
Developer Guide

Deadline Cloud

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.



Deadline Cloud Developer Guide

Deadline Cloud: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service 
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any 
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are 
the property of their respective owners, who may or may not be affiliated with, connected to, or 
sponsored by Amazon.



Deadline Cloud Developer Guide

Table of Contents

What is Deadline Cloud? ................................................................................................................. 1
Open Job Description .................................................................................................................................. 1
Concepts and terminology ......................................................................................................................... 2

What is a Deadline Cloud workload ............................................................................................... 5
How workloads arise from production .................................................................................................... 5
The ingredients of a workload .................................................................................................................. 6
Workload portability .................................................................................................................................... 7

Getting started ................................................................................................................................ 9
Create a farm ................................................................................................................................................ 9

Next steps ............................................................................................................................................... 13
Run the worker agent ............................................................................................................................... 13

Next steps ............................................................................................................................................... 16
Submit jobs ................................................................................................................................................. 16

Submit the simple_job sample .......................................................................................................... 17
Submit with a parameter .................................................................................................................... 20
Create a simple_file_job job ............................................................................................................... 21
Next steps ............................................................................................................................................... 24

Submit jobs with attachments ................................................................................................................ 24
Configure queue for job attachments .............................................................................................. 25
Submit with job attachments ............................................................................................................ 27
How job attachments are stored ....................................................................................................... 30
Next steps ............................................................................................................................................... 33

Add a service-managed fleet ................................................................................................................... 33
Next steps ............................................................................................................................................... 36

Clean up farm resources ........................................................................................................................... 36
How to submit a job to Deadline Cloud ...................................................................................... 40

From a terminal .......................................................................................................................................... 40
Submit a job to Deadline Cloud using a GUI .................................................................................. 41

From a script ............................................................................................................................................... 41
Submit a job using Python ................................................................................................................. 41

From within applications .......................................................................................................................... 42
Embed job bundles in an application ............................................................................................... 43
Get information from an application ............................................................................................... 43

Configure jobs using queue environments .................................................................................. 45

iii



Deadline Cloud Developer Guide

Control the job environment ................................................................................................................... 46
Set environment variables .................................................................................................................. 47
Set the path ........................................................................................................................................... 51
Run a background daemon process .................................................................................................. 55

Provide applications for your jobs .......................................................................................................... 61
Getting an application from a conda channel ................................................................................ 61
Use a different package manager ..................................................................................................... 63

Create a conda channel using S3 ........................................................................................................... 64
Create a package building queue ...................................................................................................... 64
Configure production queue permissions for custom conda packages ..................................... 66
Add a conda channel to a queue environment .............................................................................. 67
Submit the Blender 4.2 package job ................................................................................................ 68
Submit a Blender 4.2 render job ....................................................................................................... 70

Create a conda package for an application .......................................................................................... 70
Create a conda build recipe for Blender .......................................................................................... 71

Build a job ...................................................................................................................................... 74
Job bundles ................................................................................................................................................. 74

Job template elements ........................................................................................................................ 78
Parameter values elements ................................................................................................................ 81
Asset references elements .................................................................................................................. 83

Using files in your jobs ............................................................................................................................. 86
Sample project infrastructure ............................................................................................................ 87
Storage profiles and path mapping .................................................................................................. 89

Job attachments ......................................................................................................................................... 97
Submitting files with a job ................................................................................................................. 97
Getting output files from a job ....................................................................................................... 109
Using files in a dependent step ...................................................................................................... 112

Security ........................................................................................................................................ 115
Data protection ........................................................................................................................................ 116

Encryption at rest ............................................................................................................................... 117
Encryption in transit .......................................................................................................................... 117
Key management ................................................................................................................................ 117
Inter-network traffic privacy ............................................................................................................ 127
Opt out ................................................................................................................................................. 127

Identity and Access Management ........................................................................................................ 128
Audience ............................................................................................................................................... 129

iv



Deadline Cloud Developer Guide

Authenticating with identities ......................................................................................................... 129
Managing access using policies ....................................................................................................... 133
How Deadline Cloud works with IAM ............................................................................................. 135
Identity-based policy examples ....................................................................................................... 141
AWS managed policies ...................................................................................................................... 145
Troubleshooting .................................................................................................................................. 149

Compliance validation ............................................................................................................................ 151
Resilience ................................................................................................................................................... 152
Infrastructure security ............................................................................................................................. 153
Configuration and vulnerability analysis ............................................................................................ 153
Cross-service confused deputy prevention ......................................................................................... 154
AWS PrivateLink ....................................................................................................................................... 155

Considerations ..................................................................................................................................... 155
Deadline Cloud endpoints ................................................................................................................ 156
Create endpoints ................................................................................................................................ 156

Security best practices ............................................................................................................................ 157
Data protection ................................................................................................................................... 158
IAM permissions .................................................................................................................................. 158
Run jobs as users and groups .......................................................................................................... 159
Networking ........................................................................................................................................... 159
Job data ................................................................................................................................................ 159
Farm structure ..................................................................................................................................... 160
Job attachment queues ..................................................................................................................... 160
Custom software buckets ................................................................................................................. 163
Worker hosts ........................................................................................................................................ 163
Workstations ........................................................................................................................................ 164

Document history ........................................................................................................................ 166

v



Deadline Cloud Developer Guide

What is AWS Deadline Cloud?

AWS Deadline Cloud is a fully-managed AWS service that enables you to have a scalable processing 
farm up and running in minutes. It provides an administration console for managing users, farms, 
queues for scheduling jobs, and fleets of workers that do the processing.

This developer guide is for pipeline, tools, and applications developers in a wide range of use cases, 
including the following:

• Pipeline developers and technical directors can integrate Deadline Cloud APIs and features into 
their custom production pipelines.

• Independent software vendors can integrate Deadline Cloud into their applications enabling 
digital content creation artists and users to submit Deadline Cloud render jobs seamlessly from 
their workstations.

• Web and cloud-based service developers can integrate Deadline Cloud rendering into their 
platforms, enabling customers to provide assets to view products virtually.

We provide tools that enable you to work directly with any step of your pipeline:

• A command-line interface that you can use directly or from scripts.

• The AWS SDK for 11 popular programming languages.

• A REST-based web interface that you can call from your applications.

You can also use other AWS services in your custom applications. For example, you can use:

• AWS CloudFormation to automate creating and removing farms, queues, and fleets.

• Amazon CloudWatch to gather metrics for jobs.

• Amazon Simple Storage Service to store and manage digital assets and job output.

• AWS IAM Identity Center to manage users and groups for your farms.

Open Job Description

Deadline Cloud uses the Open Job Description (OpenJD) specification to specify the details of a job. 
OpenJD was developed to define jobs that are portable between solutions. You use it to define a 
job that is a set of commands that run on worker hosts.

Open Job Description 1

https://github.com/OpenJobDescription/openjd-specifications


Deadline Cloud Developer Guide

You can create an OpenJD job template using a submitter that Deadline Cloud provides, or you 
can use any tool that you want to create the template. After creating the template, you send it to 
Deadline Cloud. If you use a submitter, it takes care of sending the template. If you created the 
template another way, you call a Deadline Cloud command-line action, or you can use one of the 
AWS SDKs to send the job. Either way, Deadline Cloud adds the job to the specified queue and 
schedules the work.

Concepts and terminology for Deadline Cloud

To help you get started with AWS Deadline Cloud, this topic explains some of its key concepts and 
terminology.

Budget manager

Budget manager is part of the Deadline Cloud monitor. Use the budget manager to create and 
manage budgets. You can also use it to limit activities to stay within budget.

Deadline Cloud Client Library

The Client Library includes a command line interface and library for managing Deadline Cloud. 
Functionality includes submitting job bundles based on the Open Job Description specification 
to Deadline Cloud, downloading job attachment outputs, and monitoring your farm using the 
command line interface.

Digital content creation application (DCC)

Digital content creation applications (DCCs) are third-party products where you create digital 
content. Examples of DCCs are Maya, Nuke, and Houdini. Deadline Cloud provides job submitter 
integrated plugins for specific DCCs.

Farm

A farm is a where your project resources are located. It consists of queues and fleets.

Fleet

A fleet is a group of worker nodes that do the rendering. Worker nodes process jobs. A fleet can 
be associated to multiple queues, and a queue can be associated to multiple fleets.

Job

A job is a rendering request. Users submit jobs. Jobs contain specific job properties that are 
outlined as steps and tasks.

Concepts and terminology 2



Deadline Cloud Developer Guide

Job attachments

A job attachment is a Deadline Cloud feature that you can use to manage inputs and outputs 
for jobs. Job files are uploaded as job attachments during the rendering process. These files can 
be textures, 3D models, lighting rigs, and other similar items.

Job properties

Job properties are settings that you define when submitting a render job. Some examples 
include frame range, output path, job attachments, renderable camera, and more. The 
properties vary based on the DCC that the render is submitted from.

Job template

A job template defines the runtime environment and all processes that run as part of a Deadline 
Cloud job.

Queue

A queue is where submitted jobs are located and scheduled to be rendered. A queue must be 
associated with a fleet to create a successful render. A queue can be associated with multiple 
fleets.

Queue-fleet association

When a queue is associated with a fleet, there is a queue-fleet association. Use an association 
to schedule workers from a fleet to jobs in that queue. You can start and stop associations to 
control scheduling of work.

Step

A step is one particular process to run in the job.

Deadline Cloud submitter

A Deadline Cloud submitter is a digital content creation (DCC) plugin. Artists use it to submit 
jobs from a third-party DCC interface that they are familiar with.

Tags

A tag is a label that you can assign to an AWS resource. Each tag consists of a key and an 
optional value that you define.

With tags, you can categorize your AWS resources in different ways. For example, you could 
define a set of tags for your account’s Amazon EC2 instances that help you track each instance’s 
owner and stack level.

Concepts and terminology 3



Deadline Cloud Developer Guide

You can also categorize your AWS resources by purpose, owner, or environment. This approach 
is useful when you have many resources of the same type. You can quickly identify a specific 
resources based on the tags that you've assigned to it.

Task

A task is a single component of a render step.

Usage-based licensing (UBL)

Usage-based licensing (UBL) is an on-demand licensing model that is available for select third-
party products. This model is pay as your go, and you are charged for the number of hours and 
minutes that you use.

Usage explorer

Usage explorer is a feature of Deadline Cloud monitor. It provides an approximate estimate of 
your costs and usage.

Worker

Workers belong to fleets and run Deadline Cloud assigned tasks to complete steps and jobs. 
Workers store the logs from task operations in Amazon CloudWatch Logs. Workers can also use 
the job attachments feature to sync inputs and outputs to an Amazon Simple Storage Service 
(Amazon S3) bucket.

Concepts and terminology 4



Deadline Cloud Developer Guide

What is a Deadline Cloud workload

With AWS Deadline Cloud, you can submit jobs to run your applications in the cloud and process 
data for the production of content or insights crucial to your business. Deadline Cloud uses Open 
Job Description (OpenJD) as the syntax for job templates, a specification designed for the needs of 
visual compute pipelines but applicable to many other use cases. Some example workloads include 
computer graphics rendering, physics simulation, and photogrammetry.

Workloads scale from simple job bundles that users submit to a queue with either the CLI or an 
automatically generated GUI, to integrated submitter plugins that dynamically generate a job 
bundle for an application-defined workload.

How workloads arise from production

To understand workloads in production contexts and how to support them with Deadline Cloud, 
consider how they come to be. Production may involve creating visual effects, animation, games, 
product catalog imagery, 3D reconstructions for building information modeling (BIM), and more. 
This content is typically created by a team of artistic or technical specialists running a variety of 
software applications and custom scripting. Members of the team pass data between each other 
using a production pipeline. Many tasks performed by the pipeline involve intensive computations 
that would take days if run on a user’s workstation.

Some examples of tasks in these production pipelines include:

• Using a photogrammetry application to process photographs taken of a movie set to reconstruct 
a textured digital mesh.

• Running a particle simulation in a 3D scene to add layers of detail to an explosion visual effect 
for a television show.

• Cooking data for a game level into the form needed for external release and applying 
optimization and compression settings.

• Rendering a set of images for a product catalog including variations in color, background, and 
lighting.

• Running a custom-developed script on a 3D model to apply a look that was custom-built and 
approved by a movie director.

These tasks involve many parameters to adjust to get an artistic result or to fine tune the output 
quality. Often there is a GUI to select those parameter values with a button or menu to run 

How workloads arise from production 5

https://github.com/OpenJobDescription/openjd-specifications
https://github.com/OpenJobDescription/openjd-specifications


Deadline Cloud Developer Guide

the process locally within the application. When a user runs the process, the application and 
possibly the host computer itself cannot be used to perform other operations because it uses 
the application state in memory and may consume all of the host computer’s CPU and memory 
resources.

In many cases the process is quick. During the course of production, the speed of the process slows 
down when the requirements for quality and complexity go up. A character test that took 30 
seconds during development can easily turn into 3 hours when it is applied to the final production 
character. Through this progression, a workload that began life inside a GUI can grow too large 
to fit. Porting it to Deadline Cloud can boost the productivity of users running these processes 
because they get back full control of their workstation and can keep track of more iterations from 
the Deadline Cloud monitor.

There are two levels of support to aim for when developing support for a workload in Deadline 
Cloud:

• Offloading the workload from the user workstation to a Deadline Cloud farm with no parallelism 
or speed-up. This may under-utilize the available compute resources in the farm, but the ability 
to shift long operations to a batch processing system enables users to get more done with their 
own workstation.

• Optimizing the parallelism of the workload so that it utilizes the Deadline Cloud farm's 
horizontal scale to complete quickly.

There are times that it is obvious how to make a workload run in parallel. For example, each frame 
of a computer graphics render can be done independently. It’s important not to get stuck on this 
parallelism, however. Instead, understand that offloading a long-running workload to Deadline 
Cloud provides significant benefits, even when there is no obvious way to split the workload up.

The ingredients of a workload

To specify a Deadline Cloud workload, implement a job bundle that users submit to a queue with 
the Deadline Cloud CLI. Much of the work in creating a job bundle is to write the job template, but 
there are more factors like how to provide the applications that the workload requires. Here are the 
essential things to consider when defining a workload for Deadline Cloud:

• The application to run. The job must be able to launch application processes, and therefore 
needs an installation of the application available as well as any licensing the application uses, 

The ingredients of a workload 6

https://github.com/aws-deadline/deadline-cloud


Deadline Cloud Developer Guide

such as access to a floating license server. This is typically part of the farm configuration, and not 
embedded in the job bundle itself.
• Configure jobs using queue environments
• Connect customer-managed fleets to a license endpoint

• Job parameter definitions. The user experience of submitting the job is affected greatly by 
the parameters it provides. Example parameters include data files, directories, and application 
configuration.
• Parameter values elements for job bundles

• File data flow. When a job runs, it reads input from files provided by the user, then writes its 
output as new files. To work with the job attachments and path mapping features, the job must 
specify the paths of the directories or specific files for these inputs and outputs.
• Using files in your jobs

• The step script. The step script runs the application binary with the right command-line options 
to apply the provided job parameters. It also handles details like path mapping if the workload 
data files include absolute instead of relative path references.
• Job template elements for job bundles

Workload portability

A workload is portable when it can run in multiple different systems without changing it each time 
you submit a job. For example, it might run on different render farms that have different shared file 
systems mounted, or on different operating systems like Linux or Windows. When you implement a 
portable job bundle, it's easier for users to run the job on their specific farm, or to adapt it for other 
use cases.

Here are some ways you can make your job bundle portable.

• Fully specify the input data files needed by a workload, using PATH job parameters and asset 
references in the job bundle. This makes the job portable to farms based on shared file systems 
and to farms that make copies of the input data, like the Deadline Cloud job attachments 
feature.

• Make file path references for the input files of the job relocatable and usable on different 
operating systems. For example when users submit jobs from Windows workstations to run on a 
Linux fleet.
• Use relative file path references, so if the directory containing them is moved to a different 

location, references still resolve. Some applications, like Blender, support a choice between 
relative and absolute paths.

Workload portability 7

https://docs.aws.amazon.com/deadline-cloud/latest/userguide/cmf-ubl.html
https://docs.blender.org/manual/en/latest/files/blend/open_save.html#files-blend-relative-paths


Deadline Cloud Developer Guide

• If you can't use relative paths, support OpenJD path mapping metadata and translate the 
absolute paths according to how Deadline Cloud provides the files to the job.

• Implement commands in a job using portable scripts. Python and bash are two examples of 
scripting languages that can be used this way. You should consider providing them both on all 
the worker hosts of your fleets.
• Use the script interpreter binary, like python or bash, with the script file name as an 

argument. This works on all operating systems including Windows, compared to using a script 
file with its execute bit set on Linux.

• Write portable bash scripts by applying these practices:

• Expand template path parameters in single quotes to handle paths with spaces and 
Windows path separators.

• When running on Windows, watch for issues related to MinGW automatic path translation. 
For example, it transforms an AWS CLI command like aws logs tail /aws/
deadline/... into a command similar to aws logs tail "C:/Program Files/Git/
aws/deadline/..." and won't tail a log correctly. Set the variable MSYS_NO_PATHCONV=1
to turn this behavior off.

• In most cases, the same code works on all operating systems. When the code needs to be 
different use an if/else construct to handle the cases.

if [[ "$(uname)" == MINGW* ]]; then 
    # Code for Windows
elif [[ "$(uname)" == Darwin ]]; then 
    # Code for MacOS
else 
    # Code for Linux and other operating systems
fi

• You can write portable Python scripts using pathlib to handle file system path differences 
and avoid operating-specific features. The Python documentation includes annotations for 
this, for example in the signal library documentation. Linux-specific feature support is marked 
as “Availability: Linux.”

• Use job parameters to specify application requirements. Use consistent conventions that the 
farm administrator can apply in queue environments.
• For example, you can use the CondaPackages and/or RezPackages parameters in your job, 

with a default parameter value that lists the application package names and versions the job 
requires. Then, you can use one of the sample Conda or Rez queue environments to provide a 
virtual environment for the job.

Workload portability 8

https://github.com/OpenJobDescription/openjd-specifications/wiki/How-Jobs-Are-Run#path-mapping
https://docs.python.org/3/library/signal.html
https://docs.aws.amazon.com/deadline-cloud/latest/developerguide/configure-jobs.html
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/queue_environments


Deadline Cloud Developer Guide

Getting started with Deadline Cloud resources.

To start creating custom solutions for AWS Deadline Cloud, you must set up your resources. These 
include a farm, at least one queue for the farm, and at least one worker fleet to service the queue. 
You can create your resources using the Deadline Cloud console, or you can use the AWS Command 
Line Interface.

In this tutorial, you will use AWS CloudShell to create a simple developer farm and run the worker 
agent. You can then submit and run a simple job with parameters and attachments, add a service 
managed fleet, and clean up your farm resources when you're done.

The following sections introduce you to the different features of Deadline Cloud, and how they 
function and work together. Following these steps is useful for developing and testing new 
workloads and customizations.

For instructions to set up your farm using the console, see Getting started in the Deadline Cloud 
User Guide.

Topics

• Create a Deadline Cloud farm

• Run the Deadline Cloud worker agent

• Submit with Deadline Cloud

• Submit jobs with job attachments in Deadline Cloud

• Add a service-managed fleet to your developer farm in Deadline Cloud

• Clean up your farm resources in Deadline Cloud

Create a Deadline Cloud farm

To create your developer farm and queue resources in AWS Deadline Cloud, use the AWS Command 
Line Interface (AWS CLI), as shown in the following procedure. You will also create an AWS Identity 
and Access Management (IAM) role and a customer-managed fleet (CMF) and associate the fleet 
with your queue. Then you can configure the AWS CLI and confirm that your farm is set up and 
working as specified.

You can use this farm to explore the features of Deadline Cloud, then develop and test new 
workloads, customizations, and pipeline integrations.

Create a farm 9

https://docs.aws.amazon.com/deadline-cloud/latest/userguide/getting-started.html


Deadline Cloud Developer Guide

To create a farm

1. Open an AWS CloudShell session. You'll use the CloudShell window to enter AWS Command 
Line Interface (AWS CLI) commands to run the examples in this tutorial. Keep the CloudShell 
window open as you proceed.

2. Create a name for your farm, and add that farm name to ~/.bashrc. This will make it 
available for other terminal sessions.

echo "DEV_FARM_NAME=DeveloperFarm" >> ~/.bashrc
source ~/.bashrc

3. Create the farm resource, and add its farm ID to ~/.bashrc.

aws deadline create-farm \ 
    --display-name "$DEV_FARM_NAME"

echo "DEV_FARM_ID=\$(aws deadline list-farms \ 
        --query \"farms[?displayName=='\$DEV_FARM_NAME'].farmId \ 
        | [0]\" --output text)" >> ~/.bashrc
source ~/.bashrc

4. Create the queue resource, and add its queue ID to ~/.bashrc.

aws deadline create-queue \ 
    --farm-id $DEV_FARM_ID \ 
    --display-name "$DEV_FARM_NAME Queue" \ 
    --job-run-as-user '{"posix": {"user": "job-user", "group": "job-group"}, 
 "runAs":"QUEUE_CONFIGURED_USER"}'

echo "DEV_QUEUE_ID=\$(aws deadline list-queues \ 
        --farm-id \$DEV_FARM_ID \ 
        --query \"queues[?displayName=='\$DEV_FARM_NAME Queue'].queueId \ 
        | [0]\" --output text)" >> ~/.bashrc
source ~/.bashrc

5. Create an IAM role for the fleet. This role provides worker hosts in your fleet with the 
necessary security credentials to run jobs from your queue.

aws iam create-role \ 
    --role-name "${DEV_FARM_NAME}FleetRole" \ 
    --assume-role-policy-document \ 
        '{ 

Create a farm 10

https://console.aws.amazon.com/cloudshell/home?region=us-west-2


Deadline Cloud Developer Guide

            "Version": "2012-10-17", 
            "Statement": [ 
                { 
                    "Effect": "Allow", 
                    "Principal": { 
                        "Service": "credentials.deadline.amazonaws.com" 
                    }, 
                    "Action": "sts:AssumeRole" 
                } 
            ] 
        }'
aws iam put-role-policy \ 
    --role-name "${DEV_FARM_NAME}FleetRole" \ 
    --policy-name WorkerPermissions \ 
    --policy-document \ 
        '{ 
            "Version": "2012-10-17", 
            "Statement": [ 
                { 
                    "Effect": "Allow", 
                    "Action": [ 
                        "deadline:AssumeFleetRoleForWorker", 
                        "deadline:UpdateWorker", 
                        "deadline:DeleteWorker", 
                        "deadline:UpdateWorkerSchedule", 
                        "deadline:BatchGetJobEntity", 
                        "deadline:AssumeQueueRoleForWorker" 
                    ], 
                    "Resource": "*", 
                    "Condition": { 
                        "StringEquals": { 
                            "aws:PrincipalAccount": "${aws:ResourceAccount}" 
                        } 
                    } 
                }, 
                { 
                    "Effect": "Allow", 
                    "Action": [ 
                        "logs:CreateLogStream" 
                    ], 
                    "Resource": "arn:aws:logs:*:*:*:/aws/deadline/*", 
                    "Condition": { 
                        "StringEquals": { 
                            "aws:PrincipalAccount": "${aws:ResourceAccount}" 

Create a farm 11



Deadline Cloud Developer Guide

                        } 
                    } 
                }, 
                { 
                    "Effect": "Allow", 
                    "Action": [ 
                        "logs:PutLogEvents", 
                        "logs:GetLogEvents" 
                    ], 
                    "Resource": "arn:aws:logs:*:*:*:/aws/deadline/*", 
                    "Condition": { 
                        "StringEquals": { 
                            "aws:PrincipalAccount": "${aws:ResourceAccount}" 
                        } 
                    } 
                } 
            ] 
        }'

6. Create the customer-managed fleet (CMF), and add its fleet ID to ~/.bashrc.

FLEET_ROLE_ARN="arn:aws:iam::$(aws sts get-caller-identity \ 
        --query "Account" --output text):role/${DEV_FARM_NAME}FleetRole"
aws deadline create-fleet \ 
    --farm-id $DEV_FARM_ID \ 
    --display-name "$DEV_FARM_NAME CMF" \ 
    --role-arn $FLEET_ROLE_ARN \ 
    --max-worker-count 5 \ 
    --configuration \ 
        '{ 
            "customerManaged": { 
                "mode": "NO_SCALING", 
                "workerCapabilities": { 
                    "vCpuCount": {"min": 1}, 
                    "memoryMiB": {"min": 512}, 
                    "osFamily": "linux", 
                    "cpuArchitectureType": "x86_64" 
                } 
            } 
        }'

echo "DEV_CMF_ID=\$(aws deadline list-fleets \ 
        --farm-id \$DEV_FARM_ID \ 
        --query \"fleets[?displayName=='\$DEV_FARM_NAME CMF'].fleetId \ 

Create a farm 12



Deadline Cloud Developer Guide

        | [0]\" --output text)" >> ~/.bashrc
source ~/.bashrc

7. Ensure you can access Deadline Cloud.

pip install deadline

8. Associate the CMF with your queue.

aws deadline create-queue-fleet-association \ 
    --farm-id $DEV_FARM_ID \ 
    --queue-id $DEV_QUEUE_ID \ 
    --fleet-id $DEV_CMF_ID

9. To set the default farm to the farm ID and the queue to the queue ID that you created earlier, 
use the following command.

deadline config set defaults.farm_id $DEV_FARM_ID
deadline config set defaults.queue_id $DEV_QUEUE_ID

10. (Optional) To confirm that your farm is set up according to your specifications, use the 
following commands:

• List all farms – deadline farm list

• List all queues in the default farm – deadline queue list

• List all fleets in the default farm – deadline fleet list

• Get the default farm – deadline farm get

• Get the default queue – deadline queue get

• Get all the fleets associated with the default queue – deadline fleet get

Next steps

After you create your farm, you can run the Deadline Cloud worker agent on the hosts in your fleet 
to process jobs. See Run the Deadline Cloud worker agent.

Run the Deadline Cloud worker agent

Before you can run the jobs you submit to the queue on your developer farm, you must run the 
AWS Deadline Cloud worker agent in developer mode on a worker host.

Next steps 13



Deadline Cloud Developer Guide

Throughout the remainder of this tutorial, you will perform AWS CLI operations on your developer 
farm using two AWS CloudShell tabs. In the first tab, you can submit jobs. In the second tab, you 
can run the worker agent.

Note

If you leave your CloudShell session idle for more than 20 minutes, it will timeout and 
stop the worker agent. To restart the worker agent, follow the instructions in the following 
procedure.

Before you can start a worker agent, you must set up a Deadline Cloud farm, queue, and fleet. See
Create a Deadline Cloud farm.

To run the worker agent in developer mode

1. With your farm still open in the first CloudShell tab, open a second CloudShell tab, then create 
the demoenv-logs and demoenv-persist directories.

mkdir ~/demoenv-logs  
mkdir ~/demoenv-persist

2. Download and install the Deadline Cloud worker agent packages from PyPI:

Note

On Windows, it is required that the agent files are installed into Python’s global site-
packages directory. Python virtual environments are not currently supported.

python -m pip install deadline-cloud-worker-agent

3. To allow the worker agent to create the temporary directories for running jobs, create a 
directory:

sudo mkdir /sessions
sudo chmod 750 /sessions
sudo chown cloudshell-user /sessions

Run the worker agent 14



Deadline Cloud Developer Guide

4. Run the Deadline Cloud worker agent in developer mode with the variables DEV_FARM_ID and
DEV_CMF_ID that you added to the ~/.bashrc.

deadline-worker-agent \ 
    --farm-id $DEV_FARM_ID \ 
    --fleet-id $DEV_CMF_ID \ 
    --run-jobs-as-agent-user \ 
    --logs-dir ~/demoenv-logs \ 
    --persistence-dir ~/demoenv-persist 

As the worker agent initializes and then polls the UpdateWorkerSchedule API operation the 
following output is displayed:

INFO    Worker Agent starting
[2024-03-27 15:51:01,292][INFO    ] # Worker Agent starting
[2024-03-27 15:51:01,292][INFO    ] AgentInfo  
Python Interpreter: /usr/bin/python3
Python Version: 3.9.16 (main, Sep  8 2023, 00:00:00)  - [GCC 11.4.1 20230605 (Red 
 Hat 11.4.1-2)]
Platform: linux
...
[2024-03-27 15:51:02,528][INFO    ] # API.Resp # [deadline:UpdateWorkerSchedule]
(200) params={'assignedSessions': {}, 'cancelSessionActions': {}, 
 'updateIntervalSeconds': 15} ...
[2024-03-27 15:51:17,635][INFO    ] # API.Resp # [deadline:UpdateWorkerSchedule]
(200) params=(Duplicate removed, see previous response) ...
[2024-03-27 15:51:32,756][INFO    ] # API.Resp # [deadline:UpdateWorkerSchedule]
(200) params=(Duplicate removed, see previous response) ...
...

5. Select your first CloudShell tab, then list the workers in the fleet.

deadline worker list --fleet-id $DEV_CMF_ID

Output such as the following is displayed:

Displaying 1 of 1 workers starting at 0

- workerId: worker-8c9af877c8734e89914047111f 
  status: STARTED 
  createdAt: 2023-12-13 20:43:06+00:00

Run the worker agent 15



Deadline Cloud Developer Guide

In a production configuration, the Deadline Cloud worker agent requires setting up multiple users 
and configuration directories as an administrative user on the host machine. You can override these 
settings because you're running jobs in your own development farm, which only you can access.

Next steps

Now that a worker agent is running on your worker hosts, you can send jobs to your workers. You 
can:

• Submit with Deadline Cloud using a simple OpenJD job bundle.

• Submit jobs with job attachments in Deadline Cloud that share files between workstations using 
different operating systems.

Submit with Deadline Cloud

To run Deadline Cloud jobs on your worker hosts, you create and use an Open Job Description 
(OpenJD) job bundle to configure a job. The bundle configures the job, for example by specifying 
input files for a job and where to write the output of the job. This topic includes examples of ways 
that you can configure a job bundle.

Before you can follow the procedures in this section, you must complete the following:

• Create a Deadline Cloud farm

• Run the Deadline Cloud worker agent

To use AWS Deadline Cloud to run jobs, use the following procedures. Use the first AWS CloudShell 
tab to submit jobs to your developer farm. Use the second CloudShell tab to view the worker agent 
output.

Topics

• Submit the simple_job sample

• Submit a simple_job with a parameter

• Create a simple_file_job job bundle with file I/O

• Next steps

Next steps 16



Deadline Cloud Developer Guide

Submit the simple_job sample

After you create a farm and run the worker agent, you can submit the simple_job sample to 
Deadline Cloud.

To submit the simple_job sample to Deadline Cloud

1. Download the sample from GitHub.

cd ~
git clone https://github.com/aws-deadline/deadline-cloud-samples.git

2. Choose your first CloudShell tab, then navigate to the job bundle samples directory.

cd ~/deadline-cloud-samples/job_bundles/

3. Submit the simple_job sample.

deadline bundle submit simple_job

4. Choose your second CloudShell tab to view the logging output about calling
BatchGetJobEntities, getting a session, and running a session action.

...
[2024-03-27 16:00:21,846][INFO    ] # Session.Starting 
 # [session-053d77cef82648fe2] Starting new Session. 
 [queue-3ba4ff683ff54db09b851a2ed8327d7b/job-d34cc98a6e234b6f82577940ab4f76c6]
[2024-03-27 16:00:21,853][INFO    ] # API.Req # [deadline:BatchGetJobEntity] 
 resource={'farm-id': 'farm-3e24cfc9bbcd423e9c1b6754bc1', 
 'fleet-id': 'fleet-246ee60f46d44559b6cce010d05', 'worker-id': 
 'worker-75e0fce9c3c344a69bff57fcd83'} params={'identifiers': [{'jobDetails': 
 {'jobId': 'job-d34cc98a6e234b6f82577940ab4'}}]} request_url=https://
scheduling.deadline.us-west-2.amazonaws.com/2023-10-12/farms/
farm-3e24cfc9bbcd423e /fleets/fleet-246ee60f46d44559b1 /workers/worker- 
 75e0fce9c3c344a69b /batchGetJobEntity
[2024-03-27 16:00:22,013][INFO    ] # API.Resp # [deadline:BatchGetJobEntity](200) 
 params={'entities': [{'jobDetails': {'jobId': 'job-d34cc98a6e234b6f82577940ab6', 
 'jobRunAsUser': {'posix': {'user': 'job-user', 'group': 'job-group'}, 
 'runAs': 'QUEUE_CONFIGURED_USER'}, 'logGroupName': '/aws/deadline/
farm-3e24cfc9bbcd423e9c1b6754bc1/queue-3ba4ff683ff54db09b851a2ed83', 'parameters': 
 '*REDACTED*', 'schemaVersion': 'jobtemplate-2023-09'}}], 'errors': []} 
 request_id=a3f55914-6470-439e-89e5-313f0c6

Submit the simple_job sample 17



Deadline Cloud Developer Guide

[2024-03-27 16:00:22,013][INFO    ] # Session.Add # 
 [session-053d77cef82648fea9c69827182] Appended new SessionActions. 
 (ActionIds: ['sessionaction-053d77cef82648fea9c69827182-0']) 
 [queue-3ba4ff683ff54db09b851a2ed8b/job-d34cc98a6e234b6f82577940ab6]
[2024-03-27 16:00:22,014][WARNING ] # Session.User # 
 [session-053d77cef82648fea9c69827182] Running as the Worker Agent's 
 user. (User: cloudshell-user) [queue-3ba4ff683ff54db09b851a2ed8b/job-
d34cc98a6e234b6f82577940ac6]
[2024-03-27 16:00:22,015][WARNING ] # Session.AWSCreds # 
 [session-053d77cef82648fea9c69827182] AWS Credentials are not available: Queue has 
 no IAM Role. [queue-3ba4ff683ff54db09b851a2ed8b/job-d34cc98a6e234b6f82577940ab6]
[2024-03-27 16:00:22,026][INFO    ] # Session.Logs # 
 [session-053d77cef82648fea9c69827182] Logs streamed to: AWS CloudWatch 
 Logs. (LogDestination: /aws/deadline/farm-3e24cfc9bbcd423e9c1b6754bc1/
queue-3ba4ff683ff54db09b851a2ed83/session-053d77cef82648fea9c69827181) 
 [queue-3ba4ff683ff54db09b851a2ed83/job-d34cc98a6e234b6f82577940ab4]
[2024-03-27 16:00:22,026][INFO    ] # Session.Logs # 
 [session-053d77cef82648fea9c69827182] Logs streamed to: local 
 file. (LogDestination: /home/cloudshell-user/demoenv-logs/
queue-3ba4ff683ff54db09b851a2ed8b/session-053d77cef82648fea9c69827182.log) 
 [queue-3ba4ff683ff54db09b851a2ed83/job-d34cc98a6e234b6f82577940ab4]
...

Note

Only the logging output from the worker agent is shown. There is a separate log for 
the session that runs the job.

5. Choose your first tab, then inspect the log files that the worker agent writes.

a. Navigate to the worker agent logs directory and view its contents.

cd ~/demoenv-logs
ls

b. Print the first log file that the worker agent creates.

cat worker-agent-bootstrap.log

This file contains worker agent output about how it called the Deadline Cloud API to 
create a worker resource in your fleet, and then assumed the fleet role.

Submit the simple_job sample 18



Deadline Cloud Developer Guide

c. Print the log file output when the worker agent joins the fleet.

cat worker-agent.log

This log contains outputs about all the actions that the worker agent takes, but doesn't 
contain output about the queues it runs jobs from, except for the IDs of those resources.

d. Print the log files for each session in a directory that is named the same as the queue 
resource id.

cat $DEV_QUEUE_ID/session-*.log

If the job is successful, the log file output will be similar to the following:

cat $DEV_QUEUE_ID/$(ls -t $DEV_QUEUE_ID | head -1)
                            
2024-03-27 16:00:22,026 WARNING Session running with no AWS Credentials.
2024-03-27 16:00:22,404 INFO  
2024-03-27 16:00:22,405 INFO ==============================================
2024-03-27 16:00:22,405 INFO --------- Running Task
2024-03-27 16:00:22,405 INFO ==============================================
2024-03-27 16:00:22,406 INFO ----------------------------------------------
2024-03-27 16:00:22,406 INFO Phase: Setup
2024-03-27 16:00:22,406 INFO ----------------------------------------------
2024-03-27 16:00:22,406 INFO Writing embedded files for Task to disk.
2024-03-27 16:00:22,406 INFO Mapping: Task.File.runScript -> /sessions/
session-053d77cef82648fea9c698271812a/embedded_fileswa_gj55_/tmp2u9yqtsz
2024-03-27 16:00:22,406 INFO Wrote: runScript -> /sessions/
session-053d77cef82648fea9c698271812a/embedded_fileswa_gj55_/tmp2u9yqtsz
2024-03-27 16:00:22,407 INFO ----------------------------------------------
2024-03-27 16:00:22,407 INFO Phase: Running action
2024-03-27 16:00:22,407 INFO ----------------------------------------------
2024-03-27 16:00:22,407 INFO Running command /sessions/
session-053d77cef82648fea9c698271812a/tmpzuzxpslm.sh
2024-03-27 16:00:22,414 INFO Command started as pid: 471
2024-03-27 16:00:22,415 INFO Output:
2024-03-27 16:00:22,420 INFO Welcome to AWS Deadline Cloud!
2024-03-27 16:00:22,571 INFO  
2024-03-27 16:00:22,572 INFO ==============================================
2024-03-27 16:00:22,572 INFO --------- Session Cleanup
2024-03-27 16:00:22,572 INFO ==============================================

Submit the simple_job sample 19



Deadline Cloud Developer Guide

2024-03-27 16:00:22,572 INFO Deleting working directory: /sessions/
session-053d77cef82648fea9c698271812a

6. Print information about the job.

deadline job get

When you submit the job, the system saves it as the default so you don't have to enter the job 
ID.

Submit a simple_job with a parameter

You can submit jobs with parameters. In the following procedure, you edit the simple_job template 
to include a custom message, submit the simple_job, then print the session log file to view the 
message.

To submit the simple_job sample with a parameter

1. Select your first CloudShell tab, then navigate to the job bundle samples directory.

cd ~/deadline-cloud-samples/job_bundles/

2. Print the contents of the simple_job template.

cat simple_job/template.yaml

The parameterDefinitions section with the Message parameter should look like the 
following:

parameterDefinitions:
- name: Message 
  type: STRING 
  default: Welcome to AWS Deadline Cloud!

3. Submit the simple_job sample with a parameter value, then wait for the job to finish running.

deadline bundle submit simple_job \ 
    -p "Message=Greetings from the developer getting started guide."

4. To see the custom message, view the most recent session log file.

Submit with a parameter 20



Deadline Cloud Developer Guide

cd ~/demoenv-logs
cat $DEV_QUEUE_ID/$(ls -t $DEV_QUEUE_ID | head -1)

Create a simple_file_job job bundle with file I/O

A render job needs to read the scene definition, render an image from it, and then save that image 
to an output file. You can simulate this action by making the job compute the hash of the input 
instead of rendering an image.

To create a simple_file_job job bundle with file I/O

1. Select your first CloudShell tab, then navigate to the job bundle samples directory.

cd ~/deadline-cloud-samples/job_bundles/

2. Make a copy of simple_job with the new name simple_file_job.

cp -r simple_job simple_file_job

3. Edit the job template as follows:

Note

We recommend that you use nano for these steps. If you prefer to use Vim, you must 
set its paste mode using :set paste.

a. Open the template in a text editor.

nano simple_file_job/template.yaml

b. Add the following type, objectType, and dataFlow parameterDefinitions.

- name: InFile 
  type: PATH 
  objectType: FILE 
  dataFlow: IN
- name: OutFile 
  type: PATH 

Create a simple_file_job job 21



Deadline Cloud Developer Guide

  objectType: FILE 
  dataFlow: OUT

c. Add the following bash script command to the end of the file that reads from the input 
file and writes to the output file.

        # hash the input file, and write that to the output
        sha256sum "{{Param.InFile}}" > "{{Param.OutFile}}"

The updated template.yaml should exactly match the following:

specificationVersion: 'jobtemplate-2023-09'
name: Simple File Job Bundle Example
parameterDefinitions:
- name: Message 
  type: STRING 
  default: Welcome to AWS Deadline Cloud!
- name: InFile 
  type: PATH 
  objectType: FILE 
  dataFlow: IN
- name: OutFile 
  type: PATH 
  objectType: FILE 
  dataFlow: OUT
steps:
- name: WelcomeToDeadlineCloud 
  script: 
    actions: 
      onRun: 
        command: '{{Task.File.runScript}}' 
    embeddedFiles: 
    - name: runScript 
      type: TEXT 
      runnable: true 
      data: | 
        #!/usr/bin/env bash 
        echo "{{Param.Message}}" 

        # hash the input file, and write that to the output 
        sha256sum "{{Param.InFile}}" > "{{Param.OutFile}}"

Create a simple_file_job job 22



Deadline Cloud Developer Guide

Note

If you want to adjust the spacing in the template.yaml, make sure that you use 
spaces instead of indentations.

d. Save the file, and exit the text editor.

4. Provide parameter values for the input and output files to submit the simple_file_job.

deadline bundle submit simple_file_job \ 
    -p "InFile=simple_job/template.yaml" \ 
    -p "OutFile=hash.txt"

5. Print information about the job.

deadline job get

• You will see output such as the following:

parameters: 
  Message: 
    string: Welcome to AWS Deadline Cloud! 
  InFile: 
    path: /local/home/cloudshell-user/BundleFiles/JobBundle-Examples/simple_job/
template.yaml 
  OutFile: 
    path: /local/home/cloudshell-user/BundleFiles/JobBundle-Examples/hash.txt

• Although you only provided relative paths, the parameters have the full path set. The AWS 
CLI joins the current working directory to any paths that are provided as parameters when 
the paths have the type PATH.

• The worker agent running in the other terminal window picks up and runs the job. This 
action creates the hash.txt file, which you can view with the following command.

cat hash.txt

This command will print output similar to the following.

Create a simple_file_job job 23



Deadline Cloud Developer Guide

eaa2df5d34b54be5ac34c56a24a8c237b8487231a607eaf530a04d76b89c9cd3 /local/home/
cloudshell-user/BundleFiles/JobBundle-Examples/simple_job/template.yaml

Next steps

After learning how to submit simple jobs using the Deadline Cloud CLI, you can explore:

• Submit jobs with job attachments in Deadline Cloud to learn how to run jobs on hosts running 
different operating systems.

• Add a service-managed fleet to your developer farm in Deadline Cloud to run your jobs on hosts 
managed by Deadline Cloud.

• Clean up your farm resources in Deadline Cloud to shut down the resources that you used for this 
tutorial.

Submit jobs with job attachments in Deadline Cloud

Many farms use shared filesystems to share files between the hosts that submit jobs and those that 
run jobs. For example, in the previous simple_file_job example, the local filesystem is shared 
between the AWS CloudShell terminal windows, which run in tab one where you submit the job, 
and tab two where you run the worker agent.

A shared filesystem is advantageous when the submitter workstation and the worker hosts are on 
the same local area network. If you store your data on premises near the workstations that access 
it, then using a cloud-based farm means you have to share your filesystems over a high-latency 
VPN or synchronize your filesystems in the cloud. Neither of these options are easy to set up or 
operate.

AWS Deadline Cloud offers a simple solution with job attachments, which are similar to email 
attachments. With job attachments, you attach data to your job. Then, Deadline Cloud handles the 
details of transferring and storing your job data in Amazon Simple Storage Service (Amazon S3) 
buckets.

Content creation workflows are often iterative, meaning a user submits jobs with a small subset 
of modified files. Because Amazon S3 buckets store job attachments in a content-addressable 
storage, the name of each object is based on the hash of the object's data and the contents of a 
directory tree are stored in a manifest file format attached to a job.

Next steps 24



Deadline Cloud Developer Guide

Before you can follow the procedures in this section, you must complete the following:

• Create a Deadline Cloud farm

• Run the Deadline Cloud worker agent

To run jobs with job attachments, complete the following steps.

Topics

• Add a job attachments configuration to your queue

• Submit simple_file_job with job attachments

• Understanding how job attachments are stored in Amazon S3

• Next steps

Add a job attachments configuration to your queue

To enable job attachments in your queue, add a job attachments configuration to the queue 
resource in your account.

To add a job attachments configuration to your queue

1. Choose your first CloudShell tab, then enter one of the following commands to use an Amazon 
S3 bucket for job attachments.

• If you don't have an existing private Amazon S3 bucket, you can create and use a new S3 
bucket.

DEV_FARM_BUCKET=$(echo $DEV_FARM_NAME \ 
    | tr '[:upper:]' '[:lower:]')-$(xxd -l 16 -p /dev/urandom)
if [ "$AWS_REGION" == "us-east-1" ]; then LOCATION_CONSTRAINT=
else LOCATION_CONSTRAINT="--create-bucket-configuration \ 
    LocationConstraint=${AWS_REGION}"
fi
aws s3api create-bucket \ 
    $LOCATION_CONSTRAINT \ 
    --acl private \ 
    --bucket ${DEV_FARM_BUCKET}

• If you already have a private Amazon S3 bucket, you can use it by replacing
MY_BUCKET_NAME with the name of your bucket.

Configure queue for job attachments 25



Deadline Cloud Developer Guide

DEV_FARM_BUCKET=MY_BUCKET_NAME

2. After you create or choose your Amazon S3 bucket, add the bucket name to ~/.bashrc to 
make the bucket available for other terminal sessions.

echo "DEV_FARM_BUCKET=$DEV_FARM_BUCKET" >> ~/.bashrc

3. Create an AWS Identity and Access Management (IAM) role for the queue.

aws iam create-role --role-name "${DEV_FARM_NAME}QueueRole" \ 
    --assume-role-policy-document \ 
        '{ 
            "Version": "2012-10-17", 
            "Statement": [ 
                { 
                    "Effect": "Allow", 
                    "Principal": { 
                        "Service": "credentials.deadline.amazonaws.com" 
                    }, 
                    "Action": "sts:AssumeRole" 
                } 
            ] 
        }'
aws iam put-role-policy \ 
    --role-name "${DEV_FARM_NAME}QueueRole" \ 
    --policy-name S3BucketsAccess \ 
    --policy-document \ 
            '{ 
                "Version": "2012-10-17", 
                "Statement": [ 
                { 
                    "Action": [ 
                        "s3:GetObject*", 
                        "s3:GetBucket*", 
                        "s3:List*", 
                        "s3:DeleteObject*", 
                        "s3:PutObject", 
                        "s3:PutObjectLegalHold", 
                        "s3:PutObjectRetention", 
                        "s3:PutObjectTagging", 
                        "s3:PutObjectVersionTagging", 
                        "s3:Abort*" 

Configure queue for job attachments 26



Deadline Cloud Developer Guide

                    ], 
                    "Resource": [ 
                        "arn:aws:s3:::'$DEV_FARM_BUCKET'", 
                        "arn:aws:s3:::'$DEV_FARM_BUCKET'/*" 
                    ], 
                    "Effect": "Allow" 
                } 
            ] 
            }'

4. Update your queue to include the job attachments settings and the IAM role.

QUEUE_ROLE_ARN="arn:aws:iam::$(aws sts get-caller-identity \ 
        --query "Account" --output text):role/${DEV_FARM_NAME}QueueRole"
aws deadline update-queue \ 
    --farm-id $DEV_FARM_ID \ 
    --queue-id $DEV_QUEUE_ID \ 
    --role-arn $QUEUE_ROLE_ARN \ 
    --job-attachment-settings \ 
        '{ 
            "s3BucketName": "'$DEV_FARM_BUCKET'", 
            "rootPrefix": "JobAttachments" 
        }'

5. Confirm that you updated your queue.

deadline queue get

Output such as the following is shown:

...
jobAttachmentSettings: 
  s3BucketName: DEV_FARM_BUCKET 
  rootPrefix: JobAttachments
roleArn: arn:aws:iam::ACCOUNT_NUMBER:role/DeveloperFarmQueueRole
...

Submit simple_file_job with job attachments

When you use job attachments, job bundles must give Deadline Cloud enough information to 
determine the job's data flow, such as using PATH parameters. In the case of the simple_file_job, 

Submit with job attachments 27



Deadline Cloud Developer Guide

you edited the template.yaml file to tell Deadline Cloud that the data flow is in the input file 
and output file.

After you've added the job attachments configuration to your queue, you can submit the 
simple_file_job sample with job attachments. After you do this, you can view the logging and job 
output to confirm that the simple_file_job with job attachments is working.

To submit the simple_file_job job bundle with job attachments

1. Choose your first CloudShell tab, then open the JobBundle-Samples directory.

2. cd ~/AmazonDeadlineCloud-DocumentationAndSamples/JobBundle-Samples

3. Submit simple_file_job to the queue. When prompted to confirm the upload, enter y.

deadline bundle submit simple_file_job \ 
    -p InFile=simple_job/template.yaml \ 
    -p OutFile=hash-jobattachments.txt

4. To view the job attachments data transfer session log output, choose your second CloudShell 
tab.

JOB_ID=$(deadline config get defaults.job_id)
SESSION_ID=$(aws deadline list-sessions \ 
        --farm-id $DEV_FARM_ID \ 
        --queue-id $DEV_QUEUE_ID \ 
        --job-id $JOB_ID \ 
        --query "sessions[0].sessionId" \ 
        --output text)
cat ~/demoenv-logs/$DEV_QUEUE_ID/$SESSION_ID.log

5. List the session actions that were run within the session.

aws deadline list-session-actions \ 
    --farm-id $DEV_FARM_ID \ 
    --queue-id $DEV_QUEUE_ID \ 
    --job-id $JOB_ID \ 
    --session-id $SESSION_ID

Output such as the following is shown:

{ 

Submit with job attachments 28



Deadline Cloud Developer Guide

    "sessionactions": [ 
        { 
            "sessionActionId": "sessionaction-123-0", 
            "status": "SUCCEEDED", 
            "startedAt": "<timestamp>", 
            "endedAt": "<timestamp>", 
            "progressPercent": 100.0, 
            "definition": { 
                "syncInputJobAttachments": {} 
            } 
        }, 
        { 
            "sessionActionId": "sessionaction-123-1", 
            "status": "SUCCEEDED", 
            "startedAt": "<timestamp>", 
            "endedAt": "<timestamp>", 
            "progressPercent": 100.0, 
            "definition": { 
                "taskRun": { 
                    "taskId": "task-abc-0", 
                    "stepId": "step-def" 
                } 
            } 
        } 
    ]
}

The first session action downloaded the input job attachments, while the second action runs 
the task like before and then uploaded the output job attachments.

6. List the output directory.

ls *.txt

Output such as hash.txt is shown, but hash-jobattachments.txt doesn't exist.

7. Download the output from the most recent job.

deadline job download-output

8. View the output of the downloaded file.

Submit with job attachments 29



Deadline Cloud Developer Guide

cat hash-jobattachments.txt

Output such as the following is shown:

eaa2df5d34b54be5ac34c56a24a8c237b8487231a607eaf530a04d76b89c9cd3  /tmp/openjd/
session-123/assetroot-abc/simple_job/template.yaml

Understanding how job attachments are stored in Amazon S3

You can use the AWS Command Line Interface (AWS CLI) to upload or download data for job 
attachments, which are stored in Amazon S3 buckets. Understanding how Deadline Cloud stores 
job attachments on Amazon S3 will help when you develop workloads and pipeline integrations.

To inspect how Deadline Cloud job attachments are stored in Amazon S3

1. Choose your first CloudShell tab, then open the job bundle samples directory.

cd ~/AmazonDeadlineCloud-DocumentationAndSamples/JobBundle-Samples

2. Inspect the job properties.

deadline job get

Output such as the following is shown:

parameters: 
  Message: 
    string: Welcome to Amazon Deadline Cloud! 
  InFile: 
    path: /home/cloudshell-user/AmazonDeadlineCloud-DocumentationAndSamples/
JobBundle-Samples/simple_job/template.yaml 
  OutFile: 
    path: /home/cloudshell-user/AmazonDeadlineCloud-DocumentationAndSamples/
JobBundle-Samples/hash-jobattachments.txt
attachments: 
  manifests: 
  - rootPath: /home/cloudshell-user/AmazonDeadlineCloud-DocumentationAndSamples/
JobBundle-Samples 
    rootPathFormat: posix 

How job attachments are stored 30



Deadline Cloud Developer Guide

    outputRelativeDirectories: 
    - . 
    inputManifestPath: farm-3040c59a5b9943d58052c29d907a645d/queue-
cde9977c9f4d4018a1d85f3e6c1a4e6e/Inputs/
f46af01ca8904cd8b514586671c79303/0d69cd94523ba617c731f29c019d16e8_input.xxh128 
    inputManifestHash: f95ef91b5dab1fc1341b75637fe987ee 
  fileSystem: COPIED

The attachments field contains a list of manifest structures that describe input and output 
data paths that the job uses when it runs. Look at rootPath to see the local directory path 
on the machine that submitted the job. To see the Amazon S3 object suffix that contains 
a manifest file, look at inputManifestFile. The manifest file contains metadata for a 
directory tree snapshot of the job's input data.

3. Pretty-print the Amazon S3 manifest object to see the input directory structure for the job.

MANIFEST_SUFFIX=$(aws deadline get-job \ 
     --farm-id $DEV_FARM_ID \ 
     --queue-id $DEV_QUEUE_ID \ 
     --job-id $JOB_ID \ 
     --query "attachments.manifests[0].inputManifestPath" \ 
     --output text) 
 aws s3 cp s3://$DEV_FARM_BUCKET/JobAttachments/Manifests/$MANIFEST_SUFFIX - | jq .

Output such as the following is shown:

{ 
     "hashAlg": "xxh128", 
     "manifestVersion": "2023-03-03", 
     "paths": [ 
     { 
         "hash": "2ec297b04c59c4741ed97ac8fb83080c", 
         "mtime": 1698186190000000, 
         "path": "simple_job/template.yaml", 
         "size": 445 
     } 
     ], 
     "totalSize": 445 
 }

4. Construct the Amazon S3 prefix that holds manifests for the output job attachments and list 
the object under it.

How job attachments are stored 31



Deadline Cloud Developer Guide

SESSION_ACTION=$(aws deadline list-session-actions \ 
    --farm-id $DEV_FARM_ID \ 
    --queue-id $DEV_QUEUE_ID \ 
    --job-id $JOB_ID \ 
    --session-id $SESSION_ID \ 
    --query "sessionActions[?definition.taskRun != null] | [0]")
STEP_ID=$(echo $SESSION_ACTION | jq -r .definition.taskRun.stepId)
TASK_ID=$(echo $SESSION_ACTION | jq -r .definition.taskRun.taskId)
TASK_OUTPUT_PREFIX=JobAttachments/Manifests/$DEV_FARM_ID/$DEV_QUEUE_ID/$JOB_ID/
$STEP_ID/$TASK_ID/
aws s3api list-objects-v2 --bucket $DEV_FARM_BUCKET --prefix $TASK_OUTPUT_PREFIX

The output job attachments are not directly referenced from the job resource but are instead 
placed in an Amazon S3 bucket based on farm resource IDs.

5. Get the newest manifest object key for the specific session action id, then pretty-print the 
manifest objects.

SESSION_ACTION_ID=$(echo $SESSION_ACTION | jq -r .sessionActionId) 
 MANIFEST_KEY=$(aws s3api list-objects-v2 \ 
     --bucket $DEV_FARM_BUCKET \ 
     --prefix $TASK_OUTPUT_PREFIX \ 
     --query "Contents[*].Key" --output text \ 
     | grep $SESSION_ACTION_ID \ 
     | sort | tail -1) 
 MANIFEST_OBJECT=$(aws s3 cp s3://$DEV_FARM_BUCKET/$MANIFEST_KEY -) 
 echo $MANIFEST_OBJECT | jq .

You'll see properties of the file hash-jobattachments.txt in the output such as the 
following:

{ 
     "hashAlg": "xxh128", 
     "manifestVersion": "2023-03-03", 
     "paths": [ 
     { 
         "hash": "f60b8e7d0fabf7214ba0b6822e82e08b", 
         "mtime": 1698785252554950, 
         "path": "hash-jobattachments.txt", 
         "size": 182 
     } 

How job attachments are stored 32



Deadline Cloud Developer Guide

     ], 
     "totalSize": 182 
 }
 

Your job will only have a single manifest object per task run, but in general it is possible to 
have more of objects per task run.

6. View content-addressible Amazon S3 storage output under the Data prefix.

 FILE_HASH=$(echo $MANIFEST_OBJECT | jq -r .paths[0].hash) 
 FILE_PATH=$(echo $MANIFEST_OBJECT | jq -r .paths[0].path) 
 aws s3 cp s3://$DEV_FARM_BUCKET/JobAttachments/Data/$FILE_HASH -
 

Output such as the following is shown:

eaa2df5d34b54be5ac34c56a24a8c237b8487231a607eaf530a04d76b89c9cd3  /tmp/openjd/
session-123/assetroot-abc/simple_job/template.yaml

Next steps

After learning how to submit jobs with attachments using the Deadline Cloud CLI, you can explore:

• Submit with Deadline Cloud to learn how to run jobs using an OpenJD bundle on your worker 
hosts.

• Add a service-managed fleet to your developer farm in Deadline Cloud to run your jobs on hosts 
managed by Deadline Cloud.

• Clean up your farm resources in Deadline Cloud to shut down the resources that you used for this 
tutorial.

Add a service-managed fleet to your developer farm in 
Deadline Cloud

AWS CloudShell does not provide enough compute capacity to test larger workloads. It's also not 
configured to work with jobs that distribute tasks on multiple worker hosts.

Next steps 33



Deadline Cloud Developer Guide

Instead of using CloudShell,you can add an Auto Scaling service-managed fleet (SMF) to your 
developer farm. An SMF provides sufficient compute capacity for larger workloads and can handle 
jobs that need to distribute job tasks across multiple worker hosts. The scheduler will use both the 
SMF and CMF workers to run jobs, unless you shut down the CMF worker.

Before you add an SMF, you must set up a Deadline Cloud farm, queue, and fleet. See Create a 
Deadline Cloud farm.

To add a service-managed fleet to your developer farm

1. Choose your first AWS CloudShell tab, then create the service managed fleet and add its fleet 
ID to .bashrc. This action makes it available for other terminal sessions.

FLEET_ROLE_ARN="arn:aws:iam::$(aws sts get-caller-identity \ 
         --query "Account" --output text):role/${DEV_FARM_NAME}FleetRole" 
 aws deadline create-fleet \ 
     --farm-id $DEV_FARM_ID \ 
     --display-name "$DEV_FARM_NAME SMF" \ 
     --role-arn $FLEET_ROLE_ARN \ 
     --max-worker-count 5 \ 
     --configuration \ 
         '{ 
             "serviceManagedEc2": { 
                 "instanceCapabilities": { 
                     "vCpuCount": { 
                         "min": 2, 
                         "max": 4 
                     }, 
                     "memoryMiB": { 
                         "min": 512 
                     }, 
                     "osFamily": "linux", 
                     "cpuArchitectureType": "x86_64" 
                 }, 
                 "instanceMarketOptions": { 
                     "type": "spot" 
                 } 
             } 
         }' 

 echo "DEV_SMF_ID=$(aws deadline list-fleets \ 
         --farm-id $DEV_FARM_ID \ 
         --query "fleets[?displayName=='$DEV_FARM_NAME SMF'].fleetId \ 

Add a service-managed fleet 34



Deadline Cloud Developer Guide

         | [0]" --output text)" >> ~/.bashrc 
 source ~/.bashrc

2. Associate the SMF with your queue.

aws deadline create-queue-fleet-association \ 
     --farm-id $DEV_FARM_ID \ 
     --queue-id $DEV_QUEUE_ID \ 
     --fleet-id $DEV_SMF_ID

3.
Note

The scheduler will use both the SMF and CMF workers to run jobs, unless you shut 
down the CMF worker.

Submit simple_file_job to the queue. When prompted to confirm the upload, enter y.

deadline bundle submit simple_file_job \ 
    -p InFile=simple_job/template.yaml \ 
    -p OutFile=hash-jobattachments.txt

4. Confirm the SMF is working correctly.

deadline fleet get

• The worker may take a few minutes to start.

• The queueFleetAssociationsStatus for your customer managed fleet and service 
managed fleet will be ACTIVE.

• The SMF autoScalingStatus will change from GROWING to STEADY.

Your status will look similar to the following:

fleetId: fleet-2cc78e0dd3f04d1db427e7dc1d51ea44
farmId: farm-63ee8d77cdab4a578b685be8c5561c4a
displayName: DeveloperFarm SMF
description: ''
status: ACTIVE
autoScalingStatus: STEADY

Add a service-managed fleet 35



Deadline Cloud Developer Guide

targetWorkerCount: 0
workerCount: 0
minWorkerCount: 0
maxWorkerCount: 5

5. View the log for the job that you submitted. This log is stored in a log in Amazon CloudWatch 
Logs, not the CloudShell file system.

 JOB_ID=$(deadline config get defaults.job_id) 
 SESSION_ID=$(aws deadline list-sessions \ 
         --farm-id $DEV_FARM_ID \ 
         --queue-id $DEV_QUEUE_ID \ 
         --job-id $JOB_ID \ 
         --query "sessions[0].sessionId" \ 
         --output text) 
 aws logs tail /aws/deadline/$DEV_FARM_ID/$DEV_QUEUE_ID \ 
     --log-stream-names $SESSION_ID

Next steps

After creating and testing a service-managed fleet, you should remove the resources that you 
created to avoid unnecessary charges.

• Clean up your farm resources in Deadline Cloud to shut down the resources that you used for this 
tutorial.

Clean up your farm resources in Deadline Cloud

To develop and test new workloads and pipeline integrations, you can continue to use the Deadline 
Cloud developer farm that you created for this tutorial. If you no longer need your developer farm, 
you can delete its resources including farm, fleet, queue, AWS Identity and Access Management 
(IAM) roles, and logs in Amazon CloudWatch Logs. After you delete these resources, you will need 
to begin the tutorial again to use the resources. For more information, see Getting started with 
Deadline Cloud resources..

To clean up developer farm resources

1. Choose your first CloudShell tab, then stop all the queue-fleet associations for your queue.

Next steps 36



Deadline Cloud Developer Guide

 FLEETS=$(aws deadline list-queue-fleet-associations \ 
         --farm-id $DEV_FARM_ID \ 
         --queue-id $DEV_QUEUE_ID \ 
         --query "queueFleetAssociations[].fleetId" \ 
         --output text) 
 for FLEET_ID in $FLEETS; do 
     aws deadline update-queue-fleet-association \ 
         --farm-id $DEV_FARM_ID \ 
         --queue-id $DEV_QUEUE_ID \ 
         --fleet-id $FLEET_ID \ 
         --status STOP_SCHEDULING_AND_CANCEL_TASKS 
 done

2. List the queue fleet associations.

aws deadline list-queue-fleet-associations \ 
     --farm-id $DEV_FARM_ID \ 
     --queue-id $DEV_QUEUE_ID

You might need to rerun the command until the output reports "status": "STOPPED", then 
you can proceed to the next step. This process can take several minutes to complete.

{ 
    "queueFleetAssociations": [ 
        { 
            "queueId": "queue-abcdefgh01234567890123456789012id", 
            "fleetId": "fleet-abcdefgh01234567890123456789012id", 
            "status": "STOPPED", 
            "createdAt": "2023-11-21T20:49:19+00:00", 
            "createdBy": "arn:aws:sts::123456789012:assumed-role/RoleToBeAssumed/
MySessionName", 
            "updatedAt": "2023-11-21T20:49:38+00:00", 
            "updatedBy": "arn:aws:sts::123456789012:assumed-role/RoleToBeAssumed/
MySessionName" 
        }, 
        { 
            "queueId": "queue-abcdefgh01234567890123456789012id", 
            "fleetId": "fleet-abcdefgh01234567890123456789012id", 
            "status": "STOPPED", 
            "createdAt": "2023-11-21T20:32:06+00:00", 

Clean up farm resources 37



Deadline Cloud Developer Guide

            "createdBy": "arn:aws:sts::123456789012:assumed-role/RoleToBeAssumed/
MySessionName", 
            "updatedAt": "2023-11-21T20:49:39+00:00", 
            "updatedBy": "arn:aws:sts::123456789012:assumed-role/RoleToBeAssumed/
MySessionName" 
        } 
    ]
}

3. Delete all of the queue-fleet associations for your queue.

for FLEET_ID in $FLEETS; do 
     aws deadline delete-queue-fleet-association \ 
         --farm-id $DEV_FARM_ID \ 
         --queue-id $DEV_QUEUE_ID \ 
         --fleet-id $FLEET_ID 
 done

4. Delete all of the fleets associated with your queue.

for FLEET_ID in $FLEETS; do 
     aws deadline delete-fleet \ 
         --farm-id $DEV_FARM_ID \ 
         --fleet-id $FLEET_ID 
 done

5. Delete the queue.

aws deadline delete-queue \ 
     --farm-id $DEV_FARM_ID \ 
     --queue-id $DEV_QUEUE_ID

6. Delete the farm.

aws deadline delete-farm \ 
     --farm-id $DEV_FARM_ID

7. Delete other AWS resources for your farm.

a. Delete the fleet AWS Identity and Access Management (IAM) role.

aws iam delete-role-policy \ 
     --role-name "${DEV_FARM_NAME}FleetRole" \ 

Clean up farm resources 38



Deadline Cloud Developer Guide

     --policy-name WorkerPermissions
aws iam delete-role \ 
     --role-name "${DEV_FARM_NAME}FleetRole"

b. Delete the queue IAM role.

aws iam delete-role-policy \ 
     --role-name "${DEV_FARM_NAME}QueueRole" \ 
     --policy-name S3BucketsAccess
aws iam delete-role \ 
     --role-name "${DEV_FARM_NAME}QueueRole"

c. Delete the Amazon CloudWatch Logs log groups. Each queue and fleet has their own log 
group.

aws logs delete-log-group \ 
     --log-group-name "/aws/deadline/$DEV_FARM_ID/$DEV_QUEUE_ID"
aws logs delete-log-group \ 
     --log-group-name "/aws/deadline/$DEV_FARM_ID/$DEV_CMF_ID"
aws logs delete-log-group \ 
     --log-group-name "/aws/deadline/$DEV_FARM_ID/$DEV_SMF_ID"

Clean up farm resources 39



Deadline Cloud Developer Guide

How to submit a job to Deadline Cloud

There are many different ways to submit jobs to AWS Deadline Cloud. This section describes some 
of the ways that you can submit jobs using the tools provided by Deadline Cloud or by creating 
your own custom tools for your workloads.

• From a terminal – for when you’re first developing a job bundle, or when users submitting a job 
are comfortable using the command line

• From a script – for customizing and automating workloads

• From an application – for when the user’s work is in an application, or when an application’s 
context is important.

The following examples use the deadline Python library and the deadline command line tool. 
Both are available from PyPi and hosted on GitHub.

Topics

• Submit a job to Deadline Cloud from a terminal

• Submit a job to Deadline Cloud using a script

• Submit a job within an application

Submit a job to Deadline Cloud from a terminal

Using only a job bundle and the Deadline Cloud CLI, you or your more technical users can rapidly 
iterate on writing job bundles to test submitting a job. Use the following command to submit a job 
bundle:

deadline bundle submit <path-to-job-bundle>

If you submit a job bundle with parameters that do not have defaults in the bundle, you can 
specify them with the -p / --parameter option.

deadline bundle submit <path-to-job-bundle> -p <parameter-name>=<parameter-value> -
p ...

For a complete list of the available options, run the help command:

From a terminal 40

https://pypi.org/project/deadline/
https://github.com/aws-deadline/deadline-cloud


Deadline Cloud Developer Guide

deadline bundle submit --help

Submit a job to Deadline Cloud using a GUI

The Deadline Cloud CLI also comes with a graphical user interface that enables users to see the 
parameters they must provide before submitting a job. If your users prefer not to interact with 
the command line, you can write a desktop shortcut that opens a dialog to submit a specific job 
bundle:

deadline bundle gui-submit <path-to-job-bundle>

Use the --browse option can so the user can select a job bundle:

deadline bundle gui-submit --browse

For a complete list of available options, run the help command:

deadline bundle gui-submit --help

Submit a job to Deadline Cloud using a script

To automate submitting jobs to Deadline Cloud, you can script them using tools such as bash, 
Powershell, and batch files.

You can add functionality like populating job parameters from environment variables or other 
applications. You can also submit multiple jobs in a row, or script the creation of a job bundle to 
submit.

Submit a job using Python

Deadline Cloud also an open-source Python library to interact with the service. The source code is 
available on GitHub.

The library is available on pypi via pip (pip install deadline). It's the same library used by the 
Deadline Cloud CLI tool:

from deadline.client import api

Submit a job to Deadline Cloud using a GUI 41

https://github.com/aws-deadline/deadline-cloud
https://github.com/aws-deadline/deadline-cloud


Deadline Cloud Developer Guide

job_bundle_path = "/path/to/job/bundle"
job_parameters = [ 
    { 
        "name": "parameter_name", 
        "value": "parameter_value" 
    },
]

job_id = api.create_job_from_job_bundle( 
    job_bundle_path, 
    job_parameters
)
print(job_id)

To create a dialog like the deadline bundle gui-submit command, 
you can use of show_job_bundle_submitter function from the
deadline.client.ui.job_bundle_submitter.

The following example starts a Qt application and shows the job bundle submitter:

# The GUI components must be installed with pip install "deadline[gui]"
import sys
from qtpy.QtWidgets import QApplication
from deadline.client.ui.job_bundle_submitter import show_job_bundle_submitter

app = QApplication(sys.argv)
submitter = show_job_bundle_submitter(browse=True)
submitter.show()
app.exec()
print(submitter.create_job_response)

To make your own dialog you can use the SubmitJobToDeadlineDialog class in
deadline.client.ui.dialogs.submit_job_to_deadline_dialog. You can pass in values, 
embed your own job specific tab, and determine how the job bundle gets created (or passed in).

Submit a job within an application

To make it easy for users to submit jobs, you can use the scripting runtimes or plugin systems 
provided by an application. Users have a familiar interface and you can create powerful tools that 
assist the users when submitting a workload.

From within applications 42

https://github.com/aws-deadline/deadline-cloud/blob/mainline/src/deadline/client/ui/job_bundle_submitter.py
https://github.com/aws-deadline/deadline-cloud/blob/mainline/src/deadline/client/ui/dialogs/submit_job_to_deadline_dialog.py


Deadline Cloud Developer Guide

Embed job bundles in an application

This example demonstrates submitting job bundles that you make available in the application.

To give a user access to these job bundles, create a script embedded in a menu item that launches 
the Deadline Cloud CLI.

The following script enables a user to select the job bundle:

deadline bundle gui-submit --install-gui

To use a specific job bundle in a menu item instead, use the following:

deadline bundle gui-submit </path/to/job/bundle> --install-gui

This opens a dialog where the user can modify the job parameters, inputs, and outputs, and then 
submit the job. You can have different menu items for different job bundles for a user to submit in 
an application.

If the job that you submit with a job bundle contains similar parameters and asset references 
across submissions, you can fill in the default values in the underlying job bundle.

Get information from an application

To pull information from an application so that users don't have to manually add it to the 
submission, you can integrate Deadline Cloud with the application so that your users can submit 
jobs using a familiar interface without needing exit the application or use command line tools.

If your application has a scripting runtime that supports Python and pyside/pyqt, you can use the 
GUI components from the Deadline Cloud client library to create a UI. For an example, see Deadline 
Cloud for Maya integration on GitHub.

The Deadline Cloud client library provides operations that do the following to help you provide a 
strong integrated user experience:

• Pull queue environment parameters, job parameters, and asset references form environment 
variables and by calling the application SDK.

• Set the parameters in the job bundle. To avoid modifying the original bundle, you should make a 
copy of the bundle and submit the copy.

Embed job bundles in an application 43

https://github.com/aws-deadline/deadline-cloud
https://github.com/aws-deadline/deadline-cloud-for-maya
https://github.com/aws-deadline/deadline-cloud-for-maya


Deadline Cloud Developer Guide

If you use the deadline bundle gui-submit command to submit the job bundle, you must 
programmatically the parameter_values.yaml and asset_references.yaml files to pass the 
information from the application. For more information about these files see Open Job Description 
(OpenJD) templates for Deadline Cloud.

If you need more complex controls than the ones offered by OpenJD, need to abstract the job from 
the user, or want to make the integration match the application's visual style, you can write your 
own dialog that calls the Deadline Cloud client library to submit the job.

Get information from an application 44



Deadline Cloud Developer Guide

Configure jobs using queue environments

AWS Deadline Cloud uses queue environments to configure the software on your workers. An 
environment enables you to perform time-consuming tasks, such as set up and tear-down, once 
for all the tasks in a session. It defines the actions to run on a worker when starting or stopping 
a session. You can configure an environment for a queue, jobs that run in the queue, and the 
individual steps for a job.

You define environments as queue environments or job environments. Create queue environments 
with the Deadline Cloud console or with the deadline:CreateQueueEnvironment operation and 
define job environments in the job templates of the jobs you submit. They follow the Open Job 
Description (OpenJD) specification for environments. For details, see <Environment> in the OpenJD 
specification on GitHub.

In addition to a name and description, each environment contains two fields that define the 
environment on the host. They are:

• script – The action taken when this environment is run on a worker.

• variables – A set of environment variable name/value pairs that are set when entering the 
environment.

You must set at least one of script or variables.

You can define more than one environment in your job template. Each environment is applied in 
the order that they are listed in the template. You can use this to help manage the complexity of 
your environments.

The default queue environment for Deadline Cloud uses the conda package manager to load 
software into the environment, but you can use other package managers. The default environment 
defines two parameters to specify the software that should be loaded. These variables are set 
by submitters provided by Deadline Cloud, though you can set them in your own scripts and 
applications that use the default environment. They are:

• CondaPackages – A space-separated list of conda package match specifications to install 
for the job. For example, the Blender submitter would add blender=3.6 to render frames in 
Blender 3.6.

45

https://docs.aws.amazon.com/deadline-cloud/latest/APIReference/API_CreateQueueEnvironment.html
https://github.com/OpenJobDescription/openjd-specifications/wiki/2023-09-Template-Schemas#4-environment


Deadline Cloud Developer Guide

• CondaChannels – A space-separated list of conda channels to install packages from. For 
service-managed fleets, packages are installed from the deadline-cloud channel. You can add 
other channels.

Topics

• Control the job environment with OpenJD queue environments

• Provide applications for your jobs

• Create a conda channel using S3

• Create a conda package for an application

Control the job environment with OpenJD queue environments

You can define customized environments for your rendering jobs using queue environments. A 
queue environment is a template that controls the environment variables, file mappings, and other 
settings for jobs running in a specific queue. It enables you to tailor the execution environment 
for the jobs submitted to a queue to the requirements of your workloads. AWS Deadline Cloud 
provides three nested levels where you can apply Open Job Description (OpenJD) environments: 
queue, job, and step. By defining queue environments, you can ensure consistent and optimized 
performance for different types of jobs, streamline resource allocation, and simplify queue 
management.

The queue environment is a template that you attach to a queue in your AWS account from the 
AWS management console or using the AWS CLI. You can create one environment for a queue, 
or you can create multiple queue environments that applied in order to create the execution 
environment. This enables you to create and test an environment in steps to help ensure that it 
works correctly for you jobs.

Job and step environments are defined in the job template you use to create a job in your queue. 
The OpenJD syntax is the same in these different forms of environments. In this section we will 
show them inside of job templates.

Topics

• Set environment variables in a queue environment

• Set the path in a queue environment

• Run a background daemon process from the queue environment

Control the job environment 46

https://github.com/OpenJobDescription/openjd-specifications/wiki/2023-09-Template-Schemas#4-environment


Deadline Cloud Developer Guide

Set environment variables in a queue environment

Open Job Description (OpenJD) environments can set environment variables that every task 
command within their scope uses. Many applications and frameworks check for environment 
variables to control feature settings, logging level, and more.

For example, the Qt Framework provides GUI functionality for many desktop applications. When 
you run these applications on a worker host without an interactive display, you may need to set the 
environment variable QT_QPA_PLATFORM to offscreen so the worker doesn’t look for a display.

In this example, you'll use a sample job bundle from the Deadline Cloud samples directory to set 
and view the environment variables for a job.

Prerequisites

Perform the following steps to run the sample job bundle with environment variables from the 
Deadline Cloud samples github repository.

1. If you do not have a Deadline Cloud farm with a queue and associated Linux fleet, follow the 
guided onboarding experience in the Deadline Cloud console to create one with default settings.

2. If you do not have the Deadline Cloud CLI and Deadline Cloud monitor on your workstation, 
follow the steps in Set up Deadline Cloud submitters from the user guide.

3. Use git to clone the Deadline Cloud samples GitHub repository.

git clone https://github.com/aws-deadline/deadline-cloud-samples.git
 Cloning into 'deadline-cloud-samples'... 
 ...
cd deadline-cloud-samples/job_bundles

Run the environment variable sample

1. Use the Deadline Cloud CLI to submit the job_env_vars sample.

deadline bundle submit job_env_vars
 Submitting to Queue: MySampleQueue 
 ...

2. In the Deadline Cloud monitor, you can see the new job and monitor its progress. After the Linux 
fleet associated with the queue has a worker available to run the job’s task, the job completes 

Set environment variables 47

https://github.com/OpenJobDescription/openjd-specifications/wiki/2023-09-Template-Schemas#4-environment
https://www.qt.io/product/framework
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/job_bundles/job_env_vars/template.yaml
https://console.aws.amazon.com/deadlinecloud/home
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/submitter.html
https://github.com/aws-deadline/deadline-cloud-samples


Deadline Cloud Developer Guide

in a few seconds. Select the task, then choose the View logs option in the top right menu of the 
tasks panel.

On the right are three session actions, Launch JobEnv, Launch StepEnv, and Task run. The log 
view in the center of the window corresponds to the selected session action on the right.

Compare the session actions with their definitions

In this section you use the Deadline Cloud monitor to compare the session actions with where they 
are defined in the job template. It continues from the previous section.

Open the file job_env_vars/template.yaml in a text editor. This is the job template that defines the 
session actions.

1. Select the Launch JobEnv session action in Deadline Cloud monitor. You will see the following 
log output.

 024/07/16 16:18:27-07:00 
 2024/07/16 16:18:27-07:00 ============================================== 
 2024/07/16 16:18:27-07:00 --------- Entering Environment: JobEnv 
 2024/07/16 16:18:27-07:00 ============================================== 
 2024/07/16 16:18:27-07:00 Setting: JOB_VERBOSITY=MEDIUM 
 2024/07/16 16:18:27-07:00 Setting: JOB_EXAMPLE_PARAM=An example parameter value 
 2024/07/16 16:18:27-07:00 Setting: JOB_PROJECT_ID=project-12 
 2024/07/16 16:18:27-07:00 Setting: JOB_ENDPOINT_URL=https://internal-host-name/some/
path 
 2024/07/16 16:18:27-07:00 Setting: QT_QPA_PLATFORM=offscreen

The following lines from the job template specified this action.

jobEnvironments: 
 - name: JobEnv 
   description: Job environments apply to everything in the job. 
   variables: 
     # When applications have options as environment variables, you can set them 
 here. 
     JOB_VERBOSITY: MEDIUM 
     # You can use the value of job parameters when setting environment variables. 
     JOB_EXAMPLE_PARAM: "{{Param.ExampleParam}}" 
     # Some more ideas. 
     JOB_PROJECT_ID: project-12 

Set environment variables 48

https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/job_bundles/job_env_vars/template.yaml


Deadline Cloud Developer Guide

     JOB_ENDPOINT_URL: https://internal-host-name/some/path 
     # This variable lets applications using the Qt Framework run without a display 
     QT_QPA_PLATFORM: offscreen

2. Select the Launch StepEnv session action in Deadline Cloud monitor. You will see the following 
log output.

 2024/07/16 16:18:27-07:00 
 2024/07/16 16:18:27-07:00 ============================================== 
 2024/07/16 16:18:27-07:00 --------- Entering Environment: StepEnv 
 2024/07/16 16:18:27-07:00 ============================================== 
 2024/07/16 16:18:27-07:00 Setting: STEP_VERBOSITY=HIGH 
 2024/07/16 16:18:27-07:00 Setting: JOB_PROJECT_ID=step-project-12

The following lines from the job template specified this action.

   stepEnvironments: 
   - name: StepEnv 
     description: Step environments apply to all the tasks in the step. 
     variables: 
       # These environment variables are only set within this step, not other steps. 
       STEP_VERBOSITY: HIGH 
       # Replace a variable value defined at the job level. 
       JOB_PROJECT_ID: step-project-12

3. Select the Task run session action in Deadline Cloud monitor. You will see the following output.

 2024/07/16 16:18:27-07:00 
 2024/07/16 16:18:27-07:00 ============================================== 
 2024/07/16 16:18:27-07:00 --------- Running Task 
 2024/07/16 16:18:27-07:00 ============================================== 
 2024/07/16 16:18:27-07:00 ---------------------------------------------- 
 2024/07/16 16:18:27-07:00 Phase: Setup 
 2024/07/16 16:18:27-07:00 ---------------------------------------------- 
 2024/07/16 16:18:27-07:00 Writing embedded files for Task to disk. 
 2024/07/16 16:18:27-07:00 Mapping: Task.File.Run -> /sessions/session-
b4bd451784674c0987be82c5f7d5642deupf6tk9/embedded_files08cdnuyt/tmpmdiajwvh 
 2024/07/16 16:18:27-07:00 Wrote: Run -> /sessions/session-
b4bd451784674c0987be82c5f7d5642deupf6tk9/embedded_files08cdnuyt/tmpmdiajwvh 
 2024/07/16 16:18:27-07:00 ---------------------------------------------- 
 2024/07/16 16:18:27-07:00 Phase: Running action 
 2024/07/16 16:18:27-07:00 ---------------------------------------------- 

Set environment variables 49



Deadline Cloud Developer Guide

 2024/07/16 16:18:27-07:00 Running command sudo -u job-user -i setsid -w /sessions/
session-b4bd451784674c0987be82c5f7d5642deupf6tk9/tmpiqbrsby4.sh 
 2024/07/16 16:18:27-07:00 Command started as pid: 2176 
 2024/07/16 16:18:27-07:00 Output: 
 2024/07/16 16:18:28-07:00 Running the task 
 2024/07/16 16:18:28-07:00 
 2024/07/16 16:18:28-07:00 Environment variables starting with JOB_*: 
 2024/07/16 16:18:28-07:00 JOB_ENDPOINT_URL=https://internal-host-name/some/path 
 2024/07/16 16:18:28-07:00 JOB_EXAMPLE_PARAM='An example parameter value' 
 2024/07/16 16:18:28-07:00 JOB_PROJECT_ID=step-project-12 
 2024/07/16 16:18:28-07:00 JOB_VERBOSITY=MEDIUM 
 2024/07/16 16:18:28-07:00 
 2024/07/16 16:18:28-07:00 Environment variables starting with STEP_*: 
 2024/07/16 16:18:28-07:00 STEP_VERBOSITY=HIGH 
 2024/07/16 16:18:28-07:00 
 2024/07/16 16:18:28-07:00 Done running the task 
 2024/07/16 16:18:28-07:00 ---------------------------------------------- 
 2024/07/16 16:18:28-07:00 Uploading output files to Job Attachments 
 2024/07/16 16:18:28-07:00 ----------------------------------------------

The following lines from the job template specified this action.

   script: 
     actions: 
       onRun: 
         command: bash 
         args: 
         - '{{Task.File.Run}}' 
     embeddedFiles: 
     - name: Run 
       type: TEXT 
       data: | 
         echo Running the task 
         echo "" 

         echo Environment variables starting with JOB_*: 
         set | grep ^JOB_ 
         echo "" 

         echo Environment variables starting with STEP_*: 
         set | grep ^STEP_ 
         echo "" 

Set environment variables 50



Deadline Cloud Developer Guide

         echo Done running the task

Set the path in a queue environment

Use OpenJD environments to provide new commands in an environment. First you create a 
directory containing script files, and then add that directory to the PATH environment variables 
so that executables in your script can run them without needing to specify the directory path 
each time. The list of variables in an environment definition doesn’t provide a way to modify the 
variable, so you do this by running a script instead. After the script sets things up and modifies the
PATH, it exports the variable to the OpenJD runtime with the command echo "openjd_env: 
PATH=$PATH".

Prerequisites

Perform the following steps to run the sample job bundle with environment variables from the 
Deadline Cloud samples github repository.

1. If you do not have a Deadline Cloud farm with a queue and associated Linux fleet, follow the 
guided onboarding experience in the Deadline Cloud console to create one with default settings.

2. If you do not have the Deadline Cloud CLI and Deadline Cloud monitor on your workstation, 
follow the steps in Set up Deadline Cloud submitters from the user guide.

3. Use git to clone the Deadline Cloud samples GitHub repository.

git clone https://github.com/aws-deadline/deadline-cloud-samples.git
 Cloning into 'deadline-cloud-samples'... 
 ...
cd deadline-cloud-samples/job_bundles

Run the path sample

1. Use the Deadline Cloud CLI to submit the job_env_with_new_command sample.

 $ deadline bundle submit job_env_with_new_command 
 Submitting to Queue: MySampleQueue 
 ...

2. In the Deadline Cloud monitor, you will see the new job and can monitor its progress. Once 
the Linux fleet associated with the queue has a worker available to run the job’s task, the job 

Set the path 51

https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/job_bundles/job_env_vars/template.yaml
https://console.aws.amazon.com/deadlinecloud/home
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/submitter.html
https://github.com/aws-deadline/deadline-cloud-samples


Deadline Cloud Developer Guide

completes in a few seconds. Select the task, then choose the View logs option in the top right 
menu of the tasks panel.

On the right are two session actions, Launch RandomSleepCommand and Task run. The log 
viewer in the center of the window corresponds to the selected session action on the right.

Compare session actions with their definitions

In this section you use the Deadline Cloud monitor to compare the session actions with where they 
are defined in the job template. It continues from the previous section.

Open the file job_env_with_new_command/template.yaml in a text editor. Compare the session 
actions to where they are defined in the job template.

1. Select the Launch RandomSleepCommand session action in the Deadline Cloud monitor. You 
will see log output as follows.

 2024/07/16 17:25:32-07:00 
 2024/07/16 17:25:32-07:00 ============================================== 
 2024/07/16 17:25:32-07:00 --------- Entering Environment: RandomSleepCommand 
 2024/07/16 17:25:32-07:00 ============================================== 
 2024/07/16 17:25:32-07:00 ---------------------------------------------- 
 2024/07/16 17:25:32-07:00 Phase: Setup 
 2024/07/16 17:25:32-07:00 ---------------------------------------------- 
 2024/07/16 17:25:32-07:00 Writing embedded files for Environment to disk. 
 2024/07/16 17:25:32-07:00 Mapping: Env.File.Enter -> /sessions/session-
ab132a51b9b54d5da22cbe839dd946baaw1c8hk5/embedded_filesf3tq_1os/tmpbt8j_c3f 
 2024/07/16 17:25:32-07:00 Mapping: Env.File.SleepScript -> /sessions/session-
ab132a51b9b54d5da22cbe839dd946baaw1c8hk5/embedded_filesf3tq_1os/tmperastlp4 
 2024/07/16 17:25:32-07:00 Wrote: Enter -> /sessions/session-
ab132a51b9b54d5da22cbe839dd946baaw1c8hk5/embedded_filesf3tq_1os/tmpbt8j_c3f 
 2024/07/16 17:25:32-07:00 Wrote: SleepScript -> /sessions/session-
ab132a51b9b54d5da22cbe839dd946baaw1c8hk5/embedded_filesf3tq_1os/tmperastlp4 
 2024/07/16 17:25:32-07:00 ---------------------------------------------- 
 2024/07/16 17:25:32-07:00 Phase: Running action 
 2024/07/16 17:25:32-07:00 ---------------------------------------------- 
 2024/07/16 17:25:32-07:00 Running command sudo -u job-user -i setsid -w /sessions/
session-ab132a51b9b54d5da22cbe839dd946baaw1c8hk5/tmpbwrquq5u.sh 
 2024/07/16 17:25:32-07:00 Command started as pid: 2205 
 2024/07/16 17:25:32-07:00 Output: 
 2024/07/16 17:25:33-07:00 openjd_env: PATH=/sessions/session-
ab132a51b9b54d5da22cbe839dd946baaw1c8hk5/bin:/opt/conda/condabin:/home/job-

Set the path 52

https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/job_bundles/job_env_with_new_command/template.yaml


Deadline Cloud Developer Guide

user/.local/bin:/home/job-user/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/
bin:/sbin:/bin:/var/lib/snapd/snap/bin 
 No newer logs at this moment.

The following lines from the job template specified this action.

 jobEnvironments: 
 - name: RandomSleepCommand 
   description: Adds a command 'random-sleep' to the environment. 
   script: 
     actions: 
       onEnter: 
         command: bash 
         args: 
         - "{{Env.File.Enter}}" 
     embeddedFiles: 
     - name: Enter 
       type: TEXT 
       data: | 
         #!/bin/env bash 
         set -euo pipefail 

         # Make a bin directory inside the session's working directory for providing 
 new commands 
         mkdir -p '{{Session.WorkingDirectory}}/bin' 

         # If this bin directory is not already in the PATH, then add it 
         if ! [[ ":$PATH:" == *':{{Session.WorkingDirectory}}/bin:'* ]]; then 
           export "PATH={{Session.WorkingDirectory}}/bin:$PATH" 

           # This message to Open Job Description exports the new PATH value to the 
 environment 
           echo "openjd_env: PATH=$PATH" 
         fi 

         # Copy the SleepScript embedded file into the bin directory 
         cp '{{Env.File.SleepScript}}' '{{Session.WorkingDirectory}}/bin/random-
sleep' 
         chmod u+x '{{Session.WorkingDirectory}}/bin/random-sleep' 
     - name: SleepScript 
       type: TEXT 
       runnable: true 
       data: | 

Set the path 53



Deadline Cloud Developer Guide

         ...

2. Select the Launch StepEnv session action in the Deadline Cloud monitor. You see log output as 
follows.

 2024/07/16 17:25:33-07:00 
 2024/07/16 17:25:33-07:00 ============================================== 
 2024/07/16 17:25:33-07:00 --------- Running Task 
 2024/07/16 17:25:33-07:00 ============================================== 
 2024/07/16 17:25:33-07:00 ---------------------------------------------- 
 2024/07/16 17:25:33-07:00 Phase: Setup 
 2024/07/16 17:25:33-07:00 ---------------------------------------------- 
 2024/07/16 17:25:33-07:00 Writing embedded files for Task to disk. 
 2024/07/16 17:25:33-07:00 Mapping: Task.File.Run -> /sessions/session-
ab132a51b9b54d5da22cbe839dd946baaw1c8hk5/embedded_filesf3tq_1os/tmpdrwuehjf 
 2024/07/16 17:25:33-07:00 Wrote: Run -> /sessions/session-
ab132a51b9b54d5da22cbe839dd946baaw1c8hk5/embedded_filesf3tq_1os/tmpdrwuehjf 
 2024/07/16 17:25:33-07:00 ---------------------------------------------- 
 2024/07/16 17:25:33-07:00 Phase: Running action 
 2024/07/16 17:25:33-07:00 ---------------------------------------------- 
 2024/07/16 17:25:33-07:00 Running command sudo -u job-user -i setsid -w /sessions/
session-ab132a51b9b54d5da22cbe839dd946baaw1c8hk5/tmpz81iaqfw.sh 
 2024/07/16 17:25:33-07:00 Command started as pid: 2256 
 2024/07/16 17:25:33-07:00 Output: 
 2024/07/16 17:25:34-07:00 + random-sleep 12.5 27.5 
 2024/07/16 17:26:00-07:00 Sleeping for duration 26.90 
 2024/07/16 17:26:00-07:00 ---------------------------------------------- 
 2024/07/16 17:26:00-07:00 Uploading output files to Job Attachments 
 2024/07/16 17:26:00-07:00 ----------------------------------------------

3. The following lines from the job template specified this action.

 steps: 
 - name: EnvWithCommand 
   script: 
     actions: 
       onRun: 
         command: bash 
         args: 
         - '{{Task.File.Run}}' 
     embeddedFiles: 
     - name: Run 
       type: TEXT 

Set the path 54



Deadline Cloud Developer Guide

       data: | 
         set -xeuo pipefail 

         # Run the script installed into PATH by the job environment 
         random-sleep 12.5 27.5 
   hostRequirements: 
     attributes: 
     - name: attr.worker.os.family 
       anyOf: 
       - linux

Run a background daemon process from the queue environment

In many rendering use cases, loading the application and scene data can take a significant amount 
of time. If a job reloads them for every frame, it will spend most of its time on overhead. It’s often 
possible to load the application once as a background daemon process, have it load the scene data, 
and then send it commands via inter-process communication (IPC) to perform the renders.

Many of the open source Deadline Cloud integrations use this pattern. The Open Job Description 
project provides an adaptor runtime library with robust IPC patterns on all supported operating 
systems.

To demonstrate this pattern, there is a self-contained sample job bundle that uses Python and 
bash code to implement a background daemon and the IPC for tasks to communicate with it. The 
daemon is implemented in Python, and listens for a POSIX SIGUSR1 signal for when to process a 
task. The task details are passed to the daemon in a specific JSON file, and the results of running 
the task are returned as another JSON file.

Prerequisites

Perform the following steps to run the sample job bundle with a daemon process from the 
Deadline Cloud samples github repository.

1. If you do not have a Deadline Cloud farm with a queue and associated Linux fleet, follow the 
guided onboarding experience in the Deadline Cloud console to create one with default settings.

2. If you do not have the Deadline Cloud CLI and Deadline Cloud monitor on your workstation, 
follow the steps in Set up Deadline Cloud submitters from the user guide.

3. Use git to clone the Deadline Cloud samples GitHub repository.

git clone https://github.com/aws-deadline/deadline-cloud-samples.git

Run a background daemon process 55

https://github.com/OpenJobDescription/openjd-adaptor-runtime-for-python
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/job_bundles/job_env_daemon_process/template.yaml
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/job_bundles/job_env_daemon_process/template.yaml
https://console.aws.amazon.com/deadlinecloud/home
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/submitter.html
https://github.com/aws-deadline/deadline-cloud-samples


Deadline Cloud Developer Guide

 Cloning into 'deadline-cloud-samples'... 
 ...
cd deadline-cloud-samples/job_bundles

Run the daemon sample

1. Use the Deadline Cloud CLI to submit the job_env_daemon_process sample.

 git clone https://github.com/aws-deadline/deadline-cloud-samples.git
Cloning into 'deadline-cloud-samples'... 
 ...
cd deadline-cloud-samples/job_bundles

2. In the Deadline Cloud monitor application, you will see the new job and can monitor its 
progress. Once the Linux fleet associated with the queue has a worker available to run the job’s 
task, it completes in about a minute. With one of the tasks selected, choose the View logs
option in the top right menu of the tasks panel.

On the right there are two session actions, Launch DaemonProcess and Task run. The log 
viewer in the center of the window corresponds to the selected session action on the right.

Select the option View logs for all tasks. The timeline shows the rest of the tasks that ran as 
part of the session, and the Shut down DaemonProcess action that exited the environment.

View the daemon logs

1. In this section you use the Deadline Cloud monitor to compare the session actions with where 
they are defined in the job template. It continues from the previous section.

Open the file job_env_daemon_process/template.yaml in a text editor. Compare the session 
actions to where they are defined in the job template.

2. Select the Launch DaemonProcess session action in Deadline Cloud monitor. You will see log 
output as follows.

 2024/07/17 16:27:20-07:00 
 2024/07/17 16:27:20-07:00 ============================================== 
 2024/07/17 16:27:20-07:00 --------- Entering Environment: DaemonProcess 
 2024/07/17 16:27:20-07:00 ============================================== 
 2024/07/17 16:27:20-07:00 ---------------------------------------------- 

Run a background daemon process 56

https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/job_bundles/job_env_daemon_process/template.yaml


Deadline Cloud Developer Guide

 2024/07/17 16:27:20-07:00 Phase: Setup 
 2024/07/17 16:27:20-07:00 ---------------------------------------------- 
 2024/07/17 16:27:20-07:00 Writing embedded files for Environment to disk. 
 2024/07/17 16:27:20-07:00 Mapping: Env.File.Enter -> /sessions/
session-972e21d98dde45e59c7153bd9258a64dohwg4yg1/embedded_fileswy00x5ra/enter-daemon-
process-env.sh 
 2024/07/17 16:27:20-07:00 Mapping: Env.File.Exit -> /sessions/
session-972e21d98dde45e59c7153bd9258a64dohwg4yg1/embedded_fileswy00x5ra/exit-daemon-
process-env.sh 
 2024/07/17 16:27:20-07:00 Mapping: Env.File.DaemonScript -> /sessions/
session-972e21d98dde45e59c7153bd9258a64dohwg4yg1/embedded_fileswy00x5ra/daemon-
script.py 
 2024/07/17 16:27:20-07:00 Mapping: Env.File.DaemonHelperFunctions -> /sessions/
session-972e21d98dde45e59c7153bd9258a64dohwg4yg1/embedded_fileswy00x5ra/daemon-
helper-functions.sh 
 2024/07/17 16:27:20-07:00 Wrote: Enter -> /sessions/
session-972e21d98dde45e59c7153bd9258a64dohwg4yg1/embedded_fileswy00x5ra/enter-daemon-
process-env.sh 
 2024/07/17 16:27:20-07:00 Wrote: Exit -> /sessions/
session-972e21d98dde45e59c7153bd9258a64dohwg4yg1/embedded_fileswy00x5ra/exit-daemon-
process-env.sh 
 2024/07/17 16:27:20-07:00 Wrote: DaemonScript -> /sessions/
session-972e21d98dde45e59c7153bd9258a64dohwg4yg1/embedded_fileswy00x5ra/daemon-
script.py 
 2024/07/17 16:27:20-07:00 Wrote: DaemonHelperFunctions -> /sessions/
session-972e21d98dde45e59c7153bd9258a64dohwg4yg1/embedded_fileswy00x5ra/daemon-
helper-functions.sh 
 2024/07/17 16:27:20-07:00 ---------------------------------------------- 
 2024/07/17 16:27:20-07:00 Phase: Running action 
 2024/07/17 16:27:20-07:00 ---------------------------------------------- 
 2024/07/17 16:27:20-07:00 Running command sudo -u job-user -i setsid -w /sessions/
session-972e21d98dde45e59c7153bd9258a64dohwg4yg1/tmp_u8slys3.sh 
 2024/07/17 16:27:20-07:00 Command started as pid: 2187 
 2024/07/17 16:27:20-07:00 Output: 
 2024/07/17 16:27:21-07:00 openjd_env: DAEMON_LOG=/sessions/
session-972e21d98dde45e59c7153bd9258a64dohwg4yg1/daemon.log 
 2024/07/17 16:27:21-07:00 openjd_env: DAEMON_PID=2223 
 2024/07/17 16:27:21-07:00 openjd_env: DAEMON_BASH_HELPER_SCRIPT=/sessions/
session-972e21d98dde45e59c7153bd9258a64dohwg4yg1/embedded_fileswy00x5ra/daemon-
helper-functions.sh

The following lines from the job template specified this action.

Run a background daemon process 57



Deadline Cloud Developer Guide

   stepEnvironments: 
   - name: DaemonProcess 
     description: Runs a daemon process for the step's tasks to share. 
     script: 
       actions: 
         onEnter: 
           command: bash 
           args: 
           - "{{Env.File.Enter}}" 
         onExit: 
           command: bash 
           args: 
           - "{{Env.File.Exit}}" 
       embeddedFiles: 
       - name: Enter 
         filename: enter-daemon-process-env.sh 
         type: TEXT 
         data: | 
           #!/bin/env bash 
           set -euo pipefail 

           DAEMON_LOG='{{Session.WorkingDirectory}}/daemon.log' 
           echo "openjd_env: DAEMON_LOG=$DAEMON_LOG" 
           nohup python {{Env.File.DaemonScript}} > $DAEMON_LOG 2>&1 & 
           echo "openjd_env: DAEMON_PID=$!" 
           echo "openjd_env: 
 DAEMON_BASH_HELPER_SCRIPT={{Env.File.DaemonHelperFunctions}}" 

           echo 0 > 'daemon_log_cursor.txt' 
     ...

3. Select one of the Task run: N session action in Deadline Cloud monitor. You will see log output as 
follows.

2024/07/17 16:27:22-07:00 
 2024/07/17 16:27:22-07:00 ============================================== 
 2024/07/17 16:27:22-07:00 --------- Running Task 
 2024/07/17 16:27:22-07:00 ============================================== 
 2024/07/17 16:27:22-07:00 Parameter values: 
 2024/07/17 16:27:22-07:00 Frame(INT) = 2 
 2024/07/17 16:27:22-07:00 ---------------------------------------------- 
 2024/07/17 16:27:22-07:00 Phase: Setup 

Run a background daemon process 58



Deadline Cloud Developer Guide

 2024/07/17 16:27:22-07:00 ---------------------------------------------- 
 2024/07/17 16:27:22-07:00 Writing embedded files for Task to disk. 
 2024/07/17 16:27:22-07:00 Mapping: Task.File.Run -> /sessions/
session-972e21d98dde45e59c7153bd9258a64dohwg4yg1/embedded_fileswy00x5ra/run-task.sh 
 2024/07/17 16:27:22-07:00 Wrote: Run -> /sessions/
session-972e21d98dde45e59c7153bd9258a64dohwg4yg1/embedded_fileswy00x5ra/run-task.sh 
 2024/07/17 16:27:22-07:00 ---------------------------------------------- 
 2024/07/17 16:27:22-07:00 Phase: Running action 
 2024/07/17 16:27:22-07:00 ---------------------------------------------- 
 2024/07/17 16:27:22-07:00 Running command sudo -u job-user -i setsid -w /sessions/
session-972e21d98dde45e59c7153bd9258a64dohwg4yg1/tmpv4obfkhn.sh 
 2024/07/17 16:27:22-07:00 Command started as pid: 2301 
 2024/07/17 16:27:22-07:00 Output: 
 2024/07/17 16:27:23-07:00 Daemon PID is 2223 
 2024/07/17 16:27:23-07:00 Daemon log file is /sessions/
session-972e21d98dde45e59c7153bd9258a64dohwg4yg1/daemon.log 
 2024/07/17 16:27:23-07:00 
 2024/07/17 16:27:23-07:00 === Previous output from daemon 
 2024/07/17 16:27:23-07:00 === 
 2024/07/17 16:27:23-07:00 
 2024/07/17 16:27:23-07:00 Sending command to daemon 
 2024/07/17 16:27:23-07:00 Received task result: 
 2024/07/17 16:27:23-07:00 { 
 2024/07/17 16:27:23-07:00   "result": "SUCCESS", 
 2024/07/17 16:27:23-07:00   "processedTaskCount": 1, 
 2024/07/17 16:27:23-07:00   "randomValue": 0.2578537967668988, 
 2024/07/17 16:27:23-07:00   "failureRate": 0.1 
 2024/07/17 16:27:23-07:00 } 
 2024/07/17 16:27:23-07:00 
 2024/07/17 16:27:23-07:00 === Daemon log from running the task 
 2024/07/17 16:27:23-07:00 Loading the task details file 
 2024/07/17 16:27:23-07:00 Received task details: 
 2024/07/17 16:27:23-07:00 { 
 2024/07/17 16:27:23-07:00  "pid": 2329, 
 2024/07/17 16:27:23-07:00  "frame": 2 
 2024/07/17 16:27:23-07:00 } 
 2024/07/17 16:27:23-07:00 Processing frame number 2 
 2024/07/17 16:27:23-07:00 Writing result 
 2024/07/17 16:27:23-07:00 Waiting until a USR1 signal is sent... 
 2024/07/17 16:27:23-07:00 === 
 2024/07/17 16:27:23-07:00 
 2024/07/17 16:27:23-07:00 ---------------------------------------------- 
 2024/07/17 16:27:23-07:00 Uploading output files to Job Attachments 

Run a background daemon process 59



Deadline Cloud Developer Guide

 2024/07/17 16:27:23-07:00 ----------------------------------------------

The following lines from the job template are what specified this action. ``` steps:

 steps: 
 - name: EnvWithDaemonProcess 
   parameterSpace: 
     taskParameterDefinitions: 
     - name: Frame 
       type: INT 
       range: "{{Param.Frames}}" 

   stepEnvironments: 
     ... 

   script: 
     actions: 
       onRun: 
         timeout: 60 
         command: bash 
         args: 
         - '{{Task.File.Run}}' 
     embeddedFiles: 
     - name: Run 
       filename: run-task.sh 
       type: TEXT 
       data: | 
         # This bash script sends a task to the background daemon process, 
         # then waits for it to respond with the output result. 

         set -euo pipefail 

         source "$DAEMON_BASH_HELPER_SCRIPT" 

         echo "Daemon PID is $DAEMON_PID" 
         echo "Daemon log file is $DAEMON_LOG" 

         print_daemon_log "Previous output from daemon" 

         send_task_to_daemon "{\"pid\": $$, \"frame\": {{Task.Param.Frame}} }" 
         wait_for_daemon_task_result 

         echo Received task result: 

Run a background daemon process 60



Deadline Cloud Developer Guide

         echo "$TASK_RESULT" | jq . 

         print_daemon_log "Daemon log from running the task" 

   hostRequirements: 
     attributes: 
     - name: attr.worker.os.family 
       anyOf: 
       - linux

Provide applications for your jobs

You can use a queue environment to load applications to process your jobs. When you create a 
service-managed fleet using the Deadline Cloud console, you have the option of creating a queue 
environment that uses the conda package manager to load applications.

If you want to use a different package manager, you can create a queue environment for that 
manager. For an example using Rez, see Use a different package manager.

Deadline Cloud provides a conda channel to load a selection of rendering applications into your 
environment. They support the submitters that Deadline Cloud provides for digital content 
creation applications.

You can also load software for conda-forge to use in your jobs. The following examples show job 
templates using the queue environment provided by Deadline Cloud to load applications before 
running the job.

Topics

• Getting an application from a conda channel

• Use a different package manager

Getting an application from a conda channel

You can create a custom queue environment for you Deadline Cloud workers that installs 
the software of your choice. This example queue environment has the same behavior as the 
environment used by the console for service-managed fleets. It runs conda directly to create the 
environment.

Provide applications for your jobs 61



Deadline Cloud Developer Guide

The environment creates a new conda virtual environment for every Deadline Cloud session that 
runs on a worker, and then deletes the environment when it is done.

Conda caches the downloaded packages so that they don't need to be downloaded again, but each 
session must link all of the packages into the environment.

The environment defines three scripts that run when Deadline Cloud starts a session on a worker. 
The first script runs when the onEnter action is called. It calls the other two to set up environment 
variables. When the script finishes running, the conda environment is available with all of the 
specified environment variables set.

For the latest version of the example, see conda_queue_env_console_equivalent.yaml in the
deadline-cloud-samples repository on GitHub.

Process a CSV file with an application from conda-forge

The following example is a job template that process data from a CSV file using a Python package 
called polars. The package is loaded from the conda-forge channel.

The job sets the CondaPackages and CondaChannels parameters defined in the queue 
environment that tell Deadline Cloud where to get the package.

The section of the job template that sets the parameters is:

- name: CondaPackages 
  description: A list of conda packages to install. The job expects a Queue Environment 
 to handle this. 
  type: STRING 
  default: polars
- name: CondaChannels 
  description: A list of conda channels to get packages from. The job expects a Queue 
 Environment to handle this. 
  type: STRING 
  default: conda-forge

For the latest version of the complete example job template, see
stage_1_self_contained_template/template.yaml. For the latest version of the queue environment 
that loads the conda packages, see conda_queue_env_console_equivalent.yaml in the deadline-
cloud-samples repository on GitHub.

Getting an application from a conda channel 62

https://github.com/aws-deadline/deadline-cloud-samples/blob/mainline/queue_environments/conda_queue_env_console_equivalent.yaml
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline
https://github.com/aws-deadline/deadline-cloud-samples/blob/mainline/job_bundles/job_dev_progression/stage_1_self_contained_template/template.yaml
https://github.com/aws-deadline/deadline-cloud-samples/blob/mainline/queue_environments/conda_queue_env_console_equivalent.yaml
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline


Deadline Cloud Developer Guide

Get Blender from the deadline-cloud channel

The following example shows a job template that gets Blender from the deadline-cloud conda 
channel. This channel supports the submitters that Deadline Cloud provides for digital content 
creation software, though you can use the same channel to load software for your own use.

For a list of the software provided by the deadline-cloud channel, see Default queue 
environment  in the AWS Deadline Cloud Developer Guide.

This job sets the CondaPackages parameter defined in the queue environment to tell Deadline 
Cloud to load Blender into the environment.

The section of the job template that sets the parameter is:

- name: CondaPackages 
  type: STRING 
  userInterface: 
    control: LINE_EDIT 
    label: Conda Packages 
    groupLabel: Software Environment 
  default: blender 
  description: > 
    Tells the queue environment to install Blender from the deadline-cloud conda 
 channel.

For the latest version of the complete example job template, see blender_render/template.yaml. 
For the latest version of the queue environment that loads the conda packages, see
conda_queue_env_console_equivalent.yaml in the deadline-cloud-samples repository on GitHub.

Use a different package manager

The default package manager for Deadline Cloud is conda. If you need to use a different package 
manager, such as Rez, you can create a custom queue environment that contains scripts that use 
your package manager instead.

This example queue environment provides the same behavior as the environment used by the 
console for service-managed fleets. It replaces the conda package manager with Rez.

The environment defines three scripts that run when Deadline Cloud starts a session on a worker. 
The first script runs when the onEnter action is called. It calls the other two to set up environment 

Use a different package manager 63

https://docs.aws.amazon.com/deadline-cloud/latest/userguide/create-queue-environment.html#conda-queue-environment
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/create-queue-environment.html#conda-queue-environment
https://github.com/aws-deadline/deadline-cloud-samples/blob/mainline/job_bundles/blender_render/template.yaml
https://github.com/aws-deadline/deadline-cloud-samples/blob/mainline/queue_environments/conda_queue_env_console_equivalent.yaml
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline


Deadline Cloud Developer Guide

variables. When the script finishes running, the Rez environment is available with all of the 
specified environment variables set.

The example assumes that you are have a customer-managed fleet that uses a shared file system 
for the Rez packages.

For the latest version of the example, see rez_queue_env.yaml in the deadline-cloud-samples
repository on GitHub.

Create a conda channel using S3

If you have custom packages for applications that are not available on the deadline-cloud or
conda-forge channels you can create a conda channel that contains the packages that your 
environments use. You can store the packages in an Amazon S3 bucket so that you can use AWS 
Identity and Access Management permissions to control access to the channel.

You can also use a Deadline Cloud queue to build the packages for your conda channel to make 
it easier to update and maintain the application packages. The following examples show how to 
create a conda channel that provides Blender 4.1 for your environments.

Topics

• Create a package building queue

• Configure production queue permissions for custom conda packages

• Add a conda channel to a queue environment

• Submit the Blender 4.2 package job

• Submit a Blender 4.2 render job

Create a package building queue

In this example you create a Deadline Cloud queue to build the Blender 4.2 application. This 
simplifies delivery of the finished packages to the Amazon S3 bucket used as the conda channel 
and enables you to use your existing fleet to build the package. This reduces the number of 
infrastructure components to manage.

Follow the instructions in Create a queue in the Deadline Cloud User Guide. Make the following 
changes:

Create a conda channel using S3 64

https://github.com/aws-deadline/deadline-cloud-samples/blob/mainline/queue_environments/rez_queue_env.yaml
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/create-queue.html


Deadline Cloud Developer Guide

• In step 5, choose an existing S3 bucket. Specify a root folder name such as
DeadlineCloudPackageBuild so that build artifacts stay separate from your normal Deadline 
Cloud attachments.

• In step 6, you can associate the package building queue with an existing fleet, or you can create 
an entirely new fleet if your current fleet is unsuitable.

• In step 9, create a new service role for your package building queue. You will modify the 
permissions to give the queue the permissions required for uploading packages and reindexing a 
conda channel.

Configure the package building queue permissions

To allow the package build queue to access the /Conda prefix in the queue's S3 bucket, you must 
modify the queue's role to give it read/write access. The role needs the following permissions so 
that package build jobs can upload new packages and reindex the channel.

• s3:GetObject

• s3:PutObject

• s3:ListBucket

• s3:GetBucketLocation

• s3:DeleteObject

1. Open the Deadline Cloud console and navigate to the queue details page for the package build 
queue.

2. Choose the queue service role, then choose Edit queue.

3. Scroll to the Queue service role section, then choose View this role in the IAM console.

4. From the list of permission policies, choose the AmazonDeadlineCloudQueuePolicy for your 
queue.

5. From the Permissions tab, choose Edit.

6. Update the queue service role to the following. Replace amzn-s3-demo-bucket and
111122223333 with your own bucket and account.

{ 
   "Effect": "Allow", 
   "Sid": "CustomCondaChannelReadWrite", 

Create a package building queue 65



Deadline Cloud Developer Guide

   "Action": [ 
    "s3:GetObject", 
    "s3:PutObject", 
    "s3:DeleteObject", 
    "s3:ListBucket", 
    "s3:GetBucketLocation" 
   ], 
   "Resource": [ 
    "arn:aws:s3:::amzn-s3-demo-bucket", 
    "arn:aws:s3:::amzn-s3-demo-bucket/Conda/*"   ], 
   "Condition": { 
    "StringEquals": { 
     "aws:ResourceAccount": "111122223333" 
    } 
   } 
  },

Configure production queue permissions for custom conda packages

Your production queue needs read-only permissions to the /Conda prefix in the queue's S3 bucket. 
Open the AWS Identity and Access Management (IAM) page for the role associated with the 
production queue and modify the policy with the following:

1. Open the Deadline Cloud console and navigate to the queue details page for the package build 
queue.

2. Choose the queue service role, then choose Edit queue.

3. Scroll to the Queue service role section, then choose View this role in the IAM console.

4. From the list of permission policies, choose the AmazonDeadlineCloudQueuePolicy for your 
queue.

5. From the Permissions tab, choose Edit.

6. Add a new section to the queue service role like the following. Replace amzn-s3-demo-
bucket and 111122223333 with your own bucket and account.

{ 
   "Effect": "Allow", 
   "Sid": "CustomCondaChannelReadOnly", 
   "Action": [ 
    "s3:GetObject", 
    "s3:ListBucket" 

Configure production queue permissions for custom conda packages 66



Deadline Cloud Developer Guide

   ], 
   "Resource": [ 
    "arn:aws:s3:::amzn-s3-demo-bucket", 
    "arn:aws:s3:::amzn-s3-demo-bucket/Conda/*" 
   ], 
   "Condition": { 
    "StringEquals": { 
     "aws:ResourceAccount": "111122223333" 
    } 
   } 
  },

Add a conda channel to a queue environment

To use the S3 conda channel, you need to add the s3://amzn-s3-demo-bucket/Conda/
Default channel location to the CondaChannels parameter of jobs that you submit to Deadline 
Cloud. The submitters provided with Deadline Cloud provide fields to specify custom conda 
channels and package.

You can avoid modifying every job by editing the conda queue environment for your production 
queue. For a service-managed queue, use the following procedure:

1. Open the Deadline Cloud console and navigate to the queue details page for the production 
queue.

2. Choose the environments tab.

3. Select the Conda queue environment, and then choose Edit.

4. Choose the JSON editor, and then in the script, find the parameter definition for
CondaChannels

5. Edit the line default: "deadline-cloud" so that it starts with the newly created S3 conda 
channel:

default: "s3://amzn-s3-demo-bucket/Conda/Default deadline-cloud"

Service-managed fleets enable strict channel priority for conda by default, using the new S3 
channel stops conda from using the deadline-cloud channel. Any job that successfully 
completed using blender=3.6 from the deadline-cloud channel will fail now that you are 
using Blender 4.2.

Add a conda channel to a queue environment 67



Deadline Cloud Developer Guide

For customer-managed fleets, you can enable the use of conda packages by using one of the conda 
queue environment samples in the Deadline Cloud samples GitHub repository.

Submit the Blender 4.2 package job

You can build your own Blender 4.2 conda package to render jobs, by downloading the Blender 
archive and then submitting a job to the package building queue. The queue sends the job to the 
associated fleet to build the package and reindex the conda channel.

These instructions use git from a bash-compatible shell to get an OpenJD package build job 
and some conda recipes from the Deadline Cloud samples GitHub repository. You also need the 
following:

• If you are using Windows, a version of bash, git BASH, is installed when you install git.

• You must have the Deadline Cloud CLI installed.

• You must be logged into the Deadline Cloud monitor.

1. Open the Deadline Cloud configuration GUI using the following command and set the default 
farm and queue to your package building queue.

deadline config gui

2. Use the following command to clone the Deadline Cloud samples GitHub repository.

git clone https://github.com/aws-deadline/deadline-cloud-samples.git

3. Change to the conda_recipes directory in the deadline-cloud-samples directory.

cd deadline-cloud-samples/conda_recipes

4. Run the script called submit-package-job. The script provides instructions for downloading 
Blender the first time that you run the script.

./submit-package-job blender-4.2/

5. Follow the instructions for downloading Blender. When you have the archive, run the submit-
package-job script again.

./submit-package-job blender-4.2/

Submit the Blender 4.2 package job 68

https://github.com/aws-deadline/deadline-cloud-samples/blob/mainline/queue_environments/README.md
https://github.com/aws-deadline/deadline-cloud-samples/blob/mainline/queue_environments/README.md
https://github.com/aws-deadline/deadline-cloud-samples
https://github.com/aws-deadline/deadline-cloud
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/working-with-deadline-monitor.html


Deadline Cloud Developer Guide

After you submit the job, use the Deadline Cloud monitor to view the progress and status of the 
job as it runs.

The lower left of the monitor shows the two steps of the job, building the package and then 
reindexing. The lower right shows the individual steps for each task. In this example, there is one 
step for each task.

In the lower left of the monitor are the two steps of the job, building the package and then 
reindexing the conda channel. In the lower right are the individual tasks for each step. In this 
example there is only one task for each step.

When you right click on the task for the package building step and choose View logs, the monitor 
shows a list of session actions that show how the task is scheduled on the worker. The actions are:

• Sync attachments – This action copies the input job attachments or mounts a virtual file system, 
depending on the setting used for the job attachments file system.

• Launch Conda – This action is from the queue environment added by default when you created 
the queue. The job doesn't specify any conda packages, so it finishes quickly and doesn't create a 
conda virtual environment.

• Launch CondaBuild Env – This action creates a custom conda virtual environment that includes 
the software needed to build a conda package and reindex a channel. It installs from the conda-
forge channel.

• Task run – This action builds the Blender package and uploads the results to Amazon S3.

Submit the Blender 4.2 package job 69

https://conda-forge.org/
https://conda-forge.org/


Deadline Cloud Developer Guide

As the actions run, they send logs in a structured format to Amazon CloudWatch. When a job is 
complete, select View logs for all tasks to see additional logs about the set up and tear down of 
the environment that the job runs in.

Submit a Blender 4.2 render job

After you have the Blender 4.2 package built and your production queue configured to use the S3 
conda channel, you can submit jobs to render with the package. If you don't have a Blender scene, 
download the Blender 3.5 - Cozy Kitchen scene from the Blender demo files page.

The Deadline Cloud samples GitHub repository that you downloaded earlier contains a sample job 
to render a Blender scene using the following commands:

deadline bundle submit blender_render \ 
     -p CondaPackages=blender=4.2 \ 
     -p BlenderSceneFile=/path/to/downloaded/blender-3.5-splash.blend \ 
     -p Frames=1

You can use the Deadline Cloud monitor to track the progress of your job:

1. In the monitor, select the task for the job you submitted, then select the option to view the 
log.

2. On the right side of the log view, select the Launch Conda session action.

You can see that the action searched for Blender 4.2 in the two conda channels configured for the 
queue environment, and that it found the package in the S3 channel.

Create a conda package for an application

You can combine an entire application, including dependencies, into a conda package. The 
packages Deadline Cloud provides in the  deadline-cloud channel for service-managed fleets use 
this binary repackaging approach. This organizes the same files as an installation to fit the conda 
virtual environment.

When repackaging an application for conda, there are two goals:

• Most files for the application should be separate from the primary conda virtual environment 
structure. Environments can then mix the application with packages from other sources like
conda-forge.

Submit a Blender 4.2 render job 70

https://www.blender.org/download/demo-files
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/create-queue-environment.html#conda-queue-environment
https://conda-forge.org/


Deadline Cloud Developer Guide

• When a conda virtual environment is activated, the application should be available from the 
PATH environment variable.

To repackage an application for conda

1. To repackage an application for conda, write conda build recipes that install the application 
into a subdirectory like $CONDA_PREFIX/opt/<application-name>. This separates it from 
the standard prefix directories like bin and lib.

2. Then, add symlinks or launch scripts to $CONDA_PREFIX/bin to run the application binaries.

Alternatively, create activate.d scripts that the conda activate command will run to add 
the application binary directories to the PATH. On Windows, where symlinks are not supported 
everywhere environments can be created, use application launch or activate.d scripts instead.

3. Some applications depend on libraries not installed by default on Deadline Cloud service-
managed fleets. For example, the X11 window system is usually unnecessary for non-
interactive jobs, but some applications still require it to run without a graphical interface. You 
must provide those dependencies within the package you create.

4. Ensure you follow the copyright and license agreements for the applications you package. We 
recommend using a private Amazon S3 bucket for your conda channel to control distribution 
and limit package access to your farm.

Create a conda build recipe for Blender

You can use different applications to create a conda build recipe. Blender is free to use and is 
simple to package with conda. The Blender Foundation provides  application archives for multiple 
operating systems. We created a sample conda build recipe that uses the Windows .zip and the 
Linux .tar.xz files. In this section, learn how to use the  Blender 4.2 conda build recipe.

The  deadline-cloud.yaml file specifies the conda platforms and other metadata for submitting 
package jobs to Deadline Cloud. This recipe includes local source archive information to 
demonstrate how that works. The linux-64 conda platform is set to build in a default job 
submission to match the most common configuration. The deadline-cloud.yaml looks similar to the 
following:

condaPlatforms: 
  - platform: linux-64 
    defaultSubmit: true 

Create a conda build recipe for Blender 71

https://download.blender.org/release/Blender4.2/
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/conda_recipes/blender-4.2
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/conda_recipes/blender-4.2


Deadline Cloud Developer Guide

    sourceArchiveFilename: blender-4.2.1-linux-x64.tar.xz 
    sourceDownloadInstructions: 'Run "curl -LO https://download.blender.org/release/
Blender4.2/blender-4.2.1-linux-x64.tar.xz"' 
  - platform: win-64 
    defaultSubmit: false 
    sourceArchiveFilename: blender-4.2.1-windows-x64.zip 
    sourceDownloadInstructions: 'Run "curl -LO https://download.blender.org/release/
Blender4.2/blender-4.2.1-windows-x64.zip"'

Review the files in the recipe directory. The metadata for the recipe is in  recipe/meta.yaml. You 
can also read the conda build meta.yaml documentation to learn more, such as how the file is a 
template to generate YAML. The template is used to specify the version number just once, and to 
provide different values based on the operating system.

You can review the build options selected in meta.yaml to turn off various binary relocation and 
dynamic shared object (DSO) linking checks. These options control how the package works when 
it's installed into a conda virtual environment at any directory prefix. The default values simplify 
packaging every dependency library into a separate package, but when binary repackaging an 
application, you need to change them.

If the application you're packaging requires additional dependency libraries or you are packaging 
plugins for an application separately, you may encounter DSO errors. These errors occur when the 
dependency is not in the library search path for the executable or library that needs it. Applications 
rely on libraries being in globally defined paths, like /lib or /usr/lib, when installed on a 
system. However, since conda virtual environments can be placed anywhere, there is no absolute 
path to use. Conda uses relative RPATH features, which both Linux and macOS support, to 
handle this. Refer to the conda build documentation on  Making packages relocatable for more 
information.

Blender does not require any RPATH adjustment, as the application archives were built with this 
in mind. For applications that do require it, you can use the same tools that conda build does:
patchelf on Linux and install_name_tool on macOS.

During the package build, the build.sh or build_win.sh (called by bld.bat) script runs to install 
files into an environment prepared with the package dependencies. These scripts copy the 
installation files, create symlinks from $PREFIX/bin, and set up the activation scripts. On 
Windows, it does not create symlinks but instead adds the Blender directory to the PATH in the 
activation script.

Create a conda build recipe for Blender 72

https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/conda_recipes/blender-4.2/recipe/meta.yaml
https://docs.conda.io/projects/conda-build/en/latest/resources/define-metadata.html
https://docs.conda.io/projects/conda-build/en/latest/resources/make-relocatable.html
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/conda_recipes/blender-4.2/recipe/build.sh
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/conda_recipes/blender-4.2/recipe/build_win.sh


Deadline Cloud Developer Guide

The decision was made to use bash instead of a cmd.exe .bat file for the Windows part of the 
conda build recipe, as this provides more consistency across the build scripts. Refer to the  Deadline 
Cloud developer guide's recommendation on workload portability for tips on using bash on 
Windows. If you've installed git for Windows to clone the deadline-cloud-samples git repository, 
you already have access to bash.

The  conda build environment variables documentation lists the values available for use in 
the build script. These values include $SRC_DIR for the source archive data, $PREFIX for the 
installation directory, $RECIPE_DIR to access other files from the recipe, $PKG_NAME and
$PKG_VERSION for package name and version, and $target_platform for the target conda 
platform.

Create a conda build recipe for Blender 73

https://docs.aws.amazon.com/deadline-cloud/latest/developerguide/what-is-a-deadline-cloud-workload.html#workload-portability
https://docs.aws.amazon.com/deadline-cloud/latest/developerguide/what-is-a-deadline-cloud-workload.html#workload-portability
https://gitforwindows.org/
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/
https://docs.conda.io/projects/conda-build/en/latest/user-guide/environment-variables.html


Deadline Cloud Developer Guide

Build jobs to submit to Deadline Cloud

You submit jobs to Deadline Cloud using job bundles. A job bundle is a collection of files, including 
an Open Job Description (OpenJD) job template and any asset files needed to render the job. The 
job template describes how workers process and access the assets, and provides the script that 
the worker runs. Job bundles enable artists, technical directors, and pipeline developers to easily 
submit complex jobs to Deadline Cloud from their local workstations or on-premises render farm. 
This is particularly useful for teams working on large-scale visual effects, animation, or other media 
rendering projects that require scalable, on-demand computing resources.

You can create the job bundle using the local file system to store files and a text editor to create 
the job template. After you create the bundle, you can use the Deadline Cloud CLI to submit the 
job to Deadline Cloud. Or you can use a tool, such as a Deadline Cloud submitter, to create the 
bundle and submit it to Deadline Cloud

You can store your assets in a file system shared between your workers, or you can use Deadline 
Cloud job attachments to automate moving assets to S3 buckets where your workers can access 
them. Job attachments also help move the output from your jobs back to your workstations.

The following sections provide detailed instructions on creating and submitting job bundles to 
Deadline Cloud.

Topics

• Open Job Description (OpenJD) templates for Deadline Cloud

• Using files in your jobs

• Use job attachments to share files

Open Job Description (OpenJD) templates for Deadline Cloud

A job bundle is one of the tools you use to define jobs for AWS Deadline Cloud. They group an Open 
Job Description (OpenJD) template with additional information such as files and directories that 
your jobs use with job attachments. You use the Deadline Cloud command-line interface to use a 
job bundle to submit jobs for a queue to run.

A job bundle is a directory structure that contains an OpenJD job template, other files that define 
the job, and job-specific files required as input for your job. You can specify the files that define 
your job as either YAML or JSON files.

Job bundles 74



Deadline Cloud Developer Guide

The only required file is either template.yaml or template.json. You can also include the 
following files:

/template.yaml (or template.json)
/asset_references.yaml (or asset_references.json)
/parameter_values.yaml (or parameter_values.json)
/other job-specific files and directories

Use a job bundle for custom job submissions with the Deadline Cloud CLI and a job attachment, or 
you can use an graphical submission interface. For example, the following is the Blender sample 
from GitHub. You can run the sample using this command in the Blender sample directory:

deadline bundle gui-submit blender_render

Job bundles 75

https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/job_bundles


Deadline Cloud Developer Guide

The job-specific settings panel are generated from the userInterface properties of the job 
parameters defined in the job template.

To submit a job using the command line, you can use a command similar to the following

deadline bundle submit \ 
    --yes \ 
    --name Demo \ 
     -p BlenderSceneFile=location of scene file \ 
     -p OutputDir=file pathe for job output \ 

Job bundles 76



Deadline Cloud Developer Guide

      blender_render/

Or you can use the deadline.client.api.create_job_from_job_bundle function in the
deadline Python package.

All of the job submitter plugins provided with Deadline Cloud, such as the Autodesk Maya plugin, 
generate a job bundle for your submission and then use the Deadline Cloud Python package 
to submit your job to Deadline Cloud. You can see the job bundles submitted in the job history 
directory of you workstation or by using a submitter. You can find your job history directory with 
the following command:

deadline config get settings.job_history_dir

When you job is running on a Deadline Cloud worker, it has access to environment variables that 
provide it with information about the job. The environment variables are:

Variable name Available

DEADLINE_FARM_ID All actions

DEADLINE_FLEET_ID All actions

DEADLINE_WORKER_ID All actions

DEADLINE_QUEUE_ID All actions

DEADLINE_JOB_ID All actions

DEADLINE_SESSION_ID All actions

DEADLINE_SESSIONACTION_ID All actions

DEADLINE_TASK_ID Task actions

Topics

• Job template elements for job bundles

• Parameter values elements for job bundles

• Asset references elements for job bundles

Job bundles 77



Deadline Cloud Developer Guide

Job template elements for job bundles

The job template defines the runtime environment and the processes that run as part of a Deadline 
Cloud job. You can create parameters in a template so that it can be used to create jobs that differ 
only in input values, much like a function in a programming language.

When you submit a job to Deadline Cloud, it runs in any queue environments applied to the queue. 
Queue environments are built using the Open Job Description (OpenJD) external environments 
specification. For details, see the Environment template in the OpenJD GitHub repository.

For an introduction creating a job with an OpenJD job template, see Introduction to creating a job
in the OpenJD GitHub repository. Additional information can be found in How jobs are run. There 
are job template samples in the in the OpenJD GitHub repository's samples directory.

You can define the job template in either YAML format (template.yaml) or JSON format 
(template.json). The examples in this section are shown in YAML format.

For example, the job template for the blender_render sample defines an input parameter
BlenderSceneFile as a file path:

- name: BlenderSceneFile 
  type: PATH 
  objectType: FILE 
  dataFlow: IN 
  userInterface: 
    control: CHOOSE_INPUT_FILE 
    label: Blender Scene File 
    groupLabel: Render Parameters 
    fileFilters: 
    - label: Blender Scene Files 
      patterns: ["*.blend"] 
    - label: All Files 
      patterns: ["*"] 
  description: > 
    Choose the Blender scene file to render. Use the 'Job Attachments' tab 
    to add textures and other files that the job needs.

The userInterface property defines the behavior of automatically generated user interfaces for 
both the command line using the deadline bundle gui-submit command and within the job 
submission plugins for applications like Autodesk Maya.

Job template elements 78

https://github.com/OpenJobDescription/openjd-specifications/wiki/2023-09-Template-Schemas#12-environment-template
https://github.com/OpenJobDescription/openjd-specifications/wiki/Introduction-to-Creating-a-Job
https://github.com/OpenJobDescription/openjd-specifications/wiki/How-Jobs-Are-Run


Deadline Cloud Developer Guide

In this example, the UI widget for inputting a value for the BlenderSceneFile parameter is a 
file-selection dialog that shows only .blend files.

For more examples of using the userInteface element, see the gui_control_showcase sample in 
the deadline-cloud-samples repository on GitHub.

The objectType and dataFlow properties control the behavior of job attachments when you 
submit a job from a job bundle. In this case, objectType: FILE and dataFlow:IN mean that 
the value of BlenderSceneFile is an input file for job attachments.

In contrast, the definition of the OutputDir parameter has objectType: DIRECTORY and
dataFlow: OUT:

- name: OutputDir 
  type: PATH 
  objectType: DIRECTORY 
  dataFlow: OUT 
  userInterface: 
    control: CHOOSE_DIRECTORY 
    label: Output Directory 
    groupLabel: Render Parameters 
  default: "./output" 
  description: Choose the render output directory.

The value of the OutputDir parameter is used by job attachments as the directory where the job 
writes output files.

For more information about the objectType and dataFlow properties, see
JobPathParameterDefinition in the Open Job Description specification

The rest of the blender_render job template sample defines the job's workflow as a singe step 
with each frame in the animation rendered as a separate task:

steps:
- name: RenderBlender 
  parameterSpace: 
    taskParameterDefinitions: 

Job template elements 79

https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/job_bundles/gui_control_showcase
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline
https://github.com/OpenJobDescription/openjd-specifications/wiki/2023-09-Template-Schemas#22-jobpathparameterdefinition
https://github.com/OpenJobDescription/openjd-specifications


Deadline Cloud Developer Guide

    - name: Frame 
      type: INT 
      range: "{{Param.Frames}}" 
  script: 
    actions: 
      onRun: 
        command: bash 
        # Note: {{Task.File.Run}} is a variable that expands to the filename on the 
 worker host's 
        # disk where the contents of the 'Run' embedded file, below, is written. 
        args: ['{{Task.File.Run}}'] 
    embeddedFiles: 
      - name: Run 
        type: TEXT 
        data: | 
          # Configure the task to fail if any individual command fails. 
          set -xeuo pipefail 

          mkdir -p '{{Param.OutputDir}}' 

          blender --background '{{Param.BlenderSceneFile}}' \ 
                  --render-output '{{Param.OutputDir}}/{{Param.OutputPattern}}' \ 
                  --render-format {{Param.Format}} \ 
                  --use-extension 1 \ 
                  --render-frame {{Task.Param.Frame}}

For example, if the value of the Frames parameter is 1-10, it defines 10 tasks. Each has task has a 
different value for the Frame parameter. To run a task:

1. All of the variable references in the data property of the embedded file are expanded, for 
example --render-frame 1.

2. The contents of the data property is written to a file in the session working directory on disk.

3. The task's onRun command resolves to bash location of embedded file and then runs.

For more information about embedded files, sessions, and path-mapped locations, see How jobs 
are run in the Open Job Description specification.

There are more examples of job templates in the deadline-cloud-samples/job_bundles repository, 
as well as the template samples provided with the Open Job Descriptions specification.

Job template elements 80

https://github.com/OpenJobDescription/openjd-specifications/wiki/How-Jobs-Are-Run
https://github.com/OpenJobDescription/openjd-specifications/wiki/How-Jobs-Are-Run
https://github.com/OpenJobDescription/openjd-specifications/wiki/How-Jobs-Are-Run
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/job_bundles
https://github.com/OpenJobDescription/openjd-specifications/tree/mainline/samples


Deadline Cloud Developer Guide

Parameter values elements for job bundles

You can use the parameters file to set the values of some of the job parameters in the job template 
or CreateJob operation request arguments in the job bundle so that you don't need to set values 
when submitting a job. The UI for job submission enables you to modify these values.

You can define the job template in either YAML format (parameter_values.yaml) or JSON 
format (parameter_values.json). The examples in this section are shown in YAML format.

In YAML, the format of the file is:

parameterValues:
- name: <string> 
  value: <integer>, <float>, or <string>
- name: <string> 
  value: <integer>, <float>, or <string>ab
... repeating as necessary

Each element of the parameterValues list must be one of the following:

• A job parameter defined in the job template.

• A job parameter defined in a queue environment for the queue that you submit the job to..

• A special parameter passed to the CreateJob operation when creating a job.

• deadline:priority – The value must be an integer. It is passed to the CreateJob
operation as the priority parameter.

• deadline:targetTaskRunStatus – The value must be a string. It is passed to the
CreateJob operation as the targetTaskRunStatus parameter.

• deadline:maxFailedTasksCount – The value must be an integer. It is passed to the
CreateJob operation as the priority parameter.

• deadline:maxRetriesPerTask – The value must be an integer. It is passed to the
CreateJob operation as the priority parameter.

A job template is always a template rather than a specific job to run. A parameter values file 
enables a job bundle to either act as a template if some parameters don't have values defined in 
this file, or as a specific job submission if all parameters have values.

For example, the blender_render sample doesn't have a parameters file and its job template 
defines parameters with no default values. This template must be used as a template to create 

Parameter values elements 81

https://docs.aws.amazon.com/deadline-cloud/latest/APIReference/API_CreateJob.html
https://docs.aws.amazon.com/deadline-cloud/latest/APIReference/API_CreateJob.html#deadlinecloud-CreateJob-request-priority
https://docs.aws.amazon.com/deadline-cloud/latest/APIReference/API_CreateJob.html#deadlinecloud-CreateJob-request-targetTaskRunStatus
https://docs.aws.amazon.com/deadline-cloud/latest/APIReference/API_CreateJob.html#deadlinecloud-CreateJob-request-maxFailedTasksCount
https://docs.aws.amazon.com/deadline-cloud/latest/APIReference/API_CreateJob.html#deadlinecloud-CreateJob-request-maxRetriesPerTask
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/job_bundles/blender_render


Deadline Cloud Developer Guide

jobs. After you create a job using this job bundle, Deadline Cloud writes a new job bundle to the job 
history directory.

For example, when you submit a job with the following command:

deadline bundle gui-submit blender_render/

The new job bundle contains a parameter_values.yaml file that contains the specified 
parameters:

% cat ~/.deadline/job_history/\(default\)/2024-06/2024-06-20-01-JobBundle-Demo/
parameter_values.yaml
parameterValues:
- name: deadline:targetTaskRunStatus 
  value: READY
- name: deadline:maxFailedTasksCount 
  value: 10
- name: deadline:maxRetriesPerTask 
  value: 5
- name: deadline:priority 
  value: 75
- name: BlenderSceneFile 
  value: /private/tmp/bundle_demo/bmw27_cpu.blend
- name: Frames 
  value: 1-10
- name: OutputDir 
  value: /private/tmp/bundle_demo/output
- name: OutputPattern 
  value: output_####
- name: Format 
  value: PNG
- name: CondaPackages 
  value: blender
- name: RezPackages 
  value: blender

You can create the same job with the following command:

deadline bundle submit ~/.deadline/job_history/\(default\)/2024-06/2024-06-20-01-
JobBundle-Demo/

Parameter values elements 82



Deadline Cloud Developer Guide

Note

The job bundle that you submit is saved to your job history directory. You can find the 
location of that directory with the following command:

deadline config get settings.job_history_dir

Asset references elements for job bundles

You can use Deadline Cloud job attachments to transfer files back and forth between your 
workstation and Deadline Cloud. The asset reference file lists input files and directories, as well as 
output directories for your attachments. If you don't list all of the files and directories in this file, 
you can select them when you submit a job with the deadline bundle gui-submit command.

This file has no effect if you are not using job attachments.

You can define the job template in either YAML format (asset_references.yaml) or JSON 
format (asset_references.json). The examples in this section are shown in YAML format.

In YAML, the format of the file is:

assetReferences: 
    inputs: 
        # Filenames on the submitting workstation whose file contents are needed as  
        # inputs to run the job. 
        filenames: 
        - list of file paths
        # Directories on the submitting workstation whose contents are needed as inputs 
        # to run the job. 
        directories: 
        - list of directory paths

    outputs: 
        # Directories on the submitting workstation where the job writes output files 
        # if running locally. 
        directories: 
        - list of directory paths

    # Paths referenced by the job, but not necessarily input or output. 

Asset references elements 83

https://docs.aws.amazon.com/deadline-cloud/latest/userguide/storage-job-attachments.html


Deadline Cloud Developer Guide

    # Use this if your job uses the name of a path in some way, but does not explicitly 
 need 
    # the contents of that path. 
    referencedPaths: 
    - list of directory paths

When selecting the input or output file to upload to Amazon S3, Deadline Cloud compares the file 
path against the paths listed in your storage profiles. Each SHARED-type file system location in a 
storage profile abstracts a network file share that is mounted on your workstations and worker 
hosts. Deadline Cloud uploads only files that are not on one of these file shares.

For more information about creating and using storage profiles, see Shared storage in Deadline 
Cloud in the AWS Deadline Cloud User Guide.

Example - The asset reference file created by the Deadline Cloud GUI

Use the following command to submit a job using the blender_render sample.

deadline bundle gui-submit blender_render/

Add some additional files to the job on the Job attachments tab:

Asset references elements 84

https://docs.aws.amazon.com/deadline-cloud/latest/userguide/storage-shared.html
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/storage-shared.html
https://github.com/aws-deadline/deadline-cloud-samples/tree/mainline/job_bundles/blender_render


Deadline Cloud Developer Guide

After you submit the job, you can look at the asset_references.yaml file in the job bundle in 
the job history directory to see the assets in the YAML file:

% cat ~/.deadline/job_history/\(default\)/2024-06/2024-06-20-01-JobBundle-Demo/
asset_references.yaml  

Asset references elements 85



Deadline Cloud Developer Guide

assetReferences: 
  inputs: 
    filenames: 
    - /private/tmp/bundle_demo/a_texture.png 
    directories: 
    - /private/tmp/bundle_demo/assets 
  outputs: 
    directories: [] 
  referencedPaths: []

Using files in your jobs

Many of the jobs that you submit to AWS Deadline Cloud have input and output files. Your input 
files and output directories may be located on a combination of shared filesystems and local drives. 
Jobs need to locate the content in those locations. Deadline Cloud provides two features, job 
attachments and storage profiles that work together to help your jobs locate the files that they 
need.

Job attachments helps you move files to your worker hosts from filesystem locations on your 
workstation that are not available on your worker hosts, and vice versa. It moves files between 
hosts using Amazon S3. You can enable job attachments on each of your queues to make it 
available to jobs in those queues. Job attachments are used primarily with service-managed fleets, 
but you can also use them with customer-managed fleets.

Use storage profiles to model the layout of shared filesystem locations on your workstation 
and worker hosts. This helps your jobs locate shared files and directories when their locations 
differ between your workstation and worker hosts, such as cross-platform setups with Windows-
based workstations and Linux-based worker hosts. Storage profile's model of your filesystem 
configuration is also used by job attachments to identify the files it needs to shuttle between hosts 
through Amazon S3.

If you are not using job attachments, and you don't need to remap file and directory locations 
between workstations and worker hosts then you don't need to model your fileshares with storage 
profiles.

Topics

• Sample project infrastructure

• Storage profiles and path mapping

Using files in your jobs 86

https://docs.aws.amazon.com/deadline-cloud/latest/userguide/storage-job-attachments.html
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/storage-job-attachments.html
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/storage-shared.html
https://aws.amazon.com/pm/serv-s3/


Deadline Cloud Developer Guide

Sample project infrastructure

To demonstrate using job attachments and storage profiles, set up a test environment with two 
separate projects. You can use the Deadline Cloud console to create the test resources.

1. If you haven't already, create a test farm. To create a farm, follow the procedure in Create a 
farm.

2. Create two queues for jobs in each of the two projects. To create queues, follow the procedure 
in Create a queue.

a. Create the first queue called Q1. Use the following configuration, use the defaults for all 
other items.

• For job attachments, choose Create a new Amazon S3 bucket.

• Select Enable association with customer-managed fleets.

• For the run as user, enter jobuser for both the POSIX user and group.

• For the queue service role, create a new role named AssetDemoFarm-Q1-Role

• Clear the default Conda queue environment checkbox.

b. Create the second queue called Q2. Use the following configuration, use the defaults for 
all other items.

• For job attachments, choose Create a new Amazon S3 bucket.

• Select Enable association with customer-managed fleets.

• For the run as user, enter jobuser for both the POSIX user and group.

• For the queue service role, create a new role named AssetDemoFarm-Q2-Role

• Clear the default Conda queue environment checkbox.

3. Create a single customer-managed fleet that runs the jobs from both queues. To create 
the fleet, follow the procedure in Create a customer-managed fleet. Use the following 
configuration:

• For Name, use DemoFleet.

• For Fleet type choose Customer managed

• For Fleet service role, create a new role named AssetDemoFarm-Fleet-Role.

• Don't associate the fleet with any queues.

Sample project infrastructure 87

https://docs.aws.amazon.com/deadline-cloud/latest/userguide/farms.html
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/farms.html
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/create-queue.html
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/create-a-cmf.html


Deadline Cloud Developer Guide

The test environment assumes that there are three file systems shared between hosts using 
network file shares. In this example, the locations have the following names:

• FSCommon - contains input job assets that are common to both projects.

• FS1 - contains input and output job assets for project 1.

• FS2 - contains input and output job assets for project 2.

The test environment also assumes that there are three workstations, as follows:

• WSAll - A Linux-based workstation used by developers for all projects. The shared file system 
locations are:

• FSCommon: /shared/common

• FS1: /shared/projects/project1

• FS2: /shared/projects/project2

• WS1 - A Windows-based workstation used for project 1. The shared file system locations are:

• FSCommon: S:\

• FS1: Z:\

• FS2: Not available

• WS1 - A macOS-based workstation used for project 2.The shared file system locations are:

• FSCommon: /Volumes/common

• FS1: Not available

• FS2: /Volumes/projects/project2

Finally, define the shared file system locations for the workers in your fleet. The examples that 
follow refer to this configuration as WorkerConfig. The shared locations are:

• FSCommon: /mnt/common

• FS1: /mnt/projects/project1

• FS2: /mnt/projects/project2

You don't need to set up any shared file systems, workstations, or workers that match this 
configuration. The shared locations don't need to exist for the demonstration.

Sample project infrastructure 88



Deadline Cloud Developer Guide

Storage profiles and path mapping

Use storage profiles to model the file systems on your workstation and worker hosts. Each storage 
profile describes the operating system and file system layout of one of your system configurations. 
This topic describes how to use storage profiles to model the file system configurations of your 
hosts so Deadline Cloud can generate path mapping rules for your jobs, and how those path 
mapping rules are generated from your storage profiles.

When you submit a job to Deadline Cloud you can provide an optional storage profile ID for the 
job. This storage profile describes the submitting workstation's file system. It describes the original 
file system configuration that the file paths in the job template use.

You can also associate a storage profile with a customer-managed fleet. The storage profile 
describes the file system configuration of all worker hosts in the fleet. If you have workers with 
different file system configuration, those workers must be assigned to a different fleet in your 
farm. Storage profiles are not supported in service-managed fleets.

Path mapping rules describe how paths should be remapped from how they are specified in 
the job to the path's actual location on a worker host. Deadline Cloud compares the file system 
configuration described in a job's storage profile with the storage profile of the fleet that is running 
the job to derive these path mapping rules.

Topics

• Model shared file system locations with storage profiles

• Configure storage profiles for fleets

• Configure storage profiles for queues

• Derive path mapping rules from storage profiles

Model shared file system locations with storage profiles

A storage profile models the file system configuration of one of your host configurations. There are 
four different host configurations in the sample project infrastructure. In this example you create a 
separate storage profile for each. You can create a storage profile using any of the following:

• CreateStorageProfile API

• AWS::Deadline::StorageProfile AWS CloudFormation resource

• AWS console

Storage profiles and path mapping 89

https://docs.aws.amazon.com/deadline-cloud/latest/userguide/manage-cmf.html
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/smf-manage.html
https://docs.aws.amazon.com/deadline-cloud/latest/APIReference/API_CreateStorageProfile.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-deadline-storageprofile.html
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/storage-shared.html#storage-profile


Deadline Cloud Developer Guide

A storage profile is made up of a list of file system locations that each tell Deadline Cloud the 
location and type of a file system location that is relevant for jobs submitted from or run on a 
host. A storage profile should only model the locations that are relevant for jobs. For example, the 
shared FSCommon location is located on workstation WS1 at S:\, so the corresponding file system 
location is:

{ 
    "name": "FSCommon", 
    "path": "S:\\", 
    "type": "SHARED"
}

Use the following commands to create the storage profile for workstation configurations WS1, WS2, 
and WS3 and the worker configuration WorkerConfig using the AWS CLI in AWS CloudShell:

# Change the value of FARM_ID to your farm's identifier
FARM_ID=farm-00112233445566778899aabbccddeeff

aws deadline create-storage-profile --farm-id $FARM_ID \ 
  --display-name WSAll \ 
  --os-family LINUX \ 
  --file-system-locations \ 
  '[ 
      {"name": "FSCommon", "type":"SHARED", "path":"/shared/common"}, 
      {"name": "FS1", "type":"SHARED", "path":"/shared/projects/project1"}, 
      {"name": "FS2", "type":"SHARED", "path":"/shared/projects/project2"} 
  ]'

aws deadline create-storage-profile --farm-id $FARM_ID \ 
  --display-name WS1 \ 
  --os-family WINDOWS \ 
  --file-system-locations \ 
  '[ 
      {"name": "FSCommon", "type":"SHARED", "path":"S:\\"}, 
      {"name": "FS1", "type":"SHARED", "path":"Z:\\"} 
   ]'

aws deadline create-storage-profile --farm-id $FARM_ID \ 
  --display-name WS2 \ 
  --os-family MACOS \ 
  --file-system-locations \ 
  '[ 

Storage profiles and path mapping 90

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html


Deadline Cloud Developer Guide

      {"name": "FSCommon", "type":"SHARED", "path":"/Volumes/common"}, 
      {"name": "FS2", "type":"SHARED", "path":"/Volumes/projects/project2"} 
  ]'

aws deadline create-storage-profile --farm-id $FARM_ID \ 
  --display-name WorkerCfg \ 
  --os-family LINUX \ 
  --file-system-locations \ 
  '[ 
      {"name": "FSCommon", "type":"SHARED", "path":"/mnt/common"}, 
      {"name": "FS1", "type":"SHARED", "path":"/mnt/projects/project1"}, 
      {"name": "FS2", "type":"SHARED", "path":"/mnt/projects/project2"} 
  ]'

Note

You must refer to the file system locations in your storage profiles using the same values 
for the name property across all storage profiles in your farm. Deadline Cloud compares the 
names to determine that file system locations from different storage profiles are referring 
to the same location when generating path mapping rules.

Configure storage profiles for fleets

The configuration of a customer-managed fleet can include a storage profile that models the file 
system locations on all workers in the fleet. The host file system configuration of all workers in 
a fleet must match their fleet's storage profile. Workers with different file system configurations 
must be in separate fleets.

To set your fleet's configuration to use the WorkerConfig storage profile use the AWS CLI in AWS 
CloudShell:

# Change the value of FARM_ID to your farm's identifier
FARM_ID=farm-00112233445566778899aabbccddeeff
# Change the value of FLEET_ID to your fleet's identifier
FLEET_ID=fleet-00112233445566778899aabbccddeeff
# Change the value of WORKER_CFG_ID to your storage profile named WorkerConfig
WORKER_CFG_ID=sp-00112233445566778899aabbccddeeff

FLEET_WORKER_MODE=$( \ 
  aws deadline get-fleet --farm-id $FARM_ID --fleet-id $FLEET_ID \ 

Storage profiles and path mapping 91

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html


Deadline Cloud Developer Guide

   --query '.configuration.customerManaged.mode' \
)
FLEET_WORKER_CAPABILITIES=$( \ 
  aws deadline get-fleet --farm-id $FARM_ID --fleet-id $FLEET_ID \ 
   --query '.configuration.customerManaged.workerCapabilities' \
)

aws deadline update-fleet --farm-id $FARM_ID --fleet-id $FLEET_ID \ 
  --configuration \ 
  "{ 
    \"customerManaged\": { 
      \"storageProfileId\": \"$WORKER_CFG_ID\", 
      \"mode\": $FLEET_WORKER_MODE, 
      \"workerCapabilities\": $FLEET_WORKER_CAPABILITIES 
    } 
  }"

Configure storage profiles for queues

A queue's configuration includes a list of case-sensitive names of the shared file system locations 
that jobs submitted to the queue require access to. for example, jobs submitted to queue Q1
require file system locations FSCommon and FS1. Jobs submitted to queue Q2 require file system 
locations FSCommon and FS2.

To set the queue's configurations to require these file system locations, use the following script:

# Change the value of FARM_ID to your farm's identifier
FARM_ID=farm-00112233445566778899aabbccddeeff
# Change the value of QUEUE1_ID to queue Q1's identifier
QUEUE1_ID=queue-00112233445566778899aabbccddeeff
# Change the value of QUEUE2_ID to queue Q2's identifier
QUEUE2_ID=queue-00112233445566778899aabbccddeeff

aws deadline update-queue --farm-id $FARM_ID --queue-id $QUEUE1_ID \ 
  --required-file-system-location-names-to-add FSComm FS1

aws deadline update-queue --farm-id $FARM_ID --queue-id $QUEUE2_ID \ 
  --required-file-system-location-names-to-add FSComm FS2

Storage profiles and path mapping 92



Deadline Cloud Developer Guide

Note

If a queue has any required files system locations, that queue can't be associated with a 
service-managed fleet because the fleet can't mount your shared file systems.

A queue's configuration also includes a list of allowed storage profiles that applies to jobs 
submitted to and fleets associated with that queue. Only storage profiles that define file system 
locations for all of the required file system locations for the queue are allowed in the queue's list of 
allowed storage profiles.

A job fails if you submit it with a storage profile that isn't in the list of allowed storage profiles 
for the queue. You can always submit a job with no storage profile to a queue. The workstation 
configurations labeled WSAll and WS1 both have the required file system locations (FSCommon and
FS1) for queue Q1. They need to be allowed to submit jobs to the queue. Similarly, workstation 
configurations WSAll and WS2 meet the requirements for queue Q2. They need to be allowed to 
submit jobs to that queue. Update both queue configurations to allow jobs to be submitted with 
these storage profiles using the following script:

# Change the value of WSALL_ID to the identifier of the WSAll storage profile
WSALL_ID=sp-00112233445566778899aabbccddeeff
# Change the value of WS1 to the identifier of the WS1 storage profile
WS1_ID=sp-00112233445566778899aabbccddeeff
# Change the value of WS2 to the identifier of the WS2 storage profile
WS2_ID=sp-00112233445566778899aabbccddeeff

aws deadline update-queue --farm-id $FARM_ID --queue-id $QUEUE1_ID \ 
  --allowed-storage-profile-ids-to-add $WSALL_ID $WS1_ID

aws deadline update-queue --farm-id $FARM_ID --queue-id $QUEUE2_ID \ 
  --allowed-storage-profile-ids-to-add $WSALL_ID $WS2_ID

If you add the WS2 storage profile to the list of allowed storage profiles for queue Q1 it fails:

$ aws deadline update-queue --farm-id $FARM_ID --queue-id $QUEUE1_ID \ 
  --allowed-storage-profile-ids-to-add $WS2_ID

An error occurred (ValidationException) when calling the UpdateQueue operation: Storage 
 profile id: sp-00112233445566778899aabbccddeeff does not have required file system 
 location: FS1

Storage profiles and path mapping 93



Deadline Cloud Developer Guide

This is because the WS2 storage profile doesn't contain a definition for the file system location 
named FS1 that queue Q1 requires.

Associating a fleet that is configured with a storage profile that is not in the queue's list of allowed 
storage profiles also fails. For example:

$ aws deadline create-queue-fleet-association --farm-id $FARM_ID \ 
   --fleet-id $FLEET_ID \ 
   --queue-id $QUEUE1_ID

An error occurred (ValidationException) when calling the CreateQueueFleetAssociation 
 operation: Mismatch between storage profile ids.

To fix the error, add the storage profile named WorkerConfig to the list of allowed storage 
profiles for both queue Q1 and queue Q2. Then, associate the fleet with these queues so that 
workers in the fleet can run jobs from both queues.

# Change the value of FLEET_ID to your fleet's identifier
FLEET_ID=fleet-00112233445566778899aabbccddeeff
# Change the value of WORKER_CFG_ID to your storage profile named WorkerCfg
WORKER_CFG_ID=sp-00112233445566778899aabbccddeeff

aws deadline update-queue --farm-id $FARM_ID --queue-id $QUEUE1_ID \ 
  --allowed-storage-profile-ids-to-add $WORKER_CFG_ID

aws deadline update-queue --farm-id $FARM_ID --queue-id $QUEUE2_ID \ 
  --allowed-storage-profile-ids-to-add $WORKER_CFG_ID

aws deadline create-queue-fleet-association --farm-id $FARM_ID \ 
  --fleet-id $FLEET_ID \ 
  --queue-id $QUEUE1_ID

aws deadline create-queue-fleet-association --farm-id $FARM_ID \ 
  --fleet-id $FLEET_ID \ 
  --queue-id $QUEUE2_ID

Derive path mapping rules from storage profiles

Path mapping rules describe how paths should be remapped from the job to the path's actual 
location on a worker host. When a task is running on a worker, the storage profile from the job is 
compared to the storage profile of the worker's fleet to derive the path mapping rules for the task.

Storage profiles and path mapping 94



Deadline Cloud Developer Guide

Deadline Cloud creates a mapping rule for each of the required file system locations in the queue's 
configuration. For example, a job submitted with the WSAll storage profile to queue Q1 has the 
path mapping rules:

• FSComm: /shared/common -> /mnt/common

• FS1: /shared/projects/project1 -> /mnt/projects/project1

Deadline Cloud creates rules for the FSComm and FS1 file system locations, but not the FS2 file 
system location even though both the WSAll and WorkerConfig storage profiles define FS2. This 
is because queue Q1's list of required file system locations is ["FSComm", "FS1"].

You can confirm the path mapping rules available to jobs submitted with a particular storage 
profile by submitting a job that prints out Open Job Description's path mapping rules file, and then 
reading the session log after the job has completed:

# Change the value of FARM_ID to your farm's identifier
FARM_ID=farm-00112233445566778899aabbccddeeff
# Change the value of QUEUE1_ID to queue Q1's identifier
QUEUE1_ID=queue-00112233445566778899aabbccddeeff
# Change the value of WSALL_ID to the identifier of the WSALL storage profile
WSALL_ID=sp-00112233445566778899aabbccddeeff

aws deadline create-job --farm-id $FARM_ID --queue-id $QUEUE1_ID \ 
  --priority 50 \\ 
  --storage-profile-id $WSALL_ID \ 
  --template-type JSON --template \ 
  '{ 
    "specificationVersion": "jobtemplate-2023-09", 
    "name": "DemoPathMapping", 
    "steps": [ 
      { 
        "name": "ShowPathMappingRules", 
        "script": { 
          "actions": { 
            "onRun": { 
              "command": "/bin/cat", 
              "args": [ "{{Session.PathMappingRulesFile}}" ] 
            } 
          } 
        } 
      } 

Storage profiles and path mapping 95

https://github.com/OpenJobDescription/openjd-specifications/wiki/How-Jobs-Are-Run#path-mapping


Deadline Cloud Developer Guide

    ] 
  }'

If you use the Deadline Cloud CLI to submit jobs, its configuration
settings.storage_profile_id setting sets the storage profile that jobs submitted with the 
CLI will have. To submit jobs with the WSAll storage profile, set:

deadline config set settings.storage_profile_id $WSALL_ID

To run a customer-managed worker as though it is running in the sample infrastructure, follow 
the procedure in Run the worker agent in the Deadline Cloud User Guide to run a worker with 
AWS CloudShell. If you followed those instructions before, delete the ~/demoenv-logs and ~/
demoenv-persist directories first. Also, set the values of the DEV_FARM_ID and DEV_CMF_ID
environment variables that the directions reference as follows before doing so:

DEV_FARM_ID=$FARM_ID
DEV_CMF_ID=$FLEET_ID

After the job runs, you can see the path mapping rules in the job's log file:

cat demoenv-logs/${QUEUE1_ID}/*.log
...
JJSON log results (see below)
...

The log contains mapping for both the FS1 and FSComm file systems. Reformatted for readability, 
the log entry looks like this:

{ 
    "version": "pathmapping-1.0", 
    "path_mapping_rules": [ 
        { 
            "source_path_format": "POSIX", 
            "source_path": "/shared/projects/project1", 
            "destination_path": "/mnt/projects/project1" 
        }, 
        { 
            "source_path_format": "POSIX", 
            "source_path": "/shared/common", 
            "destination_path": "/mnt/common" 

Storage profiles and path mapping 96

https://pypi.org/project/deadline/
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/run-worker.html


Deadline Cloud Developer Guide

        } 
    ]

You can submit jobs with different storage profiles to see how the path mapping rules change.

Use job attachments to share files

Use job attachments to make files not in shared directories available for your jobs, and to capture 
the output files if they are not written to shared directories. Job attachments uses Amazon S3 to 
shuttle files between hosts. Files are stored in S3 buckets, and you don't need to upload a file if its 
content hasn't changed.

You must use job attachments when running jobs on service-managed fleets because hosts don't 
share file system locations. Job attachments are also useful with customer-managed fleets when 
a job’s input or output files stored on a shared network file system, such as when your job bundle
contains shell or Python scripts.

When you submit a job bundle with either the Deadline Cloud CLI or a Deadline Cloud submitter, 
job attachments use the job’s storage profile and the queue’s required file system locations to 
identify the input files that are not on a worker host and should be uploaded to Amazon S3 as 
part of job submission. These storage profiles also help Deadline Cloud identify the output files 
in worker host locations that must be uploaded to Amazon S3 so that they are available to your 
workstation.

The job attachments examples use the farm, fleet, queues, and storage profiles configurations 
from Sample project infrastructure and Storage profiles and path mapping. You should go through 
those sections before this one.

In the following examples, you use a sample job bundle as a starting point, then modify it to 
explore job attachment’s functionality. Job bundles are the best way for your jobs to use job 
attachments. They combine an Open Job Description job template in a directory with additional 
files that list the files and directories required by jobs using the job bundle. For more information 
about job bundles, see Open Job Description (OpenJD) templates for Deadline Cloud.

Submitting files with a job

With Deadline Cloud, you can enable job workflows to access input files that are unavailable in 
shared file system locations on worker hosts. Job attachments allow rendering jobs to access 
files residing only on a local workstation drive or a service-managed fleet environment. When 

Job attachments 97

https://docs.aws.amazon.com/deadline-cloud/latest/userguide/smf-manage.html
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/manage-cmf.html
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/submit-job-bundle.html
https://pypi.org/project/deadline/
https://github.com/OpenJobDescription/openjd-specifications/wiki


Deadline Cloud Developer Guide

submitting a job bundle, you can include lists of input files and directories required by the job. 
Deadline Cloud identifies these non-shared files, uploads them from the local machine to Amazon 
S3, and downloads them to the worker host. It streamlines the process of transferring input assets 
to render nodes, ensuring all required files are accessible for distributed job execution.

You can specify the files for jobs directly in the job bundle, use parameters in the job template that 
you provide using environment variables or a script, and use the job's assets_references file. 
You can use one of these methods or a combination of all three. You can specify a storage profile 
for the bundle for the job so that it only uploads files that have changed on the local workstation.

This section uses an example job bundle from GitHub to demonstrate how Deadline Cloud 
identifies the files in your job to upload, how those files are organized in Amazon S3, and how they 
are made available to the worker hosts processing your jobs.

Topics

• How Deadline Cloud uploads files to Amazon S3

• How Deadline Cloud chooses the files to upload

• How jobs find job attachment input files

How Deadline Cloud uploads files to Amazon S3

This example shows how Deadline Cloud uploads files from your workstation or worker host to 
Amazon S3 so that they can be shared. It uses a sample job bundle from GitHub and the Deadline 
Cloud CLI to submit jobs.

Start by cloning the Deadline Cloud samples GitHub repository into your AWS CloudShell
environment, then copy the job_attachments_devguide job bundle into your home directory:

git clone https://github.com/aws-deadline/deadline-cloud-samples.git
cp -r deadline-cloud-samples/job_bundles/job_attachments_devguide ~/

Install the Deadline Cloud CLI to submit job bundles:

pip install deadline --upgrade

The job_attachments_devguide job bundle has a single step with a task that runs a bash shell 
script whose file system location is passed as a job parameter. The job parameter’s definition is:

...

Submitting files with a job 98

https://github.com/aws-deadline/deadline-cloud-samples
https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html
https://pypi.org/project/deadline/


Deadline Cloud Developer Guide

- name: ScriptFile 
  type: PATH 
  default: script.sh 
  dataFlow: IN 
  objectType: FILE
...

The dataFlow property’s IN value tells job attachments that the value of the ScriptFile
parameter is an input to the job. The value of the default property is a relative location to the 
job bundle’s directory, but it can also be an absolute path. This parameter definition declares the
script.sh file in the job bundle’s directory as an input file required for the job to run.

Next, make sure that the Deadline Cloud CLI does not have a storage profile configured then 
submit the job to queue Q1:

# Change the value of FARM_ID to your farm's identifier
FARM_ID=farm-00112233445566778899aabbccddeeff
# Change the value of QUEUE1_ID to queue Q1's identifier
QUEUE1_ID=queue-00112233445566778899aabbccddeeff

deadline config set settings.storage_profile_id ''

deadline bundle submit --farm-id $FARM_ID --queue-id $QUEUE1_ID 
 job_attachments_devguide/

The output from the Deadline Cloud CLI after this command is run looks like:

Submitting to Queue: Q1
...
Hashing Attachments  [####################################]  100%
Hashing Summary: 
    Processed 1 file totaling 39.0 B. 
    Skipped re-processing 0 files totaling 0.0 B. 
    Total processing time of 0.0327 seconds at 1.19 KB/s.

Uploading Attachments  [####################################]  100%
Upload Summary: 
    Processed 1 file totaling 39.0 B. 
    Skipped re-processing 0 files totaling 0.0 B. 
    Total processing time of 0.25639 seconds at 152.0 B/s.

Waiting for Job to be created...

Submitting files with a job 99



Deadline Cloud Developer Guide

Submitted job bundle: 
   job_attachments_devguide/
Job creation completed successfully
job-74148c13342e4514b63c7a7518657005

When you submit the job, Deadline Cloud first hashes the script.sh file and then it uploads it to 
Amazon S3.

Deadline Cloud treats the S3 bucket as content-addressable storage. Files are uploaded to S3 
objects. The object name is derived from a hash of the file’s contents. If two files have identical 
contents they have the same hash value regardless of where the files are located or what they are 
named. This enables Deadline Cloud to avoid uploading a file if it is already available.

You can use the AWS CLI to see the objects that were uploaded to Amazon S3:

# The name of queue `Q1`'s job attachments S3 bucket
Q1_S3_BUCKET=$( 
  aws deadline get-queue --farm-id $FARM_ID --queue-id $QUEUE1_ID \ 
    --query 'jobAttachmentSettings.s3BucketName' | tr -d '"'
)

aws s3 ls s3://$Q1_S3_BUCKET --recursive

Two objects were uploaded to S3:

• DeadlineCloud/Data/87cb19095dd5d78fcaf56384ef0e6241.xxh128 – The contents of
script.sh. The value 87cb19095dd5d78fcaf56384ef0e6241 in the object key is the hash of 
the file’s contents, and the extension xxh128 indicates that the hash value was calculated as a 
128 bit xxhash.

• DeadlineCloud/Manifests/<farm-id>/<queue-id>/Inputs/<guid>/
a1d221c7fd97b08175b3872a37428e8c_input – The manifest object for the job submission. 
The values <farm-id>, <queue-id>, and <guid> are your farm identifier, queue identifier, 
and a random hexidecimal value. The value a1d221c7fd97b08175b3872a37428e8c
in this example is a hash value calculated from the string /home/cloudshell-user/
job_attachments_devguide, the directory where script.sh is located.

The manifest object contains the information for the input files on a specific root path 
uploaded to S3 as part of the job’s submission. Download this manifest file (aws s3 cp s3://
$Q1_S3_BUCKET/<objectname>). Its contents are similar to:

Submitting files with a job 100

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://xxhash.com/


Deadline Cloud Developer Guide

{ 
    "hashAlg": "xxh128", 
    "manifestVersion": "2023-03-03", 
    "paths": [ 
        { 
            "hash": "87cb19095dd5d78fcaf56384ef0e6241", 
            "mtime": 1721147454416085, 
            "path": "script.sh", 
            "size": 39 
        } 
    ], 
    "totalSize": 39
}

This indicates that the file script.sh was uploaded, and the hash of that file’s contents is
87cb19095dd5d78fcaf56384ef0e6241. This hash value matches the value in the object name
DeadlineCloud/Data/87cb19095dd5d78fcaf56384ef0e6241.xxh128. It is used by Deadline 
Cloud to know which object to download for this file’s contents.

The full schema for this file is available in GitHub.

When you use the CreateJob operation you can set the location of the manifest objects. You can 
use the GetJob operation to see the location:

{ 
    "attachments": { 
        "file system": "COPIED", 
        "manifests": [ 
            { 
                "inputManifestHash": "5b0db3d311805ea8de7787b64cbbe8b3", 
                "inputManifestPath": "<farm-id>/<queue-id>/Inputs/<guid>/
a1d221c7fd97b08175b3872a37428e8c_input", 
                "rootPath": "/home/cloudshell-user/job_attachments_devguide", 
                "rootPathFormat": "posix" 
            } 
        ] 
    }, 
    ...
}

Submitting files with a job 101

https://github.com/aws-deadline/deadline-cloud/tree/mainline/src/deadline/job_attachments/asset_manifests/schemas
https://docs.aws.amazon.com/deadline-cloud/latest/APIReference/API_CreateJob.html
https://docs.aws.amazon.com/deadline-cloud/latest/APIReference/API_GetJob.html


Deadline Cloud Developer Guide

How Deadline Cloud chooses the files to upload

The files and directories that job attachments considers for upload to Amazon S3 as inputs to your 
job are:

• The values of all PATH-type job parameters defined in the job bundle’s job template with a
dataFlow value of IN or INOUT.

• The files and directories listed as inputs in the job bundle’s asset references file.

If you submit a job with no storage profile, all of the files considered for uploading are uploaded. If 
you submit a job with a storage profile, files are not uploaded to Amazon S3 if they are located in 
the storage profile’s SHARED-type file system locations that are also required file system locations 
for the queue. These locations are expected to be available on the worker hosts that run the job, so 
there is no need to upload them to S3.

In this example, you create SHARED file system locations in WSAll in your AWS CloudShell 
environment and then add files to those file system locations. Use the following command:

# Change the value of WSALL_ID to the identifier of the WSAll storage profile
WSALL_ID=sp-00112233445566778899aabbccddeeff

sudo mkdir -p /shared/common /shared/projects/project1 /shared/projects/project2
sudo chown -R cloudshell-user:cloudshell-user /shared

for d in /shared/common /shared/projects/project1 /shared/projects/project2; do 
  echo "File contents for $d" > ${d}/file.txt
done

Next, add an asset references file to the job bundle that includes all the files that you created as 
inputs for the job. Use the following command:

cat > ${HOME}/job_attachments_devguide/asset_references.yaml << EOF
assetReferences: 
  inputs: 
    filenames: 
    - /shared/common/file.txt 
    directories: 
    - /shared/projects/project1 
    - /shared/projects/project2
EOF

Submitting files with a job 102



Deadline Cloud Developer Guide

Next, configure the Deadline Cloud CLI to submit jobs with the WSAll storage profile, and then 
submit the job bundle:

# Change the value of FARM_ID to your farm's identifier
FARM_ID=farm-00112233445566778899aabbccddeeff
# Change the value of QUEUE1_ID to queue Q1's identifier
QUEUE1_ID=queue-00112233445566778899aabbccddeeff
# Change the value of WSALL_ID to the identifier of the WSAll storage profile
WSALL_ID=sp-00112233445566778899aabbccddeeff

deadline config set settings.storage_profile_id $WSALL_ID

deadline bundle submit --farm-id $FARM_ID --queue-id $QUEUE1_ID 
 job_attachments_devguide/

Deadline Cloud uploads two files to Amazon S3 when you submit the job. You can download the 
manifest objects for the job from S3 to see the uploaded files:

for manifest in $( \ 
  aws deadline get-job --farm-id $FARM_ID --queue-id $QUEUE1_ID --job-id $JOB_ID \ 
    --query 'attachments.manifests[].inputManifestPath' \ 
    | jq -r '.[]'
); do 
  echo "Manifest object: $manifest" 
  aws s3 cp --quiet s3://$Q1_S3_BUCKET/DeadlineCloud/Manifests/$manifest /dev/stdout | 
 jq .
done

In this example, there is a single manifest file with the following contents:

{ 
    "hashAlg": "xxh128", 
    "manifestVersion": "2023-03-03", 
    "paths": [ 
        { 
            "hash": "87cb19095dd5d78fcaf56384ef0e6241", 
            "mtime": 1721147454416085, 
            "path": "home/cloudshell-user/job_attachments_devguide/script.sh", 
            "size": 39 
        }, 
        { 

Submitting files with a job 103



Deadline Cloud Developer Guide

            "hash": "af5a605a3a4e86ce7be7ac5237b51b79", 
            "mtime": 1721163773582362, 
            "path": "shared/projects/project2/file.txt", 
            "size": 44 
        } 
    ], 
    "totalSize": 83
}

Use the GetJob operation for the manifest to see that the rootPath is "/".

aws deadline get-job --farm-id $FARM_ID --queue-id $QUEUE1_ID --job-id $JOB_ID --query 
 'attachments.manifests[*]'

The root path for set of input files is always the longest common subpath of those files. If your job 
was submitted from Windows instead and there are input files with no common subpath because 
they were on different drives, you see a separate root path on each drive. The paths in a manifest 
are always relative to the root path of the manifest, so the input files that were uploaded are:

• /home/cloudshell-user/job_attachments_devguide/script.sh – The script file in the 
job bundle.

• /shared/projects/project2/file.txt – The file in a SHARED file system location in the
WSAll storage profile that is not in the list of required file system locations for queue Q1.

The files in file system locations FSCommon (/shared/common/file.txt) and FS1 (/shared/
projects/project1/file.txt) are not in the list. This is because those file system locations 
are SHARED in the WSAll storage profile and they both are in the list of required file system 
locations in queue Q1.

You can see the file system locations considered SHARED for a job that is submitted with a 
particular storage profile with the GetStorageProfileForQueue operation. To query for storage 
profile WSAll for queue Q1 use the following command:

aws deadline get-storage-profile --farm-id $FARM_ID --storage-profile-id $WSALL_ID

aws deadline get-storage-profile-for-queue --farm-id $FARM_ID --queue-id $QUEUE1_ID --
storage-profile-id $WSALL_ID

Submitting files with a job 104

https://docs.aws.amazon.com/deadline-cloud/latest/APIReference/API_GetJob.html
https://docs.aws.amazon.com/deadline-cloud/latest/APIReference/API_GetStorageProfileForQueue.html


Deadline Cloud Developer Guide

How jobs find job attachment input files

For a job to use the files that Deadline Cloud uploads to Amazon S3 using job attachments, your 
job needs those files available through the file system on the worker hosts. When a session for your 
job runs on a worker host, Deadline Cloud downloads the input files for the job into a temporary 
directory on the worker host’s local drive and adds path mapping rules for each of the job’s root 
paths to its file system location on the local drive.

For this example, start the Deadline Cloud worker agent in an AWS CloudShell tab. Let any 
previously submitted jobs finish running, and then delete the job logs from the logs directory:

rm -rf ~/devdemo-logs/queue-*

The following script modifies the job bundle to show all files in the session’s temporary working 
directory and the contents of the path mapping rules file, and then submits a job with the modified 
bundle:

# Change the value of FARM_ID to your farm's identifier
FARM_ID=farm-00112233445566778899aabbccddeeff
# Change the value of QUEUE1_ID to queue Q1's identifier
QUEUE1_ID=queue-00112233445566778899aabbccddeeff
# Change the value of WSALL_ID to the identifier of the WSAll storage profile
WSALL_ID=sp-00112233445566778899aabbccddeeff

deadline config set settings.storage_profile_id $WSALL_ID

cat > ~/job_attachments_devguide/script.sh << EOF
#!/bin/bash

echo "Session working directory is: \$(pwd)"
echo
echo "Contents:"
find . -type f
echo
echo "Path mapping rules file: \$1"
jq . \$1
EOF

cat > ~/job_attachments_devguide/template.yaml << EOF
specificationVersion: jobtemplate-2023-09
name: "Job Attachments Explorer"
parameterDefinitions:

Submitting files with a job 105

https://github.com/OpenJobDescription/openjd-specifications/wiki/How-Jobs-Are-Run#sessions


Deadline Cloud Developer Guide

- name: ScriptFile 
  type: PATH 
  default: script.sh 
  dataFlow: IN 
  objectType: FILE
steps:
- name: Step 
  script: 
    actions: 
      onRun: 
        command: /bin/bash 
        args: 
        - "{{Param.ScriptFile}}" 
        - "{{Session.PathMappingRulesFile}}"
EOF

deadline bundle submit --farm-id $FARM_ID --queue-id $QUEUE1_ID 
 job_attachments_devguide/

You can look at the log of the job’s run after it has been run by the worker in your AWS CloudShell 
environment:

cat demoenv-logs/queue-*/session*.log

The log shows that the first thing that occurs in the session is the two input files for the job are 
downloaded to the worker:

2024-07-17 01:26:37,824 INFO ==============================================
2024-07-17 01:26:37,825 INFO --------- Job Attachments Download for Job
2024-07-17 01:26:37,825 INFO ==============================================
2024-07-17 01:26:37,825 INFO Syncing inputs using Job Attachments
2024-07-17 01:26:38,116 INFO Downloaded 142.0 B / 186.0 B of 2 files (Transfer rate: 
 0.0 B/s)
2024-07-17 01:26:38,174 INFO Downloaded 186.0 B / 186.0 B of 2 files (Transfer rate: 
 733.0 B/s)
2024-07-17 01:26:38,176 INFO Summary Statistics for file downloads:
Processed 2 files totaling 186.0 B.
Skipped re-processing 0 files totaling 0.0 B.
Total processing time of 0.09752 seconds at 1.91 KB/s.

Next is the output from script.sh run by the job:

Submitting files with a job 106



Deadline Cloud Developer Guide

• The input files uploaded when the job was submitted are located under a directory whose name 
begins with "assetroot" in the session’s temporary directory.

• The input files’ paths have been relocated relative to the "assetroot" directory instead of relative 
to the root path for the job’s input manifest ("/").

• The path mapping rules file contains an additional rule that remaps "/" to the absolute path of 
the "assetroot" directory.

For example:

2024-07-17 01:26:38,264 INFO Output:
2024-07-17 01:26:38,267 INFO Session working directory is: /sessions/session-5b33f
2024-07-17 01:26:38,267 INFO  
2024-07-17 01:26:38,267 INFO Contents:
2024-07-17 01:26:38,269 INFO ./tmp_xdhbsdo.sh
2024-07-17 01:26:38,269 INFO ./tmpdi00052b.json
2024-07-17 01:26:38,269 INFO ./assetroot-assetroot-3751a/shared/projects/project2/
file.txt
2024-07-17 01:26:38,269 INFO ./assetroot-assetroot-3751a/home/cloudshell-user/
job_attachments_devguide/script.sh
2024-07-17 01:26:38,269 INFO  
2024-07-17 01:26:38,270 INFO Path mapping rules file: /sessions/session-5b33f/
tmpdi00052b.json
2024-07-17 01:26:38,282 INFO {
2024-07-17 01:26:38,282 INFO   "version": "pathmapping-1.0",
2024-07-17 01:26:38,282 INFO   "path_mapping_rules": [
2024-07-17 01:26:38,282 INFO     {
2024-07-17 01:26:38,282 INFO       "source_path_format": "POSIX",
2024-07-17 01:26:38,282 INFO       "source_path": "/shared/projects/project1",
2024-07-17 01:26:38,283 INFO       "destination_path": "/mnt/projects/project1"
2024-07-17 01:26:38,283 INFO     },
2024-07-17 01:26:38,283 INFO     {
2024-07-17 01:26:38,283 INFO       "source_path_format": "POSIX",
2024-07-17 01:26:38,283 INFO       "source_path": "/shared/common",
2024-07-17 01:26:38,283 INFO       "destination_path": "/mnt/common"
2024-07-17 01:26:38,283 INFO     },
2024-07-17 01:26:38,283 INFO     {
2024-07-17 01:26:38,283 INFO       "source_path_format": "POSIX",
2024-07-17 01:26:38,283 INFO       "source_path": "/",
2024-07-17 01:26:38,283 INFO       "destination_path": "/sessions/session-5b33f/
assetroot-assetroot-3751a"
2024-07-17 01:26:38,283 INFO     }

Submitting files with a job 107



Deadline Cloud Developer Guide

2024-07-17 01:26:38,283 INFO   ]
2024-07-17 01:26:38,283 INFO }

Note

If the job you submit has multiple manifests with different root paths, there is a different 
"assetroot"-named directory for each of the root paths.

If you need to reference the relocated file system location of one of your input files, directories, or 
file system locations you can either process the path mapping rules file in your job and perform the 
remapping yourself, or add a PATH type job parameter to the job template in your job bundle and 
pass the value that you need to remap as the value of that parameter. For example, the following 
example modifies the job bundle to have one of these job parameters and then submits a job with 
the file system location /shared/projects/project2 as its value:

cat > ~/job_attachments_devguide/template.yaml << EOF
specificationVersion: jobtemplate-2023-09
name: "Job Attachments Explorer"
parameterDefinitions:
- name: LocationToRemap 
  type: PATH
steps:
- name: Step 
  script: 
    actions: 
      onRun: 
        command: /bin/echo 
        args: 
        - "The location of {{RawParam.LocationToRemap}} in the session is 
 {{Param.LocationToRemap}}"
EOF

deadline bundle submit --farm-id $FARM_ID --queue-id $QUEUE1_ID 
 job_attachments_devguide/ \ 
  -p LocationToRemap=/shared/projects/project2

The log file for this job’s run contains its output:

2024-07-17 01:40:35,283 INFO Output:

Submitting files with a job 108



Deadline Cloud Developer Guide

2024-07-17 01:40:35,284 INFO The location of /shared/projects/project2 in the session 
 is /sessions/session-5b33f/assetroot-assetroot-3751a

Getting output files from a job

This example shows how Deadline Cloud identifies the output files that your jobs generate, decides 
whether to upload those files to Amazon S3, and how you can get those output files on your 
workstation.

Use the job_attachments_devguide_output job bundle instead of the
job_attachments_devguide job bundle for this example. Start by making a copy of the bundle 
in your AWS CloudShell environment from your clone of the Deadline Cloud samples GitHub 
repository:

cp -r deadline-cloud-samples/job_bundles/job_attachments_devguide_output ~/

The important difference between this job bundle and the job_attachments_devguide job 
bundle is the addition of a new job parameter in the job template:

...
parameterDefinitions:
...
- name: OutputDir 
  type: PATH 
  objectType: DIRECTORY 
  dataFlow: OUT 
  default: ./output_dir 
  description: This directory contains the output for all steps.
...

The dataFlow property of the parameter has the value OUT. Deadline Cloud uses the value of
dataFlow job parameters with a value of OUT or INOUT as outputs of your job. If the file system 
location passed as a value to these kinds of job parameters is remapped to a local file system 
location on the worker that runs the job, then Deadline Cloud will look for new files at the location 
and upload those to Amazon S3 as job outputs.

To see how this works, first start the Deadline Cloud worker agent in an AWS CloudShell tab. Let 
any previously submitted jobs finish running. Then delete the job logs from the logs directory:

rm -rf ~/devdemo-logs/queue-*

Getting output files from a job 109



Deadline Cloud Developer Guide

Next, submit a job with this job bundle. After the worker running in your CloudShell runs, look at 
the logs:

# Change the value of FARM_ID to your farm's identifier
FARM_ID=farm-00112233445566778899aabbccddeeff
# Change the value of QUEUE1_ID to queue Q1's identifier
QUEUE1_ID=queue-00112233445566778899aabbccddeeff
# Change the value of WSALL_ID to the identifier of the WSAll storage profile
WSALL_ID=sp-00112233445566778899aabbccddeeff

deadline config set settings.storage_profile_id $WSALL_ID

deadline bundle submit --farm-id $FARM_ID --queue-id $QUEUE1_ID ./
job_attachments_devguide_output

The log shows that a file was detected as output and uploaded to Amazon S3:

2024-07-17 02:13:10,873 INFO ----------------------------------------------
2024-07-17 02:13:10,873 INFO Uploading output files to Job Attachments
2024-07-17 02:13:10,873 INFO ----------------------------------------------
2024-07-17 02:13:10,873 INFO Started syncing outputs using Job Attachments
2024-07-17 02:13:10,955 INFO Found 1 file totaling 117.0 B in output directory: /
sessions/session-7efa/assetroot-assetroot-3751a/output_dir
2024-07-17 02:13:10,956 INFO Uploading output manifest to 
 DeadlineCloud/Manifests/farm-0011/queue-2233/job-4455/step-6677/
task-6677-0/2024-07-17T02:13:10.835545Z_sessionaction-8899-1/
c6808439dfc59f86763aff5b07b9a76c_output
2024-07-17 02:13:10,988 INFO Uploading 1 output file to S3: s3BucketName/DeadlineCloud/
Data
2024-07-17 02:13:11,011 INFO Uploaded 117.0 B / 117.0 B of 1 file (Transfer rate: 0.0 
 B/s)
2024-07-17 02:13:11,011 INFO Summary Statistics for file uploads:
Processed 1 file totaling 117.0 B.
Skipped re-processing 0 files totaling 0.0 B.
Total processing time of 0.02281 seconds at 5.13 KB/s.

The log also shows that Deadline Cloud created a new manifest object in the Amazon S3 bucket 
configured for use by job attachments on queue Q1. The name of the manifest object is derived 
from the farm, queue, job, step, task, timestamp, and sessionaction identifiers of the task that 
generated the output. Download this manifest file to see where Deadline Cloud placed the output 
files for this task:

Getting output files from a job 110



Deadline Cloud Developer Guide

# The name of queue `Q1`'s job attachments S3 bucket
Q1_S3_BUCKET=$( 
  aws deadline get-queue --farm-id $FARM_ID --queue-id $QUEUE1_ID \ 
    --query 'jobAttachmentSettings.s3BucketName' | tr -d '"'
)

# Fill this in with the object name from your log
OBJECT_KEY="DeadlineCloud/Manifests/..."

aws s3 cp --quiet s3://$Q1_S3_BUCKET/$OBJECT_KEY /dev/stdout | jq .

The manifest looks like:

{ 
  "hashAlg": "xxh128", 
  "manifestVersion": "2023-03-03", 
  "paths": [ 
    { 
      "hash": "34178940e1ef9956db8ea7f7c97ed842", 
      "mtime": 1721182390859777, 
      "path": "output_dir/output.txt", 
      "size": 117 
    } 
  ], 
  "totalSize": 117
}

This shows that the content of the output file is saved to Amazon S3 the same way that job input 
files are saved. Similar to input files, the output file is stored in S3 with an object name containing 
the hash of the file and the prefix DeadlineCloud/Data.

$ aws s3 ls --recursive s3://$Q1_S3_BUCKET | grep 34178940e1ef9956db8ea7f7c97ed842
2024-07-17 02:13:11        117 DeadlineCloud/
Data/34178940e1ef9956db8ea7f7c97ed842.xxh128

You can download the output of a job to your workstation using the Deadline Cloud monitor or the 
Deadline Cloud CLI:

deadline job download-output --farm-id $FARM_ID --queue-id $QUEUE1_ID --job-id $JOB_ID

Getting output files from a job 111



Deadline Cloud Developer Guide

The value of the OutputDir job parameter in the submitted job is ./output_dir, so the output 
are downloaded to a directory called output_dir within the job bundle directory. If you specified 
an absolute path or different relative location as the value for OutputDir, then the output files 
would be downloaded to that location instead.

$ deadline job download-output --farm-id $FARM_ID --queue-id $QUEUE1_ID --job-id 
 $JOB_ID
Downloading output from Job 'Job Attachments Explorer: Output'

Summary of files to download: 
    /home/cloudshell-user/job_attachments_devguide_output/output_dir/output.txt (1 
 file)

You are about to download files which may come from multiple root directories. Here are 
 a list of the current root directories:
[0] /home/cloudshell-user/job_attachments_devguide_output
> Please enter the index of root directory to edit, y to proceed without changes, or n 
 to cancel the download (0, y, n) [y]:  

Downloading Outputs  [####################################]  100%
Download Summary: 
    Downloaded 1 files totaling 117.0 B. 
    Total download time of 0.14189 seconds at 824.0 B/s. 
    Download locations (total file counts): 
        /home/cloudshell-user/job_attachments_devguide_output (1 file)

Using files from a step in a dependent step

This example shows how one step in a job can access the outputs from a step that it depends on in 
the same job.

To make the outputs of one step available to another, Deadline Cloud adds additional actions to a 
session to download those outputs before running tasks in the session. You tell it which steps to 
download the outputs from by declaring those steps as dependencies of the step that needs to use 
the outputs.

Use the job_attachments_devguide_output job bundle for this example. Start by making a 
copy in your AWS CloudShell environment from your clone of the Deadline Cloud samples GitHub 
repository. Modify it to add a dependent step that only runs after the existing step and uses that 
step’s output:

Using files in a dependent step 112



Deadline Cloud Developer Guide

cp -r deadline-cloud-samples/job_bundles/job_attachments_devguide_output ~/

cat >> job_attachments_devguide_output/template.yaml << EOF
- name: DependentStep 
  dependencies: 
  - dependsOn: Step 
  script: 
    actions: 
      onRun: 
        command: /bin/cat 
        args: 
        - "{{Param.OutputDir}}/output.txt"
EOF

The job created with this modified job bundle runs as two separate sessions, one for the task in the 
step "Step" and then a second for the task in the step "DependentStep".

First start the Deadline Cloud worker agent in an CloudShell tab. Let any previously submitted jobs 
finish running, then delete the job logs from the logs directory:

rm -rf ~/devdemo-logs/queue-*

Next, submit a job using the modified job_attachments_devguide_output job bundle. Wait 
for it to finish running on the worker in your CloudShell environment. Look at the logs for the two 
sessions:

# Change the value of FARM_ID to your farm's identifier
FARM_ID=farm-00112233445566778899aabbccddeeff
# Change the value of QUEUE1_ID to queue Q1's identifier
QUEUE1_ID=queue-00112233445566778899aabbccddeeff
# Change the value of WSALL_ID to the identifier of the WSAll storage profile
WSALL_ID=sp-00112233445566778899aabbccddeeff

deadline config set settings.storage_profile_id $WSALL_ID

deadline bundle submit --farm-id $FARM_ID --queue-id $QUEUE1_ID ./
job_attachments_devguide_output

# Wait for the job to finish running, and then:

cat demoenv-logs/queue-*/session-*

Using files in a dependent step 113



Deadline Cloud Developer Guide

In the session log for the task in the step named DependentStep, there are two separate 
download actions run:

2024-07-17 02:52:05,666 INFO ==============================================
2024-07-17 02:52:05,666 INFO --------- Job Attachments Download for Job
2024-07-17 02:52:05,667 INFO ==============================================
2024-07-17 02:52:05,667 INFO Syncing inputs using Job Attachments
2024-07-17 02:52:05,928 INFO Downloaded 207.0 B / 207.0 B of 1 file (Transfer rate: 0.0 
 B/s)
2024-07-17 02:52:05,929 INFO Summary Statistics for file downloads:
Processed 1 file totaling 207.0 B.
Skipped re-processing 0 files totaling 0.0 B.
Total processing time of 0.03954 seconds at 5.23 KB/s.

2024-07-17 02:52:05,979 INFO  
2024-07-17 02:52:05,979 INFO ==============================================
2024-07-17 02:52:05,979 INFO --------- Job Attachments Download for Step
2024-07-17 02:52:05,979 INFO ==============================================
2024-07-17 02:52:05,980 INFO Syncing inputs using Job Attachments
2024-07-17 02:52:06,133 INFO Downloaded 117.0 B / 117.0 B of 1 file (Transfer rate: 0.0 
 B/s)
2024-07-17 02:52:06,134 INFO Summary Statistics for file downloads:
Processed 1 file totaling 117.0 B.
Skipped re-processing 0 files totaling 0.0 B.
Total processing time of 0.03227 seconds at 3.62 KB/s.

The first action downloads the script.sh file used by the step named "Step." The second action 
downloads the outputs from that step. Deadline Cloud determines which files to download by 
using the output manifest generated by that step as an input manifest.

Late in the same log, you can see the output from the step named "DependentStep":

2024-07-17 02:52:06,213 INFO Output:
2024-07-17 02:52:06,216 INFO Script location: /sessions/session-5b33f/
assetroot-assetroot-3751a/script.sh

Using files in a dependent step 114



Deadline Cloud Developer Guide

Security in Deadline Cloud

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers 
and network architectures that are built to meet the requirements of the most security-sensitive 
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes 
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS 
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS 
Compliance Programs. To learn about the compliance programs that apply to AWS Deadline 
Cloud, see AWS services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You 
are also responsible for other factors including the sensitivity of your data, your company’s 
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when 
using Deadline Cloud. The following topics show you how to configure Deadline Cloud to meet 
your security and compliance objectives. You also learn how to use other AWS services that help 
you to monitor and secure your Deadline Cloud resources.

Topics

• Data protection in Deadline Cloud

• Identity and Access Management in Deadline Cloud

• Compliance validation for Deadline Cloud

• Resilience in Deadline Cloud

• Infrastructure security in Deadline Cloud

• Configuration and vulnerability analysis in Deadline Cloud

• Cross-service confused deputy prevention

• Access AWS Deadline Cloud using an interface endpoint (AWS PrivateLink)

• Security best practices for Deadline Cloud

115

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/


Deadline Cloud Developer Guide

Data protection in Deadline Cloud

The AWS shared responsibility model applies to data protection in AWS Deadline Cloud. As 
described in this model, AWS is responsible for protecting the global infrastructure that runs all 
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on 
this infrastructure. You are also responsible for the security configuration and management tasks 
for the AWS services that you use. For more information about data privacy, see the Data Privacy 
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model 
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set 
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM). 
That way, each user is given only the permissions necessary to fulfill their job duties. We also 
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail 
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User 
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and 
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a 
command line interface or an API, use a FIPS endpoint. For more information about the available 
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your 
customers' email addresses, into tags or free-form text fields such as a Name field. This includes 
when you work with Deadline Cloud or other AWS services using the console, API, AWS CLI, or AWS 
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for 
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that 
you do not include credentials information in the URL to validate your request to that server.

The data entered into name fields in Deadline Cloud job templates may also be included in billing 
or diagnostic logs and should not contain confidential or sensitive information.

Data protection 116

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/


Deadline Cloud Developer Guide

Topics

• Encryption at rest

• Encryption in transit

• Key management

• Inter-network traffic privacy

• Opt out

Encryption at rest

AWS Deadline Cloud protects sensitive data by encrypting it at rest using encryption keys stored in
AWS Key Management Service (AWS KMS). Encryption at rest is available in all AWS Regions where 
Deadline Cloud is available.

Encrypting data means sensitive data saved on disks isn't readable by a user or application without 
a valid key. Only a party with a valid managed key can decrypt the data.

For information about how Deadline Cloud uses AWS KMS for encrypting data at rest, see Key 
management.

Encryption in transit

For data in transit, AWS Deadline Cloud uses Transport Layer Security (TLS) 1.2 or 1.3 to encrypt 
data sent between the service and workers. We require TLS 1.2 and recommend TLS 1.3. 
Additionally, if you use a virtual private cloud (VPC), you can use AWS PrivateLink to establish a 
private connection between your VPC and Deadline Cloud.

Key management

When creating a new farm, you can choose one of the following keys to encrypt your farm data:

• AWS owned KMS key – Default encryption type if you don't specify a key when you create the 
farm. The KMS key is owned by AWS Deadline Cloud. You can't view, manage, or use AWS owned 
keys. However, you don't need to take any action to protect the keys that encrypt your data. For 
more information, see AWS owned keys in the AWS Key Management Service developer guide.

• Customer managed KMS key – You specify a customer managed key when you create a farm. All 
of the content within the farm is encrypted with the KMS key. The key is stored in your account 

Encryption at rest 117

https://aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk


Deadline Cloud Developer Guide

and is created, owned, and managed by you and AWS KMS charges apply. You have full control 
over the KMS key. You can perform such tasks as:

• Establishing and maintaining key polices

• Establishing and maintaining IAM policies and grants

• Enabling and disabling key policies

• Adding tags

• Creating key aliases

You can't manually rotate a customer owned key used with a Deadline Cloud farm. Automatic 
rotation of the key is supported.

For more information, see Customer owned keys in the AWS Key Management Service Developer 
Guide.

To create a customer managed key, follow the steps for Creating symmetric customer managed 
keys in the AWS Key Management Service Developer Guide.

How Deadline Cloud use AWS KMS grants

Deadline Cloud requires a grant to use your customer managed key. When you create a farm 
encrypted with a customer managed key, Deadline Cloud creates a grant on your behalf by sending 
a CreateGrant request to AWS KMS to get access to the KMS key that you specified.

Deadline Cloud uses multiple grants. Each grant is used by a different part of Deadline Cloud that 
needs to encrypt or decrypt your data. Deadline Cloud also uses grants to allow access to other 
AWS services used to store data on your behalf, such as Amazon Simple Storage Service, Amazon 
Elastic Block Store, or OpenSearch.

Grants that enable Deadline Cloud to manage machines in a service-managed fleet include a 
Deadline Cloud account number and role in the GranteePrincipal instead of a service principal. 
While not typical, this is necessary to encrypt Amazon EBS volumes for workers in service-managed 
fleets using the customer managed KMS key specified for the farm.

Customer managed key policy

Key policies control access to your customer managed key. Each key must have exactly one key 
policy that contains statements that determine who can use the key and how they can use it. When 
Key management 118

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html


Deadline Cloud Developer Guide

you create you customer managed key, you can specify a key policy. For more information, see
Managing access to customer managed keys in the AWS Key Management Service Developer Guide.

Minimal IAM policy for CreateFarm

To use your customer managed key to create farms using the console or the CreateFarm API 
operation, the following AWS KMS API operations must be permitted:

• kms:CreateGrant – Adds a grant to a customer managed key. Grants console access to a 
specified AWS KMS key. For more informations, see Using grants in the AWS Key Management 
Service developer guide.

• kms:Decrypt – Allows Deadline Cloud to decrypt data in the farm.

• kms:DescribeKey – Provides the customer managed key details to allow Deadline Cloud to 
validate the key.

• kms:GenerateDataKey – Allows Deadline Cloud to encrypt data using a unique data key.

The following policy statement grants the necessary permissions for the CreateFarm operation.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "DeadlineCreateGrants", 
            "Effect": "Allow", 
            "Action": [ 
                "kms:Decrypt", 
                "kms:GenerateDataKey", 
                "kms:CreateGrant", 
                "kms:DescribeKey" 
            ], 
            "Resource": "arn:aws::kms:us-west-2:111122223333:key/1234567890abcdef0", 
            "Condition": { 
                "StringEquals": { 
                    "kms:ViaService": "deadline.us-west-2.amazonaws.com" 
                } 
            } 
        } 
    ]
}

Key management 119

https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#managing-access
https://docs.aws.amazon.com/deadline-cloud/latest/APIReference/API_CreateFarm.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html


Deadline Cloud Developer Guide

Minimal IAM policy for read-only operations

To use your customer managed key for read-only Deadline Cloud operations, such getting 
information about farms, queues, and fleets. The following AWS KMS API operations must be 
permitted:

• kms:Decrypt – Allows Deadline Cloud to decrypt data in the farm.

• kms:DescribeKey – Provides the customer managed key details to allow Deadline Cloud to 
validate the key.

The following policy statement grants the necessary permissions for read-only operations.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "DeadlineReadOnly", 
            "Effect": "Allow", 
            "Action": [ 
                "kms:Decrypt", 
                "kms:DescribeKey" 
            ], 
            "Resource": "arn:aws::kms:us-west-2:111122223333:key/a1b2c3d4-5678-90ab-
cdef-EXAMPLE11111", 
            "Condition": { 
                "StringEquals": { 
                    "kms:ViaService": "deadline.us-west-2.amazonaws.com" 
                } 
            } 
        } 
    ]
}

Minimal IAM policy for read-write operations

To use your customer managed key for read-write Deadline Cloud operations, such as creating and 
updating farms, queues, and fleets. The following AWS KMS API operations must be permitted:

• kms:Decrypt – Allows Deadline Cloud to decrypt data in the farm.

• kms:DescribeKey – Provides the customer managed key details to allow Deadline Cloud to 
validate the key.

Key management 120

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html


Deadline Cloud Developer Guide

• kms:GenerateDataKey – Allows Deadline Cloud to encrypt data using a unique data key.

The following policy statement grants the necessary permissions for the CreateFarm operation.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "DeadlineReadWrite", 
            "Effect": "Allow", 
            "Action": [ 
                "kms:Decrypt", 
                "kms:DescribeKey", 
                "kms:GenerateDataKey", 
            ], 
            "Resource": "arn:aws::kms:us-west-2:111122223333:key/a1b2c3d4-5678-90ab-
cdef-EXAMPLE11111", 
            "Condition": { 
                "StringEquals": { 
                    "kms:ViaService": "deadline.us-west-2.amazonaws.com" 
                } 
            } 
        } 
    ]
}

Monitoring your encryption keys

When you use an AWS KMS customer managed key with your Deadline Cloud farms, you can use
AWS CloudTrail or Amazon CloudWatch Logs to track requests that Deadline Cloud sends to AWS 
KMS.

CloudTrail event for grants

The following example CloudTrail event occurs when grants are created, typically when you call the
CreateFarm, CreateMonitor, or CreateFleet operation.

{ 
    "eventVersion": "1.08", 
    "userIdentity": { 
        "type": "AssumedRole", 
        "principalId": "AROAIGDTESTANDEXAMPLE:SampleUser01", 

Key management 121

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html


Deadline Cloud Developer Guide

        "arn": "arn:aws::sts::111122223333:assumed-role/Admin/SampleUser01", 
        "accountId": "111122223333", 
        "accessKeyId": "AKIAIOSFODNN7EXAMPLE3", 
        "sessionContext": { 
            "sessionIssuer": { 
                "type": "Role", 
                "principalId": "AROAIGDTESTANDEXAMPLE", 
                "arn": "arn:aws::iam::111122223333:role/Admin", 
                "accountId": "111122223333", 
                "userName": "Admin" 
            }, 
            "webIdFederationData": {}, 
            "attributes": { 
                "creationDate": "2024-04-23T02:05:26Z", 
                "mfaAuthenticated": "false" 
            } 
        }, 
        "invokedBy": "deadline.amazonaws.com" 
    }, 
    "eventTime": "2024-04-23T02:05:35Z", 
    "eventSource": "kms.amazonaws.com", 
    "eventName": "CreateGrant", 
    "awsRegion": "us-west-2", 
    "sourceIPAddress": "deadline.amazonaws.com", 
    "userAgent": "deadline.amazonaws.com", 
    "requestParameters": { 
        "operations": [ 
            "CreateGrant", 
            "Decrypt", 
            "DescribeKey", 
            "Encrypt", 
            "GenerateDataKey" 
        ], 
        "constraints": { 
            "encryptionContextSubset": { 
                "aws:deadline:farmId": "farm-abcdef12345678900987654321fedcba", 
                "aws:deadline:accountId": "111122223333" 
            } 
        }, 
        "granteePrincipal": "deadline.amazonaws.com", 
        "keyId": "arn:aws::kms:us-west-2:111122223333:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111", 
        "retiringPrincipal": "deadline.amazonaws.com" 
    }, 

Key management 122



Deadline Cloud Developer Guide

    "responseElements": { 
        "grantId": "6bbe819394822a400fe5e3a75d0e9ef16c1733143fff0c1fc00dc7ac282a18a0", 
        "keyId": "arn:aws::kms:us-west-2:111122223333:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111" 
    }, 
    "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222", 
    "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE33333", 
    "readOnly": false, 
    "resources": [ 
        { 
            "accountId": "AWS Internal", 
            "type": "AWS::KMS::Key", 
            "ARN": "arn:aws::kms:us-west-2:111122223333:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE44444" 
        } 
    ], 
    "eventType": "AwsApiCall", 
    "managementEvent": true, 
    "recipientAccountId": "111122223333", 
    "eventCategory": "Management"
}

CloudTrail event for decryption

The following example CloudTrail event occurs when decrypting values using the customer 
managed KMS key.

{ 
    "eventVersion": "1.08", 
    "userIdentity": { 
        "type": "AssumedRole", 
        "principalId": "AROAIGDTESTANDEXAMPLE:SampleUser01", 
        "arn": "arn:aws::sts::111122223333:assumed-role/SampleRole/SampleUser01", 
        "accountId": "111122223333", 
        "accessKeyId": "AKIAIOSFODNN7EXAMPLE", 
        "sessionContext": { 
            "sessionIssuer": { 
                "type": "Role", 
                "principalId": "AROAIGDTESTANDEXAMPLE", 
                "arn": "arn:aws::iam::111122223333:role/SampleRole", 
                "accountId": "111122223333", 
                "userName": "SampleRole" 
            }, 

Key management 123



Deadline Cloud Developer Guide

            "webIdFederationData": {}, 
            "attributes": { 
                "creationDate": "2024-04-23T18:46:51Z", 
                "mfaAuthenticated": "false" 
            } 
        }, 
        "invokedBy": "deadline.amazonaws.com" 
    }, 
    "eventTime": "2024-04-23T18:51:44Z", 
    "eventSource": "kms.amazonaws.com", 
    "eventName": "Decrypt", 
    "awsRegion": "us-west-2", 
    "sourceIPAddress": "deadline.amazonaws.com", 
    "userAgent": "deadline.amazonaws.com", 
    "requestParameters": { 
        "encryptionContext": { 
            "aws:deadline:farmId": "farm-abcdef12345678900987654321fedcba", 
            "aws:deadline:accountId": "111122223333", 
            "aws-crypto-public-key": "AotL+SAMPLEVALUEiOMEXAMPLEaaqNOTREALaGTESTONLY
+p/5H+EuKd4Q==" 
        }, 
        "encryptionAlgorithm": "SYMMETRIC_DEFAULT", 
        "keyId": "arn:aws::kms:us-west-2:111122223333:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111" 
    }, 
    "responseElements": null, 
    "requestID": "aaaaaaaa-bbbb-cccc-dddd-eeeeeeffffff", 
    "eventID": "ffffffff-eeee-dddd-cccc-bbbbbbaaaaaa", 
    "readOnly": true, 
    "resources": [ 
        { 
            "accountId": "111122223333", 
            "type": "AWS::KMS::Key", 
            "ARN": "arn:aws::kms:us-west-2:111122223333:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111" 
        } 
    ], 
    "eventType": "AwsApiCall", 
    "managementEvent": true, 
    "recipientAccountId": "111122223333", 
    "eventCategory": "Management"
}

Key management 124



Deadline Cloud Developer Guide

CloudTrail event for encryption

The following example CloudTrail event occurs when encrypting values using the customer 
managed KMS key.

{ 
    "eventVersion": "1.08", 
    "userIdentity": { 
        "type": "AssumedRole", 
        "principalId": "AROAIGDTESTANDEXAMPLE:SampleUser01", 
        "arn": "arn:aws::sts::111122223333:assumed-role/SampleRole/SampleUser01", 
        "accountId": "111122223333", 
        "accessKeyId": "AKIAIOSFODNN7EXAMPLE", 
        "sessionContext": { 
            "sessionIssuer": { 
                "type": "Role", 
                "principalId": "AROAIGDTESTANDEXAMPLE", 
                "arn": "arn:aws::iam::111122223333:role/SampleRole", 
                "accountId": "111122223333", 
                "userName": "SampleRole" 
            }, 
            "webIdFederationData": {}, 
            "attributes": { 
                "creationDate": "2024-04-23T18:46:51Z", 
                "mfaAuthenticated": "false" 
            } 
        }, 
        "invokedBy": "deadline.amazonaws.com" 
    }, 
    "eventTime": "2024-04-23T18:52:40Z", 
    "eventSource": "kms.amazonaws.com", 
    "eventName": "GenerateDataKey", 
    "awsRegion": "us-west-2", 
    "sourceIPAddress": "deadline.amazonaws.com", 
    "userAgent": "deadline.amazonaws.com", 
    "requestParameters": { 
        "numberOfBytes": 32, 
        "encryptionContext": { 
            "aws:deadline:farmId": "farm-abcdef12345678900987654321fedcba", 
            "aws:deadline:accountId": "111122223333", 
            "aws-crypto-public-key": "AotL+SAMPLEVALUEiOMEXAMPLEaaqNOTREALaGTESTONLY
+p/5H+EuKd4Q==" 
        }, 

Key management 125



Deadline Cloud Developer Guide

        "keyId": "arn:aws::kms:us-
west-2:111122223333:key/abcdef12-3456-7890-0987-654321fedcba" 
    }, 
    "responseElements": null, 
    "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
    "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222", 
    "readOnly": true, 
    "resources": [ 
        { 
            "accountId": "111122223333", 
            "type": "AWS::KMS::Key", 
            "ARN": "arn:aws::kms:us-west-2:111122223333:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE33333" 
        } 
    ], 
    "eventType": "AwsApiCall", 
    "managementEvent": true, 
    "recipientAccountId": "111122223333", 
    "eventCategory": "Management"
}

Deleting a customer managed KMS key

Deleting a customer managed KMS key in AWS Key Management Service (AWS KMS) is destructive 
and potentially dangerous. It irreversibly deletes the key material and all metadata associated with 
the key. After a customer managed KMS key is deleted, you can no longer decrypt the data that 
was encrypted by that key. This means that the data becomes unrecoverable.

This is why AWS KMS gives customers a waiting period of up to 30 days before deleting the KMS 
key. The default waiting period is 30 days.

About the waiting period

Because it's destructive and potentially dangerous to delete a customer managed KMS key, we 
require that you set a waiting period of 7–30 days. The default waiting period is 30 days.

However, the actual waiting period might be up to 24 hours longer than the period you scheduled. 
To get the actual date and time when the key will be deleted, use the DescribeKey operation. You 
can also see the scheduled deletion date of a key in the AWS KMS console on the key’s detail page, 
in the General configuration section. Notice the time zone.

During the waiting period, the customer managed key’s status and key state is Pending deletion.

Key management 126

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys-console.html#viewing-details-navigate


Deadline Cloud Developer Guide

• A customer managed KMS key that is pending deletion can’t be used in any cryptographic 
operations.

• AWS KMS doesn’t rotate the backing keys of customer managed KMS keys that are pending 
deletion.

For more information about deleting a customer managed KMS key, see Deleting customer master 
keys in the AWS Key Management Service Developer Guide.

Inter-network traffic privacy

AWS Deadline Cloud supports Amazon Virtual Private Cloud (Amazon VPC) to secure connections. 
Amazon VPC provides features that you can use to increase and monitor the security for your 
virtual private cloud (VPC).

You can set up a customer-managed fleet (CMF) with Amazon Elastic Compute Cloud (Amazon 
EC2) instances that run inside a VPC. By deploying Amazon VPC endpoints to use AWS PrivateLink, 
traffic between workers in your CMF and the Deadline Cloud endpoint stays within your VPC. 
Furthermore, you can configure your VPC to restrict internet access to your instances.

In service-managed fleets, workers aren't reachable from the internet, but they do have internet 
access and connect to the Deadline Cloud service over the internet.

Opt out

AWS Deadline Cloud collects certain operational information to help us develop and improve 
Deadline Cloud. The collected data includes things such as your AWS account ID and user ID, so 
that we can correctly identify you if you have an issue with the Deadline Cloud. We also collect 
Deadline Cloud specific information, such as Resource IDs (a FarmID or QueueID when applicable), 
the product name (for example, JobAttachments, WorkerAgent, and more) and the product version.

You can choose to opt out from this data collection using application configuration. Each computer 
interacting with Deadline Cloud, both client workstations and fleet workers, needs to opt out 
separately.

Deadline Cloud monitor - desktop

Deadline Cloud monitor - desktop collects operational information, such as when crashes occur 
and when the application is opened, to help us know when you are having problems with the 

Inter-network traffic privacy 127

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#cryptographic-operations
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#cryptographic-operations
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html#rotate-keys-how-it-works
https://docs.aws.amazon.com/kms/latest/developerguide/deleting-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/deleting-keys.html


Deadline Cloud Developer Guide

application. To opt out from the collection of this operational information, go to the settings page 
and clear Turn on data collection to measure Deadline Cloud Monitor's performance.

After you opt out, the desktop monitor no longer sends the operational data. Any previously 
collected data is retained and may still be used to improve the service. For more information, see
Data Privacy FAQ.

AWS Deadline Cloud CLI and Tools

The AWS Deadline Cloud CLI, submitters, and worker agent all collect operational information 
such as when crashes occur and when jobs are submitted to help us know when you are having 
problems with these applications. To opt out from the collection of this operational information, 
use any of the following methods:

• In the terminal, enter deadline config set telemetry.opt_out true.

This will opt out the CLI, submitters, and worker agent when running as the current user.

• When installing the Deadline Cloud worker agent, add the --telemetry-opt-out command 
line argument. For example,  ./install.sh --farm-id $FARM_ID --fleet-id 
$FLEET_ID --telemetry-opt-out.

• Before running the worker agent, CLI, or submitter, set an environment variable:
DEADLINE_CLOUD_TELEMETRY_OPT_OUT=true

After you opt out, the Deadline Cloud tools no longer send the operational data. Any previously 
collected data is retained and may still be used to improve the service. For more information, see
Data Privacy FAQ.

Identity and Access Management in Deadline Cloud

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely 
control access to AWS resources. IAM administrators control who can be authenticated (signed in) 
and authorized (have permissions) to use Deadline Cloud resources. IAM is an AWS service that you 
can use with no additional charge.

Topics

• Audience

Identity and Access Management 128

https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/compliance/data-privacy-faq/


Deadline Cloud Developer Guide

• Authenticating with identities

• Managing access using policies

• How Deadline Cloud works with IAM

• Identity-based policy examples for Deadline Cloud

• AWS managed policies for Deadline Cloud

• Troubleshooting AWS Deadline Cloud identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you 
do in Deadline Cloud.

Service user – If you use the Deadline Cloud service to do your job, then your administrator 
provides you with the credentials and permissions that you need. As you use more Deadline Cloud 
features to do your work, you might need additional permissions. Understanding how access is 
managed can help you request the right permissions from your administrator. If you cannot access 
a feature in Deadline Cloud, see Troubleshooting AWS Deadline Cloud identity and access.

Service administrator – If you're in charge of Deadline Cloud resources at your company, you 
probably have full access to Deadline Cloud. It's your job to determine which Deadline Cloud 
features and resources your service users should access. You must then submit requests to your IAM 
administrator to change the permissions of your service users. Review the information on this page 
to understand the basic concepts of IAM. To learn more about how your company can use IAM with 
Deadline Cloud, see How Deadline Cloud works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you 
can write policies to manage access to Deadline Cloud. To view example Deadline Cloud identity-
based policies that you can use in IAM, see Identity-based policy examples for Deadline Cloud.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an 
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity 
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on 

Audience 129



Deadline Cloud Developer Guide

authentication, and your Google or Facebook credentials are examples of federated identities. 
When you sign in as a federated identity, your administrator previously set up identity federation 
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the 
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS 
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a 
command line interface (CLI) to cryptographically sign your requests by using your credentials. If 
you don't use AWS tools, you must sign requests yourself. For more information about using the 
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User 
Guide.

Regardless of the authentication method that you use, you might be required to provide additional 
security information. For example, AWS recommends that you use multi-factor authentication 
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM 
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to 
all AWS services and resources in the account. This identity is called the AWS account root user and 
is accessed by signing in with the email address and password that you used to create the account. 
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your 
root user credentials and use them to perform the tasks that only the root user can perform. For 
the complete list of tasks that require you to sign in as the root user, see Tasks that require root 
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use 
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS 
Directory Service, the Identity Center directory, or any user that accesses AWS services by using 
credentials provided through an identity source. When federated identities access AWS accounts, 
they assume roles, and the roles provide temporary credentials.

Authenticating with identities 130

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks


Deadline Cloud Developer Guide

For centralized access management, we recommend that you use AWS IAM Identity Center. You can 
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users 
and groups in your own identity source for use across all your AWS accounts and applications. For 
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity 
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person 
or application. Where possible, we recommend relying on temporary credentials instead of creating 
IAM users who have long-term credentials such as passwords and access keys. However, if you have 
specific use cases that require long-term credentials with IAM users, we recommend that you rotate 
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You 
can use groups to specify permissions for multiple users at a time. Groups make permissions easier 
to manage for large sets of users. For example, you could have a group named IAMAdmins and give 
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but 
a role is intended to be assumable by anyone who needs it. Users have permanent long-term 
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user 
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an 
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in 
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or 
AWS API operation or by using a custom URL. For more information about methods for using roles, 
see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role 
and define permissions for the role. When a federated identity authenticates, the identity 
is associated with the role and is granted the permissions that are defined by the role. For 
information about roles for federation, see  Creating a role for a third-party Identity Provider

Authenticating with identities 131

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html


Deadline Cloud Developer Guide

in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control 
what your identities can access after they authenticate, IAM Identity Center correlates the 
permission set to a role in IAM. For information about permissions sets, see  Permission sets in 
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily 
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a 
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource 
(instead of using a role as a proxy). To learn the difference between roles and resource-based 
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when 
you make a call in a service, it's common for that service to run applications in Amazon EC2 or 
store objects in Amazon S3. A service might do this using the calling principal's permissions, 
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in 
AWS, you are considered a principal. When you use some services, you might perform an 
action that then initiates another action in a different service. FAS uses the permissions of the 
principal calling an AWS service, combined with the requesting AWS service to make requests 
to downstream services. FAS requests are only made when a service receives a request that 
requires interactions with other AWS services or resources to complete. In this case, you must 
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your 
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For 
more information, see Creating a role to delegate permissions to an AWS service in the IAM 
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS 
service. The service can assume the role to perform an action on your behalf. Service-linked 
roles appear in your AWS account and are owned by the service. An IAM administrator can 
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary 
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API 
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role 
to an EC2 instance and make it available to all of its applications, you create an instance profile 

Authenticating with identities 132

https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html


Deadline Cloud Developer Guide

that is attached to the instance. An instance profile contains the role and enables programs that 
are running on the EC2 instance to get temporary credentials. For more information, see Using 
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM 
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources. 
A policy is an object in AWS that, when associated with an identity or resource, defines their 
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes 
a request. Permissions in the policies determine whether the request is allowed or denied. Most 
policies are stored in AWS as JSON documents. For more information about the structure and 
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on 
the resources that they need, an IAM administrator can create IAM policies. The administrator can 
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the 
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A 
user with that policy can get role information from the AWS Management Console, the AWS CLI, or 
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, 
such as an IAM user, group of users, or role. These policies control what actions users and roles can 
perform, on which resources, and under what conditions. To learn how to create an identity-based 
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline 
policies are embedded directly into a single user, group, or role. Managed policies are standalone 
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed 

Managing access using policies 133

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html


Deadline Cloud Developer Guide

policies include AWS managed policies and customer managed policies. To learn how to choose 
between a managed policy or an inline policy, see Choosing between managed policies and inline 
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of 
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that 
support resource-based policies, service administrators can use them to control access to a specific 
resource. For the resource where the policy is attached, the policy defines what actions a specified 
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS 
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS 
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have 
permissions to access a resource. ACLs are similar to resource-based policies, although they do not 
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more 
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer 
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum 
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set 
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user 
or role). You can set a permissions boundary for an entity. The resulting permissions are the 
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based 
policies that specify the user or role in the Principal field are not limited by the permissions 
boundary. An explicit deny in any of these policies overrides the allow. For more information 
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

Managing access using policies 134

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html


Deadline Cloud Developer Guide

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions 
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a 
service for grouping and centrally managing multiple AWS accounts that your business owns. If 
you enable all features in an organization, then you can apply service control policies (SCPs) to 
any or all of your accounts. The SCP limits permissions for entities in member accounts, including 
each AWS account root user. For more information about Organizations and SCPs, see Service 
control policies in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you 
programmatically create a temporary session for a role or federated user. The resulting session's 
permissions are the intersection of the user or role's identity-based policies and the session 
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these 
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated 
to understand. To learn how AWS determines whether to allow a request when multiple policy 
types are involved, see Policy evaluation logic in the IAM User Guide.

How Deadline Cloud works with IAM

Before you use IAM to manage access to Deadline Cloud, learn what IAM features are available to 
use with Deadline Cloud.

IAM features you can use with AWS Deadline Cloud

IAM feature Deadline Cloud support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

How Deadline Cloud works with IAM 135

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html


Deadline Cloud Developer Guide

IAM feature Deadline Cloud support

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Forward access sessions (FAS) Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how Deadline Cloud and other AWS services work with most IAM 
features, see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for Deadline Cloud

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity, 
such as an IAM user, group of users, or role. These policies control what actions users and roles can 
perform, on which resources, and under what conditions. To learn how to create an identity-based 
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well 
as the conditions under which actions are allowed or denied. You can't specify the principal in an 
identity-based policy because it applies to the user or role to which it is attached. To learn about all 
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Deadline Cloud

To view examples of Deadline Cloud identity-based policies, see Identity-based policy examples for 
Deadline Cloud.

Resource-based policies within Deadline Cloud

Supports resource-based policies: No

How Deadline Cloud works with IAM 136

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html


Deadline Cloud Developer Guide

Resource-based policies are JSON policy documents that you attach to a resource. Examples of 
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that 
support resource-based policies, service administrators can use them to control access to a specific 
resource. For the resource where the policy is attached, the policy defines what actions a specified 
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS 
services.

To enable cross-account access, you can specify an entire account or IAM entities in another 
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource 
are in different AWS accounts, an IAM administrator in the trusted account must also grant 
the principal entity (user or role) permission to access the resource. They grant permission by 
attaching an identity-based policy to the entity. However, if a resource-based policy grants access 
to a principal in the same account, no additional identity-based policy is required. For more 
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Deadline Cloud

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny 
access in a policy. Policy actions usually have the same name as the associated AWS API operation. 
There are some exceptions, such as permission-only actions that don't have a matching API 
operation. There are also some operations that require multiple actions in a policy. These 
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Deadline Cloud actions, see Actions defined by AWS Deadline Cloud in the Service 
Authorization Reference.

Policy actions in Deadline Cloud use the following prefix before the action:

deadline

To specify multiple actions in a single statement, separate them with commas.

How Deadline Cloud works with IAM 137

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_deadline.html#deadline-actions-as-permissions


Deadline Cloud Developer Guide

"Action": [ 
      "deadline:action1", 
      "deadline:action2" 
         ]

To view examples of Deadline Cloud identity-based policies, see Identity-based policy examples for 
Deadline Cloud.

Policy resources for Deadline Cloud

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies. 
Statements must include either a Resource or a NotResource element. As a best practice, 
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support 
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard 
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Deadline Cloud resource types and their ARNs, see Resources defined by AWS 
Deadline Cloud in the Service Authorization Reference. To learn with which actions you can specify 
the ARN of each resource, see Actions defined by AWS Deadline Cloud.

To view examples of Deadline Cloud identity-based policies, see Identity-based policy examples for 
Deadline Cloud.

Policy condition keys for Deadline Cloud

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How Deadline Cloud works with IAM 138

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_deadline.html#deadline-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_deadline.html#deadline-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_deadline.html#deadline-actions-as-permissions


Deadline Cloud Developer Guide

The Condition element (or Condition block) lets you specify conditions in which a statement 
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in 
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple 
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of 
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant 
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more 
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global 
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of Deadline Cloud condition keys, see Condition keys for AWS Deadline Cloud in the
Service Authorization Reference. To learn with which actions and resources you can use a condition 
key, see Actions defined by AWS Deadline Cloud.

To view examples of Deadline Cloud identity-based policies, see Identity-based policy examples for 
Deadline Cloud.

ACLs in Deadline Cloud

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have 
permissions to access a resource. ACLs are similar to resource-based policies, although they do not 
use the JSON policy document format.

ABAC with Deadline Cloud

Supports ABAC (tags in policies): Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based 
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or 
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then 
you design ABAC policies to allow operations when the principal's tag matches the tag on the 
resource that they are trying to access.

How Deadline Cloud works with IAM 139

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_deadline.html#deadline-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_deadline.html#deadline-actions-as-permissions


Deadline Cloud Developer Guide

ABAC is helpful in environments that are growing rapidly and helps with situations where policy 
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy 
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the 
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with 
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with Deadline Cloud

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional 
information, including which AWS services work with temporary credentials, see AWS services that 
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using 
any method except a user name and password. For example, when you access AWS using your 
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You 
also automatically create temporary credentials when you sign in to the console as a user and then 
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use 
those temporary credentials to access AWS. AWS recommends that you dynamically generate 
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Forward access sessions for Deadline Cloud

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal. 
When you use some services, you might perform an action that then initiates another action in a 
different service. FAS uses the permissions of the principal calling an AWS service, combined with 

How Deadline Cloud works with IAM 140

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html


Deadline Cloud Developer Guide

the requesting AWS service to make requests to downstream services. FAS requests are only made 
when a service receives a request that requires interactions with other AWS services or resources to 
complete. In this case, you must have permissions to perform both actions. For policy details when 
making FAS requests, see Forward access sessions.

Service roles for Deadline Cloud

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM 
administrator can create, modify, and delete a service role from within IAM. For more information, 
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Deadline Cloud functionality. Edit 
service roles only when Deadline Cloud provides guidance to do so.

Service-linked roles for Deadline Cloud

Supports service-linked roles: No

A service-linked role is a type of service role that is linked to an AWS service. The service can 
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS 
account and are owned by the service. An IAM administrator can view, but not edit the permissions 
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM. 
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for Deadline Cloud

By default, users and roles don't have permission to create or modify Deadline Cloud resources. 
They also can't perform tasks by using the AWS Management Console, AWS Command Line 
Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the resources 
that they need, an IAM administrator can create IAM policies. The administrator can then add the 
IAM policies to roles, and users can assume the roles.

Identity-based policy examples 141

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


Deadline Cloud Developer Guide

To learn how to create an IAM identity-based policy by using these example JSON policy 
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Deadline Cloud, including the format of the 
ARNs for each of the resource types, see Actions, resources, and condition keys for AWS Deadline 
Cloud in the Service Authorization Reference.

Topics

• Policy best practices

• Using the Deadline Cloud console

• Policy to submit jobs to a queue

• Policy to allow creating a license endpoint

• Policy to allow monitoring a specific farm queue

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Deadline Cloud 
resources in your account. These actions can incur costs for your AWS account. When you create or 
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To 
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We 
recommend that you reduce permissions further by defining AWS customer managed policies 
that are specific to your use cases. For more information, see AWS managed policies or AWS 
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the 
permissions required to perform a task. You do this by defining the actions that can be taken on 
specific resources under specific conditions, also known as least-privilege permissions. For more 
information about using IAM to apply permissions, see  Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your 
policies to limit access to actions and resources. For example, you can write a policy condition to 
specify that all requests must be sent using SSL. You can also use conditions to grant access to 
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For 
more information, see  IAM JSON policy elements: Condition in the IAM User Guide.

Identity-based policy examples 142

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_deadline.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_deadline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html


Deadline Cloud Developer Guide

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional 
permissions – IAM Access Analyzer validates new and existing policies so that the policies 
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides 
more than 100 policy checks and actionable recommendations to help you author secure and 
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM 
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users 
or a root user in your AWS account, turn on MFA for additional security. To require MFA when 
API operations are called, add MFA conditions to your policies. For more information, see 
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User 
Guide.

Using the Deadline Cloud console

To access the AWS Deadline Cloud console, you must have a minimum set of permissions. These 
permissions must allow you to list and view details about the Deadline Cloud resources in your 
AWS account. If you create an identity-based policy that is more restrictive than the minimum 
required permissions, the console won't function as intended for entities (users or roles) with that 
policy.

You don't need to allow minimum console permissions for users that are making calls only to the 
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation 
that they're trying to perform.

To ensure that users and roles can still use the Deadline Cloud console, also attach the Deadline 
Cloud ConsoleAccess or ReadOnly AWS managed policy to the entities. For more information, 
see Adding permissions to a user in the IAM User Guide.

Policy to submit jobs to a queue

In this example, you create a scoped-down policy that grants permission to submit jobs to a 
specific queue in a specific farm.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 

Identity-based policy examples 143

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console


Deadline Cloud Developer Guide

            "Sid": "SubmitJobsFarmAndQueue", 
            "Effect": "Allow", 
            "Action": "deadline:CreateJob", 
            "Resource": "arn:aws:deadline:REGION:ACCOUNT_ID:farm/FARM_A/queue/QUEUE_B/
job/*" 
        } 
    ]
}

Policy to allow creating a license endpoint

In this example, you create a scoped-down policy that grants the required permissions to create 
and manage license endpoints. Use this policy to create the license endpoint for the VPC associated 
with your farm.

{ 
    "Version": "2012-10-17", 
    "Statement": [{ 
        "SID": "CreateLicenseEndpoint", 
        "Effect": "Allow", 
        "Action": [ 
            "deadline:CreateLicenseEndpoint", 
            "deadline:DeleteLicenseEndpoint", 
            "deadline:GetLicenseEndpoint", 
            "deadline:UpdateLicenseEndpoint", 
            "deadline:ListLicenseEndpoints", 
            "deadline:PutMeteredProduct", 
            "deadline:DeleteMeteredProduct", 
            "deadline:ListMeteredProducts", 
            "deadline:ListAvailableMeteredProducts", 
            "ec2:CreateVpcEndpoint", 
            "ec2:DescribeVpcEndpoints", 
            "ec2:DeleteVpcEndpoints" 
        ], 
        "Resource": "*" 
    }]
}

Policy to allow monitoring a specific farm queue

In this example, you create a scoped-down policy that grants permission to monitor jobs in a 
specific queue for a specific farm.

Identity-based policy examples 144



Deadline Cloud Developer Guide

{ 
    "Version": "2012-10-17", 
    "Statement": [{ 
        "Sid": "MonitorJobsFarmAndQueue", 
        "Effect": "Allow", 
        "Action": [ 
            "deadline:SearchJobs", 
            "deadline:ListJobs", 
            "deadline:GetJob", 
            "deadline:SearchSteps", 
            "deadline:ListSteps", 
            "deadline:ListStepConsumers", 
            "deadline:ListStepDependencies", 
            "deadline:GetStep", 
            "deadline:SearchTasks", 
            "deadline:ListTasks", 
            "deadline:GetTask", 
            "deadline:ListSessions", 
            "deadline:GetSession", 
            "deadline:ListSessionActions", 
            "deadline:GetSessionAction" 
        ], 
        "Resource": [ 
            "arn:aws:deadline:REGION:123456789012:farm/FARM_A/queue/QUEUE_B", 
            "arn:aws:deadline:REGION:123456789012:farm/FARM_A/queue/QUEUE_B/*" 
        ] 
    }]
}

AWS managed policies for Deadline Cloud

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS 
managed policies are designed to provide permissions for many common use cases so that you can 
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your 
specific use cases because they're available for all AWS customers to use. We recommend that you 
reduce permissions further by defining  customer managed policies that are specific to your use 
cases.

AWS managed policies 145

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies


Deadline Cloud Developer Guide

You cannot change the permissions defined in AWS managed policies. If AWS updates the 
permissions defined in an AWS managed policy, the update affects all principal identities (users, 
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed 
policy when a new AWS service is launched or new API operations become available for existing 
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: AWSDeadlineCloud-FleetWorker

You can attach the AWSDeadlineCloud-FleetWorker policy to your AWS Identity and Access 
Management (IAM) identities.

This policy grants workers in this fleet the permissions that are needed to connect to and receive 
tasks from the service.

Permissions details

This policy includes the following permissions:

• deadline – Allows principals to manage workers in a fleet.

For a JSON listing of the policy details, see AWSDeadlineCloud-FleetWorker in the AWS Managed 
Policy reference guide.

AWS managed policy: AWSDeadlineCloud-WorkerHost

You can attach the AWSDeadlineCloud-WorkerHost policy to your IAM identities.

This policy grants the permissions that are needed to initially connect to the service. It can be used 
as an Amazon Elastic Compute Cloud (Amazon EC2) instance profile.

Permissions details

This policy includes the following permissions:

• deadline – Allows principals to create workers.

AWS managed policies 146

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSDeadlineCloud-FleetWorker.html


Deadline Cloud Developer Guide

For a JSON listing of the policy details, see AWSDeadlineCloud-WorkerHost in the AWS Managed 
Policy reference guide.

AWS managed policy: AWSDeadlineCloud-UserAccessFarms

You can attach the AWSDeadlineCloud-UserAccessFarms policy to your IAM identities.

This policy allows users to access farm data based on the farms that they are members of and their 
membership level.

Permissions details

This policy includes the following permissions:

• deadline – Allows the user to access farm data.

• ec2 – Allows users to see details about Amazon EC2 instance types.

• identitystore – Allows users to see user and group names.

For a JSON listing of the policy details, see AWSDeadlineCloud-UserAccessFarms in the AWS 
Managed Policy reference guide.

AWS managed policy: AWSDeadlineCloud-UserAccessFleets

You can attach the AWSDeadlineCloud-UserAccessFleets policy to your IAM identities.

This policy allows users to access fleet data based on the farms that they are members of and their 
membership level.

Permissions details

This policy includes the following permissions:

• deadline – Allows the user to access farm data.

• ec2 – Allows users to see details about Amazon EC2 instance types.

• identitystore – Allows users to see user and group names.

For a JSON listing of the policy details, see AWSDeadlineCloud-UserAccessFleets in the AWS 
Managed Policy reference guide.

AWS managed policies 147

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSDeadlineCloud-WorkerHost.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSDeadlineCloud-UserAccessFarms.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSDeadlineCloud-UserAccessFleets.html


Deadline Cloud Developer Guide

AWS managed policy: AWSDeadlineCloud-UserAccessJobs

You can attach the AWSDeadlineCloud-UserAccessJobs policy to your IAM identities.

This policy allows users to access job data based on the farms that they are members of and their 
membership level.

Permissions details

This policy includes the following permissions:

• deadline – Allows the user to access farm data.

• ec2 – Allows users to see details about Amazon EC2 instance types.

• identitystore – Allows users to see user and group names.

For a JSON listing of the policy details, see AWSDeadlineCloud-UserAccessJobs in the AWS 
Managed Policy reference guide.

AWS managed policy: AWSDeadlineCloud-UserAccessQueues

You can attach the AWSDeadlineCloud-UserAccessQueues policy to your IAM identities.

This policy allows users to access queue data based on the farms that they are members of and 
their membership level.

Permissions details

This policy includes the following permissions:

• deadline – Allows the user to access farm data.

• ec2 – Allows users to see details about Amazon EC2 instance types.

• identitystore – Allows users to see user and group names.

For a JSON listing of the policy details, see AWSDeadlineCloud-UserAccessQueues in the AWS 
Managed Policy reference guide.

Deadline Cloud updates to AWS managed policies

AWS managed policies 148

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSDeadlineCloud-UserAccessJobs.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSDeadlineCloud-UserAccessQueues.html


Deadline Cloud Developer Guide

View details about updates to AWS managed policies for Deadline Cloud since this service began 
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed 
on the Deadline Cloud Document history page.

Change Description Date

AWSDeadlineCloud-U 
serAccessFarms – Change

AWSDeadlineCloud-U 
serAccessJobs – Change

AWSDeadlineCloud-U 
serAccessQueues – Change

Deadline Cloud added 
new actions deadline: 
GetJobTemplate  and
deadline:ListJobPa 
rameterDefinitions
to allow you to resubmit jobs.

October 7, 2024

Deadline Cloud started 
tracking changes

Deadline Cloud started 
tracking changes to its AWS 
managed policies.

April 2, 2024

Troubleshooting AWS Deadline Cloud identity and access

Use the following information to help you diagnose and fix common issues that you might 
encounter when working with Deadline Cloud and IAM.

Topics

• I am not authorized to perform an action in Deadline Cloud

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Deadline Cloud resources

I am not authorized to perform an action in Deadline Cloud

If you receive an error that you're not authorized to perform an action, your policies must be 
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console 
to view details about a fictional my-example-widget resource but doesn't have the fictional
deadline:GetWidget permissions.

Troubleshooting 149



Deadline Cloud Developer Guide

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: 
 deadline:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the deadline:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided 
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your 
policies must be updated to allow you to pass a role to Deadline Cloud.

Some AWS services allow you to pass an existing role to that service instead of creating a new 
service role or service-linked role. To do this, you must have permissions to pass the role to the 
service.

The following example error occurs when an IAM user named marymajor tries to use the 
console to perform an action in Deadline Cloud. However, the action requires the service to have 
permissions that are granted by a service role. Mary does not have permissions to pass the role to 
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: 
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided 
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Deadline Cloud 
resources

You can create a role that users in other accounts or people outside of your organization can use to 
access your resources. You can specify who is trusted to assume the role. For services that support 
resource-based policies or access control lists (ACLs), you can use those policies to grant people 
access to your resources.

Troubleshooting 150



Deadline Cloud Developer Guide

To learn more, consult the following:

• To learn whether Deadline Cloud supports these features, see How Deadline Cloud works with 
IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing 
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally 
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access, 
see Cross account resource access in IAM in the IAM User Guide.

Compliance validation for Deadline Cloud

To learn whether an AWS service is within the scope of specific compliance programs, see AWS 
services in Scope by Compliance Program and choose the compliance program that you are 
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your 
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the 
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural 
considerations and provide steps for deploying baseline environments on AWS that are security 
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper 
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible 
Services Reference.

Compliance validation 151

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/


Deadline Cloud Developer Guide

• AWS Compliance Resources – This collection of workbooks and guides might apply to your 
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the 
lens of compliance. The guides summarize the best practices for securing AWS services and map 
the guidance to security controls across multiple frameworks (including National Institute of 
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and 
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service 
assesses how well your resource configurations comply with internal practices, industry 
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within 
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your 
compliance against security industry standards and best practices. For a list of supported services 
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts, 
workloads, containers, and data by monitoring your environment for suspicious and malicious 
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by 
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify 
how you manage risk and compliance with regulations and industry standards.

Resilience in Deadline Cloud

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions 
provide multiple physically separated and isolated Availability Zones, which are connected with 
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you 
can design and operate applications and databases that automatically fail over between zones 
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than 
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

AWS Deadline Cloud does not back up data stored in your job attachments S3 bucket. You can 
enable backups of your job attachments data using any standard Amazon S3 backup mechanism, 
such as S3 Versioning or AWS Backup.

Resilience 152

https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Versioning.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/whatisbackup.html


Deadline Cloud Developer Guide

Infrastructure security in Deadline Cloud

As a managed service, AWS Deadline Cloud is protected by AWS global network security. For 
information about AWS security services and how AWS protects infrastructure, see AWS Cloud 
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Deadline Cloud through the network. Clients must 
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or 
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later 
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is 
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to 
generate temporary security credentials to sign requests.

Deadline Cloud doesn't support using AWS PrivateLink virtual private cloud (VPC) endpoint 
policies. It uses the AWS PrivateLink default policy, which grants full access to the endpoint. For 
more information, see  Default endpoint policy  in the AWS PrivateLink user guide.

Configuration and vulnerability analysis in Deadline Cloud

AWS handles basic security tasks like guest operating system (OS) and database patching, firewall 
configuration, and disaster recovery. These procedures have been reviewed and certified by the 
appropriate third parties. For more details, see the following resources:

• Shared Responsibility Model

• Amazon Web Services: Overview of Security Processes (whitepaper)

AWS Deadline Cloud manages tasks on service-managed or customer-managed fleets:

• For service-managed fleets, Deadline Cloud manages the guest operating system.

• For customer-managed fleets, you are responsible for managing the operating system.

Infrastructure security 153

https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html#default-endpoint-policy
https://aws.amazon.com/compliance/shared-responsibility-model/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf


Deadline Cloud Developer Guide

For additional information about configuration and vulnerability analysis for AWS Deadline Cloud, 
see

• Security best practices for Deadline Cloud

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to 
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service 
impersonation can result in the confused deputy problem. Cross-service impersonation can occur 
when one service (the calling service) calls another service (the called service). The calling service 
can be manipulated to use its permissions to act on another customer's resources in a way it should 
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect 
your data for all services with service principals that have been given access to resources in your 
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context keys 
in resource policies to limit the permissions that AWS Deadline Cloud gives another service to the 
resource. Use aws:SourceArn if you want only one resource to be associated with the cross-
service access. Use aws:SourceAccount if you want to allow any resource in that account to be 
associated with the cross-service use.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full Amazon Resource Name (ARN) of 
the resource. If you don't know the full ARN of the resource or if you are specifying multiple 
resources, use the aws:SourceArn global context condition key with wildcard characters (*) for 
the unknown portions of the ARN. For example, arn:aws:deadline:*:123456789012:*.

If the aws:SourceArn value does not contain the account ID, such as an Amazon S3 bucket ARN, 
you must use both global condition context keys to limit permissions.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in Deadline Cloud to prevent the confused deputy problem.

{ 
  "Version": "2012-10-17", 
  "Statement": { 
    "Sid": "ConfusedDeputyPreventionExamplePolicy", 
    "Effect": "Allow", 

Cross-service confused deputy prevention 154

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount


Deadline Cloud Developer Guide

    "Principal": { 
      "Service": "deadline.amazonaws.com" 
    }, 
    "Action": "deadline:ActionName", 
    "Resource": [ 
      "*" 
    ], 
    "Condition": { 
      "ArnLike": { 
        "aws:SourceArn": "arn:aws:deadline:*:123456789012:*" 
      }, 
      "StringEquals": { 
        "aws:SourceAccount": "123456789012" 
      } 
    } 
  }
}

Access AWS Deadline Cloud using an interface endpoint (AWS 
PrivateLink)

You can use AWS PrivateLink to create a private connection between your VPC and AWS Deadline 
Cloud. You can access Deadline Cloud as if it were in your VPC, without the use of an internet 
gateway, NAT device, VPN connection, or AWS Direct Connect connection. Instances in your VPC 
don't need public IP addresses to access Deadline Cloud.

You establish this private connection by creating an interface endpoint, powered by AWS 
PrivateLink. We create an endpoint network interface in each subnet that you enable for the 
interface endpoint. These are requester-managed network interfaces that serve as the entry point 
for traffic destined for Deadline Cloud.

For more information, see Access AWS services through AWS PrivateLink in the AWS PrivateLink 
Guide.

Considerations for Deadline Cloud

Before you set up an interface endpoint for Deadline Cloud, see Access an AWS service using an 
interface VPC endpoint in the AWS PrivateLink Guide.

Deadline Cloud supports making calls to all of its API actions through the interface endpoint.

AWS PrivateLink 155

https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html


Deadline Cloud Developer Guide

By default, full access to Deadline Cloud is allowed through the interface endpoint. Alternatively, 
you can associate a security group with the endpoint network interfaces to control traffic to 
Deadline Cloud through the interface endpoint.

Deadline Cloud doesn't support VPC endpoint policies. For more information, see Control access to 
VPC endpoints using endpoint policies in the AWS PrivateLink Guide.

Deadline Cloud endpoints

Deadline Cloud uses two endpoints for access to the service using AWS PrivateLink.

Workers use the com.amazonaws.region.deadline.scheduling endpoint to get tasks from 
the queue, report progress to Deadline Cloud, and to send task output back. If you are using a 
customer-managed fleet, the scheduling endpoint is the only endpoint that you need to create 
unless you are using management operations. For example, if a job creates more jobs, you need to 
enable the management endpoint to call the CreateJob operation.

The Deadline Cloud monitor uses the com.amazonaws.region.deadline.management to 
manage the resources in your farm, such as creating and modifying queues and fleets or getting 
lists of jobs, steps, and tasks.

Deadline Cloud also requires endpoints for the following AWS service endpoints:

• Deadline Cloud uses AWS STS to authenticate workers so that they can access job assets. For 
more information about AWS STS, see Temporary security credentials in IAM in the AWS Identity 
and Access Management User Guide.

• If you set up your customer-managed fleet in a subnet with no internet connection you must 
create a VPC endpoint for Amazon CloudWatch Logs so that workers can write logs. For more 
information, see Monitoring with CloudWatch.

• If you use job attachments, you must create a VPC endpoint for Amazon Simple Storage 
Service (Amazon S3) so that workers can access the attachments. For more information, see Job 
attachments in Deadline Cloud.

Create endpoints for Deadline Cloud

You can create interface endpoints for Deadline Cloud using either the Amazon VPC console or the 
AWS Command Line Interface (AWS CLI). For more information, see Create an interface endpoint in 
the AWS PrivateLink Guide.

Deadline Cloud endpoints 156

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/monitoring-cloudwatch.html
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/storage-job-attachments.html
https://docs.aws.amazon.com/deadline-cloud/latest/userguide/storage-job-attachments.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws


Deadline Cloud Developer Guide

Create management and scheduling endpoints for Deadline Cloud using the following service 
names. Replace region with the AWS Region where you've deployed Deadline Cloud.

com.amazonaws.region.deadline.management

com.amazonaws.region.deadline.scheduling

If you enable private DNS for the interface endpoints, you can make API requests to 
Deadline Cloud using its default Regional DNS name. For example, worker.deadline.us-
east-1.amazonaws.com for worker operations, or management.deadline.us-
east-1.amazonaws.com for all other operations.

You must also create an endpoint for AWS STS using the following service name:

com.amazonaws.region.sts

If your customer-managed fleet is on a subnet without an internet connection, you must create a 
CloudWatch Logs endpoint using the following service name:

com.amazonaws.region.logs

If you use job attachments to transfer files, you must create an Amazon S3 endpoint using the 
following service name:

com.amazonaws.region.s3

Security best practices for Deadline Cloud

AWS Deadline Cloud (Deadline Cloud) provides a number of security features to consider as you 
develop and implement your own security policies. The following best practices are general 
guidelines and don’t represent a complete security solution. Because these best practices might not 
be appropriate or sufficient for your environment, treat them as helpful considerations rather than 
prescriptions.

Security best practices 157



Deadline Cloud Developer Guide

Note

For more information about the importance of many security topics, see the Shared 
Responsibility Model.

Data protection

For data protection purposes, we recommend that you protect AWS account credentials and set up 
individual accounts with AWS Identity and Access Management (IAM). That way, each user is given 
only the permissions necessary to fulfill their job duties. We also recommend that you secure your 
data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and 
securing personal data that is stored in Amazon Simple Storage Service (Amazon S3).

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a 
command line interface or an API, use a FIPS endpoint. For more information about the available 
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put sensitive identifying information, such as your 
customers' account numbers, into free-form fields such as a Name field. This includes when you 
work with AWS Deadline Cloud or other AWS services using the console, API, AWS CLI, or AWS 
SDKs. Any data that you enter into Deadline Cloud or other services might get picked up for 
inclusion in diagnostic logs. When you provide a URL to an external server, don’t include credentials 
information in the URL to validate your request to that server.

AWS Identity and Access Management permissions

Manage access to AWS resources using users, AWS Identity and Access Management (IAM) roles, 
and by granting the least privilege to users. Establish credential management policies and 
procedures for creating, distributing, rotating, and revoking AWS access credentials. For more 
information, see IAM Best Practices in the IAM User Guide.

Data protection 158

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPractices.html


Deadline Cloud Developer Guide

Run jobs as users and groups

When using queue functionality in Deadline Cloud, it’s a best practice to specify an operating 
system (OS) user and its primary group so that the OS user has least-privilege permissions for the 
queue’s jobs.

When you specify a “Run as user” (and group), any processes for jobs submitted to the queue will 
be run using that OS user and will inherit that user’s associated OS permissions.

The fleet and queue configurations combine to establish a security posture. On the queue side, 
the “Job run as user” and IAM role can be specified to use the OS and AWS permissions for the 
queue’s jobs. The fleet defines the infrastructure (worker hosts, networks, mounted shared storage) 
that, when associated to a particular queue, run jobs within the queue. The data available on the 
worker hosts needs to be accessed by jobs from one or more associated queues. Specifying a user 
or group helps protect the data in jobs from other queues, other installed software, or other users 
with access to the worker hosts. When a queue is without a user, it runs as the agent user which can 
impersonate (sudo) any queue user. In this way, a queue without a user can escalate privileges to 
another queue.

Networking

To prevent traffic from being intercepted or redirected, it's essential to secure how and where your 
network traffic is routed.

We recommend that you secure your networking environment in the following ways:

• Secure Amazon Virtual Private Cloud (Amazon VPC) subnet route tables to control how IP layer 
traffic is routed.

• If you are using Amazon Route 53 (Route 53) as a DNS provider in your farm or workstation 
setup, secure access to the Route 53 API.

• If you connect to Deadline Cloud outside of AWS such as by using on-premises workstations or 
other data centers, secure any on-premises networking infrastructure. This includes DNS servers 
and route tables on routers, switches, and other networking devices.

Jobs and job data

Deadline Cloud jobs run within sessions on worker hosts. Each session runs one or more processes 
on the worker host, which generally require that you input data to produce output.

Run jobs as users and groups 159



Deadline Cloud Developer Guide

To secure this data, you can configure operating system users with queues. The worker agent uses 
the queue OS user to run session sub-processes. These sub-processes inherit the queue OS user's 
permissions.

We recommend that you follow best practices to secure access to the data these sub-processes 
access. For more information, see Shared responsibility model.

Farm structure

You can arrange Deadline Cloud fleets and queues many ways. However, there are security 
implications with certain arrangements.

A farm has one of the most secure boundaries because it can't share Deadline Cloud resources with 
other farms, including fleets, queues, and storage profiles. However, you can share external AWS 
resources within a farm, which compromises the security boundary.

You can also establish security boundaries between queues within the same farm using the 
appropriate configuration.

Follow these best practices to create secure queues in the same farm:

• Associate a fleet only with queues within the same security boundary. Note the following:

• After job runs on the worker host, data may remain behind, such as in a temporary directory or 
the queue user's home directory.

• The same OS user runs all the jobs on a service-owned fleet worker host, regardless of which 
queue you submit the job to.

• A job might leave processes running on a worker host, making it possible for jobs from other 
queues to observe other running processes.

• Ensure that only queues within the same security boundary share an Amazon S3 bucket for job 
attachments.

• Ensure that only queues within the same security boundary share an OS user.

• Secure any other AWS resources that are integrated into the farm to the boundary.

Job attachment queues

Job attachments are associated with a queue, which uses your Amazon S3 bucket.

Farm structure 160

https://aws.amazon.com/compliance/shared-responsibility-model/


Deadline Cloud Developer Guide

• Job attachments write to and read from a root prefix in the Amazon S3 bucket. You specify this 
root prefix in the CreateQueue API call.

• The bucket has a corresponding Queue Role, which specifies the role that grants queue users 
access to the bucket and root prefix. When creating a queue, you specify the Queue Role
Amazon Resource Name (ARN) alongside the job attachments bucket and root prefix.

• Authorized calls to the AssumeQueueRoleForRead, AssumeQueueRoleForUser, and
AssumeQueueRoleForWorker API operations return a set of temporary security credentials for 
the Queue Role.

If you create a queue and reuse an Amazon S3 bucket and root prefix, there is a risk of information 
being disclosed to unauthorized parties. For example, QueueA and QueueB share the same bucket 
and root prefix. In a secure workflow, ArtistA has access to QueueA but not QueueB. However, 
when multiple queues share a bucket, ArtistA can access the data in QueueB data because it uses 
the same bucket and root prefix as QueueA.

The console sets up queues that are secure by default. Ensure that the queues have a distinct 
combination of Amazon S3 bucket and root prefix unless they're part of a common security 
boundary.

To isolate your queues, you must configure the Queue Role to only allow queue access to the 
bucket and root prefix. In the following example, replace each placeholder with your resource-
specific information.

{ 
  "Version": "2012-10-17", 
  "Statement": [  
    { 
      "Action": [ 
        "s3:GetObject", 
        "s3:PutObject", 
        "s3:ListBucket", 
        "s3:GetBucketLocation" 
      ], 
      "Effect": "Allow", 
      "Resource": [ 
        "arn:aws:s3:::JOB_ATTACHMENTS_BUCKET_NAME", 
        "arn:aws:s3:::JOB_ATTACHMENTS_BUCKET_NAME/JOB_ATTACHMENTS_ROOT_PREFIX/*" 
      ], 
      "Condition": { 

Job attachment queues 161



Deadline Cloud Developer Guide

        "StringEquals": { "aws:ResourceAccount": "ACCOUNT_ID" } 
      } 
    }, 
    { 
      "Action": ["logs:GetLogEvents"], 
      "Effect": "Allow", 
      "Resource": "arn:aws:logs:REGION:ACCOUNT_ID:log-group:/aws/deadline/FARM_ID/*" 
    } 
  ]
}

You must also set a trust policy on the role. In the following example, replace the placeholder
text with your resource-specific information.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Action": ["sts:AssumeRole"], 
      "Effect": "Allow", 
      "Principal": { "Service": "deadline.amazonaws.com" }, 
      "Condition": { 
        "StringEquals": { "aws:SourceAccount": "ACCOUNT_ID" }, 
        "ArnEquals": { 
          "aws:SourceArn": "arn:aws:deadline:REGION:ACCOUNT_ID:farm/FARM_ID" 
        } 
      } 
    }, 
    { 
      "Action": ["sts:AssumeRole"], 
      "Effect": "Allow", 
      "Principal": { "Service": "credentials.deadline.amazonaws.com" }, 
      "Condition": { 
        "StringEquals": { "aws:SourceAccount": "ACCOUNT_ID" }, 
        "ArnEquals": { 
          "aws:SourceArn": "arn:aws:deadline:REGION:ACCOUNT_ID:farm/FARM_ID" 
        } 
      } 
    } 
  ]
}

Job attachment queues 162



Deadline Cloud Developer Guide

Custom software Amazon S3 buckets

You can add the following statement to your Queue Role to access custom software in your 
Amazon S3 bucket. In the following example, replace SOFTWARE_BUCKET_NAME with the name of 
your S3 bucket.

"Statement": [  
    { 
        "Action": [ 
            "s3:GetObject", 
            "s3:ListBucket" 
        ], 
        "Effect": "Allow", 
        "Resource": [ 
            "arn:aws:s3:::SOFTWARE_BUCKET_NAME", 
            "arn:aws:s3:::SOFTWARE_BUCKET_NAME/*" 
        ] 
    }
]

For more information about Amazon S3 security best practices, see Security best practices for 
Amazon S3 in the Amazon Simple Storage Service User Guide.

Worker hosts

Secure worker hosts to help ensure that each user can only perform operations for their assigned 
role.

We recommend the following best practices to secure worker hosts:

• Don’t use the same jobRunAsUser value with multiple queues unless jobs submitted to those 
queues are within the same security boundary.

• Don’t set the queue jobRunAsUser to the name of the OS user that the worker agent runs as.

• Grant queue users least-privileged OS permissions required for the intended queue workloads. 
Ensure that they don't have filesystem write permissions to work agent program files or other 
shared software.

• Ensure only the root user on Linux and the Administrator owns account on Windows owns 
and can modify the worker agent program files.

Custom software buckets 163

https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-best-practices.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-best-practices.html


Deadline Cloud Developer Guide

• On Linux worker hosts, consider configuring a umask override in /etc/sudoers that allows 
the worker agent user to launch processes as queue users. This configuration helps ensure other 
users can't access files written to the queue.

• Grant trusted individuals least-privileged access to worker hosts.

• Restrict permissions to local DNS override configuration files (/etc/hosts on Linux and C:
\Windows\system32\etc\hosts on Windows), and to route tables on workstations and 
worker host operating systems.

• Restrict permissions to DNS configuration on workstations and worker host operating systems.

• Regularly patch the operating system and all installed software. This approach includes software 
specifically used with Deadline Cloud such as submitters, adaptors, worker agents, OpenJD 
packages, and others.

• Use strong passwords for the Windows queue jobRunAsUser.

• Regularly rotate the passwords for your queue jobRunAsUser.

• Ensure least privilege access to the Windows password secretes and delete unused secrets.

• Don't give the queue jobRunAsUser permission the schedule commands to run in the future:

• On Linux, deny these accounts access to cron and at.

• On Windows, deny these accounts access to the Windows task scheduler.

Note

For more information about the importance of regularly patching the operating system and 
installed software, see the Shared Responsibility Model.

Workstations

It's important to secure workstations with access to Deadline Cloud. This approach helps ensure 
that any jobs you submit to Deadline Cloud can't run arbitrary workloads billed to your AWS 
account.

We recommend the following best practice to secure artist workstations. For more information, see 
the Shared Responsibility Model.

• Secure any persisted credentials that provide access to AWS, including Deadline Cloud. For more 
information, see Managing access keys for IAM users in the IAM User Guide.

Workstations 164

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#securing_access-keys


Deadline Cloud Developer Guide

• Only install trusted, secure software.

• Require users federate with an identity provider to access AWS with temporary credentials.

• Use secure permissions on Deadline Cloud submitter program files to prevent tampering.

• Grant trusted individuals least-privileged access to artist workstations.

• Only use submitters and adaptors that you obtain through the Deadline Cloud Monitor.

• Restrict permissions to local DNS override configuration files (/etc/hosts on Linux and macOS, 
and C:\Windows\system32\etc\hosts on Windows), and to route tables on workstations 
and worker host operating systems.

• Restrict permissions to /etc/resolve.conf on workstations and worker host operating 
systems.

• Regularly patch the operating system and all installed software. This approach includes software 
specifically used with Deadline Cloud such as submitters, adaptors, worker agents, OpenJD 
packages, and others.

Workstations 165



Deadline Cloud Developer Guide

Document history

The following table describes important changes in each release of the AWS Deadline Cloud 
Developer Guide.

Change Description Date

Create a conda package Added information about how 
to create a conda package 
for an application. For more 
information, see Create a 
conda package.

August 29, 2024

New guide This is the initial release of 
the Deadline Cloud Developer 
Guide.

July 26, 2024

166

https://docs.aws.amazon.com/deadline-cloud/latest/developerguide/conda-package.html
https://docs.aws.amazon.com/deadline-cloud/latest/developerguide/conda-package.html
https://docs.aws.amazon.com/deadline-cloud/latest/developerguide/what-is-deadline-cloud.html

	Deadline Cloud
	Table of Contents
	What is AWS Deadline Cloud?
	Open Job Description
	Concepts and terminology for Deadline Cloud

	What is a Deadline Cloud workload
	How workloads arise from production
	The ingredients of a workload
	Workload portability

	Getting started with Deadline Cloud resources.
	Create a Deadline Cloud farm
	Next steps

	Run the Deadline Cloud worker agent
	Next steps

	Submit with Deadline Cloud
	Submit the simple_job sample
	Submit a simple_job with a parameter
	Create a simple_file_job job bundle with file I/O
	Next steps

	Submit jobs with job attachments in Deadline Cloud
	Add a job attachments configuration to your queue
	Submit simple_file_job with job attachments
	Understanding how job attachments are stored in Amazon S3
	Next steps

	Add a service-managed fleet to your developer farm in Deadline Cloud
	Next steps

	Clean up your farm resources in Deadline Cloud

	How to submit a job to Deadline Cloud
	Submit a job to Deadline Cloud from a terminal
	Submit a job to Deadline Cloud using a GUI

	Submit a job to Deadline Cloud using a script
	Submit a job using Python

	Submit a job within an application
	Embed job bundles in an application
	Get information from an application


	Configure jobs using queue environments
	Control the job environment with OpenJD queue environments
	Set environment variables in a queue environment
	Prerequisites
	Run the environment variable sample
	Compare the session actions with their definitions

	Set the path in a queue environment
	Prerequisites
	Run the path sample
	Compare session actions with their definitions

	Run a background daemon process from the queue environment
	Prerequisites
	Run the daemon sample
	View the daemon logs


	Provide applications for your jobs
	Getting an application from a conda channel
	Process a CSV file with an application from conda-forge
	Get Blender from the deadline-cloud channel

	Use a different package manager

	Create a conda channel using S3
	Create a package building queue
	Configure the package building queue permissions

	Configure production queue permissions for custom conda packages
	Add a conda channel to a queue environment
	Submit the Blender 4.2 package job
	Submit a Blender 4.2 render job

	Create a conda package for an application
	Create a conda build recipe for Blender


	Build jobs to submit to Deadline Cloud
	Open Job Description (OpenJD) templates for Deadline Cloud
	Job template elements for job bundles
	Parameter values elements for job bundles
	Asset references elements for job bundles

	Using files in your jobs
	Sample project infrastructure
	Storage profiles and path mapping
	Model shared file system locations with storage profiles
	Configure storage profiles for fleets
	Configure storage profiles for queues
	Derive path mapping rules from storage profiles


	Use job attachments to share files
	Submitting files with a job
	How Deadline Cloud uploads files to Amazon S3
	How Deadline Cloud chooses the files to upload
	How jobs find job attachment input files

	Getting output files from a job
	Using files from a step in a dependent step


	Security in Deadline Cloud
	Data protection in Deadline Cloud
	Encryption at rest
	Encryption in transit
	Key management
	How Deadline Cloud use AWS KMS grants
	Customer managed key policy
	Minimal IAM policy for CreateFarm
	Minimal IAM policy for read-only operations
	Minimal IAM policy for read-write operations

	Monitoring your encryption keys
	CloudTrail event for grants
	CloudTrail event for decryption
	CloudTrail event for encryption

	Deleting a customer managed KMS key
	About the waiting period


	Inter-network traffic privacy
	Opt out
	Deadline Cloud monitor - desktop
	AWS Deadline Cloud CLI and Tools


	Identity and Access Management in Deadline Cloud
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Deadline Cloud works with IAM
	Identity-based policies for Deadline Cloud
	Identity-based policy examples for Deadline Cloud

	Resource-based policies within Deadline Cloud
	Policy actions for Deadline Cloud
	Policy resources for Deadline Cloud
	Policy condition keys for Deadline Cloud
	ACLs in Deadline Cloud
	ABAC with Deadline Cloud
	Using temporary credentials with Deadline Cloud
	Forward access sessions for Deadline Cloud
	Service roles for Deadline Cloud
	Service-linked roles for Deadline Cloud

	Identity-based policy examples for Deadline Cloud
	Policy best practices
	Using the Deadline Cloud console
	Policy to submit jobs to a queue
	Policy to allow creating a license endpoint
	Policy to allow monitoring a specific farm queue

	AWS managed policies for Deadline Cloud
	AWS managed policy: AWSDeadlineCloud-FleetWorker
	AWS managed policy: AWSDeadlineCloud-WorkerHost
	AWS managed policy: AWSDeadlineCloud-UserAccessFarms
	AWS managed policy: AWSDeadlineCloud-UserAccessFleets
	AWS managed policy: AWSDeadlineCloud-UserAccessJobs
	AWS managed policy: AWSDeadlineCloud-UserAccessQueues
	Deadline Cloud updates to AWS managed policies

	Troubleshooting AWS Deadline Cloud identity and access
	I am not authorized to perform an action in Deadline Cloud
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Deadline Cloud resources


	Compliance validation for Deadline Cloud
	Resilience in Deadline Cloud
	Infrastructure security in Deadline Cloud
	Configuration and vulnerability analysis in Deadline Cloud
	Cross-service confused deputy prevention
	Access AWS Deadline Cloud using an interface endpoint (AWS PrivateLink)
	Considerations for Deadline Cloud
	Deadline Cloud endpoints
	Create endpoints for Deadline Cloud

	Security best practices for Deadline Cloud
	Data protection
	AWS Identity and Access Management permissions
	Run jobs as users and groups
	Networking
	Jobs and job data
	Farm structure
	Job attachment queues
	Custom software Amazon S3 buckets
	Worker hosts
	Workstations


	Document history

