
User Guide

Amazon CodeGuru Profiler

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon CodeGuru Profiler User Guide

Amazon CodeGuru Profiler: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon CodeGuru Profiler User Guide

Table of Contents

What is Amazon CodeGuru Profiler? .. 1
What can I do with CodeGuru Profiler? ... 1
What languages are supported by CodeGuru Profiler? .. 1
How do I get started with CodeGuru Profiler? .. 2

Setting up .. 3
Set up in the Lambda console .. 3

Step 1: Sign up for AWS ... 4
Step 2: Enable CodeGuru Profiler .. 4

Set up in the CodeGuru Profiler console ... 5
Step 1: Sign up for AWS ... 4
Step 2: Create a CodeGuru Profiler profiling group .. 4
Step 3: Set permissions ... 6
Step 4: Start CodeGuru Profiler in your application .. 9

Getting Started .. 11
Python sample application .. 11

Prerequisites ... 12
Step 1: Create a profiling group .. 12
Step 2: Set up the virtual environment ... 13
Step 3: Run the application .. 13
Step 4: Understanding the console .. 14
Cleanup ... 15

Java sample application ... 16
Option 1: Quick demo ... 16
Option 2: Complete demo .. 17

Integrating with JVM .. 22
Choosing the right integration option .. 22
Profiling your applications that run on AWS Lambda .. 23

All Java runtimes .. 24
Easier option for Java 8 on Amazon Linux 2 and Java 11 and Java 17 (Corretto) runtimes ... 26

Enabling the agent from the command line .. 27
Installation .. 27
Configuration ... 28
Supported runtime environments ... 29

Enabling the agent with code ... 34

iii

Amazon CodeGuru Profiler User Guide

Installation .. 34
Configuration ... 35
Supported languages ... 38
Java .. 38
Scala ... 39
Kotlin ... 39
Groovy ... 39
Jython .. 40
JRuby ... 40
Clojure ... 41

Integrating with Python .. 42
Profiling your applications that run on AWS Lambda .. 42

Apply the CodeGuru Profiler function decorator to your handler function 43
Use AWS Lambda layers .. 44

Enabling the agent with code ... 45
Supported web components .. 38
Django ... 47
Flask ... 47
WSGI servers .. 48

Enabling the agent from the command line .. 49
Profiling Distributed systems ... 50
Enabling logs ... 50

Working with Amazon EventBridge ... 51
Working with unsupported AWS Regions .. 54

Enabling the agent with code ... 54
Java .. 54
Python ... 55

Profiling applications that run on AWS Lambda ... 55
Java .. 55
Python ... 56

Working with profiling groups ... 57
Creating a profiling group .. 57
Deleting a profiling group .. 57

Working with visualizations ... 59
Accessing visualizations .. 59
Types of visualizations .. 60

iv

Amazon CodeGuru Profiler User Guide

Overview visualizations ... 60
Hotspots visualizations .. 64
Inspect visualizations ... 64

Exploring visualization data ... 64
Choosing my code in visualizations .. 65
Pausing over a frame ... 66
Zooming in on a frame ... 66
Resetting zoom in a visualization ... 66
Inspecting a frame .. 67
Understanding the dollar estimate of the CPU cost for frames ... 67

Filtering visualization data ... 67
Selecting and coloring thread states .. 68
Hiding a frame .. 69

Selecting a custom time range ... 70
Understanding the summary page ... 70

Profiling group status .. 71
CPU summary .. 71
Latency summary .. 72
Heap usage ... 72
Anomalies ... 72
Recommendations .. 73

Understanding the heap summary ... 73
Total capacity ... 73
Used space .. 73
Heap summary table .. 74

Comparing two time ranges .. 74
Understanding the comparison ... 75

Working with anomalies and recommendation reports ... 77
Viewing reports .. 77
Understanding performance improvement recommendations .. 78
Understanding anomaly reports ... 78

Tagging profiling groups .. 80
Add a tag to a profiling group .. 80

Add a tag to a profiling group .. 81
View tags for a profiling group .. 81

View tags for a profiling group ... 81

v

Amazon CodeGuru Profiler User Guide

Edit tags for a profiling group .. 81
Edit a tag for a profiling group ... 82

Remove a tag from a profiling group .. 82
Remove a tag from a profiling group .. 83

Security .. 84
Data protection ... 84

Captured data .. 85
Data encryption ... 86
Data retention ... 86
Internetwork Traffic Privacy ... 86

Identity and access management ... 86
Audience .. 87
Authenticating with identities .. 88
Managing access using policies .. 91
Overview of managing access .. 93
Using identity-based policies ... 97
Resource-based policies .. 106
CodeGuru Profiler permissions reference .. 108
AWS managed policies .. 112
Troubleshooting .. 115
Using service-linked roles ... 118
Using tags to control access to Amazon CodeGuru Profiler resources 122

Compliance Validation .. 124
Using CodeGuru Profiler with VPC Endpoints ... 125

Creating Amazon VPC Endpoints for CodeGuru Profiler .. 125
Infrastructure security ... 126

Logging and monitoring ... 127
Logging CodeGuru Profiler API calls with CloudTrail ... 127

Amazon CodeGuru Profiler information in CloudTrail .. 127
Understanding Amazon CodeGuru Profiler log file entries ... 128

Monitoring CodeGuru Profiler with CloudWatch .. 131
Monitoring profiling groups with CloudWatch metrics .. 132
Monitoring profiling groups with CloudWatch alarms ... 132

Troubleshooting ... 134
Profile is missing expected methods ... 134
CodeGuru Profiler doesn't appear in application logs ... 134

vi

Amazon CodeGuru Profiler User Guide

An exception says the profiling group doesn't exist .. 135
Getting a 403 Forbidden error that the agent doesn't have permission to submit data 136
No data in the console ... 136
Profile shows only a few frames .. 136
No Lambda data .. 136
I have errors in my Lambda function log. .. 136
I received a ValidationException error in the agent. ... 137
Heap summary data .. 137

Garbage collection ... 137
Advanced troubleshooting .. 138

Quotas .. 139
Profiling groups .. 139

Document history .. 140
AWS Glossary ... 143

vii

Amazon CodeGuru Profiler User Guide

What is Amazon CodeGuru Profiler?

Amazon CodeGuru Profiler collects runtime performance data from your live applications, and
provides recommendations that can help you fine-tune your application performance. Using
machine learning algorithms, CodeGuru Profiler can help you find your most expensive lines of
code and suggest ways you can improve efficiency and remove CPU bottlenecks.

CodeGuru Profiler provides different visualizations of profiling data to help you identify what
code is running on the CPU, see how much time is consumed, and suggest ways to reduce CPU
utilization.

What can I do with CodeGuru Profiler?

Use CodeGuru Profiler to help profile your applications in the cloud from a single, centralized
dashboard.

Specifically, you can do the following:

• Troubleshoot latency and CPU utilization issues in your application.

• Learn where you could reduce the infrastructure costs of running your application.

• Identify application performance issues.

• Understand your application's heap utilization over time.

What languages are supported by CodeGuru Profiler?

CodeGuru Profiler currently supports applications written in all Java virtual machine (JVM)
languages and runtimes and Python 3.6 or later. The following table explains which features of
CodeGuru Profiler are supported by which language.

Feature Java/JVM Python

CPU profiling Yes Yes

Support for AWS Lambda
and other AWS compute
platforms

Yes Yes

What can I do with CodeGuru Profiler? 1

Amazon CodeGuru Profiler User Guide

Feature Java/JVM Python

Anomalies and recommend
ation reports

Yes Yes

Colored thread states Yes Yes

Heap summary visualization Yes No

How do I get started with CodeGuru Profiler?

1. Prepare to use CodeGuru Profiler by following the steps in Setting up CodeGuru Profiler.

2. Learn how to use recommendation reports by following the steps in Working with anomalies
and recommendation reports.

3. Graphically explore your application data by following the steps in Working with visualizations.

How do I get started with CodeGuru Profiler? 2

Amazon CodeGuru Profiler User Guide

Setting up CodeGuru Profiler

An Amazon CodeGuru Profiler profiling group is a group of applications for which data is meant to
be aggregated and analyzed together. To create a profiling group, sign in to the AWS Management
Console and set permissions for the CodeGuru Profiler profiling agent.

The profiling agent collects runtime data from your applications. Data that the agent collects
is analyzed to provide flame graphs and hourly reports with recommendations for how you can
optimize your applications.

You can create a profiling group using your own application or the demo application. For more
information about using the demo application, see Getting started with CodeGuru Profiler.

Before you can start using CodeGuru Profiler, you must complete setup. If your application runs on
AWS Lambda, then you can enable profiling from the Lambda console. If your application runs on
a platform other than Lambda, then you can complete the setup process in the CodeGuru Profiler
console.

Topics

• Set up in the Lambda console

• Set up in the CodeGuru Profiler console

Set up in the Lambda console

You can use the following method to create a profiling group with your Lambda function. This
method automatically creates a profiling group when a profile is available to submit. This method
is applicable for runtimes Python 3.8, Python 3.9, Java 8 on Amazon Linux 2 and Java 11 and Java
17 (Corretto). Alternatively, you can create a profiling group by following the instructions in Setting
up in the CodeGuru Profiler console.

If you want to integrate with Lambda for an application with a different runtime, see Profiling your
Java applications that run on AWS Lambda or Profiling your Python applications that run on AWS
Lambda..

Set up in the Lambda console 3

https://docs.aws.amazon.com/codeguru/latest/profiler-ug/integrating-with-java.html#setting-up-lambda
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/integrating-with-java.html#setting-up-lambda
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/integrating-with-python.html#python-lambda
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/integrating-with-python.html#python-lambda

Amazon CodeGuru Profiler User Guide

Step 1: Sign up for AWS

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up
for all services in AWS, including CodeGuru Profiler. You're charged only for the services that you
use.

If you have an AWS account already, move on to the next task. If you don't have an AWS account,
use the following procedure to create one.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Step 2: Enable CodeGuru Profiler

A profiling group can profile one or more applications. Data is aggregated and displayed based on
the whole profiling group.

For example, if you have a collection of microservices that handle restaurant recommendations,
you can collect profile data and identify performance issues across all these microservices in a
single profiling group named "Restaurant-Recommendations".

To enable profiling from the Lambda console

1. Sign in to the AWS Management Console, and then open the Lambda console.

2. Choose your Lambda function. In the Configuration tab, choose Monitoring and operation
tools. Choose Edit.

3. Enable Code profiling in the Amazon CodeGuru Profiler section. This creates a profiling group
when a profile is available to submit.

Step 1: Sign up for AWS 4

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

Amazon CodeGuru Profiler User Guide

Note

If you want to delete your profiling group, visit the CodeGuru Profiler console. If you
disable Code profiling in the Lambda console, your profiling group still exists.
If the execution role of your Lambda function doesn’t have the required CodeGuru Profiler
permissions such as AmazonCodeGuruProfilerAgentAccess or your function doesn’t have
the required environment variables, the Lambda console attempts to add them.

Set up in the CodeGuru Profiler console

Step 1: Sign up for AWS

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up
for all services in AWS, including CodeGuru Profiler. You're charged only for the services that you
use.

If you have an AWS account already, move on to the next task. If you don't have an AWS account,
use the following procedure to create one.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Step 2: Create a CodeGuru Profiler profiling group

A profiling group can profile one or more applications. Data is aggregated and displayed based on
the whole profiling group.

Set up in the CodeGuru Profiler console 5

https://docs.aws.amazon.com/codeguru/latest/profiler-ug/security-iam-awsmanpol.html#security-iam-awsmanpol-amazoncodeguruprofileragentaccess
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

Amazon CodeGuru Profiler User Guide

For example, if you have a collection of microservices that handle restaurant recommendations,
you can collect profile data and identify performance issues across all these microservices in a
single profiling group named "Restaurant-Recommendations".

To create a profiling group from the CodeGuru Profiler console

1. Sign in to the AWS Management Console, and then open the CodeGuru Profiler console at
https://console.aws.amazon.com/codeguru.

2. In the navigation pane on the left, choose Profiler, and then choose Profiling groups.

3. On the Profiling groups page, choose Create profiling group.

4. Provide a Name for the new profiling group. Choose the compute platform that on which your
applications are running. If your applications run on AWS Lambda, choose the AWS Lambda
option. Choose Other if your applications run on a compute platform other than AWS Lambda,
such as Amazon EC2, on-premises servers, or a different platform.

5. Choose Create profiling group.

Step 3: Set permissions

The CodeGuru Profiler profiling agent needs permissions to write data to the profiling group.

You can add the necessary permissions by adding the following policy.

arn:aws:iam::aws:policy/AmazonCodeGuruProfilerAgentAccess

To set permissions for the new CodeGuru Profiler agent:

1. Start by choosing Give access to users and roles. Choose the IAM users and roles that can
submit profiling data and configure the agent.

2. If your applications run on AWS Lambda, choose the role that your AWS Lambda function uses.

3. After you grant permissions for a user or role, you don't need to attach IAM policies for agent
permissions.

Step 3: Set permissions 6

https://console.aws.amazon.com/codeguru

Amazon CodeGuru Profiler User Guide

Use IAM:ListUsers and IAM:ListRoles permissions to see your users and roles.
Otherwise, you can add a user or Amazon Resource Name (ARN) role. You'll see the following
message.

Step 3: Set permissions 7

Amazon CodeGuru Profiler User Guide

Alternatively, you can add a policy like the following to the role that your application uses. For
more information about roles, see Modifying a role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codeguru-profiler:ConfigureAgent",
 "codeguru-profiler:PostAgentProfile"
],
 "Resource": "arn:aws:codeguru-
profiler:<region>:<accountID>:profilingGroup/<profilingGroupName>"
 }
]
}

Step 3: Set permissions 8

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

Amazon CodeGuru Profiler User Guide

If your application is running in a Region that CodeGuru Profiler doesn't support and if you have
the appropriate permissions, you can submit profiling data to one of the supported Regions. For
more information about using CodeGuru Profiler in a Region it doesn't support, see Working with
unsupported Regions.

Step 4: Start CodeGuru Profiler in your application

Run your application with the profiling agent

Run your application with the CodeGuru Profiler profiling agent. You can use CodeGuru Profiler on
your Python or Java virtual machine (JVM)-based applications.

For your JVM-based application, you can either start the agent as a JVM agent, or start it manually
with a code change in your application. To start profiling your application, see Integrating with
JVM.

To start profiling your Python application, see Integrating with Python.

Enable data collection for the heap summary visualization

The CodeGuru Profiler heap summary shows your application's heap usage over time. This feature
is available for JVM applications. For more information on the heap summary, see Understanding
the heap summary.

Heap summary collection requires Java agent version 1.2.3 or greater. Opt in to heap summary
data collection by completing the onboarding method used to enable the agent. The following are
the onboarding methods from which you can choose.

Command line (-javaagent)

Add heapSummaryEnabled:true. The following example shows how to enable heap summary
collection.

-javaagent:/path/to/codeguru-profiler-java-agent-
standalone-1.2.3.jar="profilingGroupName:myProfilingGroup,heapSummaryEnabled:true"

Update your code

Set .withHeapSummary to true. The following is an example of what your code might look like.

class MyClass {

Step 4: Start CodeGuru Profiler in your application 9

Amazon CodeGuru Profiler User Guide

 public static void main(String[] args) {
 Profiler.builder()
 .profilingGroupName("MyProfilingGroup")
 .withHeapSummary(true) // optional - to start without heap profiling set to
 false or remove line
 .build()
 .start();
 ...
 }

Environment variables

Set AWS_CODEGURU_PROFILER_HEAP_SUMMARY_ENABLED to true.

Step 4: Start CodeGuru Profiler in your application 10

Amazon CodeGuru Profiler User Guide

Getting started with CodeGuru Profiler

The tutorials in this section are provided to help you start using Amazon CodeGuru Profiler. They
show you how to set up your first profiling group and understand the console.

After you set up CodeGuru Profiler, you can use the demo application to learn about profiling
groups. For more information about using the demo application, see the Amazon CodeGuru
Profiler Demo Application. It will help to familiarize you with profiling groups and the ways you
can visualize application data in CodeGuru Profiler. It's also a good place to start if you're new to
profiling.

Topics

• Python sample application

• Java sample application

Python sample application

In this tutorial, you’ll walk through the complete set up necessary to run Amazon CodeGuru
Profiler within a sample application. You’ll then be able to view the profiling group's resulting
runtime data.

To view the sample application, navigate to the CodeGuru Profiler Python demo application.
CodeGuru Profiler runs inside the sample application and collects and reports profiling data about
the application, which can be viewed from the AWS console.

This tutorial’s sample application does some basic image processing, with some CPU-heavy
operations alongside some IO-heavy operations. It uses an Amazon Simple Storage Service bucket
for cloud storage of images and an Amazon Simple Queue Service queue to order the names
of images to be processed. It consists chiefly of two components which run in parallel, the task
publisher and the image processor:

TaskPublisher checks the S3 bucket for available images, and submits the name of some of
these images to the SQS queue.

ImageProcessor polls SQS for names of images to process. Processing an image involves
downloading it from S3, applying some image transforms (e.g. converting to monochrome), and
uploading the result back to S3.

Python sample application 11

https://github.com/aws-samples/aws-codeguru-profiler-demo-application
https://github.com/aws-samples/aws-codeguru-profiler-demo-application
https://github.com/aws-samples/aws-codeguru-profiler-python-demo-application/tree/main/sample-demo-app

Amazon CodeGuru Profiler User Guide

Prerequisites

For this tutorial, you will need:

• The latest version of the AWS Command Line Interface. For more information, see Installing,
updating, and uninstalling the AWS Command Line Interface.

• Python 3.6 or later.

• The sample application cloned to your desired directory.

Step 1: Create a profiling group

Set up the required components by running the following AWS commands in your terminal.

1. Configure the AWS CLI.

When prompted, specify the AWS access key and AWS secret access key of the IAM user that
you will use with CodeGuru Profiler.

When prompted for the default Region name, specify the Region where you will create the
pipeline, such as us-west-2.

When prompted for the default output format, specify the .json.

aws configure

2. Create a profiling group in CodeGuru Profiler, named PythonDemoApplication.

aws codeguruprofiler create-profiling-group --profiling-group-name
 PythonDemoApplication

3. Create an Amazon SQS queue.

aws sqs create-queue --queue-name DemoApplicationQueue

4. Create an Amazon S3 bucket. Replace the YOUR-BUCKET with your desired bucket name.

aws s3 mb s3://python-demo-application-test-bucket-YOUR-BUCKET

5. Provision an IAM role. For information, see Creating IAM roles or use one that is associated
with your AWS account.

Prerequisites 12

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://github.com/aws-samples/aws-codeguru-profiler-python-demo-application/tree/main/sample-demo-app
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

Amazon CodeGuru Profiler User Guide

Attach the AmazonSQSFullAccess, AmazonS3FullAccess, and
AmazonCodeGuruProfilerFullAccess AWS managed policies to the IAM role.

6. Export the Amazon SQS URL, Amazon S3 bucket name, and the target Region.

Remember to replace YOUR-AWS-REGION, YOUR-ACCOUNT-ID, and YOUR-BUCKET . YOUR-
AWS-REGION should be the Region you specified in the AWS CLI configuration. YOUR-
ACCOUNT-ID should be your AWS account ID. YOUR-BUCKET should be the bucket name you
specified during Amazon S3 bucket creation.

export DEMO_APP_SQS_URL=https://sqs.YOUR-AWS-REGION.amazonaws.com/YOUR-ACCOUNT-ID/
DemoApplicationQueue
export DEMO_APP_BUCKET_NAME=python-demo-application-test-bucket-YOUR-BUCKET
export AWS_CODEGURU_TARGET_REGION=YOUR-AWS-REGION

Step 2: Set up the virtual environment

Create the virtual environment and install necessary resources by running the following commands
in your terminal.

1. Create and activate the virtual environment.

python3 -m venv ./venv
source venv/bin/activate

2. Install boto3 and skimage. Installing scikit-image with Python 3.9 may cause failures. For more
information, see Installing schikit-learn via pip.

pip3 install boto3 scikit-image

3. Install the CodeGuru Profiler agent.

pip3 install codeguru_profiler_agent

Step 3: Run the application

Run the following command in your terminal to start the application. Then, verify that the
application has begun profiling.

Step 2: Set up the virtual environment 13

https://github.com/scikit-image/scikit-image/issues/5060

Amazon CodeGuru Profiler User Guide

1. Run the sample application with the CodeGuru Profiler Python Agent.

Note that when running the demo application for the first time, it is expected to see error
messages such as No messages exist in SQS queue at the moment, retry later. and Failed to
list images in demo-application-test-bucket-1092734-YOUR-BUCKET under input-images/
printing to the terminal. Our demo application will handle image upload and SQS message
publication after a few seconds.

python3 -m codeguru_profiler_agent -p PythonDemoApplication
 aws_python_sample_application/main.py

2. Verify that your profiling group is running.

Navigate to the CodeGuru Profiler console.

Choose Profiling groups.

The PythonDemoApplication group should have status "Pending". You may need to wait a few
minutes for this to update. After running the demo for approximately 15 to 20 minutes, the
group should have status "Profiling", and you can view runtime data.

Step 4: Understanding the console

The CodeGuru Profiler console is where you can view the data that Profiler has gathered from
running the application.

1. Navigate to the CodeGuru Profiler console.

2. Choose Profiling groups.

3. Choose the PythonDemoApplication group.

The following sections are displayed, along with options for other visualizations or a full
recommendations report.

• Profiling group status displays the status of the profiling group and metrics from data collected
in the past 12 hours.

• CPU summary displays the amount of system CPU capacity that the application consumes. You
can choose Visualize CPU to view the flame graph.

Step 4: Understanding the console 14

https://console.aws.amazon.com/codeguru/profiler/
https://console.aws.amazon.com/codeguru/profiler/

Amazon CodeGuru Profiler User Guide

• Latency summary displays the amount of time the application’s threads spend in the Blocked,
Waiting, and Timed Waiting thread states.

• Heap usage displays how much of your application's maximum heap capacity is consumed by the
application.

• Anomalies display any deviations from trends that CodeGuru Profiler detects.

• Recommendations display suggestions to optimize the application.

Cleanup

Upon completion of this tutorial, clean up the resources created.

Delete the profiling groups by following the procedure in Deleting a profiling group.

Delete the Amazon S3 bucket, replacing YOUR-BUCKET with your specified bucket name. Note that
all objects stored in the bucket will be deleted as well.

aws s3 rb s3://python-demo-application-test-bucket-YOUR-BUCKET --force

Delete the Amazon SQS queue. Note that this will delete the queue itself, not just the messages in
the queue.

aws sqs delete-queue

Cleanup 15

https://docs.aws.amazon.com/codeguru/latest/profiler-ug/working-with-profiling-groups-delete.html

Amazon CodeGuru Profiler User Guide

Java sample application

This tutorial walks through the complete setup necessary to run Amazon CodeGuru Profiler within
two sample applications: one that features issues to generate CodeGuru Profiler recommendations
and one that does not. You can then view the resulting CodeGuru Profiler runtime data and
recommendations.

To view the sample application, navigate to the CodeGuru Profiler demo application. CodeGuru
Profiler runs inside the sample application and collects and reports profiling data about the
application, which can be viewed from the CodeGuru Profiler console.

This tutorial’s sample application does some basic image processing, with some CPU-heavy
operations alongside some IO-heavy operations. It uses an Amazon Simple Storage Service bucket
for cloud storage of images and an Amazon Simple Queue Service queue to order the names
of images to be processed. It consists chiefly of two components which run in parallel, the task
publisher and the image processor:

TaskPublisher checks the S3 bucket for available images, and submits the name of some of
these images to the SQS queue.

ImageProcessor polls SQS for names of images to process. Processing an image involves
downloading it from S3, applying some image transforms (e.g. converting to monochrome), and
uploading the result back to S3.

When running DemoApplication-WithIssues, you see messages such as Expensive exception
and Pointless work being logged. This is expected, and you can see how these issues appear on
the CodeGuru Profiler console.

Option 1: Quick demo

The results of this application are available to review within the CodeGuru console. There is no
need to run the code if you just want to see the CodeGuru Profiler output.

1. Sign in to the AWS Management Console, and then open the CodeGuru Profiler console at
https://console.aws.amazon.com/codeguru.

2. In the navigation pane on the left, choose Profiler, and then choose Profiling groups.

3. On the Profiling groups page, choose {CodeGuru} DemoProfilingGroup-WithIssues
and {CodeGuru} DemoProfilingGroup-WithoutIssues to view runtime performance
data and recommendations. To better understand the console, see step 4.

Java sample application 16

https://github.com/aws-samples/aws-codeguru-profiler-demo-application
https://console.aws.amazon.com/codeguru

Amazon CodeGuru Profiler User Guide

Option 2: Complete demo

Prerequisites

For this tutorial, you will need:

• The latest version of the AWS Command Line Interface. For more information, see Installing,
updating, and uninstalling the AWS Command Line Interface.

• Maven to build and run the code. For information on installing Maven, see Welcome to Apache
Maven.

• The sample application cloned to your desired directory.

Step 1: Create AWS resources

Set up the required components by running the following AWS commands in your terminal.

1. Configure the AWS CLI.

When prompted, specify the AWS access key and AWS secret access key of the IAM user that
you will use with CodeGuru Profiler.

When prompted for the default Region name, specify the Region where you will create the
pipeline, such as us-west-2.

When prompted for the default output format, specify the .json.

aws configure

2. Create two profiling groups in CodeGuru Profiler, named DemoApplication-WithIssues
and DemoApplication-WithoutIssues.

aws codeguruprofiler create-profiling-group --profiling-group-name DemoApplication-
WithIssues

Option 2: Complete demo 17

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://maven.apache.org/
https://maven.apache.org/
https://github.com/aws-samples/aws-codeguru-profiler-demo-application

Amazon CodeGuru Profiler User Guide

aws codeguruprofiler create-profiling-group --profiling-group-name DemoApplication-
WithoutIssues

3. Create an Amazon SQS queue.

aws sqs create-queue --queue-name DemoApplicationQueue

4. Create an Amazon S3 bucket. Replace the YOUR-BUCKET with your desired bucket name.

aws s3 mb s3://demo-application-test-bucket-YOUR-BUCKET

5. Provision an IAM role. For information, see Creating IAM roles or use one that is associated
with your AWS account.

Attach the AmazonSQSFullAccess, AmazonS3FullAccess, and
AmazonCodeGuruProfilerFullAccess AWS managed policies to the IAM role.

Step 2: Run a sample application

Follow these steps to run one of the sample applications. You select which sample application to
run in step 2. To run the other sample application, repeat the following steps, selecting the other
sample application in step 2.

1. Export the Amazon SQS URL, the S3; bucket name, and the target Region.

Remember to replace YOUR-AWS-REGION, YOUR-ACCOUNT-ID, and YOUR-BUCKET. YOUR-
AWS-REGION should be the Region you specified in the AWS CLI configuration. YOUR-
ACCOUNT-ID should be your AWS account ID. YOUR-BUCKET should be the bucket name you
specified during Amazon S3 bucket creation.

export DEMO_APP_SQS_URL=https://sqs.YOUR-AWS-REGION.amazonaws.com/YOUR-ACCOUNT-ID/
DemoApplicationQueue
export DEMO_APP_BUCKET_NAME=demo-application-test-bucket-1092734-YOUR-BUCKET
export AWS_CODEGURU_TARGET_REGION=YOUR-AWS-REGION

2. Export the CodeGuru Profiler profiling group

To run the sample application with issues, run the following command.

export AWS_CODEGURU_PROFILER_GROUP_NAME=DemoApplication-WithIssues

Option 2: Complete demo 18

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

Amazon CodeGuru Profiler User Guide

To run the sample application without issues, run the following command.

export AWS_CODEGURU_PROFILER_GROUP_NAME=DemoApplication-WithoutIssues

3. Generate the sample application .jar file.

1. mvn clean install

4. Run the demo.

java -javaagent:codeguru-profiler-java-agent-standalone-1.2.3.jar \
 -jar target/DemoApplication-1.0-jar-with-dependencies.jar with-issues

5. Verify that your profiling group is running.

Navigate to the CodeGuru Profiler console.

Choose Profiling groups.

The DemoApplication-WithIssues profiling group should have the status Pending. You
may need to wait a few minutes for this to update. After running the demo for around 15
minutes, the group should have the status Profiling.

Run the demo for a few hours to generate ample data for recommendations.

Step 3: Understanding the console

The CodeGuru Profiler console is where you can view the data that Profiler has gathered from
running the application.

1. Navigate to the CodeGuru Profiler console.

2. Choose Profiling groups.

3. Choose the DemoApplication-WithIssues or the DemoApplication-WithoutIssues
profiling group

The following sections are displayed, along with options for other visualizations or a full
recommendations report.

Option 2: Complete demo 19

https://console.aws.amazon.com/codeguru/profiler/
https://console.aws.amazon.com/codeguru/profiler/

Amazon CodeGuru Profiler User Guide

• Profiling group status displays the status of the profiling group and metrics from data collected
in the past 12 hours.

• CPU summary displays the amount of system CPU capacity that the application consumes. You
can choose Visualize CPU to view the flame graph.

• Latency summary displays the amount of time the application’s threads spend in the Blocked,
Waiting, and Timed Waiting thread states.

• Heap usage displays how much of your application's maximum heap capacity is consumed by the
application.

• Anomalies display any deviations from trends that CodeGuru Profiler detects.

• Recommendations display suggestions to optimize the application.

The DemoApplication-WithIssues generates recommendations, while the
DemoApplication-WithoutIssues does not. These recommendations have to do with the
purposefully inefficient lines of code that unnecessarily recreate loggers, SDK service clients, and
Jackson Object Mappers. You can choose View report next to the Recommendations section
for more details on these inefficiencies, including their location, estimated costs, and suggested
resolution steps.

Option 2: Complete demo 20

Amazon CodeGuru Profiler User Guide

The average heap usage in the DemoApplication-WithIssues is significantly higher, indicating
that the application requires significantly more memory.

Cleanup

Upon completion of this tutorial, clean up the resources created.

Delete the profiling groups by following the procedure in Deleting a profiling group.

Delete the Amazon S3 bucket, replacing YOUR-BUCKET with your specified bucket name. Note that
all objects stored in the bucket will be deleted as well.

aws s3 rb s3://demo-application-test-bucket-1092734-YOUR-BUCKET --force

Delete the Amazon SQS queue. Note that this will delete the queue itself, not just the messages in
the queue.

aws sqs delete-queue

Option 2: Complete demo 21

https://docs.aws.amazon.com/codeguru/latest/profiler-ug/working-with-profiling-groups-delete.html

Amazon CodeGuru Profiler User Guide

Integrating with your JVM-based application

To start profiling your application, enable the CodeGuru Profiler agent to be loaded and started
when your JVM-based application starts. After the agent starts, it automatically sends profiles to
CodeGuru Profiler service. You’ll see continuous updates and recommendations.

The following sections explain which environments and languages are supported by CodeGuru
Profiler.

Topics

• Choosing the right integration option

• Profiling your applications that run on AWS Lambda

• Enabling the agent from the command line

• Enabling the agent with code

Choosing the right integration option

You can load the CodeGuru Profiler agent into your JVM-based application in two ways:

1. Command line – Use the -javaagent command line option when starting your application.

2. Code – Add the CodeGuru Profiler agent into your application code.

The same functionality is available in either option. Choosing the right option for your situation
depends on the following:

To quickly start profiling your existing JVM-based application, the command line option might be
best because it doesn't require recompiling your application.

For more control over when to start profiling, or in rare cases where you need to provide a custom
authentication provider, you might want to choose the code option.

The following table helps summarize these options.

Option Command line Code

Profile existing application Yes No (requires re-compile)

Choosing the right integration option 22

Amazon CodeGuru Profiler User Guide

Option Command line Code

Custom authentication
provider

No Yes

Control when profiling starts No (profiling begins at
startup)

Yes

You can always choose a different option later. All of the profiling data is stored in the CodeGuru
Profiler service, and is available even when switching the CodeGuru Profiler agent.

Profiling your applications that run on AWS Lambda

To start CodeGuru Profiler in your application running on AWS Lambda, you can either update your
Lambda function configuration or modify your application code. The former option is available
only for Java 8 on Amazon Linux 2 and Java 11 and Java 17 (Corretto) runtimes, while the latter is
available for all Java runtimes.

If you enabled profiling in the Lambda console, you don't have to complete the procedure outlined
in the following sections. To learn more about enabling profiling from the Lambda console, see Set
up in the Lambda console.

Note

You can profile your Lambda functions running in Java if they are called often enough
for CodeGuru Profiler to gather enough samples. CodeGuru Profiler collects data once
per second, aggregated into 5-minute sampling buckets. For Lambda functions running
for fewer than 5 minutes, your application must run multiple times so CodeGuru Profiler
can collect enough data. If it runs too infrequently, CodeGuru Profiler can't generate
enough data to provide recommendations and flame graphs. For long-running Lambda
applications, processing can take up to 15 minutes to display graphs and information. If
you are running your application in shorter durations, processing takes longer to display
information.

Topics

• All Java runtimes

Profiling your applications that run on AWS Lambda 23

Amazon CodeGuru Profiler User Guide

• Easier option for Java 8 on Amazon Linux 2 and Java 11 and Java 17 (Corretto) runtimes

All Java runtimes

If you're profiling applications that run on AWS Lambda, add the following environment variables
to your Lambda function.

• AWS_CODEGURU_PROFILER_GROUP_ARN – Identifies the profiling group ARN.

• AWS_CODEGURU_PROFILER_ENABLED – Enables profiling when set to TRUE. To disable profiling,
set this variable to FALSE. Default value is TRUE.

For information about setting environment variables in the Lambda console, see Using AWS
Lambda environment variables.

Add a dependency to the CodeGuru Profiler profiling agent library. You can do this manually by
adding a dependency in your Maven or Gradle configuration files. For more information about
adding dependencies, see Enabling the agent with code.

Make code changes to start profiling your AWS Lambda functions

If you have been using handlers provided by AWS Lambda, then you can alter your code to use
handlers provided by CodeGuru to enable profiling. For information about your Lambda function's
header, see AWS Lambda function handler in Java.

Note

No need to change your Lambda configuration! The handler function should still be
handleRequest. This function is implemented by the CodeGuru class and calls the
requestHandler after setting up the profiler.

If your Lambda function uses Lambda’s RequestHandler, you can replace it with
CodeGuru Profiler's RequestHandlerWithProfiling to enable profiling by default.
RequestHandlerWithProfiling is a generic type that takes two parameters: the input type and
the output type. Both types must be objects. When you use RequestHandlerWithProfiling,
the Java runtime deserializes the event into an object with the input type, and serializes the output
into text. Use this interface when the built-in serialization works with your input and output types.
The following example provides a sample code snippet to enable profiling by default.

All Java runtimes 24

https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/enabling-the-agent-with-code
https://docs.aws.amazon.com/lambda/latest/dg/java-handler.html

Amazon CodeGuru Profiler User Guide

package example;

import java.util.Map;

import com.amazonaws.services.lambda.runtime.Context;

import software.amazon.codeguruprofilerjavaagent.RequestHandlerWithProfiling;

public class Handler extends RequestHandlerWithProfiling<Map<String, String>, String> {

 @Override
 public String requestHandler(Map<String, String> input, Context context) {
 // Your function code here
 }
}

If you are using RequestStreamHandler, then you can replace it with CodeGuru Profiler's
RequestStreamHandlerWithProfiling. To use your own serialization, implement the
RequestStreamHandlerWithProfiling interface, with which Lambda passes your handler
an input stream and output stream. The handler reads bytes from the input stream, writes to the
output stream, and returns void.

package example;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import com.amazonaws.services.lambda.runtime.Context;

import software.amazon.codeguruprofilerjavaagent.RequestStreamHandlerWithProfiling;

public class StreamHandler extends RequestStreamHandlerWithProfiling {

 @Override
 public void requestHandler(InputStream input, OutputStream output, Context context)
 throws IOException {
 // Your function code here
 }
}

All Java runtimes 25

Amazon CodeGuru Profiler User Guide

If you don't use handlers provided by AWS Lambda, then add the following code to start profiling
your AWS Lambda functions. Wrap your AWS Lambda function’s logic inside a utility from the
CodeGuru Profiler profiling agent.

package example;

import com.amazonaws.services.lambda.runtime.Context;

import software.amazon.codeguruprofilerjavaagent.LambdaProfiler;

public class MyHandler {

 // This is the handler function we use in the lambda
 public Output handleRequest(Input input, Context context) {
 return LambdaProfiler.profile(input, context, this::myHandlerFunction);
 }

 private Output myHandlerFunction(Input input, Context context) {
 // your function code here
 }
}

Your Lambda function runs the way it typically does, while the CodeGuru Profiler profiling agent
runs in parallel. After running for 5 minutes, the agent submits your first profile. Processing can
take up to 15 minutes.

Easier option for Java 8 on Amazon Linux 2 and Java 11 and Java 17
(Corretto) runtimes

You can enable CodeGuru Profiler from the AWS console by setting environment variables and
updating configuration for your AWS Lambda function. This method works for Java 8 on Amazon
Linux 2 and Java 11 and Java 17 (Corretto) runtimes.

If you're profiling applications that run on Lambda, set the following environment variables to your
Lambda function.

• AWS_CODEGURU_PROFILER_GROUP_NAME – Identifies the profiling group name.

• AWS_CODEGURU_PROFILER_TARGET_REGION – Identifies the target region of the profiling
group.

Easier option for Java 8 on Amazon Linux 2 and Java 11 and Java 17 (Corretto) runtimes 26

Amazon CodeGuru Profiler User Guide

• AWS_CODEGURU_PROFILER_HEAP_SUMMARY_ENABLED – Optional. Set this variable to true to
enable heap summary. The default is false.

• JAVA_TOOL_OPTIONS – Set this variable to -javaagent:/opt/codeguru-profiler-java-
agent-standalone.jar.

For information about setting environment variables in the AWS Lambda console, see Using AWS
Lambda environment variables.

Add a layer to your Lambda function using the following layer ARN. For more information on
Lambda layers, see AWS Lambda Layers.

arn:aws:lambda:LAMBDA-FUNCTION-REGION-
CODE:157417159150:layer:AWSCodeGuruProfilerJavaAgentLayer:10

For example, if your Lambda function is in Region us-east-1, then the ARN would be the
following.

arn:aws:lambda:us-east-1:157417159150:layer:AWSCodeGuruProfilerJavaAgentLayer:10

The CodeGuru Profiler heap summary is an optional feature that shows your application's heap
usage over time. For more information on the heap summary, see Understanding the heap
summary.

Your Lambda function runs normally with the CodeGuru Profiler agent running in parallel. The
agent submits your first profile after running for a total of 5 minutes. Processing can take up to 15
minutes.

Enabling the agent from the command line

The command line option for integrating the CodeGuru Profiler agent is the easiest way to start
profiling your application, because it doesn't require recompiling and redeploying your application.
Add the appropriate command line options to your JVM-based runtime environment and you’re
ready to go.

Installation

Download the Amazon CodeGuru Profiler agent .jar file.

Save this to a location that is accessible from your JVM-based application.

Enabling the agent from the command line 27

https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html#configuration-layers-using
https://d1osg35nybn3tt.cloudfront.net/com/amazonaws/codeguru-profiler-java-agent-standalone/1.2.3/codeguru-profiler-java-agent-standalone-1.2.3.jar

Amazon CodeGuru Profiler User Guide

Configuration

The only required configuration option to start the CodeGuru Profiler agent is the profiling group
name. You can find this in the Settings section of your profiling group on the CodeGuru Profiler
console.

You can use the credential path parameter to have the agent use credentials that are different from
the default credentials. The path must point to a valid AWS credentials file. For more information
about credentials, see Configuration and credential file settings.

The CodeGuru Profiler heap summary shows your application's heap usage over time. For more
information on the heap summary, see Understanding the heap summary.

Opt in to heap summary data collection by adding heapSummaryEnabled:true. The following
example shows how to enable heap summary collection.

-javaagent:/path/to/codeguru-profiler-java-agent-
standalone-1.2.3.jar="profilingGroupName:myProfilingGroup,heapSummaryEnabled:true"

You can specify these options as an environment variable or as a command line option.

Option Environment variable Command line option

Profiling group name
(required)

AWS_CODEGURU_PROFI
LER_GROUP_NAME

profilingGroupName

Credential path AWS_CODEGURU_PROFI
LER_CREDENTIAL_PATH

credentialPath

Region AWS_CODEGURU_PROFI
LER_TARGET_REGION

region

Heap summary data collectio
n

AWS_CODEGURU_PROFI
LER_HEAP_SUMMARY_E
NABLED

heapSummaryEnabled

Your startup script using environment variables might look like the following.

#!/bin/bash

Configuration 28

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

Amazon CodeGuru Profiler User Guide

export AWS_CODEGURU_PROFILER_GROUP_NAME=MyProfilingGroup
export AWS_CODEGURU_PROFILER_TARGET_REGION=us-west-2

java -javaagent:/path/to/codeguru-profiler-java-agent-standalone-1.2.3.jar -jar
 MyApplication.jar

Alternatively, you can specify the configuration options by using the command line directly, as
follows.

java -javaagent:/path/to/codeguru-profiler-java-agent-
standalone-1.2.3.jar=profilingGroupName:MyProfilingGroup,region:us-west-2 -jar
 MyApplication.jar

The argument string can contain multiple parameters. Separate parameters with a comma (,). Each
parameter is a key-value pair.

Note

Your command must either be on one continuous line or a line-continuation option
appropriate for your command shell.

Supported runtime environments

Most JVM-based application runtime environments support a mechanism to specify and customize
JVM startup parameters to include the CodeGuru Profiler agent in the runtime startup. This section
summarizes some of the popular runtime environments that we have verified to support this
option.

All the examples assume that you have set the profiling group name with an environment variable:
export AWS_CODEGURU_PROFILER_GROUP_NAME=MyProfilingGroupName.

Topics

• Java

• Scala

• Jython

• ColdFusion

• Geronimo

Supported runtime environments 29

Amazon CodeGuru Profiler User Guide

• SOLR

• Tomcat

• Glassfish

• Grails

• Jetty

• Play

• Resin

• Spring Boot

• Tanuki Wrapper

• Websphere Liberty Profile

• Spark

• Other runtime environments

Java

If you start your application using the java command, you can enable the CodeGuru Profiler agent
in your application by adding the following -javaagent command line option.

java -javaagent:/path/to/codeguru-profiler-java-agent-standalone-1.2.3.jar -jar
 MyApplication.jar

Scala

If you start your application using the scala command, you can enable the CodeGuru Profiler
agent in your application by adding the following -J-javaagent command line option.

scala -J-javaagent:/path/to/codeguru-profiler-java-agent-standalone-1.2.3.jar -jar
 MyScalaApplication.jar

Jython

If you start your application using the Jython command, you can enable the CodeGuru Profiler
agent in your application by adding the following -J-javaagent command line option.

jython -J-javaagent:/path/to/codeguru-profiler-java-agent-standalone-1.2.3.jar -jar
 MyJythonApplication.jar

Supported runtime environments 30

Amazon CodeGuru Profiler User Guide

ColdFusion

Enable profiling for ColdFusion applications by adding the -javaagent option to the JVM
parameters in the administrator console.

1. Navigate to your ColdFusion administrator console.

2. From the left menu, choose SERVER SETTINGS.

3. From the top bar, choose Java and JVM.

4. In the JVM Arguments field, add the following -javaagent argument.

-javaagent:/path/to/codeguru-profiler-java-agent-standalone-1.2.3.jar

5. Choose Submit changes, then restart your ColdFusion server.

Geronimo

Add the CodeGuru Profiler agent to the Geronimo startup options by adding the -javaagent
command line option to the JAVA_OPTS environment variable before starting your Geronimo
instance.

export JAVA_OPTS="$JAVA_OPTS -javaagent:/path/to/codeguru-profiler-java-agent-
standalone-1.2.3.jar"
geronimo run

SOLR

Add the -javaagent command line option to the SOLR_OPTS variable in your SOLR startup
configuration script, /path/to/solr/bin/solr.in.sh, by appending the following lines to it
and adjusting them to your environment.

SOLR_OPTS="$SOLR_OPTS -javaagent:/path/to/codeguru-profiler-java-agent-
standalone-1.2.3.jar"

Tomcat

Add the -javaagent command line option to the JAVA_HOME environment variable in Tomcat’s
startup script, /path/to/tomcat/bin/catalina.sh.

Supported runtime environments 31

Amazon CodeGuru Profiler User Guide

JAVA_OPTS="$JAVA_OPTS -javaagent:/path/to/codeguru-profiler-java-agent-
standalone-1.2.3.jar"

Glassfish

1. Add <jvm-options>-javaagent:~/codeguru-profiler-java-agent-
standalone-1.2.3.jar</jvm-options> below the java-config tag.

2. Start your domain, ./bin/asadmin start-domain domain1.

If you have JDK version 1.8 or later and are running Glassfish version 5.0 or later, you receive the
following error.

java.lang.NoSuchMethodError:
sun.security.ssl.Handshaker.receiveChangeCipherSpec()

Grails

1. Add the following to /appName/build.groovy.

tasks.withType(JavaExec) { jvmArgs "-javaagent:/path/to/codeguru-profiler-java-
agent-standalone-1.2.3.jar" }

2. Start the grails run-app application.

Jetty

• Append -javaagent:~/codeguru-profiler-java-agent-standalone-1.2.3.jar to
the startup script.

Play

• Append the following to your startup script, and then run the following.

./sbt -J-javaagent:~/codeguru-profiler-java-agent-standalone-1.2.3.jar "run 8080"

Supported runtime environments 32

Amazon CodeGuru Profiler User Guide

Resin

• Add the following to your configuration file.

<server-default><jvm-arg>-javaagent:~/codeguru-profiler-java-agent-
standalone-1.2.3.jar</jvm-arg>

Spring Boot

• Run the server with the javaagent.

java -javaagent:~/codeguru-profiler-java-agent-standalone-1.2.3.jar -jar
 demo-0.0.1-SNAPSHOT.jar

Tanuki Wrapper

• Add the following code to wrapper.conf.

<NON_DUPLICATE_NUMBER_IN_ADDITIONAL_PARAM_LIST>=-javaagent:~/codeguru-profiler-
java-agent-standalone-1.2.3.jar

Websphere Liberty Profile

• Append the following path to jvm.options.

-javaagent:~/codeguru-profiler-java-agent-standalone-1.2.3.jar

Spark

There is a Spark plugin to profile with CodeGuru Profiler. See A new Spark plugin for CPU and
memory profiling.

CodeGuru Profiler supports Spark, but does not have -javaagent support. The agent is part of
your .jar package file when you use CodeGuru Profiler in Spark. It doesn't matter if the agent is the
worker or the primary as long as your code takes care of starting and stopping the agent when a
job begins and ends. If a job is shorter than one minute, the agent won't report recommendations.

Supported runtime environments 33

https://aws.amazon.com/blogs/devops/a-new-spark-plugin-for-cpu-and-memory-profiling/
https://aws.amazon.com/blogs/devops/a-new-spark-plugin-for-cpu-and-memory-profiling/

Amazon CodeGuru Profiler User Guide

To provide enough samples per worker, run the agent on long-running jobs. see Enabling the agent
with code

Other runtime environments

You can start any Java-based application by using the -javaagent command line option. If your
runtime environment or hosting environment uses Java, consult your documentation to see how to
customize the startup parameters for Java.

Enabling the agent with code

You can enable the Amazon CodeGuru Profiler agent in your application by adding code inside the
startup routine of your application.

In addition to adding code, you also need to add a dependency to the agent library in your build
steps. For this you can use a package manager such as Maven or Gradle.

Installation

To include the agent in your application, you need to tell your build system how to access
the agent library. You can do this manually by adding a dependency in your Maven or Gradle
configuration files.

Maven

To add a dependency to the agent, add the following sections to your pom.xml file. if you
already have a repositories or dependencies element in your POM, add the individual
repositories or dependencies elements inside the existing outer elements.

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/
maven-4.0.0.xsd">
...
 <repositories>
 <repository>
 <id>codeguru-profiler</id>
 <name>codeguru-profiler</name>
 <url>https://d1osg35nybn3tt.cloudfront.net</url>
 </repository>
 </repositories>

Enabling the agent with code 34

Amazon CodeGuru Profiler User Guide

 ...
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>codeguru-profiler-java-agent</artifactId>
 <version>1.2.3</version>
 </dependency>
 </dependencies>
...
</project>

For more information about configuring repositories in Maven, see Setting up Multiple Repositories
in the Maven documentation.

Gradle

To add a dependency to the agent, add the following sections to your Gradle file. If you already
have a repositories or dependencies element in your Gradle file, add the individual
subelements into the existing outer elements.

repositories {
 maven {
 url = uri("https://d1osg35nybn3tt.cloudfront.net")
 }
}
dependencies {
 implementation("com.amazonaws:codeguru-profiler-java-agent:1.2.3")
}

For more information about creating a custom Gradle repository, see Declaring a custom
repository by URL. For examples, see examples 18 and 19 in Supported repository transport
protocols.

Configuration

You can configure the agent by using explicit API calls to the Profiler.Builder class. The
following table shows the available options.

The profiling group name is required to start the CodeGuru Profiler agent. The CodeGuru Profiler
heap summary shows your application's heap usage over time. For more information on the heap
summary, see Understanding the heap summary.

Configuration 35

https://maven.apache.org/guides/mini/guide-multiple-repositories.html
https://docs.gradle.org/current/userguide/declaring_repositories.html#sec:declaring_custom_repository
https://docs.gradle.org/current/userguide/declaring_repositories.html#sec:declaring_custom_repository
https://docs.gradle.org/current/userguide/declaring_repositories.html#sec:plugin-vs-build-repos
https://docs.gradle.org/current/userguide/declaring_repositories.html#sec:plugin-vs-build-repos

Amazon CodeGuru Profiler User Guide

Important

It is not recommended to enable heap summary data collection in your production
environments, as it might increase latency in your application.

Type API call

Profiling group name (required) .profilingGroupName(String)

AWS Credentials Provider .awsCredentialsProvider(Aws
CredentialsProvider)

Region .awsRegionToReportTo(Region)

Heap summary data collection (optional) .withHeapSummary(Boolean)

The following is an example of command line API calls.

Profiler.builder()
 .profilingGroupName(“MyProfilingGroup”)
 .withHeapSummary(true) // optional - to start without heap profiling, set to false
 or remove line

 .build()
 .start();

We recommend that you configure and start the agent inside the startup or main function. The
following example shows how to add the configuration to the main function.

import software.amazon.codeguruprofilerjavaagent.Profiler;

class MyApplication {
 public static void main(String[] args) {
 Profiler.builder()
 .profilingGroupName("MyProfilingGroup")
 .withHeapSummary(true)
 .build()
 .start();

Configuration 36

Amazon CodeGuru Profiler User Guide

 ...
 }
}

If you don't have access to a startup or main function, you can add a static initializer to your main
class to configure and start the agent. This configures and starts the agent during the first time
your application class is used inside the application container, as shown in the following example.

import software.amazon.codeguruprofilerjavaagent.Profiler;

class MyClass {

 static {
 Profiler.builder()
 .profilingGroupName("MyProfilingGroup")
 .build()
 .start();
 }
 ...
}

When your application is running, data is available in the CodeGuru Profiler console. To view your
profiling data, choose Profiler in the navigation pane, choose Profiling groups, and then select
your profiling group.

After your application has run for more than 15 minutes, data is available for you to visualize.
For example, you can use an Overview visualization to identify code paths that are executed
frequently. For more information about visualizations, see Working with visualizations.

When your application has run for an hour, the first Recommendations report is available. After
the first report, new reports are generated hourly. For more information, see Working with
anomalies and recommendation reports.

Note

If you don't want to use the default credentials to run the profiler, you can provide custom
credentials by using following code. For more information about custom credentials, see
Supplying and Retrieving AWS Credentials.

public static void main(String[] args) {

Configuration 37

https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/credentials.html

Amazon CodeGuru Profiler User Guide

 Profiler.builder()
 .profilingGroupName("MyProfilingGroup")
 .awsCredentialsProvider(myAwsCredentialsProvider).build().start();
 }

Supported languages

The following topics provide code that you can add to your application to enable the Amazon
CodeGuru Profiler agent.

• Java

• Scala

• Kotlin

• Groovy

• Jython

• JRuby

• Clojure

Java

You can add support for the CodeGuru Profiler agent into your Java application by adding the
following lines into your startup or main function.

import software.amazon.codeguruprofilerjavaagent.Profiler;

class MyClass {
 public static void main(String[] args) {
 Profiler.builder()
 .profilingGroupName("MyProfilingGroup")
 .build()
 .start();
 ...
 }
}

You need to add a dependency to the agent .jar file.

Supported languages 38

Amazon CodeGuru Profiler User Guide

Scala

You can add support for the CodeGuru Profiler agent into your Scala application by adding the
following lines into your startup or main function.

import software.amazon.codeguruprofilerjavaagent.Profiler

object MyObject {
 def main(args: Array[String]) = {
 Profiler.builder()
 .profilingGroupName("MyProfilingGroup")
 .build()
 .start()
 ...
 }
}

you need to add a dependency to the agent .jar file.

Kotlin

You can add support for the CodeGuru Profiler agent into your Kotlin application by adding the
following lines into your startup or main function.

import software.amazon.codeguruprofilerjavaagent.Profiler

fun main() {
 Profiler.builder()
 .profilingGroupName("MyProfilingGroup")
 .build()
 .start()
 ...
}

You need to add a dependency to the agent .jar file.

Groovy

You can add support for the CodeGuru Profiler agent into your Groovy application by adding the
following lines into your startup or main function.

Scala 39

Amazon CodeGuru Profiler User Guide

import software.amazon.codeguruprofilerjavaagent.Profiler

Profiler.builder()
 .profilingGroupName("MyProfilingGroup")
 .build()
 .start()

...

You need to add a dependency to the agent .jar file.

Jython

You can add support for the CodeGuru Profiler agent into your Jython application by adding the
following lines into your startup or main function.

import sys
sys.path.append("/path/to/codeguru-profiler-java-agent-1.2.3.jar")
from software.amazon.codeguruprofilerjavaagent import Profiler

Profiler.builder()
 .profilingGroupName("MyProfilingGroup")
 .build()
 .start()
...

You need to add a dependency to the agent .jar file.

JRuby

You can add support for the CodeGuru Profiler agent into your JRuby application by adding the
following lines into your startup or main function.

Java::SoftwareAmazonCodeguruprofilerjavaagent::Profiler
 .builder
 .profiling_group_name("MyProfilingGroup")
 .aws_credentials_provider(myAwsCredentialsProvider) # optional
 .build
 .start
...

Jython 40

Amazon CodeGuru Profiler User Guide

You need to add a dependency to the agent .jar file.

Clojure

You can add support for the CodeGuru Profiler agent into your Clojure application by adding the
following lines into your startup or main function.

(-> (software.amazon.codeguruprofilerjavaagent.Profiler/builder)
 (.profilingGroupName "MyProfilingGroup")
 (.awsCredentialsProvider myAwsCredentialsProvider) ; optional
 (.build)
 (.start))
...

You need to add a dependency to the agent .jar file.

Clojure 41

Amazon CodeGuru Profiler User Guide

Integrating with Python

You can use Amazon CodeGuru Profiler to profile your Python application. Before you begin
profiling your Python application, make sure your application is running on Python 3.6 or later.

Topics

• Profiling your applications that run on AWS Lambda

• Enabling the agent with code

• Enabling the agent from the command line

• Profiling Distributed systems

• Enabling logs

Profiling your applications that run on AWS Lambda

CodeGuru Profiler integration for AWS Lambda is currently available for applications that run on
Python 3.7 up to Python 3.9. To start CodeGuru Profiler in your application running on Lambda,
you can either apply the CodeGuru Profiler function decorator to your handler function, update
your Lambda function configuration by adding layers, or enable profiling in the Lambda console.

If you enabled profiling in the Lambda console, you don't have to complete the procedure outlined
in the following sections. To learn more about enabling profiling from the Lambda console, see Set
up in the Lambda console.

Note

You can profile your Lambda functions running in Python if they are called often enough
for CodeGuru Profiler to gather enough samples. CodeGuru Profiler collects data once
per second, aggregated into 5-minute sampling buckets. For Lambda functions running
for fewer than 5 minutes, your application must run multiple times so CodeGuru Profiler
can collect enough data. If it runs too infrequently, CodeGuru Profiler can't generate
enough data to provide recommendations and flame graphs. For long-running Lambda
applications, processing can take up to 15 minutes to display graphs and information. If
you are running your application in shorter durations, processing takes longer to display
information.

Profiling your applications that run on AWS Lambda 42

Amazon CodeGuru Profiler User Guide

Topics

• Apply the CodeGuru Profiler function decorator to your handler function

• Use AWS Lambda layers

Apply the CodeGuru Profiler function decorator to your handler
function

Pull your codeguru_profiler_agent dependency to your local environment through pip and
include it in the .zip file for Lambda.

The only required configuration option to start the agent is the profiling group name. You can find
this in the Settings section of your profiling group on the CodeGuru Profiler console. You can also
provide the Region if you want to use a profiling group that was created in a different region than
the one where Lambda is running. You can also provide the profiling group ARN directly, which
contains both the name and Region. Either the profiling group name or ARN must be provided.

Option Environment
variable key

Environment
variable value

Decorator argument
example

Profiling group name AWS_CODEG
URU_PROFI
LER_GROUP_NAME

MyGroupName @with_lam
bda_profi
ler(profi
ling_grou
p_name="M
yGroupName")

Profiling group ARN AWS_CODEG
URU_PROFI
LER_GROUP_ARN

arn:aws:c
odeguru-p
rofiler:u
s-east-1:
123456789
123:profi
lingGroup/
MyGroupName

An ARN cannot be
passed as a decorator
argument

Apply the CodeGuru Profiler function decorator to your handler function 43

Amazon CodeGuru Profiler User Guide

Option Environment
variable key

Environment
variable value

Decorator argument
example

Region AWS_CODEG
URU_PROFI
LER_TARGE
T_REGION

us-east-1 @with_lam
bda_profi
ler(regio
n_name="us-
east-1")

Decorate your handler function with @with_lambda_profiler(). The following example shows
what your handler function code looks like with CodeGuru Profiler turned on.

from codeguru_profiler_agent import with_lambda_profiler

@with_lambda_profiler(profiling_group_name="MyGroupName")
def handler_name(event, context):
 return "Hello World"

Only decorate your handler function. You do not have to decorate other internal functions. You can
pass the profiling group name directly in the decorator, or with environment variables.

Use AWS Lambda layers

There are two ways you can use layers to enable CodeGuru in Lambda functions using Python. The
preferred method uses a wrapper script and only works for applications that run on Python 3.8 or
3.9. The second method works for Python 3.7, and can also be used for Python 3.8 and 3.9 if you
already have a lambda wrapper or if the preferred method otherwise does not work.

For applications that run on Python 3.8 or 3.9 (preferred)

1. Add the CodeGuru Profiler layer to Lambda. Choose Specify an ARN and add
arn:aws:lambda:region:157417159150:layer:AWSCodeGuruProfilerPythonAgentLambdaLayer:11.
For more information on adding a Lambda layer, see AWS Lambda layers.

2. Add the following environment variable: AWS_LAMBDA_EXEC_WRAPPER=/opt/
codeguru_profiler_lambda_exec

Use AWS Lambda layers 44

https://docs.aws.amazon.com/lambda/latest/dg/chapter-layers.html

Amazon CodeGuru Profiler User Guide

3. Add an environment variable with your profiling group name or ARN. For information on
using your ARN, see the table listed in Apply the CodeGuru Profiler function decorator to your
handler function.

Note

You can only have one Lambda wrapper script. If you are currently using one, try the
solution for applications that run on Python 3.7, 3.8 or 3.9.

For applications that run on Python 3.7, 3.8 or 3.9

1. Add the CodeGuru Profiler layer to Lambda. Choose Specify an ARN and
arn:aws:lambda:region:157417159150:layer:AWSCodeGuruProfilerPythonAgentLambdaLayer:11.
For more information on adding a Lambda layer, see AWS Lambda layers.

2. Set the environment variable, HANDLER_ENV_NAME_FOR_CODEGURU to your handler function.

3. Change the Lambda handler function to
codeguru_profiler_agent.aws_lambda.lambda_handler.call_handler.

4. Add an environment variable with your profiling group name or ARN. For information on
using your ARN, see the table listed in Apply the CodeGuru Profiler function decorator to your
handler function.

Note

You can only have up to five layers for a Lambda function. If you are already using five
layers, see Apply the CodeGuru Profiler function decorator to your handler function.

Enabling the agent with code

If your application runs on a platform other than Lambda, install codeguru_profiler_agent
through pip.

pip install codeguru_profiler_agent

You can configure the agent by passing different parameters to the Profiler object.

Enabling the agent with code 45

https://docs.aws.amazon.com/codeguru/latest/profiler-ug/python-lambda-command-line.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/python-lambda-command-line.html
https://docs.aws.amazon.com/lambda/latest/dg/chapter-layers.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/python-lambda-command-line
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/python-lambda-command-line
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/python-lambda-command-line

Amazon CodeGuru Profiler User Guide

Option Constructor argument Details

Profiling group name
(required)

profiling_group_na
me="MyProfilingGro
up"

The name of the profiling
group to send the data into.
The Profiling group must
exist.

Region region_name="eu-we
st-2"

Use this if your application
is not running in the same
region as the one where the
profiling group was created.

AWS session aws_session=boto3.
session.Session()

The session object that
should be used to target the
CodeGuru Profiler backends.
 Use this if you want to
use different credentials or
region than the default one.
See boto3 session for more
information.

Start the agent from one place in your application. We recommend you start the agent in your
startup code. Only one Profiler object can be started at the time. The following is a runtime
example.

from codeguru_profiler_agent import Profiler
from boto3.session import Session
...
custom_session = Session(profile_name='dev', region_name='us-east-1')
Profiler(profiling_group_name='MyProfilingGroup', aws_session=custom_session).start()
start_application()
...

You can find the sample code for the following examples in Amazon CodeGuru Profiler Python
Demo Applications.

The following is an example of a simple application that sets your profiling group name to
MyProfilingGroup.

Enabling the agent with code 46

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/session.html
https://github.com/aws-samples/aws-codeguru-profiler-python-demo-application
https://github.com/aws-samples/aws-codeguru-profiler-python-demo-application

Amazon CodeGuru Profiler User Guide

from codeguru_profiler_agent import Profiler

if __name__ == '__main__':
 Profiler(profiling_group_name='MyProfilingGroup').start()
 start_application()

Supported web components

The following topics provide code that you can add to your application to enable the Amazon
CodeGuru Profiler agent.

• Django

• Flask

• WSGI servers

Django

Start the profiler in your settings file. This is usually the file that you’re setting for
DJANGO_SETTINGS_MODULE. Then, start your application as usual.

The following is an example that you can add to settings.py

from codeguru_profiler_agent import Profiler
Profiler(profiling_group_name='MyProfilingGroup').start()

Set the following in your wsgi.py file. This example is for a module named mysite. Your files may
be in a different location.

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mysite.settings')

Set the following in your settings.py file.

Profiler(profiling_group_name='MyProfilingGroup').start()

Flask

Start the profiler based on the configuration for your web server. For an example with gunicorn,
see WSGI servers.

Supported web components 47

Amazon CodeGuru Profiler User Guide

WSGI servers

Start the profiler based on the configuration for your web server.

uWSGI

Configure CodeGuru Profiler in your wsgi.py file. Then, start your application by adding the --
enable-threads and --lazy-apps parameters to your uWSGI startup configuration. These are
required for CodeGuru Profiler to run in your uWSGI applications.

uwsgi --http :8000 --chdir . --wsgi-file wsgi.py --enable-threads --lazy-apps --
workers=4

gunicorn

Configure CodeGuru Profiler in your post-fork method. Then start the application as usual.

def post_fork(server, worker):
 server.log.info('Starting profiler for {} in {}'.format(os.getpid(),
 threading.get_ident()))
 worker.profiler = Profiler(profiling_group_name='MyProfilingGroup')
 worker.profiler.start()
 server.log.info('Profiler started running for worker pid {}: master pid
 {}.'.format(os.getpid(), worker.ppid))

Apache

For Apache (httpd) with mod_wsgi module, use the same wsgi configuration. Make sure the
wsgi.py file is configured to be visible in the httpd.conf file.

<Directory [to_be_replaced]>
<Files wsgi.py>
Require all granted
</Files>
</Directory>

Start your application with apachectl start.

WSGI servers 48

Amazon CodeGuru Profiler User Guide

Enabling the agent from the command line

If your application runs on a platform other than Lambda, install codeguru_profiler_agent
through pip.

pip install codeguru_profiler_agent

The only required configuration option to start the CodeGuru Profiler agent is the profiling group
name. You can find this in the Settings section of your profiling group. You can use the credential
profile name parameter to have the agent use credentials that are different from the default
credentials. For more information about credential profiles, see Shared credential files. You can
specify these options as an environment variable or as a command line option.

Option Environment variable Command line option

Profiling group name
(required)

AWS_CODEGURU_PROFI
LER_GROUP_NAME

-p, --profiling-
group-name

Region AWS_CODEGURU_PROFI
LER_TARGET_REGION

-r, --region

(Alternative) credential profile
name

Not available -c, --credential-
profile-name

The following is an example that uses environment variables. In this example, my_script.py is
your main script that you would otherwise call directly with python my_script.py.

#!/bin/bash
export AWS_CODEGURU_PROFILER_GROUP_NAME=MyProfilingGroup
export AWS_CODEGURU_PROFILER_TARGET_REGION=us-west-2

python -m codeguru_profiler_agent my_script.py

The following is an example that uses command line arguments to specify the configuration
options.

python -m codeguru_profiler_agent -p MyProfilingGroup -r us-west-2 \

Enabling the agent from the command line 49

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

Amazon CodeGuru Profiler User Guide

-c prod-credential-profile my_script.py

You can find more details about each command line option by running it with -h to display the list
of available options.

Profiling Distributed systems

Amazon CodeGuru Profiler offers limited support when implemented on distributed systems like
Spark on EMR or Glue jobs running across clusters. In such cases, Profiler is able to profile the
application running on the manager node; however, it may not be able to profile the part of the
application running on the worker nodes. Please consult with your local technical representative
for further clarifications.

Enabling logs

The Amazon CodeGuru Profiler agent uses the logging library. It only uses logs at or below
the INFO level. To see the logs, include logging.basicConfig(level=logging.INFO) or
logging.getLogger('codeguru_profiler_agent').setLevel(logging.INFO) in your
handler code.

Profiling Distributed systems 50

Amazon CodeGuru Profiler User Guide

Working with Amazon EventBridge

This section helps you get started using Amazon EventBridge with Amazon CodeGuru Profiler.

CodeGuru Profiler sends events to EventBridge. An event indicates a change in a recommendation
that CodeGuru Profiler identified. CodeGuru Profiler sends a heartbeat event every 24 hours to
show the continuity of the event. Events carry CodeGuru Profiler recommendation information as
well as metadata for your compute resources. For information on an event lifecycle, see Amazon
EventBridge Events.

Events are only sent to EventBridge for Lambda compute platforms. For compute types that
are not Lambda, use the GetRecommendations API to see changes to recommendations that
CodeGuru Profiler identifies.

Note

CodeGuru Profiler doesn't yet support localization. The default locale is en_US.

An event bus receives events from a source such as CodeGuru Profiler and routes them to rules
associated with that event bus. For more information on event buses, see Event buses.

The following table explains some of the parameters you might find in the detail object. For
more information, see Amazon EventBridge events.

Parameter Description

schema The schema version.

expiresOn The ISO 8601 timestamp, after which the
event expires.

sourceUrl The CodeGuru Profiler console URL where you
can see more details about your recommend
ations.

deduplicationId This is used to elimate duplicated copies of
events related to the current event. In a typical

51

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-bus.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html

Amazon CodeGuru Profiler User Guide

Parameter Description

event, you should see an ONGOING event every
day, followed by a CLOSED event when event
closes.

severity The severity of the event. Only MEDIUM
severity events are sent.

status Shows the status of an event. Possible
statuses are ONGOING and CLOSED.

computeInstanceArns Information about the compute instances that
are used for the profiled applications.

recommendation Shows information such as the recommend
ation name, details, and a resolution path.

The following sample event shows a CodeGuru Profiler recommendations state change. The
detail-type shows a brief description of the event. The account shows the user's account
number.

{
 "version": "0",
 "id": "315c1398-40ff-a850-213b-158f73e60175",
 "detail-type": "CodeGuru Profiler Recommendations State Change",
 "source": "aws.codeguru-profiler",
 "account": "012345678912",
 "time": "2019-02-26T19:42:21Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:codeguru-profiler:us-east-1:012345678912:profilingGroup:profiling-
group-name"
],
 "detail": {
 "schema": "2021-08-30",
 "expiresOn": "2019-02-27T19:42:21Z",
 "sourceUrl": "/codeguru/profiler/recommendations-report?
endTime=2019-02-27T00%3A00%3A00.000Z&profilingGroupName=profiling-group-name®ion=us-
east-1&startTime=2019-02-26T00%3A00%3A00.000Z",
 "deduplicationId": "ada4cvf74uyrponkgk7tpxeo5idgqcrt",

52

Amazon CodeGuru Profiler User Guide

 "title": {"value": "Issue name"},
 "eventStartTime": "2019-02-26T19:42:21Z",
 "eventEndTime": "2019-02-29T19:50:34Z", //Could be null until event closes
 "severity": "MEDIUM",
 "status": "ONGOING",
 "computeInstanceArns": ["arn:aws:lambda:us-east-1:012345678912:function:lambda-
function"],
 "recommendation" : {
 "name": {
 "value": "Fix issue"
 },
 "description": {
 "value": "Description of the issue"
 },
 "resolutionSteps": {
 "value": "Fix the issue by following step 1, step 2 and step 3"
 },
 "reason": {
 "value": "Observed the issue because it used more CPU than ideal"
 },
 }
 }
}

53

Amazon CodeGuru Profiler User Guide

Working with unsupported AWS Regions

To use Amazon CodeGuru Profiler in an AWS Region it doesn't support, you can configure
your agent to submit profiles to one of the supported Regions instead. You can specify which
AWS Region to submit profiles to by adding a specified region name to your code or adding
an environment variable. For example, using CodeGuru Profiler in eu-west-1 would mean
that profiled data would be stored in that Region, even while your application is running in an
unsupported region.

You should create the profiling group in the target AWS Region, which might differ from the
Region that the application is running in. The application role should have permissions set up to
allow profiles to be submitted to the target Region.

The following code examples demonstrate how to configure your agent to get access to the
CodeGuru Profiler console from eu-west-1 when enabling the agent with code or integrating
with Lambda. You can do this for any of the supported Regions, by replacing EU_WEST_1 with the
Region name you want.

To submit any profiles to the CodeGuru Profiler API, your host must have internet access.

Enabling the agent with code

The following sections show how to use Amazon CodeGuru Profiler in an unsupported region when
enabling the agent with Java or Python code.

Java

If you are enabling the agent with code in Java, add the following lines to your code.

You first import the region package from the AWS SDK by adding this line to the top of your code.

import software.amazon.awssdk.regions.Region; // Uses AWK SDK for Java v2

Then add .awsRegionToReportTo(<AWS Region>) to the code that enables the agent.

Below is a complete example of what your code should look like if you want to configure your
agent to get access to the CodeGuru Profiler console from eu-west-1.

import software.amazon.awssdk.regions.Region; // Uses AWK SDK for Java v2`

Enabling the agent with code 54

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Amazon CodeGuru Profiler User Guide

import software.amazon.codeguruprofilerjavaagent.Profiler;

Profiler.builder()
 .profilingGroupName("ExampleAppConsumingCodeGuruProfilerJavaAgent")
 .awsRegionToReportTo(Region.EU_WEST_1)
 .build()
 .start();

For more information on enabling the agent with Java code, see Enabling the agent with code
(Java).

Python

If you are enabling the agent with code in Python, set the following parameter to the line where
you start the agent.

region_name='<AWS Region>'

Below is an example of what your code should look like if you want to configure your agent to get
access to the CodeGuru Profiler console from eu-west-1.

from codeguru_profiler_agent import Profiler

if __name__ == '__main__':
 Profiler(profiling_group_name='MyProfilingGroup', region_name='eu-west-1').start()
 start_application()

For more information on enabling the agent with Python code, see Enabling the agent with code
(Python).

Profiling applications that run on AWS Lambda

The following sections show how to use Amazon CodeGuru Profiler in an unsupported region when
integrating with AWS Lambda.

Java

If you're using Java 8 on Amazon Linux 2 or Java 11 (Corretto) to profile your application on AWS
Lambda, you can set the environment variable AWS_CODEGURU_PROFILER_TARGET_REGION to
your target region, see below.

Python 55

Amazon CodeGuru Profiler User Guide

AWS_CODEGURU_PROFILER_TARGET_REGION='eu-west-1'

For more information on using integrating with Java and AWS Lambda, see Profiling your Java
applications that run on AWS Lambda.

Python

Using the Amazon CodeGuru Profiler function decorator

If you're applying the Amazon CodeGuru Profiler function decorator to your AWS Lambda handler
function, set the following parameter in the function decorator.

region_name='<AWS Region>'

Below is an example of what your code should look like if you're applying the Amazon CodeGuru
Profiler function decorator to your AWS Lambda handler function from eu-west-1.

from codeguru_profiler_agent import with_lambda_profiler

@with_lambda_profiler(profiling_group_name='MyProfilingGroup', region_name='eu-west-1')
def handler_name(event, context):
 return "Hello World"

For more information on the Amazon CodeGuru Profiler function decorator, see Apply the
CodeGuru Profiler function decorator to your handler function.

Using AWS Lambda layers

If you're using AWS Lambda layers to profile your Python application, you can set the environment
variable AWS_CODEGURU_PROFILER_TARGET_REGION to your target region, see below.

AWS_CODEGURU_PROFILER_TARGET_REGION='eu-west-1'

For more information on using layers, see Use AWS Lambda layers.

Python 56

Amazon CodeGuru Profiler User Guide

Working with profiling groups

A profiling group is a set of applications that are profiled together as a unit. Application data is
sent by the Amazon CodeGuru Profiler profiling agent to a single profile group. Data from all
applications in a profiling group are aggregated and analyzed together.

You manage profiling groups from the Profiling groups page in the CodeGuru Profiler console. The
page provides a list of your profiling groups and the status. You can also create or delete a profiling
group. When you select a profiling group, you can explore your profiling data by using different
visualizations.

Topics

• Creating a profiling group

• Deleting a profiling group

Creating a profiling group

Follow the steps in Setting up CodeGuru Profiler to create a profiling group, set permissions, and
add CodeGuru Profiler profiling agent dependencies and startup code to your application.

Deleting a profiling group

When you delete a profiling group, the profiling group and recommendations reports are deleted.
Application data in the profiling group will be inaccessible.

To delete a profiling group

1. In the navigation pane on the left, choose Profiling groups.

2. Select the profiling group to delete.

3. Choose Actions, Delete profiling group.

4. On the confirmation page, choose Delete to delete the profiling group.

After you've deleted your profiling group, remove the CodeGuru Profiler profiling agent code from
either the Java or Python applications in the profiling group. You can also modify the code to send
data to a different profiling group.

Creating a profiling group 57

https://console.aws.amazon.com/codeguru/profiler/

Amazon CodeGuru Profiler User Guide

Note

To stop being billed for CodeGuru Profiler and to avoid future charges, you must delete all
profiling groups.

Deleting a profiling group 58

Amazon CodeGuru Profiler User Guide

Working with visualizations

In Amazon CodeGuru Profiler, you can use visualizations to explore profiling data collected from
applications in a profiling group. When a profiling group has enough information to display, you
can view an overview visualization of the profiling group data.

A visualization is a collection of stack frames that were profiled in the running application. A stack
frame contains the state of one method invocation. The name of the method is displayed in the
visualization. You can pause over a frame to see its full name and timing details. You can also see
the active CPU cost of the method as it exists in the substack of the frame. Frames with the same
frame name are highlighted in the rest of the visualization. You can hide a stack frame from the
visualization or inspect a specific frame. You can also zoom and search for a function.

The following topics describe how to navigate, filter, and visualize data collected from your running
applications.

Topics

• Accessing visualizations

• Types of visualizations

• Exploring visualization data

• Filtering visualization data

• Selecting a custom time range

• Understanding the summary page

• Understanding the heap summary

• Comparing two time ranges

Accessing visualizations

The following instructions show you where to find the visualizations of your profiling group data in
the CodeGuru Profiler console.

1. Open the CodeGuru Profiler console.

2. In the navigation pane on the left, under Profiler, choose Profiling groups.

3. Choose your profiling group to view the summary page for that group.

Accessing visualizations 59

https://console.aws.amazon.com/codeguru/profiler/

Amazon CodeGuru Profiler User Guide

4. On the summary page, locate the summary panel for the data you want to visualize, and select
Visualize CPU, Visualize latency, or Visualize heap, depending on the visualization you wish
to see.

Once you've navigated to the Visualize page, you can switch between Data and View using the
drop down menus above the visualization panel.

For more information on visualization types, see Types of visualizations.

Types of visualizations

Amazon CodeGuru Profiler uses three types of visualizations to display profiling data collected
from applications.

• An overview visualization provides a bottom-up view of your profiling data.

• A hotspots visualization provides a top-down view of your profiling data.

• An inspect visualization provides a focus view of a named stack frame.

Together, these visualizations can help you identify potential performance issues in your
applications. All visualizations use a common set of tools to explore and filter data.

The following topics provide more information about each visualization type.

Topics

• Overview visualizations

• Hotspots visualizations

• Inspect visualizations

Overview visualizations

An overview visualization provides a bottom-up view of your profiling data. It's similar to reading
a stack trace in many IDEs. At the bottom of the visualization are the entry point functions. As you
move higher, there are functions that are called deeper in the stack trace. Functions at the top of
the visualization are the ones doing basic system operations.

Types of visualizations 60

Amazon CodeGuru Profiler User Guide

From stack traces to overview visualization

The following example shows how stack trace samples are represented in an overview visualization.
Each stack trace that we sample from the profiled application is added to the visualization.

Thread main
 java.lang.Thread.State: RUNNABLE
 com.amazon.profiler.demo.Example.doOne()
 com.amazon.profiler.demo.Example.doPlenty()
 com.amazon.profiler.demo.Example.main(String[])

 Thread main
 java.lang.Thread.State: TIMED_WAITING
 java.lang.Thread.sleep(long)
 com.amazon.profiler.demo.Example.doPlenty()
 com.amazon.profiler.demo.Example.main(String[])

Thread main
 java.lang.Thread.State: RUNNABLE

Overview visualizations 61

Amazon CodeGuru Profiler User Guide

 com.amazon.profiler.demo.Example.doPlenty()
 com.amazon.profiler.demo.Example.main(String[])

Thread main
 java.lang.Thread.State: RUNNABLE
 com.amazon.profiler.demo.Example.doOne()
 com.amazon.profiler.demo.Example.main(String[])

As we collect more samples, the functions in which threads spend a lot of time appear wider in the
visualization.

What you can learn from overview visualization

An overview visualization can help you find specific call stacks that lead to inefficient code. You can
find code that is running on the CPU by looking for flat tops in the visualization. The flat tops are
areas where the CPU is doing work directly in that function.

Overview visualizations 62

Amazon CodeGuru Profiler User Guide

Note

This example of an overview is in CPU view (see Selecting and coloring thread states).

This overview example tells the following:

• The doOne function is called inside both main function and doPlenty function because it
appears above both frames.

• More than half of the CPU time spent in doPlenty is actually spent in the doOne function
because the width of doOne is more than half the width of doPlenty.

• The doPlenty function is also doing some basic CPU operations because it has some self time
(some width with no callee frames).

The overview example DOES NOT tell the following:

• Inside main code, the doOne function is called before the doPlenty function. Frames are
ordered alphabetically, and from the visualization, we can't tell in which order the functions are
called.

• The doOne function is called more often than the random function. The overview visualization
only tells that more CPU time is spent in doOne but CodeGuru Profiler doesn't give any
information about the number of times it was called. It might be that it is called less often but is
more CPU heavy.

• The doPlenty function takes n seconds to execute. CodeGuru Profiler doesn't measure
execution time; it only provides estimates of the average CPU time spent in that function over
the profile's time range. It's not a duration. A CPU-heavy function that is rarely called and a
cheap function that is called many times can look similar in an overview visualization.

Overview visualizations 63

Amazon CodeGuru Profiler User Guide

An overview visualization can make it difficult to spot problems with functions that are spread
around in multiple stacks. For example, logging calls are often distributed across threads and
functions. In these cases, a hotspots visualization might be a better choice.

Hotspots visualizations

A hotspots visualization shows a top-down view of your profile. The functions consuming the most
application time are at the top of the visualization. The entry point functions are at the bottom of
the visualization.

You can use a hotspots visualization to investigate functions that are by themselves
computationally expensive.

Example

This overview example tells the following:

• The doOne function has two different callers because there are two frames below it.

• Most of the overall CPU time is spent in the doOne function because it is the majority of the
width in the top row.

Inspect visualizations

An inspect visualization is useful to analyze a frame that appears in many places in a visualization.
It groups all of the frames with the same name together in the middle of the visualization. Children
(callees) are merged into the visualization above the frame. Parents (callers) are merged into the
visualization below the frame.

Exploring visualization data

CodeGuru Profiler makes it easy to explore visualization data. You can pause over frames to see
information about methods, zoom in on a frame to see more context, and inspect a frame to see
the data in an inspect visualization.

Hotspots visualizations 64

Amazon CodeGuru Profiler User Guide

Topics

• Choosing my code in visualizations

• Pausing over a frame

• Zooming in on a frame

• Resetting zoom in a visualization

• Inspecting a frame

• Understanding the dollar estimate of the CPU cost for frames

Choosing my code in visualizations

CodeGuru Profiler differentiates your code in the overview visualization, so you can quickly identify
the methods you are working on.

The blue portion of the flame graph highlights your code. The green portion of the graph
highlights other code that your application uses, such as libraries and frameworks.

Choosing my code in visualizations 65

Amazon CodeGuru Profiler User Guide

You can change the coloring by manually selecting which package name you want CodeGuru
Profiler to identify as your code.

To view your code

1. Choose Actions.

2. Choose Select my code.

3. Search for the profile namespace that you want to view. The namespaces are sorted based on
how much of the overall profiling data they represent.

Pausing over a frame

One of the easiest ways to begin exploring visualization data is by pausing over the visualization.
When you pause over a frame, all frames with the same function name are highlighted. This makes
it easy to see where and how often the function is called.

You can also see details about the function. CodeGuru Profiler displays the name of the function,
how much time it has run on the CPU in that stack frame, and the sample time spent in the
selected thread states.

Zooming in on a frame

Clicking a frame zooms in on the function. The frame becomes the new "base" of the visualization.
The visualization shows callees of the selected function. Only the functions in the call chain leading
to the call of the selected function are displayed.

You can zoom in on any visible frame.

To zoom back out, choose ALL. In a hotspots visualization, ALL is located at the top of the
visualization. In an overview visualization, it's at the bottom.

Resetting zoom in a visualization

You can zoom in to stack frames to view details. To return to the top-most view, you can reset the
zoom.

To reset the visualization

• On the Profiling group detail page, choose Actions, and then choose Reset zoom.

Pausing over a frame 66

Amazon CodeGuru Profiler User Guide

Inspecting a frame

You can inspect frames that appear in many places in a visualization. This can happen when your
application code has a common set of shared functions.

For example, if you have code that compresses data, you might call it from dozens of functions. If
you inspect the compress function, you can see the parent (callers) and children (callee) functions
at a glance.

To inspect a frame

1. On the Profiling group detail page, pause over the frame you want to inspect on the
visualization.

2. Open the context (right-click) menu, and then choose Inspect frame.

Understanding the dollar estimate of the CPU cost for frames

Amazon CodeGuru Profiler provides an estimated dollar value for the active CPU cost of a frame.
The value is an estimation that can help you understand where your optimization efforts will be
most valuable.

To view a frame's dollar estimate, pause over the frame. When you pause over other frames, you
see a dollar value estimation that's based on that frame's portion of the total CPU time.

Note

This estimated value does not represent your monthly bill.

The estimated dollar value shown on the ALL frame represents the yearly cost of the compute fleet
seen during profiling. This is based on the on-demand AWS compute pricing in the AWS Region of
your profiling group.

To view information about your compute fleet, choose Actions, then choose Additional profiling
data information.

Filtering visualization data

This section contains information about how to filter profiling data.

Inspecting a frame 67

Amazon CodeGuru Profiler User Guide

Topics

• Selecting and coloring thread states

• Hiding a frame

Selecting and coloring thread states

In a visualization view, you can filter profiling data by thread state. You can color thread states
inside of stack frames to make it easy to spot how the application is behaving. You can also select
which thread states are displayed.

Note

The CPU view and latency view were not supported for first release of Python applications;
if you open old Python profiles from before February 2021, the profiling data represents
wall clock time percentages for each frame. This is similar to the latency view, without
the different thread states and colors. On recent Python profiles the different views work
normally.

CPU view – The default thread state view for visualizations, it's useful to try to reduce CPU
utilization. It displays frames for thread states that correspond to CPU usage: RUNNABLE, BLOCKED,
and NATIVE. In this view, the different shades of coloring simply help with visualization, and are
based on the frame names.

Latency view – Useful to try to improve the latency of all or part of your application. When you
select it, the visualization displays frames for all of the thread states except IDLE. All of these
threads might contribute to latency. Frames in the visualization are colored based on the thread
state.

Custom view – You can choose to select the thread states for frames to include in the visualization.
The threads you can select are the ones found in your profile data. You can also choose whether to
color the frames based on thread states.

Selecting and coloring thread states 68

Amazon CodeGuru Profiler User Guide

Example of differences between CPU view and latency view

CPU view Latency view

The callOtherService function appears smaller in the CPU view because it's not showing the
time when the thread was in a waiting state. In the Latency view, we still see the part where the
CPU was active (in red), but we also see when the threads were waiting (in green).

If you're trying to reduce your CPU usage, the CPU view shows you that localActions is the
most CPU heavy inside handleServiceCall, and you might want to optimize this part.

If you're trying to improve the latency of handleServiceCall, the Latency view shows you
that most of the time is spent in callOtherService. You can check if this is expected and try to
reduce the number of calls or speed up the execution of calls (for example, caching or batching the
requests, or calling a closer AWS Region).

Hiding a frame

When you hide a frame, the visualization no longer shows that frame or its callee frames. This is
useful when you want to remove certain execution paths from the visualization. For example, you
can exclude the myFunction function if it's not causing performance issues. All occurrences of that
frame in the visualization will be hidden.

To hide a stack frame while pausing over it

1. On the Profiling group detail page, pause over the frame you want to inspect on the
visualization.

2. Open the context (right-click) menu, and then choose Hide frame.

To search for stack frames to hide

1. On the Profiling group detail page, choose Actions, and then choose Hide frames.

Hiding a frame 69

Amazon CodeGuru Profiler User Guide

2. In the Hidden frames page, specify a search string. As the string is provided, results will
automatically update.

3. Select a stack frame to hide. When you're done, close the Hidden frames page.

To unhide stack frames

1. Choose X Hidden frames in the upper-left corner. It opens the Hidden frames menu with the
list of already hidden frames. X is how many frames are currently hidden.

2. Choose Show on any of the hidden frames to stop hiding it.

Selecting a custom time range

By default, visualizations display the latest hour of data from the profiling group. You can select a
different start time and end time to explore other data for other time ranges. This can be helpful to
see how performance has changed over time.

To select a custom time range

1. In the Profiling group detail page, at the top of the visualization, select the date/time
displayed. For example, 2019-12-04 @ 7:30 - 7:40 PST.

2. In the Select a custom time range page, choose a Start time. You can optionally keep the
existing start time.

3. Choose an End time. You can optionally keep the existing end time.

4. Choose Confirm to update the visualization.

If there is not enough data for the selected range, select a different time range. For the CodeGuru
Profiler preview, you can reset the time range back to the default by choosing Profiler, Profiling
groups in the navigation pane, and then selecting the profiling group.

Understanding the summary page

The Amazon CodeGuru Profiler summary page displays the status of your profiling group and
relevant metrics gathered during profiling. The metrics shown are for any data gathered in the last
12 hours, up to the beginning of the current UTC hour.

Selecting a custom time range 70

Amazon CodeGuru Profiler User Guide

Most information is only displayed while the profiling group is enabled. If a profiling group is
disabled, or becomes inactive, then metrics and reports are not shown. You can view the following
elements in the summary page.

To view the summary page, go to the CodeGuru Profiler console and choose Profiling groups in
the navigation bar. Then select the profiling group that you want to view.

Profiling group status

This is the latest general information regarding the status of the profiling group.

CPU summary

The CPU utilization gives an indication of how much of the instance’s CPU resources are consumed
by the profiled application. For JVM applications, this gives a percentage of system CPU resources
consumed by the JVM. The metric value is an average across all instances reporting data to this
profiling group.

A low value (for example < 10%) indicates your application does not consume a large amount of
the system CPU capacity. This means there could be an opportunity to use smaller instances or
autoscaling to reduce cost, as long as there is nothing else running on the system. A high value
(>90%) indicates your application is consuming a large amount of system CPU capacity. This means
there is likely value in looking at your CPU profiles and recommendations for areas of optimization.
The values are averages over the last full 12 hours.

The Agent CPU usage provides an estimate of how much of the system CPU resources are
consumed by the CodeGuru Profiler agent on average across profiled instances. It’s expected
that this value is low (<1%); however, it can be normal for this to be higher depending on the
application being profiled. If the number concerns you, please get in touch with AWS Support, or
provide feedback at the bottom of the page.

The Time spent executing code is a measure of how frequently your application’s JVM threads
were in the RUNNABLE thread state, as a percentage of all thread states except IDLE.

A high percentage (>90%) indicates most of your application’s time is spent executing operations
on the CPU. A very low percentage (<1%) indicates that most of your application was spent in
other thread states (e.g. BLOCKED or WAITING) and there may be more value in looking at the
Latency visualization, which displays all non-IDLE thread states, instead of the CPU visualization.

Profiling group status 71

https://console.aws.amazon.com/codeguru/profiler/

Amazon CodeGuru Profiler User Guide

Latency summary

The Time spent blocked is a measure of how often your threads are in the BLOCKED state, once we
exclude all IDLE threads. This can happen if your application makes frequent use of synchronized
blocks or monitor locks. The Latency visualization can help you understand what sections of code
are causing threads to block.

Time spent waiting is a measure of how much time your application’s thread spent in the
WAITING and TIMED WAITING thread states, as a percentage of all thread states except IDLE.
This is frequently caused by I/O operations such as network calls or disk operations. The Latency
visualization can help you understand which sections of code are causing threads to wait.

Heap usage

The Average heap usage shows how much of your application’s maximum heap capacity is
consumed by your application on average across all profiled instances. The percentage shown is the
average heap space used compared to the JVM’s maximum heap capacity, with the absolute value
for the average heap space used shown next to it.

A high percentage (>90%) could indicate that your application is close to running out of memory
most of the time. If you wish to optimize this, then the Heap summary visualization shows you the
object types consuming the most space on the heap. A low percentage (<10%) may indicate that
your JVM is being provided much more memory than it actually requires and cost savings may be
available by reducing your system memory size, although you should check the peak usage too.

The Peak heap usage metric shows the highest percentage of memory consumed by your
application seen by the CodeGuru Profiler agent. This is based on the same dataset as seen in the
Heap summary visualization. A high percentage (>90%) could indicate that your application has
high spikes of memory usage, especially if your average heap usage is low.

Choose Visualize heap to see your application's heap usage over time. For information on
understanding the heap summary, see Understanding the heap summary.

Anomalies

CodeGuru Profiler discovers anomalies by analyzing trends in your profiling data and detecting
deviations in that data. Any anomalies found are shown here along with details of which time
period is anomalous. Further details can be found in the linked report.

Latency summary 72

Amazon CodeGuru Profiler User Guide

Recommendations

CodeGuru Profiler makes recommendations that you can use to optimize your applications. Any
recommendations available are shown here along with details of the estimated impact on your
overall application profile. Further details can be found on the linked report.

Understanding the heap summary

The Heap summary visualization shows your application’s heap usage over time. You can change
the time period shown using the time range selector in the top-right. For information on enabling
the heap summary data collection feature, see Step 4: Start CodeGuru Profiler in your application.

To view your application's heap summary visualization, select your profiling group in the CodeGuru
Profiler console, navigate to the Heap usage panel, and select Visualize heap.

Total capacity

This shows the maximum heap size configured for the JVM. If your application’s used space
reaches this value then you may run out of memory. This value is equal to your JVM’s Xmx value (if
configured).

Used space

This shows how much heap space your application requires to store all objects required in memory
after a garbage collection cycle. If this value continuously grows over time until it reaches total
capacity, then that could be an indication of a memory leak. If this value is very low compared to
total capacity, then you may be able to save money by reducing your system’s memory.

Recommendations 73

https://console.aws.amazon.com/codeguru/profiler/
https://console.aws.amazon.com/codeguru/profiler/

Amazon CodeGuru Profiler User Guide

Heap summary table

The Heap summary table shows information about the object types consuming the most heap
space in your application. The size of each type only accounts for the shallow memory requirement
of that type, and does not include the size of objects referenced by objects of that type. Values are
averaged across all hosts reporting data at the same time.

Only object types that consume more than 0.5% (by default) of your heap’s total capacity across all
objects are detected. Object types with consumption below that threshold are counted as part of
the used capacity value, and are not shown individually in the table.

Object types that are below that threshold for at least one data point are shown with an
Incomplete data badge. The values shown are only averages of the data available, and do not
include time periods during which the object type size was lower than the 0.5% capacity threshold.

Object types

• The Average usage by type shows how much heap space your application requires to store all
objects required in memory after a garbage collection cycle. If this value continuously grows
over time until it reaches total capacity, it could indicate a memory leak. If this value is very
low compared to total capacity, then you may be able to save money by reducing your system’s
memory.

• The Average number of objects indicates the average number of objects of this type on the
heap during the time period.

• Use the my code namespace (if configured) to categorize the type into one of several categories.
The my code namespace can be configured in the Actions dropdown list at the top of the page.
The table of object types can be filtered based on this code type.

Comparing two time ranges

The CodeGuru Profiler Compare option allows you to view differences between two different
time ranges of the same profiling group. It can be used for overview, hotspots, and inspect
visualizations. This feature is not available for the heap summary visualization.

To enable the compare visualization

1. Choose Compare.

2. Set B to be the time to which you want to compare to your current visualization.

Heap summary table 74

Amazon CodeGuru Profiler User Guide

3. Choose Apply.

If you'd like to change the time range comparison, choose Change B.

These comparisons are visualized by color. Functions that take more time in one time range appear
more prominently as the color of the corresponding time range. Less saturated colors indicate a
smaller difference between the two time ranges. A very light or white color indicates little to no
difference between the time ranges.

In this example, the two time ranges are A (green) and B (purple). The visualization allows you
to pinpoint the areas in darker violet that indicate the function took more time in time range B.
Similarly, the darker green indicates functions spending more time in time range A. The more faded
sections of the visualization indicate a similar amount of time was taken by the function in both
time ranges.

Understanding the comparison

You can see more information about a function if you pause over it. In the following example, you
can see the CPU cost reduced betwen the first time range and the second.

Understanding the comparison 75

Amazon CodeGuru Profiler User Guide

Note

It's normal to see changes in your profiling data without any code changes. The profiling
data may vary depending on when and how your application runs. Keep in mind your
application characteristics when selecting a comparison time range. For example, you
might find interesting profiling data if you compare data from your current time range with
the data from a week earlier.

Understanding the comparison 76

Amazon CodeGuru Profiler User Guide

Working with anomalies and recommendation reports

Amazon CodeGuru Profiler continuously analyzes your application profiles in real-time to
identify potential performance-impacting issues, and also anomalies in your normal application
behavior. Each issue identified during analysis results in creating performance improvement
recommendations and anomalies which are then included in the recommendation report. The
recommendation report is available in the console summary page. If configured, an Amazon SNS
notification will also be sent when a new Anomaly is detected.

Viewing reports

Each report contains performance improvement recommendations and anomalies that describe
what anomalies were found, and suggests steps to take to resolve the issue.

To view anomaly reports and recommendations

1. Sign in to the Amazon CodeGuru console at https://console.aws.amazon.com/codeguru.

2. In the navigation pane, choose Profiling groups.

3. Choose the profiling group with recommendations you want to view.

4. Choose Actions, and then choose View recommendations reports.

5. In the list of latest reports, choose a report.

6. (Optional) In the report, under Recommendations, specify a search string to filter results.

7. (Optional) In the report, at the upper right, choose View all reports to open the list of all
reports for the profiling group. Select a report to see its recommendations.

You can view reports generated by CodeGuru Profiler up to 30 days in the past.

To view recommendations from the flame graph window

• Choose <number> Recommendations next to Actions to open the latest report (<number> is
the number of recommendations found for this profiling group in the latest report).

<number> Recommendations opens the report that contains the current time range for this
profiling group.

Viewing reports 77

https://console.aws.amazon.com/codeguru

Amazon CodeGuru Profiler User Guide

Understanding performance improvement recommendations

Each performance improvement recommendation explains why CodeGuru Profiler recommends a
change in your code. CodeGuru Profiler gives you suggestions on how and where to improve your
code.

CodeGuru Profiler calculates an estimated dollar value for the active CPU cost of the discovered
efficiency issue. You can use this to understand where your optimization efforts will be most
valuable. For more information on estimated dollar values, see Understanding the dollar estimate
of the CPU cost for frames .

Understanding anomaly reports

Anomaly reports can help you to avoid outages, latency, and other performance issues by
monitoring application metrics with machine learning models.

CodeGuru Profiler detects anomalies when your application performance deviates from past
behavior. For example, you can have a CPU time anomaly. This is the time that was spent
performing calculations and executing instructions. CPU time anomalies are commonly caused by
computationally expensive sections of your code.

Another example of an anomaly is a wall clock time deviation. When making external requests or
performing I/O, threads are often waiting for these operations to finish. The wall clock time is the
sum of the CPU time and the time a thread was blocked from continuing its execution. You can find
a list of generated anomalies in your hourly recommendations report. CodeGuru Profiler takes up
to 36 hours to generate the first anomaly report.

Each anomaly includes the following information:

• Frame name – The frame name provides a brief description of the anomaly. Each title displays
the package name, followed by the function name.

• Why did CodeGuru Profiler trigger this anomaly? – This section describes why the anomaly was
triggered.

• Graph – Displays the percentage that represents how frequently this frame occurs, spanning the
time the report is requested for. Anomalies are highlighted in red.

• Show anomalies in inspect view – Choose this link to go back to the flame graph and see an
overview visualization for the given frame name.

Understanding performance improvement recommendations 78

Amazon CodeGuru Profiler User Guide

• Did this anomaly identify an issue? – Submit feedback by choosing thumbs up or thumbs down
on an anomaly report. Providing feedback improves the quality of the generated anomalies.

You can set up Amazon SNS notifications to let you know when CodeGuru Profiler generates new
anomaly reports. For information about creating and subscribing to an SNS topic, see Getting
started with Amazon SNS.

To set up notifications for anomaly detection

1. On the Profiling groups page, choose Edit profiling group.

2. Choose the Notifications tab. Choose from your account's existing SNS topics. This is where
you will receive notifications.

Understanding anomaly reports 79

https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started

Amazon CodeGuru Profiler User Guide

Tagging profiling groups

A tag is a custom attribute label that you or AWS assigns to an AWS resource. Each AWS tag has
two parts:

• A tag key (for example, CostCenter, Environment, Project, or Secret). Tag keys are case
sensitive.

• An optional field known as a tag value. Omitting the tag value is the same as using an empty
string. Like tag keys, tag values are case sensitive.

Together these are known as key-value pairs.

Tags help you identify and organize your AWS resources. Many AWS services support tagging, so
you can assign the same tag to resources from different services to indicate that the resources are
related. For example, you can assign the same tag to a profiling group that you assign to an S3
bucket. For more information about using tags, see the Tagging best practices whitepaper.

In CodeGuru Profiler, the primary resource is the profiling group. You can use the CodeGuru Profiler
console, the AWS CLI, CodeGuru Profiler APIs, or AWS SDKs to add, manage, and remove tags for
a profiling group. In addition to identifying, organizing, and tracking your profiling group with
tags, you can use tags in IAM policies to help control who can view and interact with your profiling
group.

Topics

• Add a tag to a profiling group

• View tags for a profiling group

• Edit tags for a profiling group

• Remove a tag from a profiling group

Add a tag to a profiling group

Adding tags to a profiling group can help you identify and organize your profiling groups and
manage access to them. First, you add one or more tags (key-value pairs) to a profiling group. Keep
in mind that there are limits on the number of tags you can have on a profiling group. After you
have tags, you can create IAM policies to manage access to the profiling group based on these tags.
You can use the CodeGuru Profiler console to add tags to a profiling group.

Add a tag to a profiling group 80

https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf

Amazon CodeGuru Profiler User Guide

You can add tags when you create your profiling group on the Create profiling group page. You
can also add tags to your existing profiling group.

Add a tag to a profiling group

You can use the CodeGuru Profiler console to add one or more tags to an existing profiling group.

1. In Profiling groups, choose the name of the profiling group where you want to add tags.

2. Choose Actions. Choose Edit profiling group.

3. Choose the Tags tab.

4. Choose Add new tag.

5. In Key, enter a name for the tag. You can add an optional value for the tag in Value.

6. (Optional) To add another tag, choose Add new tag again.

7. When you have finished adding tags, choose Save.

View tags for a profiling group

Tags can help you identify and organize your AWS resources and manage access to them. For more
information about using tags, see the Tagging best practices whitepaper.

View tags for a profiling group

You can use the CodeGuru Profiler console to view the tags associated with a CodeGuru Profiler
profiling group.

1. In Profiling groups, choose the name of the profiling group where you want to view tags.

2. Choose Actions. Choose Edit profiling group.

3. Choose the Tags tab.

Edit tags for a profiling group

You can change the value for a tag associated with a profiling group. While you can't change the
key, you can deleting a tag and creating a new one with the updated key. Keep in mind that there
are limits on the characters you can use in the key and value fields.

Add a tag to a profiling group 81

https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf

Amazon CodeGuru Profiler User Guide

Important

Editing tags for a profiling group can impact access to that profiling group. Before you edit
the name (key) or value of a tag for a profiling group, make sure to review any IAM policies
that might use the key or value for a tag to control access to resources such as profiling
groups.

Edit a tag for a profiling group

You can use the CodeGuru Profiler console to edit the tags associated with a profiling group.

1. In Profiling groups, choose the name of the profiling group where you want to edit tags.

2. Choose Actions. Choose Edit profiling group.

3. Choose the Tags tab. To change the tag, enter a new name in the Value. You cannot change
the key of a tag.

4. Do one of the following:

• To change the value of a tag, enter a new value. If you want to change the value to nothing,
delete the current value and leave the field blank.

• If you want to change the key of a tag, you can remove a tag and add a new one with the
updated key name. Find the tag you want to remove, then choose Remove. Choose Add
a new tag. In Key, enter a name for the tag. You can add an optional value for the tag in
Value.

5. When you have finished editing tags, choose Save.

Remove a tag from a profiling group

You can remove one or more tags associated with a profiling group. You can also change the name
of the key, which is equivalent to removing the current tag and adding a different one with the new
name and the same value as the other key. Removing a tag does not delete the tag from other AWS
resources that are associated with that tag.

Edit a tag for a profiling group 82

Amazon CodeGuru Profiler User Guide

Important

Removing tags for a profiling group can impact access to that profiling group. Before you
remove a tag from a profiling group, make sure to review any IAM policies that might use
the key or value for a tag to control access to resources such as profiling groups.

Remove a tag from a profiling group

You can use the CodeGuru Profiler console to remove the association between a tag and a profiling
group.

1. In Profiling groups, choose the name of the profiling group where you want to remove tags.

2. Choose Actions. Choose Edit profiling group.

3. Choose the Tags tab.

4. Find the tag you want to remove, and then choose Remove.

5. When you have finished removing tags, choose Save.

Remove a tag from a profiling group 83

Amazon CodeGuru Profiler User Guide

Security in CodeGuru Profiler

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon CodeGuru
Profiler, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company's
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using CodeGuru Profiler. The following topics show you how to configure CodeGuru Profiler to
meet your security and compliance objectives.

Topics

• Data protection for CodeGuru Profiler

• Identity and access management in CodeGuru Profiler

• Compliance validation for Amazon CodeGuru Profiler

• Using CodeGuru Profiler with VPC Endpoints

• Infrastructure security in Amazon CodeGuru Profiler

Data protection for CodeGuru Profiler

The AWS shared responsibility model applies to data protection in Amazon CodeGuru Profiler
(CodeGuru Profiler). As described in this model, AWS is responsible for protecting the global
infrastructure that runs all of the AWS Cloud. You are responsible for maintaining control over your
content that is hosted on this infrastructure. This content includes the security configuration and

Data protection 84

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon CodeGuru Profiler User Guide

management tasks for the AWS services that you use. For more information about data privacy, see
the Data Privacy FAQ.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual user accounts with AWS Identity and Access Management (IAM). That way each user is
given only the permissions necessary to fulfill their job duties. We also recommend that you secure
your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing personal data that is stored in Amazon S3.

We strongly recommend that you never put sensitive identifying information, such as your
customers' account numbers, into free-form fields such as a Name field. This includes when
you work with CodeGuru Profiler or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into CodeGuru Profiler or other services might get picked up for
inclusion in diagnostic logs. When you provide a URL to an external server, don't include credentials
information in the URL to validate your request to that server.

Topics

• Captured data in CodeGuru Profiler

• Data encryption in CodeGuru Profiler

• Data retention in CodeGuru Profiler

• Internetwork Traffic Privacy

Captured data in CodeGuru Profiler

The CodeGuru Profiler agent collects stack traces at regular intervals using either the Java virtual
machine or Python interfaces. The data is submitted in batches to CodeGuru Profiler.

A stack trace is a sequence of names of functions or methods in execution, followed by the names
of functions or methods that called them successively, continuing to the root of the service process.

Captured data 85

https://aws.amazon.com/compliance/data-privacy-faq

Amazon CodeGuru Profiler User Guide

The CodeGuru Profiler profiling agent doesn't have access to the names or values of function
parameters. It also doesn't have access to the values of variables or application data.

Data encryption in CodeGuru Profiler

Encryption is an important part of CodeGuru Profiler security. Data in transit and at rest are
provided by default and don't require you to do anything.

• Encryption of data at rest - Data collected by CodeGuru Profiler is stored using Amazon S3,
Amazon Kinesis, and Amazon DynamoDB and their data-at-rest encryption capabilities.

• Encryption of data in transit - All communication between customers and CodeGuru Profiler
and between CodeGuru Profiler and its downstream dependencies is protected using TLS
connections that are signed using the Signature Version 4 signing process. All CodeGuru Profiler
endpoints use SHA-256 certificates that are managed by AWS Private Certificate Authority. For
more information, see Signature Version 4 Signing Process and What is ACM PCA.

Data retention in CodeGuru Profiler

Data received from an agent is aggregated into profiles representing five-minute periods. These
are then aggregated into hourly and daily profiles. CodeGuru Profiler currently retains five-minute,
hourly, and daily profiles for 15 days, 60 days, and three years, respectively.

Internetwork Traffic Privacy

An Amazon Virtual Private Cloud (Amazon VPC) endpoint for CodeGuru Profiler is a logical entity
within a VPC that allows connectivity only to CodeGuru Profiler. Amazon VPC routes requests to
CodeGuru Profiler and routes responses back to the VPC. For more information, see VPC Endpoints
in the Amazon VPC User Guide. For information about using Amazon VPC endpoints with CodeGuru
Profiler see Using CodeGuru Profiler with VPC Endpoints.

Identity and access management in CodeGuru Profiler

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use CodeGuru Profiler resources. IAM is an AWS service that
you can use with no additional charge.

Topics

Data encryption 86

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/privateca/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html

Amazon CodeGuru Profiler User Guide

• Audience in CodeGuru Profiler

• Authenticating with identities in CodeGuru Profiler

• Managing access using policies

• Overview of managing access permissions to your CodeGuru Profiler resources

• Using identity-based policies for CodeGuru Profiler

• Resource-based policies in CodeGuru Profiler

• Amazon CodeGuru Profiler permissions reference

• AWS managed policies for CodeGuru Profiler

• Troubleshooting CodeGuru Profiler identity and access

• Using service-linked roles for CodeGuru Profiler

• Using tags to control access to Amazon CodeGuru Profiler resources

Audience in CodeGuru Profiler

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in CodeGuru Profiler.

Service user – If you use the CodeGuru Profiler service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more CodeGuru
Profiler features to do your work, you might need additional permissions. Understanding how
access is managed can help you request the right permissions from your administrator. If you
cannot access a feature in CodeGuru Profiler, see Troubleshooting CodeGuru Profiler identity and
access.

Service administrator – If you're in charge of CodeGuru Profiler resources at your company, you
probably have full access to CodeGuru Profiler. It's your job to determine which CodeGuru Profiler
features and resources your service users should access. You must then submit requests to your
IAM administrator to change the permissions of your service users. Review the information on this
page to understand the basic concepts of IAM. To learn more about how your company can use IAM
with CodeGuru Profiler, see Overview of managing access permissions to your CodeGuru Profiler
resources.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to CodeGuru Profiler. To view example CodeGuru Profiler
identity-based policies that you can use in IAM, see Customer managed policy examples.

Audience 87

Amazon CodeGuru Profiler User Guide

Authenticating with identities in CodeGuru Profiler

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Authenticating with identities 88

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html

Amazon CodeGuru Profiler User Guide

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

Authenticating with identities 89

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

Amazon CodeGuru Profiler User Guide

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

Authenticating with identities 90

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

Amazon CodeGuru Profiler User Guide

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Managing access using policies 91

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline

Amazon CodeGuru Profiler User Guide

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to

Managing access using policies 92

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

Amazon CodeGuru Profiler User Guide

any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

Overview of managing access permissions to your CodeGuru Profiler
resources

Every AWS resource is owned by an AWS account, and permissions to create or access a resource
are governed by IAM permissions policies. An account administrator can attach permissions policies
to IAM identities (that is, users, groups, and roles).

Note

An account administrator (or administrator user) is a user with administrator privileges. For
more information, see IAM best practices in the IAM User Guide.

When you grant permissions, you decide who is getting the permissions, the resources they can
access, and the actions that can be performed on those resources.

Topics

• CodeGuru Profiler resources and operations

• Understanding resource ownership

• Managing access to resources

• Specifying policy elements: actions, effects, and principals

Overview of managing access 93

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon CodeGuru Profiler User Guide

CodeGuru Profiler resources and operations

In CodeGuru Profiler, the primary resource is a profiling group. In a policy, you use an Amazon
Resource Name (ARN) to identify the resource the policy applies to. For more information, see
Amazon Resource Names (ARNs) in the Amazon Web Services General Reference.

Resource type ARN format

profiling group arn:aws:codeguru-profiler: region-ID :account-I
D :profilingGroup/ profiling-group-name

For example, you can indicate a specific profiling group (my-profiling-group) in your statement
using its ARN, as follows.

"Resource": "arn:aws:codeguru-profiler:us-east-2:123456789012:profilingGroup/my-
profiling-group"

To specify all resources, or if an API action does not support ARNs, use the wildcard character (*) in
the Resource element, as follows.

"Resource": "*"

To specify multiple resources in a single statement, separate their ARNs with commas, as follows.

"Resource": [
 "arn:aws:codeguru-profiler:us-east-2:123456789012:profilingGroup/my-profiling-
group",
 "arn:aws:codeguru-profiler:us-east-2:123456789012:profilingGroup/my-other-
profiling-group"
]

CodeGuru Profiler provides a set of operations to work with the CodeGuru Profiler resources. For a
list, see the Amazon CodeGuru Profiler permissions reference.

Understanding resource ownership

The AWS account owns the resources that are created in it, regardless of who created the resources.
Specifically, the resource owner is the AWS account of the principal entity (that is, the root account,

Overview of managing access 94

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html

Amazon CodeGuru Profiler User Guide

an IAM user, or an IAM role) that authenticates the resource creation request. The following
examples illustrate how this works:

• If you use the root account credentials of your AWS account to create a profiling group, your
AWS account is the owner of the CodeGuru Profiler resource.

• If you grant permissions to create CodeGuru Profiler resources to a user, the user can create
CodeGuru Profiler resources. However, your AWS account, to which the user belongs, owns the
CodeGuru Profiler resources.

• If you create an IAM role in your AWS account with permissions to create CodeGuru Profiler
resources, anyone who can assume the role can create CodeGuru Profiler resources. Your AWS
account, to which the role belongs, owns the CodeGuru Profiler resources.

Managing access to resources

A permissions policy describes who has access to which resources.

Note

This section discusses the use of IAM in Amazon CodeGuru Profiler. It doesn't provide
detailed information about the IAM service. For complete IAM documentation, see What is
IAM? in the IAM User Guide. For information about IAM policy syntax and descriptions, see
the IAM JSON Policy Reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM policies). Policies
attached to a resource are referred to as resource-based policies. CodeGuru Profiler supports
identity-based (IAM policies) only.

Identity-based policies

You can attach policies to IAM identities.

• Attach a permissions policy to a user or a group in your account – To grant a user permissions
to view profiling groups in the CodeGuru Profiler console, you can attach a permissions policy to
a user or group that the user belongs to.

• Attach a permissions policy to a role (grant cross-account permissions) – You can attach
an identity-based permissions policy to an IAM role to grant cross-account permissions. For

Overview of managing access 95

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

Amazon CodeGuru Profiler User Guide

example, the administrator in Account A can create a role to grant cross-account permissions to
another AWS account (for example, Account B) or an AWS service, as follows:

1. Account A administrator creates an IAM role and attaches a permissions policy to the role that
grants permissions on resources in Account A.

2. Account A administrator attaches a trust policy to the role identifying Account B as the
principal who can assume the role.

3. Account B administrator can then delegate permissions to assume the role to any users in
Account B. Doing this allows users in Account B to create or access resources in Account A. The
principal in the trust policy must also be an AWS service principal if you want to grant an AWS
service permissions to assume the role.

For more information about using IAM to delegate permissions, see Access management in the
IAM User Guide.

In CodeGuru Profiler, identity-based policies are used to manage permissions to the resources
related to artifact management. For example, you can control access to a profiling group.

You can create IAM policies to restrict the calls and resources that users in your account have access
to, and then attach those policies to IAM users. For more information about how to create IAM
roles and to explore example IAM policy statements for CodeGuru Profiler, see Identity-based
policies.

Specifying policy elements: actions, effects, and principals

For each CodeGuru Profiler resource, the service defines a set of API operations. To grant
permissions for these API operations, CodeGuru Profiler defines a set of actions that you can
specify in a policy. Some API operations can require permissions for more than one action to
perform the API operation. For more information, see CodeGuru Profiler resources and operations
and the Amazon CodeGuru Profiler permissions reference.

The following are the basic policy elements:

• Resource – You use an Amazon Resource Name (ARN) to identify the resource that the policy
applies to.

• Action – You use action keywords to identify resource operations to allow or deny. For example,
the codeguru-profiler:DeleteProfilingGroup; permission gives the user permission to
perform the DeleteProfilingGroup operation.

Overview of managing access 96

https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html
https://docs.aws.amazon.com/codeguru/latest/profiler-api/API_DeleteProfilingGroup.html

Amazon CodeGuru Profiler User Guide

• Effect – You specify the effect, either allow or deny, when the user requests the action. If you
don't explicitly grant access to (allow) a resource, access is implicitly denied. You can also
explicitly deny access to a resource. You might do this to make sure that a user cannot access a
resource, even if a different policy grants access.

• Principal – In identity-based policies (IAM policies), the user the policy is attached to is the
implicit principal. For resource-based policies, you specify the user, account, service, or other
entity that you want to receive permissions.

To learn more about IAM policy syntax and descriptions, see AWS IAM Policy Reference in the IAM
User Guide.

For a table showing all of the CodeGuru Profiler API actions and the resources they apply to, see
the Amazon CodeGuru Profiler permissions reference.

Using identity-based policies for CodeGuru Profiler

By default, IAM users and roles don't have permission to create or modify CodeGuru Profiler
resources. They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS
API. An IAM administrator must create IAM policies that grant users and roles permission to
perform specific API operations on the specified resources they need. The administrator must then
attach those policies to the IAM users or groups that require those permissions. To learn how to
attach policies to an IAM user or group, see Adding and removing IAM identity permissions in the
IAM User Guide.

To learn how to create an IAM identity-based policy using example JSON policy documents, see
Creating policies on the JSON tab in the IAM User Guide.

Topics

• Policy best practices

• Permissions required to use the CodeGuru Profiler console

• Permissions required by the CodeGuru Profiler profiling agent

• Permissions required to access CodeGuru Profiler data

• AWS managed (predefined) policies for CodeGuru Profiler

• Customer managed policy examples

Using identity-based policies 97

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

Amazon CodeGuru Profiler User Guide

Policy best practices

Identity-based policies determine whether someone can create, access, or delete CodeGuru Profiler
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using identity-based policies 98

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon CodeGuru Profiler User Guide

Permissions required to use the CodeGuru Profiler console

A user who uses the CodeGuru Profiler console must have a minimum set of permissions that
allows them to describe other AWS resources for the AWS account. You must have permissions
from the following services:

• CodeGuru Profiler

• ListUsers and ListRoles from the IAM service

If you create an IAM policy that is more restrictive than the minimum required permissions, the
console won't function as intended.

Permissions required by the CodeGuru Profiler profiling agent

The CodeGuru Profiler profiling agent is imported into your profiled application. When your
application runs, the agent starts in a different thread to profile your application. The following
permissions are required to submit data to CodeGuru Profiler:

• codeguru-profiler:ConfigureAgent

• codeguru-profiler:PostAgentProfile

For more information, see Enabling the agent with code.

The following example policy grants the current AWS user permission to write to a single profiling
group in the current AWS Region.

{
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "codeguru-profiler:ConfigureAgent",
 "codeguru-profiler:PostAgentProfile"
],
 "Resource": "arn:aws:codeguru-profiler:region-id:aws-account-
id:profilingGroup/profilingGroupName"
 }]
}

Using identity-based policies 99

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRoles.html

Amazon CodeGuru Profiler User Guide

Permissions required to access CodeGuru Profiler data

Data collected and submitted to CodeGuru Profiler by an agent is used to create application
profiles for visualizations:

• codeguru-profiler:GetProfile

• codeguru-profiler:DescribeProfilingGroup

For more information, see Working with visualizations.

The following is an example.

{
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "codeguru-profiler:GetProfile",
 "codeguru-profiler:DescribeProfilingGroup"
],
 "Resource": "arn:aws:codeguru-profiler:region-id:aws-account-id:profilingGroup/
profilingGroupName"
 }]
}

For the CodeGuru Profiler console, it can be useful to have an additional policy statement providing
ListProfilingGroups permissions to allow users to see the list of ProfilingGroups. For
example, the following allows users to see a list of all profiling groups in their AWS account and
Region.

{
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "codeguru-profiler:ListProfilingGroups"
],
 "Resource": "*"
 }]
}

Using identity-based policies 100

Amazon CodeGuru Profiler User Guide

For more information, see ConfigureAgent, PostAgentProfile, GetProfile,
DescribeProfilingGroup, and ListProfilingGroups in the Amazon CodeGuru Profiler API
Reference.

AWS managed (predefined) policies for CodeGuru Profiler

AWS addresses many common use cases by providing standalone IAM policies that are created and
administered by AWS. These AWS managed policies grant necessary permissions for common use
cases so you can avoid having to investigate what permissions are needed. For more information,
see AWS Managed Policies in the IAM User Guide.

To create and manage CodeGuru Profiler service roles, you must also attach the AWS managed
policy named IAMFullAccess.

You can also create your own custom IAM policies to allow permissions for CodeGuru Profiler
actions and resources. You can attach these custom policies to the IAM users or groups that require
those permissions.

The following AWS managed policies, which you can attach to users in your account, are specific to
CodeGuru Profiler.

Topics

• AmazonCodeGuruProfilerFullAccess

• AmazonCodeGuruProfilerReadOnlyAccess

• AmazonCodeGuruProfilerAgentAccess

AmazonCodeGuruProfilerFullAccess

AmazonCodeGuruProfilerFullAccess – Provides full access to CodeGuru Profiler, including
permissions to create, update, and delete profiling groups. Apply this only to administrative-
level users who you want to grant full control over CodeGuru Profiler profiling groups and related
resources in your AWS account, including the ability to delete profiling groups.

The AmazonCodeGuruProfilerFullAccess policy contains the following statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Using identity-based policies 101

https://docs.aws.amazon.com/codeguru/latest/profiler-api/API_ConfigureAgent.html
https://docs.aws.amazon.com/codeguru/latest/profiler-api/API_PostAgentProfile.html
https://docs.aws.amazon.com/codeguru/latest/profiler-api/API_GetProfile.html
https://docs.aws.amazon.com/codeguru/latest/profiler-api/API_DescribeProfilingGroup.html
https://docs.aws.amazon.com/codeguru/latest/profiler-api/API_ListProfilingGroups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon CodeGuru Profiler User Guide

 "Action": [
 "codeguru-profiler:*",
 "iam:ListRoles",
 "iam:ListUsers",
 "codeguru:*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

AmazonCodeGuruProfilerReadOnlyAccess

AmazonCodeGuruProfilerReadOnlyAccess – Grants read-only access to CodeGuru Profiler and
related resources in other AWS services. Apply this policy to users who you want to grant the ability
to view profiling group visualizations, but not make any changes to them.

The AmazonCodeGuruProfilerReadOnlyAccess policy contains the following statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "codeguru-profiler:Get*",
 "codeguru-profiler:Describe*",
 "codeguru-profiler:List*",
 "iam:ListRoles",
 "iam:ListUsers",
 "codeguru:Get*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

AmazonCodeGuruProfilerAgentAccess

AmazonCodeGuruProfilerAgentAccess – Provides access to CodeGuru Profiler agent to create
a Profiling Group, refresh its configuration and submit profiles to the CodeGuru Profiler service.

Using identity-based policies 102

Amazon CodeGuru Profiler User Guide

The AmazonCodeGuruProfilerAgentAccess policy contains the following statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "codeguru-profiler:ConfigureAgent",
 "codeguru-profiler:CreateProfilingGroup",
 "codeguru-profiler:PostAgentProfile",
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Customer managed policy examples

You can create your own custom IAM policies to allow permissions for CodeGuru Profiler actions
and resources. You can attach these custom policies to the IAM users, roles, or groups that require
those permissions. You can also create your own custom IAM policies for integration between
CodeGuru Profiler and other AWS services.

The following example IAM policies grant permissions for various CodeGuru Profiler actions. Use
them to limit CodeGuru Profiler access for your IAM users and roles. These policies control the
ability to perform actions by using the CodeGuru Profiler console, API, AWS SDKs, or the AWS CLI.

Note

All examples use the US East (Ohio) Region (us-east-2) and contain fictitious account IDs.

Examples

• Example 1: Allow a user to see all profiling groups and the visualizations of only one profiling
group

• Example 2: Allow a user to perform CodeGuru Profiler operations in a single Region

• Example 3: Allow a user connecting from a specified IP address range access to a profiling group

Using identity-based policies 103

Amazon CodeGuru Profiler User Guide

Example 1: Allow a user to see all profiling groups and the visualizations of only one profiling
group

The following example policy grants permissions for the AWS user with account ID 123456789012
to see a list of all profiling groups in their AWS account and Region. That user can see visualizations
for only one profiling group named my-profiling-group.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codeguru-profiler:GetProfile",
 "codeguru-profiler:DescribeProfilingGroup"
],
 "Resource": "arn:aws:codeguru-profiler:us-
east-2:123456789012:profilingGroup/my-profiling-group"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codeguru-profiler:ListProfilingGroups"
],
 "Resource": "*"
 }
]
}

Example 2: Allow a user to perform CodeGuru Profiler operations in a single Region

The following permissions policy uses a wildcard character ("codeguru-profiler:*") to allow
users to perform all CodeGuru Profiler actions in the us-east-2 Region and not from other AWS
Regions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "codeguru-profiler:*",
 "Resource": "*",
 "Condition": {

Using identity-based policies 104

Amazon CodeGuru Profiler User Guide

 "StringEquals": {
 "aws:RequestedRegion": "us-east-2"
 }
 }
 }
]
}

Example 3: Allow a user connecting from a specified IP address range access to a profiling
group

You can create a policy that allows users to view a CodeGuru Profiler profiling group only if their IP
address is within a certain IP address range. Because the GetFindingsReportAccountSummary
and ListProfilingGroups actions don't support resource-level permissions, their resource is
specified as wildcard character (*) in a separate statement. For more information, see the Amazon
CodeGuru Profiler permissions reference.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codeguru-profiler:*",
 "iam:ListRoles",
 "iam:ListUsers",
 "codeguru:*"
],
 "Resource": "arn:aws:codeguru-profiler:us-east-2:544120495673:profilingGroup/
DemoProfilingGroup",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": "203.0.113.0/24"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "codeguru-profiler:GetFindingsReportAccountSummary",
 "codeguru-profiler:ListProfilingGroups"
],
 "Resource": "*",

Using identity-based policies 105

Amazon CodeGuru Profiler User Guide

 "Condition": {
 "IpAddress": {
 "aws:SourceIp": "203.0.113.0/24"
 }
 }
 }
]
}

Resource-based policies in CodeGuru Profiler

You control access to profiling groups in Amazon CodeGuru Profiler using profiling group resource-
based policies.

AWS defines a profiling group as a resource in CodeGuru Profiler. You, as the account administrator,
control access to a resource in an AWS service. For profiling groups, resource-based policies support
the agent-related actions ConfigureAgent and PostAgentProfile.

In CodeGuru Profiler, permissions policies are resource-based policies that are attached directly
to profiling groups. You can use resource-based policies to manage the IAM roles or users that
have permission to submit profiling data and configure the agent. You can also grant access with
identity-based policies. For an example, see Permissions required by the CodeGuru Profiler profiling
agent. For more information about IAM policies, see Identity-based policies and resource-based
policies in the AWS Identity and Access Management User Guide.

You can use the console, the SDK, or the AWS CLI to specify resource-based permissions on a
profiling group

Topics

• Add a resource-based policy to a profiling group (console)

• Add a resource-based policy to a profiling group (AWS CLI)

• Add a resource-based policy to a profiling group (AWS SDKs)

Add a resource-based policy to a profiling group (console)

1. Open the Amazon CodeGuru Profiler console at https://console.aws.amazon.com/codeguru/
profiler.

Resource-based policies 106

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://console.aws.amazon.com/codeguru/profiler
https://console.aws.amazon.com/codeguru/profiler

Amazon CodeGuru Profiler User Guide

2. In the navigation pane, choose Profiling groups.

3. Choose the profiling group to add a resource-based policy to.

4. Choose Actions, and then choose Manage permissions.

5. From Application permissions, select the users and roles you want to grant access to the
profiling group.

6. Choose Save.

For more information, see Set permissions.

Add a resource-based policy to a profiling group (AWS CLI)

Run the following AWS CLI command to add a resource-based policy to a profiling group. Use your
profiling group name and the Amazon Resource Names (ARNs) of the roles and users you want to
grant access to the profiling group.

The only valid value for the action-group argument is the agentPermissions action group.
agentPermissions grants the ConfigureAgent and PostAgentProfile permissions on a
profiling group to the roles and users listed in the principals argument.

aws codeguruprofiler put-permission --action-group agentPermissions \
 --profiling-group-name "my-profiling-group-name" \
 --principals "arn:aws:iam::123456789012:user/my-user-name"

The following is an example output that grants access to a profiling group named my-profiling-
group to an AWS user specified using its ARN, arn:aws:iam::123456789012:user/my-user-
name.

{
 "policy": "{\n \"Version\" : \"2012-10-17\",\n \"Statement\" : [{\n
 \"Sid\" : \"agentPermissions-statement\",\n \"Effect\" : \"Allow\",\n
 \"Principal\" : {\n \"AWS\" : \"arn:aws:iam::123456789012:user/my-user-
name\"\n },\n \"Action\" : [\"codeguru-profiler:ConfigureAgent\", \"codeguru-
profiler:PostAgentProfile\"],\n \"Resource\" : \"arn:aws:codeguru-profiler:us-
west-2:123456789012:profilingGroup/my-profiling-group-name\"\n }]\n}",
 "revisionId": "125820ee-98c7-4df9-8739-442ffad7b3a0"
}

Resource-based policies 107

https://docs.aws.amazon.com/codeguru/latest/profiler-ug/setting-up.html#setting-up-step-3

Amazon CodeGuru Profiler User Guide

Add a resource-based policy to a profiling group (AWS SDKs)

To add a resource-based policy using an AWS SDK, use the PutPermission method. For more
information, see PutPermission in the Amazon CodeGuru Profiler API Reference.

Amazon CodeGuru Profiler permissions reference

You can use AWS-wide condition keys in your CodeGuru Profiler policies to express conditions. For
a list, see the IAM JSON Policy Elements Reference in the IAM User Guide.

You specify the actions in the policy's Action field. To specify an action, use the codeguru-
profiler: prefix followed by the API operation name (for example, codeguru-
profiler:CreateProfilingGroup and codeguru-profiler:GetFindingsReport).
To specify multiple actions in a single statement, separate them with commas (for example,
"Action": ["codeguru-profiler:CreateProfilingGroup", "codeguru-
profiler:GetFindingsReport"]).

Using wildcard characters

You specify an ARN, with or without a wildcard character (*), as the resource value in the policy's
Resource field. You can use a wildcard to specify multiple actions or resources. For example,
codeguru-profiler:* specifies all CodeGuru Profiler actions and codeguru-profiler:Get*
specifies all CodeGuru Profiler actions that begin with the word Get. The following example refers
to all profiling groups with names that begin with my.

arn:aws:codeguru-profiler:us-east-2:123456789012:profilingGroup/my*

You can use the following table as a reference when you are setting up authenticating with
identities in CodeGuru Profiler and writing permissions policies that you can attach to an IAM
identity (identity-based policies).

CodeGuru Profiler API operations and required permissions for actions

ConfigureAgent

Action: codeguru-profiler:ConfigureAgent

Required for an agent to register with an orchestration service and retrieve profiling
configuration information.

CodeGuru Profiler permissions reference 108

https://docs.aws.amazon.com/codeguru/latest/profiler-api/API_PutPermission.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/security_iam_authentication.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/security_iam_authentication.html

Amazon CodeGuru Profiler User Guide

Resource: arn:aws:codeguru-profiler:region-ID:account-
ID:profilingGroup/profiling-group-name

CreateProfilingGroup

Action: codeguru-profiler:CreateProfilingGroup

Required to create a profiling group.

Resource: arn:aws:codeguru-profiler:region-ID:account-
ID:profilingGroup/profiling-group-name

DeleteProfilingGroup

Action: codeguru-profiler:DeleteProfilingGroup

Required to delete a profiling group.

Resource: arn:aws:codeguru-profiler:region-ID:account-
ID:profilingGroup/profiling-group-name

DescribeProfilingGroup

Action: codeguru-profiler:DescribeProfilingGroup Required to get information about
a profiling group.

Resource: arn:aws:codeguru-profiler:region-ID:account-
ID:profilingGroup/profiling-group-name

GetFindingsReport

Action: codeguru-profiler:GetFindingsReport Required to get a recommendations
report.

Resource: arn:aws:codeguru-profiler:region-ID:account-
ID:profilingGroup/profiling-group-name

GetFindingsReportAccountSummary

Action: codeguru-profiler:GetFindingsReportAccountSummary

Required to get a summary of recent recommendations for each profiling group in an AWS
account.

CodeGuru Profiler permissions reference 109

Amazon CodeGuru Profiler User Guide

Resource: *

GetPolicy

Action: codeguru-profiler:GetPolicy

Required to get the resource policy that is associated with a profiling group.

Resource: arn:aws:codeguru-profiler:region-ID:account-
ID:profilingGroup/profiling-group-name

GetProfile

Action: codeguru-profiler:GetProfile

Required to get aggregated profiles for one profiling group.

Resource: arn:aws:codeguru-profiler:region-ID:account-
ID:profilingGroup/profiling-group-name

GetRecommendations

Action: codeguru-profiler:GetRecommendations

Required to get recommendations.

Resource: arn:aws:codeguru-profiler:region-ID:account-
ID:profilingGroup/profiling-group-name

ListFindingsReports

Action: codeguru-profiler:ListFindingsReports

Required to list recommendations reports for one profiling group.

Resource: arn:aws:codeguru-profiler:region-ID:account-
ID:profilingGroup/profiling-group-name

ListProfileTimes

Action: codeguru-profiler:ListProfileTimes

Required to list the start times of profiles for one profiling group.

CodeGuru Profiler permissions reference 110

Amazon CodeGuru Profiler User Guide

Resource: arn:aws:codeguru-profiler:region-ID:account-
ID:profilingGroup/profiling-group-name

ListProfilingGroups

Action: codeguru-profiler:ListProfilingGroups

Required to list the profiling groups in one AWS account.

Resource: *

PostAgentProfile

Action: codeguru-profiler:PostAgentProfile

Required to submit a profile for aggregation.

Resource: arn:aws:codeguru-profiler:region-ID:account-
ID:profilingGroup/profiling-group-name

PutPermission

Action: codeguru-profiler:PutPermission

Required to update the list of principals for an action group in the resource policy of a profiling
group.

Resource: arn:aws:codeguru-profiler:region-ID:account-
ID:profilingGroup/profiling-group-name

RemovePermission

Action: codeguru-profiler:RemovePermission

Required to remove the permission of an action group from the resource policy of a profiling
group.

Resource: arn:aws:codeguru-profiler:region-ID:account-
ID:profilingGroup/profiling-group-name

UpdateProfilingGroup

Action: codeguru-profiler:UpdateProfilingGroup

CodeGuru Profiler permissions reference 111

Amazon CodeGuru Profiler User Guide

Required to update a profiling group.

Resource: arn:aws:codeguru-profiler:region-ID:account-
ID:profilingGroup/profiling-group-name

AWS managed policies for CodeGuru Profiler

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
where the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new operations become available. Services do not remove
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

AWS managed policy: AmazonCodeGuruProfilerFullAccess

You can attach the AmazonCodeGuruProfilerFullAccess policy to your IAM identities.

Provides full access to CodeGuru Profiler, including permissions to create, update, and delete
profiling groups. Apply this only to administrative-level users who you want to grant full control
over CodeGuru Profiler profiling groups and related resources in your AWS account, including the
ability to delete profiling groups.

Permissions details

AWS managed policies 112

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

Amazon CodeGuru Profiler User Guide

This policy includes the following permissions.

• codeguru-profiler – Allows principals full access to all CodeGuru Profiler actions.

• codeguru – Allows principals full access to all CodeGuru actions.

• iam – Allows principals to list roles and users from IAM

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codeguru-profiler:*",
 "iam:ListRoles",
 "iam:ListUsers",
 "codeguru:*"
],
 "Resource": "*"
 }
]
 }

AWS managed policy: AmazonCodeGuruProfilerReadOnlyAccess

You can attach the AmazonCodeGuruProfilerReadOnlyAccess policy to your IAM identities.

Grants read-only access to CodeGuru Profiler and related resources in other AWS services. Apply
this policy to principals who you want to grant the ability to view profiling group visualizations, but
not make any changes to them.

Permissions details

This policy includes the following permissions.

• codeguru-profiler – Allows principals access to CodeGuru Profiler Describe, Get, List actions.

• codeguru – Allows principals access to CodeGuru Get actions.

• iam – Allows principals to list roles and users from IAM

{

AWS managed policies 113

Amazon CodeGuru Profiler User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codeguru-profiler:Get*",
 "codeguru-profiler:Describe*",
 "codeguru-profiler:List*",
 "iam:ListRoles",
 "iam:ListUsers",
 "codeguru:*"
],
 "Resource": "*"
 }
]
 }

AWS managed policy: AmazonCodeGuruProfilerAgentAccess

You can attach the AmazonCodeGuruProfilerAgentAccess policy to your IAM identities.

This policy is added to the execution role of AWS Lambda functions onboarded to CodeGuru
Profiler via Lambda console's monitoring page. It allows the Profiler agent to create a Profiling
Group, refresh its configuration and submit agent profiles to CodeGuru Profiler service.

Permissions details

This policy includes the following permissions.

• codeguru-profiler – Allows principals access to CodeGuru Profiler ConfigureAgent,
CreateProfilingGroup and PostAgentProfile actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codeguru-profiler:ConfigureAgent",
 "codeguru-profiler:CreateProfilingGroup",
 "codeguru-profiler:PostAgentProfile"
],

AWS managed policies 114

Amazon CodeGuru Profiler User Guide

 "Resource": "arn:aws:codeguru-profiler:*:*:profilingGroup/*"
 }
]
 }

CodeGuru Profiler updates to AWS managed policies

View details about updates to AWS managed policies for CodeGuru Profiler since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the CodeGuru Profiler Document history page.

Change Description Date

AmazonCodeGuruProfilerAgentAccess –
Updates to policy

CodeGuru Profiler
reduced resource
scope in order to
improve application
security.

July 12, 2021

AmazonCodeGuruProfilerAgentAccess –
Updates to policy

CodeGuru Profiler
added permissions
needed for CodeGuru
Profiler agent to
Create a Profiling
Group.

April 1, 2021

CodeGuru Profiler started tracking changes CodeGuru Profiler
started tracking
changes for its AWS
managed policies.

March 25, 2021

Troubleshooting CodeGuru Profiler identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon CodeGuru Profiler and IAM.

Topics

Troubleshooting 115

Amazon CodeGuru Profiler User Guide

• I am not authorized to perform an action in CodeGuru Profiler

• I am not authorized to perform iam:PassRole

• I want to view my access keys

• I'm an administrator and want to allow others to access CodeGuru Profiler

• I want to allow people outside of my AWS account to access my CodeGuru Profiler resources

I am not authorized to perform an action in CodeGuru Profiler

If the AWS Management Console tells you that you're not authorized to perform an action, you
must contact your administrator for assistance. Your administrator is the person that provided you
with your user name and password.

The following example error occurs when the mateojackson IAM user tries to use
the console to view details about a profiling group, but does not have codeguru-
profiler:DescribeProfilingGroup permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 codeguru-profiler:DescribeProfilingGroup on resource: my-example-profiling-
group

In this case, Mateo asks his administrator to update his policies to allow him to
access the my-example-profiling-group resource using the codeguru-
profiler:DescribeProfilingGroup action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to CodeGuru Profiler.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in CodeGuru Profiler. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

Troubleshooting 116

Amazon CodeGuru Profiler User Guide

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to view my access keys

After you create your IAM user access keys, you can view your access key ID at any time. However,
you can't view your secret access key again. If you lose your secret key, you must create a new
access key pair.

Access keys consist of two parts: an access key ID (for example, AKIAIOSFODNN7EXAMPLE) and
a secret access key (for example, wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY). Like a
user name and password, you must use both the access key ID and secret access key together to
authenticate your requests. Manage your access keys as securely as you do your user name and
password.

Important

Do not provide your access keys to a third party, even to help find your canonical user ID. By
doing this, you might give someone permanent access to your AWS account.

When you create an access key pair, you are prompted to save the access key ID and secret access
key in a secure location. The secret access key is available only at the time you create it. If you lose
your secret access key, you must add new access keys to your IAM user. You can have a maximum of
two access keys. If you already have two, you must delete one key pair before creating a new one.
To view instructions, see Managing access keys in the IAM User Guide.

I'm an administrator and want to allow others to access CodeGuru Profiler

To allow others to access CodeGuru Profiler, you must create an IAM entity (user or role) for the
person or application that needs access. They will use the credentials for that entity to access AWS.
You must then attach a policy to the entity that grants them the correct permissions in CodeGuru
Profiler.

Troubleshooting 117

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-identifiers.html#FindCanonicalId
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey

Amazon CodeGuru Profiler User Guide

To get started right away, see Creating your first IAM delegated user and group in the IAM User
Guide.

I want to allow people outside of my AWS account to access my CodeGuru Profiler
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether CodeGuru Profiler supports these features, see Overview of managing access
permissions to your CodeGuru Profiler resources.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Using service-linked roles for CodeGuru Profiler

Amazon CodeGuru Profiler uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to CodeGuru Profiler. Service-
linked roles are predefined by CodeGuru Profiler and include all the permissions that the service
requires to call other AWS services on your behalf.

A service-linked role makes setting up CodeGuru Profiler easier because you don’t have to
manually add the necessary permissions. CodeGuru Profiler defines the permissions of its service-
linked roles, and unless defined otherwise, only CodeGuru Profiler can assume its roles. The
defined permissions include the trust policy and the permissions policy, and that permissions policy
cannot be attached to any other IAM entity.

Using service-linked roles 118

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-delegated-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon CodeGuru Profiler User Guide

You can delete a service-linked role only after first deleting their related resources. This protects
your CodeGuru Profiler resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see AWS Services That Work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for CodeGuru Profiler

CodeGuru Profiler uses the service-linked role named AWSServiceRoleForCodeGuruProfiler. This
is a managed IAM policy with scoped permissions that CodeGuru Profiler needs to run in your
account.

The AWSServiceRoleForCodeGuruProfiler service-linked role trusts the following services to assume
the role:

• codeguru-profiler.amazonaws.com

The role permissions policy allows CodeGuru Profiler to complete the following actions on the
specified resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSNSPublishToSendNotifications",
 "Effect": "Allow",
 "Action": ["sns:Publish"],
 "Resource": "*"
 }
]
}

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Using service-linked roles 119

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon CodeGuru Profiler User Guide

Creating a service-linked role for CodeGuru Profiler

You don't need to manually create a service-linked role. When you configure notifications on any
profiling group for the first time, you configure an Amazon SNS topic for forwarding notifications
from CodeGuru Profiler to the subscribers of the Amazon SNS topic. When you create the first
notification configuration, CodeGuru Profiler automatically creates the IAM service-linked role,
which you can see in the IAM console. You don't need to manually create or configure this role.

Important

This service-linked role can appear in your account if you completed an action in another
service that uses the features supported by this role. Also, if you were using the CodeGuru
Profiler service before January 1, 2017, when it began supporting service-linked roles, then
CodeGuru Profiler created the AWSServiceRoleForCodeGuruProfiler role in your account. To
learn more, see A New Role Appeared in My IAM Account.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create the first new notification configuration in
CodeGuru Profiler, it creates the service-linked role for you again.

In the AWS CLI or the AWS API, create a service-linked role with the CodeGuru Profiler service
name. For more information, see Creating a Service-Linked Role in the IAM User Guide. If you delete
this service-linked role, you can use this same process to create the role again.

Editing a service-linked role for CodeGuru Profiler

CodeGuru Profiler does not allow you to edit the AWSServiceRoleForCodeGuruProfiler service-
linked role. After you create a service-linked role, you cannot change the name of the role because
various entities might reference the role. However, you can edit the description of the role using
IAM. For more information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for CodeGuru Profiler

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Using service-linked roles 120

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

Amazon CodeGuru Profiler User Guide

Note

If the CodeGuru Profiler service is using the role when you try to delete the resources, the
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete CodeGuru Profiler resources used by the AWSServiceRoleForCodeGuruProfiler
service-linked role

1. Sign in to the AWS Management Console, and then open the CodeGuru Profiler console at
https://console.aws.amazon.com/codeguru.

2. Choose the profiling group that has notification configuration set up.

3. Choose Actions, and then choose Edit profiling group.

4. Delete all the selected Amazon SNS topics.

5. Repeat steps 2–4 until notification configuration is removed from all the profiling groups.

To manually delete the service-linked role using IAM

Use the IAM console, the AWS CLI, or the AWS API to delete the
AWSServiceRoleForCodeGuruProfiler service-linked role. For more information, see Deleting a
Service-Linked Role in the IAM User Guide.

Supported Regions for CodeGuru Profiler service-linked roles

CodeGuru Profiler supports using service-linked roles in all of the AWS Regions where the service is
available. For more information, see AWS Regions and Endpoints.

CodeGuru Profiler does not support using service-linked roles in every Region where the service is
available. You can use the AWSServiceRoleForCodeGuruProfiler role in the following Regions.

Region name Region identity Support in
CodeGuru Profiler

US East (N. Virginia) us-east-1 Yes

US East (Ohio) us-east-2 Yes

Using service-linked roles 121

https://console.aws.amazon.com/codeguru
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon CodeGuru Profiler User Guide

Region name Region identity Support in
CodeGuru Profiler

US West (N. California) us-west-1 Yes

US West (Oregon) us-west-2 Yes

Asia Pacific (Mumbai) ap-south-1 Yes

Asia Pacific (Osaka) ap-northeast-3 Yes

Asia Pacific (Seoul) ap-northeast-2 Yes

Asia Pacific (Singapore) ap-southeast-1 Yes

Asia Pacific (Sydney) ap-southeast-2 Yes

Asia Pacific (Tokyo) ap-northeast-1 Yes

Canada (Central) ca-central-1 Yes

Europe (Frankfurt) eu-central-1 Yes

Europe (Ireland) eu-west-1 Yes

Europe (London) eu-west-2 Yes

Europe (Paris) eu-west-3 Yes

South America (São Paulo) sa-east-1 Yes

AWS GovCloud (US) us-gov-west-1 No

Using tags to control access to Amazon CodeGuru Profiler resources

Conditions in IAM policy statements are part of the syntax that you can use to specify permissions
for CodeGuru Profiler profiling group-based actions. You can create a policy that allows or denies
actions for profiling groups based on the tags associated with those profiling groups, and then
apply those policies to the IAM groups you configure for managing IAM users. For information
about applying tags to a profiling group, see Tagging profiling groups.

Using tags to control access to Amazon CodeGuru Profiler resources 122

Amazon CodeGuru Profiler User Guide

Example 1: Give all CodeGuru Profiler permissions to the role.

The first statement gives all CodeGuru Profiler permissions to all groups with the role. The second
statement provides deny permissions to delete any profiling group with tag {stage: prod} from
the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "codeguru-profiler:*"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "codeguru-profiler:DeleteProfilingGroup"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/stage": "prod"
 }
 },
 "Resource": "*"
 }
]
}

Example 2: Deny tagging and untagging a resource.

The following policy prevents a role from tagging or untagging a resource if the resource is marked
with the tag {stage: prod}.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "codeguru-profiler:*"
],

Using tags to control access to Amazon CodeGuru Profiler resources 123

Amazon CodeGuru Profiler User Guide

 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "codeguru-profiler:TagResource",
 "codeguru-profiler:UntagResource"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/stage": "prod"
 }
 },
 "Resource": "*"
 }
]
}

Compliance validation for Amazon CodeGuru Profiler

Third-party auditors assess the security and compliance of Amazon CodeGuru Profiler as part of
multiple AWS compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using CodeGuru Profiler is determined by the sensitivity of
your data, your company's compliance objectives, and applicable laws and regulations. If your use
of CodeGuru Profiler is subject to compliance with standards such as HIPAA, PCI, or FedRAMP, AWS
provides resources to help:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

Compliance Validation 124

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/pdfs/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.pdf

Amazon CodeGuru Profiler User Guide

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Config – This AWS service assesses how well your resource configurations comply with
internal practices, industry guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Using CodeGuru Profiler with VPC Endpoints

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can
establish a private connection between your VPC and Amazon CodeGuru Profiler. You can use
this connection to access and submit profiles to your profiling group without crossing the public
internet.

Amazon VPC is an AWS service that you can use to launch AWS resources in a virtual network that
you define. With a VPC, you have control over your network settings, such the IP address range,
subnets, route tables, and network gateways. With VPC endpoints, the AWS network handles the
routing between the VPC and AWS services.

To connect your VPC to CodeGuru Profiler, you define an interface VPC endpoint for CodeGuru
Profiler. An interface endpoint is an elastic network interface with a private IP address that serves
as an entry point for traffic destined to a supported AWS service. The endpoint provides reliable,
scalable connectivity to CodeGuru Profiler —and it doesn't require an internet gateway, a network
address translation (NAT) instance, or a VPN connection. For more information, see What Is
Amazon VPC in the Amazon VPC User Guide.

Interface VPC endpoints are enabled by AWS PrivateLink. This AWS technology enables private
communication between AWS services by using an elastic network interface with private IP
addresses.

Creating Amazon VPC Endpoints for CodeGuru Profiler

You can create a VPC endpoint to use with CodeGuru Profiler to submit profiles to your profiling
group.

To start using CodeGuru Profiler with your VPC, use the Amazon VPC console to create an interface
VPC endpoint for CodeGuru Profiler. For instructions, see the procedure "To create an interface

Using CodeGuru Profiler with VPC Endpoints 125

https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/userguide/

Amazon CodeGuru Profiler User Guide

endpoint to an AWS service using the console" in Creating an Interface Endpoint. Note the
following procedure steps:

• Step 3 –For Service category, choose AWS services.

• Step 4 – For Service Name, choose com.amazonaws.region.codeguru-profiler – Creates a VPC
endpoint for CodeGuru Profiler operations.

For more information, see Getting Started in the Amazon VPC User Guide.

Note

CodeGuru Profiler does not support Amazon VPC endpoint policies at this time.

Infrastructure security in Amazon CodeGuru Profiler

As a managed service, Amazon CodeGuru Profiler is protected by AWS global network security.
For information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access CodeGuru Profiler through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Infrastructure security 126

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/GetStarted.html
https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon CodeGuru Profiler User Guide

Logging and monitoring in Amazon CodeGuru Profiler

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon CodeGuru Profiler and your AWS solutions. You should collect monitoring data from all
of the parts of your AWS solution so that you can more easily debug a multi-point failure, if one
occurs. AWS provides the following tools for monitoring your CodeGuru Profiler resources and
builds and for responding to potential incidents.

Topics

• Logging Amazon CodeGuru Profiler API calls with AWS CloudTrail

• Monitoring Amazon CodeGuru Profiler with Amazon CloudWatch

Logging Amazon CodeGuru Profiler API calls with AWS
CloudTrail

Amazon CodeGuru Profiler is integrated with AWS CloudTrail, a service that provides a record of
actions taken by a user, role, or an AWS service in CodeGuru Profiler. CloudTrail captures most
API calls for CodeGuru Profiler as events, including calls from the CodeGuru Profiler console and
from code calls to the CodeGuru Profiler APIs. If you create a trail, you can enable continuous
delivery of CloudTrail events to an Amazon S3 bucket, including events for CodeGuru Profiler. If
you don't configure a trail, you can still view the most recent events in the CloudTrail console in
Event history. Using the information collected by CloudTrail, you can determine the request that
was made to CodeGuru Profiler, the IP address from which the request was made, who made the
request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Amazon CodeGuru Profiler information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
CodeGuru Profiler, that activity is recorded in a CloudTrail event with other AWS service events in
Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing events with CloudTrail event history in the AWS CloudTrail User Guide.

For an ongoing record of events in your AWS account, including events for CodeGuru Profiler,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,

Logging CodeGuru Profiler API calls with CloudTrail 127

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon CodeGuru Profiler User Guide

when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events
from all Regions in the AWS partition and delivers the log files to the S3 bucket that you specify.
You can configure other AWS services to further analyze and act on the event data collected in
CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple Regions and Receiving CloudTrail log files from
multiple accounts

All CodeGuru Profiler actions are logged by CloudTrail except the agent APIs: ConfigureAgent
and PostAgentProfile. CodeGuru Profiler actions are documented in the Amazon CodeGuru
Profiler API Reference. For example, calls to the CreateProfilingGroup (in the AWS CLI,
create-profiling-group) and UpdateProfilingGroup (in the AWS CLI, update-
profiling-group) actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials

• Whether the request was made with temporary security credentials for a role or federated user

• Whether the request was made by another AWS service

For more information, see the CloudTrail userIdentity element in the AWS CloudTrail User Guide.

Understanding Amazon CodeGuru Profiler log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they don't appear in any specific order.

Understanding Amazon CodeGuru Profiler log file entries 128

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/codebuild/latest/APIReference/
https://docs.aws.amazon.com/codebuild/latest/APIReference/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon CodeGuru Profiler User Guide

Example: A log entry for calling the DescribeProfilingGroup API

A log entry created by DescribeProfilingGroup includes the name of the profile group in the
requestParameters field.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE:i-1234567890abcdef0",
 "arn": "arn:aws:sts::123456789012:assumed-role/user-name",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/user-name",
 "accountId": "123456789012",
 "userName": "user-name"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-05-06T16:56:59Z"
 },
 "ec2RoleDelivery": "1.0"
 }
 },
 "eventTime": "2020-05-06T18:51:49Z",
 "eventSource": "codeguru-profiler.amazonaws.com",
 "eventName": "DescribeProfilingGroup",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.12",
 "userAgent": "aws-sdk-java/2.9.17 Linux/4.14.154-128.181.amzn2.x86_64 OpenJDK_64-
 Bit_Server_VM/25.252-b09 Java/1.8.0_252 vendor/Amazon.com_Inc. io/sync http/Apache",
 "requestParameters": {
 "profilingGroupName": "ExampleProfilingGroup"
 },
 "responseElements": null,
 "requestID": "cb8c167e-EXAMPLE",
 "eventID": "e3c6f4ce-EXAMPLE",
 "readOnly": false,

Understanding Amazon CodeGuru Profiler log file entries 129

https://docs.aws.amazon.com/codeguru/latest/profiler-api/API_DescribeProfilingGroup.html

Amazon CodeGuru Profiler User Guide

 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example: A log entry for getting a profile

A log entry created by GetProfile includes the name of the profile group and the period in the
requestParameters field.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE:i-1234567890abcdef0",
 "arn": "arn:aws:sts::123456789012:assumed-role/user-name",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/user-name",
 "accountId": "123456789012",
 "userName": "user-name"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-05-06T16:56:59Z"
 },
 "ec2RoleDelivery": "1.0"
 }
 },
 "eventTime": "2020-05-06T18:51:49Z",
 "eventSource": "codeguru-profiler.amazonaws.com",
 "eventName": "GetProfile",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.12",
 "userAgent": "aws-sdk-java/2.9.17 Linux/4.14.154-128.181.amzn2.x86_64 OpenJDK_64-
 Bit_Server_VM/25.252-b09 Java/1.8.0_252 vendor/Amazon.com_Inc. io/sync http/Apache",
 "requestParameters": {
 "period": "PT5M",
 "profilingGroupName": "ExampleProfilingGroup"

Understanding Amazon CodeGuru Profiler log file entries 130

https://docs.aws.amazon.com/codeguru/latest/profiler-api/API_GetProfile.html

Amazon CodeGuru Profiler User Guide

 },
 "responseElements": null,
 "requestID": "cb8c167e-EXAMPLE",
 "eventID": "e3c6f4ce-EXAMPLE",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Monitoring Amazon CodeGuru Profiler with Amazon
CloudWatch

You can use Amazon CloudWatch to monitor the number of recommendations created on your
profiling groups over time. You can set a CloudWatch alarm that notifies you when the number of
recommendations on a profiling group exceeds a threshold you set.

For more information about creating and using CloudWatch alarms and metrics, see Using Amazon
CloudWatch metrics.

You can track the following metric per profiling group.

Metric Description

Recommendations The number of recommendations for a
profiling group.

Units: Count

Valid CloudWatch statistic: Maximum

Valid CloudWatch period: Hourly

Topics

• Monitoring profiling groups with CloudWatch metrics

• Monitoring profiling groups with CloudWatch alarms

Monitoring CodeGuru Profiler with CloudWatch 131

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon CodeGuru Profiler User Guide

Monitoring profiling groups with CloudWatch metrics

You can view Amazon CodeGuru Profiler metrics in the Amazon CloudWatch console.

To access profiling group metrics

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Metrics.

3. On the All metrics tab, choose AWS/CodeGuruProfiler.

4. Choose ProfilingGroupName. Metrics for recommendations for all selected profiling groups
are displayed in the graph on the page.

Monitoring profiling groups with CloudWatch alarms

You can create an Amazon CloudWatch alarm for your profiling groups to monitor their
recommendations.

An alarm watches the number of recommendations for a profiling group over a period of time
that you specify. You set one or more actions that happen when the number of recommendations
for a profiling group exeeds a count over a number of time periods you choose. For example, you
can specify that an Amazon SNS notification is sent when more than five recommendations are
generated for a profiling group within an hour.

A user or role must have CloudWatch PutMetricAlarm permissions to create an alarm. For more
information, see Using identity-based policies for CodeGuru Profiler and Amazon CloudWatch
permissions reference in the Amazon CloudWatch User Guide.

To create a CloudWatch alarm for CodeGuru Profiler recommendations

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Alarms.

3. Choose Create alarm.

4. Choose Select metric.

5. Choose AWS/CodeGuruProfiler.

6. Choose ProfilingGroupName. Then choose a metric to create an alarm for.

Monitoring profiling groups with CloudWatch metrics 132

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/permissions-reference-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/permissions-reference-cw.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon CodeGuru Profiler User Guide

7. Continue through the process to create your alarm.

For more information about setting up CloudWatch alarms in the CloudWatch console, see
Using Amazon CloudWatch alarms in the Amazon CloudWatch User Guide.

Monitoring profiling groups with CloudWatch alarms 133

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon CodeGuru Profiler User Guide

Troubleshooting

This section helps you troubleshoot common problems you might encounter when working with
Amazon CodeGuru Profiler.

Topics

• Why are certain methods missing from my profile?

• I don't see any messages from CodeGuru Profiler in my application logs.

• I get a ResourceNotFoundException in the application logs. The profiling group doesn't exist.

• I received a 403 Forbidden error in the agent. The agent doesn't have permission to submit data.

• I don't see any data in the console.

• There isn't enough data. The profile only has a few frames.

• I don’t see any profiling data for my AWS Lambda function.

• I have errors in my Lambda function log.

• I received a ValidationException error in the agent.

• Why don't I see heap summary data?

Why are certain methods missing from my profile?

The CodeGuru Profiler tool can miss methods that the Java virtual machine (JVM) has chosen to
inline for performance reasons. This inlining biases the CodeGuru Profiler data.

Additionally, because CodeGuru Profiler does statistical sampling, methods that are rarely called or
are executed quickly might not be sampled in any given time range.

I don't see any messages from CodeGuru Profiler in my
application logs.

Make sure CodeGuru Profiler is running. If you are integrating with CodeGuru Profiler by making
a code change, make sure you call .start() on your Profiler object at the beginning of
your program. If you are integrating with CodeGuru Profiler without making a code change and
are instead using either the JVM command line or Lambda configuration, then make sure all
configuration and environment variables are properly set.

Profile is missing expected methods 134

Amazon CodeGuru Profiler User Guide

Check the logs to make sure the agent is running. When CodeGuru Profiler starts and is configured
correctly, one of the following log statements appear.

• Java agent: Starting the profiler

• Python agent: Starting profiler

After you deploy the CodeGuru Profiler agent to your application, wait 15 minutes for data to
arrive.

The following example shows a successful submission of CodeGuru Profiler data when integrating
with your JVM-based application.

INFO: Attempting to report profile data:

INFO: Successfully reported profile

The following example shows a successful submission of CodeGuru Profiler data when integrating
with your Python-based application.

INFO: Attempting to report profile data:

INFO: Reported profile successfully

I get a ResourceNotFoundException in the application logs. The
profiling group doesn't exist.

Make sure you've created a profiling group with the same name that is used in the error through
the console or API. Also, be sure you're using the correct AWS Region for the profiler. Do this by
running your application in the same Region where you created the profiling group, or by manually
configuring the agent to target a given Region.

For more information, see Step 3: Set permissions for CodeGuru Profiler.

An exception says the profiling group doesn't exist 135

https://docs.aws.amazon.com/codeguru/latest/profiler-ug/setting-up.html#setting-up-step-3

Amazon CodeGuru Profiler User Guide

I received a 403 Forbidden error in the agent. The agent doesn't
have permission to submit data.

Make sure you've given full CodeGuru Profiler permissions to the role with which the agent is
running. Make sure the agent is using the right credentials, either through the default credential
provider or by explicitly providing the credentials in the builder.

For more information, see Setting up CodeGuru Profiler.

I don't see any data in the console.

Make sure the agent is configured and deployed successfully so that it reports profiles. By default,
the CodeGuru Profiler profiling agent profiles for 5 minutes before submitting its first profile.
Wait 10–15 minutes after the first profile submission, and check the logs to make sure the agent is
running.

There isn't enough data. The profile only has a few frames.

For CodeGuru Profiler to provide statistically valid information, it needs your application to be
running under load. We recommend running your application for at least an hour with at least 30%
CPU utilization.

I don’t see any profiling data for my AWS Lambda function.

You can profile your Lambda functions running in Java or Python if they are called often enough
for CodeGuru Profiler to gather enough data. Invoke your Lambda function several times over a 5
minute period.

Your Lambda function runs the way it typically does, while the CodeGuru Profiler agent runs in
parallel. After running for 5 minutes, the agent submits your first profile. Processing can take up to
15 minutes.

I have errors in my Lambda function log.

If you enabled profiling from the Lambda console and continuously see CreateProfilingGroup
error messages or ResourceNotFoundException in your logs, your Lambda function did not
run long enough for the CreateProfilingGroup API call to succeed. You can manually create a

Getting a 403 Forbidden error that the agent doesn't have permission to submit data 136

https://docs.aws.amazon.com/codeguru/latest/profiler-ug/setting-up.html

Amazon CodeGuru Profiler User Guide

profiling group with Lambda as your compute platform from the CodeGuru Profiler console. Set
the name to aws-lambda-lambda-function-name.

I received a ValidationException error in the agent.

If you see the following error in your logs, it means you configured your profiling group for AWS
Lambda, but not your agent. For more information on how to configure the agent with Lambda,
see Profiling your applications that run on AWS Lambda.

software.amazon.awssdk.services.codeguruprofiler.model.ValidationException: Profiling
 group is configured for AWS Lambda compute platform, whereas CodeGuru Profiler agent
 is not running on AWS Lambda. Please refer to CodeGuru Profiler's documentation to
 learn more.

Why don't I see heap summary data?

The heap summary feature is supported in OpenJDK8u262b01+ and all versions of OpenJDK11.
If your JDK version is not supported, you will see a log message from the CodeGuru Profiler agent
such as Cannot use memory profiling features because JDK Flight Recorder is
not available on this JVM. In this case, heap summary data will not be collected.

If your JDK version is supported, make sure heap summary data collection is enabled.

To enable heap summary data collection by code, add .withHeapSummary(true) to the
CodeGuru Profiler builder.

To enable heap summary data collection from the command line, refer to the following example.

-javaagent:/path/to/codeguru-profiler-java-agent-
standalone-1.2.3.jar="profilingGroupName:myProfilingGroup,heapSummaryEnabled:true"

To enable heap summary data collection using environment variables, set
AWS_CODEGURU_PROFILER_HEAP_SUMMARY_ENABLED to true.

Garbage collection

ACPRP uses data collected during garbage collection cycles to provide the heap summary feature.
The data gathered depends on your application's garbage collection configuration and activity.

I received a ValidationException error in the agent. 137

https://docs.aws.amazon.com/codeguru/latest/profiler-ug/setting-up-lambda.html

Amazon CodeGuru Profiler User Guide

CodeGuru Profiler supports garbage collectors such as Serial, Parallel, CMS, and G1. CodeGuru
Profiler currently does not support Shenandoah and ZGC.

Heap summaries are collected during garbage collection cycles, depending on your garbage
collection algorithm. This typically corresponds to a 'full' or 'old generation' collection, which
is normally the rarest cycle. Depending on your application's characteristics (such as low-traffic
environments or applications that don't have long-lived objects) you may never see a full
collection. In this case, you do not receive heap summary data.

For applications with low garbage collection activity, you can try selecting a wider time range on
the CPU view. Then, check if the heap summary option is available.

You can try to force manual garbage collection in your application periodically by using
System.gc(). You can also enable garbage collection logging to monitor which collections are
happening.

Advanced troubleshooting

Enable the CodeGuru Profiler debugging log. The CodeGuru Profiler agent uses
java.util.logging (JUL).

The following is an example log4j configuration.

<Logger name="javaClass" level="TRACE"/>
<Logger name="software.amazon.codeguruprofilerjavaagent" level="TRACE"/>

The following is an example logging.properties configuration.

javaClass.level=ALL
software.amazon.codeguruprofilerjavaagent.level=ALL

Note

Including the javaClass namespace is important for some messages due to the way some
Kotlin classes are compiled.

Enable Java Flight Recorder debug logging for JDK11+. Add '-Xlog:jfr*=trace' to your JVM
arguments to see more logging information from the Java Flight Recorder subsystem. There are
some issues with JDK8 logging, which make it difficult or impossible to enable these debug logs.

Advanced troubleshooting 138

Amazon CodeGuru Profiler User Guide

Quotas for CodeGuru Profiler

The following tables list the current quotas in Amazon CodeGuru Profiler. These quotas are for
each supported AWS Region for each AWS account, unless otherwise specified.

Profiling groups

Resource Default

Maximum number of profiling groups 500

Profiling groups 139

Amazon CodeGuru Profiler User Guide

CodeGuru Profiler user guide document history

The following table describes the major updates and new features for the Amazon CodeGuru
Profiler User Guide. We also update the documentation frequently to address the feedback that you
send us. For notification about updates to this documentation, you can subscribe to an RSS feed.

Latest documentation update: April 12, 2022

Change Description Date

New topic CodeGuru Profiler now
integrates with Amazon
DevOps Guru by sending
events to Amazon EventBrid
ge. For more information,
see Working with Amazon
EventBridge.

February 16, 2022

New topic CodeGuru Profiler now allows
you to view differences
between two different time
ranges of the same profiling
group. For more informati
on, see Comparing two time
ranges.

August 17, 2021

Updated topics CodeGuru Profiler now
supports Python recommend
ations. For more informati
on, see What languages are
supported by CodeGuru
Profiler.

August 12, 2021

New tutorials New CodeGuru Profiler
tutorials for creating profiling
groups for sample applicati
ons. CodeGuru Profiler has

August 9, 2021

140

https://docs.aws.amazon.com/codeguru/latest/profiler-ug/working-with-eventbridge.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/working-with-eventbridge.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/working-with-visualizations-diff.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/working-with-visualizations-diff.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/what-is-codeguru-profiler.html#what-is-language-support
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/what-is-codeguru-profiler.html#what-is-language-support
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/what-is-codeguru-profiler.html#what-is-language-support

Amazon CodeGuru Profiler User Guide

sample applications written
in Java and Python that are
available to use. For more
information, see Getting
started.

Managed Policy updates CodeGuru Profiler has a
managed policy AmazonCod
eGuruProfilerAgent
Access , which now enables
the agent to Create a Profiling
Group. For more information,
see AWS Managed policies for
CodeGuru Profiler.

April 1, 2021

New topics CodeGuru Profiler now
supports a summary analysis
of your profiling group.
For more information, see
Understanding the summary
page. CodeGuru Profiler also
includes visualizations that
help you understand your
application's heap utilization
over time. For more informati
on, see Understanding the
heap summary.

December 8, 2020

New topics CodeGuru Profiler now
supports profiling your
Python applications. For more
information, see What is
CodeGuru Profiler.

December 3, 2020

141

https://docs.aws.amazon.com/codeguru/latest/profiler-ug/getting-started.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/getting-started.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/security-iam-awsmanpol.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/security-iam-awsmanpol.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/working-with-visualizations-summary-page.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/working-with-visualizations-summary-page.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/working-with-visualizations-heap-summary.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/working-with-visualizations-heap-summary.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/what-is-codeguru-profiler.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/what-is-codeguru-profiler.html

Amazon CodeGuru Profiler User Guide

General availability release CodeGuru Profiler is now
available for general use.
You can now profile your
applications that run on AWS
Lambda. CodeGuru Profiler
also generates reports that
contain efficiency issues in
your code with recommend
ations on how to fix them as
well as anomaly reports.

June 29, 2020

New topic CodeGuru Profiler now
supports monitoring your
profiling groups using
Amazon CloudWatch metrics
and alarms. For more
information, see Monitorin
g CodeGuru Profiler with
CloudWatch.

June 17, 2020

New topics This user guide now includes
a security section. Learn
about data retention, IAM
policies, monitoring your
profiling groups with AWS
CloudTrail, and more. For
more information, see
Security in Amazon CodeGuru
Profiler.

June 7, 2020

Preview release This is the preview release of
the Amazon CodeGuru Profiler
User Guide.

December 3, 2019

142

https://docs.aws.amazon.com/codeguru/latest/profiler-ug/monitoring.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/monitoring.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/monitoring.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/security.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/security.html

Amazon CodeGuru Profiler User Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

143

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon CodeGuru Profiler
	Table of Contents
	What is Amazon CodeGuru Profiler?
	What can I do with CodeGuru Profiler?
	What languages are supported by CodeGuru Profiler?
	How do I get started with CodeGuru Profiler?

	Setting up CodeGuru Profiler
	Set up in the Lambda console
	Step 1: Sign up for AWS
	Step 2: Enable CodeGuru Profiler

	Set up in the CodeGuru Profiler console
	Step 1: Sign up for AWS
	Step 2: Create a CodeGuru Profiler profiling group
	Step 3: Set permissions
	Step 4: Start CodeGuru Profiler in your application
	Run your application with the profiling agent
	Enable data collection for the heap summary visualization
	Command line (-javaagent)
	Update your code
	Environment variables

	Getting started with CodeGuru Profiler
	Python sample application
	Prerequisites
	Step 1: Create a profiling group
	Step 2: Set up the virtual environment
	Step 3: Run the application
	Step 4: Understanding the console
	Cleanup

	Java sample application
	Option 1: Quick demo
	Option 2: Complete demo
	Prerequisites
	Step 1: Create AWS resources
	Step 2: Run a sample application
	Step 3: Understanding the console
	Cleanup

	Integrating with your JVM-based application
	Choosing the right integration option
	Profiling your applications that run on AWS Lambda
	All Java runtimes
	Make code changes to start profiling your AWS Lambda functions

	Easier option for Java 8 on Amazon Linux 2 and Java 11 and Java 17 (Corretto) runtimes

	Enabling the agent from the command line
	Installation
	Configuration
	Supported runtime environments
	Java
	Scala
	Jython
	ColdFusion
	Geronimo
	SOLR
	Tomcat
	Glassfish
	Grails
	Jetty
	Play
	Resin
	Spring Boot
	Tanuki Wrapper
	Websphere Liberty Profile
	Spark
	Other runtime environments

	Enabling the agent with code
	Installation
	Maven
	Gradle

	Configuration
	Supported languages
	Java
	Scala
	Kotlin
	Groovy
	Jython
	JRuby
	Clojure

	Integrating with Python
	Profiling your applications that run on AWS Lambda
	Apply the CodeGuru Profiler function decorator to your handler function
	Use AWS Lambda layers

	Enabling the agent with code
	Supported web components
	Django
	Flask
	WSGI servers
	uWSGI
	gunicorn
	Apache

	Enabling the agent from the command line
	Profiling Distributed systems
	Enabling logs

	Working with Amazon EventBridge
	Working with unsupported AWS Regions
	Enabling the agent with code
	Java
	Python

	Profiling applications that run on AWS Lambda
	Java
	Python
	Using the Amazon CodeGuru Profiler function decorator
	Using AWS Lambda layers

	Working with profiling groups
	Creating a profiling group
	Deleting a profiling group

	Working with visualizations
	Accessing visualizations
	Types of visualizations
	Overview visualizations
	From stack traces to overview visualization
	What you can learn from overview visualization

	Hotspots visualizations
	Example

	Inspect visualizations

	Exploring visualization data
	Choosing my code in visualizations
	Pausing over a frame
	Zooming in on a frame
	Resetting zoom in a visualization
	Inspecting a frame
	Understanding the dollar estimate of the CPU cost for frames

	Filtering visualization data
	Selecting and coloring thread states
	Example of differences between CPU view and latency view

	Hiding a frame

	Selecting a custom time range
	Understanding the summary page
	Profiling group status
	CPU summary
	Latency summary
	Heap usage
	Anomalies
	Recommendations

	Understanding the heap summary
	Total capacity
	Used space
	Heap summary table

	Comparing two time ranges
	Understanding the comparison

	Working with anomalies and recommendation reports
	Viewing reports
	Understanding performance improvement recommendations
	Understanding anomaly reports

	Tagging profiling groups
	Add a tag to a profiling group
	Add a tag to a profiling group

	View tags for a profiling group
	View tags for a profiling group

	Edit tags for a profiling group
	Edit a tag for a profiling group

	Remove a tag from a profiling group
	Remove a tag from a profiling group

	Security in CodeGuru Profiler
	Data protection for CodeGuru Profiler
	Captured data in CodeGuru Profiler
	Data encryption in CodeGuru Profiler
	Data retention in CodeGuru Profiler
	Internetwork Traffic Privacy

	Identity and access management in CodeGuru Profiler
	Audience in CodeGuru Profiler
	Authenticating with identities in CodeGuru Profiler
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	Overview of managing access permissions to your CodeGuru Profiler resources
	CodeGuru Profiler resources and operations
	Understanding resource ownership
	Managing access to resources
	Identity-based policies

	Specifying policy elements: actions, effects, and principals

	Using identity-based policies for CodeGuru Profiler
	Policy best practices
	Permissions required to use the CodeGuru Profiler console
	Permissions required by the CodeGuru Profiler profiling agent
	Permissions required to access CodeGuru Profiler data
	AWS managed (predefined) policies for CodeGuru Profiler
	AmazonCodeGuruProfilerFullAccess
	AmazonCodeGuruProfilerReadOnlyAccess
	AmazonCodeGuruProfilerAgentAccess

	Customer managed policy examples
	Example 1: Allow a user to see all profiling groups and the visualizations of only one profiling group
	Example 2: Allow a user to perform CodeGuru Profiler operations in a single Region
	Example 3: Allow a user connecting from a specified IP address range access to a profiling group

	Resource-based policies in CodeGuru Profiler
	Add a resource-based policy to a profiling group (console)
	Add a resource-based policy to a profiling group (AWS CLI)
	Add a resource-based policy to a profiling group (AWS SDKs)

	Amazon CodeGuru Profiler permissions reference
	AWS managed policies for CodeGuru Profiler
	AWS managed policy: AmazonCodeGuruProfilerFullAccess
	AWS managed policy: AmazonCodeGuruProfilerReadOnlyAccess
	AWS managed policy: AmazonCodeGuruProfilerAgentAccess
	CodeGuru Profiler updates to AWS managed policies

	Troubleshooting CodeGuru Profiler identity and access
	I am not authorized to perform an action in CodeGuru Profiler
	I am not authorized to perform iam:PassRole
	I want to view my access keys
	I'm an administrator and want to allow others to access CodeGuru Profiler
	I want to allow people outside of my AWS account to access my CodeGuru Profiler resources

	Using service-linked roles for CodeGuru Profiler
	Service-linked role permissions for CodeGuru Profiler
	Creating a service-linked role for CodeGuru Profiler
	Editing a service-linked role for CodeGuru Profiler
	Deleting a service-linked role for CodeGuru Profiler
	Supported Regions for CodeGuru Profiler service-linked roles

	Using tags to control access to Amazon CodeGuru Profiler resources

	Compliance validation for Amazon CodeGuru Profiler
	Using CodeGuru Profiler with VPC Endpoints
	Creating Amazon VPC Endpoints for CodeGuru Profiler

	Infrastructure security in Amazon CodeGuru Profiler

	Logging and monitoring in Amazon CodeGuru Profiler
	Logging Amazon CodeGuru Profiler API calls with AWS CloudTrail
	Amazon CodeGuru Profiler information in CloudTrail
	Understanding Amazon CodeGuru Profiler log file entries
	Example: A log entry for calling the DescribeProfilingGroup API
	Example: A log entry for getting a proﬁle

	Monitoring Amazon CodeGuru Profiler with Amazon CloudWatch
	Monitoring profiling groups with CloudWatch metrics
	Monitoring profiling groups with CloudWatch alarms

	Troubleshooting
	Why are certain methods missing from my profile?
	I don't see any messages from CodeGuru Profiler in my application logs.
	I get a ResourceNotFoundException in the application logs. The profiling group doesn't exist.
	I received a 403 Forbidden error in the agent. The agent doesn't have permission to submit data.
	I don't see any data in the console.
	There isn't enough data. The profile only has a few frames.
	I don’t see any profiling data for my AWS Lambda function.
	I have errors in my Lambda function log.
	I received a ValidationException error in the agent.
	Why don't I see heap summary data?
	Garbage collection
	Advanced troubleshooting

	Quotas for CodeGuru Profiler
	Profiling groups

	CodeGuru Profiler user guide document history
	AWS Glossary

