east-1::device/qpu/ionq/Harmony

• IQM Garnet : arn:aws:braket:eu-north-1::device/qpu/iqm/Garnet

• QuEra Aquila : arn:aws:braket:us-east-1::device/qpu/quera/Aquila

• Rigetti Aspen-M-3 : arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3

Simulators

• Density matrix simulator, DM1 : arn:aws:braket:::device/quantum-simulator/
amazon/dm1

• State vector simulator, SV1 : arn:aws:braket:::device/quantum-simulator/amazon/
sv1

• Tensor network simulator, TN1 : arn:aws:braket:::device/quantum-simulator/
amazon/tn1

• The local simulator : LocalSimulator()

Note

You can cancel quantum tasks in the CREATED state for QPUs and on-demand simulators.
You can cancel quantum tasks in the QUEUED state on a best-effort basis for on-demand
simulators and QPUs. Note that QPU QUEUED quantum tasks are unlikely to be cancelled
successfully during QPU availability windows.

In this section:

• Example quantum tasks on Amazon Braket

Submitting quantum tasks to QPUs and simulators 78

Amazon Braket Developer Guide

• Submitting quantum tasks to a QPU

• Running a quantum task with the local simulator

• Quantum task batching

• Set up SNS notifications (optional)

• Inspecting compiled circuits

Example quantum tasks on Amazon Braket

This section walks through the stages of running an example quantum task, from selecting the
device to viewing the result. As a best practice for Amazon Braket, we recommend that you begin
by running the circuit on a simulator, such as SV1.

In this section:

• Specify the device

• Submit an example quantum task

• Submit a parametrized task

• Specify shots

• Poll for results

• View the example results

Specify the device

First, select and specify the device for your quantum task. This example shows how to choose the
simulator, SV1.

choose the on-demand simulator to run the circuit
from braket.aws import AwsDevice
device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")

You can view some of the properties of this device as follows:

print (device.name)
for iter in device.properties.action['braket.ir.jaqcd.program']:
 print(iter)

Example quantum tasks on Amazon Braket 79

Amazon Braket Developer Guide

SV1
('version', ['1.0', '1.1'])
('actionType', <DeviceActionType.JAQCD: 'braket.ir.jaqcd.program'>)
('supportedOperations', ['ccnot', 'cnot', 'cphaseshift', 'cphaseshift00',
 'cphaseshift01', 'cphaseshift10', 'cswap', 'cy', 'cz', 'h', 'i', 'iswap', 'pswap',
 'phaseshift', 'rx', 'ry', 'rz', 's', 'si', 'swap', 't', 'ti', 'unitary', 'v', 'vi',
 'x', 'xx', 'xy', 'y', 'yy', 'z', 'zz'])
('supportedResultTypes', [ResultType(name='Sample', observables=['x', 'y', 'z', 'h',
 'i', 'hermitian'], minShots=1, maxShots=100000), ResultType(name='Expectation',
 observables=['x', 'y', 'z', 'h', 'i', 'hermitian'], minShots=0, maxShots=100000),
 ResultType(name='Variance', observables=['x', 'y', 'z', 'h', 'i', 'hermitian'],
 minShots=0, maxShots=100000), ResultType(name='Probability', observables=None,
 minShots=1, maxShots=100000), ResultType(name='Amplitude', observables=None,
 minShots=0, maxShots=0)])

Submit an example quantum task

Submit an example quantum task to run on the on-demand simulator.

create a circuit with a result type
circ = Circuit().rx(0, 1).ry(1, 0.2).cnot(0,2).variance(observable=Observable.Z(),
 target=0)
add another result type
circ.probability(target=[0, 2])

set up S3 bucket (where results are stored)
my_bucket = "amazon-braket-your-s3-bucket-name" # the name of the bucket
my_prefix = "your-folder-name" # the name of the folder in the bucket
s3_location = (my_bucket, my_prefix)

submit the quantum task to run
my_task = device.run(circ, s3_location, shots=1000, poll_timeout_seconds = 100,
 poll_interval_seconds = 10)
the positional argument for the S3 bucket is optional if you want to specify a bucket
 other than the default

get results of the quantum task
result = my_task.result()

The device.run() command creates a quantum task through the CreateQuantumTask
API. After a short initialization time, the quantum task is queued until capacity exists to run
the quantum task on a device. In this case, the device is SV1. After the device completes the

Example quantum tasks on Amazon Braket 80

http://docs.aws.amazon.com/braket

Amazon Braket Developer Guide

computation, Amazon Braket writes the results to the Amazon S3 location specified in the call. The
positional argument s3_location is required for all devices except the local simulator.

Note

The Braket quantum task action is limited to 3MB in size.

Submit a parametrized task

Amazon Braket on-demand and local simulators and QPUs also support specifying values of free
parameters at task submission. You can do this by using the inputs argument to device.run(),
as shown in the following example. The inputs must be a dictionary of string-float pairs, where
the keys are the parameter names.

Parametric compilation can improve the performance of executing parametric circuits on certain
QPUs. When submitting a parametric circuit as a quantum task to a supported QPU, Braket will
compile the circuit once, and cache the result. There is no recompilation for subsequent parameter
updates to the same circuit, resulting in faster runtimes for tasks that use the same circuit. Braket
automatically uses the updated calibration data from the hardware provider when compiling your
circuit to ensure the highest quality results.

Note

Parametric compilation is supported on all superconducting, gate-based QPUs from Rigetti
Computing with the exception of pulse level programs.

from braket.circuits import Circuit, FreeParameter, Observable

create the free parameters
alpha = FreeParameter('alpha')
beta = FreeParameter('beta')

create a circuit with a result type
circ = Circuit().rx(0, alpha).ry(1, alpha).cnot(0,2).xx(0, 2, beta)
circ.variance(observable=Observable.Z(), target=0)
add another result type
circ.probability(target=[0, 2])
submit the quantum task to run

Example quantum tasks on Amazon Braket 81

Amazon Braket Developer Guide

my_task = device.run(circ, inputs={'alpha': 0.1, 'beta':0.2})

Specify shots

The shots argument refers to the number of desired measurement shots. Simulators such as SV1
support two simulation modes.

• For shots = 0, the simulator performs an exact simulation, returning the true values for all result
types. (Not available on TN1.)

• For non-zero values of shots, the simulator samples from the output distribution to emulate the
shot noise of real QPUs. QPU devices only allow shots > 0.

For information about the maximum number of shots per quantum task, please refer to Braket
Quotas.

Poll for results

When executing my_task.result(), the SDK begins polling for a result with the parameters you
define upon quantum task creation:

• poll_timeout_seconds is the number of seconds to poll the quantum task before it times out
when running the quantum task on the on-demand simulator and or QPU devices. The default
value is 432,000 seconds, which is 5 days.

• Note: For QPU devices such as Rigetti and IonQ, we recommend that you allow a few days.
If your polling timeout is too short, results may not be returned within the polling time. For
example, when a QPU is unavailable, a local timeout error is returned.

• poll_interval_seconds is the frequency with which the quantum task is polled. It specifies
how often you call the Braket API to get the status when the quantum task is run on the on-
demand simulator and on QPU devices. The default value is 1 second.

This asynchronous execution facilitates the interaction with QPU devices that are not always
available. For example, a device could be unavailable during a regular maintenance window.

The returned result contains a range of metadata associated with the quantum task. You can check
the measurement result with the following commands:

print('Measurement results:\n',result.measurements)

Example quantum tasks on Amazon Braket 82

Amazon Braket Developer Guide

print('Counts for collapsed states:\n',result.measurement_counts)
print('Probabilities for collapsed states:\n',result.measurement_probabilities)

Measurement results:
 [[1 0 1]
 [0 0 0]
 [1 0 1]
 ...
 [0 0 0]
 [0 0 0]
 [0 0 0]]
Counts for collapsed states:
 Counter({'000': 761, '101': 226, '010': 10, '111': 3})
Probabilities for collapsed states:
 {'101': 0.226, '000': 0.761, '111': 0.003, '010': 0.01}

View the example results

Because you’ve also specified the ResultType, you can view the returned results. The result types
appear in the order in which they were added to the circuit.

print('Result types include:\n', result.result_types)
print('Variance=',result.values[0])
print('Probability=',result.values[1])

you can plot the result and do some analysis
import matplotlib.pyplot as plt
plt.bar(result.measurement_counts.keys(), result.measurement_counts.values());
plt.xlabel('bitstrings');
plt.ylabel('counts');

Result types include:
 [ResultTypeValue(type={'observable': ['z'], 'targets': [0], 'type': 'variance'},
 value=0.7062359999999999), ResultTypeValue(type={'targets': [0, 2], 'type':
 'probability'}, value=array([0.771, 0. , 0. , 0.229]))]
Variance= 0.7062359999999999
Probability= [0.771 0. 0. 0.229]

Example quantum tasks on Amazon Braket 83

Amazon Braket Developer Guide

Submitting quantum tasks to a QPU

Amazon Braket allows you to run a quantum circuit on a QPU device. The following example shows
how to submit a quantum task to Rigetti or IonQ devices.

Choose the Rigetti Aspen-M-3 device, then look at the associated connectivity graph

import the QPU module
from braket.aws import AwsDevice
choose the Rigetti device
device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3")

take a look at the device connectivity graph
device.properties.dict()['paradigm']['connectivity']

{'fullyConnected': False,
 'connectivityGraph': {'0': ['1', '7'],
 '1': ['0', '16'],
 '2': ['3', '15'],
 '3': ['2', '4'],
 '4': ['3', '5'],
 '5': ['4', '6'],

Submitting quantum tasks to a QPU 84

Amazon Braket Developer Guide

 '6': ['5', '7'],
 '7': ['0', '6'],
 '11': ['12', '26'],
 '12': ['13', '11'],
 '13': ['12', '14'],
 '14': ['13', '15'],
 '15': ['2', '14', '16'],
 '16': ['1', '15', '17'],
 '17': ['16'],
 '20': ['21', '27'],
 '21': ['20', '36'],
 '22': ['23', '35'],
 '23': ['22', '24'],
 '24': ['23', '25'],
 '25': ['24', '26'],
 '26': ['11', '25', '27'],
 '27': ['20', '26'],
 '30': ['31', '37'],
 '31': ['30', '32'],
 '32': ['31', '33'],
 '33': ['32', '34'],
 '34': ['33', '35'],
 '35': ['22', '34', '36'],
 '36': ['21', '35', '37'],
 '37': ['30', '36']}}

The preceding dictionary connectivityGraph contains information about the connectivity of the
current Rigetti device.

Choose the IonQ Harmony device

For the IonQ Harmony device, the connectivityGraph is empty, as shown in the
following example, because the device offers all-to-all connectivity. Therefore, a detailed
connectivityGraph is not needed.

or choose the IonQ Harmony device
device = AwsDevice("arn:aws:braket:us-east-1::device/qpu/ionq/Harmony")

take a look at the device connectivity graph
device.properties.dict()['paradigm']['connectivity']

{'fullyConnected': True, 'connectivityGraph': {}}

Submitting quantum tasks to a QPU 85

Amazon Braket Developer Guide

As shown in the following example, you have the option to adjust the shots (default=1000), the
poll_timeout_seconds (default = 432000 = 5 days), the poll_interval_seconds (default
= 1), and the location of the S3 bucket (s3_location) where your results will be stored if you
choose to specify a location other than the default bucket.

my_task = device.run(circ, s3_location = 'amazon-braket-my-folder', shots=100,
 poll_timeout_seconds = 100, poll_interval_seconds = 10)

The IonQ and Rigetti devices compile the provided circuit into their respective native gate sets
automatically, and they map the abstract qubit indices to physical qubits on the respective QPU.

Note

QPU devices have limited capacity. You can expect longer wait times when capacity is
reached.

Amazon Braket can run QPU quantum tasks within certain availability windows, but you can still
submit quantum tasks any time (24/7) because all corresponding data and metadata are stored
reliably in the appropriate S3 bucket. As shown in the next section, you can recover your quantum
task using AwsQuantumTask and your unique quantum task ID.

Running a quantum task with the local simulator

You can send quantum tasks directly to a local simulator for rapid prototyping and testing. This
simulator runs in your local environment, so you do not need to specify an Amazon S3 location.
The results are computed directly in your session. To run a quantum task on the local simulator,
you must only specify the shots parameter.

Note

The execution speed and maximum number of qubits the local simulator can process
depends on the Amazon Braket notebook instance type, or on your local hardware
specifications.

The following commands are all identical and instantiate the state vector (noise free) local
simulator.

Running a quantum task with the local simulator 86

Amazon Braket Developer Guide

import the LocalSimulator module
from braket.devices import LocalSimulator
the following are identical commands
device = LocalSimulator()
device = LocalSimulator("default")
device = LocalSimulator(backend="default")
device = LocalSimulator(backend="braket_sv")

Then run a quantum task with the following.

my_task = device.run(circ, shots=1000)

To instantiate the local density matrix (noise) simulator customers change the backend as follows.

import the LocalSimulator module
from braket.devices import LocalSimulator
device = LocalSimulator(backend="braket_dm")

Measuring specific qubits on the local simulator

The local state vector simulator and local density matrix simulator support running circuits where a
subset of the circuit's qubits can be measured, which is often called partial measurement.

For example, in the following code you can create a two-qubit circuit and only measure the first
qubit by adding a measure instruction with the target qubits to the end of the circuit.

Import the LocalSimulator module
from braket.devices import LocalSimulator

Use the local simulator device
device = LocalSimulator()

Define a bell circuit and only measure
circuit = Circuit().h(0).cnot(0, 1).measure(0)

Run the circuit
task = device.run(circuit, shots=10)

Get the results
result = task.result()

Running a quantum task with the local simulator 87

Amazon Braket Developer Guide

Print the measurement counts for qubit 0
print(result.measurement_counts)

Quantum task batching

Quantum task batching is available on every Amazon Braket device, except the local simulator.
Batching is especially useful for quantum tasks you run on the on-demand simulators (TN1 or SV1)
because they can process multiple quantum tasks in parallel. To help you set up various quantum
tasks, Amazon Braket provides example notebooks.

Batching allows you to launch quantum tasks in parallel. For example, if you wish to make
a calculation that requires 10 quantum tasks and the circuits in those quantum tasks are
independent of each other, it is a good idea to use batching. That way, you don’t have to wait for
one quantum task to be complete before another task begins.

The following example shows how to run a batch of quantum tasks:

circuits = [bell for _ in range(5)]
batch = device.run_batch(circuits, s3_folder, shots=100)
print(batch.results()[0].measurement_counts) # The result of the first quantum task in
 the batch

For more information, see the Amazon Braket examples on GitHub or Quantum task batching,
which has more specific information about batching.

About quantum task batching and costs

A few caveats to keep in mind regarding quantum task batching and billing costs:

• By default, quantum task batching retries all time out or fail quantum tasks 3 times.

• A batch of long running quantum tasks, such as 34 qubits for SV1, can incur large costs. Be
sure to double check the run_batch assignment values carefully before you start a batch of
quantum tasks. We do not recommend using TN1 with run_batch.

• TN1 can incur costs for failed rehearsal phase tasks (see the TN1 description for more
information). Automatic retries can add to the cost and so we recommend setting the number of
'max_retries' on batching to 0 when using TN1 (see Quantum Task Batching, Line 186).

Quantum task batching 88

https://github.com/aws/amazon-braket-examples
https://github.com/aws/amazon-braket-examples
https://github.com/aws/amazon-braket-sdk-python/blob/main/src/braket/aws/aws_quantum_task_batch.py
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#braket-simulator-tn1
https://github.com/aws/amazon-braket-sdk-python/blob/4c7c3b28e5a17b8f0cddf94377b7734fcbe2ebfc/src/braket/aws/aws_quantum_task_batch.py#L186

Amazon Braket Developer Guide

Quantum task batching and PennyLane

Take advantage of batching when you’re using PennyLane on Amazon Braket by setting parallel
= True when you instantiate an Amazon Braket device, as shown in the following example.

device = qml.device("braket.aws.qubit",device_arn="arn:aws:braket:::device/quantum-
simulator/amazon/sv1",wires=wires,s3_destination_folder=s3_folder,parallel=True,)

For more information about batching with PennyLane, see Parallelized optimization of quantum
circuits.

Task batching and parametrized circuits

When submitting a quantum task batch that contains parametrized circuits, you can either
provide an inputs dictionary, which is used for all quantum tasks in the batch, or a list of
input dictionaries, in which case the i-th dictionary is paired with the i-th task, as shown in the
following example.

from braket.circuits import Circuit, FreeParameter, Observable
from braket.aws import AwsQuantumTaskBatch

create the free parameters
alpha = FreeParameter('alpha')
beta = FreeParameter('beta')

create two circuits
circ_a = Circuit().rx(0, alpha).ry(1, alpha).cnot(0,2).xx(0, 2, beta)
circ_a.variance(observable=Observable.Z(), target=0)

circ_b = Circuit().rx(0, alpha).rz(1, alpha).cnot(0,2).zz(0, 2, beta)
circ_b.expectation(observable=Observable.Z(), target=2)

use the same inputs for both circuits in one batch

tasks = device.run_batch([circ_a, circ_b], inputs={'alpha': 0.1, 'beta':0.2})

or provide each task its own set of inputs

inputs_list = [{'alpha': 0.3,'beta':0.1}, {'alpha': 0.1,'beta':0.4}]

tasks = device.run_batch([circ_a, circ_b], inputs=inputs_list)

Quantum task batching 89

https://github.com/aws/amazon-braket-examples/blob/main/examples/pennylane/1_Parallelized_optimization_of_quantum_circuits/1_Parallelized_optimization_of_quantum_circuits.ipynb
https://github.com/aws/amazon-braket-examples/blob/main/examples/pennylane/1_Parallelized_optimization_of_quantum_circuits/1_Parallelized_optimization_of_quantum_circuits.ipynb

Amazon Braket Developer Guide

You can also prepare a list of input dictionaries for a single parametric circuit and submit them as a
quantum task batch. If there is N input dictionaries in the list, the batch contains N quantum task.
The i-th quantum task corresponds to the circuit executed with i-th input dictionary.

from braket.circuits import Circuit, FreeParameter

create a parametric circuit
circ = Circuit().rx(0, FreeParameter('alpha'))

provide a list of inputs to execute with the circuit
inputs_list = [{'alpha': 0.1}, {'alpha': 0.2}, {'alpha': 0.3}]

tasks = device.run_batch(circ, inputs=inputs_list)

Set up SNS notifications (optional)

You can set up notifications through the Amazon Simple Notification Service (SNS) so that you
receive an alert when your Amazon Braket quantum task is complete. Active notifications are useful
if you expect a long wait time; for example, when you submit a large quantum task or when you
submit a quantum task outside of a device’s availability window. If you do not want to wait for the
quantum task to complete, you can set up an SNS notification.

An Amazon Braket notebook walks you through the setup steps. For more information, see
the Amazon Braket examples on GitHub and, specifically, the example notebook for setting up
notifications.

Inspecting compiled circuits

When a circuit runs on a hardware device, it must be compiled in an acceptable format such as
transpiling the circuit down to the native gates that are supported by the QPU. Inspecting the
actual compiled output can be very useful for debugging purposes. You can view this circuit for
both Rigetti and IQM devices using the code below.

task = AwsQuantumTask(arn=task_id, aws_session=session)
after task finished
task_result = task.result()
compiled_circuit = task_result.get_compiled_circuit()

Set up SNS notifications (optional) 90

https://github.com/aws/amazon-braket-examples
https://github.com/aws/amazon-braket-examples/tree/main/examples/braket_features
https://github.com/aws/amazon-braket-examples/tree/main/examples/braket_features

Amazon Braket Developer Guide

Note

Today you cannot view your compiled circuit for IonQ devices.

Run your circuits with OpenQASM 3.0

Amazon Braket now supports OpenQASM 3.0 for gate-based quantum devices and simulators. This
user guide provides information about the subset of OpenQASM 3.0 supported by Braket. Braket
customers now have the choice of submitting Braket circuits with the SDK or by directly providing
OpenQASM 3.0 strings to all gate-based devices with the Amazon Braket API and the Amazon
Braket Python SDK.

The topics in this guide walk you through various examples of how to complete the following
quantum tasks.

• Create and submit OpenQASM quantum tasks on different Braket devices

• Access the supported operations and result types

• Simulate noise with OpenQASM

• Use verbatim compilation with OpenQASM

• Troubleshoot OpenQASM issues

This guide also provides an introduction to certain hardware-specific features that can be
implemented with OpenQASM 3.0 on Braket and links to further resources.

In this section:

• What is OpenQASM 3.0?

• When to use OpenQASM 3.0

• How OpenQASM 3.0 works

• Prerequisites

• What OpenQASM features does Braket support?

• Create and submit an example OpenQASM 3.0 quantum task

• Support for OpenQASM on different Braket Devices

• Simulate noise with OpenQASM 3.0

Run your circuits with OpenQASM 3.0 91

https://openqasm.com/
https://docs.aws.amazon.com/braket/latest/APIReference/Welcome.html
https://github.com/aws/amazon-braket-sdk-python
https://github.com/aws/amazon-braket-sdk-python
https://docs.aws.amazon.com/braket/latest/developerguide/braket-troubleshooting-openqasm.html

Amazon Braket Developer Guide

• Qubit rewiring with OpenQASM 3.0

• Verbatim Compilation with OpenQASM 3.0

• The Braket console

• More resources

• Computing gradients with OpenQASM 3.0

• Measuring specific qubits with OpenQASM 3.0

What is OpenQASM 3.0?

The Open Quantum Assembly Language (OpenQASM) is an intermediate representation for
quantum instructions. OpenQASM is an open-source framework and is widely used for the
specification of quantum programs for gate-based devices. With OpenQASM, users can program
the quantum gates and measurement operations that form the building blocks of quantum
computation. The previous version of OpenQASM (2.0) was used by a number of quantum
programming libraries to describe simple programs.

The new version of OpenQASM (3.0) extends the previous version to include more features, such
as pulse-level control, gate timing, and classical control flow to bridge the gap between end-user
interface and hardware description language. Details and specification on the current version 3.0
are available on the GitHub OpenQASM 3.x Live Specification. OpenQASM’s future development
is governed by the OpenQASM 3.0 Technical Steering Committee, of which AWS is a member
alongside IBM, Microsoft, and the University of Innsbruck.

When to use OpenQASM 3.0

OpenQASM provides an expressive framework to specify quantum programs through low-level
controls that are not architecture specific, making it well suited as a representation across multiple
gate-based devices. The Braket support for OpenQASM furthers its adoption as a consistent
approach to developing gate-based quantum algorithms, reducing the need for users to learn and
maintain libraries in multiple frameworks.

If you have existing libraries of programs in OpenQASM 3.0, you can adapt them for use with
Braket rather than completely rewriting these circuits. Researchers and developers should also
benefit from an increasing number of available third-party libraries with support for algorithm
development in OpenQASM.

What is OpenQASM 3.0? 92

https://en.wikipedia.org/wiki/Intermediate_representation
https://github.com/openqasm/openqasm
https://aws.amazon.com/blogs/quantum-computing/aws-joins-the-openqasm-3-0-technical-steering-committee/

Amazon Braket Developer Guide

How OpenQASM 3.0 works

Support for OpenQASM 3.0 from Braket provides feature parity with the current Intermediate
Representation. This means that anything you can do today on hardware devices and on-demand
simulators with Braket, you can do with OpenQASM using the Braket API. You can run OpenQASM
3.0 programs by directly supplying OpenQASM strings to all gate-based devices in a manner that
is similar to how circuits are currently supplied to devices on Braket. Braket users can also integrate
third-party libraries that support OpenQASM 3.0. The rest of this guide details how to develop
OpenQASM representations for use with Braket.

Prerequisites

To use OpenQASM 3.0 on Amazon Braket, you must have version v1.8.0 of the Amazon Braket
Python Schemas and v1.17.0 or higher of the Amazon Braket Python SDK.

If you are a first time user of Amazon Braket, you need to enable Amazon Braket. For instructions,
see Enable Amazon Braket.

What OpenQASM features does Braket support?

The following section lists the OpenQASM 3.0 data types, statements, and pragma instructions
supported by Braket.

In this section:

• Supported OpenQASM data types

• Supported OpenQASM statements

• Braket OpenQASM pragmas

• Advanced feature support for OpenQASM on the Local Simulator

• Supported operations and grammar with OpenPulse

Supported OpenQASM data types

The following OpenQASM data types are supported by Amazon Braket.

• Non-negative integers are used for (virtual and physical) qubit indices:

• cnot q[0], q[1];

How OpenQASM 3.0 works 93

https://github.com/aws/amazon-braket-schemas-python
https://github.com/aws/amazon-braket-schemas-python
https://github.com/aws/amazon-braket-sdk-python
https://docs.aws.amazon.com/braket/latest/developerguide/braket-enable-overview.html

Amazon Braket Developer Guide

• h $0;

• Floating-point numbers or constants may be used for gate rotation angles:

• rx(-0.314) $0;

• rx(pi/4) $0;

Note

pi is a built-in constant in OpenQASM and cannot be used as a parameter name.

• Arrays of complex numbers (with the OpenQASM im notation for imaginary part) are allowed in
result type pragmas for defining general hermitian observables and in unitary pragmas:

• #pragma braket unitary [[0, -1im], [1im, 0]] q[0]

• #pragma braket result expectation hermitian([[0, -1im], [1im, 0]]) q[0]

Supported OpenQASM statements

The following OpenQASM statements are supported by Amazon Braket.

• Header: OPENQASM 3;

• Classic bit declarations:

• bit b1; (equivalently, creg b1;)

• bit[10] b2; (equivalently, creg b2[10];)

• Qubit declarations:

• qubit b1; (equivalently, qreg b1;)

• qubit[10] b2; (equivalently, qreg b2[10];)

• Indexing within arrays: q[0]

• Input: input float alpha;

• specification of physical qubits: $0

• Supported gates and operations on a device:

• h $0;

• iswap q[0], q[1];
What OpenQASM features does Braket support? 94

Amazon Braket Developer Guide

Note

A device’s supported gates can be found in the device properties for OpenQASM actions; no
gate definitions are needed to use these gates.

• Verbatim box statements. Currently, we do not support box duration notation. Native gates and
physical qubits are required in verbatim boxes.

#pragma braket verbatim
box{
 rx(0.314) $0;
}

• Measurement and measurement assignment on qubits or a whole qubit register.

• measure $0;

• measure q;

• measure q[0];

• b = measure q;

• measure q # b;

Note

pi is a built-in constant in OpenQASM and cannot be used as a parameter name.

Braket OpenQASM pragmas

The following OpenQASM pragma instructions are supported by Amazon Braket.

• Noise pragmas

• #pragma braket noise bit_flip(0.2) q[0]

• #pragma braket noise phase_flip(0.1) q[0]

• #pragma braket noise pauli_channel

• Verbatim pragmas

What OpenQASM features does Braket support? 95

Amazon Braket Developer Guide

• #pragma braket verbatim

• Result type pragmas

• Basis invariant result types:

• State vector: #pragma braket result state_vector

• Density matrix: #pragma braket result density_matrix

• Gradient computation pragmas:

• Adjoint gradient: #pragma braket result adjoint_gradient expectation(2.2 *
x[0] @ x[1]) all

• Z basis result types:

• Amplitude: #pragma braket result amplitude "01"

• Probability: #pragma braket result probability q[0], q[1]

• Basis rotated result types

• Expectation: #pragma braket result expectation x(q[0]) @ y([q1])

• Variance: #pragma braket result variance hermitian([[0, -1im], [1im,
0]]) $0

• Sample: #pragma braket result sample h($1)

Note

OpenQASM 3.0 is backwards compatible with OpenQASM 2.0, so programs written using
2.0 can run on Braket. However the features of OpenQASM 3.0 supported by Braket do
have some minor syntax differences, such as qreg vs creg and qubit vs bit. There are
also differences in measurement syntax, and these need to be supported with their correct
syntax.

Advanced feature support for OpenQASM on the Local Simulator

The LocalSimulator supports advanced OpenQASM features which are not offered as part of
Braket’s QPU’s or on-demand simulators. The following list of features are only supported in the
LocalSimulator:

• Gate modifiers

• OpenQASM built-in gates

What OpenQASM features does Braket support? 96

Amazon Braket Developer Guide

• Classical variables

• Classical operations

• Custom gates

• Classical control

• QASM files

• Subroutines

For examples of each advanced feature, see this sample notebook. For the full OpenQASM
specification, see the OpenQASM website.

Supported operations and grammar with OpenPulse

Supported OpenPulse Data Types

Cal blocks:

cal {
 ...
}

Defcal blocks:

// 1 qubit
defcal x $0 {
...
}

// 1 qubit w. input parameters as constants
defcal my_rx(pi) $0 {
...
}

// 1 qubit w. input parameters as free parameters
defcal my_rz(angle theta) $0 {
...
}

// 2 qubit (above gate args are also valid)
defcal cz $1, $0 {
...

What OpenQASM features does Braket support? 97

https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Simulating_Advanced_OpenQASM_Programs_with_the_Local_Simulator.ipynb
https://openqasm.com/language/index.html

Amazon Braket Developer Guide

}

Frames:

frame my_frame = newframe(port_0, 4.5e9, 0.0);

Waveforms:

// prebuilt
waveform my_waveform_1 = constant(1e-6, 1.0);

//arbitrary
waveform my_waveform_2 = {0.1 + 0.1im, 0.1 + 0.1im, 0.1, 0.1};

Custom Gate Calibration Example:

cal {
 waveform wf1 = constant(1e-6, 0.25);
}

defcal my_x $0 {
 play(wf1, q0_rf_frame);
}

defcal my_cz $1, $0 {
 barrier q0_q1_cz_frame, q0_rf_frame;
 play(q0_q1_cz_frame, wf1);
 delay[300ns] q0_rf_frame
 shift_phase(q0_rf_frame, 4.366186381749424);
 delay[300ns] q0_rf_frame;
 shift_phase(q0_rf_frame.phase, 5.916747563126659);
 barrier q0_q1_cz_frame, q0_rf_frame;
 shift_phase(q0_q1_cz_frame, 2.183093190874712);
}

bit[2] ro;
my_x $0;
my_cz $1,$0;
c[0] = measure $0;

Arbitrary pulse example:

What OpenQASM features does Braket support? 98

Amazon Braket Developer Guide

bit[2] ro;
cal {
 waveform wf1 = {0.1 + 0.1im, 0.1 + 0.1im, 0.1, 0.1};
 barrier q0_drive, q0_q1_cross_resonance;
 play(q0_q1_cross_resonance, wf1);
 delay[300ns] q0_drive;
 shift_phase(q0_drive, 4.366186381749424);
 delay[300dt] q0_drive;
 barrier q0_drive, q0_q1_cross_resonance;
 play(q0_q1_cross_resonance, wf1);
 ro[0] = capture_v0(r0_measure);
 ro[1] = capture_v0(r1_measure);
}

Create and submit an example OpenQASM 3.0 quantum task

You can use the Amazon Braket Python SDK, Boto3, or the AWS CLI to submit OpenQASM 3.0
quantum tasks to an Amazon Braket device.

In this section:

• An example OpenQASM 3.0 program

• Use the Python SDK to create OpenQASM 3.0 quantum tasks

• Use Boto3 to create OpenQASM 3.0 quantum tasks

• Use the AWS CLI to create OpenQASM 3.0 tasks

An example OpenQASM 3.0 program

To create a OpenQASM 3.0 task, you can start with a simple OpenQASM 3.0 program (ghz.qasm)
that prepares a GHZ state as shown in the following example.

// ghz.qasm
// Prepare a GHZ state
OPENQASM 3;

qubit[3] q;
bit[3] c;

h q[0];
cnot q[0], q[1];

Create and submit an example OpenQASM 3.0 quantum task 99

https://en.wikipedia.org/wiki/Greenberger%E2%80%93Horne%E2%80%93Zeilinger_state

Amazon Braket Developer Guide

cnot q[1], q[2];

c = measure q;

Use the Python SDK to create OpenQASM 3.0 quantum tasks

You can use the Amazon Braket Python SDK to submit this program to an Amazon Braket device
with the following code.

with open("ghz.qasm", "r") as ghz:
 ghz_qasm_string = ghz.read()

import the device module
from braket.aws import AwsDevice
choose the Rigetti device
device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3")
from braket.ir.openqasm import Program

program = Program(source=ghz_qasm_string)
my_task = device.run(program)

You can also specify an optional s3 bucket location and number of shots,
 # if you so choose, when running the program
s3_location = ("amazon-braket-my-bucket", "openqasm-tasks")
my_task = device.run(
 program,
 s3_location,
 shots=100,
)

Use Boto3 to create OpenQASM 3.0 quantum tasks

You can also use AWS Python SDK for Braket (Boto3) to create the quantum tasks using
OpenQASM 3.0 strings, as shown in the following example. The following code snippet references
ghz.qasm that prepares a GHZ state as shown above.

import boto3
import json

my_bucket = "amazon-braket-my-bucket"
s3_prefix = "openqasm-tasks"

Create and submit an example OpenQASM 3.0 quantum task 100

https://github.com/aws/amazon-braket-sdk-python
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/braket.html
https://en.wikipedia.org/wiki/Greenberger%E2%80%93Horne%E2%80%93Zeilinger_state

Amazon Braket Developer Guide

with open("ghz.qasm") as f:
 source = f.read()

action = {
 "braketSchemaHeader": {
 "name": "braket.ir.openqasm.program",
 "version": "1"
 },
 "source": source
}
device_parameters = {}
device_arn = "arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3"
shots = 100

braket_client = boto3.client('braket', region_name='us-west-1')
rsp = braket_client.create_quantum_task(
 action=json.dumps(
 action
),
 deviceParameters=json.dumps(
 device_parameters
),
 deviceArn=device_arn,
 shots=shots,
 outputS3Bucket=my_bucket,
 outputS3KeyPrefix=s3_prefix,
)

Use the AWS CLI to create OpenQASM 3.0 tasks

The AWS Command Line Interface (CLI) can also be used to submit OpenQASM 3.0 programs, as
shown in the following example.

aws braket create-quantum-task \
 --region "us-west-1" \
 --device-arn "arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3" \
 --shots 100 \
 --output-s3-bucket "amazon-braket-my-bucket" \
 --output-s3-key-prefix "openqasm-tasks" \
 --action '{
 "braketSchemaHeader": {
 "name": "braket.ir.openqasm.program",
 "version": "1"

Create and submit an example OpenQASM 3.0 quantum task 101

https://aws.amazon.com/cli/

Amazon Braket Developer Guide

 },
 "source": $(cat ghz.qasm)
 }'

Support for OpenQASM on different Braket Devices

For devices supporting OpenQASM 3.0, the action field supports a new action through the
GetDevice response, as shown in the following example for the Rigetti and IonQ devices.

//OpenQASM as available with the Rigetti device capabilities
{
 "braketSchemaHeader": {
 "name": "braket.device_schema.rigetti.rigetti_device_capabilities",
 "version": "1"
 },
 "service": {...},
 "action": {
 "braket.ir.jaqcd.program": {...},
 "braket.ir.openqasm.program": {
 "actionType": "braket.ir.openqasm.program",
 "version": [
 "1"
],
 ….
 }
 }
}

//OpenQASM as available with the IonQ device capabilities
{
 "braketSchemaHeader": {
 "name": "braket.device_schema.ionq.ionq_device_capabilities",
 "version": "1"
 },
 "service": {...},
 "action": {
 "braket.ir.jaqcd.program": {...},
 "braket.ir.openqasm.program": {
 "actionType": "braket.ir.openqasm.program",
 "version": [
 "1"
],
 ….

Support for OpenQASM on different Braket Devices 102

Amazon Braket Developer Guide

 }
 }
}

For devices that support pulse control, the pulse field is displayed in the GetDevice response.
The following example show this pulse field for the Rigetti device.

// Rigetti
{
 "pulse": {
 "braketSchemaHeader": {
 "name": "braket.device_schema.pulse.pulse_device_action_properties",
 "version": "1"
 },
 "supportedQhpTemplateWaveforms": {
 "constant": {
 "functionName": "constant",
 "arguments": [
 {
 "name": "length",
 "type": "float",
 "optional": false
 },
 {
 "name": "iq",
 "type": "complex",
 "optional": false
 }
]
 },
 ...
 },
 "ports": {
 "q0_ff": {
 "portId": "q0_ff",
 "direction": "tx",
 "portType": "ff",
 "dt": 1e-9,
 "centerFrequencies": [
 375000000
]
 },
 ...

Support for OpenQASM on different Braket Devices 103

Amazon Braket Developer Guide

 },
 "supportedFunctions": {
 "shift_phase": {
 "functionName": "shift_phase",
 "arguments": [
 {
 "name": "frame",
 "type": "frame",
 "optional": false
 },
 {
 "name": "phase",
 "type": "float",
 "optional": false
 }
]
 },
 ...
 },
 "frames": {
 "q0_q1_cphase_frame": {
 "frameId": "q0_q1_cphase_frame",
 "portId": "q0_ff",
 "frequency": 462475694.24460185,
 "centerFrequency": 375000000,
 "phase": 0,
 "associatedGate": "cphase",
 "qubitMappings": [
 0,
 1
]
 },
 ...
 },
 "supportsLocalPulseElements": false,
 "supportsDynamicFrames": false,
 "supportsNonNativeGatesWithPulses": false,
 "validationParameters": {
 "MAX_SCALE": 4,
 "MAX_AMPLITUDE": 1,
 "PERMITTED_FREQUENCY_DIFFERENCE": 400000000
 }
 }

Support for OpenQASM on different Braket Devices 104

Amazon Braket Developer Guide

}

The preceding fields detail the following:

Ports:

Describes pre-made external (extern) device ports declared on the QPU in addition to the
associated properties of the given port. All ports listed in this structure are pre-declared as valid
identifiers within the OpenQASM 3.0 program submitted by the user. The additional properties for
a port include:

• Port id (portId)

• The port name declared as an identifier in OpenQASM 3.0.

• Direction (direction)

• The direction of the port. Drive ports transmit pulses (direction “tx”), while measurement ports
receive pulses (direction “rx”).

• Port type (portType)

• The type of action for which this port is responsible (for example, drive, capture, or ff - fast-
flux).

• Dt (dt)

• The time in seconds that represents a single sample time step on the given port.

• Qubit mappings (qubitMappings)

• The qubits associated with the given port.

• Center frequencies (centerFrequencies)

• A list of the associated center frequencies for all pre-declared or user-defined frames on the
port. For more information, refer to Frames.

• QHP Specific Properties (qhpSpecificProperties)

• An optional map detailing existing properties about the port specific to the QHP.

Frames:

Describes pre-made external frames declared on the QPU as well as associated properties about
the frames. All frames listed in this structure are pre-declared as valid identifiers within the
OpenQASM 3.0 program submitted by the user. The additional properties for a frame include:

• Frame Id (frameId)

Support for OpenQASM on different Braket Devices 105

Amazon Braket Developer Guide

• The frame name declared as an identifier in OpenQASM 3.0.

• Port Id (portId)

• The associated hardware port for the frame.

• Frequency (frequency)

• The default initial frequency of the frame.

• Center Frequency (centerFrequency)

• The center of the frequency bandwidth for the frame. Typically, frames may only be adjusted
to a certain bandwidth around the center frequency. As a result, frequency adjustments should
stay within a given delta of the center frequency. You can find the bandwidth value in the
validation parameters.

• Phase (phase)

• The default initial phase of the frame.

• Associated Gate (associatedGate)

• The gates associated with the given frame.

• Qubit Mappings (qubitMappings)

• The qubits associated with the given frame.

• QHP Specific Properties (qhpSpecificProperties)

• An optional map detailing existing properties about the frame specific to the QHP.

SupportsDynamicFrames:

Describes whether or not a frame can be declared in cal or defcal blocks through the OpenPulse
newframe function. If this is false, only frames listed in the frame structure may be used within the
program.

SupportedFunctions:

Describes the OpenPulse functions that are supported for the device in addition to the associated
arguments, argument types, and return types for the given functions. To see examples of using the
OpenPulse functions, see the OpenPulse specification. At this time, Braket supports:

• shift_phase

• Shifts the phase of a frame by a specified value

• set_phase

Support for OpenQASM on different Braket Devices 106

https://openqasm.com/language/openpulse.html

Amazon Braket Developer Guide

• Sets the phase of frame to the specified value

• shift_frequency

• Shifts the frequency of a frame by a specified value

• set_frequency

• Sets the frequency of frame to the specified value

• play

• Schedules a waveform

• capture_v0

• Returns the value on a capture frame to a bit register

SupportedQhpTemplateWaveforms:

Describes the pre-built waveform functions available on the device and the associated arguments
and types. By default, Braket Pulse offers pre-built waveform routines on all devices, which are:

Constant

τ is the length of the waveform and iq is a complex number.

def constant(length, iq)

Gaussian

τ is the length of the waveform, σ is the width of the Gaussian, and A is the amplitude. If setting
ZaE to True, the Gaussian is offset and rescaled such that it is equal to zero at the start and end of
the waveform, and reaches A at maximum.

def gaussian(length, sigma, amplitude=1, zero_at_edges=False)

DRAG Gaussian

Support for OpenQASM on different Braket Devices 107

Amazon Braket Developer Guide

τ is the length of the waveform, σ is the width of the gaussian, β is a free parameter, and A is the
amplitude. If setting ZaE to True, the Derivative Removal by Adiabatic Gate (DRAG) Gaussian
is offset and rescaled such that it is equal to zero at the start and end of the waveform, and the
real part reaches A at maximum. For more information about the DRAG waveform, see the paper
Simple Pulses for Elimination of Leakage in Weakly Nonlinear Qubits.

def drag_gaussian(length, sigma, beta, amplitude=1, zero_at_edges=False)

SupportsLocalPulseElements:

Describes whether or not pulse elements, such as ports, frames, and waveforms may be defined
locally in defcal blocks. If the value is false, elements must be defined in cal blocks.

SupportsNonNativeGatesWithPulses:

Describes whether we can or cannot use non-native gates in combination with pulse programs.
For example, we can’t use a non-native gate like an H gate in a program without first defining the
gate through defcal for the used qubit. You can find the list of native gates nativeGateSet key
under the device capabilities.

ValidationParameters:

Describes pulse element validation boundaries, including:

• Maximum Scale / Maximum Amplitude values for waveforms (arbitrary and pre-built)

• Maximum frequency bandwidth from supplied center frequency in Hz

• Minimum pulse length/duration in seconds

• Maximum pulse length/duration in seconds

Supported Operations, Results and Result Types with OpenQASM

To find out which OpenQASM 3.0 features each device supports, you can refer to the
braket.ir.openqasm.program key in the action field on the device capabilities output. For

Support for OpenQASM on different Braket Devices 108

https://doi.org/10.1103/PhysRevLett.103.110501

Amazon Braket Developer Guide

example, the following are the supported operations and result types available for the Braket State
Vector simulator SV1.

...
 "action": {
 "braket.ir.jaqcd.program": {
 ...
 },
 "braket.ir.openqasm.program": {
 "version": [
 "1.0"
],
 "actionType": "braket.ir.openqasm.program",
 "supportedOperations": [
 "ccnot",
 "cnot",
 "cphaseshift",
 "cphaseshift00",
 "cphaseshift01",
 "cphaseshift10",
 "cswap",
 "cy",
 "cz",
 "h",
 "i",
 "iswap",
 "pswap",
 "phaseshift",
 "rx",
 "ry",
 "rz",
 "s",
 "si",
 "swap",
 "t",
 "ti",
 "v",
 "vi",
 "x",
 "xx",
 "xy",
 "y",
 "yy",

Support for OpenQASM on different Braket Devices 109

Amazon Braket Developer Guide

 "z",
 "zz"
],
 "supportedPragmas": [
 "braket_unitary_matrix"
],
 "forbiddenPragmas": [],
 "maximumQubitArrays": 1,
 "maximumClassicalArrays": 1,
 "forbiddenArrayOperations": [
 "concatenation",
 "negativeIndex",
 "range",
 "rangeWithStep",
 "slicing",
 "selection"
],
 "requiresAllQubitsMeasurement": true,
 "supportsPhysicalQubits": false,
 "requiresContiguousQubitIndices": true,
 "disabledQubitRewiringSupported": false,
 "supportedResultTypes": [
 {
 "name": "Sample",
 "observables": [
 "x",
 "y",
 "z",
 "h",
 "i",
 "hermitian"
],
 "minShots": 1,
 "maxShots": 100000
 },
 {
 "name": "Expectation",
 "observables": [
 "x",
 "y",
 "z",
 "h",
 "i",
 "hermitian"

Support for OpenQASM on different Braket Devices 110

Amazon Braket Developer Guide

],
 "minShots": 0,
 "maxShots": 100000
 },
 {
 "name": "Variance",
 "observables": [
 "x",
 "y",
 "z",
 "h",
 "i",
 "hermitian"
],
 "minShots": 0,
 "maxShots": 100000
 },
 {
 "name": "Probability",
 "minShots": 1,
 "maxShots": 100000
 },
 {
 "name": "Amplitude",
 "minShots": 0,
 "maxShots": 0
 }
 {
 "name": "AdjointGradient",
 "minShots": 0,
 "maxShots": 0
 }
]
 }
 },
...

Simulate noise with OpenQASM 3.0

To simulate noise with OpenQASM3, you use pragma instructions to add noise operators. For
example, to simulate the noisy version of the GHZ program provided previously, you can submit
the following OpenQASM program.

Simulate noise with OpenQASM 3.0 111

Amazon Braket Developer Guide

// ghz.qasm
// Prepare a GHZ state
OPENQASM 3;

qubit[3] q;
bit[3] c;

h q[0];
#pragma braket noise depolarizing(0.75) q[0] cnot q[0], q[1];
#pragma braket noise depolarizing(0.75) q[0]
#pragma braket noise depolarizing(0.75) q[1] cnot q[1], q[2];
#pragma braket noise depolarizing(0.75) q[0]
#pragma braket noise depolarizing(0.75) q[1]

c = measure q;

Specifications for all supported pragma noise operators are provided in the following list.

#pragma braket noise bit_flip(<float in [0,1/2]>) <qubit>
#pragma braket noise phase_flip(<float in [0,1/2]>) <qubit>
#pragma braket noise pauli_channel(<float>, <float>, <float>) <qubit>
#pragma braket noise depolarizing(<float in [0,3/4]>) <qubit>
#pragma braket noise two_qubit_depolarizing(<float in [0,15/16]>) <qubit>, <qubit>
#pragma braket noise two_qubit_dephasing(<float in [0,3/4]>) <qubit>, <qubit>
#pragma braket noise amplitude_damping(<float in [0,1]>) <qubit>
#pragma braket noise generalized_amplitude_damping(<float in [0,1]> <float in [0,1]>)
 <qubit>
#pragma braket noise phase_damping(<float in [0,1]>) <qubit>
#pragma braket noise kraus([[<complex m0_00>,], ...], [[<complex m1_00>,], ...], ...)
 <qubit>[, <qubit>] // maximum of 2 qubits and maximum of 4 matrices for 1 qubit,
 16 for 2

Kraus Operator

In order to generate a Kraus operator, you can iterate through a list of matrices, printing each
element of the matrix as a complex expression.

When using Kraus operators, remember the following:

• The number of qubits must not exceed 2. The current definition in the schemas sets this limit.

• The length of the argument list must be a multiple of 8. This means it must be composed only of
2x2 matrices.

Simulate noise with OpenQASM 3.0 112

https://github.com/aws/amazon-braket-sdk-python/blob/0d28a8fa89263daf5d88bc706e79200d8dc091a8/src/braket/circuits/noises.py#L811-L814)

Amazon Braket Developer Guide

• The total length does not exceed 22*num_qubits matrices. This means 4 matrices for 1 qubit and 16
for 2 qubits.

• All supplied matrices are completely positive trace preserving (CPTP).

• The product of the Kraus operators with their transpose conjugates need to add up to an identity
matrix.

Qubit rewiring with OpenQASM 3.0

Amazon Braket supports the physical qubit notation within OpenQASM on Rigetti devices (to learn
more see this page). When using physical qubits with the naive rewiring strategy, ensure that the
qubits are connected on the selected device. Alternatively, if qubit registers are used instead, the
PARTIAL rewiring strategy is enabled by default on Rigetti devices.

// ghz.qasm
// Prepare a GHZ state
OPENQASM 3;

h $0;
cnot $0, $1;
cnot $1, $2;

measure $0;
measure $1;
measure $2;

Verbatim Compilation with OpenQASM 3.0

When you run a quantum circuit on quantum computers from Rigetti, and IonQ, you can direct the
compiler to run your circuits exactly as defined, without any modifications. This feature is known as
verbatim compilation. With Rigetti devices, you can specify precisely what gets preserved—either
an entire circuit or only specific parts of it. To preserve only specific parts of a circuit, you’ll need to
use native gates within the preserved regions. Currently, IonQ only supports verbatim compilation
for the entire circuit, so every instruction in the circuit needs to be enclosed in a verbatim box.

With OpenQASM, you can specify a verbatim pragma around a box of code that is untouched and
not optimized by the low-level compilation routine of the hardware. The following code example
shows how to use the #pragma braket verbatim.

OPENQASM 3;

Qubit rewiring with OpenQASM 3.0 113

https://github.com/aws/amazon-braket-sdk-python/blob/0d28a8fa89263daf5d88bc706e79200d8dc091a8/src/braket/circuits/quantum_operator_helpers.py#L94-L108
https://github.com/openqasm/openqasm/blob/main/source/language/types.rst
https://pyquil-docs.rigetti.com/en/v2.28.1/compiler.html#naive

Amazon Braket Developer Guide

bit[2] c;

#pragma braket verbatim
box{
 rx(0.314159) $0;
 rz(0.628318) $0, $1;
 cz $0, $1;
}

c[0] = measure $0;
c[1] = measure $1;

For more information on verbatim compilation, see the Verbatim compilation sample notebook.

The Braket console

OpenQASM 3.0 tasks are available and can be managed within the Amazon Braket console. On the
console, you have the same experience submitting quantum tasks in OpenQASM 3.0 as you had
submitting existing quantum tasks.

More resources

OpenQASM is available in all Amazon Braket Regions.

For an example notebook for getting started with OpenQASM on Amazon Braket, see Braket
Tutorials GitHub.

Computing gradients with OpenQASM 3.0

Amazon Braket supports computing gradients on both on-demand and local simulators in
shots=0 (exact) mode using the adjoint differentiation method. You can provide the appropriate
pragma to specify the gradient you want to compute as shown in the following example.

OPENQASM 3.0;
input float alpha;

bit[2] b;
qubit[2] q;

h q[0];
h q[1];

The Braket console 114

https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Verbatim_Compilation.ipynb
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Getting_Started_with_OpenQASM_on_Braket.ipynb
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Getting_Started_with_OpenQASM_on_Braket.ipynb

Amazon Braket Developer Guide

rx(alpha) q[0];
rx(alpha) q[1];
b[0] = measure q[0];
b[1] = measure q[1];

#pragma braket result adjoint_gradient h(q[0]) @ i(q[1]) alpha

Instead of listing all the parameters individually, you can also specify all in the pragma. This
computes the gradient with respect to all input parameters listed. This can be convenient when
the number of parameters is very large. In this case, the pragma will look like the following
example.

#pragma braket result adjoint_gradient h(q[0]) @ i(q[1]) all

All observable types are supported, including individual operators, tensor products, Hermitian
observables, and Sum. The operator you want to use to compute the gradient must be wrapped in
the expectation() encapsulator and the qubits each term acts on must be specified.

Measuring specific qubits with OpenQASM 3.0

The local state vector simulator and local density matrix simulator support submitting OpenQASM
programs where a subset of the circuit's qubits can be measured. This is often called partial
measurement. For example, in the following code you can create a two-qubit circuit and only
measure the first qubit.

partial_measure_qasm = """
OPENQASM 3.0;
bit[1] b;
qubit[2] q;
h q[0];
cnot q[0], q[1];
b[0] = measure q[0];
"""

There are two qubits, q[0] and q[1] but we are only measuring qubit 0 here: b[0] = measure
q[0]. Now, run the following on the local state vector simulator.

from braket.devices import LocalSimulator

local_sim = LocalSimulator()

Measuring specific qubits with OpenQASM 3.0 115

Amazon Braket Developer Guide

partial_measure_local_sim_task =
 local_sim.run(OpenQASMProgram(source=partial_measure_qasm), shots = 10)
partial_measure_local_sim_result = partial_measure_local_sim_task.result()
print(partial_measure_local_sim_result.measurement_counts)
print("Measured qubits: ", partial_measure_local_sim_result.measured_qubits)

You can check whether a device supports partial measurement by inspecting the
requiresAllQubitsMeasurement field in its action properties; if it is False, then partial
measurement is supported.

AwsDevice(Devices.Rigetti.AspenM3).properties.action['braket.ir.openqasm.program'].requiresAllQubitsMeasurement

Here, requiresAllQubitsMeasurement is False, which indicates that not all qubits must be
measured.

Submit an analog program using QuEra’s Aquila

This page provides a comprehensive documentation about the capabilities of the Aquila machine
from QuEra. Details covered here are the following: 1) The parameterized Hamiltonian simulated
by Aquila, 2) AHS program parameters, 3) AHS result content, 4) Aquila capabilities parameter. We
suggest using Ctrl+F text search to find parameters relevant to your questions.

Hamiltonian

The Aquila machine from QuEra simulates the following (time-dependent) Hamiltonian natively:

Note

Access to local detuning is an Experimental capability and is available by request through
Braket Direct.

where

• Hdrive,k(t)=(1/2 Ω(t)e
iϕ(t)

S−,k + 1/2 Ω(t)e
−iϕ(t)

 S+,k) + (−Δglobal(t)nk),

• Ω(t) is the time-dependent, global driving amplitude (aka Rabi frequency), in units of (rad / s)

Submit an analog program using QuEra’s Aquila 116

https://docs.aws.amazon.com/braket/latest/developerguide/braket-experimental-capabilities.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-direct.html

Amazon Braket Developer Guide

• ϕ(t) is the time-dependent, global phase, measured in radians

• S−,k and S+,k are the spin lowering and raising operators of atom k (in the basis |#⟩=|g⟩, |#⟩=|r⟩,
they are S−=|g⟩⟨r|, S+=(S−)†=|r⟩⟨g|)

• Δglobal(t) is the time-dependent, global detuning

• nk is the projection operator on the Rydberg state of atom k (i.e. n=|r⟩⟨r|)

• Hlocal detuning,k(t)=-Δlocal(t)hknk

• Δlocal(t) is the time-dependent factor of the local frequency shift, in units of (rad / s)

• hk is the site-dependent factor, a dimensionless number between 0.0 and 1.0

• Vvdw,k,l=C6/(dk,l)
6nknl,

• C6 is the van der Waals coefficient, in units of (rad / s) * (m)^6

• dk,l is the Euclidean distance between atom k and l, measured in meters.

Users have control over the following parameters via the Braket AHS program schema.

• 2-d atom arrangement (xk and yk coordinates of each atom k, in units of um), which controls the
pairwise atomic distances dk,l with k,l=1,2,…N

• Ω(t), the time-dependent, global Rabi frequency, in units of (rad / s)

• ϕ(t), the time-dependent, global phase, in units of (rad)

• Δglobal(t), the time-dependent, global detuning, in units of (rad / s)

• Δlocal(t), the time-dependent (global) factor of the magnitude of local detuning, in units of (rad /
s)

• hk, the (static) site-dependent factor of the magnitude of local detuning, a dimensionless
number between 0.0 and 1.0

Note

The user cannot control which levels are involved (i.e. S−,S+, n operators are fixed) nor the
strength of the Rydberg-Rydberg interaction coefficient (C6).

Braket AHS program schema

braket.ir.ahs.program_v1.Program object (example)

Braket AHS program schema 117

Amazon Braket Developer Guide

Program(
 braketSchemaHeader=BraketSchemaHeader(
 name='braket.ir.ahs.program',
 version='1'
),
 setup=Setup(
 ahs_register=AtomArrangement(
 sites=[
 [Decimal('0'), Decimal('0')],
 [Decimal('0'), Decimal('4e-6')],
 [Decimal('4e-6'), Decimal('0')],
],
 filling=[1, 1, 1]
)
),
 hamiltonian=Hamiltonian(
 drivingFields=[
 DrivingField(
 amplitude=PhysicalField(
 time_series=TimeSeries(
 values=[Decimal('0'), Decimal('15700000.0'),
 Decimal('15700000.0'), Decimal('0')],
 times=[Decimal('0'), Decimal('0.000001'), Decimal('0.000002'),
 Decimal('0.000003')]
),
 pattern='uniform'
),
 phase=PhysicalField(
 time_series=TimeSeries(
 values=[Decimal('0'), Decimal('0')],
 times=[Decimal('0'), Decimal('0.000001')]
),
 pattern='uniform'
),
 detuning=PhysicalField(
 time_series=TimeSeries(
 values=[Decimal('-54000000.0'), Decimal('54000000.0')],
 times=[Decimal('0'), Decimal('0.000001')]
),
 pattern='uniform'
)
)
],

Braket AHS program schema 118

Amazon Braket Developer Guide

 localDetuning=[
 LocalDetuning(
 magnitude=PhysicalField(
 times_series=TimeSeries(
 values=[Decimal('0'), Decimal('25000000.0'),
 Decimal('25000000.0'), Decimal('0')],
 times=[Decimal('0'), Decimal('0.000001'), Decimal('0.000002'),
 Decimal('0.000003')]
),
 pattern=Pattern([Decimal('0.8'), Decimal('1.0'), Decimal('0.9')])
)
)
]
)
)

JSON (example)

{
 "braketSchemaHeader": {
 "name": "braket.ir.ahs.program",
 "version": "1"
 },
 "setup": {
 "ahs_register": {
 "sites": [
 [0E-7, 0E-7],
 [0E-7, 4E-6],
 [4E-6, 0E-7],
],
 "filling": [1, 1, 1]
 }
 },
 "hamiltonian": {
 "drivingFields": [
 {
 "amplitude": {
 "time_series": {
 "values": [0.0, 15700000.0, 15700000.0, 0.0],
 "times": [0E-9, 0.000001000, 0.000002000, 0.000003000]
 },
 "pattern": "uniform"
 },

Braket AHS program schema 119

Amazon Braket Developer Guide

 "phase": {
 "time_series": {
 "values": [0E-7, 0E-7],
 "times": [0E-9, 0.000001000]
 },
 "pattern": "uniform"
 },
 "detuning": {
 "time_series": {
 "values": [-54000000.0, 54000000.0],
 "times": [0E-9, 0.000001000]
 },
 "pattern": "uniform"
 }
 }
],
 "localDetuning": [
 {
 "magnitude": {
 "time_series": {
 "values": [0.0, 25000000.0, 25000000.0, 0.0],
 "times": [0E-9, 0.000001000, 0.000002000, 0.000003000]
 },
 "pattern": [0.8, 1.0, 0.9]
 }
 }
]
 }
}

Main fields

Program field type description

setup.ahs_register.sites List[List[Decimal]] List of 2-d
coordinates where
the tweezers trap
atoms

setup.ahs_register.filling List[int] Marks atoms that
occupy the trap

Braket AHS program schema 120

Amazon Braket Developer Guide

Program field type description

sites with 1, and
empty sites with 0

hamiltonian.drivingFields[].amplitude.time_se
ries.times

List[Decimal] time points of
driving amplitude,
Omega(t)

hamiltonian.drivingFields[].amplitude.time_se
ries.values

List[Decimal] values of driving
amplitude,
Omega(t)

hamiltonian.drivingFields[].amplitude.pattern str spatial pattern of
driving amplitude,
Omega(t); must be
'uniform'

hamiltonian.drivingFields[].phase.time_series.times List[Decimal] time points of
driving phase,
phi(t)

hamiltonian.drivingFields[].phase.time_series.values List[Decimal] values of driving
phase, phi(t)

hamiltonian.drivingFields[].phase.pattern str spatial pattern
of driving phase,
phi(t); must be
'uniform'

hamiltonian.drivingFields[].detuning.time_ser
ies.times

List[Decimal] time points of
driving detuning,
Delta_global(t)

hamiltonian.drivingFields[].detuning.time_ser
ies.values

List[Decimal] values of driving
detuning,
Delta_global(t)

Braket AHS program schema 121

Amazon Braket Developer Guide

Program field type description

hamiltonian.drivingFields[].detuning.pattern str spatial pattern of
driving detuning,
Delta_global(t);
must be 'uniform'

hamiltonian.localDetuning[].magnitude.time_se
ries.times

List[Decimal] time points of
the time-depe
ndent factor of
the local detuning
magnitude,
Delta_local(t)

hamiltonian.localDetuning[].magnitude.time_se
ries.values

List[Decimal] values of the
time-dependent
factor of the
local detuning
magnitude,
Delta_local(t)

hamiltonian.localDetuning[].magnitude.pattern List[Decimal] site-dependent
factor of the
local detuning
magnitude, h_k
(values correspon
ds to sites in
setup.ahs_register
.sites)

Metadata fields

Program field type description

braketSchemaHeader.name str name of the schema; must be 'braket.i
r.ahs.program'

Braket AHS program schema 122

Amazon Braket Developer Guide

Program field type description

braketSchemaHeader.version str version of the schema

Braket AHS task result schema

braket.tasks.analog_hamiltonian_simulation_quantum_task_result.AnalogHamiltonianSimulationQuantumTaskResult
(example)

AnalogHamiltonianSimulationQuantumTaskResult(
 task_metadata=TaskMetadata(
 braketSchemaHeader=BraketSchemaHeader(
 name='braket.task_result.task_metadata',
 version='1'
),
 id='arn:aws:braket:us-east-1:123456789012:quantum-task/12345678-90ab-
cdef-1234-567890abcdef',
 shots=2,
 deviceId='arn:aws:braket:us-east-1::device/qpu/quera/Aquila',
 deviceParameters=None,
 createdAt='2022-10-25T20:59:10.788Z',
 endedAt='2022-10-25T21:00:58.218Z',
 status='COMPLETED',
 failureReason=None
),
 measurements=[
 ShotResult(
 status=<AnalogHamiltonianSimulationShotStatus.SUCCESS: 'Success'>,

 pre_sequence=array([1, 1, 1, 1]),
 post_sequence=array([0, 1, 1, 1])
),

 ShotResult(
 status=<AnalogHamiltonianSimulationShotStatus.SUCCESS: 'Success'>,

 pre_sequence=array([1, 1, 0, 1]),
 post_sequence=array([1, 0, 0, 0])
)
]
)

Braket AHS task result schema 123

Amazon Braket Developer Guide

JSON (example)

{
 "braketSchemaHeader": {
 "name": "braket.task_result.analog_hamiltonian_simulation_task_result",
 "version": "1"
 },
 "taskMetadata": {
 "braketSchemaHeader": {
 "name": "braket.task_result.task_metadata",
 "version": "1"
 },
 "id": "arn:aws:braket:us-east-1:123456789012:quantum-task/12345678-90ab-
cdef-1234-567890abcdef",
 "shots": 2,
 "deviceId": "arn:aws:braket:us-east-1::device/qpu/quera/Aquila",

 "createdAt": "2022-10-25T20:59:10.788Z",
 "endedAt": "2022-10-25T21:00:58.218Z",
 "status": "COMPLETED"

 },
 "measurements": [
 {
 "shotMetadata": {"shotStatus": "Success"},
 "shotResult": {
 "preSequence": [1, 1, 1, 1],
 "postSequence": [0, 1, 1, 1]
 }
 },
 {
 "shotMetadata": {"shotStatus": "Success"},
 "shotResult": {
 "preSequence": [1, 1, 0, 1],
 "postSequence": [1, 0, 0, 0]
 }
 }
],
 "additionalMetadata": {
 "action": {...}
 "queraMetadata": {
 "braketSchemaHeader": {
 "name": "braket.task_result.quera_metadata",
 "version": "1"

Braket AHS task result schema 124

Amazon Braket Developer Guide

 },
 "numSuccessfulShots": 100
 }
 }
}

Main fields

Task result field type description

measurements[].shotResult.preSequence List[int] Pre-sequence measurement bits
(one for each atomic site) for
each shot: 0 if site is empty, 1 if
site is filled, measured before the
sequences of pulses that run the
quantum evolution

measurements[].shotResult.postSequence List[int] Post-sequence measurement
bits for each shot: 0 if atom is in
Rydberg state or site is empty,
1 if atom is in ground state,
measured at the end of the
sequences of pulses that run the
quantum evolution

Metadata fields

Task result field type description

braketSchemaHeader.name str name of the
schema; must
be 'braket.t
ask_resul
t.analog_
hamiltoni
an_simula
tion_task
_result'

Braket AHS task result schema 125

Amazon Braket Developer Guide

Task result field type description

braketSchemaHeader.version str version of the
schema

taskMetadata.braketSchemaHeader.name str name of the
schema; must
be ‘braket.t
ask_resul
t.task_me
tadata'

taskMetadata.braketSchemaHeader.vers
ion

str version of the
schema

taskMetadata.id str The ID of
the quantum
task. For AWS
quantum
tasks, this is
the quantum
task ARN.

taskMetadata.shots int The number of
shots for the
quantum task

taskMetadata.shots.deviceId str The ID of the
device on
which the
quantum task
ran. For AWS
devices, this
is the device
ARN.

Braket AHS task result schema 126

Amazon Braket Developer Guide

Task result field type description

taskMetadata.shots.createdAt str The timestamp
of creation;
the format
must be in
ISO-8601/
RFC3339
string format
YYYY-MM-D
DTHH:mm:s
s.sssZ. Default
is None.

taskMetadata.shots.endedAt str The timestamp
of when the
quantum
task ended;
the format
must be in
ISO-8601/
RFC3339
string format
YYYY-MM-D
DTHH:mm:s
s.sssZ. Default
is None.

taskMetadata.shots.status str The status of
the quantum
task (CREATED,
QUEUED,
RUNNING,
COMPLETED
, FAILED).
Default is
None.

Braket AHS task result schema 127

Amazon Braket Developer Guide

Task result field type description

taskMetadata.shots.failureReason str The failure
reason of the
quantum task.
Default is
None.

additionalMetadata.action braket.ir.ahs.program_v1.Pr
ogram

(See the
Braket AHS
program
schema
section)

additionalMetadata.action.braketSche
maHeader.queraMetadata.name

str name of the
schema; must
be 'braket.t
ask_resul
t.quera_m
etadata'

additionalMetadata.action.braketSche
maHeader.queraMetadata.version

str version of the
schema

additionalMetadata.action.numSuccess
fulShots

int number of
completel
y successful
shots; must
be equal to
the requested
 number of
shots

Braket AHS task result schema 128

Amazon Braket Developer Guide

Task result field type description

measurements[].shotMetadata.shotStatus int The status
of the shot,
(Success,
Partial success,
Failure); must
be "Success"

QuEra device properties schema

braket.device_schema.quera.quera_device_capabilities_v1.QueraDeviceCapabilities (example)

QueraDeviceCapabilities(
 service=DeviceServiceProperties(
 braketSchemaHeader=BraketSchemaHeader(
 name='braket.device_schema.device_service_properties',
 version='1'
),
 executionWindows=[
 DeviceExecutionWindow(
 executionDay=<ExecutionDay.MONDAY: 'Monday'>,
 windowStartHour=datetime.time(1, 0),
 windowEndHour=datetime.time(23, 59, 59)
),
 DeviceExecutionWindow(
 executionDay=<ExecutionDay.TUESDAY: 'Tuesday'>,
 windowStartHour=datetime.time(0, 0),
 windowEndHour=datetime.time(12, 0)
),
 DeviceExecutionWindow(
 executionDay=<ExecutionDay.WEDNESDAY: 'Wednesday'>,
 windowStartHour=datetime.time(0, 0),
 windowEndHour=datetime.time(12, 0)
),
 DeviceExecutionWindow(
 executionDay=<ExecutionDay.FRIDAY: 'Friday'>,
 windowStartHour=datetime.time(0, 0),
 windowEndHour=datetime.time(23, 59, 59)
),
 DeviceExecutionWindow(

QuEra device properties schema 129

Amazon Braket Developer Guide

 executionDay=<ExecutionDay.SATURDAY: 'Saturday'>,
 windowStartHour=datetime.time(0, 0),
 windowEndHour=datetime.time(23, 59, 59)
),
 DeviceExecutionWindow(
 executionDay=<ExecutionDay.SUNDAY: 'Sunday'>,
 windowStartHour=datetime.time(0, 0),
 windowEndHour=datetime.time(12, 0)
)
],
 shotsRange=(1, 1000),
 deviceCost=DeviceCost(
 price=0.01,
 unit='shot'
),
 deviceDocumentation=
 DeviceDocumentation(
 imageUrl='https://
a.b.cdn.console.awsstatic.com/59534b58c709fc239521ef866db9ea3f1aba73ad3ebcf60c23914ad8c5c5c878/
a6cfc6fca26cf1c2e1c6.png',
 summary='Analog quantum processor based on neutral atom arrays',
 externalDocumentationUrl='https://www.quera.com/aquila'
),
 deviceLocation='Boston, USA',
 updatedAt=datetime.datetime(2024, 1, 22, 12, 0,
 tzinfo=datetime.timezone.utc),
 getTaskPollIntervalMillis=None
),
 action={
 <DeviceActionType.AHS: 'braket.ir.ahs.program'>: DeviceActionProperties(
 version=['1'],
 actionType=<DeviceActionType.AHS: 'braket.ir.ahs.program'>
)
 },
 deviceParameters={},
 braketSchemaHeader=BraketSchemaHeader(
 name='braket.device_schema.quera.quera_device_capabilities',
 version='1'
),
 paradigm=QueraAhsParadigmProperties(
 ...
 # See https://github.com/amazon-braket/amazon-braket-schemas-python/blob/main/
src/braket/device_schema/quera/quera_ahs_paradigm_properties_v1.py
 ...

QuEra device properties schema 130

Amazon Braket Developer Guide

)
)

JSON (example)

{
 "service": {
 "braketSchemaHeader": {
 "name": "braket.device_schema.device_service_properties",
 "version": "1"
 },
 "executionWindows": [
 {
 "executionDay": "Monday",
 "windowStartHour": "01:00:00",
 "windowEndHour": "23:59:59"
 },
 {
 "executionDay": "Tuesday",
 "windowStartHour": "00:00:00",
 "windowEndHour": "12:00:00"
 },
 {
 "executionDay": "Wednesday",
 "windowStartHour": "00:00:00",
 "windowEndHour": "12:00:00"
 },
 {
 "executionDay": "Friday",
 "windowStartHour": "00:00:00",
 "windowEndHour": "23:59:59"
 },
 {
 "executionDay": "Saturday",
 "windowStartHour": "00:00:00",
 "windowEndHour": "23:59:59"
 },
 {
 "executionDay": "Sunday",
 "windowStartHour": "00:00:00",
 "windowEndHour": "12:00:00"
 }
],

QuEra device properties schema 131

Amazon Braket Developer Guide

 "shotsRange": [
 1,
 1000
],
 "deviceCost": {
 "price": 0.01,
 "unit": "shot"
 },
 "deviceDocumentation": {
 "imageUrl": "https://
a.b.cdn.console.awsstatic.com/59534b58c709fc239521ef866db9ea3f1aba73ad3ebcf60c23914ad8c5c5c878/
a6cfc6fca26cf1c2e1c6.png",
 "summary": "Analog quantum processor based on neutral atom arrays",
 "externalDocumentationUrl": "https://www.quera.com/aquila"
 },
 "deviceLocation": "Boston, USA",
 "updatedAt": "2024-01-22T12:00:00+00:00"
 },
 "action": {
 "braket.ir.ahs.program": {
 "version": [
 "1"
],
 "actionType": "braket.ir.ahs.program"
 }
 },
 "deviceParameters": {},
 "braketSchemaHeader": {
 "name": "braket.device_schema.quera.quera_device_capabilities",
 "version": "1"
 },
 "paradigm": {
 ...
 # See Aquila device page > "Calibration" tab > "JSON" page
 ...
 }
}

QuEra device properties schema 132

Amazon Braket Developer Guide

Service properties fields

Service properties field type description

service.executionWindows[].executionDay ExecutionDay Days of the execution
window; must be
'Everyday', 'Weekdays
', 'Weekend', 'Monday',
'Tuesday', 'Wednesda
y', Thursday', 'Friday',
 'Saturday' or 'Sunday'

service.executionWindows[].windowStartHour datetime.time UTC 24-hour format of the
time when the execution
window starts

service.executionWindows[].windowEndHour datetime.time UTC 24-hour format of the
time when the execution
window ends

service.qpu_capabilities.service.shotsRange Tuple[int, int] Minimum and maximum
number of shots for the
device

service.qpu_capabilities.service.deviceCost.p
rice

float Price of the device in
terms of US dollars

service.qpu_capabilities.service.deviceCost.u
nit

str unit for charging the price,
e.g: 'minute', 'hour', 'shot',
'task'

Metadata fields

Metadata field type description

action[].version str version of the AHS
program schema

QuEra device properties schema 133

Amazon Braket Developer Guide

Metadata field type description

action[].actionType ActionType AHS program schema
name; must be
'braket.ir.ahs.pro
gram'

service.braketSchemaHeader.name str name of the schema;
must be 'braket.d
evice_schema.devic
e_service_properties'

service.braketSchemaHeader.version str version of the schema

service.deviceDocumentation.imageUrl str URL for the image of
the device

service.deviceDocumentation.summary str brief description on
the device

service.deviceDocumentation.externalDocumenta
tionUrl

str external documenta
tion URL

service.deviceLocation str geographic location
fo the device

service.updatedAt datetime time when the device
properties were last
updated

Working with Boto3

Boto3 is the AWS SDK for Python. With Boto3, Python developers can create, configure, and
manage AWS services, such as Amazon Braket. Boto3 provides an object-oriented API, as well as
low-level access to Amazon Braket.

Follow the instructions in the Boto3 Quickstart guide to learn how to install and configure Boto3.

Working with Boto3 134

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html

Amazon Braket Developer Guide

Boto3 provides the core functionality that works along with the Amazon Braket Python SDK to
help you configure and run your quantum tasks. Python customers always need to install Boto3,
because that is the core implementation. If you want to make use of additional helper methods,
you also need to install the Amazon Braket SDK.

For example, when you call CreateQuantumTask, the Amazon Braket SDK submits the request to
Boto3, which then calls the AWS API.

In this section:

• Turn on the Amazon Braket Boto3 client

• Configure AWS CLI profiles for Boto3 and the Amazon Braket SDK

Turn on the Amazon Braket Boto3 client

To use Boto3 with Amazon Braket, you must import Boto3 and then define a client that you use to
connect to the Amazon Braket API. In the following example, the Boto3 client is named braket.

Note

For backwards compatibility with older versions of BraketSchemas, OpenQASM information
is omitted from GetDevice API calls. To get this information, the user-agent needs
to present a recent version of the BraketSchemas (1.8.0 or later). The Braket SDK
automatically reports this for you. If you do not see OpenQASM results in the GetDevice
response when using a Braket SDK, you may need to set the AWS_EXECUTION_ENV
environment variable to configure the user-agent. See the code examples provided in the
GetDevice does not return OpenQASM results error topic for how to do this for the AWS
CLI, Boto3, and the Go, Java, and JavaScript/TypeScript SDKs.

import boto3
import botocore

braket = boto3.client("braket",
 config=botocore.client.Config(user_agent_extra="BraketSchemas/1.8.0"))

Now that you have a braket client established, you can make requests and process responses
from the Amazon Braket service. You can get more detail on request and response data in the API
Reference.

Turn on the Amazon Braket Boto3 client 135

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/braket.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/braket.html

Amazon Braket Developer Guide

The following examples show how to work with devices and quantum tasks.

• Search for devices

• Retrieve a device

• Create a quantum task

• Retrieve a quantum task

• Search for quantum tasks

• Cancel quantum task

Search for devices

• search_devices(**kwargs)

Search for devices using the specified filters.

Pass search filters and optional parameters when sending the
request and capture the response
response = braket.search_devices(filters=[{
 'name': 'deviceArn',
 'values': ['arn:aws:braket:::device/quantum-simulator/amazon/sv1']
}], maxResults=10)

print(f"Found {len(response['devices'])} devices")

for i in range(len(response['devices'])):
 device = response['devices'][i]
 print(device['deviceArn'])

Retrieve a device

• get_device(deviceArn)

Retrieve the devices available in Amazon Braket.

Pass the device ARN when sending the request and capture the repsonse
response = braket.get_device(deviceArn='arn:aws:braket:::device/quantum-simulator/
amazon/sv1')

Turn on the Amazon Braket Boto3 client 136

Amazon Braket Developer Guide

print(f"Device {response['deviceName']} is {response['deviceStatus']}")

Create a quantum task

• create_quantum_task(**kwargs)

Create a quantum task.

Create parameters to pass into create_quantum_task()
kwargs = {
 # Create a Bell pair
 'action': '{"braketSchemaHeader": {"name": "braket.ir.jaqcd.program", "version":
 "1"}, "results": [], "basis_rotation_instructions": [], "instructions": [{"type": "h",
 "target": 0}, {"type": "cnot", "control": 0, "target": 1}]}',
 # Specify the SV1 Device ARN
 'deviceArn': 'arn:aws:braket:::device/quantum-simulator/amazon/sv1',
 # Specify 2 qubits for the Bell pair
 'deviceParameters': '{"braketSchemaHeader": {"name":
 "braket.device_schema.simulators.gate_model_simulator_device_parameters",
 "version": "1"}, "paradigmParameters": {"braketSchemaHeader": {"name":
 "braket.device_schema.gate_model_parameters", "version": "1"}, "qubitCount": 2}}',
 # Specify where results should be placed when the quantum task completes.
 # You must ensure the S3 Bucket exists before calling create_quantum_task()
 'outputS3Bucket': 'amazon-braket-examples',
 'outputS3KeyPrefix': 'boto-examples',
 # Specify number of shots for the quantum task
 'shots': 100
}

Send the request and capture the response
response = braket.create_quantum_task(**kwargs)

print(f"Quantum task {response['quantumTaskArn']} created")

Retrieve a quantum task

• get_quantum_task(quantumTaskArn)

Retrieve the specified quantum task.

Pass the quantum task ARN when sending the request and capture the response

Turn on the Amazon Braket Boto3 client 137

Amazon Braket Developer Guide

response = braket.get_quantum_task(quantumTaskArn='arn:aws:braket:us-
west-1:123456789012:quantum-task/ce78c429-cef5-45f2-88da-123456789012')

print(response['status'])

Search for quantum tasks

• search_quantum_tasks(**kwargs)

Search for quantum tasks that match the specified filter values.

Pass search filters and optional parameters when sending the
request and capture the response
response = braket.search_quantum_tasks(filters=[{
 'name': 'deviceArn',
 'operator': 'EQUAL',
 'values': ['arn:aws:braket:::device/quantum-simulator/amazon/sv1']
}], maxResults=25)

print(f"Found {len(response['quantumTasks'])} quantum tasks")

for n in range(len(response['quantumTasks'])):
 task = response['quantumTasks'][n]
 print(f"Quantum task {task['quantumTaskArn']} for {task['deviceArn']} is
 {task['status']}")

Cancel quantum task

• cancel_quantum_task(quantumTaskArn)

Cancel the specified quantum task.

Pass the quantum task ARN when sending the request and capture the response
response = braket.cancel_quantum_task(quantumTaskArn='arn:aws:braket:us-
west-1:123456789012:quantum-task/ce78c429-cef5-45f2-88da-123456789012')

print(f"Quantum task {response['quantumTaskArn']} is {response['cancellationStatus']}")

Turn on the Amazon Braket Boto3 client 138

Amazon Braket Developer Guide

Configure AWS CLI profiles for Boto3 and the Amazon Braket SDK

The Amazon Braket SDK relies upon the default AWS CLI credentials, unless you explicitly specify
otherwise. We recommend that you keep the default when you run on a managed Amazon Braket
notebook because you must provide an IAM role that has permissions to launch the notebook
instance.

Optionally, if you run your code locally (on an Amazon EC2 instance, for example), you can
establish named AWS CLI profiles. You can give each profile a different permission set, rather than
regularly overwriting the default profile.

This section provides a brief explanation of how to configure such a CLI profile and how to
incorporate that profile into Amazon Braket so that API calls are made with the permissions from
that profile.

In this section:

• Step 1: Configure a local AWS CLIprofile

• Step 2: Establish a Boto3 session object

• Step 3: Incorporate the Boto3 session into the Braket AwsSession

Step 1: Configure a local AWS CLIprofile

It is beyond the scope of this document to explain how to create a user and how to configure a
non-default profile. For information on these topics, see:

• Getting started

• Configuring the AWS CLI to use AWS IAM Identity Center

To use Amazon Braket, you must provide this user — and the associated CLI profile— with the
necessary Braket permissions. For instance, you can attach the AmazonBraketFullAccess policy.

Step 2: Establish a Boto3 session object

In order to establish a Boto3 session object, utilize the following code example.

from boto3 import Session

Insert CLI profile name here

Configure AWS CLI profiles for Boto3 and the Amazon Braket SDK 139

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html

Amazon Braket Developer Guide

boto_sess = Session(profile_name=`profile`)

Note

If the expected API calls have Region-based restrictions that are not aligned with your
profile default Region, you can specify a Region for the Boto3 session as shown in the
following example.

Insert CLI profile name _and_ region
boto_sess = Session(profile_name=`profile`, region_name=`region`)

For the argument designated as region, substitute a value that corresponds to one of the AWS
Regions in which Amazon Braket is available such as us-east-1, us-west-1, and so forth.

Step 3: Incorporate the Boto3 session into the Braket AwsSession

The following example shows how to initialize a Boto3 Braket session and instantiate a device in
that session.

from braket.aws import AwsSession, AwsDevice

Initialize Braket session with Boto3 Session credentials
aws_session = AwsSession(boto_session=boto_sess)

Instantiate any Braket QPU device with the previously initiated AwsSession
sim_arn = 'arn:aws:braket:::device/quantum-simulator/amazon/sv1'
device = AwsDevice(sim_arn, aws_session=aws_session)

After this setup is complete, you can submit quantum tasks to that instantiated AwsDevice object
(by calling the device.run(…) command for example). All API calls made by that device can
leverage the IAM credentials associated with the CLI profile that you previously designated as
profile.

Configure AWS CLI profiles for Boto3 and the Amazon Braket SDK 140

Amazon Braket Developer Guide

Pulse control on Amazon Braket

This section explains how to use pulse control on various QPUs in Amazon Braket.

In this section:

• Braket Pulse

• Roles of frames and ports

• Hello Pulse

• Accessing native gates using pulses

Braket Pulse

Pulses are the analog signals that control the qubits in a quantum computer. With certain devices
on Amazon Braket, you can access the pulse control feature to submit circuits using pulses. You can
access pulse control through the Braket SDK, using OpenQASM 3.0, or directly through the Braket
APIs. First, let’s introduce some key concepts for pulse control in Braket.

Frames

A frame is a software abstraction that acts as both a clock within the quantum program and a
phase. The clock time is incremented on each usage and a stateful carrier signal that is defined
by a frequency. When transmitting signals to the qubit, a frame determines the qubit’s carrier
frequency, phase offset, and the time at which the waveform envelope is emitted. In Braket Pulse,
constructing frames depends on the device, frequency, and phase. Depending on the device, you
can either choose a predefined frame or instantiate new frames by providing a port.

from braket.pulse import Frame
device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3")
drive_frame = device.frames["q0_rf_frame"]

device = AwsDevice("arn:aws:braket:eu-north-1::device/qpu/iqm/Garnet")
readout_frame = Frame(name="r0_measure", port=port0, frequency=5e9, phase=0)

Ports

A port is a software abstraction representing any input/output hardware component controlling
qubits. It helps hardware vendors provide an interface with which users can interact to manipulate

Braket Pulse 141

Amazon Braket Developer Guide

and observe qubits. Ports are characterized by a single string that represents the name of the
connector. This string also exposes a minimum time increment that specifies how finely we can
define the waveforms.

from braket.pulse import Port
Port0 = Port("channel_0", dt=1e-9)

Waveforms

A waveform is a time-dependent envelope that we can use to emit signals on an output port or
capture signals through an input port. You can specify your waveforms directly either through a
list of complex numbers or by using a waveform template to generate a list from the hardware
provider.

from braket.pulse import ArbitraryWaveform, ConstantWaveform
cst_wfm = ConstantWaveform(length=1e-7, iq=0.1)
arb_wf = ArbitraryWaveform(amplitudes=np.linspace(0, 100))

Braket Pulse provides a standard library of waveforms, including a constant waveform, a Gaussian
waveform, and a Derivative Removal by Adiabatic Gate (DRAG) waveform. You can retrieve the
waveform data through the sample function to draw the shape of the waveform as shown in the
following example.

gaussian_waveform = GaussianWaveform(1e-7, 25e-9, 0.1)
x = np.arange(0, gaussian_waveform.length, drive_frame.port.dt)
plt.plot(x, gaussian_waveform.sample(drive_frame.port.dt))

Waveforms 142

Amazon Braket Developer Guide

The preceding image depicts the Gaussian waveforms created from GaussianWaveform. We
chose a pulse length of 100 ns, a width of 25 ns, and an amplitude of 0.1 (arbitrary units). The
waveforms are centered in the pulse window. GaussianWaveform accepts a boolean argument
zero_at_edges (ZaE in the legend). When set to True, this argument offsets the Gaussian
waveform such that the points at t=0 and t=length are at zero and rescales its amplitude such
that the maximum value corresponds to the amplitude argument.

Now that we have covered the basic concepts for pulse-level access, next we’ll see how to construct
a circuit using gates and pulses.

Roles of frames and ports

This section describes the predefined frames and ports available for each device. We will also
briefly discuss the mechanisms involved when pulses are played on certain frames.

Rigetti

Frames

Rigetti devices support predefined frames that have their frequency and phase calibrated to be on
resonance with the associated qubit. The naming convention is q{i}[_q{j}]_{role}_frame

Roles of frames and ports 143

Amazon Braket Developer Guide

where {i} refers to the first qubit number, {j} refers to the second qubit number in case the
frame serves to activate a two-qubit interaction, and {role} refers to the role of the frame. The
roles are as follows:

• rf is the frame to drive the 0-1 transition of the qubit. Pulses are transmitted as microwave
transient signals of frequency and phase previously provided through the set and shift
functions. The time-dependent amplitude of the signal is given by the waveform played on the
frame. The frame plugs a single-qubit, off-diagonal interaction. For more information, see Krantz
et al. and Rahamim et al..

• rf_f12 is similar to rf and its parameters target the 1-2 transition.

• ro_rx is used to achieve dispersive readout of the qubit through a coupled coplanar waveguide.
The frequency, phase, and full set of parameters for the readout waveform are precalibrated. It
is currently used via the capture_v0, which does not require any argument besides the frame
identifier.

• ro_tx is for transmitting signals from the resonator. It is currently unused.

• cz is a frame calibrated to enable the two-qubit cz gate. As with all the frames associated with
an ff port, it turns on an entangling interaction through the flux line by modulating the tunable
qubit of the pair on resonance with its neighbor. For more information about the entangling
mechanism, see Reagor et al., Caldwell et al., and Didier et al..

• cphase is a frame calibrated to enable the two-qubit cphaseshift gate and is linked to an
ff port. For more information about the entangling mechanism, see the description for the cz
frame.

• xy is a frame calibrated to enable the two-qubit XY(θ) gates and is linked to an ff port. For more
information about the entangling mechanism and how to achieve XY gates, see the description
for the cz frame and Abrams et al..

As frames based on the ff port shift the frequency of the tunable qubit, all the other driving
frames related to the qubit will be dephased by an amount that is related to the amplitude and
the duration of the frequency shift. Consequently, you must compensate for this effect by adding a
corresponding phase shift to the frames of the neighboring qubits.

Ports

The Rigetti devices provide a list of ports that you can inspect through the device capabilities. Port
names follow the convention q{i}_{type} where {i} refers to the qubit number and {type}

Rigetti 144

https://doi.org/10.1063/1.5089550
https://doi.org/10.1063/1.5089550
http://dx.doi.org/10.1063/1.4984299
https://doi.org/10.1126/sciadv.aao3603
https://doi.org/10.1103/PhysRevApplied.10.034050
https://doi.org/10.1103/PhysRevA.97.022330
https://doi.org/10.1038/s41928-020-00498-1

Amazon Braket Developer Guide

refers to the type of the port. Note that not all of the qubits have a complete set of ports. The
types of ports are as follows:

• rf represents the main interface to drive the single-qubit transition. It is associated with the rf
and rf_f12 frames. It is capacitively coupled to the qubit, allowing microwave driving in the
gigahertz range.

• ro_tx serves to transmit signals to the readout resonator capacitively coupled to the qubit.
Readout signal delivery is multiplexed eight-fold by octagon.

• ro_rx serves to receive signals from the readout resonator coupled to the qubit.

• ff represents the fast-flux line inductively coupled to the qubit. We can use this to tune the
frequency of the transmon. Only qubits designed to be highly tunable have an ff port. This port
serves to activate qubit-qubit interaction as there is a static capacitive coupling between each
pair of neighboring transmons.

For more information about the architecture, see Valery et al..

Hello Pulse

Here, you will learn how to construct a simple Bell pair directly with pulses, and execute this pulse
program on the Rigetti device. A Bell pair is a two-qubit circuit consisting of a Hadamard gate on
the first qubit followed by a cnot gate between the first and second qubits. Creating entangled
states with pulses requires specific mechanisms that are dependent on the hardware type and
device architecture. We will not use a native mechanism to create the cnot gate. Instead, we’ll use
specific waveforms and frames that enable the cz gate natively. In this example, we will create a
Hadamard gate using the single-qubit native gates rx and rz and express the cz gate using pulses.

First, let’s import the necessary libraries. In addition to the Circuit class, you will now also need
to import the PulseSequence class.

from braket.aws import AwsDevice
from braket.pulse import PulseSequence, ArbitraryWaveform, GaussianWaveform

from braket.circuits import Circuit
import braket.circuits.circuit as circuit

Hello Pulse 145

https://doi.org/10.1103/PRXQuantum.3.020337

Amazon Braket Developer Guide

Next, instantiate a new Braket device using the Amazon Resource Name (ARN) of the Rigetti Aspen-
M-3 device. Refer to the Devices page on the Amazon Braket console to view the layout of the
Rigetti Aspen-M-3 device.

a=10 #specifies the control qubit
b=113 #specifies the target qubit
device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3")

As the Hadamard gate is not a native gate of the Rigetti device, it cannot be used in combination
with pulses. You therefore need to decompose it into a sequence of the rx and rz native gates.

import numpy as np
import matplotlib.pyplot as plt
@circuit.subroutine(register=True)
def rigetti_native_h(q0):
 return (
 Circuit()
 .rz(q0, np.pi)
 .rx(q0, np.pi/2)
 .rz(q0, np.pi/2)
 .rx(q0, -np.pi/2)
)

For the cz gate, we will use an arbitrary waveform with parameters (amplitude, rise/fall time,
and duration) that have been predetermined by the hardware provider during a calibration stage.
This waveform will be applied on the q10_q113_cz_frame. For a more recent version of the
arbitrary waveform used here, see QCS, on the Rigetti website. You may be required to create a
QCS account.

a_b_cz_wfm = ArbitraryWaveform([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.00017888439538396808, 0.00046751103636033026, 0.0011372942989106456,
 0.002577059611929697, 0.005443941944632366, 0.010731922770068104, 0.01976701723583167,
 0.03406712171899736, 0.05503285980691202, 0.08350670755829034, 0.11932853352131022,
 0.16107456696238298, 0.20614055551722368, 0.2512065440720643, 0.292952577513137,
 0.328774403476157, 0.3572482512275353, 0.3782139893154499, 0.3925140937986156,
 0.40154918826437913, 0.4068371690898149, 0.4097040514225177, 0.41114381673553674,
 0.411813599998087, 0.4121022266390633, 0.4122174383870584, 0.41226003881132406,
 0.4122746298554775, 0.4122792591252675, 0.4122806196003006, 0.41228098995582513,
 0.41228108334474756, 0.4122811051578895, 0.4122811098772742, 0.4122811108230642,
 0.4122811109986316, 0.41228111102881937, 0.41228111103362725, 0.4122811110343365,
 0.41228111103443343, 0.4122811110344457, 0.4122811110344471, 0.41228111103444737,

Hello Pulse 146

https://docs.rigetti.com/qcs/guides/quil#calibrations

Amazon Braket Developer Guide

 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737,
 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737,
 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737,
 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737,
 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737,
 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737,
 0.4122811110344471, 0.4122811110344457, 0.41228111103443343, 0.4122811110343365,
 0.41228111103362725, 0.41228111102881937, 0.4122811109986316, 0.4122811108230642,
 0.4122811098772742, 0.4122811051578895, 0.41228108334474756, 0.41228098995582513,
 0.4122806196003006, 0.4122792591252675, 0.4122746298554775, 0.41226003881132406,
 0.4122174383870584, 0.4121022266390633, 0.411813599998087, 0.41114381673553674,
 0.4097040514225176, 0.4068371690898149, 0.40154918826437913, 0.3925140937986155,
 0.37821398931544986, 0.3572482512275351, 0.32877440347615655, 0.2929525775131368,
 0.2512065440720641, 0.20614055551722307, 0.16107456696238268, 0.11932853352131002,
 0.08350670755829034, 0.05503285980691184, 0.03406712171899729, 0.01976701723583167,
 0.010731922770068058, 0.005443941944632366, 0.002577059611929697,
 0.0011372942989106229, 0.00046751103636033026, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0])
a_b_cz_frame = device.frames[f'q{a}_q{b}_cz_frame']

dt = a_b_cz_frame.port.dt
a_b_cz_wfm_duration = len(a_b_cz_wfm.amplitudes)*dt
print('CZ pulse duration:', a_b_cz_wfm_duration*1e9, 'ns')

This should return:

CZ pulse duration: 124 ns

Now we can construct the cz gate using the waveform we just defined. Recall that the cz gate
consists of a phase flip of the target qubit if the control qubit is in the |1> state.

phase_shift_a=1.1733407221086924
phase_shift_b=6.269846678712192

a_rf_frame = device.frames[f'q{a}_rf_frame']
b_rf_frame = device.frames[f'q{b}_rf_frame']

frames = [a_rf_frame, b_rf_frame, a_b_cz_frame]

cz_pulse_sequence = (
 PulseSequence()
 .barrier(frames)
 .play(a_b_cz_frame, a_b_cz_wfm)

Hello Pulse 147

Amazon Braket Developer Guide

 .delay(a_rf_frame, a_b_cz_wfm_duration)
 .shift_phase(a_rf_frame, phase_shift_a)
 .delay(b_rf_frame, a_b_cz_wfm_duration)
 .shift_phase(b_rf_frame, phase_shift_b)
 .barrier(frames)
)

The a_b_cz_wfm waveform is played on a frame that is associated to a fast-flux port. Its role
is to shift the qubit frequency to activate a qubit-qubit interaction. For more information, see
Roles of frames and ports. As the frequency varies, the qubit frames rotate at different rates than
the single-qubit rf frames that are kept untouched: the latter ones are getting dephased. These
phase shifts were calibrated through Ramsey sequences beforehand and are provided here as
hardcoded information through phase_shift_a and phase_shift_b (Full period). We correct
this dephasing by using shift_phase instructions on rf frames. Note that this sequence will only
work in programs where no XY frame related to qubit a and b is used as we do not compensate for
the phase shift that occurs on these frames. This is the case for this single Bell pair program, which
uses only rf and cz frames. For more information, see Caldwell et al..

Now we’re ready to create a Bell pair with pulses.

bell_circuit_pulse = (
 Circuit()
 .rigetti_native_h(a)
 .rigetti_native_h(b)
 .pulse_gate([a, b], cz_pulse_sequence)
 .rigetti_native_h(b)
)
print(bell_circuit_pulse)

T : | 0 | 1 | 2 | 3 |4 | 5 | 6 | 7 | 8 |

q5 : -Rz(3.14)-Rx(1.57)-Rz(1.57)-Rx(-1.57)-PG--------------------------------------
 |
q6 : -Rz(3.14)-Rx(1.57)-Rz(1.57)-Rx(-1.57)-PG-Rz(3.14)-Rx(1.57)-Rz(1.57)-Rx(-1.57)-

T : | 0 | 1 | 2 | 3 |4 | 5 | 6 | 7 | 8 |

Let’s run this Bell pair on the Rigetti device. Note that running this code block will incur a charge.
For more information about these costs, see the Amazon Braket Pricing page. We recommend that

Hello Pulse 148

https://arxiv.org/abs/1706.06562
https://aws.amazon.com/braket/pricing/

Amazon Braket Developer Guide

you test your circuits using a small amount of shots to ensure that it can run on the device before
increasing the shot count.

task = device.run(bell_pair_pulses, shots=100)

counts = task.result().measurement_counts

plt.bar(sorted(counts), [counts[k] for k in sorted(counts)])

Hello Pulse using OpenPulse

OpenPulse is a language for specifying pulse-level control of a general quantum device and is part
of the OpenQASM 3.0 specification. Amazon Braket supports OpenPulse for directly programming
pulses using the OpenQASM 3.0 representation.

Braket uses OpenPulse as the underlying intermediate representation for expressing pulses in
native instructions. OpenPulse supports the addition of instruction calibrations in the form of
defcal (short for “define calibration”) declarations. With these declarations, you can specify an
implementation of a gate instruction within a lower-level control grammar.

Hello Pulse using OpenPulse 149

https://openqasm.com/language/openpulse.html

Amazon Braket Developer Guide

In this example, we’ll construct a Bell circuit using OpenQASM 3.0 and OpenPulse on a device
using frequency-tunable transmons. Recall that a Bell circuit is a two-qubit circuit that consists
of a Hadamard gate on the first qubit followed by a cnot gate between the two qubits. As cnot
gates differ from cz gates only through a basis transform, here we will define a Bell pair using
Hadamard and cz gates instead as the device provides a simpler way to create cz gates for this
demonstration.

Let’s begin with defining the Hadamard gate using native gates of the device.

client = boto3.client('braket', region_name='us-west-1')
defcal h $10 {
 rz(pi) $10;
 rx(pi/2) $10;
 rz(pi/2) $10;
 rx(-pi/2) $10;
}
defcal h $113 {
 rz(pi) $113;
 rx(pi/2) $113;
 rz(pi/2) $113;
 rx(-pi/2) $113;
}

For the CZ gate, we will use an arbitrary waveform with parameters (amplitude, rise/fall time,
and duration) that have been predetermined beforehand. This waveform will be applied on the
q10_q113_cz_frame.

cal {
 waveform q10_q113_cz_wfm = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.00021019328936380065, 0.0008644760431374357, 0.003028104466884364,
 0.009058671036471382, 0.02322670104785881, 0.05128438687551476, 0.09812230691191462,
 0.16403303942241076, 0.24221990600377236, 0.32040677258513395, 0.38631750509563006,
 0.43315542513203, 0.4612131109596859, 0.4753811409710734, 0.4814117075406603,
 0.48357533596440727, 0.48422961871818093, 0.4843963766398558, 0.4844321964728096,
 0.4844386806183817, 0.4844396697373718, 0.48443979687791755, 0.48443981064783953,
 0.48443981190433844, 0.4844398120009317, 0.48443981200718716, 0.4844398120075284,
 0.48443981200754405, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,

Hello Pulse using OpenPulse 150

Amazon Braket Developer Guide

 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,

Hello Pulse using OpenPulse 151

Amazon Braket Developer Guide

 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.48443981200754405, 0.4844398120075284,
 0.48443981200718716, 0.4844398120009317, 0.48443981190433844, 0.48443981064783953,
 0.48443979687791755, 0.4844396697373718, 0.4844386806183817, 0.4844321964728096,
 0.4843963766398558, 0.48422961871818093, 0.48357533596440727, 0.4814117075406603,
 0.4753811409710734, 0.46121311095968553, 0.4331554251320285, 0.38631750509562957,
 0.32040677258513167, 0.24221990600377236, 0.16403303942240913, 0.0981223069119151,
 0.0512843868755143, 0.023226701047858084, 0.009058671036471328, 0.0030281044668842563,
 0.0008644760431374626, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
}
defcal cz $10, $113 {
 barrier q10_rf_frame, q113_rf_frame, q10_q113_cz_frame;
 play(q10_q113_cz_frame, q10_q113_cz_wfm);
 delay[124ns] q10_rf_frame;
 shift_phase(q10_rf_frame, 1.1733407221086924);
 delay[124ns] q113_rf_frame;
 shift_phase(q113_rf_frame, 6.269846678712192);
 barrier q10_rf_frame, q113_rf_frame, q10_q113_cz_frame;
}

The duration of the q10_q113_cz_wfm waveform is 124 samples, which corresponds to 124 ns as
the minimum time increment dt is 1 ns.

The q10_q113_cz_wfm waveform is played on a frame that is bound to a fast-flux port. Its role is
to shift the qubit frequency to activate a qubit-qubit interaction. For more information, see Roles
of frames and ports. As the frequency varies, the qubit frames rotate at different rates compared
to the single-qubit rf frames that are kept untouched: the latter ones are getting dephased. This
dephasing can be measured with Ramsey sequences during a calibration stage and compensated
with shift_phase instructions on rf and xy frames. For more information, see Caldwell et al..

We can now execute the Bell pair circuit where we decomposed the cnot gate using a couple of
Hadamard and cz gates.

bit[2] c;
h $10;
h $113;
cz $10, $113;

Hello Pulse using OpenPulse 152

https://arxiv.org/abs/1706.06562

Amazon Braket Developer Guide

h $113;
c[0] = measure $10;
c[1] = measure $113;

The full OpenQASM 3.0 representation for the Bell circuit constructed using a combination of
native gates and pulses is as follows.

// bell_pair_with_pulse.qasm
OPENQASM 3.0;
cal {
 waveform q10_q113_cz_wfm = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.00021019328936380065, 0.0008644760431374357, 0.003028104466884364,
 0.009058671036471382, 0.02322670104785881, 0.05128438687551476, 0.09812230691191462,
 0.16403303942241076, 0.24221990600377236, 0.32040677258513395, 0.38631750509563006,
 0.43315542513203, 0.4612131109596859, 0.4753811409710734, 0.4814117075406603,
 0.48357533596440727, 0.48422961871818093, 0.4843963766398558, 0.4844321964728096,
 0.4844386806183817, 0.4844396697373718, 0.48443979687791755, 0.48443981064783953,
 0.48443981190433844, 0.4844398120009317, 0.48443981200718716, 0.4844398120075284,
 0.48443981200754405, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,

Hello Pulse using OpenPulse 153

Amazon Braket Developer Guide

 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.4844398120075447, 0.4844398120075447,
 0.4844398120075447, 0.4844398120075447, 0.48443981200754405, 0.4844398120075284,
 0.48443981200718716, 0.4844398120009317, 0.48443981190433844, 0.48443981064783953,
 0.48443979687791755, 0.4844396697373718, 0.4844386806183817, 0.4844321964728096,
 0.4843963766398558, 0.48422961871818093, 0.48357533596440727, 0.4814117075406603,
 0.4753811409710734, 0.46121311095968553, 0.4331554251320285, 0.38631750509562957,
 0.32040677258513167, 0.24221990600377236, 0.16403303942240913, 0.0981223069119151,
 0.0512843868755143, 0.023226701047858084, 0.009058671036471328, 0.0030281044668842563,
 0.0008644760431374626, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
}
defcal h $10 {
 rz(pi) $10;
 rx(pi/2) $10;
 rz(pi/2) $10;

Hello Pulse using OpenPulse 154

Amazon Braket Developer Guide

 rx(-pi/2) $10;
}
defcal h $113 {
 rz(pi) $113;
 rx(pi/2) $113;
 rz(pi/2) $113;
 rx(-pi/2) $113;
}
defcal cz $10, $113 {
 barrier q10_rf_frame, q113_rf_frame, q10_q113_cz_frame;
 play(q10_q113_cz_frame, q10_q113_cz_wfm);
 delay[124ns] q10_rf_frame;
 shift_phase(q10_rf_frame, 1.1733407221086924);
 delay[124ns] q113_rf_frame;
 shift_phase(q113_rf_frame, 6.269846678712192);
 barrier q10_rf_frame, q113_rf_frame, q10_q113_cz_frame;
}
bit[2] c;
h $10;
h $113;
cz $10, $113;
h $113;
c[0] = measure $10;
c[1] = measure $113;

You can now use the Braket SDK to execute this OpenQASM 3.0 program on the Rigetti device
using the following code.

import the device module
from braket.aws import AwsDevice
from braket.ir.openqasm import Program

client = boto3.client('braket', region_name='us-west-1')

with open("pulse.qasm", "r") as pulse:
 pulse_qasm_string = pulse.read()

choose the Rigetti device
device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3")

program = Program(source=pulse_qasm_string)
my_task = device.run(program)

Hello Pulse using OpenPulse 155

Amazon Braket Developer Guide

You can also specify an optional s3 bucket location and number of shots,
 # if you so choose, when running the program
s3_location = ("amazon-braket-my-bucket", "openqasm-tasks")
my_task = device.run(
 program,
 s3_location,
 shots=100,
)

Accessing native gates using pulses

Researchers often need to know exactly how the native gates supported by a particular QPU
are implemented as pulses. Pulse sequences are carefully calibrated by hardware providers, but
accessing them provides researchers the opportunity to design better gates or explore protocols
for error mitigation such as zero noise extrapolation by stretching the pulses of specific gates.

Amazon Braket supports programmatic access to native gates from Rigetti.

import math
from braket.aws import AwsDevice
from braket.circuits import Circuit, GateCalibrations, QubitSet
from braket.circuits.gates import Rx

device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3")

calibrations = device.gate_calibrations
print(f"Downloaded {len(calibrations)} calibrations.")

Note

Hardware providers periodically calibrate the QPU, often more than once a day. The Braket
SDK enables you to obtain the latest gate calibrations.

device.refresh_gate_calibrations()

To retrieve a given native gate, such as the RX or XY gate, you need to pass the Gate object and
the qubits of interest. For example, you can inspect the pulse implementation of the RX(π/2)
applied on qubit 0.

Accessing native gates using pulses 156

Amazon Braket Developer Guide

rx_pi_2_q0 = (Rx(math.pi/2), QubitSet(0))

pulse_sequence_rx_pi_2_q0 = calibrations.pulse_sequences[rx_pi_2_q0]

You can create a filtered set of calibrations using the filter function. You pass a list of gates
or a list of QubitSet. The following code creates two sets that contain all of the calibrations for
RX(π/2) and for qubit 0.

rx_calibrations = calibrations.filter(gates=[Rx(math.pi/2)])
q0_calibrations = calibrations.filter(qubits=QubitSet([0])

Now you can provide or modify the action of native gates by attaching a custom calibration set. For
example, consider the following circuit.

bell_circuit = (
Circuit()
.rx(0,math.pi/2)
.rx(1,math.pi/2)
.cz(0,1)
.rx(1,-math.pi/2)
)

You can run it with a custom gate calibration for the rx gate on qubit 0 by passing a dictionary
of PulseSequence objects to the gate_definitions keyword argument. You can construct a
dictionary from the attribute pulse_sequences of the GateCalibrations object. All gates not
specified are replaced with the quantum hardware provider's pulse calibration.

nb_shots = 50
custom_calibration = GateCalibrations({rx_pi_2_q0: pulse_sequence_rx_pi_2_q0})
task=device.run(bell_circuit, gate_definitions=custom_calibration.pulse_sequences,
 shots=nb_shots)

Accessing native gates using pulses 157

Amazon Braket Developer Guide

Amazon Braket Hybrid Jobs User Guide

This section provides instructions about how to set up and manage hybrid jobs in Amazon Braket.

You can access hybrid jobs in Braket using:

• The Amazon Braket Python SDK.

• The Amazon Braket console.

• The Amazon Braket API.

In this section:

• What is a Hybrid Job?

• When to use Amazon Braket Hybrid Jobs

• Run your local code as a hybrid job

• Run a hybrid job with Amazon Braket Hybrid Jobs

• Create your first Hybrid Job

• Inputs, outputs, environmental variables, and helper functions

• Save job results

• Save and restart hybrid jobs using checkpoints

• Define the environment for your algorithm script

• Use hyperparameters

• Configure the hybrid job instance to run your algorithm script

• Cancel a Hybrid Job

• Using parametric compilation to speed up Hybrid Jobs

• Use PennyLane with Amazon Braket

• Use Amazon Braket Hybrid Jobs and PennyLane to run a QAOA algorithm

• Accelerate your hybrid workloads with embedded simulators from PennyLane

• Build and debug a hybrid job with local mode

• Bring your own container (BYOC)

• Configure the default bucket in AwsSession

• Interact with hybrid jobs directly using the API

158

https://github.com/aws/amazon-braket-sdk-python
https://console.aws.amazon.com/braket/home

Amazon Braket Developer Guide

What is a Hybrid Job?

Amazon Braket Hybrid Jobs offers a way for you to run hybrid quantum-classical algorithms
requiring both classical AWS resources and quantum processing units (QPUs). Hybrid Jobs is
designed to spin up the requested classical resources, run your algorithm, and release the instances
after completion so you only pay for what you use.

Hybrid Jobs is ideal for long-running iterative algorithms involving both classical and quantum
resources. You submit your algorithm to run, Braket runs it in a scalable containerized environment,
and you retrieve the results when the algorithm is complete.

Additionally, quantum tasks created from a hybrid job benefit from higher priority queueing to a
target QPU. This ensures your quantum tasks are processed and ran ahead of others in the queue.
This is particularly beneficial for iterative hybrid algorithms where subsequent task depend on the
outcomes of prior quantum tasks. Examples of such algorithms include the Quantum Approximate
Optimization Algorithm (QAOA), variational quantum eigensolver, or quantum machine learning.
You can also monitor your algorithm progress in near-real time, enabling you to keep track of
costs, budget, or custom metrics such as training loss or expectation values.

When to use Amazon Braket Hybrid Jobs

Amazon Braket Hybrid Jobs enables you to run hybrid quantum-classical algorithms, such as the
Variational Quantum Eigensolver (VQE) and the Quantum Approximate Optimization Algorithm
(QAOA), that combine classical compute resources with quantum computing devices to optimize
the performance of today’s quantum systems. Amazon Braket Hybrid Jobs provides three main
benefits:

1. Performance: Amazon Braket Hybrid Jobs provides better performance than running hybrid
algorithms from your own environment. While your job is running, it has priority access to the
selected target QPU. Tasks from your job run ahead of other tasks queued on the device. This
results in shorter and more predictable runtimes for hybrid algorithms. Amazon Braket Hybrid
Jobs also supports parametric compilation. You can submit a circuit using free parameters and
Braket compiles the circuit once, without the need to recompile for subsequent parameter
updates to the same circuit, resulting in even faster runtimes.

2. Convenience: Amazon Braket Hybrid Jobs simplifies setting up and managing your compute
environment and keeping it running while your hybrid algorithm runs. You just provide your
algorithm script and select a quantum device (either a quantum processing unit or a simulator)

What is a Hybrid Job? 159

https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_quantum_algorithms/QAOA/QAOA_braket.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_quantum_algorithms/QAOA/QAOA_braket.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_quantum_algorithms/VQE_Chemistry/VQE_chemistry_braket.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs.ipynb

Amazon Braket Developer Guide

on which to run. Amazon Braket waits for the target device to become available, spins up the
classical resources, runs the workload in pre-built container environments, returns the results to
Amazon Simple Storage Service (Amazon S3), and releases the compute resources.

3. Metrics: Amazon Braket Hybrid Jobs provides on-the-fly insights into running algorithms and
delivers customizable algorithm metrics in near real-time to Amazon CloudWatch and the
Amazon Braket console so you can track the progress of your algorithms.

Run your local code as a hybrid job

Amazon Braket Hybrid Jobs provides a fully managed orchestration of hybrid quantum-classical
algorithms, combining Amazon EC2 compute resources with Amazon Braket Quantum Processing
Unit (QPU) access. Quantum tasks created in a hybrid job have priority queueing over individual
quantum tasks so that your algorithms won't be interrupted by fluctuations in the quantum task
queue. Each QPU maintains a separate hybrid jobs queue, ensuring that only one hybrid job can
run at any given time.

In this section:

• Create a hybrid job from local Python code

• Install additional Python packages and source code

• Save and load data into a hybrid job instance

• Best practices for hybrid job decorators

Create a hybrid job from local Python code

You can run your local Python code as an Amazon Braket Hybrid Job. You can do this by annotating
your code with an @hybrid_job decorator, as shown in the following code example. For custom
environments, you can opt to use a custom container from Amazon Elastic Container Registry
(ECR).

Note

Only Python 3.10 is supported by default.

You can use the @hybrid_job decorator to annotate a function. Braket transforms the code
inside the decorator into a Braket hybrid job algorithm script. The hybrid job then invokes the

Run your local code as a hybrid job 160

Amazon Braket Developer Guide

function inside the decorator on an Amazon EC2 instance. You can monitor the progress of the job
with job.state() or with the Braket console. The following code example shows how to run a
sequence of five states on the State Vector Simulator (SV1) device.

from braket.aws import AwsDevice
from braket.circuits import Circuit, FreeParameter, Observable
from braket.devices import Devices
from braket.jobs.hybrid_job import hybrid_job
from braket.jobs.metrics import log_metric

device_arn = Devices.Amazon.SV1

@hybrid_job(device=device_arn) # choose priority device
def run_hybrid_job(num_tasks=1):
 device = AwsDevice(device_arn) # declare AwsDevice within the hybrid job

 # create a parametric circuit
 circ = Circuit()
 circ.rx(0, FreeParameter("theta"))
 circ.cnot(0, 1)
 circ.expectation(observable=Observable.X(), target=0)

 theta = 0.0 # initial parameter

 for i in range(num_tasks):
 task = device.run(circ, shots=100, inputs={"theta": theta}) # input parameters
 exp_val = task.result().values[0]

 theta += exp_val # modify the parameter (possibly gradient descent)

 log_metric(metric_name="exp_val", value=exp_val, iteration_number=i)

 return {"final_theta": theta, "final_exp_val": exp_val}

You create the hybrid job by invoking the function as you would normal Python functions.
However, the decorator function returns the hybrid job handle rather than the result of the
function. To retrieve the results after it has completed, use job.result().

job = run_hybrid_job(num_tasks=1)
result = job.result()

Create a hybrid job from local Python code 161

Amazon Braket Developer Guide

The device argument in the @hybrid_job decorator specifies the device that the hybrid job has
priority access to - in this case, the SV1 simulator. To get QPU priority, you must ensure that the
device ARN used within the function matches that specified in the decorator. For convenience,
you can use the helper function get_job_device_arn() to capture the device ARN declared in
@hybrid_job.

Note

Each hybrid job has at least a one minute startup time since it creates a containerized
environment on Amazon EC2. So for very short workloads, such as a single circuit or a
batch of circuits, it may suffice for you to use quantum tasks.

Hyperparameters

The run_hybrid_job() function takes the argument num_tasks to control the number of
quantum tasks created. The hybrid job automatically captures this as a hyperparameter.

Note

Hyperparameters are displayed in the Braket console as strings, that are limited to 2500
characters.

Metrics and logging

Within the run_hybrid_job() function, metrics from iterative algorithms are recorded with
log_metrics. Metrics are automatically plotted in the Braket console page under the hybrid job
tab. You can use metrics to track the quantum task costs in near-real time during the hybrid job run
with the Braket cost tracker. The example above uses the metric name “probability” that records
the first probability from the result type.

Retrieving results

After the hybrid job has completed, you use job.result() to retrieve the hybrid jobs results.
Any objects in the return statement are automatically captured by Braket. Note that the objects
returned by the function must be a tuple with each element being serializable. For example, the
following code shows a working, and a failing example.

Create a hybrid job from local Python code 162

Amazon Braket Developer Guide

@hybrid_job(device=Devices.Amazon.SV1)
def passing():
 np_array = np.random.rand(5)
 return np_array # serializable

@hybrid_job(device=Devices.Amazon.SV1)
def failing():
 return MyObject() # not serializable

Job name

By default, the name for this hybrid job is inferred from the function name. You may also specify a
custom name up to 50 characters long. For example, in the following code the job name is "my-job-
name".

@hybrid_job(device=Devices.Amazon.SV1, job_name="my-job-name")
def function():
 pass

Local mode

Local jobs are be created by adding the argument local=True to the decorator. This runs the
hybrid job in a containerized environment on your local compute environment, such as your laptop.
Local jobs do not have priority queueing for quantum tasks. For advanced cases such as multi-node
or MPI, local jobs may have access to the required Braket environment variables. The following
code creates a local hybrid job with the device as the SV1 simulator.

@hybrid_job(device=Devices.Amazon.SV1, local=True)
def run_hybrid_job(num_tasks = 1):
 return ...

All other hybrid job options are supported. For a list of options see the
braket.jobs.quantum_job_creation module.

Install additional Python packages and source code

You can customize your runtime environment to use your preferred Python packages. You can use
either a requirements.txt file, a list of package names, or bring your own container (BYOC). To
customize a runtime environment using a requirements.txt file, refer to the following code
example.

Install additional Python packages and source code 163

https://amazon-braket-sdk-python.readthedocs.io/en/stable/_apidoc/braket.jobs.quantum_job_creation.html

Amazon Braket Developer Guide

@hybrid_job(device=Devices.Amazon.SV1, dependencies="requirements.txt")
def run_hybrid_job(num_tasks = 1):
 return ...

For example, the requirements.txt file may include other packages to install.

qiskit
pennylane >= 0.31
mitiq == 0.29

Alternatively, you may supply the package names as a Python list as follows.

@hybrid_job(device=Devices.Amazon.SV1, dependencies=["qiskit", "pennylane>=0.31",
 "mitiq==0.29"])
def run_hybrid_job(num_tasks = 1):
 return ...

Additional source code can be specified either as a list of modules, or a single module as in the
following code example.

@hybrid_job(device=Devices.Amazon.SV1, include_modules=["my_module1", "my_module2"])
def run_hybrid_job(num_tasks = 1):
 return ...

Save and load data into a hybrid job instance

Specifying input training data

When you create a hybrid job, you may provide an input training datasets by specifying an Amazon
Simple Storage Service (Amazon S3) bucket. You may also specify a local path, then Braket
automatically uploads the data to Amazon S3 at s3://<default_bucket_name>/jobs/
<job_name>/<timestamp>/data/<channel_name> . If you specify a local path, the channel
name defaults to “input”. The following code shows a numpy file from the local path data/
file.npy.

@hybrid_job(device=Devices.Amazon.SV1, input_data="data/file.npy")
def run_hybrid_job(num_tasks = 1):
 data = np.load("data/file.npy")

Save and load data into a hybrid job instance 164

Amazon Braket Developer Guide

 return ...

For S3, you must use the get_input_data_dir() helper funciton.

s3_path = "s3://amazon-braket-us-west-1-961591465522/job-data/file.npy"

@hybrid_job(device=None, input_data=s3_path)
def job_s3_input():
 np.load(get_input_data_dir() + "/file.npy")

@hybrid_job(device=None, input_data={"channel": s3_path})
def job_s3_input_channel():
 np.load(get_input_data_dir("channel") + "/file.npy")

You can specify multiple input data sources by providing a dictionary of channel values and S3 URIs
or local paths.

input_data = {
 "input": "data/file.npy",
 "input_2": "s3://my-bucket/data.json"
}

@hybrid_job(device=None, input_data=input_data)
def multiple_input_job():
 np.load(get_input_data_dir("input") + "/file.npy")
 np.load(get_input_data_dir("input_2") + "/data.json")

Note

When the input data is large (>1GB), there is a long wait time before the job is created. This
is due to the local input data when it is first uploaded to an S3 bucket, then the S3 path is
added to the job request. Finally, the job request is submitted to the Braket service.

Saving results to S3

To save results not included in the return statement of the decorated function, you must append
the correct directory to all file writing operations. The following example, shows saving a numpy
array and a matplotlib figure.

Save and load data into a hybrid job instance 165

Amazon Braket Developer Guide

@hybrid_job(device=Devices.Amazon.SV1)
def run_hybrid_job(num_tasks = 1):
 result = np.random.rand(5)

 # save a numpy array
 np.save("result.npy", result)

 # save a matplotlib figure
 plt.plot(result)
 plt.savefig("fig.png")
 return ...

All results are compressed into a file named model.tar.gz. You can download the results with
the Python function job.result() , or by navigating to the results folder from the hybrid job
page in the Braket management console.

Saving and resuming from checkpoints

For long-running hybrid jobs, its recommended to periodically save the intermediate state of
the algorithm. You can use the built-in save_job_checkpoint() helper function, or save files
to the AMZN_BRAKET_JOB_RESULTS_DIR path. The later is available with the helper function
get_job_results_dir().

The following is a minimal working example for saving and loading checkpoints with a hybrid job
decorator:

from braket.jobs import save_job_checkpoint, load_job_checkpoint, hybrid_job

@hybrid_job(device=None, wait_until_complete=True)
def function():
 save_job_checkpoint({"a": 1})

job = function()
job_name = job.name
job_arn = job.arn

@hybrid_job(device=None, wait_until_complete=True, copy_checkpoints_from_job=job_arn)
def continued_function():
 load_job_checkpoint(job_name)

continued_job = continued_function()

Save and load data into a hybrid job instance 166

Amazon Braket Developer Guide

In the first hybrid job, save_job_checkpoint() is called with a dictionary containing the
data we want to save. By default, every value must be serializable as text. For checkpointing
more complex Python objects, such as numpy arrays, you can set data_format =
PersistedJobDataFormat.PICKLED_V4. This code creates and overwrites a checkpoint file with
default name <jobname>.json in your hybrid job artifacts under a subfolder called "checkpoints".

To create a new hybrid job to continue from the checkpoint, we need to pass
copy_checkpoints_from_job=job_arn where job_arn is the hybrid job ARN of the previous
job. Then we use load_job_checkpoint(job_name) to load from the checkpoint.

Best practices for hybrid job decorators

Embrace asynchronicity

Hybrid jobs created with the decorator annotation are asynchronous - they run once the classical
and quantum resources are available. You monitor the progress of the algorithm using the Braket
Management Console or Amazon CloudWatch. When you submit your algorithm to run, Braket
runs your algorithm in a scalable containerized environment and results are retrieved when the
algorithm is complete.

Run iterative variational algorithms

Hybrid jobs gives you the tools to run iterative quantum-classical algorithms. For purely quantum
problems, use quantum tasks or a batch of quantum tasks. The priority access to certain QPUs is
most beneficial for long-running variational algorithms requiring multiple iterative calls to the
QPUs with classical processing in between.

Debug using local mode

Before you run a hybrid job on a QPU, its recommended to first run on the simulator SV1 to
confirm it runs as expected. For small scale tests, you can run with local mode for rapid iteration
and debugging.

Improve reproducibility with Bring your own container (BYOC)

Create a reproducible experiment by encapsulating your software and its dependencies within a
containerized environment. By packaging all your code, dependencies, and settings in a container,
you prevent potential conflicts and versioning issues.

Multi-instance distributed simulators

Best practices for hybrid job decorators 167

Amazon Braket Developer Guide

To run a large number of circuits, consider using built-in MPI support to run local simulators on
multiple instances within a single hybrid job. For more information, see embedded simulators.

Use parametric circuits

Parametric circuits that you submit from a hybrid job are automatically compiled on certain QPUs
using parametric compilation to improve the runtimes of your algorithms.

Checkpoint periodically

For long-running hybrid jobs, its recommended to periodically save the intermediate state of the
algorithm.

For further examples, use cases, and best-practices, see Amazon Braket examples GitHub.

Run a hybrid job with Amazon Braket Hybrid Jobs

To run a hybrid job with Amazon Braket Hybrid Jobs, you first need to define your algorithm.
You can define it by writing the algorithm script and, optionally, other dependency files using the
Amazon Braket Python SDK or PennyLane. If you want to use other (open source or proprietary)
libraries, you can define your own custom container image using Docker, which includes these
libraries. For more information, see Bring your own container (BYOC).

In either case, next you create a hybrid job using the Amazon Braket API, where you provide your
algorithm script or container, select the target quantum device the hybrid job is to use, and then
choose from a variety of optional settings. The default values provided for these optional settings
work for the majority of use cases. For the target device to run your Hybrid Job, you have a choice
between a QPU, an on-demand simulator (such as SV1, DM1 or TN1), or the classical hybrid job
instance itself. With an on-demand simulator or QPU, your hybrid jobs container makes API calls to
a remote device. With the embedded simulators, the simulator is embedded in the same container
as your algorithm script. The lightning simulators from PennyLane are embedded with the default
pre-built hybrid jobs container for you to use. If you run your code using an embedded PennyLane
simulator or a custom simulator, you can specify an instance type as well as how many instances
you wish to use. Refer to the Amazon Braket Pricing page for the costs associated with each choice.

Run a hybrid job with Amazon Braket Hybrid Jobs 168

https://github.com/amazon-braket/amazon-braket-examples
https://github.com/aws/amazon-braket-sdk-python
https://pennylane.ai
https://github.com/PennyLaneAI/pennylane-lightning
https://aws.amazon.com/braket/pricing/

Amazon Braket Developer Guide

If your target device is an on-demand or embedded simulator, Amazon Braket starts running the
hybrid job right away. It spins up the hybrid job instance (you can customize the instance type in
the API call), runs your algorithm, writes the results to Amazon S3, and releases your resources.
This release of resources ensures that you only pay for what you use.

The total number of concurrent hybrid jobs per quantum processing unit (QPU) is restricted. Today,
only one hybrid job can run on a QPU at any given time. Queues are used to control the number of
hybrid jobs allowed to run so as not to exceed the limit allowed. If your target device is a QPU, your
hybrid job first enters the job queue of the selected QPU. Amazon Braket spins up the hybrid job
instance needed and runs your hybrid job on the device. For the duration of your algorithm, your
hybrid job has priority access, meaning that quantum tasks from your hybrid job run ahead of other
Braket quantum tasks queued up on the device, provided the job quantum tasks are submitted
to the QPU once every few minutes. Once your hybrid job is complete, resources are released,
meaning you only pay for what you use.

Note

Devices are regional and your hybrid job runs in the same AWS Region as your primary
device.

In both the simulator and QPU target scenarios, you have the option to define custom algorithm
metrics, such as the energy of your Hamiltonian, as part of your algorithm. These metrics are

Run a hybrid job with Amazon Braket Hybrid Jobs 169

Amazon Braket Developer Guide

automatically reported to Amazon CloudWatch and from there, they display in near real-time in
the Amazon Braket console.

Note

If you wish to use a GPU based instance, be sure to use one of the GPU-based simulators
available with the embedded simulators on Braket (for example, lightning.gpu). If you
choose one of the CPU-based embedded simulators (for example, lightning.qubit, or
braket:default-simulator), the GPU will not be used and you may incur unnecessary
costs.

Create your first Hybrid Job

This section shows you how to create a Hybrid Job using a Python script. Alternatively, to create
a hybrid job from local Python code, such as your preferred integrated development environment
(IDE) or a Braket notebook, see Run your local code as a hybrid job.

In this section:

• Set permissions

• Create and run

• Monitor results

Set permissions

Before you run your first hybrid job, you must ensure that you have sufficient permissions to
proceed with this task. To determine that you have the correct permissions, select Permissions
from the menu on left side of the Braket Console. The Permissions management for Amazon
Braket page helps you verify whether one of your existing roles has permissions that are sufficient
to run your hybrid job or guides you through the creation of a default role that can be used to run
your hybrid job if you do not already have such a role.

Create your first Hybrid Job 170

Amazon Braket Developer Guide

To verify that you have roles with sufficient permissions to run a hybrid job, select the Verify
existing role button. If you do, you get a message that the roles were found. To see the names of
the roles and their role ARNs, select the Show roles button.

Set permissions 171

Amazon Braket Developer Guide

If you do not have a role with sufficient permissions to run a hybrid job, you get a message that
no such role was found. Select the Create default role button to obtain a role with sufficient
permissions.

Set permissions 172

Amazon Braket Developer Guide

If the role was created successfully, you get a message confirming this.

Set permissions 173

Amazon Braket Developer Guide

If you do not have permissions to make this inquiry, you will be denied access. In this case, contact
your internal AWS administrator.

Create and run

Once you have a role with permissions to run a hybrid job, you are ready to proceed. The key piece
of your first Braket hybrid job is the algorithm script. It defines the algorithm you want to run and
contains the classical logic and quantum tasks that are part of your algorithm. In addition to your
algorithm script, you can provide other dependency files. The algorithm script together with its
dependencies is called the source module. The entry point defines the first file or function to run in
your source module when the hybrid job starts.

Create and run 174

Amazon Braket Developer Guide

First, consider the following basic example of an algorithm script that creates five bell states and
prints the corresponding measurement results.

import os

from braket.aws import AwsDevice
from braket.circuits import Circuit

def start_here():

 print("Test job started!")

 # Use the device declared in the job script
 device = AwsDevice(os.environ["AMZN_BRAKET_DEVICE_ARN"])

 bell = Circuit().h(0).cnot(0, 1)
 for count in range(5):
 task = device.run(bell, shots=100)
 print(task.result().measurement_counts)

 print("Test job completed!")

Create and run 175

Amazon Braket Developer Guide

Save this file with the name algorithm_script.py in your current working directory on your Braket
notebook or local environment. The algorithm_script.py file has start_here() as the planned
entry point.

Next, create a Python file or Python notebook in the same directory as the algorithm_script.py file.
This script kicks off the hybrid job and handles any asynchronous processing, such as printing the
status or key outcomes that we are interested in. At a minimum, this script needs to specify your
hybrid job script and your primary device.

Note

For more information about how to create a Braket notebook or upload a file, such as the
algorithm_script.py file, in the same directory as the notebooks, see Run your first circuit
using the Amazon Braket Python SDK

For this basic first case, you target a simulator. Whichever type of quantum device you target, a
simulator or an actual quantum processing unit (QPU), the device you specify with device in the
following script is used to schedule the hybrid job and is available to the algorithm scripts as the
environment variable AMZN_BRAKET_DEVICE_ARN.

Note

You can only use devices that are available in the AWS Region of your hybrid job. The
Amazon Braket SDK auto selects this AWS Region. For example, a hybrid job in us-east-1
can use IonQ, SV1, DM1, and TN1 devices, but not Rigetti devices.

If you choose a quantum computer instead of a simulator, Braket schedules your hybrid jobs to run
all of their quantum tasks with priority access.

from braket.aws import AwsQuantumJob
from braket.devices import Devices

job = AwsQuantumJob.create(
 Devices.Amazon.SV1,
 source_module="algorithm_script.py",
 entry_point="algorithm_script:start_here",
 wait_until_complete=True

Create and run 176

Amazon Braket Developer Guide

)

The parameter wait_until_complete=True sets a verbose mode so that your job prints output
from the actual job as it’s running. You should see an output similar to the following example.

job = AwsQuantumJob.create(
 Devices.Amazon.SV1,
 source_module="algorithm_script.py",
 entry_point="algorithm_script:start_here",
 wait_until_complete=True,
)
Initializing Braket Job: arn:aws:braket:us-west-2:<accountid>:job/<UUID>
...
.
.
.

Completed 36.1 KiB/36.1 KiB (692.1 KiB/s) with 1 file(s) remaining#015download:
 s3://braket-external-assets-preview-us-west-2/HybridJobsAccess/models/
braket-2019-09-01.normal.json to ../../braket/additional_lib/original/
braket-2019-09-01.normal.json
Running Code As Process
Test job started!!!!!
Counter({'00': 55, '11': 45})
Counter({'11': 59, '00': 41})
Counter({'00': 55, '11': 45})
Counter({'00': 58, '11': 42})
Counter({'00': 55, '11': 45})
Test job completed!!!!!
Code Run Finished
2021-09-17 21:48:05,544 sagemaker-training-toolkit INFO Reporting training SUCCESS

Note

You can also use your custom-made module with the AwsQuantumJob.create method by
passing its location (either the path to a local directory or file, or an S3 URI of a tar.gz file).
For a working example, see Parallelize_training_for_QML.ipynb file in the hybrid jobs folder
in the Amazon Braket examples Github repo.

Create and run 177

https://amazon-braket-sdk-python.readthedocs.io/en/latest/_apidoc/braket.aws.aws_quantum_job.html#braket.aws.aws_quantum_job.AwsQuantumJob.create
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/5_Parallelize_training_for_QML/Parallelize_training_for_QML.ipynb
https://github.com/amazon-braket/amazon-braket-examples/tree/main

Amazon Braket Developer Guide

Monitor results

Alternatively, you can access the log output from Amazon CloudWatch. To do this, go to the Log
groups tab on the left menu of the job detail page, select the log group aws/braket/jobs, and
then choose the log stream that contains the job name. In the example above, this is braket-
job-default-1631915042705/algo-1-1631915190.

You can also view the status of the hybrid job in the console by selecting the Hybrid Jobs page and
then choose Settings.

Monitor results 178

Amazon Braket Developer Guide

Your hybrid job produces some artifacts in Amazon S3 while it runs. The default S3 bucket name
is amazon-braket-<region>-<accountid> and the content is in the jobs/<jobname>/
<timestamp> directory. You can configure the S3 locations where these artifacts are stored by
specifying a different code_location when the hybrid job is created with the Braket Python SDK.

Note

This S3 bucket must be located in the same AWS Region as your job script.

The jobs/<jobname>/<timestamp> directory contains a subfolder with the output from the
entry point script in a model.tar.gz file. There is also a directory called script that contains
your algorithm script artifacts in a source.tar.gz file. The results from your actual quantum
tasks are in the directory named jobs/<jobname>/tasks.

Inputs, outputs, environmental variables, and helper functions

In addition to the file or files that makes up your complete algorithm script, your hybrid job can
have additional inputs and outputs. When your hybrid job starts, Amazon Braket copies inputs

Inputs, outputs, environmental variables, and helper functions 179

Amazon Braket Developer Guide

provided as part of the hybrid job creation into the container that runs the algorithm script. When
the hybrid job completes, all outputs defined during the algorithm are copied to the Amazon S3
location specified.

Note

Algorithm metrics are reported in real time and do not follow this output procedure.

Amazon Braket also provides several environment variables and helper functions to simplify the
interactions with container inputs and outputs.

This section explains the key concepts of the AwsQuantumJob.create function provided by the
Amazon Braket Python SDK and their mapping to the container file structure.

In this section:

• Inputs

• Outputs

• Environmental variables

• Helper functions

Inputs

Input data: Input data can be provided to the hybrid algorithm by specifying the input data
file, which is set up as a dictionary, with the input_data argument. The user defines the
input_data argument within the AwsQuantumJob.create function in the SDK. This copies
the input data to to the container file system at the location given by the environment variable
"AMZN_BRAKET_INPUT_DIR". For a couple examples of how input data is used in a hybrid
algorithm, see the QAOA with Amazon Braket Hybrid Jobs and PennyLane and Quantum machine
learning in Amazon Braket Hybrid Jobs Jupyter notebooks.

Note

When the input data is large (>1GB), there will be a long wait time before the hybrid job is
submitted. This is due to the fact that the local input data will first be uploaded to an S3
bucket, then the S3 path will be added to the hybrid job request, and, finally, the hybrid job
request is submitted to Braket service.

Inputs 180

https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/2_Using_PennyLane_with_Braket_Hybrid_Jobs/Using_PennyLane_with_Braket_Hybrid_Jobs.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs.ipynb

Amazon Braket Developer Guide

Hyperparameters: If you pass in hyperparameters, they are available under the environment
variable "AMZN_BRAKET_HP_FILE".

Note

For more information about how to create hyperparameters and input data and then pass
this information to the hybrid job script, see the Use hyperparameters section and this
github page.

Checkpoints: To specify a job-arn whose checkpoint you want to use in a new hybrid job, use the
copy_checkpoints_from_job command. This command copies over the checkpoint data to the
checkpoint_configs3Uri of the new hybrid job, making it available at the path given by the
environment variable AMZN_BRAKET_CHECKPOINT_DIR while the job runs. The default is None,
meaning checkpoint data from another hybrid job will not be used in the new hybrid job.

Outputs

Quantum Tasks: Quantum task results are stored in the S3 location s3://amazon-braket-
<region>-<accountID>/jobs/<job-name>/tasks.

Job results: Everything that your algorithm script saves to the directory given by the environment
variable "AMZN_BRAKET_JOB_RESULTS_DIR" is copied to the S3 location specified in
output_data_config. If you don’t specify this value, it defaults to s3://amazon-braket-
<region>-<accountID>/jobs/<job-name>/<timestamp>/data. We provide the SDK helper
function save_job_result , which you can use to store results conveniently in the form of a
dictionary when called from your algorithm script.

Checkpoints: If you want to use checkpoints, you can save them in the directory given by the
environment variable "AMZN_BRAKET_CHECKPOINT_DIR". You can also use the SDK helper
function save_job_checkpoint instead.

Algorithm metrics: You can define algorithm metrics as part of your algorithm script that are
emitted to Amazon CloudWatch and displayed in real time in the Amazon Braket console while
your hybrid job is running. For an example of how to use algorithm metrics, see Use Amazon Braket
Hybrid Jobs to run a QAOA algorithm.

Outputs 181

https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/qcbm/qcbm.py

Amazon Braket Developer Guide

Environmental variables

Amazon Braket provides several environment variables to simplify the interactions with container
inputs and outputs. The folllowing code lists the environmental variables that Braket uses.

the input data directory opt/braket/input/data
os.environ["AMZN_BRAKET_INPUT_DIR"]
the output directory opt/braket/model to write job results to
os.environ["AMZN_BRAKET_JOB_RESULTS_DIR"]
the name of the job
os.environ["AMZN_BRAKET_JOB_NAME"]
the checkpoint directory
os.environ["AMZN_BRAKET_CHECKPOINT_DIR"]
the file containing the hyperparameters
os.environ["AMZN_BRAKET_HP_FILE"]
the device ARN (AWS Resource Name)
os.environ["AMZN_BRAKET_DEVICE_ARN"]
the output S3 bucket, as specified in the CreateJob request’s OutputDataConfig
os.environ["AMZN_BRAKET_OUT_S3_BUCKET"]
the entry point as specified in the CreateJob request’s ScriptModeConfig
os.environ["AMZN_BRAKET_SCRIPT_ENTRY_POINT"]
the compression type as specified in the CreateJob request’s ScriptModeConfig
os.environ["AMZN_BRAKET_SCRIPT_COMPRESSION_TYPE"]
the S3 location of the user’s script as specified in the CreateJob request’s
 ScriptModeConfig
os.environ["AMZN_BRAKET_SCRIPT_S3_URI"]
the S3 location where the SDK would store the quantum task results by default for the
 job
os.environ["AMZN_BRAKET_TASK_RESULTS_S3_URI"]
the S3 location where the job results would be stored, as specified in CreateJob
 request’s OutputDataConfig
os.environ["AMZN_BRAKET_JOB_RESULTS_S3_PATH"]
the string that should be passed to CreateQuantumTask’s jobToken parameter for
 quantum tasks created in the job container
os.environ["AMZN_BRAKET_JOB_TOKEN"]

Helper functions

Amazon Braket provides several helper functions to simplify the interactions with container inputs
and outputs. These helper functions would be called from within the algorithm script that is used
to run your Hybrid Job. The following example demonstrates how to use them.

Environmental variables 182

Amazon Braket Developer Guide

get_checkpoint_dir() # get the checkpoint directory
get_hyperparameters() # get the hyperparameters as strings
get_input_data_dir() # get the input data directory
get_job_device_arn() # get the device specified by the hybrid job
get_job_name() # get the name of the hybrid job.
get_results_dir() # get the path to a results directory
save_job_result() # save hybrid job results
save_job_checkpoint() # save a checkpoint
load_job_checkpoint() # load a previously saved checkpoint

Save job results

You can save the results generated by the algorithm script so that they are available from the
hybrid job object in the hybrid job script as well as from the output folder in Amazon S3 (in a tar-
zipped file named model.tar.gz).

The output must be saved in a file using a JavaScript Object Notation (JSON) format. If the data
can not be readily serialized to text, as in the case of a numpy array, you could pass in an option
to serialize using a pickled data format. See the braket.jobs.data_persistence module for more
details.

To save the results of the hybrid jobs, you add the following lines commented with #ADD to the
algorithm script.

from braket.aws import AwsDevice
from braket.circuits import Circuit
from braket.jobs import save_job_result #ADD

def start_here():

 print("Test job started!!!!!")

 device = AwsDevice(os.environ['AMZN_BRAKET_DEVICE_ARN'])

 results = [] #ADD

 bell = Circuit().h(0).cnot(0, 1)
 for count in range(5):
 task = device.run(bell, shots=100)
 print(task.result().measurement_counts)

Save job results 183

https://amazon-braket-sdk-python.readthedocs.io/en/latest/_apidoc/braket.jobs.data_persistence.html#braket.jobs.data_persistence.save_job_result

Amazon Braket Developer Guide

 results.append(task.result().measurement_counts) #ADD

 save_job_result({ "measurement_counts": results }) #ADD

 print("Test job completed!!!!!")

You can then display the results of the job from your job script by appending the line
print(job.result()) commented with #ADD.

import time
from braket.aws import AwsQuantumJob

job = AwsQuantumJob.create(
 source_module="algorithm_script.py",
 entry_point="algorithm_script:start_here",
 device_arn="arn:aws:braket:::device/quantum-simulator/amazon/sv1",
)

print(job.arn)
while job.state() not in AwsQuantumJob.TERMINAL_STATES:
 print(job.state())
 time.sleep(10)

print(job.state())
print(job.result()) #ADD

In this example, we have removed wait_until_complete=True to suppress verbose output.
You can add it back in for debugging. When you run this hybrid job, it outputs the identifier and
the job-arn, followed by the state of the hybrid job every 10 seconds until the hybrid job is
COMPLETED, after which it shows you the results of the bell circuit. See the following example.

arn:aws:braket:us-west-2:111122223333:job/braket-job-default-1234567890123
INITIALIZED
RUNNING
RUNNING
RUNNING
RUNNING
RUNNING
RUNNING
RUNNING
RUNNING
RUNNING

Save job results 184

Amazon Braket Developer Guide

RUNNING
...
RUNNING
RUNNING
COMPLETED
{'measurement_counts': [{'11': 53, '00': 47},..., {'00': 51, '11': 49}]}

Save and restart hybrid jobs using checkpoints

You can save intermediate iterations of your hybrid jobs using checkpoints. In the algorithm script
example from the previous section, you would add the following lines commented with #ADD to
create checkpoint files.

from braket.aws import AwsDevice
from braket.circuits import Circuit
from braket.jobs import save_job_checkpoint #ADD
import os

def start_here():

 print("Test job starts!!!!!")

 device = AwsDevice(os.environ["AMZN_BRAKET_DEVICE_ARN"])

 #ADD the following code
 job_name = os.environ["AMZN_BRAKET_JOB_NAME"]
 save_job_checkpoint(
 checkpoint_data={"data": f"data for checkpoint from {job_name}"},
 checkpoint_file_suffix="checkpoint-1",
) #End of ADD

 bell = Circuit().h(0).cnot(0, 1)
 for count in range(5):
 task = device.run(bell, shots=100)
 print(task.result().measurement_counts)

 print("Test hybrid job completed!!!!!")

When you run the hybrid job, it creates the file <jobname>-checkpoint-1.json in your hybrid job
artifacts in the checkpoints directory with a default /opt/jobs/checkpoints path. The hybrid
job script remains unchanged unless you want to change this default path.

Save and restart hybrid jobs using checkpoints 185

Amazon Braket Developer Guide

If you want to load a hybrid job from a checkpoint generated by a previous hybrid job, the
algorithm script uses from braket.jobs import load_job_checkpoint. The logic to load in
your algorithm script is as follows.

checkpoint_1 = load_job_checkpoint(
 "previous_job_name",
 checkpoint_file_suffix="checkpoint-1",
)

After loading this checkpoint, you can continue your logic based on the content loaded to
checkpoint-1.

Note

The checkpoint_file_suffix must match the suffix previously specified when creating the
checkpoint.

Your orchestration script needs to specify the job-arn from the previous hybrid job with the line
commented with #ADD.

job = AwsQuantumJob.create(
 source_module="source_dir",
 entry_point="source_dir.algorithm_script:start_here",
 device_arn="arn:aws:braket:::device/quantum-simulator/amazon/sv1",
 copy_checkpoints_from_job="<previous-job-ARN>", #ADD
)

Define the environment for your algorithm script

Amazon Braket supports three environments defined by containers for your algorithm script:

• A base container (the default, if no image_uri is specified)

• A container with Tensorflow and PennyLane

• A container with PyTorch and PennyLane

The following table provides details about the containers and the libraries they include.

Define the environment for your algorithm script 186

Amazon Braket Developer Guide

Amazon Braket containers

Type PennyLane with
TensorFlow

PennyLane with
PyTorch

Pennylane

Base 292282985366.dkr.e
cr.us-east-1.amazo
naws.com/amazon-
braket-tensorflow-jo
bs:latest

292282985366.dkr.e
cr.us-west-2.amazo
naws.com/amazon-br
aket-pytorch-jobs:latest

292282985366.dkr.ecr.us-
west-2.amazonaws.com/
amazon-braket-base-
jobs:latest

Inherited
Libraries

• awscli

• numpy

• pandas

• scipy

• awscli

• numpy

• pandas

• scipy

Additiona
l Libraries

• amazon-braket-defa
ult-simulator

• amazon-braket-penn
ylane-plugin

• amazon-braket-sche
mas

• amazon-braket-sdk

• ipykernel

• keras

• matplotlib

• networkx

• openbabel

• PennyLane

• protobuf

• psi4

• rsa

• PennyLane-Lightning-
gpu

• amazon-braket-defa
ult-simulator

• amazon-braket-penn
ylane-plugin

• amazon-braket-sche
mas

• amazon-braket-sdk

• ipykernel

• keras

• matplotlib

• networkx

• openbabel

• PennyLane

• protobuf

• psi4

• rsa

• PennyLane-Lightning-
gpu

• amazon-braket-default-
simulator

• amazon-braket-penn
ylane-plugin

• amazon-braket-schemas

• amazon-braket-sdk

• awscli

• boto3

• ipykernel

• matplotlib

• networkx

• numpy

• openbabel

• pandas

• PennyLane

• protobuf

• psi4

• rsa

Define the environment for your algorithm script 187

Amazon Braket Developer Guide

Type PennyLane with
TensorFlow

PennyLane with
PyTorch

Pennylane

• cuQuantum • cuQuantum • scipy

You can view and access the open source container definitions at aws/amazon-braket-containers.
Choose the container that best matches your use case. The container must be in the AWS Region
from which you invoke your hybrid job. You specify the container image when you create a hybrid
job by adding one of the following three arguments to your create(…) call in the hybrid job
script. You can install additional dependencies into the container you choose at runtime (at the
cost of startup or runtime) because the Amazon Braket containers have internet connectivity. The
following example is for the us-west-2 Region.

• Base image image_uri="292282985366.dkr.ecr.us-west-2.amazonaws.com/amazon-braket-base-
jobs:1.0-cpu-py39-ubuntu22.04"

• Tensorflow image image_uri="292282985366.dkr.ecr.us-east-1.amazonaws.com/amazon-
braket-tensorflow-jobs:2.11.0-gpu-py39-cu112-ubuntu20.04"

• PyTorch image image_uri="292282985366.dkr.ecr.us-west-2.amazonaws.com/amazon-braket-
pytorch-jobs:1.13.1-gpu-py39-cu117-ubuntu20.04"

The image-uris can also be retrieved using the retrieve_image() function in the Amazon
Braket SDK. The following example shows how to retrieve them from the us-west-2 AWS Region.

from braket.jobs.image_uris import retrieve_image, Framework

image_uri_base = retrieve_image(Framework.BASE, "us-west-2")
image_uri_tf = retrieve_image(Framework.PL_TENSORFLOW, "us-west-2")
image_uri_pytorch = retrieve_image(Framework.PL_PYTORCH, "us-west-2")

Use hyperparameters

You can define hyperparameters needed by your algorithm, such as the learning rate or step
size, when you create a hybrid job. Hyperparameter values are typically used to control various
aspects of the algorithm, and can often be tuned to optimize the algorithm’s performance. To use
hyperparameters in a Braket hybrid job, you need to specify their names and values explicitly as a
dictionary. Note that the values must be of the string datatype. You specify the hyperparameter

Use hyperparameters 188

https://github.com/aws/amazon-braket-containers

Amazon Braket Developer Guide

values that you want to test when searching for the optimal set of values. The first step to using
hyperparameters is to set up and define the hyperparameters as a dictionary, which can be seen in
the following code:

#defining the number of qubits used
n_qubits = 8
#defining the number of layers used
n_layers = 10
#defining the number of iterations used for your optimization algorithm
n_iterations = 10

hyperparams = {
 "n_qubits": n_qubits,
 "n_layers": n_layers,
 "n_iterations": n_iterations
}

You would then pass the hyperparameters defined in the code snippet given above to be used in
the algorithm of your choice with something that looks like the following:

import time
from braket.aws import AwsQuantumJob

#Name your job so that it can be later identified
job_name = f"qcbm-gaussian-training-{n_qubits}-{n_layers}-" + str(int(time.time()))

job = AwsQuantumJob.create(
 #Run this hybrid job on the SV1 simulator
 device="arn:aws:braket:::device/quantum-simulator/amazon/sv1",
 #The directory or single file containing the code to run.
 source_module="qcbm",
 #The main script or function the job will run.
 entry_point="qcbm.qcbm_job:main",
 #Set the job_name
 job_name=job_name,
 #Set the hyperparameters
 hyperparameters=hyperparams,
 #Define the file that contains the input data
 input_data="data.npy", # or input_data=s3_path
 # wait_until_complete=False,
)

Use hyperparameters 189

Amazon Braket Developer Guide

Note

In order to learn more about input data see the Inputs section.

The hyperparameters would then be loaded into the hybrid job script using the following code:

import json
import os

#Load the Hybrid Job hyperparameters
hp_file = os.environ["AMZN_BRAKET_HP_FILE"]
with open(hp_file, "r") as f:
 hyperparams = json.load(f)

Note

For more information about how to pass information like the input data and the device arn
to the hybrid job script, see this github page.

A couple guides that are very useful for learning about how to use hyperparameters are given by
the QAOA with Amazon Braket Hybrid Jobs and PennyLane and Quantum machine learning in
Amazon Braket Hybrid Jobs tutorials.

Configure the hybrid job instance to run your algorithm script

Depending on your algorithm, you may have different requirements. By default, Amazon Braket
runs your algorithm script on an ml.m5.large instance. However, you can customize this instance
type when you create a hybrid job using the following import and configuration argument.

from braket.jobs.config import InstanceConfig

job = AwsQuantumJob.create(
 ...
 instance_config=InstanceConfig(instanceType="ml.p3.8xlarge"), # Use NVIDIA Tesla
 V100 instance with 4 GPUs.
 ...
),

Configure the hybrid job instance to run your algorithm script 190

https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/qcbm/qcbm.py
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/2_Using_PennyLane_with_Braket_Hybrid_Jobs/Using_PennyLane_with_Braket_Hybrid_Jobs.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs.ipynb

Amazon Braket Developer Guide

If you are running an embedded simulation and have specified a local device in the device
configuration, you will be able to additionally request more than one instance in the
InstanceConfig by specifying the instanceCount and setting it to be greater than one. The upper
limit is 5. For instance, you can choose 3 instances as follows.

from braket.jobs.config import InstanceConfig
job = AwsQuantumJob.create(
 ...
 instance_config=InstanceConfig(instanceType="ml.p3.8xlarge", instanceCount=3), #
 Use 3 NVIDIA Tesla V100
 ...
),

When you use multiple instances, consider distributing your hybrid job using the data parallel
feature. See the following example notebook for more details on how-to see this Braket example.

The following three tables list the available instance types and specs for standard, compute
optimized, and accelerated computing instances.

Note

To view the default classical compute instance quotas for Hybrid Jobs, see this page.

Standard Instances vCPU Memory

ml.m5.large (default) 2 8 GiB

ml.m5.xlarge 4 16 GiB

ml.m5.2xlarge 8 32 GiB

ml.m5.4xlarge 16 64 GiB

ml.m5.12xlarge 48 192 GiB

ml.m5.24xlarge 96 384 GiB

ml.m4.xlarge 4 16 GiB

Configure the hybrid job instance to run your algorithm script 191

https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/5_Parallelize_training_for_QML/Parallelize_training_for_QML.ipynb

Amazon Braket Developer Guide

Standard Instances vCPU Memory

ml.m4.2xlarge 8 32 GiB

ml.m4.4xlarge 16 64 GiB

ml.m4.10xlarge 40 256 GiB

Compute Optimized
Instances

vCPU Memory

ml.c4.xlarge 4 7.5 GiB

ml.c4.2xlarge 8 15 GiB

ml.c4.4xlarge 16 30 GiB

ml.c4.8xlarge 36 192 GiB

ml.c5.xlarge 4 8 GiB

ml.c5.2xlarge 8 16 GiB

ml.c5.4xlarge 16 32 GiB

ml.c5.9xlarge 36 72 GiB

ml.c5.18xlarge 72 144 GiB

ml.c5n.xlarge 4 10.5 GiB

ml.c5n.2xlarge 8 21 GiB

ml.c5n.4xlarge 16 42 GiB

ml.c5n.9xlarge 36 96 GiB

ml.c5n.18xlarge 72 192 GiB

Configure the hybrid job instance to run your algorithm script 192

Amazon Braket Developer Guide

Accelerated Compting
Instances

vCPU Memory

ml.p2.xlarge 4 61 GiB

ml.p2.8xlarge 32 488 GiB

ml.p2.16xlarge 64 732 GiB

ml.p3.2xlarge 8 61 GiB

ml.p3.8xlarge 32 244 GiB

ml.p3.16xlarge 64 488 GiB

ml.g4dn.xlarge 4 16 GiB

ml.g4dn.2xlarge 8 32 GiB

ml.g4dn.4xlarge 16 64 GiB

ml.g4dn.8xlarge 32 128 GiB

ml.g4dn.12xlarge 48 192 GiB

ml.g4dn.16xlarge 64 256 GiB

Note

p3 instances are not available in us-west-1. If your hybrid job is unable to provision
requested ML compute capacity, use another Region.

Each instance uses a default configuration of data storage (SSD) of 30 GB. But you can adjust the
storage in the same way that you configure the instanceType. The following example shows how
to increase the total storage to 50 GB.

from braket.jobs.config import InstanceConfig

job = AwsQuantumJob.create(

Configure the hybrid job instance to run your algorithm script 193

Amazon Braket Developer Guide

 ...
 instance_config=InstanceConfig(
 instanceType="ml.p3.8xlarge",
 volumeSizeInGb=50,
),
 ...
),

Cancel a Hybrid Job

You may need to cancel a hybrid job in a non-terminal state. This can be done either in the console
or with code.

To cancel your hybrid job in the console, select the hybrid job to cancel from the Hybrid Jobs page
and then select Cancel hybrid job from the Actions dropdown menu.

To confirm the cancellation, enter cancel into the input field when prompted and then select OK.

Cancel a Hybrid Job 194

Amazon Braket Developer Guide

To cancel your hybrid job using code from the Braket Python SDK, use the job_arn to identify the
hybrid job and then call the cancel command on it as shown in following code.

job = AwsQuantumJob(arn=job_arn)
job.cancel()

The cancel command terminates the classical hybrid job container immediately and does a best
effort to cancel all of the related quantum tasks that are still in a non-terminal state.

Using parametric compilation to speed up Hybrid Jobs

Amazon Braket supports parametric compilation on certain QPUs. This enables you to reduce
the overhead associated with the computationally expensive compilation step by compiling a
circuit only once and not for every iteration in your hybrid algorithm. This can improve runtimes
dramatically for Hybrid Jobs, since you avoid the need to recompile your circuit at each step.
Just submit parametrized circuits to one of our supported QPUs as a Braket Hybrid Job. For long
running hybrid jobs, Braket automatically uses the updated calibration data from the hardware
provider when compiling your circuit to ensure the highest quality results.

To create a parametric circuit, you first need to provide parameters as inputs in your algorithm
script. In this example, we use a small parametric circuit and ignore any classical processing

Using parametric compilation to speed up Hybrid Jobs 195

Amazon Braket Developer Guide

between each iteration. For typical workloads, you would submit many circuits in batch and
perform classical processing such as updating the parameters in each iteration.

import os

from braket.aws import AwsDevice
from braket.circuits import Circuit, FreeParameter

def start_here():

 print("Test job started.")

 # Use the device declared in the job script
 device = AwsDevice(os.environ["AMZN_BRAKET_DEVICE_ARN"])

 circuit = Circuit().rx(0, FreeParameter("theta"))
 parameter_list = [0.1, 0.2, 0.3]

 for parameter in parameter_list:
 result = device.run(circuit, shots=1000, inputs={"theta": parameter})

 print("Test job completed.")

You can submit the algorithm script to run as a Hybrid Job with the following job script. When
running the Hybrid Job on a QPU that supports parametric compilation, the circuit is compiled
only on the first run. In following runs, the compiled circuit is reused, increasing the runtime
performance of the Hybrid Job without any additional lines of code.

from braket.aws import AwsQuantumJob

job = AwsQuantumJob.create(
 device=device_arn,
 source_module="algorithm_script.py",
)

Note

Parametric compilation is supported on all superconducting, gate-based QPUs from Rigetti
Computing with the exception of pulse level programs.

Using parametric compilation to speed up Hybrid Jobs 196

Amazon Braket Developer Guide

Use PennyLane with Amazon Braket

Hybrid algorithms are algorithms that contain both classical and quantum instructions. The
classical instructions are ran on classical hardware (an EC2 instance or your laptop), and the
quantum instructions are ran either on a simulator or on a quantum computer. We recommend
that you run hybrid algorithms using the Hybrid Jobs feature. For more information, see When to
use Amazon Braket Jobs.

Amazon Braket enables you to set up and run hybrid quantum algorithms with the assistance of
the Amazon Braket PennyLane plugin, or with the Amazon Braket Python SDK and example
notebook repositories. Amazon Braket example notebooks, based on the SDK, enable you to set
up and run certain hybrid algorithms without the PennyLane plugin. However, we recommend
PennyLane because it provides a richer experience.

About hybrid quantum algorithms

Hybrid quantum algorithms are important to the industry today because contemporary quantum
computing devices generally produce noise, and therefore, errors. Every quantum gate added to
a computation increases the chance of adding noise; therefore, long-running algorithms can be
overwhelmed by noise, which results in faulty computation.

Pure quantum algorithms such as Shor’s (Quantum Phase Estimation example) or Grover’s (Grover’s
example) require thousands, or millions, of operations. For this reason, they can be impractical
for existing quantum devices, which are generally referred to as noisy intermediate-scale quantum
(NISQ) devices.

In hybrid quantum algorithms, quantum processing units (QPUs) work as co-processors for classic
CPUs, specifically to speed up certain calculations in a classical algorithm. Circuit executions
become much shorter, within reach of the capabilities of today’s devices.

Amazon Braket with PennyLane

Amazon Braket provides support for PennyLane, an open-source software framework built around
the concept of quantum differentiable programming. You can use this framework to train quantum
circuits in the same way that you would train a neural network to find solutions for computational
problems in quantum chemistry, quantum machine learning, and optimization.

The PennyLane library provides interfaces to familiar machine learning tools, including PyTorch
and TensorFlow, to make training quantum circuits quick and intuitive.

Use PennyLane with Amazon Braket 197

https://github.com/amazon-braket/amazon-braket-examples/tree/main/examples/advanced_circuits_algorithms/Quantum_Phase_Estimation
https://github.com/aws/amazon-braket-examples/tree/main/examples/advanced_circuits_algorithms/Grover
https://github.com/aws/amazon-braket-examples/tree/main/examples/advanced_circuits_algorithms/Grover
https://pennylane.ai

Amazon Braket Developer Guide

• The PennyLane Library -– PennyLane is pre-installed in Amazon Braket notebooks. For access
to Amazon Braket devices from PennyLane, open a notebook and import the PennyLane library
with the following command.

import pennylane as qml

Tutorial notebooks help you get started quickly. Alternatively, you can use PennyLane on Amazon
Braket from an IDE of your choice.

• The Amazon Braket PennyLane plugin — To use your own IDE, you can install the Amazon
Braket PennyLane plugin manually. The plugin connects PennyLane with the Amazon Braket
Python SDK, so you can run circuits in PennyLane on Amazon Braket devices. To install the the
PennyLane plugin, use the following command.

pip install amazon-braket-pennylane-plugin

The following example demonstrates how to set up access to Amazon Braket devices in PennyLane:

to use SV1
import pennylane as qml
sv1 = qml.device("braket.aws.qubit", device_arn="arn:aws:braket:::device/quantum-
simulator/amazon/sv1", wires=2)

to run a circuit:
@qml.qnode(sv1)
def circuit(x):
 qml.RZ(x, wires=0)
 qml.CNOT(wires=[0,1])
 qml.RY(x, wires=1)
 return qml.expval(qml.PauliZ(1))

result = circuit(0.543)

#To use the local sim:
local = qml.device("braket.local.qubit", wires=2)

For tutorial examples and more information about PennyLane, see the Amazon Braket examples
repository.

Amazon Braket with PennyLane 198

https://github.com/aws/amazon-braket-sdk-python
https://github.com/aws/amazon-braket-sdk-python
https://github.com/aws/amazon-braket-examples/tree/main/examples/pennylane
https://github.com/aws/amazon-braket-examples/tree/main/examples/pennylane

Amazon Braket Developer Guide

The Amazon Braket PennyLane plugin enables you to switch between Amazon Braket QPU and
embedded simulator devices in PennyLane with a single line of code. It offers two Amazon Braket
quantum devices to work with PennyLane:

• braket.aws.qubit for running with the Amazon Braket service’s quantum devices, including
QPUs and simulators

• braket.local.qubit for running with the Amazon Braket SDK’s local simulator

The Amazon Braket PennyLane plugin is open source. You can install it from the PennyLane Plugin
GitHub repository.

For more information about PennyLane, see the documentation on the PennyLane website.

Hybrid algorithms in Amazon Braket example notebooks

Amazon Braket does provide a variety of example notebooks that do not rely on the PennyLane
plugin for running hybrid algorithms. You can get started with any of these Amazon Braket
hybrid example notebooks that illustrate variational methods, such as the Quantum Approximate
Optimization Algorithm (QAOA) or Variational Quantum Eigensolver (VQE).

The Amazon Braket example notebooks rely on the Amazon Braket Python SDK. The SDK provides
a framework to interact with quantum computing hardware devices through Amazon Braket. It
is an open source library that is designed to assist you with the quantum portion of your hybrid
workflow.

You can explore Amazon Braket further with our example notebooks.

Hybrid algorithms with embedded PennyLane simulators

Amazon Braket Hybrid Jobs now comes with high performance CPU- and GPU-based embedded
simulators from PennyLane. This family of embedded simulators can be embedded directly within
your hybrid jobs container and includes the fast state-vector lightning.qubit simulator, the
lightning.gpu simulator accelerated using NVIDIA’s cuQuantum library, and others. These
embedded simulators are ideally suited for variational algorithms such as quantum machine
learning that can benefit from advanced methods such as the adjoint differentiation method. You
can run these embedded simulators on one or multiple CPU or GPU instances.

Hybrid algorithms in Amazon Braket example notebooks 199

https://github.com/aws/amazon-braket-pennylane-plugin-python
https://github.com/aws/amazon-braket-pennylane-plugin-python
https://pennylane.ai
https://github.com/aws/amazon-braket-examples/tree/main/examples/hybrid_quantum_algorithms
https://github.com/aws/amazon-braket-examples/tree/main/examples/hybrid_quantum_algorithms
https://github.com/aws/amazon-braket-sdk-python
https://github.com/aws/amazon-braket-examples
https://github.com/PennyLaneAI/pennylane-lightning
https://developer.nvidia.com/cuquantum-sdk
https://pennylane.readthedocs.io/en/stable/introduction/interfaces.html#simulation-based-differentiation

Amazon Braket Developer Guide

With Hybrid Jobs, you can now run your variational algorithm code using a combination of a
classical co-processor and a QPU, an Amazon Braket on-demand simulator such as SV1, or directly
using the embedded simulator from PennyLane.

The embedded simulator is already available with the Hybrid Jobs container, you simply need to
decorate your main Python function with the @hybrid_job decorator. To use the PennyLane
lightning.gpu simulator, you also need to specify a GPU instance in the InstanceConfig as
shown in the following code snippet:

import pennylane as qml
from braket.jobs import hybird_job
from braket.jobs.config import InstanceConfig

@hybrid_job(device="local:pennylane/lightning.gpu",
 instance_config=InstanceConfig(instanceType="ml.p3.8xlarge"))
def function(wires):
 dev = qml.device("lightning.gpu", wires=wires)
 ...

Refer to the example notebook to get started with using a PennyLane embedded simulator with
Hybrid Jobs.

Adjoint gradient on PennyLane with Amazon Braket simulators

With the PennyLane plugin for Amazon Braket, you can compute gradients using the adjoint
differentiation method when running on the local state vector simulator or SV1.

Note: To use the adjoint differentiation method, you must specify diff_method='device' in
your qnode, and not diff_method='adjoint'. See the following example.

device_arn = "arn:aws:braket:::device/quantum-simulator/amazon/sv1"
dev = qml.device("braket.aws.qubit", wires=wires, shots=0, device_arn=device_arn)

@qml.qnode(dev, diff_method="device")
def cost_function(params):
 circuit(params)
 return qml.expval(cost_h)

gradient = qml.grad(circuit)
initial_gradient = gradient(params0)

Adjoint gradient on PennyLane with Amazon Braket simulators 200

https://github.com/aws/amazon-braket-examples/blob/main/examples/hybrid_jobs/4_Embedded_simulators_in_Braket_Hybrid_Jobs/Embedded_simulators_in_Braket_Hybrid_Jobs.ipynb

Amazon Braket Developer Guide

Note

Currently, PennyLane will compute grouping indices for QAOA Hamiltonians and use
them to split the Hamiltonian into multiple expectation values. If you want to use
SV1’s adjoint differentiation capability when running QAOA from PennyLane, you
will need reconstruct the cost Hamiltonian by removing the grouping indices, like so:
cost_h, mixer_h = qml.qaoa.max_clique(g, constrained=False) cost_h =
qml.Hamiltonian(cost_h.coeffs, cost_h.ops)

Use Amazon Braket Hybrid Jobs and PennyLane to run a QAOA
algorithm

In this section, you’ll use what you’ve learned to write an actual hybrid program using PennyLane
with parametric compilation. You use the algorithm script to address a Quantum Approximate
Optimization Algorithm (QAOA) problem. The program creates a cost function corresponding to
a classical Max Cut optimization problem, specifies a parametrized quantum circuit, and uses a
simple gradient descent method to optimize the parameters so that the cost function is minimized.
In this example, we generate the problem graph in the algorithm script for simplicity, but for more
typical use cases the best practice is to provide the problem specification through a dedicated
channel in the input data configuration. The flag parametrize_differentiable defaults to
True so you automatically get the benefits of improved runtime performance from parametric
compilation on supported QPUs.

import os
import json
import time

from braket.jobs import save_job_result
from braket.jobs.metrics import log_metric

import networkx as nx
import pennylane as qml
from pennylane import numpy as np
from matplotlib import pyplot as plt

def init_pl_device(device_arn, num_nodes, shots, max_parallel):
 return qml.device(
 "braket.aws.qubit",

Use Amazon Braket Hybrid Jobs and PennyLane to run a QAOA algorithm 201

Amazon Braket Developer Guide

 device_arn=device_arn,
 wires=num_nodes,
 shots=shots,
 # Set s3_destination_folder=None to output task results to a default folder
 s3_destination_folder=None,
 parallel=True,
 max_parallel=max_parallel,
 parametrize_differentiable=True, # This flag is True by default.
)

def start_here():
 input_dir = os.environ["AMZN_BRAKET_INPUT_DIR"]
 output_dir = os.environ["AMZN_BRAKET_JOB_RESULTS_DIR"]
 job_name = os.environ["AMZN_BRAKET_JOB_NAME"]
 checkpoint_dir = os.environ["AMZN_BRAKET_CHECKPOINT_DIR"]
 hp_file = os.environ["AMZN_BRAKET_HP_FILE"]
 device_arn = os.environ["AMZN_BRAKET_DEVICE_ARN"]

 # Read the hyperparameters
 with open(hp_file, "r") as f:
 hyperparams = json.load(f)

 p = int(hyperparams["p"])
 seed = int(hyperparams["seed"])
 max_parallel = int(hyperparams["max_parallel"])
 num_iterations = int(hyperparams["num_iterations"])
 stepsize = float(hyperparams["stepsize"])
 shots = int(hyperparams["shots"])

 # Generate random graph
 num_nodes = 6
 num_edges = 8
 graph_seed = 1967
 g = nx.gnm_random_graph(num_nodes, num_edges, seed=graph_seed)

 # Output figure to file
 positions = nx.spring_layout(g, seed=seed)
 nx.draw(g, with_labels=True, pos=positions, node_size=600)
 plt.savefig(f"{output_dir}/graph.png")

 # Set up the QAOA problem
 cost_h, mixer_h = qml.qaoa.maxcut(g)

 def qaoa_layer(gamma, alpha):

Use Amazon Braket Hybrid Jobs and PennyLane to run a QAOA algorithm 202

Amazon Braket Developer Guide

 qml.qaoa.cost_layer(gamma, cost_h)
 qml.qaoa.mixer_layer(alpha, mixer_h)

 def circuit(params, **kwargs):
 for i in range(num_nodes):
 qml.Hadamard(wires=i)
 qml.layer(qaoa_layer, p, params[0], params[1])

 dev = init_pl_device(device_arn, num_nodes, shots, max_parallel)

 np.random.seed(seed)
 cost_function = qml.ExpvalCost(circuit, cost_h, dev, optimize=True)
 params = 0.01 * np.random.uniform(size=[2, p])

 optimizer = qml.GradientDescentOptimizer(stepsize=stepsize)
 print("Optimization start")

 for iteration in range(num_iterations):
 t0 = time.time()

 # Evaluates the cost, then does a gradient step to new params
 params, cost_before = optimizer.step_and_cost(cost_function, params)
 # Convert cost_before to a float so it's easier to handle
 cost_before = float(cost_before)

 t1 = time.time()

 if iteration == 0:
 print("Initial cost:", cost_before)
 else:
 print(f"Cost at step {iteration}:", cost_before)

 # Log the current loss as a metric
 log_metric(
 metric_name="Cost",
 value=cost_before,
 iteration_number=iteration,
)

 print(f"Completed iteration {iteration + 1}")
 print(f"Time to complete iteration: {t1 - t0} seconds")

 final_cost = float(cost_function(params))
 log_metric(

Use Amazon Braket Hybrid Jobs and PennyLane to run a QAOA algorithm 203

Amazon Braket Developer Guide

 metric_name="Cost",
 value=final_cost,
 iteration_number=num_iterations,
)

 # We're done with the hybrid job, so save the result.
 # This will be returned in job.result()
 save_job_result({"params": params.numpy().tolist(), "cost": final_cost})

Note

Parametric compilation is supported on all superconducting, gate-based QPUs from Rigetti
Computing with the exception of pulse level programs.

Accelerate your hybrid workloads with embedded simulators
from PennyLane

Let’s look at how you can use embedded simulators from PennyLane on Amazon Braket Hybrid
Jobs to run hybrid workloads. Pennylane’s GPU-based embedded simulator, lightning.gpu, uses
the Nvidia cuQuantum library to accelerate circuit simulations. The embedded GPU simulator is
pre-configured in all of the Braket job containers that users can use out of the box. In this page, we
show you how to use lightning.gpu to speed up your hybrid workloads.

Using lightning.gpu for Quantum Approximate Optimization
Algorithm workloads

Consider the Quantum Approximate Optimization Algorithm (QAOA) examples from this notebook.
To select an embedded simulator, you specify the device argument to be a string of the form:
"local:<provider>/<simulator_name>". For example, you would set "local:pennylane/
lightning.gpu" for lightning.gpu. The device string you give to the Hybrid Job when you
launch is passed to the job as the environment variable "AMZN_BRAKET_DEVICE_ARN".

device_string = os.environ["AMZN_BRAKET_DEVICE_ARN"]
prefix, device_name = device_string.split("/")
device = qml.device(simulator_name, wires=n_wires)

Accelerate your hybrid workloads with embedded simulators from PennyLane 204

https://developer.nvidia.com/cuquantum-sdk
https://docs.aws.amazon.com/braket/latest/developerguide/braket-jobs-script-environment.html?tag=local002-20
https://github.com/amazon-braket/amazon-braket-examples/tree/main/examples/hybrid_jobs/2_Using_PennyLane_with_Braket_Hybrid_Jobs

Amazon Braket Developer Guide

In this page, let’s compare the two embedded PennyLane state vector simulators
lightning.qubit (which is CPU-based) and lightning.gpu (which is GPU-based). You’ll need
to provide the simulators with some custom gate decompositions in order to compute various
gradients.

Now you’re ready to prepare the hybrid job launching script. You’ll run the QAOA algorithm using
two instance types: m5.2xlarge and p3.2xlarge. The m5.2xlarge instance type is comparable
to a standard developer laptop. The p3.2xlarge is an accelerated computing instance that has a
single NVIDIA Volta GPU with 16GB of memory.

The hyperparameters for all your hybrid jobs will be the same. All you need to do to try out
different instances and simulators is change two lines as follows.

Specify device that the hybrid job will primarily be targeting
device = "local:pennylane/lightning.qubit"
Run on a CPU based instance with about as much power as a laptop
instance_config = InstanceConfig(instanceType='ml.m5.2xlarge')

or:

Specify device that the hybrid job will primarily be targeting
device = "local:pennylane/lightning.gpu"
Run on an inexpensive GPU based instance
instance_config = InstanceConfig(instanceType='ml.p3.2xlarge')

Note

If you specify the instance_config as using a GPU-based instance, but choose the
device to be the embedded CPU-based simulator (lightning.qubit), the GPU will not
be used. Make sure to use the embedded GPU-based simulator if you wish to target the
GPU!

First, you can create two hybrid jobs and solve Max-Cut with QAOA on a graph with 18 vertices.
This translates to an 18-qubit circuit—relatively small and feasible to run quickly on your laptop or
the m5.2xlarge instance.

num_nodes = 18

Using lightning.gpu for Quantum Approximate Optimization Algorithm workloads 205

Amazon Braket Developer Guide

num_edges = 24
seed = 1967

graph = nx.gnm_random_graph(num_nodes, num_edges, seed=seed)

And similarly for the p3 job
m5_job = AwsQuantumJob.create(
 device=device,
 source_module="qaoa_source",
 job_name="qaoa-m5-" + str(int(time.time())),
 image_uri=image_uri,
 # Relative to the source_module
 entry_point="qaoa_source.qaoa_algorithm_script",
 copy_checkpoints_from_job=None,
 instance_config=instance_config,
 # general parameters
 hyperparameters=hyperparameters,
 input_data={"input-graph": input_file_path},
 wait_until_complete=True,
)

The mean iteration time for the m5.2xlarge instance is about 25 seconds, while for the
p3.2xlarge instance it’s about 12 seconds. For this 18-qubit workflow, the GPU instance gives
us a 2x speedup. If you look at the Amazon Braket Hybrid Jobs pricing page, you can see that the
cost per minute for an m5.2xlarge instance is $0.00768, while for the p3.2xlarge instance it’s
$0.06375. To run for 5 total iterations, as you did here, would cost $0.016 using the CPU instance
or $0.06375 using the GPU instance — both pretty inexpensive!

Now let’s make the problem harder, and try solving a Max-Cut problem on a 24-vertex graph,
which will translate to 24 qubits. Run the hybrid jobs again on the same two instances and
compare the cost.

Note

You’ll see that the time to run this hybrid job on the CPU instance may be about five hours!

num_nodes = 24
num_edges = 36
seed = 1967

Using lightning.gpu for Quantum Approximate Optimization Algorithm workloads 206

https://aws.amazon.com/braket/pricing/?tag=local002-20

Amazon Braket Developer Guide

graph = nx.gnm_random_graph(num_nodes, num_edges, seed=seed)

And similarly for the p3 job
m5_big_job = AwsQuantumJob.create(
 device=device,
 source_module="qaoa_source",
 job_name="qaoa-m5-big-" + str(int(time.time())),
 image_uri=image_uri,
 # Relative to the source_module
 entry_point="qaoa_source.qaoa_algorithm_script",
 copy_checkpoints_from_job=None,
 instance_config=instance_config,
 # general parameters
 hyperparameters=hyperparameters,
 input_data={"input-graph": input_file_path},
 wait_until_complete=True,
)

The mean iteration time for the m5.2xlarge instance is roughly an hour, while for the
p3.2xlarge instance it’s roughly two minutes. For this larger problem, the GPU instance is an
order of magnitude faster! All you had to do to benefit from this speedup was to change two lines
of code, swapping out the instance type and the local simulator used. To run for 5 total iterations,
as was done here, would cost about $2.27072 using the CPU instance or about $0.775625 using
the GPU instance. The CPU usage is not only more expensive, but also takes more time to run.
Accelerating this workflow with a GPU instance available on AWS, using PennyLane’s embedded
simulator backed by NVIDIA CuQuantum, allows you to run workflows with intermediate qubit
counts (between 20 and 30) for less total cost and in less time. This means you can experiment
with quantum computing even for problems that are too big to run quickly on your laptop or a
similarly-sized instance.

Quantum machine learning and data parallelism

If your workload type is quantum machine learning (QML) that trains on datasets, you can further
accelerate your workload using data parallelism. In QML, the model contains one or more quantum
circuits. The model may or may not also contain classical neural nets. When training the model
with the dataset, the parameters in the model are updated to minimize the loss function. A loss
function is usually defined for a single data point, and the total loss for the average loss over the
whole dataset. In QML, the losses are usually computed in serial before averaging to total loss for
gradient computations. This procedure is time consuming, especially when there are hundreds of
data points.

Quantum machine learning and data parallelism 207

Amazon Braket Developer Guide

Because the loss from one data point does not depend on other data points, the losses can be
evaluated in parallel! Losses and gradients associated with different data points can be evaluated
at the same time. This is known as data parallelism. With SageMaker’s distributed data parallel
library, Amazon Braket Hybrid Jobs make it easier for you to leverage data parallelism to accelerate
your training.

Consider the following QML workload for data parallelism which uses the Sonar dataset dataset
from the well-known UCI repository as an example for binary classification. The Sonar dataset
have 208 data points each with 60 features that are collected from sonar signals bouncing off
materials. Each data points is either labeled as "M" for mines or "R" for rocks. Our QML model
consists of an input layer, a quantum circuit as a hidden layer, and an output layer. The input and
output layers are classical neural nets implemented in PyTorch. The quantum circuit is integrated
with the PyTorch neural nets using PennyLane’s qml.qnn module. See our example notebooks
for more detail about the workload. Like the QAOA example above, you can harness the power of
GPU by using embedded GPU-based simulators like PennyLane’s lightning.gpu to improve the
performance over embedded CPU-based simulators.

To create a hybrid job, you can call AwsQuantumJob.create and specify the algorithm script,
device, and other configurations through its keyword arguments.

instance_config = InstanceConfig(instanceType='ml.p3.2xlarge')

hyperparameters={"nwires": "10",
 "ndata": "32",
 ...
}

job = AwsQuantumJob.create(
 device="local:pennylane/lightning.gpu",
 source_module="qml_source",
 entry_point="qml_source.train_single",
 hyperparameters=hyperparameters,
 instance_config=instance_config,
 ...
)

In order to use data parallelism, you need to modify few lines of code in the algorithm script
for the SageMaker distributed library to correctly parallelize the training. First, you import the
smdistributed package which does most of the heavy-lifting for distributing your workloads
across multiple GPUs and multiple instances. This package is preconfigured in the Braket PyTorch

Quantum machine learning and data parallelism 208

https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar%2C+Mines+vs.+Rocks%29
https://github.com/aws/amazon-braket-examples

Amazon Braket Developer Guide

and TensorFlow containers. The dist module tells our algorithm script what the total number of
GPUs for the training (world_size) is as well as the rank and local_rank of a GPU core. rank is
the absolute index of a GPU across all instances, while local_rank is the index of a GPU within an
instance. For example, if there are four instances each with eight GPUs allocated for the training,
the rank ranges from 0 to 31 and the local_rank ranges from 0 to 7.

import smdistributed.dataparallel.torch.distributed as dist

dp_info = {
 "world_size": dist.get_world_size(),
 "rank": dist.get_rank(),
 "local_rank": dist.get_local_rank(),
}
batch_size //= dp_info["world_size"] // 8
batch_size = max(batch_size, 1)

Next, you define a DistributedSampler according to the world_size and rank and then pass
it into the data loader. This sampler avoids GPUs accessing the same slice of a dataset.

train_sampler = torch.utils.data.distributed.DistributedSampler(
 train_dataset,
 num_replicas=dp_info["world_size"],
 rank=dp_info["rank"]
)
train_loader = torch.utils.data.DataLoader(
 train_dataset,
 batch_size=batch_size,
 shuffle=False,
 num_workers=0,
 pin_memory=True,
 sampler=train_sampler,
)

Next, you use the DistributedDataParallel class to enable data parallelism.

from smdistributed.dataparallel.torch.parallel.distributed import
 DistributedDataParallel as DDP

model = DressedQNN(qc_dev).to(device)
model = DDP(model)
torch.cuda.set_device(dp_info["local_rank"])

Quantum machine learning and data parallelism 209

Amazon Braket Developer Guide

model.cuda(dp_info["local_rank"])

The above are the changes you need to use data parallelism. In QML, you often want to save
results and print training progress. If each GPU runs the saving and printing command, the log will
be flooded with the repeated information and the results will overwrite each other. To avoid this,
you can only save and print from the GPU that has rank 0.

if dp_info["rank"]==0:
 print('elapsed time: ', elapsed)
 torch.save(model.state_dict(), f"{output_dir}/test_local.pt")
 save_job_result({"last loss": loss_before})

Amazon Braket Hybrid Jobs supports ml.p3.16xlarge instance types for the SageMaker
distributed data parallel library. You configure the instance type through the InstanceConfig
argument in Hybrid Jobs. For the SageMaker distributed data parallel library to know
that data parallelism is enabled, you need to add two additional hyperparameters,
"sagemaker_distributed_dataparallel_enabled" setting to "true" and
"sagemaker_instance_type" setting to the instance type you are using. These two
hyperparameters are used by smdistributed package. Your algorithm script does not need
to explicitly use them. In Amazon Braket SDK, it provides a convenient keyword argument
distribution. With distribution="data_parallel" in hybrid job creation, the Amazon
Braket SDK automatically inserts the two hyperparameters for you. If you use the Amazon Braket
API, you need to include these two hyperparameters.

With the instance and data parallelism configured, you can now submit your hybrid job. There
are 8 GPUs in a ml.p3.16xlarge instance. When you set instanceCount=1 , the workload is
distributed across the 8 GPUs in the instance. When you set instanceCount greater than one,
the workload is distributed across GPUs available in all instances. When using multiple instances,
each instance incurs a charge based on how much time you use it. For example, when you use four
instances, the billable time is four times the run time per instance because there are four instances
running your workloads at the same time.

instance_config = InstanceConfig(instanceType='ml.p3.16xlarge',
 instanceCount=1,
)

hyperparameters={"nwires": "10",
 "ndata": "32",
 ...,

Quantum machine learning and data parallelism 210

Amazon Braket Developer Guide

}

job = AwsQuantumJob.create(
 device="local:pennylane/lightning.gpu",
 source_module="qml_source",
 entry_point="qml_source.train_dp",
 hyperparameters=hyperparameters,
 instance_config=instance_config,
 distribution="data_parallel",
 ...
)

Note

In the above hybrid job creation, train_dp.py is the modified algorithm script for using
data parallelism. Keep in mind that data parallelism only works correctly when you modify
your algorithm script according to the above section. If the data parallelism option is
enabled without a correctly modified algorithm script, the hybrid job may throw errors, or
each GPU may repeatedly process the same data slice, which is inefficient.

Let’s compare the run time and cost in an example where when train a model with a 26-qubit
quantum circuit for the binary classification problem mentioned above. The ml.p3.16xlarge
instance used in this example costs $0.4692 per minute. Without data parallelism, it takes the
simulator about 45 minutes to train the model for 1 epoch (i.e., over 208 data points) and it costs
about $20. With data parallelism across 1 instance and 4 instances, it only takes 6 minutes and
1.5 minutes respectively, which translates to roughly $2.8 for both. By using data parallelism
across 4 instances, you not only improve the run time by 30x, but also reduce costs by an order of
magnitude!

Build and debug a hybrid job with local mode

If you are building a new hybrid algorithm, local mode helps you to debug and test your algorithm
script. Local mode is a feature that allows you to run code you plan to use in Amazon Braket Hybrid
Jobs, but without needing Braket to manage the infrastructure for running the hybrid job. Instead,
you run hybrid jobs locally on your Braket Notebook instance or on a preferred client such as a
laptop or desktop computer. In local mode, you can still send quantum tasks to actual devices, but
you do not get the performance benefits when running against an actual QPU while in local mode.

Build and debug a hybrid job with local mode 211

Amazon Braket Developer Guide

To use local mode, modify AwsQuantumJob to LocalQuantumJob wherever it occurs. For
instance, to run the example from Create your first hybrid job, edit the hybrid job script as follows.

from braket.jobs.local import LocalQuantumJob

job = LocalQuantumJob.create(
 device="arn:aws:braket:::device/quantum-simulator/amazon/sv1",
 source_module="algorithm_script.py",
 entry_point="algorithm_script:start_here",
)

Note

Docker, which is already pre-installed in the Amazon Braket notebooks, needs to be
installed in your local environment to use this feature. Instructions for installing Docker can
be found here. In addition, not all parameters are supported in local mode.

Bring your own container (BYOC)

Amazon Braket Hybrid Jobs provides three pre-built containers for running code in different
environments. If one of these containers supports your use case, you only have to provide your
algorithm script when you create a hybrid job. Minor missing dependencies can be added from your
algorithm script or from a requirements.txt file using pip.

If none of these containers support your use case, or if you wish to expand on them, Braket Hybrid
Jobs supports running hybrid jobs with your own custom Docker container image, or bring your
own container (BYOC). But before we dive in, let’s make sure it’s actually the right feature for your
use case.

When is bringing my own container the right decision?

Bringing your own container (BYOC) to Braket Hybrid Jobs offers the flexibility to use your own
software by installing it in a packaged environment. Depending on your specific needs, there may
be ways to achieve the same flexibility without having to go through the full BYOC Docker build -
Amazon ECR upload - custom image URI cycle.

Bring your own container (BYOC) 212

https://docs.docker.com/get-docker/

Amazon Braket Developer Guide

Note

BYOC may not be the right choice if you want to add a small number of additional Python
packages (generally fewer than 10) which are publicly available. For example, if you're using
PyPi.

In this case, you can use one of the pre-built Braket images, and then include a
requirements.txt file in your source directory at the job submission. The file is automatically
read, and pip will install the packages with the specified versions as normal. If you're installing
a large number of packages, the runtime of your jobs may be substantially increased. Check the
Python and, if applicable, CUDA version of the prebuilt container you want to use to test if your
software will work.

BYOC is necessary when you want to use a non-Python language (like C++ or Rust) for your job
script, or if you want to use a Python version not available through the Braket pre-built containers.
It’s also a good choice if:

• You're using software with a license key, and you need to authenticate that key against a
licensing server to run the software. With BYOC, you can embed the license key in your Docker
image and include code to authenticate it.

• You're using software that isn’t publicly available. For example, the software is hosted on a
private GitLab or GitHub repository that you need a particular SSH key to access.

• You need to install a large suite of software that isn’t packaged in the Braket provided
containers. BYOC will allow you to eliminate long startup times for your hybrid jobs containers
due to software installation.

BYOC also enables you to make your custom SDK or algorithm available to customers by building
a Docker container with your software and making it available to your users. You can do this by
setting appropriate permissions in Amazon ECR.

Note

You must comply with all applicable software licenses.

When is bringing my own container the right decision? 213

Amazon Braket Developer Guide

Recipe for bringing your own container

In this section, we provide a step-by-step guide of what you’ll need to bring your own container
(BYOC) to Braket Hybrid Jobs — the scripts, files, and steps to combine them in order to get up and
running with your custom Docker images. We provide recipes for two common cases:

1. Install additional software in a Docker image and use only Python algorithm scripts in your jobs.

2. Use algorithm scripts written in a non-Python language with Hybrid Jobs, or a CPU architecture
besides x86.

Defining the container entry script is more complex for case 2.

When Braket runs your Hybrid Job, it launches the requested number and type of Amazon EC2
instances, then runs the Docker image specified by the image URI input to job creation on them.
When using the BYOC feature, you specify an image URI hosted in a private Amazon ECR repository
that you have Read access to. Braket Hybrid Jobs uses that custom image to run the job.

The specific components you need to build a Docker image that can be used with Hybrid Jobs.
If you’re unfamiliar with writing and building Dockerfiles, we suggest you refer to the
Dockerfile documentation and the Amazon ECR CLI documentation as needed while you read these
instructions.

Here’s an overview of what you’ll need:

• A base image for your Dockerfile

• (Optional) A modified container entry point script

• A Dockerfile that installs any necessary software and includes the container script

A base image for your Dockerfile

If you are using Python and want to install software on top of what’s provided in the Braket
provided containers, an option for a base image is one of the Braket container images, hosted in
our GitHub repo and on Amazon ECR. You will need to authenticate to Amazon ECR to pull the
image and build on top of it. For example, the first line of your BYOC Docker file could be: FROM
[IMAGE_URI_HERE]

Recipe for bringing your own container 214

https://docs.aws.amazon.com/AmazonECR/latest/userguide/Repositories.html
https://docs.docker.com/engine/reference/builder/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html
https://github.com/amazon-braket/amazon-braket-containers
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html#cli-authenticate-registry

Amazon Braket Developer Guide

Next, fill out the rest of the Dockerfile to install and set up the software that you want to add to
the container. The pre-built Braket images will already contain the appropriate container entry
point script, so you don’t need to worry about including that.

If you want to use a non-Python language, such as C++, Rust, or Julia, or if you want to build an
image for a non-x86 CPU architecture, like ARM, you may need to build on top of a barebones
public image. You can find many such images at the Amazon Elastic Container Registry Public
Gallery. Make sure you choose one that is appropriate for the CPU architecture, and if necessary,
the GPU you want to use.

(Optional) A modified container entry point script

Note

If you're only adding additional software to a pre-built Braket image, you can skip this
section.

To run non-Python code as part of your hybrid job, you’ll need to modify the Python script which
defines the container entry point. For example, the braket_container.py python script on
the Amazon Braket Github . This is the script the images pre-built by Braket use to launch your
algorithm script and set appropriate environment variables. The container entry point script itself
must be in Python, but can launch non-Python scripts. In the pre-built example, you can see that
Python algorithm scripts are launched either as a Python subprocess or as a fully new process. By
modifying this logic, you can enable the entry point script to launch non-Python algorithm scripts.
For example, you could modify thekick_off_customer_script() function to launch Rust
processes dependent on the file extension ending.

You can also choose to write a completely new braket_container.py. It should copy input
data, source archives, and other necessary files from Amazon S3 into the container, and define the
appropriate environment variables.

Recipe for bringing your own container 215

https://gallery.ecr.aws/
https://gallery.ecr.aws/
https://github.com/amazon-braket/amazon-braket-containers/blob/main/src/braket_container.py
https://github.com/amazon-braket/amazon-braket-containers/blob/main/src/braket_container.py
https://github.com/amazon-braket/amazon-braket-containers/blob/main/src/braket_container.py#L274
https://github.com/amazon-braket/amazon-braket-containers/blob/main/src/braket_container.py#L257
https://github.com/amazon-braket/amazon-braket-containers/blob/main/src/braket_container.py#L139

Amazon Braket Developer Guide

A Dockerfile that installs any necessary software and includes the container
script

Note

If you use a pre-built Braket image as your Docker base image, the container script is
already present.

If you created a modified container script in the previous step, you'll need to copy it into the
container and define the environment variable SAGEMAKER_PROGRAM to braket_container.py,
or what you have named your new container entry point script.

The following is an example of a Dockerfile that allows you to use Julia on GPU-accelerated
Jobs instances:

FROM nvidia/cuda:12.2.0-devel-ubuntu22.04

 ARG DEBIAN_FRONTEND=noninteractive
 ARG JULIA_RELEASE=1.8
 ARG JULIA_VERSION=1.8.3

 ARG PYTHON=python3.11
 ARG PYTHON_PIP=python3-pip
 ARG PIP=pip

 ARG JULIA_URL = https://julialang-s3.julialang.org/bin/linux/x64/${JULIA_RELEASE}/
 ARG TAR_NAME = julia-${JULIA_VERSION}-linux-x86_64.tar.gz

 ARG PYTHON_PKGS = # list your Python packages and versions here

 RUN curl -s -L ${JULIA_URL}/${TAR_NAME} | tar -C /usr/local -x -z --strip-components=1
 -f -

 RUN apt-get update \

Recipe for bringing your own container 216

Amazon Braket Developer Guide

 && apt-get install -y --no-install-recommends \

 build-essential \

 tzdata \

 openssh-client \

 openssh-server \

 ca-certificates \

 curl \

 git \

 libtemplate-perl \

 libssl1.1 \

 openssl \

 unzip \

 wget \

 zlib1g-dev \

 ${PYTHON_PIP} \

 ${PYTHON}-dev \

 RUN ${PIP} install --no-cache --upgrade ${PYTHON_PKGS}

 RUN ${PIP} install --no-cache --upgrade sagemaker-training==4.1.3

 # Add EFA and SMDDP to LD library path
 ENV LD_LIBRARY_PATH="/opt/conda/lib/python${PYTHON_SHORT_VERSION}/site-packages/
smdistributed/dataparallel/lib:$LD_LIBRARY_PATH"

Recipe for bringing your own container 217

Amazon Braket Developer Guide

 ENV LD_LIBRARY_PATH=/opt/amazon/efa/lib/:$LD_LIBRARY_PATH

 # Julia specific installation instructions
 COPY Project.toml /usr/local/share/julia/environments/v${JULIA_RELEASE}/
 RUN JULIA_DEPOT_PATH=/usr/local/share/julia \

 julia -e 'using Pkg; Pkg.instantiate(); Pkg.API.precompile()'
 # generate the device runtime library for all known and supported devices
 RUN JULIA_DEPOT_PATH=/usr/local/share/julia \

 julia -e 'using CUDA; CUDA.precompile_runtime()'

 # Open source compliance scripts
 RUN HOME_DIR=/root \

 && curl -o ${HOME_DIR}/oss_compliance.zip https://aws-dlinfra-
utilities.s3.amazonaws.com/oss_compliance.zip \

 && unzip ${HOME_DIR}/oss_compliance.zip -d ${HOME_DIR}/ \

 && cp ${HOME_DIR}/oss_compliance/test/testOSSCompliance /usr/local/bin/
testOSSCompliance \

 && chmod +x /usr/local/bin/testOSSCompliance \

 && chmod +x ${HOME_DIR}/oss_compliance/generate_oss_compliance.sh \

 && ${HOME_DIR}/oss_compliance/generate_oss_compliance.sh ${HOME_DIR} ${PYTHON} \

 && rm -rf ${HOME_DIR}/oss_compliance*

 # Copying the container entry point script
 COPY braket_container.py /opt/ml/code/braket_container.py
 ENV SAGEMAKER_PROGRAM braket_container.py

This example, downloads and runs scripts provided by AWS to ensure compliance with all relevant
Open-Source licenses. For example, by properly attributing any installed code governed by an MIT
license.

Recipe for bringing your own container 218

Amazon Braket Developer Guide

If you need to include non-public code, for instance code that is hosted in a private GitHub or
GitLab repository, do not embed SSH keys in the Docker image to access it. Instead, use Docker
Compose when you build to allow Docker to access SSH on the host machine it is built on. For more
information, see the Securely using SSH keys in Docker to access private Github repositories guide.

Building and uploading your Docker image

With a properly defined Dockerfile, you are now ready to follow the steps to create a private
Amazon ECR repository, if one does not already exist. You can also build, tag, and upload your
container image to the repository.

You are ready to build, tag, and push the image. See the Docker build documentation for a full
explanation of options to docker build and some examples.

For the sample file defined above, you could run:

aws ecr get-login-password --region ${your_region} | docker login --username AWS --
password-stdin ${aws_account_id}.dkr.ecr.${your_region}.amazonaws.com
 docker build -t braket-julia .
 docker tag braket-julia:latest ${aws_account_id}.dkr.ecr.${your_region}.amazonaws.com/
braket-julia:latest
 docker push ${aws_account_id}.dkr.ecr.${your_region}.amazonaws.com/braket-julia:latest

Assigning appropriate Amazon ECR permissions

Braket Hybrid Jobs Docker images must be hosted in private Amazon ECR repositories. By default,
a private Amazon ECR repo does not provide read access to the Braket Hybrid Jobs IAM role or
to any other users that want to use your image, such as a collaborator or student. You must set a
repository policy in order to grant the appropriate permissions. In general, only give permission
to those specific users and IAM roles you want to access your images, rather than allowing anyone
with the image URI to pull them.

Running Braket hybrid jobs in your own container

To create a hybrid job with your own container, call AwsQuantumJob.create() with the
argument image_uri specified. You can use a QPU, an on-demand simulator, or run your code
locally on the classical processor available with Braket Hybrid Jobs. We recommend testing your
code out on a simulator like SV1, DM1, or TN1 before running on a real QPU.

To run your code on the classical processor, specify the instanceType and the instanceCount
you use by updating the InstanceConfig. Note that if you specify an instance_count > 1, you

Running Braket hybrid jobs in your own container 219

https://www.fastruby.io/blog/docker/docker-ssh-keys.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://docs.docker.com/engine/reference/commandline/build/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html

Amazon Braket Developer Guide

need to make sure that your code can run across multiple hosts. The upper limit for the number of
instances you can choose is 5. For example:

job = AwsQuantumJob.create(
 source_module="source_dir",
 entry_point="source_dir.algorithm_script:start_here",
 image_uri="111122223333.dkr.ecr.us-west-2.amazonaws.com/my-byoc-container:latest",
 instance_config=InstanceConfig(instanceType="ml.p3.8xlarge", instanceCount=3),
 device="local:braket/braket.local.qubit",
 # ...)

Note

Use the device ARN to track the simulator you used as hybrid job metadata. Acceptable
values must follow the format device = "local:<provider>/<simulator_name>".
Remember that <provider> and <simulator_name> must consist only of letters,
numbers, _, -, and . . The string is limited to 256 characters.
If you plan to use BYOC and you're not using the Braket SDK to create quantum tasks, you
should pass the value of the environmental variable AMZN_BRAKET_JOB_TOKEN to the
jobToken parameter in the CreateQuantumTask request. If you don't, the quantum tasks
don't get priority and are billed as regular standalone quantum tasks.

Configure the default bucket in AwsSession

Providing your own AwsSession gives you greater flexibility, for example, in the location of your
default bucket. By default, an AwsSession has a default bucket location of f"amazon-braket-
{id}-{region}". But you can override that default when creating an AwsSession. Users can
optionally pass in an AwsSession object into AwsQuantumJob.create with the parameter name
aws_session as shown in the following code example.

aws_session = AwsSession(default_bucket="other-default-bucket")

then you can use that AwsSession when creating a hybrid job
job = AwsQuantumJob.create(
 ...
 aws_session=aws_session
)

Configure the default bucket in AwsSession 220

Amazon Braket Developer Guide

Interact with hybrid jobs directly using the API

You can access and interact with Amazon Braket Hybrid Jobs directly using the API. However,
defaults and convenience methods are not available when using the API directly.

Note

We strongly recommend that you interact with Amazon Braket Hybrid Jobs using the
Amazon Braket Python SDK. It offers convenient defaults and protections that help your
hybrid jobs run successfully.

This topic covers the basics of using the API. If you choose to use the API, keep in mind that this
approach can be more complex and be prepared for several iterations to get your hybrid job to run.

To use the API, your account should have a role with the AmazonBraketFullAccess managed
policy.

Note

For more information on how to obtain a role with the AmazonBraketFullAccess
managed policy, see the Enable Amazon Braket page.

Additionally, you need an execution role. This role will be passed to the service. You can create
the role using the Amazon Braket console. Use the Execution roles tab on the Permissions and
settings page to create a default role for hybrid jobs.

The CreateJob API requires that you specify all the required parameters for the hybrid job. To use
Python, compress your algorithm script files to a tar bundle, such as an input.tar.gz file, and run the
following script. Update the parts of the code within angled brackets (<>) to match your account
information and entry point that specify the path, file, and method where your hybrid job starts.

from braket.aws import AwsDevice, AwsSession
import boto3
from datetime import datetime

s3_client = boto3.client("s3")
client = boto3.client("braket")

Interact with hybrid jobs directly using the API 221

https://github.com/aws/amazon-braket-sdk-python

Amazon Braket Developer Guide

project_name = "job-test"
job_name = project_name + "-" + datetime.strftime(datetime.now(), "%Y%m%d%H%M%S")
bucket = "amazon-braket-<your_bucket>"
s3_prefix = job_name

job_script = "input.tar.gz"
job_object = f"{s3_prefix}/script/{job_script}"
s3_client.upload_file(job_script, bucket, job_object)

input_data = "inputdata.csv"
input_object = f"{s3_prefix}/input/{input_data}"
s3_client.upload_file(input_data, bucket, input_object)

job = client.create_job(
 jobName=job_name,
 roleArn="arn:aws:iam::<your_account>:role/service-role/
AmazonBraketJobsExecutionRole", # https://docs.aws.amazon.com/braket/latest/
developerguide/braket-manage-access.html#about-amazonbraketjobsexecution
 algorithmSpecification={
 "scriptModeConfig": {
 "entryPoint": "<your_execution_module>:<your_execution_method>",
 "containerImage": {"uri": "292282985366.dkr.ecr.us-west-1.amazonaws.com/
amazon-braket-base-jobs:1.0-cpu-py37-ubuntu18.04"} # Change to the specific region
 you are using
 "s3Uri": f"s3://{bucket}/{job_object}",
 "compressionType": "GZIP"
 }
 },
 inputDataConfig=[
 {
 "channelName": "hellothere",
 "compressionType": "NONE",
 "dataSource": {
 "s3DataSource": {
 "s3Uri": f"s3://{bucket}/{s3_prefix}/input",
 "s3DataType": "S3_PREFIX"
 }
 }
 }
],
 outputDataConfig={
 "s3Path": f"s3://{bucket}/{s3_prefix}/output"
 },
 instanceConfig={

Interact with hybrid jobs directly using the API 222

Amazon Braket Developer Guide

 "instanceType": "ml.m5.large",
 "instanceCount": 1,
 "volumeSizeInGb": 1
 },
 checkpointConfig={
 "s3Uri": f"s3://{bucket}/{s3_prefix}/checkpoints",
 "localPath": "/opt/omega/checkpoints"
 },
 deviceConfig={
 "priorityAccess": {
 "devices": [
 "arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3"
]
 }
 },
 hyperParameters={
 "hyperparameter key you wish to pass": "<hyperparameter value you wish to
 pass>",
 },
 stoppingCondition={
 "maxRuntimeInSeconds": 1200,
 "maximumTaskLimit": 10
 },
)

Once you create your hybrid job, you can access the hybrid job details through the GetJob API or
the console. To get the hybrid job details from the Python session in which you ran the createJob
code as in the previous example, use the following Python command.

getJob = client.get_job(jobArn=job["jobArn"])

To cancel a hybrid job, call the CancelJob API with the Amazon Resource Name of the job
('JobArn').

cancelJob = client.cancel_job(jobArn=job["jobArn"])

You can specify checkpoints as part of the createJob API using the checkpointConfig
parameter.

 checkpointConfig = {
 "localPath" : "/opt/omega/checkpoints",

Interact with hybrid jobs directly using the API 223

Amazon Braket Developer Guide

 "s3Uri": f"s3://{bucket}/{s3_prefix}/checkpoints"
 },

Note

The localPath of checkpointConfig cannot start with any of the following reserved
paths: /opt/ml, /opt/braket, /tmp, or /usr/local/nvidia.

Interact with hybrid jobs directly using the API 224

Amazon Braket Developer Guide

Error mitigation

Quantum error mitigation is a set of techniques aimed at reducing the effects of errors in quantum
computers.

Quantum devices are subject to environmental noise that degrades the quality of computations
performed. While fault-tolerant quantum computing promises a solution to this problem, current
quantum devices are limited by the number of qubits and relatively high error rates. To combat this
in the near-term, researchers are investigating methods to improve the accuracy of noisy quantum
computation. This approach, known as quantum error mitigation, involves using various techniques
to extract the best signal from noisy measurement data.

Error mitigation on IonQ Aria

Error mitigation involves running multiple physical circuits and combining their measurements to
give an improved result. The IonQ Aria device features an error mitigation method called debiasing.

Debiasing maps a circuit into multiple variants that act on different qubit permutations or with
different gate decompositions. This reduces the effect of systematic errors such as gate over-
rotations or a single faulty qubit by using different implementations of a circuit that could
otherwise bias measurement results. This comes at the expense of extra overhead to calibrate
multiple qubits and gates.

For more information on debiasing, see Enhancing quantum computer performance via
symmetrization.

Note

Using debiasing requires a minimum of 2500 shots.

You can run a quantum task with debiasing on an IoQ Aria device using the following code:

from braket.aws import AwsDevice
from braket.circuits import Circuit
from braket.error_mitigation import Debias

device = AwsDevice("arn:aws:braket:us-east-1::device/qpu/ionq/Aria-1")

Error mitigation on IonQ Aria 225

https://arxiv.org/abs/2301.07233
https://arxiv.org/abs/2301.07233

Amazon Braket Developer Guide

circuit = Circuit().h(0).cnot(0, 1)

task = device.run(circuit, shots=2500, device_parameters={"errorMitigation": Debias()})

result = task.result()
print(result.measurement_counts)
>>> {"00": 1245, "01": 5, "10": 10 "11": 1240} # result from debiasing

When the quantum task is complete you can see the measurement probabilities and any result
types from the quantum task. The measurement probabilities and counts from all variants are
aggregated into a single distribution. Any result types specified in the circuit, such as expectation
values, are computed using the aggregate measurement counts.

Sharpening

You can also access measurement probabilities computed with a different post-processing strategy
called sharpening. Sharpening compares the results of each variant and discards inconsistent
shots, favoring the most likely measurement outcome across variants. For more information, see
Enhancing quantum computer performance via symmetrization.

Importantly, sharpening assumes the form of the output distribution to be sparse with few high-
probability states and many zero-probability states. It may distort the probability distribution if
this assumption is not valid.

You can access the probabilities from a sharpened distribution in the additional_metadata
field on the GateModelTaskResult in the Braket Python SDK. Note that sharpening does not
return the measurement counts, but instead returns a re-normalized probability distribution. The
following code snippet shows how to access the distribution after sharpening.

print(result.additional_metadata.ionqMetadata.sharpenedProbabilities)
>>> {"00": 0.51, "11": 0.549} # sharpened probabilities

Sharpening 226

https://arxiv.org/abs/2301.07233

Amazon Braket Developer Guide

Braket Direct

With Braket Direct, you can reserve dedicated access to different quantum devices of your choice,
connect with quantum computing specialists to receive guidance for your workload, and gain early
access to next-generation capabilities, such as new quantum devices with limited availability.

In this section:

• Reservations

• Expert advice

• Experimental capabilities

Reservations

Reservations give you exclusive access to the quantum device of your choice. You can schedule
a reservation at your convenience, so you know exactly when your workload starts and ends
execution. Reservations are available in 1-hour increments and can be cancelled up to 48 hours in
advance, at no additional charge. You can choose to queue quantum tasks and hybrid jobs for an
upcoming reservation in advance, or submit workloads during your reservation.

The cost of dedicated device access is based on the duration of your reservation, regardless of how
many quantum tasks and hybrid jobs you run on the Quantum Processing Unit (QPU).

The following quantum computers are available for reservations:

• IonQ’s Aria

• IQM’s Garnet

• QuEra’s Aquila

• Rigetti’s Aspen-M-3

When to use a reservation

Leveraging dedicated device access with reservations provides you with the convenience and
predictability of knowing exactly when your quantum workload starts and ends execution.
Compared to submitting tasks and hybrid jobs on-demand, you do not have wait in a queue with
other customer tasks. Because you have exclusive access to the device during your reservation, only
your workloads run on the device for the entirety of the reservation.

Reservations 227

Amazon Braket Developer Guide

We recommend using on-demand access for the design and prototyping phase of your research,
enabling quick and cost-efficient iteration of your algorithms. Once you are ready to produce final
experiment results, consider scheduling a device reservation at your convenience to ensure that you
can meet project or publication deadlines. We also recommend using reservations when you desire
task execution during specific times, such as when you're running a live demo or workshop on a
quantum computer.

In this section:

• Create a reservation

• Run your workload with a reservation

• Cancel or reschedule an existing reservation

Create a reservation

To create a reservation, contact the Braket team by following these steps:

1. Open the Amazon Braket console.

2. Choose Braket Direct in the left pane, and then in the Reservations section, choose Reserve
device .

3. Select the Device that you would like to reserve.

4. Provide your contact information including Name and Email. Be sure to provide a valid email
address that you regularly check.

5. Under Tell us about your workload, provide any details about the workload to run using your
reservation. For example, desired reservation length, relevant constraints, or desired schedule.

6. If you are interested in connecting with a Braket expert for a reservation prep session after your
reservation is confirmed, optionally select I’m interested in a prep session.

You can also contact us to create a reservation by following these steps:

1. Open the Amazon Braket console.

2. Choose Devices in the left pane and choose the device that you would like to reserve.

3. In the Summary section, choose Reserve device.

4. Follow steps 4-6 in the previous procedure.

Create a reservation 228

Amazon Braket Developer Guide

After you submit the form, you receive an email from the Braket team with the next steps to create
your reservation. Once your reservation is confirmed, you receive the reservation ARN via email.

Note

Your reservation is only confirmed once you receive the reservation ARN.

Reservations are available in minimum 1-hour increments and certain devices might have
additional reservation length constraints (including minimum and maximum reservation
durations). The Braket team shares any relevant information with you prior to confirming the
reservation.

If you indicated interest in a reservation prep session, the Braket team contacts you via email to
arrange a 30-minute session with a Braket expert.

Run your workload with a reservation

During a reservation only your workloads run on the device. To designate the quantum tasks and
hybrid jobs to run during a device reservation, you must use a valid reservation ARN.

Note

Reservations are AWS account and device-specific. Only the AWS account that created the
reservation can use your reservation ARN. Additionally, the reservation ARN is only valid on
the reserved device at the chosen start and end times.

To make the most of your reserved time, you can choose to queue tasks and jobs before your
reservation. These workloads remain in the QUEUED status until the reservation starts. When the
reservation starts, any queued workloads run in the order submitted. Job tasks are prioritized
ahead of standalone quantum tasks.

Note

Because only your workloads run during your reservation, there is no queue visibility for
tasks and jobs submitted with a reservation ARN.

Run your workload with a reservation 229

Amazon Braket Developer Guide

Code examples for creating a quantum task for a reservation:

1. Define a circuit to prepare the GHZ state in OpenQASM fomat.

// ghz.qasm
// Prepare a GHZ state
OPENQASM 3;

qubit[3] q;
bit[3] c;

h q[0];
cnot q[0], q[1];
cnot q[1], q[2];

c = measure q;

2. Create a quantum task using your circuit and the reservation ARN.

with open("ghz.qasm", "r") as ghz:
 ghz_qasm_string = ghz.read()

import the device module
from braket.aws import AwsDevice
from braket.ir.openqasm import Program

choose the IonQ Aria 1 device
device = AwsDevice("arn:aws:braket:us-east-1::device/qpu/ionq/Aria-1")

program = Program(source=ghz_qasm_string)

Reservation ARN will be of the form arn:aws:braket:us-
east-1:<AccountId>:reservation/<ReservationId>
Example: arn:aws:braket:us-east-1:123456789012:reservation/f17cc20b-1ba4-461f-8854-
de4bb2aa64c1
##
IMPORTANT: If the reservation ARN is not specified, the created task
queues and runs outside of the reservation.
(The only exception is when the task is created by the script of a hybrid
job that had the reservation ARN passed at the time of its creation.
See “Code example for creating a hybrid job for a Braket Direct reservation:”
in the following section.)
###

Run your workload with a reservation 230

Amazon Braket Developer Guide

my_task = device.run(
 program,
 reservation_arn="arn:aws:braket:us-east-1:<AccountId>:reservation/
<ReservationId>"
)

You can also specify a particular Amazon S3 bucket location
and the desired number of shots, when running the program.
If no S3 location is specified, a default Amazon S3 bucket is chosen at amazon-
braket-{region}-{account_id}
If no shot count is specified, 1000 shots are applied by default.
s3_location = ("amazon-braket-my-bucket", "openqasm-tasks")
my_task = device.run(
 program,
 s3_location,
 shots=100,
 reservation_arn="arn:aws:braket:us-east-1:<AccountId>:reservation/
<ReservationId>"
)

Code example for creating a hybrid job for a Braket Direct reservation:

1. Define your algorithm script.

//algorithm_script.py

from braket.aws import AwsDevice
from braket.circuits import Circuit

def start_here():

 print("Test job started!!!!!")

 # Use the device declared in the job script
 device = AwsDevice(os.environ["AMZN_BRAKET_DEVICE_ARN"])

 bell = Circuit().h(0).cnot(0, 1)
 for count in range(5):
 task = device.run(bell, shots=100)
 print(task.result().measurement_counts)

 print("Test job completed!!!!!")

Run your workload with a reservation 231

Amazon Braket Developer Guide

2. Create the hybrid job using your algorithm script and the reservation ARN.

from braket.aws import AwsQuantumJob

job = AwsQuantumJob.create(
 "arn:aws:braket:us-east-1::device/qpu/ionq/Aria-1",
 source_module="algorithm_script.py",
 entry_point="algorithm_script:start_here",
 reservation_arn="arn:aws:braket:us-east-1:<AccountId>:reservation/
<ReservationId>"
)

3. Create the hybrid job using the remote decorator..

from braket.aws import AwsDevice
from braket.circuits import Circuit
from braket.devices import Devices
from braket.jobs import hybrid_job, get_job_device_arn

@hybrid_job(device=Devices.IonQ.Aria1, reservation_arn="arn:aws:braket:us-
east-1:<AccountId>:reservation/<ReservationId>")
def sample_job():
 device = AwsDevice(get_job_device_arn())
 bell = Circuit().h(0).cnot(0, 1)
 task = device.run(bell, shots=10)
 measurements = task.result().measurements
 return measurements

What happens at the end of your reservation

After your reservation ends, you no longer have dedicated access to the device. Any remaining
workloads that are queued with this reservation are automatically canceled.

Note

Any job that was in RUNNING status when the reservation ends is canceled. We recommend
using checkpoints to save and restart jobs at your convenience.

An ongoing reservation, such as after reservation start and before reservation end, can't be
extended because each reservation represents standalone dedicated device access. For example,

Run your workload with a reservation 232

https://docs.aws.amazon.com/braket/latest/developerguide/braket-jobs-checkpoints.html

Amazon Braket Developer Guide

two back-to-back reservations are considered separate and any pending tasks from the first
reservation are automatically canceled. They do not resume in the second reservation.

Note

Reservations represent dedicated device access for your AWS account. Even if the device
remains idle, no other customers can use it. Therefore, you are charged for the length of
the reserved time, regardless of the utilized time.

Cancel or reschedule an existing reservation

You can cancel your reservation no less than 48 hours before the scheduled reservation start
time. To cancel, respond to the reservation confirmation email you received with your cancellation
request.

To reschedule, you have to cancel your existing reservation, and then create a new one.

Expert advice

Connect with quantum computing experts directly in the Braket management console to get
additional guidance around your workloads.

To explore expert advice options via Braket Direct, open the Braket console, choose Braket Direct
in the left pane, and navigate to the Expert advice section. The following expert advice options are
available:

• Braket office hours: Braket office hours are 1:1 sessions, first come first-serve, and take place
every month. Each available office hour slot is 30 minutes and free of charge. Talking to Braket
experts can help you get from ideation to execution faster by exploring use-case-to-device fit,
identifying options to best leverage Braket for your algorithm, and getting recommendations
for how to use certain Braket features like Amazon Braket Hybrid Jobs, Braket Pulse, or Analog
Hamiltonian Simulation.

• To sign up for Braket office hours, select Sign up and fill out contact information, workload
details, and your desired discussion topics.

• You will receive a calendar invitation to the next available slot via email.

Cancel or reschedule an existing reservation 233

Amazon Braket Developer Guide

Note

For emergent issues or quick troubleshooting questions, we recommend reaching out
to AWS Support. For non-urgent questions, you can also use the AWS re:Post forum or
the Quantum Computing Stack Exchange, where you can browse previously answered
questions and ask new ones.

• Quantum hardware provider offerings: IonQ, QuEra, and Rigetti each provide professional
services offerings via AWS Marketplace.

• To explore their offerings, select Connect and browse their listings.

• To learn more about professional services offerings on the AWS Marketplace, see Professional
services products.

• Amazon Quantum Solutions Lab (QSL): The QSL is a collaborative research and professional
services team staffed with quantum computing experts who can help you effectively explore
quantum computing and assess the current performance of this technology.

• To contact the QSL, select Connect, and fill out contact information and use case details.

• The QSL team will reach out to you via email with next steps.

Experimental capabilities

To advance your research workloads, it is important to get access to new innovative capabilities
quickly. With Braket Direct, you can request access to available experimental capabilities, such as
new quantum devices with limited availability, directly in the Braket console.

Some experimental capabilities operate outside of standard device specifications, and need hands-
on guidance tailored to your use case. To ensure your workloads are set up for success, access is
available by request through Braket Direct.

Reservation-only access to IonQ Forte

With Braket Direct, you get reservation-only access to the IonQ Forte QPU. Due to its limited
availability, this device is only available through Braket Direct.

To learn more and request access to IonQ Forte, follow these steps:

1. Open the Amazon Braket console.

Experimental capabilities 234

https://console.aws.amazon.com/support/home#/case/create?issueType=technical
https://repost.aws/tags/questions/TAhMWeHkpfSMSCxIFNqcqYog?view=all
https://quantumcomputing.stackexchange.com/questions/ask
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-proserv-products.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-proserv-products.html

Amazon Braket Developer Guide

2. Select Braket Direct in the left menu, and then in Experimental capabilities navigate to IonQ
Forte. Choose View device.

3. On the Forte device detail page, in Summary choose Reserve device.

4. Provide your contact information, including Name and Email. Provide a valid email address that
you regularly check.

5. Under Tell us about your workload, provide details about the workload to run using your
reservation, such as the desired reservation length, relevant constraints, or desired schedule.

6. (Optional) If you are interested in connecting with a Braket expert for a reservation prep session
after your reservation is confirmed, select I’m interested in a prep session.

Once the form is submitted, the Braket team will contact you with next steps.

Note

Due to limited device availability, access to Forte is limited. Contact us to learn more.

Access to local detuning on QuEra Aquila

With Braket Direct, you can request access to control local detuning when programming on the
QuEra Aquila QPU. With this capability, you can adjust how much the driving field affects each
specific qubit.

To learn more and request access to this capability, follow these steps:

1. Open the Amazon Braket console.

2. Select Braket Direct in the left menu, and then in Experimental capabilities navigate to QuEra
Aquila - local detuning. Choose Get Access.

3. Provide your contact information, including Name and Email. Provide a valid email address that
you regularly check.

4. Under Tell us about your workload, provide details about the workload and where you plan to
use this capability..

Access to local detuning on QuEra Aquila 235

Amazon Braket Developer Guide

Access to tall geometries on QuEra Aquila

With Braket Direct, you can request access to expanded geometries when programming on the
QuEra Aquila QPU. With this capability, you can experiment beyond standard device capabilities
and specify geometries with increased lattice height.

To learn more and request access to this capability, follow these steps:

1. Open the Amazon Braket console.

2. Select Braket Direct in the left menu, and then in Experimental capabilities navigate to QuEra
Aquila - tall geometries. Choose Get access.

3. Provide your contact information, including Name and Email. Provide a valid email address that
you regularly check.

4. Under Tell us about your workload, provide details about the workload and where you plan to
use this capability..

Access to tight geometries on QuEra Aquila

With Braket Direct, you can request access to expanded geometries when programming on the
QuEra Aquila QPU. With this capability, you can experiment beyond standard device capabilities
and arrange lattice rows with tighter vertical spacing.

To learn more and request access to this capability, follow these steps:

1. Open the Amazon Braket console.

2. Select Braket Direct in the left menu, and then in Experimental capabilities navigate to QuEra
Aquila - tall geometries. Choose Get access.

3. Provide your contact information, including Name and Email. Provide a valid email address that
you regularly check.

4. Under Tell us about your workload, provide details about the workload and where you plan to
use this capability..

Access to tall geometries on QuEra Aquila 236

Amazon Braket Developer Guide

Logging and Monitoring

After you submit a quantum task, you can keep track of its status through the Amazon Braket SDK
and console. When the quantum task completes, Braket saves the results in your specified Amazon
S3 location. Completion may take some time, especially for QPU devices, depending on the length
of the queue. Status types include:

• CREATED – Amazon Braket received your quantum task.

• QUEUED – Amazon Braket processed your quantum task and it is now waiting to run on the
device.

• RUNNING – Your quantum task is running on a QPU or on-demand simulator.

• COMPLETED – Your quantum task finished running on the QPU or on-demand simulator.

• FAILED – Your quantum task attempted to run and failed. Depending on the reason your
quantum task failed, try submitting your quantum task again.

• CANCELLED – You cancelled the quantum task. The quantum task didn't run.

In this section:

• Tracking quantum tasks from the Amazon Braket SDK

• Monitoring quantum tasks through the Amazon Braket console

• Tagging Amazon Braket resources

• Events and automated actions for Amazon Braket with Amazon EventBridge

• Monitoring Amazon Braket with Amazon CloudWatch

• Amazon Braket API logging with CloudTrail

• Create an Amazon Braket notebook instance using AWS CloudFormation

• Advanced logging

Tracking quantum tasks from the Amazon Braket SDK

The command device.run(…) defines a quantum task with a unique quantum task ID. You can
query and track the status with task.state() as shown in the following example.

Note: task = device.run() is an asynchronous operation, which means that you can keep
working while the system processes your quantum task in the background.

Tracking quantum tasks from the Amazon Braket SDK 237

Amazon Braket Developer Guide

Retrieve a result

When you call task.result(), the SDK begins polling Amazon Braket to see whether the
quantum task is complete. The SDK uses the polling parameters you defined in .run(). After
the quantum task is complete, the SDK retrieves the result from the S3 bucket and returns it as a
QuantumTaskResult object.

create a circuit, specify the device and run the circuit
circ = Circuit().rx(0, 0.15).ry(1, 0.2).cnot(0,2)
device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")
task = device.run(circ, s3_location, shots=1000)

get ID and status of submitted task
task_id = task.id
status = task.state()
print('ID of task:', task_id)
print('Status of task:', status)
wait for job to complete
while status != 'COMPLETED':
 status = task.state()
 print('Status:', status)

ID of task:
arn:aws:braket:us-west-2:123412341234:quantum-task/b68ae94b-1547-4d1d-aa92-1500b82c300d
Status of task: QUEUED
Status: QUEUED
Status: QUEUED
Status: QUEUED
Status: QUEUED
Status: QUEUED
Status: QUEUED
Status: QUEUED
Status: RUNNING
Status: RUNNING
Status: COMPLETED

Cancel a quantum task

To cancel a quantum task, call the cancel() method, as shown in the following example.

cancel quantum task
task.cancel()

Tracking quantum tasks from the Amazon Braket SDK 238

Amazon Braket Developer Guide

status = task.state()
print('Status of task:', status)

Status of task: CANCELLING

Check the metadata

You can check the metadata of the finished quantum task, as shown in the following example.

get the metadata of the quantum task
metadata = task.metadata()
example of metadata
shots = metadata['shots']
date = metadata['ResponseMetadata']['HTTPHeaders']['date']
print example metadata
print("{} shots taken on {}.".format(shots, date))

print name of the s3 bucket where the result is saved
results_bucket = metadata['outputS3Bucket']
print('Bucket where results are stored:', results_bucket)
print the s3 object key (folder name)
results_object_key = metadata['outputS3Directory']
print('S3 object key:', results_object_key)

the entire look-up string of the saved result data
look_up = 's3://'+results_bucket+'/'+results_object_key
print('S3 URI:', look_up)

1000 shots taken on Wed, 05 Aug 2020 14:44:22 GMT.
Bucket where results are stored: amazon-braket-123412341234
S3 object key: simulation-output/b68ae94b-1547-4d1d-aa92-1500b82c300d
S3 URI: s3://amazon-braket-123412341234/simulation-output/b68ae94b-1547-4d1d-
aa92-1500b82c300d

Retrieve a quantum task or result

If your kernel dies after you submit the quantum task or if you close your notebook or computer,
you can reconstruct the task object with its unique ARN (quantum task ID). Then you can call
task.result() to get the result from the S3 bucket where it is stored.

from braket.aws import AwsSession, AwsQuantumTask

Tracking quantum tasks from the Amazon Braket SDK 239

Amazon Braket Developer Guide

restore task with unique arn
task_load = AwsQuantumTask(arn=task_id)
retrieve the result of the task
result = task_load.result()

Monitoring quantum tasks through the Amazon Braket console

Amazon Braket offers a convenient way of monitoring the quantum task through the Amazon
Braket console. All submitted quantum tasks are listed in the Quantum Tasks field as shown in the
following figure. This service is Region-specific, which means that you can only view those quantum
tasks created in the specific AWS Region.

You can search for particular quantum tasks through the navigation bar. The search can be based
on Quantum Task ARN (ID), status, device, and creation time. The options appear automatically
when you select the navigation bar, as shown in the following example.

Monitoring quantum tasks through the Amazon Braket console 240

https://console.aws.amazon.com/braket/home
https://console.aws.amazon.com/braket/home

Amazon Braket Developer Guide

The following image shows an example of searching for a quantum task based on its unique
quantum task ID, which can be obtained by calling task.id.

Additionally, seen in the figure below, the status of a quantum task can be monitored while it is
in a QUEUED state. Clicking on the quantum task ID shows the details page. This page displays the
dynamic queue position for your quantum task relative to the device it will process on.

Monitoring quantum tasks through the Amazon Braket console 241

Amazon Braket Developer Guide

Quantum tasks submitted as part of a hybrid job will have priority when in queue. Quantum tasks
submitted outside of a hybrid job will have normal queuing priority.

Customers wishing to query the Braket SDK, can obtain their quantum task and hybrid job queue
positions programmatically. For more information see the When will my task run page.

Tagging Amazon Braket resources

A tag is a custom attribute label that you assign or that AWS assigns to an AWS resource. A tag
is metadata that tells more about your resource. Each tag consists of a key and a value. Together
these are known as key-value pairs. For tags that you assign, you define the key and value.

In the Amazon Braket console, you can navigate to a quantum task or a notebook and view the list
of tags associated with it. You can add a tag, remove a tag, or modify a tag. You can tag a quantum
task or notebook upon creation, and then manage associated tags through the console, AWS CLI,
or API.

Using tags

Tags can organize your resources into categories that are useful to you. For example, you can assign
a "Department" tag to specify the department that owns this resource.

Each tag has two parts:

• A tag key (for example, CostCenter, Environment, or Project). Tag keys are case sensitive.

• An optional field known as a tag value (for example, 111122223333 or Production). Omitting the
tag value is the same as using an empty string. Like tag keys, tag values are case sensitive.

Tags help you do the following things:

• Identify and organize your AWS resources. Many AWS services support tagging, so you can
assign the same tag to resources from different services to indicate that the resources are
related.

• Track your AWS costs. You activate these tags on the AWS Billing and Cost Management
dashboard. AWS uses the tags to categorize your costs and deliver a monthly cost allocation
report to you. For more information, see Use cost allocation tags in the AWS Billing and Cost
Management User Guide.

• Control access to your AWS resources. For more information, see Controlling access using tags.

Tagging resources 242

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

Amazon Braket Developer Guide

More about AWS and tags

• For general information on tagging, including naming and usage conventions, see Tagging AWS
Resources in the AWS General Reference.

• For information about restrictions on tagging, see Tag naming limits and requirements in the
AWS General Reference.

• For best practices and tagging strategies, see Tagging best practices and AWS Tagging Strategies.

• For a list of services that support using tags, see the Resource Groups Tagging API Reference.

The following sections provide more specific information about tags for Amazon Braket.

Supported resources in Amazon Braket

The following resource type in Amazon Braket supports tagging:

• quantum-task resource

• Resource Name: AWS::Service::Braket

• ARN Regex: arn:${Partition}:braket:${Region}:${Account}:quantum-task/
${RandomId}

Note: You can apply and manage tags for your Amazon Braket notebooks in the Amazon Braket
console, by using the console to navigate to the notebook resource, although the notebooks
actually are Amazon SageMaker resources. For more information, see Notebook Instance Metadata
in the SageMaker documentation.

Tag restrictions

The following basic restrictions apply to tags on Amazon Braket resources:

• Maximum number of tags that you can assign to a resource: 50

• Maximum key length: 128 Unicode characters

• Maximum value length: 256 Unicode characters

• Valid characters for key and value: a-z, A-Z, 0-9, space, and these characters: _ . : / =
+ - and @

• Keys and values are case sensitive.

More about AWS and tags 243

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html#tag-conventions
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html#tag-best-practices
https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-manage-access.html#resources
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-metadata.html

Amazon Braket Developer Guide

• Don’t use aws as a prefix for keys; it’s reserved for AWS use.

Managing tags in Amazon Braket

You set tags as properties on a resource. You can view, add, modify, list, and delete tags through
the Amazon Braket console, the Amazon Braket API, or the AWS CLI. For more information, see the
Amazon Braket API reference.

Add tags

You can add tags to taggable resources at the following times:

• When you create the resource: Use the console, or include the Tags parameter with the Create
operation in the AWS API.

• After you create the resource: Use the console to navigate to the quantum task or notebook
resource, or call the TagResource operation in the AWS API.

To add tags to a resource when you create it, you also need permission to create a resource of the
specified type.

View tags

You can view the tags on any of the taggable resources in Amazon Braket by using the console
to navigate to the task or notebook resource, or by calling the AWS ListTagsForResource API
operation.

You can use the following AWS API command to view tags on a resource:

• AWS API: ListTagsForResource

Edit tags

You can edit tags by using the console to navigate to the quantum task or notebook resource or
you can use the following command to modify the value for a tag attached to a taggable resource.
When you specify a tag key that already exists, the value for that key is overwritten:

• AWS API: TagResource

Managing tags in Amazon Braket 244

https://docs.aws.amazon.com/braket/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/braket/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/braket/latest/APIReference/API_Operations.html

Amazon Braket Developer Guide

Remove tags

You can remove tags from a resource by specifying the keys to remove, by using the console
to navigate to the quantum task or notebook resource, or when calling the UntagResource
operation.

• AWS API: UntagResource

Example of CLI tagging in Amazon Braket

If you’re working with the AWS CLI, here is an example command showing how to create a tag that
applies to a quantum task you create for SV1 with parameter settings of the Rigetti QPU. Notice
that the tag is specified at the end of the example command. In this case, Key is given the value
state and Value is given the value Washington.

aws braket create-quantum-task --action /
"{\"braketSchemaHeader\": {\"name\": \"braket.ir.jaqcd.program\", /
 \"version\": \"1\"}, /
 \"instructions\": [{\"angle\": 0.15, \"target\": 0, \"type\": \"rz\"}], /
 \"results\": null, /
 \"basis_rotation_instructions\": null}" /
 --device-arn "arn:aws:braket:::device/quantum-simulator/amazon/sv1" /
 --output-s3-bucket "my-example-braket-bucket-name" /
 --output-s3-key-prefix "my-example-username" /
 --shots 100 /
 --device-parameters /
 "{\"braketSchemaHeader\": /
 {\"name\": \"braket.device_schema.rigetti.rigetti_device_parameters\", /
 \"version\": \"1\"}, \"paradigmParameters\": /
 {\"braketSchemaHeader\": /
 {\"name\": \"braket.device_schema.gate_model_parameters\", /
 \"version\": \"1\"}, /
 \"qubitCount\": 2}}" /
 --tags {\"state\":\”Washington\"}

Tagging with the Amazon Braket API

• If you’re using the Amazon Braket API to set up tags on a resource, call the TagResourceAPI.

Example of CLI tagging in Amazon Braket 245

https://docs.aws.amazon.com/braket/latest/APIReference/API_Operations.html

Amazon Braket Developer Guide

aws braket tag-resource --resource-arn $YOUR_TASK_ARN --tags {\"city\":
\"Seattle\"}

• To remove tags from a resource, call the UntagResourceAPI.

aws braket list-tags-for-resource --resource-arn $YOUR_TASK_ARN

• To list all tags that are attached to a particular resource, call the ListTagsForResourceAPI.

aws braket tag-resource --resource-arn $YOUR_TASK_ARN --tag-keys "[\"city
\",\"state\"]"

Events and automated actions for Amazon Braket with Amazon
EventBridge

Amazon EventBridge monitors status change events in Amazon Braket quantum tasks. Events from
Amazon Braket are delivered to EventBridge, almost in real time. You can write simple rules that
indicate which events interest you, including automated actions to take when an event matches a
rule. Automatic actions that can be triggered include these:

• Invoking an AWS Lambda function

• Activating an AWS Step Functions state machine

• Notifying an Amazon SNS topic

EventBridge monitors these Amazon Braket status change events:

• The state of qauntum task changes

Amazon Braket guarantees delivery of quantum task status change events. These events are
delivered at least once, but possibly out of order.

For more information, see the Events and Event Patterns in EventBridge.

In this section:

• Monitor quantum task status with EventBridge

• Example Amazon Braket EventBridge event

Amazon Braket Events with EventBridge 246

https://docs.aws.amazon.com/braket/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/braket/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html

Amazon Braket Developer Guide

Monitor quantum task status with EventBridge

With EventBridge, you can create rules that define actions to take when Amazon Braket sends
notification of a status change regarding a Braket quantum task. For example, you can create a rule
that sends you an email message each time the status of a quantum task changes.

1. Log in to AWS using an account that has permissions to use EventBridge and Amazon Braket.

2. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

3. Using the following values, create an EventBridge rule:

• For Rule type, choose Rule with an event pattern.

• For Event source, choose Other.

• In the Event pattern section, choose Custom patterns (JSON editor), and then paste the
following event pattern into the text area:

{
 "source": [
 "aws.braket"
],
 "detail-type": [
 "Braket Task State Change"
]
}

To capture all events from Amazon Braket, exclude the detail-type section as shown in the
following code:

{
 "source": [
 "aws.braket"
]
}

• For Target types, choose AWS service, and for Select a target, choose a target such as an
Amazon SNS topic or AWS Lambda function. The target is triggered when a quantum task
state change event is received from Amazon Braket.

For example, use an Amazon Simple Notification Service (SNS) topic to send an email or
text message when an event occurs. To do that, first create an Amazon SNS topic using the
Amazon SNS console. To learn more, see Using Amazon SNS for user notifications.

Monitor quantum task status with EventBridge 247

https://console.aws.amazon.com/events/
https://docs.aws.amazon.com/sns/latest/dg/sns-user-notifications.html

Amazon Braket Developer Guide

For details about creating rules, see Creating Amazon EventBridge rules that react to events.

Example Amazon Braket EventBridge event

For information on the fields for an Amazon Braket Quantum Task Status Change event, see Events
and Event Patterns in EventBridge.

The following attributes appear in the JSON "detail" field.

• quantumTaskArn (str): The quantum task for which this event was generated.

• status (Optional[str]): The status to which the quantum task transitioned.

• deviceArn (str): The device specified by the user for which this quantum task was created.

• shots (int): The number of shots requested by the user.

• outputS3Bucket (str): The output bucket specified by the user.

• outputS3Directory (str): The output key prefix specified by the user.

• createdAt (str): The quantum task creation time as an ISO-8601 string.

• endedAt (Optional[str]): The time at which the quantum task reached a terminal state. This
field is present only when the quantum task has transitioned to a terminal state.

The following JSON code shows an example of an Amazon Braket Quantum Task Status Change
event.

{
 "version":"0",
 "id":"6101452d-8caf-062b-6dbc-ceb5421334c5",
 "detail-type":"Braket Task State Change",
 "source":"aws.braket",
 "account":"012345678901",
 "time":"2021-10-28T01:17:45Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:braket:us-east-1:012345678901:quantum-task/834b21ed-77a7-4b36-a90c-
c776afc9a71e"
],
 "detail":{
 "quantumTaskArn":"arn:aws:braket:us-east-1:012345678901:quantum-
task/834b21ed-77a7-4b36-a90c-c776afc9a71e",
 "status":"COMPLETED",
 "deviceArn":"arn:aws:braket:::device/quantum-simulator/amazon/sv1",

Example Amazon Braket EventBridge event 248

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html

Amazon Braket Developer Guide

 "shots":"100",
 "outputS3Bucket":"amazon-braket-0260a8bc871e",
 "outputS3Directory":"sns-testing/834b21ed-77a7-4b36-a90c-c776afc9a71e",
 "createdAt":"2021-10-28T01:17:42.898Z",
 "eventName":"MODIFY",
 "endedAt":"2021-10-28T01:17:44.735Z"
 }
}

Monitoring Amazon Braket with Amazon CloudWatch

You can monitor Amazon Braket using Amazon CloudWatch, which collects raw data and processes
it into readable, near real-time metrics. You view historical information generated up to 15 months
ago or search metrics that have been updated in the last 2 weeks in the Amazon CloudWatch
console to gain a better perspective on how Amazon Braket is performing. To learn more, see Using
CloudWatch metrics.

Amazon Braket Metrics and Dimensions

Metrics are the fundamental concept in CloudWatch. A metric represents a time-ordered set of data
points that are published to CloudWatch. Every metric is characterized by a set of dimensions. To
learn more about metrics dimensions in CloudWatch, see CloudWatch dimensions.

Amazon Braket sends the following metric data, specific to Amazon Braket, into the Amazon
CloudWatch metrics:

Quantum Task Metrics

Metrics are available if quantum tasks exist. They are displayed under AWS/Braket/By Device in
the CloudWatch console.

Metric Description

Count Number of quantum tasks.

Latency This metric is emitted when a quantum task
has completed. It represents the total time
from quantum task initialization to completio
n.

Monitor with CloudWatch 249

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Dimension

Amazon Braket Developer Guide

Dimensions for Quantum Task Metrics

The quantum task metrics are published with a dimension based on the deviceArn parameter,
which has the form arn:aws:braket:::device/xxx.

Supported Devices

For a list of supported devices and device ARNs, see Braket devices.

Note

You can view the CloudWatch log streams for Amazon Braket notebooks by navigating to
the Notebook detail page on the Amazon SageMaker console. Additional Amazon Braket
notebook settings are available through the SageMaker console.

Amazon Braket API logging with CloudTrail

Amazon Braket is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service in Amazon Braket. CloudTrail captures all API calls for Amazon
Braket as events. The calls captured include calls from the Amazon Braket console and code calls
to the Amazon Braket Braket operations. If you create a trail, you can enable continuous delivery
of CloudTrail events to an Amazon S3 bucket, including events for Amazon Braket. If you do
not configure a trail, you can still view the most recent events in the CloudTrail console in Event
history. Using the information collected by CloudTrail, you can determine the request that was
made to Amazon Braket, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Amazon Braket Information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Amazon Braket, that activity is recorded in a CloudTrail event along with other AWS service events
in Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon Braket, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all

Supported Devices 250

https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html
https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon Braket Developer Guide

Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All Amazon Braket actions are logged by CloudTrail. For example, calls to the GetQuantumTask or
GetDevice actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding Amazon Braket Log File Entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they don’t appear in any specific order.

The following example is a log entry for the GetQuantumTask action, which gets the details of a
quantum task.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "foobar",
 "arn": "foobar",

Understanding Amazon Braket Log File Entries 251

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Braket Developer Guide

 "accountId": "foobar",
 "accessKeyId": "foobar",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "foobar",
 "arn": "foobar",
 "accountId": "foobar",
 "userName": "foobar"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-08-07T00:56:57Z"
 }
 }
 },
 "eventTime": "2020-08-07T01:00:08Z",
 "eventSource": "braket.amazonaws.com",
 "eventName": "GetQuantumTask",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "foobar",
 "userAgent": "aws-cli/1.18.110 Python/3.6.10
 Linux/4.9.184-0.1.ac.235.83.329.metal1.x86_64 botocore/1.17.33",
 "requestParameters": {
 "quantumTaskArn": "foobar"
 },
 "responseElements": null,
 "requestID": "20e8000c-29b8-4137-9cbc-af77d1dd12f7",
 "eventID": "4a2fdb22-a73d-414a-b30f-c0797c088f7c",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "recipientAccountId": "foobar"
}

The following shows a log entry for the GetDevice action, which returns the details of a device
event.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "foobar",

Understanding Amazon Braket Log File Entries 252

Amazon Braket Developer Guide

 "arn": "foobar",
 "accountId": "foobar",
 "accessKeyId": "foobar",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "foobar",
 "arn": "foobar",
 "accountId": "foobar",
 "userName": "foobar"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-08-07T00:46:29Z"
 }
 }
 },
 "eventTime": "2020-08-07T00:46:32Z",
 "eventSource": "braket.amazonaws.com",
 "eventName": "GetDevice",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "foobar",
 "userAgent": "Boto3/1.14.33 Python/3.7.6 Linux/4.14.158-129.185.amzn2.x86_64 exec-
env/AWS_ECS_FARGATE Botocore/1.17.33",
 "errorCode": "404",
 "requestParameters": {
 "deviceArn": "foobar"
 },
 "responseElements": null,
 "requestID": "c614858b-4dcf-43bd-83c9-bcf9f17f522e",
 "eventID": "9642512a-478b-4e7b-9f34-75ba5a3408eb",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "recipientAccountId": "foobar"
}

Create an Amazon Braket notebook instance using AWS
CloudFormation

You can use AWS CloudFormation to manage your Amazon Braket notebook instances. Braket
notebook instances are built on Amazon SageMaker. With CloudFormation, you can provision a

Create a Braket notebook using CloudFormation 253

Amazon Braket Developer Guide

notebook instance with a template file that describes the intended configuration. The template file
is written in JSON or YAML format. You can create, update, and delete instances in an orderly and
repeatable fashion. You may find this useful when you manage multiple Braket notebook instances
in you AWS account.

After you create a CloudFormation template for a Braket notebook, you use AWS CloudFormation
to deploy the resource. For more information, see Creating a stack on the AWS CloudFormation
console in the AWS CloudFormation user guide.

To create a Braket notebook instance using CloudFormation, you perform these three steps:

1. Create an Amazon SageMaker lifecycle configuration script.

2. Create an AWS Identity and Access Management (IAM) role to be assumed by SageMaker.

3. Create a SageMaker notebook instance with the prefix amazon-braket-

You can reuse the lifecycle configuration for all of the Braket notebooks that you create. You can
also reuse the IAM role for the Braket notebooks that you assign the same execution permissions.

Step 1: Create an Amazon SageMaker lifecycle configuration script

Use the following template to create a SageMaker lifecycle configuration script. The script
customizes an SageMaker notebook instance for Braket. For configuration options for the lifecycle
CloudFormation resource, see AWS::SageMaker::NotebookInstanceLifecycleConfig in the AWS
CloudFormation user guide.

BraketNotebookInstanceLifecycleConfig:
 Type: "AWS::SageMaker::NotebookInstanceLifecycleConfig"
 Properties:
 NotebookInstanceLifecycleConfigName: BraketLifecycleConfig-${AWS::StackName}
 OnStart:
 - Content:
 Fn::Base64: |
 #!/usr/bin/env bash

 sudo -u ec2-user -i #EOS
 aws s3 cp s3://braketnotebookcdk-prod-i-
notebooklccs3bucketb3089-1cysh30vzj2ju/notebook/braket-notebook-lcc.zip braket-
notebook-lcc.zip
 unzip braket-notebook-lcc.zip
 ./install.sh

Step 1: Create an Amazon SageMaker lifecycle configuration script 254

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-notebookinstancelifecycleconfig.html

Amazon Braket Developer Guide

 EOS

 exit 0

Step 2: Create the IAM role assumed by Amazon SageMaker

When you use a Braket notebook instance, SageMaker performs operations on your behalf. For
example, suppose you run a Braket notebook using a circuit on a supported device. Within the
notebook instance, SageMaker runs the operation on Braket for you. The notebook execution role
defines the exact operations that SageMaker is permitted to execute on your behalf. For more
information, see SageMaker roles in the Amazon SageMaker developer guide.

Use the following example to create a Braket notebook execution role with the required
permissions. You can modify the policies according to your needs.

Note

Make sure that the role has permission for the s3:ListBucket and
s3:GetObjectoperations on Amazon S3 buckets prefixed with braketnotebookcdk-".
The lifecycle configuration script requires these permissions to copy the Braket notebook
installation script.

ExecutionRole:
 Type: "AWS::IAM::Role"
 Properties:
 RoleName: !Sub AmazonBraketNotebookRole-${AWS::StackName}
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Effect: "Allow"
 Principal:
 Service:
 - "sagemaker.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/service-role/"
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/AmazonBraketFullAccess

Step 2: Create the IAM role assumed by Amazon SageMaker 255

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html

Amazon Braket Developer Guide

 Policies:
 -
 PolicyName: "AmazonBraketNotebookPolicy"
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow
 Action:
 - s3:GetObject
 - s3:PutObject
 - s3:ListBucket
 Resource:
 - arn:aws:s3:::amazon-braket-*
 - arn:aws:s3:::braketnotebookcdk-*
 - Effect: "Allow"
 Action:
 - "logs:CreateLogStream"
 - "logs:PutLogEvents"
 - "logs:CreateLogGroup"
 - "logs:DescribeLogStreams"
 Resource:
 - !Sub "arn:aws:logs:*:${AWS::AccountId}:log-group:/aws/sagemaker/*"
 - Effect: "Allow"
 Action:
 - braket:*
 Resource: "*"

Step 3: Create an Amazon SageMaker notebook instance with the prefix
amazon-braket-

Use the SageMaker lifecycle script and the IAM role created in step 1 and step 2 to create a
SageMaker notebook instance. The notebook instance is customized for Braket and can be accessed
with the Amazon Braket console. For more information about configuration options for this
CloudFormation resource, see AWS::SageMaker::NotebookInstance in the AWS CloudFormation user
guide.

BraketNotebook:
 Type: AWS::SageMaker::NotebookInstance
 Properties:
 InstanceType: ml.t3.medium
 NotebookInstanceName: !Sub amazon-braket-notebook-${AWS::StackName}
 RoleArn: !GetAtt ExecutionRole.Arn

Step 3: Create an Amazon SageMaker notebook instance with the prefix amazon-braket- 256

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-notebookinstance.html

Amazon Braket Developer Guide

 VolumeSizeInGB: 30
 LifecycleConfigName: !GetAtt
 BraketNotebookInstanceLifecycleConfig.NotebookInstanceLifecycleConfigName

Advanced logging

You can record the whole task-processing process using a logger. These advanced logging
techniques allow you to see the background polling and create a record for later debugging.

To use the logger, we recommend changing the poll_timeout_seconds and
poll_interval_seconds parameters, so that a quantum task can be long-running and the
quantum task status is logged continuously, with results saved to a file. You can transfer this code
to a Python script instead of a Jupyter notebook, so that the script can run as a process in the
background.

Configure the logger

First, configure the logger so that all logs are written into a text file automatically, as shown in the
following example lines.

import the module
import logging
from datetime import datetime

set filename for logs
log_file = 'device_logs-'+datetime.strftime(datetime.now(), '%Y%m%d%H%M%S')+'.txt'
print('Task info will be logged in:', log_file)

create new logger object
logger = logging.getLogger("newLogger")

configure to log to file device_logs.txt in the appending mode
logger.addHandler(logging.FileHandler(filename=log_file, mode='a'))

add to file all log messages with level DEBUG or above
logger.setLevel(logging.DEBUG)

Task info will be logged in: device_logs-20200803203309.txt

Create and run the circuit

Advanced logging 257

Amazon Braket Developer Guide

Now you can create a circuit, submit it to a device to run, and see what happens as shown in this
example.

define circuit
circ_log = Circuit().rx(0, 0.15).ry(1, 0.2).rz(2, 0.25).h(3).cnot(control=0,
 target=2).zz(1, 3, 0.15).x(4)
print(circ_log)
define backend
device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")
define what info to log
logger.info(
 device.run(circ_log, s3_location,
 poll_timeout_seconds=1200, poll_interval_seconds=0.25, logger=logger,
 shots=1000)
 .result().measurement_counts
)

Check the log file

You can check what is written into the file by entering the following command.

print logs
! cat {log_file}

Task arn:aws:braket:us-west-2:123412341234:quantum-
task/5088ec6c-89cf-4338-9750-9f5bb12a0dc4: start polling for completion
Task arn:aws:braket:us-west-2:123412341234:quantum-
task/5088ec6c-89cf-4338-9750-9f5bb12a0dc4: task status CREATED
Task arn:aws:braket:us-west-2:123412341234:quantum-
task/5088ec6c-89cf-4338-9750-9f5bb12a0dc4: task status CREATED
Task arn:aws:braket:us-west-2:123412341234:quantum-
task/5088ec6c-89cf-4338-9750-9f5bb12a0dc4: task status QUEUED
Task arn:aws:braket:us-west-2:123412341234:quantum-
task/5088ec6c-89cf-4338-9750-9f5bb12a0dc4: task status RUNNING
Task arn:aws:braket:us-west-2:123412341234:quantum-
task/5088ec6c-89cf-4338-9750-9f5bb12a0dc4: task status RUNNING
Task arn:aws:braket:us-west-2:123412341234:quantum-
task/5088ec6c-89cf-4338-9750-9f5bb12a0dc4: task status COMPLETED
Counter({'00001': 493, '00011': 493, '01001': 5, '10111': 4, '01011': 3, '10101': 2})

Get the ARN from the log file

Advanced logging 258

Amazon Braket Developer Guide

From the log file output that’s returned, as shown in the previous example, you can obtain the ARN
information. With the ARN ID, you can retrieve the result of the completed quantum task.

parse log file for arn
with open(log_file) as openfile:
 for line in openfile:
 for part in line.split():
 if "arn:" in part:
 arn = part
 break
remove final semicolon in logs
arn = arn[:-1]

with this arn you can restore again task from unique arn
task_load = AwsQuantumTask(arn=arn, aws_session=AwsSession())

get results of task
result = task_load.result()

Advanced logging 259

Amazon Braket Developer Guide

Security in Amazon Braket

This chapter helps you understand how to apply the shared responsibility model when using
Amazon Braket. It shows you how to configure Amazon Braket to meet your security and
compliance objectives. You also learn how to use other AWS services that help you to monitor and
secure your Amazon Braket resources.

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations. You are responsible for other factors, including the sensitivity of your data, your
company’s requirements, and applicable laws and regulations.

Shared responsibility for security

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon Braket,
see AWS Services in Scope by Compliance Program.

• Security in the cloud – You are responsible for maintaining control over your content that
is hosted on this AWS infrastructure. This content includes the security configuration and
management tasks for the AWS services that you use.

Data protection

The AWS shared responsibility model applies to data protection in Amazon Braket. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

Shared responsibility for security 260

http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/programs/
http://aws.amazon.com/compliance/programs/
http://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

Amazon Braket Developer Guide

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Amazon Braket or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Data retention

After 90 days, Amazon Braket automatically removes all quantum task IDs and other metadata
associated with your quantum tasks. As a result of this data retention policy, these tasks and results
are no longer retrievable by search from the Amazon Braket console, although they remain stored
in your S3 bucket.

If you need access to historical quantum tasks and results that are stored in your S3 bucket
for longer than 90 days, you must keep a separate record of your task ID and other metadata
associated with that data. Be sure to save the information prior to 90 days. You can use that saved
information to retrieve the historical data.

Data retention 261

https://aws.amazon.com/compliance/fips/

Amazon Braket Developer Guide

Managing access to Amazon Braket

This chapter describes the permissions that are required to run Amazon Braket, or to restrict the
access of specific users and roles. You can grant (or deny) the required permissions to any user or
role in your account. To do so, attach the appropriate Amazon Braket policy to that user or role in
your account as described in the following sections.

As a prerequisite, you must enable Amazon Braket. To enable Braket, be sure to sign in as a user or
role that has (1) administrator permissions or (2) is assigned the AmazonBraketFullAccess policy
and has permissions to create Amazon Simple Storage Service (Amazon S3) buckets.

In this section:

• Amazon Braket resources

• Notebooks and roles

• About the AmazonBraketFullAccess policy

• About the AmazonBraketJobsExecutionPolicy policy

• Restrict user access to certain devices

• Amazon Braket updates to AWS managed policies

• Restrict user access to certain notebook instances

• Restrict user access to certain S3 buckets

Amazon Braket resources

Braket creates one type of resource: the quantum-task resource. The Amazon Resource Name (ARN)
for this resource type is as follows:

• Resource Name: AWS::Service::Braket

• ARN Regex: arn:${Partition}:braket:${Region}:${Account}:quantum-task/${RandomId}

Notebooks and roles

You can use the noteboook resource type in Braket. A notebook is an Amazon SageMaker resource
that Braket is able to share. To use a notebook with Braket, you must specify an IAM role with a
name that begins with AmazonBraketServiceSageMakerNotebook.

Managing access to Amazon Braket 262

https://docs.aws.amazon.com/braket/latest/developerguide/braket-enable-overview.html

Amazon Braket Developer Guide

To create a notebook, you must use a role with admin permissions or that has the following inline
policy attached to it.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:CreateRole",
 "Resource": "arn:aws:iam::*:role/service-role/
AmazonBraketServiceSageMakerNotebookRole*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreatePolicy",
 "Resource": [
 "arn:aws:iam::*:policy/service-role/
AmazonBraketServiceSageMakerNotebookAccess*",
 "arn:aws:iam::*:policy/service-role/
AmazonBraketServiceSageMakerNotebookRole*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iam:AttachRolePolicy",
 "Resource": "arn:aws:iam::*:role/service-role/
AmazonBraketServiceSageMakerNotebookRole*",
 "Condition": {
 "StringLike": {
 "iam:PolicyARN": [
 "arn:aws:iam::aws:policy/AmazonBraketFullAccess",
 "arn:aws:iam::*:policy/service-role/
AmazonBraketServiceSageMakerNotebookAccess*",
 "arn:aws:iam::*:policy/service-role/
AmazonBraketServiceSageMakerNotebookRole*"
]
 }
 }
 }
]
}

Notebooks and roles 263

Amazon Braket Developer Guide

To create the role, follow the steps given in the Create a notebook page or have your administrator
create it for you. Ensure that the AmazonBraketFullAccess policy is attached.

After you’ve created the role, you can reuse that role for all notebooks you launch in the future.

About the AmazonBraketFullAccess policy

The AmazonBraketFullAccess policy grants permissions for Amazon Braket operations, including
permissions for these tasks:

• Download containers from Amazon Elastic Container Registry – To read and download
container images that are used for the Amazon Braket Hybrid Jobs feature. The containers must
conform to the format "arn:aws:ecr:::repository/amazon-braket".

• Keep AWS CloudTrail logs – For all describe, get, and list actions in addition to starting and
stopping queries, testing metrics filters, and filtering log events. The AWS CloudTrail log file
contains a record of all Amazon Braket API activity that occurs in your account.

• Utilize roles to control resources – To create a service-linked role in your account. The service-
linked role has access to AWS resources on your behalf. It can be used only by the Amazon Braket
service. Also, to pass in IAM roles to the Amazon Braket CreateJob API and to create a role and
attach a policy scoped to AmazonBraketFullAccess to the role.

• Create log groups, log events, and query log groups in order to maintain usage log files for
your account – To create, store, and view logging information about Amazon Braket usage in
your account. Query metrics on hybrid jobs log groups. Encompass the proper Braket path and
allow putting log data. Put metric data in CloudWatch.

• Create and store data in Amazon S3 buckets, and list all buckets – To create S3 buckets, list the
S3 buckets in your account, and put objects into and get objects from any bucket in your account
whose name begins with amazon-braket-. These permissions are required for Braket to put files
containing results from processed quantum tasks into the bucket and to retrieve them from the
bucket.

• Pass IAM roles – To pass in IAM roles to the CreateJob API.

• Amazon SageMaker Notebook – To create and manage SageMaker notebook instances scoped
to the resource from "arn:aws:sagemaker:::notebook-instance/amazon-braket-".

• Validate service quotas – To create SageMaker notebooks and Amazon Braket Hybrid jobs, your
resource counts cannot exceed quotas for your account.

About the AmazonBraketFullAccess policy 264

https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started-create-notebook.html

Amazon Braket Developer Guide

Policy contents

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "s3:CreateBucket",
 "s3:PutBucketPublicAccessBlock",
 "s3:PutBucketPolicy"
],
 "Resource": "arn:aws:s3:::amazon-braket-*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "servicequotas:GetServiceQuota",
 "cloudwatch:GetMetricData"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability"
],
 "Resource": "arn:aws:ecr:*:*:repository/amazon-braket*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 },
 {

About the AmazonBraketFullAccess policy 265

Amazon Braket Developer Guide

 "Effect": "Allow",
 "Action": [
 "logs:Describe*",
 "logs:Get*",
 "logs:List*",
 "logs:StartQuery",
 "logs:StopQuery",
 "logs:TestMetricFilter",
 "logs:FilterLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/braket*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:ListRoles",
 "iam:ListRolePolicies",
 "iam:GetRole",
 "iam:GetRolePolicy",
 "iam:ListAttachedRolePolicies"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListNotebookInstances"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedNotebookInstanceUrl",
 "sagemaker:CreateNotebookInstance",
 "sagemaker:DeleteNotebookInstance",
 "sagemaker:DescribeNotebookInstance",
 "sagemaker:StartNotebookInstance",
 "sagemaker:StopNotebookInstance",
 "sagemaker:UpdateNotebookInstance",
 "sagemaker:ListTags",
 "sagemaker:AddTags",
 "sagemaker:DeleteTags"
],

About the AmazonBraketFullAccess policy 266

Amazon Braket Developer Guide

 "Resource": "arn:aws:sagemaker:*:*:notebook-instance/amazon-braket-*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeNotebookInstanceLifecycleConfig",
 "sagemaker:CreateNotebookInstanceLifecycleConfig",
 "sagemaker:DeleteNotebookInstanceLifecycleConfig",
 "sagemaker:ListNotebookInstanceLifecycleConfigs",
 "sagemaker:UpdateNotebookInstanceLifecycleConfig"
],
 "Resource": "arn:aws:sagemaker:*:*:notebook-instance-lifecycle-config/
amazon-braket-*"
 },
 {
 "Effect": "Allow",
 "Action": "braket:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/braket.amazonaws.com/
AWSServiceRoleForAmazonBraket*",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "braket.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::*:role/service-role/
AmazonBraketServiceSageMakerNotebookRole*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "sagemaker.amazonaws.com"
]
 }
 }

About the AmazonBraketFullAccess policy 267

Amazon Braket Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::*:role/service-role/
AmazonBraketJobsExecutionRole*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "braket.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:GetQueryResults"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:CreateLogStream",
 "logs:CreateLogGroup"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/braket*"
 },
 {
 "Effect": "Allow",
 "Action": "cloudwatch:PutMetricData",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "cloudwatch:namespace": "/aws/braket"
 }
 }
 }

About the AmazonBraketFullAccess policy 268

Amazon Braket Developer Guide

]
}

About the AmazonBraketJobsExecutionPolicy policy

The AmazonBraketJobsExecutionPolicy policy grants permissions for execution roles used in
Amazon Braket Hybrid Jobs as follows:

• Download containers from Amazon Elastic Container Registry - Permissions to read and
download container images that are used for the Amazon Braket Hybrid Jobs feature. Containers
must conform to the format "arn:aws:ecr:*:*:repository/amazon-braket*".

• Create log groups and log events and query log groups in order to maintain usage log files
for your account – Create, store, and view logging information about Amazon Braket usage in
your account. Query metrics on hybrid jobs log groups. Encompass the proper Braket path and
allow putting log data. Put metric data in CloudWatch.

• Store data in Amazon S3 buckets – List the S3 buckets in your account, put objects into and
get objects from any bucket in your account that starts with amazon-braket- in its name. These
permissions are required for Braket to put files containing results from processed quantum tasks
into the bucket, and to retrieve them from the bucket.

• Pass IAM roles – Passing in IAM roles to the CreateJob API. Roles must conform to the format
arn:aws:iam::*:role/service-role/AmazonBraketJobsExecutionRole*.

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "s3:CreateBucket",
 "s3:PutBucketPublicAccessBlock",
 "s3:PutBucketPolicy"
],
 "Resource": "arn:aws:s3:::amazon-braket-*"
 },
 {
 "Effect": "Allow",
 "Action": [

About the AmazonBraketJobsExecutionPolicy policy 269

Amazon Braket Developer Guide

 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability"
],
 "Resource": "arn:aws:ecr:*:*:repository/amazon-braket*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "braket:CancelJob",
 "braket:CancelQuantumTask",
 "braket:CreateJob",
 "braket:CreateQuantumTask",
 "braket:GetDevice",
 "braket:GetJob",
 "braket:GetQuantumTask",
 "braket:SearchDevices",
 "braket:SearchJobs",
 "braket:SearchQuantumTasks",
 "braket:ListTagsForResource",
 "braket:TagResource",
 "braket:UntagResource"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::*:role/service-role/AmazonBraketJobsExecutionRole*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "braket.amazonaws.com"
]
 }

About the AmazonBraketJobsExecutionPolicy policy 270

Amazon Braket Developer Guide

 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:ListRoles"
],
 "Resource": "arn:aws:iam::*:role/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:GetQueryResults"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:GetLogEvents",
 "logs:DescribeLogStreams",
 "logs:StartQuery",
 "logs:StopQuery"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/braket*"
 },
 {
 "Effect": "Allow",
 "Action": "cloudwatch:PutMetricData",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "cloudwatch:namespace": "/aws/braket"
 }
 }
 }
]
}

About the AmazonBraketJobsExecutionPolicy policy 271

Amazon Braket Developer Guide

Restrict user access to certain devices

To restrict access for certain users to certain Braket devices, you can add a deny permissions policy
to a specific IAM role.

The following actions can be restricted with such permissions:

• CreateQuantumTask - to deny quantum task creation on specified devices.

• CreateJob - to deny hybrid job creation on specified devices.

• GetDevice - to deny getting details of specified devices.

The following example restricts access to all QPUs for the AWS account 123456789012.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "braket:CreateQuantumTask",
 "braket:CreateJob",
 "braket:GetDevice"
],
 "Resource": [
 "arn:aws:braket:*:*:device/qpu/*"
]
 }
]
}

To adapt this code, substitute the Amazon Resource Number (ARN) of the restricted device for the
string shown in the previous example. This string provides the Resource value. In Braket, a device
represents a QPU or simulator that you can call to run quantum tasks. The devices available are
listed on the Devices page. There are two schemas used to specify access to these devices:

• arn:aws:braket:<region>:<account id>:device/qpu/<provider>/<device_id>

• arn:aws:braket:<region>:<account id>:device/quantum-simulator/<provider>/
<device_id>

Restrict user access to certain devices 272

https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html

Amazon Braket Developer Guide

Here are examples for various types of device access

• To select all QPUs across all regions: arn:aws:braket:*:*:device/qpu/*

• To select all QPUs in the us-west-2 region ONLY: arn:aws:braket:us-
west-2:123456789012:device/qpu/*

• Equivalently, to select all QPUs in the us-west-2 region ONLY (since devices are a service
resource, not a customer resource): arn:aws:braket:us-west-2:* :device/qpu/*

• To restrict access to all on-demand simulator devices:
arn:aws:braket:* :123456789012:device/quantum-simulator/*

• To restrict access to the IonQ Harmony device in the us-east-1 region: arn:aws:braket:us-
east-1:123456789012:device/ionq/Harmony

• To restrict access to devices from a certain provider (for example, to Rigetti QPU devices):
arn:aws:braket:* :123456789012:device/qpu/rigetti/*

• To restrict access to the TN1 device: arn:aws:braket:* :123456789012:device/quantum-
simulator/amazon/tn1

Amazon Braket updates to AWS managed policies

The following table provides details about updates to AWS managed policies for Braket since this
service began tracking these changes.

Change Description Date

AmazonBraketFullAccess - Full access
policy for Braket

Added the servicequotas:GetS
erviceQuota and cloudwatc
h:GetMetricData actions to
be included in the AmazonBra
ketFullAccess policy.

.

March 24, 2023

AmazonBraketFullAccess - Full access
policy for Braket

Braket adjusted iam:PassRole
permissions for AmazonBra
ketFullAccess to include the
service-role/ path.

November 29,
2021

Amazon Braket updates to AWS managed policies 273

Amazon Braket Developer Guide

Change Description Date

AmazonBraketJobsExecutionPolicy
- Hybrid jobs execution policy for
Amazon Braket Hybrid Jobs

Braket updated the hybrid jobs
execution role ARN to include
the service-role/ path.

November 29,
2021

Braket started tracking changes Braket started tracking changes
for its AWS managed policies.

November 29,
2021

Restrict user access to certain notebook instances

To restrict access for certain users to specific Braket notebook instances, you can add a deny
permissions policy to a specific role, user, or group.

The following example uses policy variables to efficiently restrict permissions to start, stop, and
access specific notebook instances in the AWS account 123456789012, which is named according
to the user who should have access (for example, user Alice would have access to a notebook
instance named amazon-braket-Alice).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateNotebookInstance",
 "sagemaker:DeleteNotebookInstance",
 "sagemaker:UpdateNotebookInstance",
 "sagemaker:CreateNotebookInstanceLifecycleConfig",
 "sagemaker:DeleteNotebookInstanceLifecycleConfig",
 "sagemaker:UpdateNotebookInstanceLifecycleConfig"
],
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "sagemaker:DescribeNotebookInstance",
 "sagemaker:StartNotebookInstance",
 "sagemaker:StopNotebookInstance",

Restrict user access to certain notebook instances 274

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html

Amazon Braket Developer Guide

],
 "NotResource": [
 "arn:aws:sagemaker:*:123456789012:notebook-instance/amazon-braket-
${aws:username}"
]
 },
 {
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreatePresignedNotebookInstanceUrl"
],
 "NotResource": [
 "arn:aws:sagemaker:*:123456789012:notebook-instance/amazon-braket-
${aws:username}*"
]
 }
]
}

Restrict user access to certain S3 buckets

To restrict access for certain users to specific Amazon S3 buckets, you can add a deny policy to a
specific role, user, or group.

The following example restricts permissions to retrieve and place objects into a specific S3 bucket
(arn:aws:s3:::amazon-braket-us-east-1-123456789012-Alice) and also restricts the
listing of those objects.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "s3:ListBucket"
],
 "NotResource": [
 "arn:aws:s3:::amazon-braket-us-east-1-123456789012-Alice"
]
 },
 {
 "Effect": "Deny",
 "Action": [

Restrict user access to certain S3 buckets 275

Amazon Braket Developer Guide

 "s3:GetObject"
],
 "NotResource": [
 "arn:aws:s3:::amazon-braket-us-east-1-123456789012-Alice/*"
]
 }
]
}

To restrict access to the bucket for a certain notebook instance, you can add the preceding policy to
the notebook execution role.

Amazon Braket service-linked role

When you enable Amazon Braket, a service-linked role is created in your account.

A service-linked role is a unique type of IAM role that, in this case, is linked directly to Amazon
Braket. The Amazon Braket service-linked role is predefined to include all the permissions that
Braket requires when calling other AWS services on your behalf.

A service-linked role makes setting up Amazon Braket easier because you don’t have to add the
necessary permissions manually. Amazon Braket defines the permissions of its service-linked
roles. Unless you change these definitions, only Amazon Braket can assume its roles. The defined
permissions include the trust policy and the permissions policy. The permissions policy cannot be
attached to any other IAM entity.

The service-linked role that Amazon Braket sets up is part of the AWS Identity and Access
Management (IAM) service-linked roles capability. For information about other AWS services that
support service-linked roles, see AWS Services That Work with IAM and look for the services that
have Yes in the Service-Linked Role column. Choose a Yes with a link to view the service-linked
role documentation for that service.

Service-linked role permissions for Amazon Braket

Amazon Braket uses the AWSServiceRoleForAmazonBraket service-linked role that trusts the
braket.amazonaws.com entity to assume the role.

You must configure permissions to allow an IAM entity (such as a group or role) to create, edit, or
delete a service-linked role. For more information, see Service-Linked Role Permissions.

Service-linked role 276

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon Braket Developer Guide

The service-linked role in Amazon Braket is granted the following permissions by default:

• Amazon S3 – permissions to list the buckets in your account, and put objects into and get
objects from any bucket in your account with a name that starts with amazon-braket-.

• Amazon CloudWatch Logs – permissions to list and create log groups, create the associated log
streams, and put events into the log group created for Amazon Braket.

The following policy is attached to the AWSServiceRoleForAmazonBraket service-linked role:

{"Version": "2012-10-17",
 "Statement": [
 {"Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket"
],
 "Resource": "arn:aws:s3:::amazon-braket*"
 },
 {"Effect": "Allow",
 "Action": [
 "logs:Describe*",
 "logs:Get*",
 "logs:List*",
 "logs:StartQuery",
 "logs:StopQuery",
 "logs:TestMetricFilter",
 "logs:FilterLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/braket/*"
 },
 {"Effect": "Allow",
 "Action": "braket:*",
 "Resource": "*"
 },
 {"Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/braket.amazonaws.com/
AWSServiceRoleForAmazonBraket*",
 "Condition": {"StringEquals": {"iam:AWSServiceName": "braket.amazonaws.com"
 }
 }

Service-linked role permissions for Amazon Braket 277

Amazon Braket Developer Guide

 }
]
}

Resilience in Amazon Braket

The AWS global infrastructure is built around AWS Regions and Availability Zones.

Each Region provides multiple availability zones that are physically separated and isolated. These
availability zones (AZs) are connected through low-latency, high-throughput, and highly redundant
networking. As a result, availability zones are more highly available, fault tolerant, and scalable
than traditional single- or multiple-datacenter infrastructures.

You can design and operate applications and databases that fail over between AZs automatically,
without interruption.

For more information about AWS Regions and availability zones, see AWS Global Infrastructure.

Compliance validation for Amazon Braket

Third-party auditors regularly assess the security and compliance of Amazon Braket and our
integration with third-party hardware providers. For an up-to-date list of compliance information
for Braket, see AWS services in scope by compliance program. For general information, see AWS
compliance.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading reports in AWS Artifact.

Note

AWS compliance reports don't cover QPUs from third-party hardware providers who can
choose to go through their own independent audits.

Your compliance responsibility when using Amazon Braket is determined by the sensitivity of your
data, your company’s compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

Resilience 278

http://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/
https://aws.amazon.com/compliance/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

Amazon Braket Developer Guide

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

Infrastructure Security in Amazon Braket

As a managed service, Amazon Braket is protected by the AWS global network security procedures
that are described in the AWS: Overview of Security Processes whitepaper.

For access to Amazon Braket through the network, you make calls to published AWS APIs. Clients
must support Transport Layer Security (TLS) 1.2 or later. Clients also must support cipher suites
with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve
Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these
modes.

Additionally, requests must be signed using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Security of Amazon Braket Hardware Providers

QPUs on Amazon Braket are hosted by third-party hardware providers. When you run your
quantum task on a QPU, Amazon Braket uses the DeviceARN as an identifier when sending the
circuit to the specified QPU for processing.

If you use Amazon Braket for access to quantum computing hardware operated by one of the third-
party hardware providers, your circuit and its associated data are processed by hardware providers
outside of facilities operated by AWS. Information about the physical location and AWS Region
where each QPU is available can be found in the Device Details section of the Amazon Braket
console.

Your content is anonymized. Only the content necessary to process the circuit is sent to third
parties. AWS account information is not transmitted to third parties.

All data is encrypted at rest and in transit. Data is decrypted for processing only. Amazon Braket
third-party providers are not permitted to store or use your content for purposes other than

Infrastructure Security 279

https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://aws.amazon.com/compliance/resources/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Braket Developer Guide

processing your circuit. Once the circuit completes, the results are returned to Amazon Braket and
stored in your S3 bucket.

The security of Amazon Braket third-party quantum hardware providers is audited periodically, to
ensure that standards of network security, access control, data protection, and physical security are
met.

Amazon VPC endpoints for Amazon Braket

You can establish a private connection between your VPC and Amazon Braket by creating an
interface VPC endpoint. Interface endpoints are powered by AWS PrivateLink, a technology that
enables access to Braket APIs without an internet gateway, NAT device, VPN connection, or AWS
Direct Connect connection. Instances in your VPC don’t need public IP addresses to communicate
with Braket APIs.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your subnets.

With PrivateLink, traffic between your VPC and Braket does not leave the Amazon network, which
increases the security of data that you share with cloud-based applications, because it reduces your
data’s exposure to the public internet. For more information, see Interface VPC endpoints (AWS
PrivateLink) in the Amazon VPC User Guide.

Considerations for Amazon Braket VPC endpoints

Before you set up an interface VPC endpoint for Braket, ensure that you review Interface endpoint
properties and limitations in the Amazon VPC User Guide.

Braket supports making calls to all of its API actions from your VPC.

By default, full access to Braket is allowed through the VPC endpoint. You can control access if you
specify VPC endpoint policies. For more information, see Controlling access to services with VPC
endpoints in the Amazon VPC User Guide.

Set up Braket and PrivateLink

To use AWS PrivateLink with Amazon Braket, you must create an Amazon Virtual Private Cloud
(Amazon VPC) endpoint as an interface, and then connect to the endpoint through the Amazon
Braket API service.

Here are the general steps of this process, which are explained in detail in later sections.

VPC endpoints (PrivateLink) 280

https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/braket/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Braket Developer Guide

• Configure and launch an Amazon VPC to host your AWS resources. If you already have a VPC, you
can skip this step.

• Create an Amazon VPC endpoint for Braket

• Connect and run Braket quantum tasks through your endpoint

Step 1: Launch an Amazon VPC if needed

Remember that you can skip this step if your account already has a VPC in operation.

A VPC controls your network settings, such as the IP address range, subnets, route tables, and
network gateways. Essentially, you are launching your AWS resources in a custom virtual network.
For more information about VPCs, see the Amazon VPC User Guide.

Open the Amazon VPC console and create a new VPC with subnets, security groups, and network
gateways.

Step 2: Create an interface VPC endpoint for Braket

You can create a VPC endpoint for the Braket service using either the Amazon VPC console or the
AWS Command Line Interface (AWS CLI). For more information, see Creating an interface endpoint
in the Amazon VPC User Guide.

To create a VPC endpoint in the console, open the Amazon VPC console, open the Endpoints page,
and proceed to create the new endpoint. Make note of the endpoint ID for later reference. It is
required as part of the —endpoint-url flag when you are making certain calls to the Braket API.

Create the VPC endpoint for Braket using the following service name:

• com.amazonaws.substitute_your_region.braket

Note: If you enable private DNS for the endpoint, you can make API requests to Braket using its
default DNS name for the Region, for example, braket.us-east-1.amazonaws.com.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

Step 3: Connect and run Braket quantum tasks through your endpoint

After you have created a VPC endpoint, you can run CLI commands that include the endpoint-
url parameter to specify interface endpoints to the API or runtime, such as the following example:

Set up Braket and PrivateLink 281

https://docs.aws.amazon.com/vpc/latest/userguide
https://aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint

Amazon Braket Developer Guide

aws braket search-quantum-tasks --endpoint-url
 VPC_Endpoint_ID.braket.substituteYourRegionHere.vpce.amazonaws.com

If you enable private DNS hostnames for your VPC endpoint, you don’t need to specify the
endpoint as a URL in your CLI commands. Instead, the Amazon Braket API DNS hostname, which
the CLI and Braket SDK use by default, resolves to your VPC endpoint. It has the form shown in the
following example:

https://braket.substituteYourRegionHere.amazonaws.com

The blog post called Direct access to Amazon SageMaker notebooks from Amazon VPC by using
an AWS PrivateLink endpoint provides an example of how to set up an endpoint to make secure
connections to SageMaker notebooks, which are similar to Amazon Braket notebooks.

If you’re following the steps in the blog post, remember to substitute the name Amazon Braket
for Amazon SageMaker. For Service Name enter com.amazonaws.us-east-1.braket or
substitute your correct AWS Region name into that string, if your Region is not us-east-1.

More about creating an endpoint

• For information about how to create a VPC with private subnets, see Create a VPC with private
subnets

• For information about creating and configuring an endpoint using the Amazon VPC console or
the AWS CLI, see Creating an Interface Endpoint in the Amazon VPC User Guide.

• For information about creating and configuring an endpoint using AWS CloudFormation, see the
AWS::EC2::VPCEndpoint resource in the AWS CloudFormation User Guide.

Control access with Amazon VPC endpoint policies

To control connectivity access to Amazon Braket, you can attach an AWS Identity and Access
Management (IAM) endpoint policy to your Amazon VPC endpoint. The policy specifies the
following information:

• The principal (user or role) that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

More about creating an endpoint 282

https://aws.amazon.com/blogs/machine-learning/securing-all-amazon-sagemaker-api-calls-with-aws-privatelink/
https://aws.amazon.com/blogs/machine-learning/securing-all-amazon-sagemaker-api-calls-with-aws-privatelink/
https://docs.aws.amazon.com/batch/latest/userguide/create-public-private-vpc.html
https://docs.aws.amazon.com/batch/latest/userguide/create-public-private-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpcendpoint.html

Amazon Braket Developer Guide

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: VPC endpoint policy for Braket actions

The following example shows an endpoint policy for Braket. When attached to an endpoint, this
policy grants access to the listed Braket actions for all principals on all resources.

{
 "Statement":[
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 “braket:action-1",
 “braket:action-2",
 “braket:action-3”
],
 "Resource":"*"
 }
]
}

You can create complex IAM rules by attaching multiple endpoint policies. For more information
and examples, see:

• Amazon Virtual Private Cloud Endpoint Policies for Step Functions

• Creating Granular IAM Permissions for Non-Admin Users

• Controlling Access to Services with VPC Endpoints

Control access with Amazon VPC endpoint policies 283

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/step-functions/latest/dg/vpc-iam.html
https://docs.aws.amazon.com/step-functions/latest/dg/concept-create-iam-advanced.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Braket Developer Guide

Troubleshooting Amazon Braket

Use the troubleshooting information and solutions in this section to help resolve issues with
Amazon Braket.

In this section:

• AccessDeniedException

• An error occurred (ValidationException) when calling the CreateQuantumTask operation

• An SDK feature does not work

• Hybrid job fails due to ServiceQuotaExceededException

• Components stopped working in notebook instance

• Amazon Braket Quotas

• Troubleshoot OpenQASM

AccessDeniedException

If you receive an AccessDeniedException when enabling or using Braket, you are likely attempting
to enable or use Braket in a region where your restricted role does not have access.

In such cases, you should contact your internal AWS administrator to understand which of the
following conditions apply:

• If there are role restrictions preventing access to a region.

• If the role you are attempting to use is permitted to use Braket.

If your role does not have access to a given region when using Braket, then you will be unable to
use devices in that particular region.

An error occurred (ValidationException) when calling the
CreateQuantumTask operation

If you receive an error similar to: An error occurred (ValidationException) when
calling the CreateQuantumTask operation: Caller doesn’t have access to

AccessDeniedException 284

Amazon Braket Developer Guide

amazon-braket-… Check that you are referring to an existing s3_folder. Braket does not auto
create new Amazon S3 buckets and prefixes for you.

If you are accessing the API directly and receiving an error similar to: Failed to create
quantum task: Caller doesn’t have access to s3://MY_BUCKET Check that you are
not including s3:// in the Amazon S3 bucket path.

An SDK feature does not work

Your Python version must be 3.9 or above. For Amazon Braket Hybrid Jobs, we recommend Python
3.10.

Verify your SDK and schemas are up-to-date. To update the SDK from the notebook or your python
editor, run the following command:

pip install amazon-braket-sdk --upgrade --upgrade-strategy eager

To update the schemas, run the following command:

pip install amazon-braket-schemas --upgrade

If you are accessing Amazon Braket from your own client, verify your AWS Region is set to a region
supported by Amazon Braket.

Hybrid job fails due to ServiceQuotaExceededException

A hybrid job running quantum tasks against the Amazon Braket simulators can fail to be created if
you exceed the concurrent quantum task limit for the simulator device you are targeting. For more
information on the service limits, see the Quotas topic.

If you are running concurrent tasks against a simulator device in multiple hybrid jobs from your
account, you could encounter this error.

To see the number of concurrent quantum tasks against a specific simulator device, use the
search-quantum-tasks API, as shown in the following code example.

DEVICE_ARN=arn:aws:braket:::device/quantum-simulator/amazon/sv1

An SDK feature does not work 285

https://docs.aws.amazon.com/braket/latest/developerguide/braket-regions.html

Amazon Braket Developer Guide

task_list=""
for status_value in "CREATED" "QUEUED" "RUNNING" "CANCELLING"; do
 tasks=$(aws braket search-quantum-tasks --filters
 name=status,operator=EQUAL,values=${status_value}
 name=deviceArn,operator=EQUAL,values=$DEVICE_ARN --max-results 100 --query
 'quantumTasks[*].quantumTaskArn' --output text)
 task_list="$task_list $tasks"
done;
echo "$task_list" | tr -s ' \t' '[\n*]' | sort | uniq

You can also view the created quantum tasks against a device using Amazon CloudWatch metrics:
Braket > By Device.

To avoid running into these errors:

1. Request a service quota increase for the number of concurrent quantum tasks for the simulator
device. This is only applicable to the SV1 device.

2. Handle ServiceQuotaExceeded exceptions in your code and retry.

Components stopped working in notebook instance

If some components of your notebook stop working, try the following:

1. Download any notebooks you created or modified to a local drive.

2. Stop your notebook instance.

3. Delete your notebook instance.

4. Create new notebook instance with a different name.

5. Upload the notebooks to the new instance.

Amazon Braket Quotas

The following table lists the service quotas for Amazon Braket. Service quotas, also referred to as
limits, are the maximum number of service resources or operations for your AWS account.

Some quotas can be increased. For more information, see AWS service quotas.

• Burst rate quotas cannot be increased.

Components stopped working in notebook instance 286

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Braket Developer Guide

• The maximum rate increase for adjustable quotas (except burst rate, which cannot be adjusted)
is 2X the specified default rate limit. For example, a default quota of 60 can be adjusted to a
maximum of 120.

• The adjustable quota for concurrent SV1 (DM1) quantum tasks allows a maximum of 60 per AWS
Region.

• The maximum allowed number of compute instances for a hybrid job is 5, and the quotas are
adjustable.

Resource Description Limits Adjustable

Rate of API requests The maximum
number of requests
per second that
you can send in this
account in the current
Region.

140 Yes

Burst rate of API
requests

The maximum
number of additiona
l requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

600 No

Rate of CreateQua
ntumTask requests

The maximum
number of
CreateQua
ntumTask requests
you can send per
second in this
account per Region.

20 Yes

Burst rate of
CreateQua
ntumTask requests

The maximum
number of additiona
l CreateQua

40 No

Quotas 287

Amazon Braket Developer Guide

Resource Description Limits Adjustable

ntumTask requests
per second (RPS) that
you can send in one
burst in this account
in the current Region.

Rate of SearchQua
ntumTasks
requests

The maximum
number of
SearchQua
ntumTasks
requests you can
send per second
in this account per
Region.

5 Yes

Burst rate of
SearchQua
ntumTasks
requests

The maximum
number of additiona
l SearchQua
ntumTasks
requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

50 No

Rate of GetQuantu
mTask requests

The maximum
number of
GetQuantumTask
requests you can
send per second
in this account per
Region.

100 Yes

Quotas 288

Amazon Braket Developer Guide

Resource Description Limits Adjustable

Burst rate of
GetQuantumTask
requests

The maximum
number of additiona
l GetQuantumTask
requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

500 No

Rate of CancelQua
ntumTask requests

The maximum
number of
CancelQua
ntumTask requests
you can send per
second in this
account per Region.

2 Yes

Burst rate of
CancelQua
ntumTask requests

The maximum
number of additiona
l CancelQua
ntumTask requests
per second (RPS) that
you can send in one
burst in this account
in the current Region.

20 No

Rate of GetDevice
requests

The maximum
number of
GetDevice
requests you can
send per second
in this account per
Region.

5 Yes

Quotas 289

Amazon Braket Developer Guide

Resource Description Limits Adjustable

Burst rate of
GetDevice
requests

The maximum
number of additiona
l GetDevice
requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

50 No

Rate of SearchDev
ices requests

The maximum
number of
SearchDevices
requests you can
send per second
in this account per
Region.

5 Yes

Burst rate of
SearchDevices
requests

The maximum
number of additiona
l SearchDevices
requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

50 No

Rate of CreateJob
requests

The maximum
number of
CreateJob
requests you can
send per second
in this account per
Region.

1 Yes

Quotas 290

Amazon Braket Developer Guide

Resource Description Limits Adjustable

Burst rate of
CreateJob
requests

The maximum
number of additiona
l CreateJob
requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

5 No

Rate of SearchJob
requests

The maximum
number of
SearchJob
requests you can
send per second
in this account per
Region.

5 Yes

Burst rate of
SearchJob
requests

The maximum
number of additiona
l SearchJob
requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

50 No

Rate of GetJob
requests

The maximum
number of GetJob
requests you can
send per second
in this account per
Region.

5 Yes

Quotas 291

Amazon Braket Developer Guide

Resource Description Limits Adjustable

Burst rate of GetJob
requests

The maximum
number of additional
GetJob requests per
second (RPS) that you
can send in one burst
in this account in the
current Region.

25 No

Rate of CancelJob
requests

The maximum
number of
CancelJob
requests you can
send per second
in this account per
Region.

2 Yes

Burst rate of
CancelJob
requests

The maximum
number of additiona
l CancelJob
requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

5 No

Number of concurren
t SV1 quantum tasks

The maximum
number of concurren
t quantum tasks
running on the state
vector simulator
 (SV1) in the current
Region.

100 us-east-1,

50 us-west-1,

100 us-west-2,

50 eu-west-2

No

Quotas 292

Amazon Braket Developer Guide

Resource Description Limits Adjustable

Number of concurren
t DM1 quantum
tasks

The maximum
number of concurren
t quantum tasks
running on the
density matrix
simulator (DM1) in
the current Region.

100 us-east-1,

50 us-west-1,

100 us-west-2,

50 eu-west-2

No

Number of concurren
t TN1 quantum
tasks

The maximum
number of concurren
t quantum tasks
running on the tensor
network simulator
(TN1) in the current
Region.

10 us-east-1,

10 us-west-2,

5 eu-west-2,

Yes

Number of concurren
t hybrid jobs

The maximum
number of concurren
t hybrid jobs in the
current Region.

5 Yes

Hybrid jobs runtime
limit

The maximum
amount of time in
days that a hybrid job
can run.

5 No

The following are the default classical compute instance quotas for Hybrid Jobs. To raise these
quotas, please contact AWS Support. Additionally, the available regions are specified for each
instance.

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number

The
maximum

5 Yes Yes Yes Yes Yes No

Quotas 293

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

of
instances
of
ml.c4.xla
rge for
hybrid
jobs

number
of
instances
of type
ml.c4.xla
rge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

Quotas 294

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c4.2xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c4.2xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes No

Quotas 295

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c4.4xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c4.4xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes No

Quotas 296

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c4.8xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c4.8xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes No No

Quotas 297

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5.xla
rge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5.xla
rge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes Yes

Quotas 298

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5.2xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5.2xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes Yes

Quotas 299

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5.4xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5.4xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

1 Yes Yes Yes Yes Yes Yes

Quotas 300

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5.9xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5.9xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

1 Yes Yes Yes Yes Yes Yes

Quotas 301

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5.18x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5.18x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

Quotas 302

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5n.xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5n.xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes No No

Quotas 303

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5n.2x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5n.2x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes No No

Quotas 304

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5n.4x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5n.4x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes No No

Quotas 305

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5n.9x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5n.9x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes No No

Quotas 306

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5n.18
xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5n.18
xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes No No

Quotas 307

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.g4dn.x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.g4dn.x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

Quotas 308

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.g4dn.2
xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.g4dn.2
xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

Quotas 309

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.g4dn.4
xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.g4dn.4
xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

Quotas 310

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.g4dn.8
xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.g4dn.8
xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

Quotas 311

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.g4dn.1
2xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.g4dn.1
2xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

Quotas 312

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.g4dn.1
6xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.g4dn.1
6xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

Quotas 313

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m4.xla
rge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m4.xla
rge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes No

Quotas 314

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m4.2xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m4.2xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes No

Quotas 315

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m4.4xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m4.4xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

2 Yes Yes Yes Yes Yes No

Quotas 316

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m4.10x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m4.10x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes No

Quotas 317

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m4.16x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m4.16x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes No

Quotas 318

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m5.lar
ge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m5.lar
ge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes Yes

Quotas 319

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m5.xla
rge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m5.xla
rge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes Yes

Quotas 320

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m5.2xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m5.2xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes Yes

Quotas 321

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m5.4xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m5.4xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes Yes

Quotas 322

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m5.12x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m5.12x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

Quotas 323

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m5.24x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m5.24x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

Quotas 324

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p2.xla
rge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p2.xla
rge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes No No

Quotas 325

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p2.8xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p2.8xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes No No

Quotas 326

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p2.16x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p2.16x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes No No

Quotas 327

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p3.2xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p3.2xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes No No

Quotas 328

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p4d.24
xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p4d.24
xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes No No

Quotas 329

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p3dn.2
4xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p3dn.2
4xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes No No

Quotas 330

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p3.8xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p3.8xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes Yes No

Quotas 331

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p3.16x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p3.16x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes Yes No

Requesting limit updates

If you receive a ServiceQuotaExceeded exception for an instance type and do not have sufficient
instances available for it, you may request a limit increase from the Service Quotas page in the
AWS console and search for Amazon Braket under AWS Services.

Note

If your hybrid job is unable to provision requested ML compute capacity, use another
region. In addition, if you do not see an instance in the table, it is not available for Hybrid
Jobs.

Quotas 332

https://console.aws.amazon.com/servicequotas/home/

Amazon Braket Developer Guide

Additional quotas and limits

• The Amazon Braket quantum task action is limited to 3MB in size.

• The maximum number of shots per task allowed for SV1, DM1, and Rigetti devices is 100,000.

• The maximum number of shots per task allowed for TN1 is 1000.

• For IonQ's Aria-1 and Aria-2 devices, the maximum is 5,000 shots per task. For IonQ's Harmony
and Forte devices the maximum is 10,000.

• For QuEra, the maximum allowed shots per task is 1000.

• For TN1 and the QPU devices, shots per task must be > 0.

Troubleshoot OpenQASM

This section provides troubleshooting pointers that might be useful when encountering errors
using OpenQASM 3.0.

In this section:

• Include statement error

• Non-contiguous qubits error

• Mixing physical qubits with virtual qubits error

• Requesting result types and measuring qubits in the same program error

• Classical and qubit register limits exceeded error

• Box not preceded by a verbatim pragma error

• Verbatim boxes missing native gates error

• Verbatim boxes missing physical qubits error

• The verbatim pragma is missing "braket" error

• Single qubits cannot be indexed error

• The physical qubits in a two qubit gate are not connected error

• GetDevice does not return OpenQASM results error

• Local simulator support warning

Additional quotas and limits 333

Amazon Braket Developer Guide

Include statement error

Braket currently doesn’t have a standard gate library file to be included in OpenQASM programs.
For example, the following example raises a parser error.

OPENQASM 3;
include "standardlib.inc";

This code generates the error message: No terminal matches '"' in the current parser
context, at line 2 col 17.

Non-contiguous qubits error

Using non-contiguous qubits on devices that requiresContiguousQubitIndices be set to
true in the device capability result in an error.

When running quantum tasks on simulators and IonQ, the following program triggers the error.

OPENQASM 3;

qubit[4] q;

h q[0];
cnot q[0], q[2];
cnot q[0], q[3];

This code generates the error message: Device requires contiguous qubits. Qubit
register q has unused qubits q[1], q[4].

Mixing physical qubits with virtual qubits error

Mixing physical qubits with virtual qubits in the same program is not allowed and results in an
error. The following code generates the error.

OPENQASM 3;

qubit[2] q;
cnot q[0], $1;

Include statement error 334

Amazon Braket Developer Guide

This code generates the error message: [line 4] mixes physical qubits and qubits
registers.

Requesting result types and measuring qubits in the same program
error

Requesting result types and that qubits are explicitly measured in the same program results in an
error. The following code generates the error.

OPENQASM 3;

qubit[2] q;

h q[0];
cnot q[0], q[1];
measure q;

#pragma braket result expectation x(q[0]) @ z(q[1])

This code generates the error message: Qubits should not be explicitly measured when
result types are requested.

Classical and qubit register limits exceeded error

Only one classical register and one qubit register are allowed. The following code generates the
error.

OPENQASM 3;

qubit[2] q0;
qubit[2] q1;

This code generates the error message: [line 4] cannot declare a qubit register.
Only 1 qubit register is supported.

Box not preceded by a verbatim pragma error

All boxes must be preceded by a verbatim pragma. The following code generates the error.

box{

Requesting result types and measuring qubits in the same program error 335

Amazon Braket Developer Guide

rx(0.5) $0;
}

This code generates the error message: In verbatim boxes, native gates are required.
x is not a device native gate.

Verbatim boxes missing native gates error

Verbatim boxes should have native gates and physical qubits. The following code generates the
native gates error.

#pragma braket verbatim
box{
x $0;
}

This code generates the error message: In verbatim boxes, native gates are required.
x is not a device native gate.

Verbatim boxes missing physical qubits error

Verbatim boxes must have physical qubits. The following code generates the missing physical
qubits error.

qubit[2] q;

#pragma braket verbatim
box{
rx(0.1) q[0];
}

This code generates the error message: Physical qubits are required in verbatim box.

The verbatim pragma is missing "braket" error

You must include “braket” in the verbatim pragma. The following code generates the error.

#pragma braket verbatim // Correct
#pragma verbatim // wrong

Verbatim boxes missing native gates error 336

Amazon Braket Developer Guide

This code generates the error message: You must include “braket” in the verbatim
pragma

Single qubits cannot be indexed error

Single qubits cannot be indexed. The following code generates the error.

OPENQASM 3;

qubit q;
h q[0];

This code generates the error: [line 4] single qubit cannot be indexed.

However, single qubit arrays can be indexed as follows:

OPENQASM 3;

qubit[1] q;
h q[0]; // This is valid

The physical qubits in a two qubit gate are not connected error

To use physical qubits, first confirm that the device uses physical qubits by checking
device.properties.action[DeviceActionType.OPENQASM].supportPhysicalQubits
and then verify the connectivity graph by checking
device.properties.paradigm.connectivity.connectivityGraph or
device.properties.paradigm.connectivity.fullyConnected.

OPENQASM 3;

cnot $0, $14;

This code generates the error message: [line 3] has disconnected qubits 0 and 14

GetDevice does not return OpenQASM results error

If you do not see OpenQASM results in the GetDevice response when using a Braket SDK, you may
need to set AWS_EXECUTION_ENV environment variable to configure user-agent. See the code
examples provided below for how to do this for the Go and Java SDKs.

Single qubits cannot be indexed error 337

Amazon Braket Developer Guide

To set AWS_EXECUTION_ENV environment variable to configure user-agent when using the AWS
CLI:

% export AWS_EXECUTION_ENV="aws-cli BraketSchemas/1.8.0"
Or for single execution
% AWS_EXECUTION_ENV="aws-cli BraketSchemas/1.8.0" aws braket <cmd> [options]

To set AWS_EXECUTION_ENV environment variable to configure user-agent when using Boto3:

import boto3
import botocore

client = boto3.client("braket",
 config=botocore.client.Config(user_agent_extra="BraketSchemas/1.8.0"))

To set AWS_EXECUTION_ENV environment variable to configure user-agent when using the
JavaScript/TypeScript (SDK v2):

import Braket from 'aws-sdk/clients/braket';
const client = new Braket({ region: 'us-west-2', credentials: AWS_CREDENTIALS,
 customUserAgent: 'BraketSchemas/1.8.0' });

To set AWS_EXECUTION_ENV environment variable to configure user-agent when using the
JavaScript/TypeScript (SDK v3):

import { Braket } from '@aws-sdk/client-braket';
const client = new Braket({ region: 'us-west-2', credentials: AWS_CREDENTIALS,
 customUserAgent: 'BraketSchemas/1.8.0' });

To set AWS_EXECUTION_ENV environment variable to configure user-agent when using the Go
SDK:

os.Setenv("AWS_EXECUTION_ENV", "BraketGo BraketSchemas/1.8.0")
mySession := session.Must(session.NewSession())
svc := braket.New(mySession)

To set AWS_EXECUTION_ENV environment variable to configure user-agent when using the Java
SDK:

ClientConfiguration config = new ClientConfiguration();

GetDevice does not return OpenQASM results error 338

Amazon Braket Developer Guide

config.setUserAgentSuffix("BraketSchemas/1.8.0");
BraketClient braketClient =
 BraketClientBuilder.standard().withClientConfiguration(config).build();

Local simulator support warning

The LocalSimulator supports advanced features in OpenQASM that may not be available on
QPUs or on-demand simulators. If your program contains language features specific only to the
LocalSimulator, as seen in the following example, you will receive a warning.

qasm_string = """
qubit[2] q;

h q[0];
ctrl @ x q[0], q[1];
"""
qasm_program = Program(source=qasm_string)

This code generates the warning: `This program uses OpenQASM language features only
supported in the LocalSimulator. Some of these features may not be supported on QPUs or on-
demand simulators.

For more information on supported OpenQASM features, click here.

Local simulator support warning 339

Amazon Braket Developer Guide

API & SDK Reference Guide for Amazon Braket

Amazon Braket provides APIs, SDKs, and a command line interface that you can use to create and
manage notebook instances and train and deploy models.

• Amazon Braket Python SDK (Recommended)

• Amazon Braket API Reference

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java

• AWS SDK for JavaScript

• AWS SDK for PHP

• AWS SDK for Python (Boto)

• AWS SDK for Ruby

You can also get code examples from the Amazon Braket Tutorials GitHub repository.

• Braket Tutorials GitHub

340

https://amazon-braket-sdk-python.readthedocs.io/en/latest/#
https://docs.aws.amazon.com/braket/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/braket/index.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Braket/NBraket.html
https://sdk.amazonaws.com/cpp/api/LATEST/namespace_aws_1_1_braket.html
https://docs.aws.amazon.com/sdk-for-go/api/service/braket/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/braket/package-summary.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Braket.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.Braket.BraketClient.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/braket.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/Braket.html
https://github.com/aws/amazon-braket-examples

Amazon Braket Developer Guide

Document history

The following table describes the documentation for this release of Amazon Braket.

• API version: April 28, 2022

• Latest API Reference update: September 25, 2023

• Latest documentation update: June 28, 2024

Change Description Date

OQC Lucy device retirement Removed support for the
OQC Lucy device.

June 28, 2024

New device IQM Garnet and
region Europe North 1

Added support for the IQM
Garnet device. A 20-qubit
device with a square lattice
topology. Expanded Braket
supported regions to Europe
North 1 (Stockholm).

May 22, 2024

Local detuning released Experimental capabilities now
include the local detuning
feature of QuEra’s Aquila
QPU.

April 11, 2024

Notebook inactivity manager
released

When creating a notebook
instance, enable the inactivit
y manager and set an idle
duration time to automatic
ally reset the Braket notebook
instance.

March 27, 2024

Table of contents rework Reorganized the Amazon
Braket table of contents
to abide by the AWS style
guide requirements and

December 12, 2023

341

https://docs.aws.amazon.com/braket/latest/developerguide/braket-qpu-partner-iqm.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-qpu-partner-iqm.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-regions.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-experimental-capabilities.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started-create-notebook.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started-create-notebook.html

Amazon Braket Developer Guide

improve the flow of content
for customer experience.

Braket Direct released Added support for Braket
direct features, including:

• Reservations

• Expert advice

• Experimental capabilities

November 27, 2023

Updated Create an Amazon
Braket notebook instance

Updated the documentation
to add information to create
a notebook instance for new
and existing Amazon Braket
customers.

November 27, 2023

Updated Bring your own
container (BYOC)

Updated the documentation
to add information about
when to BYOC, the recipe to
BYOC, and running Braket
Hybrid Jobs on the container.

October 18, 2023

Hybrid jobs decorator
released

Added Run your local code as
a hybrid job page. Contains
examples:

• Create a hybrid job from
local Python code

• Install additional Python
packages and source code

• Save and load data into a
hybrid job instance

• Best practices for hybrid job
decorators

October 16, 2023

342

Amazon Braket Developer Guide

Added Queue visibility Updated the Developer's
Guide documentation to
include queue depth and
queue position.

Updated the API documneta
tion to reflect new API
changes for queue visibility.

September 25, 2023

Standardize naming in
documentation

Updated the documenta
tion to change any instances
of "job" to "hybrid job" and
"task" to "quantum task"

September 11, 2023

New device IonQ Aria 2 Added support for the IonQ
Aria 2 device

September 8, 2023

Updated Native Gates Updated the documentation
to add information about
programmatic access to
native gates from Rigetti.

August 16, 2023

Xanadu departure Updated the documentation
to remove all Xanadu devices

June 2, 2023

New device IonQ Aria Added support for the IonQ
Aria device

May 16, 2023

Retired Rigetti device Discontinued support for
Rigetti Aspen-M-2

May 2, 2023

343

Amazon Braket Developer Guide

Updated AmazonBra
ketFullAccess policy
information

Updated the script that
defines the contents of
the AmazonBraketFullAc
cess policy to include
the servicequotas:GetS
erviceQuota and cloudwatc
h:GetMetricData actions as
well as information about
limitations with respect to
quotas.

April 19, 2023

Guided Journeys launch Changed the documentation
to reflect the more up to date
and simplified method for
Braket onboarding.

April 5, 2023

New device Rigetti Aspen-M-3 Added support for the Rigetti
Aspen-M-3 device

January 17, 2023

New adjoint gradient feature Added information about
the adjoint gradient feature
offered by SV1

December 7, 2022

New algorithm library feature Added information about
the Braket algorithm library,
which provides a catalog of
pre-built quantum algorithms

November 28, 2022

D-Wave departure Updated the documentation
to accommodate the removal
of all D-Wave devices

November 17, 2022

New device QuEra Aquila Added support for the QuEra
Aquila device

October 31, 2022

344

Amazon Braket Developer Guide

Support for Braket Pulse Added support for Braket
Pulse, which allows for pulse
control to be used on Rigetti
and OQC devices

October 20, 2022

Support for IonQ native gates Added support for the native
gate set offered by the IonQ
device

September 13, 2022

New instance quotas Updated the default classical
compute instance quotas
associated with Hybrid Jobs

August 22, 2022

New service dashboard Updated console screensho
ts to include the service
dashboard

August 17, 2022

New device Rigetti Aspen-M-2 Added support for the Rigetti
Aspen-M-2 device

August 12, 2022

New OpenQASM features Added OpenQASM features
support for the local
simulators (braket_sv and
braket_dm)

August 4, 2022

New cost tracking procedures Added how to get near-real
time maximum cost estimates
for simulators and hardware
workloads

July 18, 2022

New Xanadu Borealis device Added support for the
Xanadu Borealis device

June 2, 2022

New onboarding simplific
ation procedures

Added information on how
the new and simplified
onboarding procedures work

May 16, 2022

345

Amazon Braket Developer Guide

New device D-Wave
Advantage_system6.1

Added support for the D-
Wave Advantage_system6.1
device

May 12, 2022

Support for embedded
simulators

Added how to run embedded
simulations with hybrid
jobs and how to use the
PennyLane lightning
simulator

May 4, 2022

AmazonBraketFullAccess -
Full access policy for Amazon
Braket

Added s3:ListAllMyBuckets
permissions to allow users to
view and inspect the buckets
created and used for Amazon
Braket

March 31, 2022

Support for OpenQASM Added OpenQASM 3.0
support for gate-base
d quantum devices and
simulators

March 7, 2022

New Quantum Hardware
Provider, Oxford Quantum
Circuits and new region, eu-
west-2

Added support for OQC and
eu-west-2

February 28, 2022

New Rigetti device Added support for Rigetti
Aspen M-1

February 15, 2022

New resource limits Increased the maximum
number of concurrent DM1
and SV1 tasks from 55 to 100

January 5, 2022

New Rigetti device Added support for Rigetti
Aspen-11

December 20, 2021

Retired Rigetti device Discontinued support for
Rigetti Aspen-10 device

December 20, 2021

346

Amazon Braket Developer Guide

New result type Reduced density matrix result
type supported by local
density matrix simulator and
DM1 devices

December 20, 2021

Updated policy description Amazon Braket updated
the role ARN to include
the servicerole/ path.
For information on policy
updates, see the Amazon
Braket updates to AWS
managed policies table.

November 29, 2021

Amazon Braket Jobs User guide for Amazon Braket
Hybrid Jobs and API added

November 29, 2021

New Rigetti device Added support for Rigetti
Aspen-10

November 20, 2021

Retired D-Wave device Discontinued support for
D-Wave QPU, Advantage
_system1

November 4, 2021

New D-Wave device Added support for an
additional D-Wave QPU,
Advantage_system4

October 5, 2021

New noise simulators Added support for a Density
matrix simulator (DM1), which
can simulate circuits of up to
17 qubits and a local noise
simulator braket_dm

May 25, 2021

PennyLane support Added support for PennyLane
on Amazon Braket

December 8, 2020

347

Amazon Braket Developer Guide

New simulator Added support for a Tensor
Network Simulator (TN1),
which allows larger circuits

December 8, 2020

Task batching Braket supports customer
task batching

November 24, 2020

Manual qubit allocation Braket supports manual qubit
allocation on the Rigetti
device

November 24, 2020

Adjustable quotas Braket supports self-service
adjustable quotas for your
task resources

October 30, 2020

Support for PrivateLink You can set up private VPC
endpoints for your Braket
jobs

October 30, 2020

Support for tags Braket supports API-based
tags for the quantum-task
resource

October 30, 2020

New D-Wave device Added support for an
additional D-Wave QPU,
Advantage_system1

September 29, 2020

Initial release Initial release of the Amazon
Braket documentation

August 12, 2020

348

Amazon Braket Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

349

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon Braket
	Table of Contents
	What is Amazon Braket?
	Amazon Braket terms and concepts
	AWS terminology and tips for Amazon Braket

	Amazon Braket pricing
	Near real-time cost tracking
	Best practices for cost savings

	How Amazon Braket works
	Amazon Braket quantum task flow
	Third-party data processing
	Core repositories and plugins for Braket
	Core repositories
	Plugins

	Amazon Braket supported devices
	IonQ
	IQM
	Rigetti
	QuEra
	Local state vector simulator (braket_sv)
	Local density matrix simulator (braket_dm)
	Local AHS simulator (braket_ahs)
	State vector simulator (SV1)
	Density matrix simulator (DM1)
	Tensor network simulator (TN1)
	Embedded simulators
	PennyLane’s lightning simulators

	Compare simulators
	Amazon Braket Regions and endpoints

	When will my quantum task run?
	Status change notifications in email or SMS
	QPU availability windows and status
	Queue visibility

	Get started with Amazon Braket
	Enable Amazon Braket
	Prerequisites
	Steps to enable Amazon Braket

	Create an Amazon Braket notebook instance
	Run your first circuit using the Amazon Braket Python SDK
	Run your first quantum algorithms

	Work with Amazon Braket
	Hello AHS: Run your first Analog Hamiltonian Simulation
	AHS
	Interacting spin chain
	Arrangement
	Interaction
	Driving field
	AHS program
	Running on local simulator
	Analyzing simulator results
	Running on QuEra’s Aquila QPU
	Analyzing QPU results
	Next

	Construct circuits in the SDK
	Gates and circuits
	Partial Measurement
	Manual qubit allocation
	Verbatim compilation
	Noise simulation
	Inspecting the circuit
	Result types

	Submitting quantum tasks to QPUs and simulators
	Example quantum tasks on Amazon Braket
	Specify the device
	Submit an example quantum task
	Submit a parametrized task
	Specify shots
	Poll for results
	View the example results

	Submitting quantum tasks to a QPU
	Running a quantum task with the local simulator
	Measuring specific qubits on the local simulator

	Quantum task batching
	About quantum task batching and costs
	Quantum task batching and PennyLane
	Task batching and parametrized circuits

	Set up SNS notifications (optional)
	Inspecting compiled circuits

	Run your circuits with OpenQASM 3.0
	What is OpenQASM 3.0?
	When to use OpenQASM 3.0
	How OpenQASM 3.0 works
	Prerequisites
	What OpenQASM features does Braket support?
	Supported OpenQASM data types
	Supported OpenQASM statements
	Braket OpenQASM pragmas
	Advanced feature support for OpenQASM on the Local Simulator
	Supported operations and grammar with OpenPulse

	Create and submit an example OpenQASM 3.0 quantum task
	An example OpenQASM 3.0 program
	Use the Python SDK to create OpenQASM 3.0 quantum tasks
	Use Boto3 to create OpenQASM 3.0 quantum tasks
	Use the AWS CLI to create OpenQASM 3.0 tasks

	Support for OpenQASM on different Braket Devices
	Supported Operations, Results and Result Types with OpenQASM

	Simulate noise with OpenQASM 3.0
	Kraus Operator

	Qubit rewiring with OpenQASM 3.0
	Verbatim Compilation with OpenQASM 3.0
	The Braket console
	More resources
	Computing gradients with OpenQASM 3.0
	Measuring specific qubits with OpenQASM 3.0

	Submit an analog program using QuEra’s Aquila
	Hamiltonian
	Braket AHS program schema
	Braket AHS task result schema
	QuEra device properties schema

	Working with Boto3
	Turn on the Amazon Braket Boto3 client
	Search for devices
	Retrieve a device
	Create a quantum task
	Retrieve a quantum task
	Search for quantum tasks
	Cancel quantum task

	Configure AWS CLI profiles for Boto3 and the Amazon Braket SDK
	Step 1: Configure a local AWS CLIprofile
	Step 2: Establish a Boto3 session object
	Step 3: Incorporate the Boto3 session into the Braket AwsSession

	Pulse control on Amazon Braket
	Braket Pulse
	Frames
	Ports
	Waveforms

	Roles of frames and ports
	Rigetti

	Hello Pulse
	Hello Pulse using OpenPulse

	Accessing native gates using pulses

	Amazon Braket Hybrid Jobs User Guide
	What is a Hybrid Job?
	When to use Amazon Braket Hybrid Jobs
	Run your local code as a hybrid job
	Create a hybrid job from local Python code
	Install additional Python packages and source code
	Save and load data into a hybrid job instance
	Best practices for hybrid job decorators

	Run a hybrid job with Amazon Braket Hybrid Jobs
	Create your first Hybrid Job
	Set permissions
	Create and run
	Monitor results

	Inputs, outputs, environmental variables, and helper functions
	Inputs
	Outputs
	Environmental variables
	Helper functions

	Save job results
	Save and restart hybrid jobs using checkpoints
	Define the environment for your algorithm script
	Use hyperparameters
	Configure the hybrid job instance to run your algorithm script
	Cancel a Hybrid Job
	Using parametric compilation to speed up Hybrid Jobs
	Use PennyLane with Amazon Braket
	Amazon Braket with PennyLane
	Hybrid algorithms in Amazon Braket example notebooks
	Hybrid algorithms with embedded PennyLane simulators
	Adjoint gradient on PennyLane with Amazon Braket simulators

	Use Amazon Braket Hybrid Jobs and PennyLane to run a QAOA algorithm
	Accelerate your hybrid workloads with embedded simulators from PennyLane
	Using lightning.gpu for Quantum Approximate Optimization Algorithm workloads
	Quantum machine learning and data parallelism

	Build and debug a hybrid job with local mode
	Bring your own container (BYOC)
	When is bringing my own container the right decision?
	Recipe for bringing your own container
	A base image for your Dockerfile
	(Optional) A modified container entry point script
	A Dockerfile that installs any necessary software and includes the container script

	Running Braket hybrid jobs in your own container

	Configure the default bucket in AwsSession
	Interact with hybrid jobs directly using the API

	Error mitigation
	Error mitigation on IonQ Aria
	Sharpening

	Braket Direct
	Reservations
	Create a reservation
	Run your workload with a reservation
	Cancel or reschedule an existing reservation

	Expert advice
	Experimental capabilities
	Reservation-only access to IonQ Forte
	Access to local detuning on QuEra Aquila
	Access to tall geometries on QuEra Aquila
	Access to tight geometries on QuEra Aquila

	Logging and Monitoring
	Tracking quantum tasks from the Amazon Braket SDK
	Monitoring quantum tasks through the Amazon Braket console
	Tagging Amazon Braket resources
	Using tags
	More about AWS and tags
	Supported resources in Amazon Braket
	Tag restrictions
	Managing tags in Amazon Braket
	Add tags
	View tags
	Edit tags
	Remove tags

	Example of CLI tagging in Amazon Braket
	Tagging with the Amazon Braket API

	Events and automated actions for Amazon Braket with Amazon EventBridge
	Monitor quantum task status with EventBridge
	Example Amazon Braket EventBridge event

	Monitoring Amazon Braket with Amazon CloudWatch
	Amazon Braket Metrics and Dimensions
	Supported Devices

	Amazon Braket API logging with CloudTrail
	Amazon Braket Information in CloudTrail
	Understanding Amazon Braket Log File Entries

	Create an Amazon Braket notebook instance using AWS CloudFormation
	Step 1: Create an Amazon SageMaker lifecycle configuration script
	Step 2: Create the IAM role assumed by Amazon SageMaker
	Step 3: Create an Amazon SageMaker notebook instance with the prefix amazon-braket-

	Advanced logging

	Security in Amazon Braket
	Shared responsibility for security
	Data protection
	Data retention
	Managing access to Amazon Braket
	Amazon Braket resources
	Notebooks and roles
	About the AmazonBraketFullAccess policy
	Policy contents

	About the AmazonBraketJobsExecutionPolicy policy
	Restrict user access to certain devices
	Amazon Braket updates to AWS managed policies
	Restrict user access to certain notebook instances
	Restrict user access to certain S3 buckets

	Amazon Braket service-linked role
	Service-linked role permissions for Amazon Braket

	Resilience in Amazon Braket
	Compliance validation for Amazon Braket
	Infrastructure Security in Amazon Braket
	Security of Amazon Braket Hardware Providers
	Amazon VPC endpoints for Amazon Braket
	Considerations for Amazon Braket VPC endpoints
	Set up Braket and PrivateLink
	Step 1: Launch an Amazon VPC if needed
	Step 2: Create an interface VPC endpoint for Braket
	Step 3: Connect and run Braket quantum tasks through your endpoint

	More about creating an endpoint
	Control access with Amazon VPC endpoint policies

	Troubleshooting Amazon Braket
	AccessDeniedException
	An error occurred (ValidationException) when calling the CreateQuantumTask operation
	An SDK feature does not work
	Hybrid job fails due to ServiceQuotaExceededException
	Components stopped working in notebook instance
	Amazon Braket Quotas
	Additional quotas and limits

	Troubleshoot OpenQASM
	Include statement error
	Non-contiguous qubits error
	Mixing physical qubits with virtual qubits error
	Requesting result types and measuring qubits in the same program error
	Classical and qubit register limits exceeded error
	Box not preceded by a verbatim pragma error
	Verbatim boxes missing native gates error
	Verbatim boxes missing physical qubits error
	The verbatim pragma is missing "braket" error
	Single qubits cannot be indexed error
	The physical qubits in a two qubit gate are not connected error
	GetDevice does not return OpenQASM results error
	Local simulator support warning

	API & SDK Reference Guide for Amazon Braket
	Document history
	AWS Glossary

