
Developer Guide

Amazon Elastic Inference

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Elastic Inference Developer Guide

Amazon Elastic Inference: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Elastic Inference Developer Guide

Table of Contents

What Is Amazon Elastic Inference? .. 1
Prerequisites .. 3
Pricing for Amazon Elastic Inference ... 3
Elastic Inference Uses .. 3
Elastic Inference Basics .. 4

Elastic Inference Uses ... 3
Getting Started ... 7

Amazon Elastic Inference Service Limits .. 7
Choosing an Instance and Accelerator Type for Your Model ... 9
Using Amazon Elastic Inference with EC2 Auto Scaling ... 10

Working with Amazon Elastic Inference .. 11
Setting Up .. 11

Configuring Your Security Groups for Elastic Inference .. 11
Configuring AWS PrivateLink Endpoint Services .. 13
Configuring an Instance Role with an Elastic Inference Policy .. 14
Launching an Instance with Elastic Inference ... 16

TensorFlow Models .. 19
Elastic Inference Enabled TensorFlow .. 19
Additional Requirements and Considerations ... 20
TensorFlow Elastic Inference with Python ... 20
TensorFlow 2 Elastic Inference with Python ... 33

MXNet Models ... 47
More Models and Resources ... 47
MXNet Elastic Inference with Python .. 48
MXNet Elastic Inference with Deep Java Library (DJL) ... 77

PyTorch Models .. 94
Compile Elastic Inference-enabled PyTorch models .. 95
Additional Requirements and Considerations ... 97
PyTorch Elastic Inference with Python ... 98

Monitoring Elastic Inference Accelerators .. 105
EI_VISIBLE_DEVICES .. 105
EI Tool ... 106
Health Check ... 111

MXNet Elastic Inference with SageMaker .. 112

iii

Amazon Elastic Inference Developer Guide

Using Amazon Deep Learning Containers With Elastic Inference ... 113
Using Amazon Deep Learning Containers with Amazon Elastic Inference on Amazon EC2 113

Prerequisites .. 114
Using TensorFlow Elastic Inference accelerators on EC2 .. 115
Using MXNet Elastic Inference accelerators on Amazon EC2 .. 116
Using PyTorch Elastic Inference accelerators on Amazon EC2 .. 117

Using Deep Learning Containers with Amazon Deep Learning Containers on Amazon ECS 119
Prerequisites .. 119
Using TensorFlow Elastic Inference accelerators on Amazon ECS .. 120
Using MXNet Elastic Inference accelerators on Amazon ECS .. 124
Using PyTorch Elastic Inference accelerators on Amazon ECS .. 128

Using Amazon Deep Learning Containers with Elastic Inference on Amazon SageMaker 132
Security .. 133

Identity and Access Management .. 133
Authenticating With Identities ... 134
Managing Access Using Policies .. 137

Logging and Monitoring ... 139
Compliance Validation .. 139
Resilience ... 140
Infrastructure Security .. 141
Configuration and Vulnerability Analysis ... 141

Using CloudWatch Metrics to Monitor Elastic Inference ... 142
Elastic Inference Metrics and Dimensions .. 142
Creating CloudWatch Alarms to Monitor Elastic Inference ... 145

Troubleshooting ... 147
Issues Launching Accelerators ... 147
Resolving Configuration Issues ... 147
Issues Running AWS Batch .. 147
Resolving Permission Issues .. 148
Stop and Start the Instance .. 148
Troubleshooting Model Performance .. 149
Submitting Feedback .. 149
Amazon Elastic Inference Error Codes .. 150

Document History .. 157
AWS Glossary ... 158

iv

Amazon Elastic Inference Developer Guide

What Is Amazon Elastic Inference?

Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI),
and will help current customers migrate their workloads to options that offer better price and
performance. After April 15, 2023, new customers will not be able to launch instances with
Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers
who have used Amazon EI at least once during the past 30-day period are considered current
customers and will be able to continue using the service.

Machine learning (ML) on AWS helps you innovate faster with the most comprehensive set of
ML services and infrastructure made available in a low-cost, pay as-you-go usage model. AWS
continuously delivers better performing and lower cost infrastructure for ML inference workloads.
AWS launched Amazon Elastic Inference (EI) in 2018 to enable customers to attach low-cost GPU-
powered acceleration to Amazon EC2, Amazon SageMaker instances, or Amazon Elastic Container
Service (ECS) tasks to reduce the cost of running deep learning inference by up to 75% compared
to standalone GPU based instances such as Amazon EC2 P4d and Amazon EC2 G5. In 2019, AWS
launched AWS Inferentia, Amazon's first custom silicon designed to accelerate deep learning
workloads by providing high performance inference in the cloud. Amazon EC2 Inf1 instances based
on AWS Inferentia chips deliver up 2.3x higher throughput and up to 70% lower cost per inference
than comparable current generation GPU-based Amazon EC2 instances. With the availability
of new accelerated compute options such as AWS Inferentia and Amazon EC2 G5 instances, the
benefit of attaching a fractional GPU to a CPU host instance using Amazon EI has diminished. For
example, customers hosting models on Amazon EI who move to ml.inf1.xlarge instances can
get up to 56% in cost savings and 2x performance improvement.

Customers can use Amazon SageMaker Inference Recommender to help them choose the best
alternative instances to Amazon EI for deploying their ML models.

Frequently asked questions

1. Why is Amazon encouraging customers to move workloads from Amazon Elastic Inference
(EI) to newer hardware acceleration options such as AWS Inferentia?

Customers get better performance at a much better price than Amazon EI with new hardware
accelerator options such as AWS Inferentia for their inference workloads. AWS Inferentia is
designed to provide high performance inference in the cloud, to drive down the total cost of
inference, and to make it easy for developers to integrate machine learning into their business

1

https://aws.amazon.com/machine-learning/inferentia/

Amazon Elastic Inference Developer Guide

applications. To enable customers to benefit from such newer generation hardware accelerators,
we will not onboard new customers to Amazon EI after April 15, 2023.

2. Which AWS services are impacted by the move to stop onboarding new customers to Amazon
Elastic Inference (EI)?

This announcement will affect Amazon EI accelerators attached to any Amazon EC2, Amazon
SageMaker instances, or Amazon Elastic Container Service (ECS) tasks. In Amazon SageMaker,
this applies to both endpoints and notebook kernels using Amazon EI accelerators.

3. Will I be able to create a new Amazon Elastic Inference (EI) accelerator after April 15, 2023?

No, if you are a new customer and have not used Amazon EI in the past 30 days, then you will
not be able create a new Amazon EI instance in your AWS account after April 15, 2023. However,
if you have used an Amazon EI accelerator at least once in the past 30 days, you can attach a
new Amazon EI accelerator to your instance.

4. We currently use Amazon Elastic Inference (EI) accelerators. Will we be able to continue
using them after April 15, 2023?

Yes, you will be able use Amazon EI accelerators. We recommend that you migrate your current
ML Inference workloads running on Amazon EI to other hardware accelerator options at your
earliest convenience.

5. How do I evaluate alternative instance options for my current Amazon SageMaker Inference
Endpoints?

Amazon SageMaker Inference Recommender can help you identify cost-effective deployments
to migrate existing workloads from Amazon Elastic Inference (EI) to an appropriate ML instance
supported by SageMaker.

6. How do I change the instance type for my existing endpoint in Amazon SageMaker?

You can change the instance type for your existing endpoint by doing the following:

1. First, create a new EndpointConfig that uses the new instance type. If you have an
autoscaling policy, delete the existing autoscaling policy.

2. Call UpdateEndpoint while specifying your newly created EndpointConfig.

3. Wait for your endpoint to change status to InService. This will take approximately 10-15
minutes.

4. Finally, if you need autoscaling for your new endpoint, create a new autoscaling policy for
this new endpoint and ProductionVariant.

2

https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling-delete.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html

Amazon Elastic Inference Developer Guide

7. How do I change the instance type for my existing Amazon SageMaker Notebook Instance
using Amazon Elastic Inference (EI)?

Choose Notebook instances in the SageMaker console, and then choose the Notebook Instance
you want to update. Make sure the Notebook Instance has a Stopped status. Finally, you can
choose Edit and change your instance type. Make sure that, when your Notebook Instance starts
up, you select the right kernel for your new instance.

8. Is there a specific instance type which is a good alternative to Amazon Elastic Inference (EI)?

Every machine learning workload is unique. We recommend using Amazon SageMaker
Inference Recommender to help you identify the right instance type for your ML workload,
performance requirements, and budget. AWS Inferentia, specifically inf1.xlarge, is the best
high performance and low-cost alternative for Amazon EI customers.

Prerequisites

You need an Amazon Web Services account and should be familiar with launching an Amazon EC2,
Amazon Deep Learning Containers, or SageMaker instances to successfully run Amazon Elastic
Inference. To launch an Amazon EC2 instance, complete the steps in Setting up with Amazon EC2.
Amazon S3 resources are required for installing packages via pip. For more information about
setting up Amazon S3 resources, see the Amazon Simple Storage Service User Guide.

Pricing for Amazon Elastic Inference

You are charged for each second that an Elastic Inference accelerator is attached to an instance in
the running state. You are not charged for an accelerator attached to an instance that is in the
pending, stopping, stopped, shutting-down, or terminated state. You are also not charged
when an Elastic Inference accelerator is in the unknown or impaired state.

You do not incur AWS PrivateLink charges for VPC endpoints to the Elastic Inference service when
you have accelerators provisioned in the subnet.

For more information about pricing by Region for Elastic Inference, see Elastic Inference Pricing.

Elastic Inference Uses

You can use Elastic Inference in the following use cases:

Prerequisites 3

https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender.html
https://aws.amazon.com/machine-learning/inferentia/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://aws.amazon.com//machine-learning/elastic-inference/pricing

Amazon Elastic Inference Developer Guide

• For Elastic Inference-enabled TensorFlow and TensorFlow 2 with Python, see Using TensorFlow
Models with Elastic Inference

• For Elastic Inference-enabled MXNet with Python, Java, and Scala, see Using MXNet Models with
Elastic Inference

• For Elastic Inference-enabled PyTorch with Python, see Using PyTorch Models with Elastic
Inference

• For Elastic Inference with SageMaker, see MXNet Elastic Inference with SageMaker

• For Amazon Deep Learning Containers with Elastic Inference on Amazon EC2, Amazon ECS, and
SageMaker, see Using Amazon Deep Learning Containers With Elastic Inference

• For security information on Elastic Inference, see Security in Amazon Elastic Inference

• To troubleshoot your Elastic Inference workflow, see Troubleshooting

Next Up

Amazon Elastic Inference Basics

Amazon Elastic Inference Basics

When you configure an Amazon EC2 instance to launch with an Elastic Inference accelerator,
AWS finds available accelerator capacity. It then establishes a network connection between your
instance and the accelerator.

The following Elastic Inference accelerator types are available. You can attach any Elastic Inference
accelerator type to any Amazon EC2 instance type.

Accelerator Type FP32 Throughput
(TFLOPS)

FP16 Throughput
(TFLOPS)

Memory (GB)

eia2.medium 1 8 2

eia2.large 2 16 4

eia2.xlarge 4 32 8

You can attach multiple Elastic Inference accelerators of various sizes to a single Amazon EC2
instance when launching the instance. With multiple accelerators, you can run inference for

Elastic Inference Basics 4

Amazon Elastic Inference Developer Guide

multiple models on a single fleet of Amazon EC2 instances. If your models require different
amounts of GPU memory and compute capacity, you can choose the appropriate accelerator size to
attach to your CPU. For faster response times, load your models to an Elastic Inference accelerator
once and continue making inference calls on multiple accelerators without unloading any models
for each call. By attaching multiple accelerators to a single instance, you avoid deploying multiple
fleets of CPU or GPU instances and the associated cost. For more information on attaching multiple
accelerators to a single instance, see Using TensorFlow Models with Elastic Inference, Using MXNet
Models with Elastic Inference , and Using PyTorch Models with Elastic Inference.

Note

Attaching multiple Elastic Inference accelerators to a single Amazon EC2 instance requires
that the instance has AWS Deep Learning AMI (DLAMI) version 25 or later. For more
information on the AWS Deep Learning AMI, see What Is the AWS Deep Learning AMI?.

An Elastic Inference accelerator is not part of the hardware that makes up your instance. Instead,
the accelerator is attached through the network using an AWS PrivateLink endpoint service. The
endpoint service routes traffic from your instance to the Elastic Inference accelerator configured
with your instance.

Note

An Elastic Inference accelerator cannot be modified through the management console of
your instance.

Before you launch an instance with an Elastic Inference accelerator, you must create an AWS
PrivateLink endpoint service. Only a single endpoint service is needed in every Availability Zone to
connect instances with Elastic Inference accelerators. A single endpoint service can span multiple
Availability Zones. For more information, see VPC Endpoint Services (AWS PrivateLink).

Elastic Inference Basics 5

https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-tensorflow.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-mxnet.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-mxnet.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-pytorch.html
https://docs.aws.amazon.com/dlami/latest/devguide/what-is-dlami.html
https://docs.aws.amazon.com/vpc/latest/userguide/endpoint-service.html

Amazon Elastic Inference Developer Guide

You can use Amazon Elastic Inference enabled TensorFlow, TensorFlow Serving, Apache MXNet,
or PyTorch libraries to load models and make inference calls. The modified versions of these
frameworks automatically detect the presence of Elastic Inference accelerators. They then
optimally distribute the model operations between the Elastic Inference accelerator and the CPU of
the instance. The AWS Deep Learning AMIs include the latest releases of Amazon Elastic Inference
enabled TensorFlow, TensorFlow Serving, MXNet, and PyTorch. If you are using custom AMIs or
container images, you can download and install the required TensorFlow, Apache MXNet, and
PyTorch libraries from Amazon S3.

Elastic Inference Uses

You can use Elastic Inference in the following use cases:

• For Elastic Inference-enabled TensorFlow and TensorFlow 2 with Python, see Using TensorFlow
Models with Elastic Inference

• For Elastic Inference-enabled MXNet with Python, Java, and Scala, see Using MXNet Models with
Elastic Inference

• For Elastic Inference-enabled PyTorch with Python, see Using PyTorch Models with Elastic
Inference

Elastic Inference Uses 6

https://aws.amazon.com//blogs/machine-learning/get-started-with-deep-learning-using-the-aws-deep-learning-ami
https://s3.console.aws.amazon.com/s3/buckets/amazonei-tensorflow/
https://s3.console.aws.amazon.com/s3/buckets/amazonei-apachemxnet/
https://s3.console.aws.amazon.com/s3/buckets/amazonei-pytorch/

Amazon Elastic Inference Developer Guide

• For Elastic Inference with SageMaker, see MXNet Elastic Inference with SageMaker

• For Amazon Deep Learning Containers with Elastic Inference on Amazon EC2, Amazon ECS, and
SageMaker, see Using Amazon Deep Learning Containers With Elastic Inference

• For security information on Elastic Inference, see Security in Amazon Elastic Inference

• To troubleshoot your Elastic Inference workflow, see Troubleshooting

Before you get started with Amazon Elastic Inference

Amazon Elastic Inference Service Limits

Before you start using Elastic Inference accelerators, be aware of the following limitations:

Limit Description

Elastic Inference
accelerator instance
limit

You can attach
up to five Elastic
Inference accelerat
ors by default to
each instance at a
time, and only during
instance launch. This
is adjustable. We
recommend testing
the optimal setup
before deploying to
production.

Elastic Inference
Sharing

You cannot share
an Elastic Inference
accelerator between
instances.

Elastic Inference
Transfer

You cannot detach
an Elastic Inference
accelerator from an
instance or transfer it

Getting Started 7

Amazon Elastic Inference Developer Guide

Limit Description

to another instance.
If you no longer need
an Elastic Inference
accelerator, you
must terminate your
instance. You cannot
change the Elastic
Inference accelerator
type. Terminate the
instance and launch
a new instance with
a different Elastic
Inference accelerator
specification.

Supported Libraries Only the Amazon
Elastic Inference
enhanced MXNet,
TensorFlow, and
PyTorch libraries can
make inference calls
to Elastic Inference
accelerators.

Elastic Inference
Attachment

Elastic Inference
accelerators can
only be attached to
instances in a VPC.

Amazon Elastic Inference Service Limits 8

Amazon Elastic Inference Developer Guide

Limit Description

Reserving accelerator
capacity

Pricing for Elastic
Inference accelerat
ors is available at On-
Demand Instance
rates only. You can
attach an accelerat
or to a Reserved
Instance, Scheduled
Reserved Instance,
or Spot Instance.
However, the On-
Demand Instance
price for the Elastic
Inference accelerator
applies. You cannot
reserve or schedule
Elastic Inference
accelerator capacity.

Choosing an Instance and Accelerator Type for Your Model

Demands on CPU compute resources, CPU memory, GPU-based acceleration, and GPU memory
vary significantly between different types of deep learning models. The latency and throughput
requirements of the application also determine the amount of instance compute and Elastic
Inference acceleration you need. Consider the following when you choose an instance and
accelerator type combination for your model:

• Before you evaluate the right combination of resources for your model or application stack,
you should determine the target latency, throughput needs, and constraints. For example, let's
assume your application must respond within 300 milliseconds (ms). If data retrieval (including
any authentication) and preprocessing takes 200ms, you have a 100-ms window to work with
for the inference request. Using this analysis, you can determine the lowest cost infrastructure
combination that meets these targets.

Choosing an Instance and Accelerator Type for Your Model 9

Amazon Elastic Inference Developer Guide

• Start with a reasonably small combination of resources. For example, a budget-friendly
c5.xlarge CPU instance type along with an eia2.medium accelerator type. This combination
has been tested to work well for various computer vision workloads (including a large version
of ResNet: ResNet-200). The combination gives comparable or better performance than a more
costly p2.xlarge GPU instance. You can then resize the instance or accelerator type depending
on your latency targets.

• I/O data transfer between instance and accelerator adds to inference latency because Elastic
Inference accelerators are attached over the network.

• If you use multiple models with your accelerator, you might need a larger accelerator size to
better support both compute and memory needs. This also applies if you use the same model
from multiple application processes on the instance.

• You can convert your model to mixed precision, which uses the higher FP16 TFLOPS of the
accelerator, to provide lower latency and higher performance.

Using Amazon Elastic Inference with EC2 Auto Scaling

When you create an Auto Scaling group, you can specify the information required to configure
the Amazon EC2 instances. This includes Elastic Inference accelerators. To do this, specify a launch
template with your instance configuration and the Elastic Inference accelerator type.

Using Amazon Elastic Inference with EC2 Auto Scaling 10

Amazon Elastic Inference Developer Guide

Working with Amazon Elastic Inference

To work with Amazon Elastic Inference, set up and launch your Amazon Elastic Compute Cloud
instance with Elastic Inference. After that, use Elastic Inference accelerators that are powered by
the Elastic Inference enabled versions of TensorFlow, TensorFlow Serving, Apache MXNet (MXNet),
and PyTorch. You can do this with few changes to your code.

Topics

• Setting Up to Launch Amazon EC2 with Elastic Inference

• Using TensorFlow Models with Elastic Inference

• Using MXNet Models with Elastic Inference

• Using PyTorch Models with Elastic Inference

• Monitoring Elastic Inference Accelerators

• MXNet Elastic Inference with SageMaker

Setting Up to Launch Amazon EC2 with Elastic Inference

The most convenient way to set up Amazon EC2 with Elastic Inference uses the Elastic Inference
setup script described in https://aws.amazon.com/blogs/machine-learning/launch-ei-accelerators-
in-minutes-with-the-amazon-elastic-inference-setup-tool-for-ec2/. To manually launch an instance
and associate it with an Elastic Inference accelerator, first configure your security groups and AWS
PrivateLink endpoint services. Then, configure an instance role with the Elastic Inference policy.

Topics

• Configuring Your Security Groups for Elastic Inference

• Configuring AWS PrivateLink Endpoint Services

• Configuring an Instance Role with an Elastic Inference Policy

• Launching an Instance with Elastic Inference

Configuring Your Security Groups for Elastic Inference

You need two security groups. One for inbound and outbound traffic for the new Elastic Inference
VPC endpoint. A second one for outbound traffic for the associated Amazon EC2 instances that you
launch.

Setting Up 11

https://aws.amazon.com/blogs/machine-learning/launch-ei-accelerators-in-minutes-with-the-amazon-elastic-inference-setup-tool-for-ec2/
https://aws.amazon.com/blogs/machine-learning/launch-ei-accelerators-in-minutes-with-the-amazon-elastic-inference-setup-tool-for-ec2/

Amazon Elastic Inference Developer Guide

Configure Your Security Groups for Elastic Inference

To configure a security group for an Elastic Inference accelerator (console)

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the left navigation pane, choose Security, Security Groups.

3. Choose Create Security Group

4. Under Create Security Group, specify a name and description for the security group and
choose the ID of the VPC. Choose Create and then choose Close.

5. Select the check box next to your security group and choose Actions, Edit inbound rules. Add
a rule to allow HTTPS traffic on port 443 as follows:

a. Choose Add Rule.

b. For Type, select HTTPS.

c. For Source, specify a CIDR block (for example, 0.0.0.0/0) or the security group for your
instance.

d. To allow traffic for port 22 to the EC2 instance, repeat the procedure. For Type, select
SSH.

e. Choose Save rules and then choose Close.

6. Choose Edit outbound rules. Choose Add rule. To allow traffic for all ports, for Type, select All
Traffic.

7. Choose Save rules.

To configure a security group for an Elastic Inference accelerator (AWS CLI)

1. Create a security group using the create-security-group command:

aws ec2 create-security-group
--description insert a description for the security group
--group-name assign a name for the security group
[--vpc-id enter the VPC ID]

2. Create inbound rules using the authorize-security-group-ingress command:

aws ec2 authorize-security-group-ingress --group-id insert the security group ID --
protocol tcp --port 443 --cidr 0.0.0.0/0

Configuring Your Security Groups for Elastic Inference 12

https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/cli/latest/reference/ec2/create-security-group.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/authorize-security-group-ingress.html

Amazon Elastic Inference Developer Guide

aws ec2 authorize-security-group-ingress --group-id insert the security group ID --
protocol tcp --port 22 --cidr 0.0.0.0/0

3. The default setting for outbound rules allows all traffic from all ports for this instance.

Configuring AWS PrivateLink Endpoint Services

Elastic Inference uses VPC endpoints to privately connect the instance in your VPC with their
associated Elastic Inference accelerator. Create a VPC endpoint for Elastic Inference before
you launch instances with accelerators. This needs to be done just one time per VPC. For more
information, see Interface VPC Endpoints (AWS PrivateLink).

To configure an AWS PrivateLink endpoint service (console)

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the left navigation pane, choose Endpoints, Create Endpoint.

3. For Service category, choose Find service by name.

4. For Service Name, select com.amazonaws.<your-region>.elastic-inference.runtime.

For example, for the us-west-2 Region, select com.amazonaws.us-west-2.elastic-
inference.runtime.

5. For Subnets, select one or more Availability Zones where the endpoint should be created.
Where you plan to launch instances with accelerators, you must select subnets for the
Availability Zone.

6. Enable the private DNS name and enter the security group for your endpoint. Choose Create
endpoint. Note the VPC endpoint ID for later.

7. The security group that we configured for the endpoint in previous steps must allow inbound
traffic to port 443.

To configure an AWS PrivateLink endpoint service (AWS CLI)

• Use the https://docs.aws.amazon.com/cli/latest/reference/ec2/create-vpc-endpoint.html
command and specify the following: VPC ID, type of VPC endpoint (interface), service name,
subnets to use the endpoint, and security groups to associate with the endpoint network
interfaces. For information about how to set up a security group for your VPC endpoint, see
the section called “Configuring Your Security Groups for Elastic Inference”.

Configuring AWS PrivateLink Endpoint Services 13

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/cli/latest/reference/ec2/create-vpc-endpoint.html

Amazon Elastic Inference Developer Guide

aws ec2 create-vpc-endpoint --vpc-id vpc-insert VPC ID --vpc-endpoint-type
 Interface --service-name com.amazonaws.us-west-2.elastic-inference.runtime --
subnet-id subnet-insert subnet --security-group-id sg-insert security group ID

Configuring an Instance Role with an Elastic Inference Policy

To launch an instance with an Elastic Inference accelerator, you must provide an IAM role that
allows actions on Elastic Inference accelerators.

To configure an instance role with an Elastic Inference policy (console)

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Policies, Create Policy.

3. Choose JSON and paste the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elastic-inference:Connect",
 "iam:List*",
 "iam:Get*",
 "ec2:Describe*",
 "ec2:Get*"
],
 "Resource": "*"
 }
]
}

Note

You may get a warning message about the Elastic Inference service not being
recognizable. This is a known issue and does not block creation of the policy.

Configuring an Instance Role with an Elastic Inference Policy 14

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://console.aws.amazon.com/iam/

Amazon Elastic Inference Developer Guide

4. Choose Review policy and enter a name for the policy, such as ec2-role-trust-
policy.json, and a description.

5. Choose Create policy.

6. In the left navigation pane, choose Roles, Create role.

7. Choose AWS service, EC2, Next: Permissions.

8. Select the name of the policy that you just created (ec2-role-trust-policy.json).
Choose Next: Tags.

9. Provide a role name and choose Create Role.

When you create your instance, select the role under Configure Instance Details in the launch
wizard.

To configure an instance role with an Elastic Inference policy (AWS CLI)

• To configure an instance role with an Elastic Inference policy, follow the steps in Creating an
IAM Role. Add the following policy to your instance:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elastic-inference:Connect",
 "iam:List*",
 "iam:Get*",
 "ec2:Describe*",
 "ec2:Get*"
],
 "Resource": "*"
 }
]
}

Note

You may get a warning message about the Elastic Inference service not being
recognizable. This is a known issue and does not block creation of the policy.

Configuring an Instance Role with an Elastic Inference Policy 15

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#create-iam-role
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#create-iam-role

Amazon Elastic Inference Developer Guide

Launching an Instance with Elastic Inference

You can now configure Amazon EC2 instances with accelerators to launch within your subnet.
Choose any supported Amazon EC2 instance type and Elastic Inference accelerator size. Elastic
Inference accelerators are available to all current generation instance types. There are two
accelerator types.

EIA2 is the second generation of Elastic Inference accelerators. It offers improved performance
and increased memory. With up to 8 GB of GPU memory, EIA2 is a cost-effective resource for
deploying machine learning (ML) models. Use it for applications such as image classification, object
detection, automated speech recognition, and language translation. Your accelerator memory
choices depend on the size of your input and models. You can choose from the following Elastic
Inference accelerators:

• eia2.medium with 2 GB of accelerator memory

• eia2.large with 4 GB of accelerator memory

• eia2.xlarge with 8 GB of accelerator memory

Note: We continue to support EIA1 in three sizes: eia1.medium, eia1.large, and eia1.xlarge

You can launch an instance with Elastic Inference automatically by using the Amazon Elastic
Inference setup tool for EC2, or manually using the console or AWS Command Line Interface.

To launch an instance with Elastic Inference (console)

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Launch Instance.

3. Under Choose an Amazon Machine Image, select an Amazon Linux or Ubuntu AMI. We
recommend one of the Deep Learning AMIs.

Note

Attaching multiple Elastic Inference accelerators to a single Amazon EC2 instance
requires that the instance has AWS Deep Learning AMI (DLAMI) Version 25 or later.

4. Under Choose an Instance Type, select the hardware configuration of your instance.

5. Choose Next: Configure Instance Details.

Launching an Instance with Elastic Inference 16

https://aws.amazon.com/blogs/machine-learning/launch-ei-accelerators-in-minutes-with-the-amazon-elastic-inference-setup-tool-for-ec2/
https://aws.amazon.com/blogs/machine-learning/launch-ei-accelerators-in-minutes-with-the-amazon-elastic-inference-setup-tool-for-ec2/
https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/dlami/latest/devguide/conda.html

Amazon Elastic Inference Developer Guide

6. Under Configure Instance Details, check the configuration settings. Ensure that you are using
the VPC with the security groups for the instance and the Elastic Inference accelerator that you
set up earlier. For more information, see Configuring Your Security Groups for Elastic Inference.

7. For IAM role, select the role that you created in the Configuring an Instance Role with an
Elastic Inference Policy procedure.

8. Select Add an Elastic Inference accelerator.

9. Select the size and amount of Elastic Inference accelerators. Your options are: eia2.medium,
eia2.large, and eia2.xlarge.

10. To add another Elastic Inference accelerator, choose Add. Then select the size and amount of
accelerators to add.

11. (Optional) You can choose to add storage and tags by choosing Next at the bottom of the
page. Or, you can let the instance wizard complete the remaining configuration steps for you.

12. In the Add Security Group step, choose the security group created previously.

13. Review the configuration of your instance and choose Launch.

14. You are prompted to choose an existing key pair for your instance or to create a new key pair.
For more information, see Amazon EC2 Key Pairs..

Warning

Don’t select the Proceed without a key pair option. If you launch your instance
without a key pair, then you can’t connect to it.

15. After making your key pair selection, choose Launch Instances.

16. A confirmation page lets you know that your instance is launching. To close the confirmation
page and return to the console, choose View Instances.

17. Under Instances, you can view the status of the launch. It takes a short time for an instance to
launch. When you launch an instance, its initial state is pending. After the instance starts, its
state changes to running.

18. It can take a few minutes for the instance to be ready so that you can connect to it. Check that
your instance has passed its status checks. You can view this information in the Status Checks
column.

Launching an Instance with Elastic Inference 17

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Amazon Elastic Inference Developer Guide

To launch an instance with Elastic Inference (AWS CLI)

To launch an instance with Elastic Inference at the command line, you need your key pair name,
subnet ID, security group ID, AMI ID, and the name of the instance profile that you created in the
section Configuring an Instance Role with an Elastic Inference Policy. For the security group ID,
use the one you created for your instance that contains the AWS PrivateLink endpoint. For more
information, see Configuring Your Security Groups for Elastic Inference). For more information
about the AMI ID, see Finding a Linux AMI.

1. Use the run-instances command to launch your instance and accelerator:

aws ec2 run-instances --image-id ami-image ID --instance-type m5.large --subnet-id
 subnet-subnet ID --elastic-inference-accelerator Type=eia2.large --key-name key
 pair name --security-group-ids sg-security group ID --iam-instance-profile
 Name="accelerator profile name"

To launch an instance with multiple accelerators, you can add multiple Type parameters to --
elastic-inference-accelerator.

aws ec2 run-instances --image-id ami-image ID --instance-type m5.large --subnet-
id subnet-subnet ID --elastic-inference-accelerator Type=eia2.large,Count=2
 Type=eia2.xlarge --key-name key pair name --region region name --security-group-
ids sg-security group ID

2. When the run-instances operation succeeds, your output is similar to the following. The
ElasticInferenceAcceleratorArn identifies the Elastic Inference accelerator.

"ElasticInferenceAcceleratorAssociations": [
 {
 "ElasticInferenceAcceleratorArn": "arn:aws:elastic-
inference:us-west-2:204044812891:elastic-inference-accelerator/
eia-3e1de7c2f64a4de8b970c205e838af6b",
 "ElasticInferenceAcceleratorAssociationId": "eia-assoc-031f6f53ddcd5f260",
 "ElasticInferenceAcceleratorAssociationState": "associating",
 "ElasticInferenceAcceleratorAssociationTime": "2018-10-05T17:22:20.000Z"
 }
],

You are now ready to run your models using TensorFlow, MXNet, or PyTorch on the provided AMI.

Launching an Instance with Elastic Inference 18

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/find-an-ami.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/run-instances.html

Amazon Elastic Inference Developer Guide

Once your Elastic Inference accelerator is running, you can use the describe-accelerators
AWS CLI. This command returns information about the accelerator, such as the region it is in and
the name of the accelerator. For more information about the usage of this command, see the
Elastic Inference AWS CLI Command Reference.

Using TensorFlow Models with Elastic Inference

Amazon Elastic Inference (Elastic Inference) is available only on instances that were launched with
an Elastic Inference accelerator.

The Elastic Inference enabled version of TensorFlow allows you to use Elastic Inference accelerators
with minimal changes to your TensorFlow code.

Topics

• Elastic Inference Enabled TensorFlow

• Additional Requirements and Considerations

• TensorFlow Elastic Inference with Python

• TensorFlow 2 Elastic Inference with Python

Elastic Inference Enabled TensorFlow

Preinstalled EI Enabled TensorFlow

The Elastic Inference enabled packages are available in the AWS Deep Learning AMI. AWS Deep
Learning AMIs come with supported TensorFlow version and ei_for_tf pre-installed. Elastic
Inference enabled TensorFlow 2 requires AWS Deep Learning AMI v28 or higher. You also have
Docker container options with Using Amazon Deep Learning Containers With Elastic Inference.

Installing EI Enabled TensorFlow

If you're not using a AWS Deep Learning AMI instance, you can download the packages from the
Amazon S3 bucket to build it in to your own Amazon Linux or Ubuntu AMIs.

Install ei_for_tf.

pip install -U ei_for_tf*.whl

TensorFlow Models 19

https://docs.aws.amazon.com/cli/latest/reference/elastic-inference/index.html
https://docs.aws.amazon.com/dlami/latest/devguide/what-is-dlami.html
https://s3.console.aws.amazon.com/s3/buckets/amazonei-tensorflow/

Amazon Elastic Inference Developer Guide

If the TensorFlow version is lower than the required version, pip upgrades TensorFlow to the
appropriate version. If the TensorFlow version is higher than the required version, there will be
a warning about the incompatibility. Your program fails at run-time if the TensorFlow version
incompatibility isn’t fixed.

Additional Requirements and Considerations

TensorFlow 2.0 Differences

Starting with TensorFlow 2.0, the Elastic Inference package is a separate pip wheel, instead of an
enhanced TensorFlow pip wheel. The prefix for import statements for the Elastic Inference specific
API have changed from tensorflow.contrib.ei to ei_for_tf.

To see the compatible TensorFlow version for a specific ei_for_tf version, see the
ei_for_tf_compatibility.txt file in the Amazon S3 bucket.

Model Formats Supported

Elastic Inference supports the TensorFlow saved_model format via TensorFlow Serving.

Warmup

Elastic Inference TensorFlow Serving provides a warmup feature to preload models and reduce the
delay that is typical of the first inference request. Amazon Elastic Inference TensorFlow Serving
only supports warming up the "fault-finders" signature definition.

Amazon Elastic Inference supports SageMaker Neo compiled TensorFlow models

Amazon Elastic Inference supports TensorFlow 2 models optimized by SageMaker Neo. A pre-
trained TensorFlow model can be compiled in SageMaker Neo with EIA as the target device.
The resulting model artifacts can be used for inference in Elastic Inference Accelerators. This
functionality only works for ei_for_tf version 1.6 and greater. For more information, see Use
Elastic Inference with SageMaker Neo compiled models.

TensorFlow Elastic Inference with Python

With Elastic Inference TensorFlow Serving, the standard TensorFlow Serving interface
remains unchanged. The only difference is that the entry point is a different binary named
amazonei_tensorflow_model_server.

Additional Requirements and Considerations 20

https://s3.console.aws.amazon.com/s3/buckets/amazonei-tensorflow/
https://www.tensorflow.org/serving/saved_model_warmup

Amazon Elastic Inference Developer Guide

TensorFlow Serving and Predictor are the only inference modes that Elastic Inference supports. If
you haven't tried TensorFlow Serving before, we recommend that you try the TensorFlow Serving
tutorial first.

This release of Elastic Inference TensorFlow Serving has been tested to perform well and provide
cost-saving benefits with the following deep learning use cases and network architectures (and
similar variants):

Use Case Example Network Topology

Image Recognition Inception, ResNet, MVCNN

Object Detection SSD, RCNN

Neural Machine Translation GNMT

Note

These tutorials assume usage of a DLAMI with v26 or later, and Elastic Inference enabled
Tensorflow.

Topics

• Activate the Tensorflow Elastic Inference Environment

• Use Elastic Inference with TensorFlow Serving

• Use Elastic Inference with the TensorFlow EIPredictor API

• Use Elastic Inference with TensorFlow Predictor Example

• Use Elastic Inference with the TensorFlow Keras API

Activate the Tensorflow Elastic Inference Environment

1. • (Option for Python 3) - Activate the Python 3 TensorFlow Elastic Inference environment:

$ source activate amazonei_tensorflow_p36

• (Option for Python 2) - Activate the Python 2.7 TensorFlow Elastic Inference environment:

TensorFlow Elastic Inference with Python 21

https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-tfserving.html

Amazon Elastic Inference Developer Guide

$ source activate amazonei_tensorflow_p27

2. The remaining parts of this guide assume you are using the amazonei_tensorflow_p27
environment.

If you are switching between Elastic Inference enabled MXNet, TensorFlow, or PyTorch
environments, you must stop and then start your instance in order to reattach the Elastic Inference
accelerator. Rebooting is not sufficient since the process requires a complete shut down.

Use Elastic Inference with TensorFlow Serving

The following is an example of serving a Single Shot Detector (SSD) with a ResNet backbone.

Serve and Test Inference with an Inception Model

1. Download the model.

curl -O https://s3-us-west-2.amazonaws.com/aws-tf-serving-ei-example/ssd_resnet.zip

2. Unzip the model.

unzip ssd_resnet.zip -d /tmp

3. Download a picture of three dogs to your home directory.

curl -O https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/
images/3dogs.jpg

4. Use the built-in EI Tool to get the device ordinal number of all attached Elastic Inference
accelerators. For more information on EI Tool, see Monitoring Elastic Inference Accelerators.

/opt/amazon/ei/ei_tools/bin/ei describe-accelerators --json

Your output should look like the following:

{
 "ei_client_version": "1.5.0",
 "time": "Fri Nov 1 03:09:38 2019",
 "attached_accelerators": 2,
 "devices": [

TensorFlow Elastic Inference with Python 22

https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-monitoring.html

Amazon Elastic Inference Developer Guide

 {
 "ordinal": 0,
 "type": "eia1.xlarge",
 "id": "eia-679e4c622d584803aed5b42ab6a97706",
 "status": "healthy"
 },
 {
 "ordinal": 1,
 "type": "eia1.xlarge",
 "id": "eia-6c414c6ee37a4d93874afc00825c2f28",
 "status": "healthy"
 }
]
}

5. Navigate to the folder where AmazonEI_TensorFlow_Serving is installed and run the
following command to launch the server. Set EI_VISIBLE_DEVICES to the device ordinal
or device ID of the attached Elastic Inference accelerator that you want to use. This device
will then be accessible using id 0. For more information on EI_VISIBLE_DEVICES, see
Monitoring Elastic Inference Accelerators. Note, model_base_path must be an absolute path.

EI_VISIBLE_DEVICES=<ordinal number> amazonei_tensorflow_model_server --
model_name=ssdresnet --model_base_path=/tmp/ssd_resnet50_v1_coco --port=9000

6. While the server is running in the foreground, launch another terminal session. Open a new
terminal and activate the TensorFlow environment.

source activate amazonei_tensorflow_p27

7. Use your preferred text editor to create a script that has the following content. Name it
ssd_resnet_client.py. This script will take an image filename as a parameter and get a
prediction result from the pretrained model.

from __future__ import print_function

import grpc
import tensorflow as tf
from PIL import Image
import numpy as np
import time
import os
from tensorflow_serving.apis import predict_pb2

TensorFlow Elastic Inference with Python 23

https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-monitoring.html

Amazon Elastic Inference Developer Guide

from tensorflow_serving.apis import prediction_service_pb2_grpc

tf.app.flags.DEFINE_string('server', 'localhost:9000',
 'PredictionService host:port')
tf.app.flags.DEFINE_string('image', '', 'path to image in JPEG format')
FLAGS = tf.app.flags.FLAGS

coco_classes_txt = "https://raw.githubusercontent.com/amikelive/coco-labels/master/
coco-labels-paper.txt"
local_coco_classes_txt = "/tmp/coco-labels-paper.txt"
it's a file like object and works just like a file
os.system("curl -o %s -O %s"%(local_coco_classes_txt, coco_classes_txt))
NUM_PREDICTIONS = 5
with open(local_coco_classes_txt) as f:
 classes = ["No Class"] + [line.strip() for line in f.readlines()]

def main(_):
 channel = grpc.insecure_channel(FLAGS.server)
 stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)

 # Send request
 with Image.open(FLAGS.image) as f:
 f.load()
 # See prediction_service.proto for gRPC request/response details.
 data = np.asarray(f)
 data = np.expand_dims(data, axis=0)

 request = predict_pb2.PredictRequest()
 request.model_spec.name = 'ssdresnet'
 request.inputs['inputs'].CopyFrom(
 tf.contrib.util.make_tensor_proto(data, shape=data.shape))
 result = stub.Predict(request, 60.0) # 10 secs timeout
 outputs = result.outputs
 detection_classes = outputs["detection_classes"]
 detection_classes = tf.make_ndarray(detection_classes)
 num_detections = int(tf.make_ndarray(outputs["num_detections"])[0])
 print("%d detection[s]" % (num_detections))
 class_label = [classes[int(x)]
 for x in detection_classes[0][:num_detections]]
 print("SSD Prediction is ", class_label)

if __name__ == '__main__':

TensorFlow Elastic Inference with Python 24

Amazon Elastic Inference Developer Guide

 tf.app.run()

8. Now run the script passing the server location, port, and the dog photo's filename as the
parameters.

python ssd_resnet_client.py --server=localhost:9000 --image 3dogs.jpg

Use Elastic Inference with the TensorFlow EIPredictor API

Elastic Inference TensorFlow packages for Python 2 and 3 provide an EIPredictor API. This API
function provides you with a flexible way to run models on Elastic Inference accelerators as
an alternative to using TensorFlow Serving. The EIPredictor API provides a simple interface to
perform repeated inference on a pretrained model. The following code sample shows the available
parameters.

Note

accelerator_id should be set to the device's ordinal number, not its ID.

ei_predictor = EIPredictor(model_dir,
 signature_def_key=None,
 signature_def=None,
 input_names=None,
 output_names=None,
 tags=None,
 graph=None,
 config=None,
 use_ei=True,
 accelerator_id=<device ordinal number>)

output_dict = ei_predictor(feed_dict)

EIPredictor can be used in the following ways:

//EIPredictor class picks inputs and outputs from default serving signature def with
 tag “serve”. (similar to TF predictor)
ei_predictor = EIPredictor(model_dir)

TensorFlow Elastic Inference with Python 25

Amazon Elastic Inference Developer Guide

//EI Predictor class picks inputs and outputs from the signature def picked using the
 signtaure_def_key (similar to TF predictor)
ei_predictor = EIPredictor(model_dir, signature_def_key='predict')

// Signature_def can be provided directly (similar to TF predictor)
ei_predictor = EIPredictor(model_dir, signature_def= sig_def)

// You provide the input_names and output_names dict.
// similar to TF predictor

ei_predictor = EIPredictor(model_dir,
 input_names,
 output_names)

// tag is used to get the correct signature def. (similar to TF predictor)

ei_predictor = EIPredictor(model_dir, tags='serve')

Additional EI Predictor functionality includes:

• Support for frozen models.

// For Frozen graphs, model_dir takes a file name , input_names and output_names
// input_names and output_names should be provided in this case.

ei_predictor = EIPredictor(model_dir,
 input_names=None,
 output_names=None)

• Ability to disable use of Elastic Inference by using the use_ei flag, which defaults to True. This
is useful for testing EIPredictor against TensorFlow Predictor.

• EIPredictor can also be created from a TensorFlow Estimator. Given a trained Estimator, you can
first export a SavedModel. See the SavedModel documentation for more details. The following
shows example usage:

saved_model_dir = estimator.export_savedmodel(my_export_dir, serving_input_fn)
ei_predictor = EIPredictor(export_dir=saved_model_dir)

// Once the EIPredictor is created, inference is done using the following:
output_dict = ei_predictor(feed_dict)

TensorFlow Elastic Inference with Python 26

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/saved_model

Amazon Elastic Inference Developer Guide

Use Elastic Inference with TensorFlow Predictor Example

Installing Elastic Inference TensorFlow

Elastic Inference enabled TensorFlow comes bundled in the AWS Deep Learning AMI. You can
also download pip wheels for Python 2 and 3 from the Elastic Inference S3 bucket. Follow these
instructions to download and install the pip package:

Choose the tar file for the Python version and operating system of your choice from the S3 bucket.
Copy the path to the tar file and run the following command:

curl -O [URL of the tar file of your choice]

To open the tar the file:

tar -xvzf [name of tar file]

Try the following example to serve different models, such as ResNet, using a Single Shot Detector
(SSD).

Serve and Test Inference with an SSD Model

1. Download the model. If you already downloaded the model in the Serving example, skip this
step.

curl -O https://s3-us-west-2.amazonaws.com/aws-tf-serving-ei-example/ssd_resnet.zip

2. Unzip the model. Again, you may skip this step if you already have the model.

unzip ssd_resnet.zip -d /tmp

3. Download a picture of three dogs to your current directory.

curl -O https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/
images/3dogs.jpg

4. Use the built-in EI Tool to get the device ordinal number of all attached Elastic Inference
accelerators. For more information on EI Tool, see Monitoring Elastic Inference Accelerators.

/opt/amazon/ei/ei_tools/bin/ei describe-accelerators --json

TensorFlow Elastic Inference with Python 27

https://s3.console.aws.amazon.com/s3/buckets/amazonei-tensorflow/
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-monitoring.html

Amazon Elastic Inference Developer Guide

Your output should look like the following:

{
 "ei_client_version": "1.5.0",
 "time": "Fri Nov 1 03:09:38 2019",
 "attached_accelerators": 2,
 "devices": [
 {
 "ordinal": 0,
 "type": "eia1.xlarge",
 "id": "eia-679e4c622d584803aed5b42ab6a97706",
 "status": "healthy"
 },
 {
 "ordinal": 1,
 "type": "eia1.xlarge",
 "id": "eia-6c414c6ee37a4d93874afc00825c2f28",
 "status": "healthy"
 }
]
}

You use the device ordinal of your desired Elastic Inference accelerator to create a Predictor.

5. Open a text editor, such as vim, and paste the following inference script. Replace the
accelerator_id value with the device ordinal of the desired Elastic Inference accelerator.
This value must be an integer. Save the file as ssd_resnet_predictor.py.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import numpy as np
import tensorflow as tf
import matplotlib.image as mpimg
from tensorflow.contrib.ei.python.predictor.ei_predictor import EIPredictor

tf.app.flags.DEFINE_string('image', '', 'path to image in JPEG format')
FLAGS = tf.app.flags.FLAGS

TensorFlow Elastic Inference with Python 28

Amazon Elastic Inference Developer Guide

coco_classes_txt = "https://raw.githubusercontent.com/amikelive/coco-labels/master/
coco-labels-paper.txt"
local_coco_classes_txt = "/tmp/coco-labels-paper.txt"
it's a file like object and works just like a file
os.system("curl -o %s -O %s"%(local_coco_classes_txt, coco_classes_txt))
NUM_PREDICTIONS = 5
with open(local_coco_classes_txt) as f:
 classes = ["No Class"] + [line.strip() for line in f.readlines()]

def get_output(eia_predictor, test_input):
 pred = None
 for curpred in range(NUM_PREDICTIONS):
 pred = eia_predictor(test_input)

 num_detections = int(pred["num_detections"])
 print("%d detection[s]" % (num_detections))
 detection_classes = pred["detection_classes"][0][:num_detections]
 print([classes[int(i)] for i in detection_classes])

def main(_):

 img = mpimg.imread(FLAGS.image)
 img = np.expand_dims(img, axis=0)
 ssd_resnet_input = {'inputs': img}

 print('Running SSD Resnet on EIPredictor using specified input and outputs')
 eia_predictor = EIPredictor(
 model_dir='/tmp/ssd_resnet50_v1_coco/1/',
 input_names={"inputs": "image_tensor:0"},
 output_names={"detection_classes": "detection_classes:0", "num_detections":
 "num_detections:0",
 "detection_boxes": "detection_boxes:0"},
 accelerator_id=<device ordinal>
)
 get_output(eia_predictor, ssd_resnet_input)

 print('Running SSD Resnet on EIPredictor using default Signature Def')
 eia_predictor = EIPredictor(
 model_dir='/tmp/ssd_resnet50_v1_coco/1/',
)
 get_output(eia_predictor, ssd_resnet_input)

TensorFlow Elastic Inference with Python 29

Amazon Elastic Inference Developer Guide

if __name__ == "__main__":
 tf.app.run()

6. Run the inference script.

python ssd_resnet_predictor.py --image 3dogs.jpg

For more tutorials and examples, see the TensorFlow Python API.

Use Elastic Inference with the TensorFlow Keras API

The Keras API has become an integral part of the machine learning development cycle because
of its simplicity and ease of use. Keras enables rapid prototyping and development of machine
learning constructs. Elastic Inference provides an API that offers native support for Keras. Using this
API, you can directly use your Keras model, h5 file, and weights to instantiate a Keras-like Object.
This object supports the native Keras prediction APIs, while fully utilizing Elastic Inference in the
backend. The following code sample shows the available parameters:

EIKerasModel(model,
 weights=None,
 export_dir=None,
):
 """Constructs an `EIKerasModel` instance.

 Args:
 model: A model object that either has its weights already set, or will be set
 with the weights argument.
 A model file that can be loaded
 weights (Optional): A weights object, or weights file that can be loaded, and
 will be set to the model object
 export_dir: A folder location to save your model as a SavedModelBundle

 Raises:
 RuntimeError: If eager execution is enabled.
 """

EIKerasModel can be used as follows:

#Loading from Keras Model Object

TensorFlow Elastic Inference with Python 30

https://www.tensorflow.org/api_docs/python/

Amazon Elastic Inference Developer Guide

from tensorflow.contrib.ei.python.keras.ei_keras import EIKerasModel
model = Model()
Build Keras Model in the normal fashion
x = # input data
ei_model = EIKerasModel(model) # Only additional step to use EI
res = ei_model.predict(x)

#Loading from Keras h5 File
from tensorflow.contrib.ei.python.keras.ei_keras import EIKerasModel
x = # input data
ei_model = EIKerasModel("keras_model.h5") # Only additional step to use EI
res = ei_model.predict(x)

#Loading from Keras h5 File and Weights file
from tensorflow.contrib.ei.python.keras.ei_keras import EIKerasModel
x = # input data
ei_model = EIKerasModel("keras_model.json", weights="keras_weights.h5") # Only
 additional step to use EI
res = ei_model.predict(x)

Additionally, Elastic Inference enabled Keras includes Predict API Support:

tf.keras
def predict(x,
 batch_size=None,
 verbose=0,
 steps=None,
 max_queue_size=10, #Not supported
 workers=1, #Not Supported
 use_multiprocessing=False): #Not Supported

 Native Keras
 def predict(x,
 batch_size=None,
 verbose=0,
 steps=None,
 callbacks=None) # Not supported

TensorFlow Keras API Example

In this example, you use a trained ResNet-50 model to classify an image of an African Elephant
from ImageNet.

TensorFlow Elastic Inference with Python 31

Amazon Elastic Inference Developer Guide

Test Inference with a Keras Model

1. Activate the Elastic Inference TensorFlow Conda Environment

source activate amazonei_tensorflow_p27

2. Download an image of an African Elephant to your current directory.

curl -O https://upload.wikimedia.org/wikipedia/commons/5/59/
Serengeti_Elefantenbulle.jpg

3. Open a text editor, such as vim, and paste the following inference script. Save the file as
test_keras.py.

Resnet Example
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input,
 decode_predictions
from tensorflow.contrib.ei.python.keras.ei_keras import EIKerasModel
import numpy as np
import time
import os
ITERATIONS = 20

model = ResNet50(weights='imagenet')
ei_model = EIKerasModel(model)
folder_name = os.path.dirname(os.path.abspath(__file__))
img_path = folder_name + '/Serengeti_Elefantenbulle.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
Warm up both models
_ = model.predict(x)
_ = ei_model.predict(x)
Benchmark both models
for each in range(ITERATIONS):
 start = time.time()
 preds = model.predict(x)
 print("Vanilla iteration %d took %f" % (each, time.time() - start))
for each in range(ITERATIONS):
 start = time.time()

TensorFlow Elastic Inference with Python 32

Amazon Elastic Inference Developer Guide

 ei_preds = ei_model.predict(x)
 print("EI iteration %d took %f" % (each, time.time() - start))
decode the results into a list of tuples (class, description, probability)
(one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])
print('EI Predicted:', decode_predictions(ei_preds, top=3)[0])

4. Run the inference script.

python test_keras.py

5. Your output should be a list of predictions, as well as their respective confidence score.

('Predicted:', [(u'n02504458', u'African_elephant', 0.9081173), (u'n01871265',
 u'tusker', 0.07836755), (u'n02504013', u'Indian_elephant', 0.011482777)])
('EI Predicted:', [(u'n02504458', u'African_elephant', 0.90811676), (u'n01871265',
 u'tusker', 0.07836751), (u'n02504013', u'Indian_elephant', 0.011482781)])

For more tutorials and examples, see the TensorFlow Python API.

TensorFlow 2 Elastic Inference with Python

With Elastic Inference TensorFlow 2 Serving, the standard TensorFlow 2 Serving interface
remains unchanged. The only difference is that the entry point is a different binary named
amazonei_tensorflow2_model_server.

TensorFlow 2 Serving and Predictor are the only inference modes that Elastic Inference supports. If
you haven't tried TensorFlow 2 Serving before, we recommend that you try the TensorFlow Serving
tutorial first.

This release of Elastic Inference TensorFlow Serving has been tested to perform well and provide
cost-saving benefits with the following deep learning use cases and network architectures (and
similar variants):

Use Case Example Network Topology

Image Recognition Inception, ResNet, MVCNN

Object Detection SSD, RCNN

TensorFlow 2 Elastic Inference with Python 33

https://www.tensorflow.org/api_docs/python/
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-tfserving.html

Amazon Elastic Inference Developer Guide

Use Case Example Network Topology

Neural Machine Translation GNMT

Note

These tutorials assume usage of a DLAMI with v42 or later, and Elastic Inference enabled
Tensorflow 2.

Topics

• Activate the Tensorflow 2 Elastic Inference Environment

• Use Elastic Inference with TensorFlow 2 Serving

• Use Elastic Inference with the TensorFlow 2 EIPredictor API

• Use Elastic Inference with TensorFlow 2 Predictor Example

• Use Elastic Inference with the TensorFlow 2 Keras API

• Use Elastic Inference with SageMaker Neo compiled models

Activate the Tensorflow 2 Elastic Inference Environment

Activate the Python 3 TensorFlow 2 Elastic Inference environment:

$ source activate amazonei_tensorflow2_p36

Use Elastic Inference with TensorFlow 2 Serving

The following is an example of serving a Single Shot Detector (SSD) with a ResNet backbone.

To serve and test inference with an inception model

1. Download the model.

curl -O https://s3-us-west-2.amazonaws.com/aws-tf-serving-ei-example/ssd_resnet.zip

2. Unzip the model.

TensorFlow 2 Elastic Inference with Python 34

Amazon Elastic Inference Developer Guide

unzip ssd_resnet.zip -d /tmp

3. Download a picture of three dogs to your home directory.

curl -O https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/
images/3dogs.jpg

4. Use the built-in EI Tool to get the device ordinal number of all attached Elastic Inference
accelerators. For more information on EI Tool, see Monitoring Elastic Inference Accelerators.

/opt/amazon/ei/ei_tools/bin/ei describe-accelerators --json

Your output should look like the following:

{
 "ei_client_version": "1.5.0",
 "time": "Fri Nov 1 03:09:38 2019",
 "attached_accelerators": 2,
 "devices": [
 {
 "ordinal": 0,
 "type": "eia1.xlarge",
 "id": "eia-679e4c622d584803aed5b42ab6a97706",
 "status": "healthy"
 },
 {
 "ordinal": 1,
 "type": "eia1.xlarge",
 "id": "eia-6c414c6ee37a4d93874afc00825c2f28",
 "status": "healthy"
 }
]
}

5. Navigate to the folder where AmazonEI_TensorFlow_Serving is installed and run the
following command to launch the server. Set EI_VISIBLE_DEVICES to the device ordinal
or device ID of the attached Elastic Inference accelerator that you want to use. This device
will then be accessible using id 0. model_base_path must be an absolute path. For more
information on EI_VISIBLE_DEVICES, see Monitoring Elastic Inference Accelerators.

TensorFlow 2 Elastic Inference with Python 35

https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-monitoring.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-monitoring.html

Amazon Elastic Inference Developer Guide

EI_VISIBLE_DEVICES=<ordinal number> amazonei_tensorflow2_model_server
 --model_name=ssdresnet
 --model_base_path=/tmp/ssd_resnet50_v1_coco
 --port=9000

6. While the server is running in the foreground, launch another terminal session. Open a new
terminal and activate the TensorFlow environment.

source activate amazonei_tensorflow2_p36

7. Use your preferred text editor to create a script that has the following content. Name it
ssd_resnet_client.py. This script will take an image filename as a parameter and get a
prediction result from the pretrained model.

from __future__ import print_function

import grpc
import tensorflow as tf
from PIL import Image
import numpy as np
import time
import os
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc

tf.compat.v1.app.flags.DEFINE_string('server', 'localhost:9000',
 'PredictionService host:port')
tf.compat.v1.app.flags.DEFINE_string('image', '', 'path to image in JPEG format')
FLAGS = tf.compat.v1.app.flags.FLAGS

coco_classes_txt = "https://raw.githubusercontent.com/amikelive/coco-labels/master/
coco-labels-paper.txt"
local_coco_classes_txt = "/tmp/coco-labels-paper.txt"
it's a file like object and works just like a file
os.system("curl -o %s -O %s"%(local_coco_classes_txt, coco_classes_txt))
NUM_PREDICTIONS = 5
with open(local_coco_classes_txt) as f:
 classes = ["No Class"] + [line.strip() for line in f.readlines()]

def main(_):
 channel = grpc.insecure_channel(FLAGS.server)

TensorFlow 2 Elastic Inference with Python 36

Amazon Elastic Inference Developer Guide

 stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)

 # Send request
 with Image.open(FLAGS.image) as f:
 f.load()
 # See prediction_service.proto for gRPC request/response details.
 data = np.asarray(f)
 data = np.expand_dims(data, axis=0)

 request = predict_pb2.PredictRequest()
 request.model_spec.name = 'ssdresnet'
 request.inputs['inputs'].CopyFrom(
 tf.make_tensor_proto(data, shape=data.shape))
 result = stub.Predict(request, 60.0) # 10 secs timeout
 outputs = result.outputs
 detection_classes = outputs["detection_classes"]
 detection_classes = tf.make_ndarray(detection_classes)
 num_detections = int(tf.make_ndarray(outputs["num_detections"])[0])
 print("%d detection[s]" % (num_detections))
 class_label = [classes[int(x)]
 for x in detection_classes[0][:num_detections]]
 print("SSD Prediction is ", class_label)

if __name__ == '__main__':
 tf.compat.v1.app.run()

8. Now run the script passing the server location, port, and the dog photo's filename as the
parameters.

python ssd_resnet_client.py --server=localhost:9000 --image 3dogs.jpg

Use Elastic Inference with the TensorFlow 2 EIPredictor API

Elastic Inference TensorFlow packages for Python 3 provide an EIPredictor API. This API function
provides you with a flexible way to run models on Elastic Inference accelerators as an alternative to
using TensorFlow 2 Serving. The EIPredictor API provides a simple interface to perform repeated
inference on a pretrained model. The following code sample shows the available parameters.

TensorFlow 2 Elastic Inference with Python 37

Amazon Elastic Inference Developer Guide

Note

accelerator_id should be set to the device's ordinal number, not its ID.

ei_predictor = EIPredictor(model_dir,
 signature_def_key=None,
 signature_def=None,
 input_names=None,
 output_names=None,
 tags=None,
 graph=None,
 config=None,
 use_ei=True,
 accelerator_id=<device ordinal number>)

output_dict = ei_predictor(feed_dict)

You can use EIPredictor in the following ways:

//EIPredictor class picks inputs and outputs from default serving signature def with
 tag “serve”. (similar to TF predictor)
ei_predictor = EIPredictor(model_dir)

//EI Predictor class picks inputs and outputs from the signature def picked using the
 signtaure_def_key (similar to TF predictor)
ei_predictor = EIPredictor(model_dir, signature_def_key='predict')

// Signature_def can be provided directly (similar to TF predictor)
ei_predictor = EIPredictor(model_dir, signature_def= sig_def)

// You provide the input_names and output_names dict.
// similar to TF predictor

ei_predictor = EIPredictor(model_dir,
 input_names,
 output_names)

// tag is used to get the correct signature def. (similar to TF predictor)

TensorFlow 2 Elastic Inference with Python 38

Amazon Elastic Inference Developer Guide

ei_predictor = EIPredictor(model_dir, tags='serve')

Additional EI Predictor functionality includes the following:

• Support for frozen models.

// For Frozen graphs, model_dir takes a file name , input_names and output_names
// input_names and output_names should be provided in this case.

ei_predictor = EIPredictor(model_dir,
 input_names=None,
 output_names=None)

• Ability to disable use of Elastic Inference by using the use_ei flag, which defaults to True. This
is useful for testing EIPredictor against TensorFlow 2 Predictor.

• EIPredictor can also be created from a TensorFlow 2 Estimator. Given a trained Estimator,
you can first export a SavedModel. See the SavedModel documentation for more details. The
following shows example usage:

saved_model_dir = estimator.export_savedmodel(my_export_dir, serving_input_fn)
ei_predictor = EIPredictor(export_dir=saved_model_dir)

// Once the EIPredictor is created, inference is done using the following:
output_dict = ei_predictor(feed_dict)

Use Elastic Inference with TensorFlow 2 Predictor Example

Installing Elastic Inference TensorFlow 2

Elastic Inference enabled TensorFlow 2 comes bundled in the AWS Deep Learning AMI. You can
also download the pip wheels for Python 3 from the Elastic Inference S3 bucket. Follow these
instructions to download and install the pip package:

1. Choose the tar file for the Python version and operating system of your choice from the S3
bucket. Copy the path to the tar file and run the following command:

curl -O [URL of the tar file of your choice]

2. To open the tar the file, run the following command:

TensorFlow 2 Elastic Inference with Python 39

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/saved_model
https://s3.console.aws.amazon.com/s3/buckets/amazonei-tensorflow/
https://s3.console.aws.amazon.com/s3/buckets/amazonei-tensorflow/
https://s3.console.aws.amazon.com/s3/buckets/amazonei-tensorflow/

Amazon Elastic Inference Developer Guide

tar -xvzf [name of tar file]

3. Install the wheel using pip as shown in the following:

pip install -U [name of untarred folder]/[name of tensorflow whl]

To serve different models, such as ResNet, using a Single Shot Detector (SSD), try the following
example.

To serve and test inference with an SSD model

1. Download and unzip the model. If you already have the model, skip this step.

curl -O https://s3-us-west-2.amazonaws.com/aws-tf-serving-ei-example/ssd_resnet.zip
unzip ssd_resnet.zip -d /tmp

2. Download a picture of three dogs to your current directory.

curl -O https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/
images/3dogs.jpg

3. Use the built-in EI Tool to get the device ordinal number of all attached Elastic Inference
accelerators. For more information on EI Tool, see Monitoring Elastic Inference Accelerators.

/opt/amazon/ei/ei_tools/bin/ei describe-accelerators --json

Your output should look like the following:

{
 "ei_client_version": "1.5.0",
 "time": "Fri Nov 1 03:09:38 2019",
 "attached_accelerators": 2,
 "devices": [
 {
 "ordinal": 0,
 "type": "eia1.xlarge",
 "id": "eia-679e4c622d584803aed5b42ab6a97706",
 "status": "healthy"
 },

TensorFlow 2 Elastic Inference with Python 40

https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-monitoring.html

Amazon Elastic Inference Developer Guide

 {
 "ordinal": 1,
 "type": "eia1.xlarge",
 "id": "eia-6c414c6ee37a4d93874afc00825c2f28",
 "status": "healthy"
 }
]
}

You use the device ordinal of your desired Elastic Inference accelerator to create a Predictor.

4. Open a text editor, such as vim, and paste the following inference script. Replace the
accelerator_id value with the device ordinal of the desired Elastic Inference accelerator.
This value must be an integer. Save the file as ssd_resnet_predictor.py.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import numpy as np
import tensorflow as tf
import matplotlib.image as mpimg
from ei_for_tf.python.predictor.ei_predictor import EIPredictor

tf.compat.v1.app.flags.DEFINE_string('image', '', 'path to image in JPEG format')
FLAGS = tf.compat.v1.app.flags.FLAGS

coco_classes_txt = "https://raw.githubusercontent.com/amikelive/coco-labels/master/
coco-labels-paper.txt"
local_coco_classes_txt = "/tmp/coco-labels-paper.txt"
it's a file like object and works just like a file
os.system("curl -o %s -O %s"%(local_coco_classes_txt, coco_classes_txt))
NUM_PREDICTIONS = 5
with open(local_coco_classes_txt) as f:
 classes = ["No Class"] + [line.strip() for line in f.readlines()]

def get_output(eia_predictor, test_input):
 pred = None
 for curpred in range(NUM_PREDICTIONS):
 pred = eia_predictor(test_input)

TensorFlow 2 Elastic Inference with Python 41

Amazon Elastic Inference Developer Guide

 num_detections = int(pred["num_detections"])
 print("%d detection[s]" % (num_detections))
 detection_classes = pred["detection_classes"][0][:num_detections]
 print([classes[int(i)] for i in detection_classes])

def main(_):

 img = mpimg.imread(FLAGS.image)
 img = np.expand_dims(img, axis=0)
 ssd_resnet_input = {'inputs': img}

 print('Running SSD Resnet on EIPredictor using specified input and outputs')
 eia_predictor = EIPredictor(
 model_dir='/tmp/ssd_resnet50_v1_coco/1/',
 input_names={"inputs": "image_tensor:0"},
 output_names={"detection_classes": "detection_classes:0", "num_detections":
 "num_detections:0",
 "detection_boxes": "detection_boxes:0"},
 accelerator_id=0
)
 get_output(eia_predictor, ssd_resnet_input)

 print('Running SSD Resnet on EIPredictor using default Signature Def')
 eia_predictor = EIPredictor(
 model_dir='/tmp/ssd_resnet50_v1_coco/1/',
)
 get_output(eia_predictor, ssd_resnet_input)

if __name__ == "__main__":
 tf.compat.v1.app.run()

5. Run the inference script.

python ssd_resnet_predictor.py --image 3dogs.jpg

For more tutorials and examples, see the TensorFlow Python API.

TensorFlow 2 Elastic Inference with Python 42

https://www.tensorflow.org/api_docs/python/

Amazon Elastic Inference Developer Guide

Use Elastic Inference with the TensorFlow 2 Keras API

The Keras API has become an integral part of the machine learning development cycle because
of its simplicity and ease of use. Keras enables rapid prototyping and development of machine
learning constructs. Elastic Inference provides an API that offers native support for Keras. Using this
API, you can directly use your Keras model, h5 file, and weights to instantiate a Keras-like Object.
This object supports the native Keras prediction APIs, while fully utilizing Elastic Inference in the
backend. Currently, EIKerasModel is only supported in Graph Mode. The following code sample
shows the available parameters:

EIKerasModel(model,
 weights=None,
 export_dir=None,
):
 """Constructs an `EIKerasModel` instance.

 Args:
 model: A model object that either has its weights already set, or will be set
 with the weights argument.
 A model file that can be loaded
 weights (Optional): A weights object, or weights file that can be loaded, and
 will be set to the model object
 export_dir: A folder location to save your model as a SavedModelBundle

 Raises:
 RuntimeError: If eager execution is enabled.
 """

EIKerasModel can be used as follows:

#Loading from Keras Model Object
from ei_for_tf.python.keras.ei_keras import EIKerasModel
model = Model()
Build Keras Model in the normal fashion
x = # input data
ei_model = EIKerasModel(model) # Only additional step to use EI
res = ei_model.predict(x)

#Loading from Keras h5 File
from ei_for_tf.python.keras.ei_keras import EIKerasModel
x = # input data
ei_model = EIKerasModel("keras_model.h5") # Only additional step to use EI

TensorFlow 2 Elastic Inference with Python 43

Amazon Elastic Inference Developer Guide

res = ei_model.predict(x)

#Loading from Keras h5 File and Weights file
from ei_for_tf.python.keras.ei_keras import EIKerasModel
x = # input data
ei_model = EIKerasModel("keras_model.json", weights="keras_weights.h5") # Only
 additional step to use EI
res = ei_model.predict(x)

Additionally, Elastic Inference enabled Keras includes Predict API Support as follows:

tf.keras
def predict(x,
 batch_size=None,
 verbose=0,
 steps=None,
 max_queue_size=10, #Not supported
 workers=1, #Not Supported
 use_multiprocessing=False): #Not Supported

 Native Keras
 def predict(x,
 batch_size=None,
 verbose=0,
 steps=None,
 callbacks=None) # Not supported

TensorFlow 2 Keras API Example

In this example, you use a trained ResNet-50 model to classify an image of an African Elephant
from ImageNet.

To test inference with a Keras model

1. Activate the Elastic Inference TensorFlow Conda Environment

source activate amazonei_tensorflow2_p36

2. Download an image of an African Elephant to your current directory.

TensorFlow 2 Elastic Inference with Python 44

Amazon Elastic Inference Developer Guide

curl -O https://upload.wikimedia.org/wikipedia/commons/5/59/
Serengeti_Elefantenbulle.jpg

3. Open a text editor, such as vim, and paste the following inference script. Save the file as
test_keras.py.

Resnet Example
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input,
 decode_predictions
from ei_for_tf.python.keras.ei_keras import EIKerasModel
import numpy as np
import time
import os
import tensorflow as tf
tf.compat.v1.disable_eager_execution()

ITERATIONS = 20

model = ResNet50(weights='imagenet')
ei_model = EIKerasModel(model)
folder_name = os.path.dirname(os.path.abspath(__file__))
img_path = folder_name + '/Serengeti_Elefantenbulle.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
Warm up both models
_ = model.predict(x)
_ = ei_model.predict(x)
Benchmark both models
for each in range(ITERATIONS):
 start = time.time()
 preds = model.predict(x)
 print("Vanilla iteration %d took %f" % (each, time.time() - start))
for each in range(ITERATIONS):
 start = time.time()
 ei_preds = ei_model.predict(x)
 print("EI iteration %d took %f" % (each, time.time() - start))
decode the results into a list of tuples (class, description, probability)

TensorFlow 2 Elastic Inference with Python 45

Amazon Elastic Inference Developer Guide

(one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])
print('EI Predicted:', decode_predictions(ei_preds, top=3)[0])

4. Run the inference script as follows:

python test_keras.py

5. Your output should be a list of predictions and their respective confidence score.

('Predicted:', [(u'n02504458', u'African_elephant', 0.9081173), (u'n01871265',
 u'tusker', 0.07836755), (u'n02504013', u'Indian_elephant', 0.011482777)])
('EI Predicted:', [(u'n02504458', u'African_elephant', 0.90811676), (u'n01871265',
 u'tusker', 0.07836751), (u'n02504013', u'Indian_elephant', 0.011482781)])

For more tutorials and examples, see the TensorFlow Python API.

Use Elastic Inference with SageMaker Neo compiled models

Amazon Elastic Inference supports TensorFlow models optimized by SageMaker Neo for
TensorFlow versions 2.3 or greater. A pre-trained TensorFlow model can be compiled in SageMaker
Neo with EIA as the target device. The resulting model artifacts can be used for inference in Elastic
Inference Accelerators.

Compilation for EIA target device uses TF-TRT (TensorFlow with TensorRT) and provides a
performance boost by optimizing the model to produce low latency inferences. This increases
inference throughput and reduces costs. See Nvidia’s TF-TRT user guide more information.

You can compile your TensorFlow model with the AWS CLI, the Amazon SageMaker console, or
the Amazon SageMaker SDK. In each case, select ml_eia2 as your target device. See Use Neo to
Compile a Model for detailed information on how to compile your model.

The same TensorFlow Serving and Predictor interfaces that are supported by Elastic Inference can
be used for compiled models as well. See Use Elastic Inference with TensorFlow 2 Serving, Use
Elastic Inference with the TensorFlow 2 EIPredictor API, or Use Elastic Inference with TensorFlow 2
Predictor Example for more information.

TensorFlow models can be compiled with two different precision modes: FP32 and FP16.
SageMaker Neo uses FP32 for EIA compilations by default. Compared to FP32, FP16 can improve
the model's inference performance without sacrificing much accuracy. Models compiled with FP16

TensorFlow 2 Elastic Inference with Python 46

https://www.tensorflow.org/api_docs/python/
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-job-compilation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-job-compilation.html

Amazon Elastic Inference Developer Guide

precision usually provide accuracy within 0.1% of the accuracy of same models compiled with FP32
precision. FP16 precision is not be preferred if the model's weights or inputs contain values exceed
plus or minus 65504.

Compared to their uncompiled versions, models compiled for EIA usually require larger host
memory at runtime (inference time). This might lead to Out Of Memory (OOM) issues in Elastic
Inference Accelerators, particularly on smaller accelerators such as eia2.medium. If this occurs,
upgrade the accelerator to a larger size or use the uncompiled model instead.

Using MXNet Models with Elastic Inference

This release of Elastic Inference Apache MXNet has been tested to perform well and provide cost-
saving benefits with the following deep learning use cases and network architectures (and similar
variants).

Use Case Example Network Topology

Image Recognition Inception, ResNet, VGG, ResNext

Object Detection SSD

Text to Speech WaveNet

Topics

• More Models and Resources

• MXNet Elastic Inference with Python

• MXNet Elastic Inference with Deep Java Library (DJL)

More Models and Resources

Here are some more pretrained models and examples to try with Elastic Inference.

1. MXNet Model Zoo - these Gluon models can be exported to the Symbol format and used with
Elastic Inference.

2. Open Neural Network Exchange (ONNX) Models with MXNet - MXNet supports the ONNX model
format, so you can use Elastic Inference with ONNX models that were exported from other
frameworks.

MXNet Models 47

https://mxnet.apache.org/api/python/docs/api/gluon/model_zoo/index.html
https://mxnet.incubator.apache.org/api/python/docs/tutorials/packages/onnx/index.html

Amazon Elastic Inference Developer Guide

For more tutorials and examples, see the framework's official Python documentation, the Python
API for MXNet, or the MXNet website.

MXNet Elastic Inference with Python

The Amazon Elastic Inference (Elastic Inference) enabled version of Apache MXNet lets you use
Elastic Inference seamlessly, with few changes to your Apache MXNet (incubating) code. To use
an existing MXNet inference script, import the eimx Python package and make one change in the
code to partition your model and optimize it for the EIA back end.

Note

This topic covers using Elastic Inference enabled MXNet version 1.7.0 and later. For
information about using Elastic Inference enabled MXNet 1.5.1 and earlier, see MXNet
Elastic Inference 1.5.1 with Python.

Topics

• Elastic Inference Enabled Apache MXNet

• Activate the MXNet Elastic Inference Environment

• Validate MXNet for Elastic Inference Setup

• Check MXNet for Elastic Inference Version

• Using Multiple Elastic Inference Accelerators with MXNet

• Use Elastic Inference with the MXNet Symbol API

• Use Elastic Inference with the MXNet Module API

• Use Elastic Inference with the MXNet Gluon API

• Troubleshooting

• MXNet Elastic Inference 1.5.1 with Python

Elastic Inference Enabled Apache MXNet

For more information on MXNet set up, see Apache MXNet on AWS.

Preinstalled Elastic Inference Enabled MXNet

Elastic Inference enabled Apache MXNet is available in the AWS Deep Learning AMI, and in Docker
containers in Amazon Deep Learning Containers.

MXNet Elastic Inference with Python 48

https://mxnet.incubator.apache.org/api/python/docs/api/
https://mxnet.incubator.apache.org/api/python/docs/api/
https://mxnet.incubator.apache.org
https://aws.amazon.com/mxnet/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/containers/

Amazon Elastic Inference Developer Guide

Installing Elastic Inference Enabled MXNet

If you're not using an AWS Deep Learning AMI instance, a pip package is available at Elastic
Inference Enabled MXNet so you can build it in to your own Amazon Linux or Ubuntu AMIs. For
EI MXNet 1.7.0 and later, the name of the wheel starts with eimx, and the number after eimx
indicates the version. The following is an example of how to install the wheel:

wget https://amazonei-apachemxnet.s3.amazonaws.com/eimx-version-py2.py3-none-
manylinux1_x86_64.whl
pip install eimx-version-py2.py3-none-manylinux1_x86_64.whl

If you are using Elastic Inference Enabled MXNet 1.5.1, see MXNet Elastic Inference 1.5.1 with
Python.

Activate the MXNet Elastic Inference Environment

If you are using the AWS Deep Learning AMI, activate the Python 3 MXNet Elastic Inference
environment by using the following command.

source activate amazonei_mxnet_p36

If you are using a different AMI or a container, access the environment where MXNet is installed.

Validate MXNet for Elastic Inference Setup

If you launched your instance with the Deep Learning AMI (DLAMI), run the following command to
to verify that the instance is correctly configured:

$ python ~/anaconda3/bin/EISetupValidator.py

You can also download the EISetupValidator.py script and run python EISetuValidator.py.

If your instance is not properly set up with an accelerator, running any of the examples in this
section will result in the following error:

Error: Failed to query accelerator metadata.
Failed to detect any accelerator

For detailed instructions on how to launch an AWS Deep Learning AMI with an Elastic Inference
accelerator, see the Setting Up to Launch Amazon EC2 with Elastic Inference.

MXNet Elastic Inference with Python 49

https://s3.console.aws.amazon.com/s3/buckets/amazonei-apachemxnet?region=us-east-1&tab=objects
https://s3.console.aws.amazon.com/s3/buckets/amazonei-apachemxnet?region=us-east-1&tab=objects
https://s3.console.aws.amazon.com/s3/buckets/amazonei/

Amazon Elastic Inference Developer Guide

Check MXNet for Elastic Inference Version

You can verify that MXNet is available to use and check the current version with the following code
from the Python terminal:

>>> import mxnet as mx
>>> mx.__version__
'1.7.0'

This returns the version equivalent to the regular non-Elastic Inference version of MXNet available
from GitHub

Check the accelerator library version with the following code:

>>> import mxnet
>>> import eimx
>>> eimx.__version__
'eimx-1.0'

You can then compare the commit hash with the Release Notes to find the specific info about the
version you have.

Using Multiple Elastic Inference Accelerators with MXNet

You can run inference on MXNet when multiple Elastic Inference accelerators are attached to a
single Amazon EC2 instance. The procedure for using multiple accelerators is the same as using
multiple GPUs with MXNet.

Use the built-in EI Tool binary to get the device ordinal number of all attached Elastic Inference
accelerators. For more information on EI Tool, see Monitoring Elastic Inference Accelerators.

/opt/amazon/ei/ei_tools/bin/ei describe-accelerators --json

Your output should look like the following:

{
 "ei_client_version": "1.5.0",
 "time": "Fri Nov 1 03:09:38 2019",
 "attached_accelerators": 2,
 "devices": [
 {

MXNet Elastic Inference with Python 50

https://github.com/apache/incubator-mxnet/releases
https://github.com/apache/incubator-mxnet/releases
https://aws.amazon.com/releasenotes/release-amazon-elastic-inference-mxnet-on-2019-06-25/

Amazon Elastic Inference Developer Guide

 "ordinal": 0,
 "type": "eia1.xlarge",
 "id": "eia-679e4c622d584803aed5b42ab6a97706",
 "status": "healthy"
 },
 {
 "ordinal": 1,
 "type": "eia1.xlarge",
 "id": "eia-6c414c6ee37a4d93874afc00825c2f28",
 "status": "healthy"
 }
]
}

In the call to optimize_for specify the dev_id argument with the device ordinal for your desired
Elastic Inference accelerator as follows.

sym, arg_params, aux_params = mx.model.load_checkpoint('resnet-152', 0)
sym = sym.optimize_for("EIA", dev_id=dev_id)

mod = mx.mod.Module(symbol=sym, context=mx.cpu()), label_names=None)
mod.bind(for_training=False, data_shapes=[('data', (1,3,224,224))],
 label_shapes=mod._label_shapes)
mod.set_params(arg_params, aux_params, allow_missing=True)

mod.forward(Batch([img]))

Use Elastic Inference with the MXNet Symbol API

Pass EIA as the backend in a call to either of the optimize_for() methods. For information, see
MXNet Symbol API.

Use the mx.cpu() method with the bind call as shown in the following example. context:

import mxnet as mx
import eimx

data = mx.sym.var('data', shape=(1,))
sym = mx.sym.exp(data)
sym = sym.optimize_for("EIA")

executor = sym.simple_bind(ctx=mx.cpu(), grad_req='null')

MXNet Elastic Inference with Python 51

https://mxnet.apache.org/versions/master/api/python/docs/api/legacy/symbol/symbol.html

Amazon Elastic Inference Developer Guide

for i in range(10):
 # Forward call is performed on remote accelerator
 executor.forward(data=mx.nd.ones((1,)))
 print('Inference %d, output = %s' % (i, executor.outputs[0]))

The following example calls the bind() method:

import mxnet as mx
import eimx

a = mx.sym.Variable('a')
b = mx.sym.Variable('b')
c = 2 * a + b
Even for execution of inference workloads on eia,
context for input ndarrays to be mx.cpu()
a_data = mx.nd.array([1,2], ctx=mx.cpu())
b_data = mx.nd.array([2,3], ctx=mx.cpu())
sym = c.optimize_for("EIA")
e = sym.bind(mx.cpu(), {'a': a_data, 'b': b_data})
Forward call is performed on remote accelerator
e.forward()
print('1st Inference, output = %s' % (e.outputs[0]))
Subsequent calls can pass new data in a forward call
e.forward(a=mx.nd.ones((2,)), b=mx.nd.ones((2,)))
print('2nd Inference, output = %s' % (e.outputs[0]))

The following example calls the bind() method on a pre-trained real model (Resnet-50) from the
Symbol API. Use your preferred text editor to create a script called mxnet_resnet50.py that has
the following content. This script downloads the ResNet-50 model files (resnet-50-0000.params
and resnet-50-symbol.json), list of labels(synset.txt) and an image of a cat. The cat image is used
to get a prediction result from the pre-trained model. This result is looked up in the list of labels,
returning a prediction result.

import mxnet as mx
import eimx
import numpy as np

path='http://data.mxnet.io/models/imagenet/'
[mx.test_utils.download(path+'resnet/50-layers/resnet-50-0000.params'),
mx.test_utils.download(path+'resnet/50-layers/resnet-50-symbol.json'),
mx.test_utils.download(path+'synset.txt')]

MXNet Elastic Inference with Python 52

Amazon Elastic Inference Developer Guide

ctx = mx.cpu()
with open('synset.txt', 'r') as f:
 labels = [l.rstrip() for l in f]

sym, args, aux = mx.model.load_checkpoint('resnet-50', 0)
sym = sym.optimize_for("EIA") # partition the symbol with EIA backend

fname = mx.test_utils.download('https://github.com/dmlc/web-data/blob/master/mxnet/doc/
tutorials/python/predict_image/cat.jpg?raw=true')
img = mx.image.imread(fname)# convert into format (batch, RGB, width, height)
img = mx.image.imresize(img, 224, 224) # resize
img = img.transpose((2, 0, 1)) # Channel first
img = img.expand_dims(axis=0) # batchify
img = img.astype(dtype='float32')
args['data'] = img

softmax = mx.nd.random_normal(shape=(1,))
args['softmax_label'] = softmax

exe = sym.bind(ctx=ctx, args=args, aux_states=aux, grad_req='null')

exe.forward(data=img)
prob = exe.outputs[0].asnumpy()# print the top-5
prob = np.squeeze(prob)
a = np.argsort(prob)[::-1]
for i in a[0:5]:
 print('probability=%f, class=%s' %(prob[i], labels[i]))

Then run the script, and you should see something similar to the following output. MXNet will
optimize the model graph for Elastic Inference, load it on Elastic Inference accelerator, and then
run inference against it:

src/eia_lib.cc:264 MXNet version 10700 supported
[17:54:11] src/nnvm/legacy_json_util.cc:209: Loading symbol saved by previous version
 v0.8.0. Attempting to upgrade...
[17:54:11] src/nnvm/legacy_json_util.cc:217: Symbol successfully upgraded!
Using Amazon Elastic Inference Client Library Version: 1.8.0
Number of Elastic Inference Accelerators Available: 1
Elastic Inference Accelerator ID: eia-###############################
Elastic Inference Accelerator Type: eiaX.YYYYYY
Elastic Inference Accelerator Ordinal: 0

[17:54:11] src/executor/graph_executor.cc:2061: Subgraph backend MKLDNN is activated.

MXNet Elastic Inference with Python 53

Amazon Elastic Inference Developer Guide

probability=0.418679, class=n02119789 kit fox, Vulpes macrotis
probability=0.293495, class=n02119022 red fox, Vulpes vulpes
probability=0.029321, class=n02120505 grey fox, gray fox, Urocyon cinereoargenteus
probability=0.026230, class=n02124075 Egyptian cat
probability=0.022557, class=n02085620 Chihuahua

Use Elastic Inference with the MXNet Module API

Pass EIA as the backend in a call to either the optimize_for() methods. For information, see
Module API.

To use the MXNet Module API, use the following commands:

Load saved model
sym, arg_params, aux_params = mx.model.load_checkpoint(model_path, EPOCH_NUM)
sym = sym.optimize_for('EIA')
mod = mx.mod.Module(symbol=sym, context=mx.cpu())
 # Only for_training = False is supported for eia
mod.bind(for_training=False, data_shapes=data_shape)
mod.set_params(arg_params, aux_params)
forward call is performed on remote accelerator
mod.forward(data_batch)

The following script downloads two ResNet-152 model files (resnet-152-0000.params and
resnet-152-symbol.json) and a labels list (synset.txt). It also downloads a cat image to get a
prediction result from the pre-trained model, then looks this up in the result in labels list, returning
a prediction result.

import mxnet as mx
import eimx
import numpy as np
from collections import namedtuple

Batch = namedtuple('Batch', ['data'])

path='http://data.mxnet.io/models/imagenet/'
[mx.test_utils.download(path+'resnet/152-layers/resnet-152-0000.params'),
 mx.test_utils.download(path+'resnet/152-layers/resnet-152-symbol.json'),
 mx.test_utils.download(path+'synset.txt')]

ctx = mx.cpu()

MXNet Elastic Inference with Python 54

https://mxnet.apache.org/api/python/docs/api/module/index.html

Amazon Elastic Inference Developer Guide

sym, arg_params, aux_params = mx.model.load_checkpoint('resnet-152', 0)
sym = sym.optimize_for('EIA')
mod = mx.mod.Module(symbol=sym, context=ctx, label_names=None)
mod.bind(for_training=False, data_shapes=[('data', (1,3,224,224))],
 label_shapes=mod._label_shapes)
mod.set_params(arg_params, aux_params, allow_missing=True)
with open('synset.txt', 'r') as f:
 labels = [l.rstrip() for l in f]

fname = mx.test_utils.download('https://github.com/dmlc/web-data/blob/master/mxnet/doc/
tutorials/python/predict_image/cat.jpg?raw=true')
img = mx.image.imread(fname)

convert into format (batch, RGB, width, height)
img = mx.image.imresize(img, 224, 224) # resize
img = img.transpose((2, 0, 1)) # Channel first
img = img.expand_dims(axis=0) # batchify

mod.forward(Batch([img]))
prob = mod.get_outputs()[0].asnumpy()# print the top-5
prob = np.squeeze(prob)
a = np.argsort(prob)[::-1]
for i in a[0:5]:
 print('probability=%f, class=%s' %(prob[i], labels[i]))

Use Elastic Inference with the MXNet Gluon API

The Gluon API in MXNet provides a clear, concise, and easy-to-use API for building and training
machine learning models. For more information, see the Gluon Documentation.

To use the MXNet Gluon API model for inference-only tasks, use mx.cpu() for the context and
pass EIA as the backend when calling hybridize() using the following commands:

import mxnet as mx
import eimx
from mxnet.gluon import nn
def create():
 net = nn.HybridSequential()
 net.add(nn.Dense(2))
 return net
get a simple Gluon nn model
net = create()

MXNet Elastic Inference with Python 55

https://mxnet.incubator.apache.org/api/python/docs/api/gluon/index.html

Amazon Elastic Inference Developer Guide

net.initialize(ctx=mx.cpu())
hybridize the model with static alloc and EIA backend
net.hybridize(backend='EIA', static_alloc=True, static_shape=True)
allocate input array and run inference
x = mx.nd.random.uniform(-1,1,(3,4),ctx=mx.cpu())
predictions = net(x)
print(predictions)

You should be able to see the following output to confirm that you are using Elastic Inference:

Using Amazon Elastic Inference Client Library Version: xxxxxxxx
Number of Elastic Inference Accelerators Available: 1
Elastic Inference Accelerator ID: eia-xxxxxxxxxxxxxxxxxxxxxxxx
Elastic Inference Accelerator Type: xxxxxxxx

Loading parameters

There are a couple of different ways to load Gluon models. One way is to load model parameters
from a file and call hybridize with an EIA backend. For example:

save the parameters to a file
net.save_parameters('params.gluon')

create a new network using saved parameters
net2 = create()
net2.load_parameters('params.gluon', ctx=mx.cpu())
net2.hybridize(backend="EIA", static_alloc=True, static_shape=True)
predictions = net2(x)
print(predictions)

Loading Symbol and Parameters Files

You can also export the model’s symbol and parameters to a file, then import the model as shown
in the following:

export both symbol and parameters to a file
net2.export('export')

create a new network using exported network
net3 = nn.SymbolBlock.imports('export-symbol.json', ['data'], 'export-0000.params',
 ctx=mx.cpu())
net3.hybridize(backend="EIA", static_alloc=True, static_shape=True)

MXNet Elastic Inference with Python 56

Amazon Elastic Inference Developer Guide

predictions = net3(x)

If you have a model exported as symbol and parameter files, you can simply import those files and
run inference.

import mxnet as mx
import eimx
import numpy as np
from mxnet.gluon import nn

ctx = mx.cpu()

path='http://data.mxnet.io/models/imagenet/'
[mx.test_utils.download(path+'resnet/50-layers/resnet-50-0000.params'),
mx.test_utils.download(path+'resnet/50-layers/resnet-50-symbol.json'),
mx.test_utils.download(path+'synset.txt')]
with open('synset.txt', 'r') as f:
 labels = [l.rstrip() for l in f]

fname = mx.test_utils.download('https://github.com/dmlc/web-data/blob/master/mxnet/doc/
tutorials/python/predict_image/cat.jpg?raw=true')
img = mx.image.imread(fname) # convert into format (batch, RGB, width, height)
img = img.as_in_context(ctx)
img = mx.image.imresize(img, 224, 224) # resize
img = img.transpose((2, 0, 1)) # channel first
img = img.expand_dims(axis=0) # batchify
img = img.astype(dtype='float32') # match data type

resnet50 = nn.SymbolBlock.imports('resnet-50-symbol.json',['data','softmax_label'],
 'resnet-50-0000.params',ctx=ctx) # import hybridized model symbols
label = mx.nd.array([0], ctx=ctx) # dummy softmax label
resnet50.hybridize(backend="EIA", static_alloc=True, static_shape=True) # hybridize
 with EIA as backend
prob = resnet50(img, label)
idx = prob.topk(k=5)[0]
for i in idx:
 i = int(i.asscalar())
 print('With prob = %.5f, it contains %s' % (prob[0,i].asscalar(), labels[i]))

Loading From Model Zoo

You can also use pre-trained models from Gluon model zoo as shown in the following:

MXNet Elastic Inference with Python 57

https://mxnet.apache.org/api/python/docs/api/gluon/model_zoo/index.html

Amazon Elastic Inference Developer Guide

Note

All pre-trained models expect inputs to be normalized in the same way as described in the
model zoo documentation.

import mxnet as mx
import eimx
import numpy as np
from mxnet.gluon.model_zoo import vision

ctx = mx.cpu()

mx.test_utils.download('http://data.mxnet.io/models/imagenet/synset.txt')
with open('synset.txt', 'r') as f:
 labels = [l.rstrip() for l in f]

fname = mx.test_utils.download('https://github.com/dmlc/web-data/blob/master/mxnet/doc/
tutorials/python/predict_image/cat.jpg?raw=true')
img = mx.image.imread(fname) # convert into format (batch, RGB, width, height)
img = img.as_in_context(ctx) # image must be with EIA context
img = mx.image.imresize(img, 224, 224) # resize
img = mx.image.color_normalize(img.astype(dtype='float32')/255,
 mean=mx.nd.array([0.485, 0.456, 0.406]),
 std=mx.nd.array([0.229, 0.224, 0.225])) # normalize
img = img.transpose((2, 0, 1)) # channel first
img = img.expand_dims(axis=0) # batchify

resnet50 = vision.resnet50_v1(pretrained=True, ctx=ctx)
resnet50.hybridize(backend="EIA", static_alloc=True, static_shape=True) # hybridize
 with EIA as backend
prob = resnet50(img).softmax() # predict and normalize output
idx = prob.topk(k=5)[0] # get top 5 resultfor i in idx:
for i in idx:
 i = int(i.asscalar())
 print('With prob = %.5f, it contains %s' % (prob[0,i].asscalar(), labels[i]))

Troubleshooting

• When you call sym.optimize_for('EIA'), if you get the following error message:

MXNet Elastic Inference with Python 58

Amazon Elastic Inference Developer Guide

[22:00:31] src/c_api/c_api_symbolic.cc:1498: Error optimizing for backend
'EIA' cannot be found

You might have forgotten to import the eimx package.

• When you run inference, if you do not see the folowing EIA initialization message:

Using Amazon Elastic Inference Client Library Version: 1.8.0
Number of Elastic Inference Accelerators Available: 1
Elastic Inference Accelerator ID: eia-22cb7576547447dbb5718cbfe4e3f0ce
Elastic Inference Accelerator Type: eia2.xlarge
Elastic Inference Accelerator Ordinal: 0

You might have forgotten to call sym.optimize_for('EIA') or
block.hybridize(backend='EIA') to prepare your model for running on EIA. If it’s not
called, the inference just runs on CPU instead of Elastic Inference accelerators.

• If you upgrade from an earlier version and you get the following error:

Traceback (most recent call last):
 File "<stdin>", line 1, in module
AttributeError: module 'mxnet' has no attribute 'eia'

You might still have the legacy mx.eia() in your code. Replace instances of mx.eia() with
mx.cpu() if you are using version 1.7.0 or later.

• Elastic Inference is only for production inference use cases and does not support any
model training. When you use either the Symbol API or the Module API, do not call the
backward() method or call bind() with for_training=True. Because the default value of
for_training is True, make sure you set for_training=False manually in cases such as
the example in Use Elastic Inference with the MXNet Module API.

• For Gluon, do not call training-specific functions or you will receive the following error:

Using Amazon Elastic Inference Client Library Version: 1.8.0
Number of Elastic Inference Accelerators Available: #
Elastic Inference Accelerator ID: eia-####################
Elastic Inference Accelerator Type: eia#.#####
Elastic Inference Accelerator Ordinal:#

Error! Operator does not support backward
Traceback (most recent call last):

MXNet Elastic Inference with Python 59

Amazon Elastic Inference Developer Guide

 File "gluon_train.py", line 130, in module
 train(opt.epochs, ctx)
 File "gluon_train.py", line 110, in train
 metric.update([label], [output])
 File "/home/ubuntu/anaconda3/envs/amazonei_mxnet_p36/lib/python3.6/site-packages/
mxnet/metric.py", line 493, in update
 pred_label = pred_label.asnumpy().astype('int32')
 File "/home/ubuntu/anaconda3/envs/amazonei_mxnet_p36/lib/python3.6/site-packages/
mxnet/ndarray/ndarray.py", line 2566, in asnumpy
 ctypes.c_size_t(data.size)))
 File "/home/ubuntu/anaconda3/envs/amazonei_mxnet_p36/lib/python3.6/site-packages/
mxnet/base.py", line 246, in check_call
 raise get_last_ffi_error()
mxnet.base.MXNetError: Traceback (most recent call last):
 File "src/c_api/c_api.cc", line 318
MXNetError: Check failed: callFStatefulComp(stateful_forward_flag, state_op_inst,
 in_shapes.data(), in_dims.data(), in_data.data(), in_types.data(), in_verIDs.data(),
 in_dev_type.data(), in_dev_id.data(), in_data.size(), out_shapes.data(),
 out_dims.data(), out_data.data(), out_types.data(), out_verIDs.data(),
 out_dev_type.data(), out_dev_id.data(), out_data.size(), cpu_malloc, &cpu_alloc,
 gpu_malloc, &gpu_alloc, cuda_stream, sparse_malloc, &sparse_alloc, in_stypes.data(),
 out_stypes.data(), in_indices.data(), out_indices.data(), in_indptr.data(),
 out_indptr.data(), in_indices_shapes.data(), out_indices_shapes.data(),
 in_indptr_shapes.data(), out_indptr_shapes.data(), rng_cpu_states, rng_gpu_states):
 Error calling FStatefulCompute for custom operator '_eia_subgraph_op'

• Because training is not allowed, there is no point of initializing an optimizer for inference.

• A model trained on an earlier version of MXNet will work on a later version of MXNet Elastic
Inference because it is backwards compatible (e.g. train model on MXNet 1.3 and run on MXNet
Elastic Inference 1.4). However, you may run into undefined behavior if you train on a later
version of MXNet (e.g. train model on MXNet Master and run on MXNet EI 1.4)

• Different sizes of Elastic Inference accelerators have different amounts of GPU memory. If your
model requires more GPU memory than is available in your accelerator, you get a message that
looks like the log below. If you run into this message, you should use a larger accelerator size
with more memory. Stop and restart your instance with a larger accelerator.

mxnet.base.MXNetError: [06:16:17] src/operator/subgraph/eia/eia_subgraph_op.cc:206:
 Last Error:
 EI Error Code: [51, 8, 31]
 EI Error Description: Accelerator out of memory. Consider using a larger
 accelerator.

MXNet Elastic Inference with Python 60

Amazon Elastic Inference Developer Guide

 EI Request ID: MX-A19B0DE6-7999-4580-8C49-8EA 7ADSFFCB -- EI Accelerator ID:
 eia-cb0aasdfdfsdf2a acab7
 EI Client Version: 1.2.12

• For Gluon, make sure you hybridize the model and pass the static_alloc=True and
static_shape=True options. Otherwise, each inference loads the model once which causes
potential performance degradation and OOM errors. See above to know more about the OOM
errors.

• Calling reshape explicitly by using either the Module or the Symbol API, or implicitly using
different shapes for input NDArrays in different forward passes can lead to OOM errors. Before
being reshaped, the model is not cleaned up on the accelerator until the session is destroyed. In
Gluon, inferring with inputs of differing shapes will result in the model re-allocating memory.
For Elastic Inference, this means that the model will be re-loaded on the accelerator leading to
performance degradation and potential OOM errors. You can either pad your data so all shapes
are the same or bind the model with different shapes to use multiple executors. The latter option
may result in out-of-memory errors because the model is duplicated on the accelerator.

[Fri Feb 19 01:47:49 2021, 397658us] [Execution Engine][MXNet][3] Failed - Last
 Error:
 EI Error Code: [51, 8, 31]
 EI Error Description: Accelerator out of memory. Consider using a larger
 accelerator.
 EI Request ID: MX-78E568D8-9105-468A-8E1C-7D1FFDF9934E -- EI Accelerator ID:
 eia-09803cc86d4044e6b4e8d4a8ecd0267e
 EI Client Version: 1.8.0
src/eia_lib.cc:88 Error: Last Error:
 EI Error Code: [51, 8, 31]
 EI Error Description: Accelerator out of memory. Consider using a larger
 accelerator.
 EI Request ID: MX-78E568D8-9105-468A-8E1C-7D1FFDF9934E -- EI Accelerator ID:
 eia-09803cc86d4044e6b4e8d4a8ecd0267e
 EI Client Version: 1.8.0

• If you get an error importing the eimx package similar to the following:

Traceback (most recent call last):
 File "<stdin>", line 1, in module
 File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/eimx/__init__.py", line
 20, in module
 mxnet.library.load(path_lib, debug)

MXNet Elastic Inference with Python 61

Amazon Elastic Inference Developer Guide

 File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/mxnet/library.py", line
 56, in load
 check_call(_LIB.MXLoadLib(chararr, mx_uint(verbose_val)))
 File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/mxnet/base.py", line 246,
 in check_call
 raise get_last_ffi_error()
mxnet.base.MXNetError: Traceback (most recent call last):
 File "src/c_api/c_api.cc", line 1521
MXNetError: Library version (7) does not match MXNet version (10)

You might be using the wrong version of MXNet. MXNet release 1.7.0 uses version 7 and MXNet
release 1.8.0 uses version 10. The eimx-1.0 package must be used with MXNet release 1.7.0 only.

• If you get an error importing the eimx package similar to either of the following:

Traceback (most recent call last):
 File "<stdin>", line 1, in module
 File "/home/ubuntu/.local/lib/python3.6/site-packages/eimx/__init__.py", line 20,
 in module
 mxnet.library.load(path_lib, debug)
AttributeError: module 'mxnet' has no attribute 'library'

Traceback (most recent call last):
 File "<stdin>", line 1, in module
 File "/home/ubuntu/.local/lib/python3.6/site-packages/eimx/__init__.py", line 20,
 in module
 mxnet.library.load(path_lib, debug)
TypeError: load() takes 1 positional argument but 2 were given

You might be using an older version of MXNet. Please check that you’re using an installation of
MXNet release 1.7.0 for the eimx-1.0 package. After installing the correct version of MXNet you
should see the following message after importing the eimx package successfully:

src/eia_lib.cc:264 MXNet version 10700 supported

• If you get an error similar the following:

[22:26:23] src/executor/graph_executor.cc:1981: Subgraph backend MKLDNN is activated.
python: /root/deps/aws-sdk-cpp/aws-cpp-sdk-core/source/utils/UUID.cpp:83: static
 Aws::Utils::UUID Aws::Utils::UUID::RandomUUID(): Assertion `secureRandom' failed.
Aborted (core dumped)

MXNet Elastic Inference with Python 62

Amazon Elastic Inference Developer Guide

You tried to save the model after running sym.optimize_for('EIA') and reload that
model later. Currently models optimized for EIA cannot be saved and reloaded. You must call
sym.optimize_for('EIA') every time after reloading your model from disk at the beginning
of your script. The time it takes to partition your model and optimize it for EIA is relatively small,
so there is no benefit from trying to save/reload anyway.

MXNet Elastic Inference 1.5.1 with Python

The Amazon Elastic Inference (Elastic Inference) enabled version of Apache MXNet lets you use
Elastic Inference seamlessly, with few changes to your Apache MXNet (incubating) code. To use
an existing MXNet inference script, import the eimx Python package and make one change in the
code to partition your model and optimize it for the back end. Wherever you set the context to
bind your model, such as mx.cpu() or mx.gpu(), update this to use mx.eia() instead.

Topics

• Elastic Inference Enabled Apache MXNet

• Activate the MXNet Elastic Inference Environment

• Validate MXNet for Elastic Inference Setup

• Check MXNet for Elastic Inference Version

• Using Multiple Elastic Inference Accelerators with MXNet

• Use Elastic Inference with the MXNet Symbol API

• Use Elastic Inference with the MXNet Module API

• Use Elastic Inference with the MXNet Gluon API

• Troubleshooting

Elastic Inference Enabled Apache MXNet

For more information on MXNet set up, see Apache MXNet on AWS.

Preinstalled Elastic Inference Enabled MXNet

Elastic Inference enabled Apache MXNet is available in the AWS Deep Learning AMI.

MXNet Elastic Inference with Python 63

https://aws.amazon.com/mxnet/

Amazon Elastic Inference Developer Guide

Installing Elastic Inference Enabled MXNet

If you're not using a AWS Deep Learning AMI instance, a 'pip' package is available on Amazon S3 so
you can build it in to your own Amazon Linux or Ubuntu AMIs using the following command:

pip install "latest-wheel"

Activate the MXNet Elastic Inference Environment

If you are using the AWS Deep Learning AMI, activate the MXNet Elastic Inference environment.
Elastic Inference enabled MXNet 1.5.1 supports only Python 2. For MXNet 1.7.0 and above, see
Activate the MXNet Elastic Inference Environment.

For Python 2:

source activate amazonei_mxnet_p27

If you are using a different AMI or a container, access the environment where MXNet is installed.

Validate MXNet for Elastic Inference Setup

If you launched your instance with the Deep Learning AMI (DLAMI), run the following command to
to verify that the instance is correctly configured:

$ python ~/anaconda3/bin/EISetupValidator.py

You can also download the EISetupValidator.py script and run python EISetuValidator.py.

If your instance is not properly set up with an accelerator, running any of the examples in this
section will result in the following error:

Error: Failed to query accelerator metadata.
Failed to detect any accelerator

For detailed instructions on how to launch an AWS Deep Learning AMI with an Elastic Inference
accelerator, see the Elastic Inference documentation.

Check MXNet for Elastic Inference Version

You can verify that MXNet is available to use and check the current version with the following code
from the Python terminal:

MXNet Elastic Inference with Python 64

https://s3.console.aws.amazon.com/s3/buckets/amazonei-apachemxnet/
https://s3.console.aws.amazon.com/s3/buckets/amazonei/
https://docs.aws.amazon.com/dlami/latest/devguide/ei-prerequisites.html

Amazon Elastic Inference Developer Guide

>>> import mxnet as mx
>>> mx.__version__
'1.5.1'

This will return the version equivalent to the regular non-Elastic Inference version of MXNet
available from GitHub

The commit hash number can be used to determine which release of the Elastic Inference-specific
version of MXNet is installed using the following code:

import mxnet as mx
import os
path = os.path.join(mx.__path__[0],'COMMIT_HASH')
print(open(path).read())

You can then compare the commit hash with the Release Notes to find the specific info about the
version you have.

Using Multiple Elastic Inference Accelerators with MXNet

You can run inference on MXNet when multiple Elastic Inference accelerators are attached to a
single Amazon EC2 instance. The procedure for using multiple accelerators is the same as using
multiple GPUs with MXNet.

Use the built-in EI Tool binary to get the device ordinal number of all attached Elastic Inference
accelerators. For more information on EI Tool, see Monitoring Elastic Inference Accelerators.

/opt/amazon/ei/ei_tools/bin/ei describe-accelerators --json

Your output should look like the following:

{
 "ei_client_version": "1.5.0",
 "time": "Fri Nov 1 03:09:38 2019",
 "attached_accelerators": 2,
 "devices": [
 {
 "ordinal": 0,
 "type": "eia1.xlarge",
 "id": "eia-679e4c622d584803aed5b42ab6a97706",

MXNet Elastic Inference with Python 65

https://github.com/apache/incubator-mxnet/releases
https://github.com/apache/incubator-mxnet/releases
https://aws.amazon.com/releasenotes/release-amazon-elastic-inference-mxnet-on-2019-06-25/
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-monitoring.html

Amazon Elastic Inference Developer Guide

 "status": "healthy"
 },
 {
 "ordinal": 1,
 "type": "eia1.xlarge",
 "id": "eia-6c414c6ee37a4d93874afc00825c2f28",
 "status": "healthy"
 }
]
}

Replace the device ordinal in the mx.eia(<device ordinal>) call with the device ordinal for
your desired Elastic Inference accelerator as follows.

sym, arg_params, aux_params = mx.model.load_checkpoint('resnet-152', 0)

mod = mx.mod.Module(symbol=sym, context=mx.eia(<device ordinal>), label_names=None)
mod.bind(for_training=False, data_shapes=[('data', (1,3,224,224))],
 label_shapes=mod._label_shapes)
mod.set_params(arg_params, aux_params, allow_missing=True)

mod.forward(Batch([img]))

Use Elastic Inference with the MXNet Symbol API

Pass mx.eia() as the context in a call to either the simple_bind() or the bind() methods. For
information, see MXNet Symbol API.

You use the mx.eia() context only with the bind call. The following example calls the
simple_bind() method with the mx.eia() context:

import mxnet as mx

data = mx.sym.var('data', shape=(1,))
sym = mx.sym.exp(data)

Pass mx.eia() as context during simple bind operation

executor = sym.simple_bind(ctx=mx.eia(), grad_req='null')
for i in range(10):

 # Forward call is performed on remote accelerator

MXNet Elastic Inference with Python 66

https://mxnet.apache.org/versions/master/api/python/docs/api/legacy/symbol/symbol.html

Amazon Elastic Inference Developer Guide

 executor.forward(data=mx.nd.ones((1,)))
 print('Inference %d, output = %s' % (i, executor.outputs[0]))

The following example calls the bind() method:

import mxnet as mx
a = mx.sym.Variable('a')
b = mx.sym.Variable('b')
c = 2 * a + b
Even for execution of inference workloads on eia,
context for input ndarrays to be mx.cpu()
a_data = mx.nd.array([1,2], ctx=mx.cpu())
b_data = mx.nd.array([2,3], ctx=mx.cpu())
Then in the bind call, use the mx.eia() context
e = c.bind(mx.eia(), {'a': a_data, 'b': b_data})

Forward call is performed on remote accelerator
e.forward()
print('1st Inference, output = %s' % (e.outputs[0]))
Subsequent calls can pass new data in a forward call
e.forward(a=mx.nd.ones((2,)), b=mx.nd.ones((2,)))
print('2nd Inference, output = %s' % (e.outputs[0]))

The following example calls the bind() method on a pre-trained real model (Resnet-50) from the
Symbol API. Use your preferred text editor to create a script called mxnet_resnet50.py that has
the following content. This script downloads the ResNet-50 model files (resnet-50-0000.params
and resnet-50-symbol.json), list of labels(synset.txt) and an image of a cat. The cat image is used
to get a prediction result from the pre-trained model. This result is looked up in the list of labels,
returning a prediction result.

import mxnet as mx
import numpy as np

path='http://data.mxnet.io/models/imagenet/'
[mx.test_utils.download(path+'resnet/50-layers/resnet-50-0000.params'),
mx.test_utils.download(path+'resnet/50-layers/resnet-50-symbol.json'),
mx.test_utils.download(path+'synset.txt')]

ctx = mx.eia()

with open('synset.txt', 'r') as f:
 labels = [l.rstrip() for l in f]

MXNet Elastic Inference with Python 67

Amazon Elastic Inference Developer Guide

sym, args, aux = mx.model.load_checkpoint('resnet-50', 0)

fname = mx.test_utils.download('https://github.com/dmlc/web-data/blob/master/mxnet/doc/
tutorials/python/predict_image/cat.jpg?raw=true')
img = mx.image.imread(fname)
convert into format (batch, RGB, width, height)
img = mx.image.imresize(img, 224, 224) # resize
img = img.transpose((2, 0, 1)) # Channel first
img = img.expand_dims(axis=0) # batchify
img = img.astype(dtype='float32')
args['data'] = img

softmax = mx.nd.random_normal(shape=(1,))
args['softmax_label'] = softmax

exe = sym.bind(ctx=ctx, args=args, aux_states=aux, grad_req='null')

exe.forward(data=img)
prob = exe.outputs[0].asnumpy()
print the top-5
prob = np.squeeze(prob)
a = np.argsort(prob)[::-1]
for i in a[0:5]:
 print('probability=%f, class=%s' %(prob[i], labels[i]))

Then run the script, and you should see something similar to the following output. MXNet will
optimize the model graph for Elastic Inference, load it on Elastic Inference accelerator, and then
run inference against it:

(amazonei_mxnet_p36) ubuntu@ip-172-31-42-83:~$ python mxnet_resnet50.py
 [23:12:03] src/nnvm/legacy_json_util.cc:209: Loading symbol saved by previous version
 v0.8.0. Attempting to upgrade...
 [23:12:03] src/nnvm/legacy_json_util.cc:217: Symbol successfully upgraded!
 Using Amazon Elastic Inference Client Library Version: 1.2.8
 Number of Elastic Inference Accelerators Available: 1
 Elastic Inference Accelerator ID: eia-95ae5a472b2241769656dbb5d344a80e
 Elastic Inference Accelerator Type: eia2.large

 probability=0.418679, class=n02119789 kit fox, Vulpes macrotis
 probability=0.293495, class=n02119022 red fox, Vulpes vulpes
 probability=0.029321, class=n02120505 grey fox, gray fox, Urocyon cinereoargenteus
 probability=0.026230, class=n02124075 Egyptian cat

MXNet Elastic Inference with Python 68

Amazon Elastic Inference Developer Guide

 probability=0.022557, class=n02085620 Chihuahua

Use Elastic Inference with the MXNet Module API

When you create the Module object, pass mx.eia() as the context. For more information, see
Module API.

To use the MXNet Module API, you can use the following commands:

Load saved model
sym, arg_params, aux_params = mx.model.load_checkpoint(model_path, EPOCH_NUM)

Pass mx.eia() as context while creating Module object
mod = mx.mod.Module(symbol=sym, context=mx.eia())

Only for_training = False is supported for eia
mod.bind(for_training=False, data_shapes=data_shape)
mod.set_params(arg_params, aux_params)

forward call is performed on remote accelerator
mod.forward(data_batch)

The following script downloads two ResNet-152 model files (resnet-152-0000.params and
resnet-152-symbol.json) and a labels list (synset.txt). It also downloads a cat image to get a
prediction result from the pre-trained model, then looks this up in the result in labels list, returning
a prediction result. Use your preferred text editor to create a script using the following content:

import mxnet as mx
import numpy as np
from collections import namedtuple

Batch = namedtuple('Batch', ['data'])

path='http://data.mxnet.io/models/imagenet/'
[mx.test_utils.download(path+'resnet/152-layers/resnet-152-0000.params'),
mx.test_utils.download(path+'resnet/152-layers/resnet-152-symbol.json'),
mx.test_utils.download(path+'synset.txt')]

ctx = mx.eia()

MXNet Elastic Inference with Python 69

https://mxnet.apache.org/api/python/docs/api/module/index.html

Amazon Elastic Inference Developer Guide

sym, arg_params, aux_params = mx.model.load_checkpoint('resnet-152', 0)
mod = mx.mod.Module(symbol=sym, context=ctx, label_names=None)
mod.bind(for_training=False, data_shapes=[('data', (1,3,224,224))],
 label_shapes=mod._label_shapes)
mod.set_params(arg_params, aux_params, allow_missing=True)

with open('synset.txt', 'r') as f:
 labels = [l.rstrip() for l in f]

fname = mx.test_utils.download('https://github.com/dmlc/web-data/blob/master/mxnet/doc/
tutorials/python/predict_image/cat.jpg?raw=true')
img = mx.image.imread(fname)

convert into format (batch, RGB, width, height)
img = mx.image.imresize(img, 224, 224) # resize
img = img.transpose((2, 0, 1)) # Channel first
img = img.expand_dims(axis=0) # batchify

mod.forward(Batch([img]))
prob = mod.get_outputs()[0].asnumpy()
print the top-5
prob = np.squeeze(prob)
a = np.argsort(prob)[::-1]
for i in a[0:5]:
 print('probability=%f, class=%s' %(prob[i], labels[i]))

Save this script as test.py

Use Elastic Inference with the MXNet Gluon API

The Gluon API in MXNet provides a clear, concise, and easy-to-use API for building and training
machine learning models. For more information, see the Gluon Documentation.

To use the MXNet Gluon API model for inference-only tasks, you can use the following commands:

Note

Both the model parameters and input array must be allocated with the Elastic Inference
context.

MXNet Elastic Inference with Python 70

https://mxnet.incubator.apache.org/api/python/docs/api/gluon/index.html

Amazon Elastic Inference Developer Guide

import mxnet as mx
from mxnet.gluon import nn

def create():
 net = nn.HybridSequential()
 net.add(nn.Dense(2))
 return net

get a simple Gluon nn model
net = create()
net.initialize(ctx=mx.cpu())

copy model parameters to EIA context
net.collect_params().reset_ctx(mx.eia())

hybridize the model with static alloc
net.hybridize(static_alloc=True, static_shape=True)

allocate input array in EIA context and run inference
x = mx.nd.random.uniform(-1,1,(3,4),ctx=mx.eia())
predictions = net(x)
print(predictions)

You should be able to see the following output to confirm that you are using Elastic Inference:

Using Amazon Elastic Inference Client Library Version: xxxxxxxx
Number of Elastic Inference Accelerators Available: 1
Elastic Inference Accelerator ID: eia-xxxxxxxxxxxxxxxxxxxxxxxx
Elastic Inference Accelerator Type: xxxxxxxx

Loading parameters

There are a couple of different ways to load Gluon models. One way is to load model parameters
from a file and specify the Elastic Inference context like the following:

save the parameters to a file
net.save_parameters('params.gluon')

create a new network using saved parameters
net2 = create()
net2.load_parameters('params.gluon', ctx=mx.eia())
net2.hybridize(static_alloc=True, static_shape=True)

MXNet Elastic Inference with Python 71

Amazon Elastic Inference Developer Guide

predictions = net2(x)
print(predictions)

Loading Symbol and Parameters Files

You can also export the model’s symbol and parameters to a file, then import the model as shown
in the following:

export both symbol and parameters to a file
net2.export('export')

create a new network using exported network
net3 = nn.SymbolBlock.imports('export-symbol.json', ['data'],
 'export-0000.params', ctx=mx.eia())
net3.hybridize(static_alloc=True, static_shape=True)
predictions = net3(x)

If you have a model exported as symbol and parameter files, you can simply import those files and
run inference.

import mxnet as mx
import numpy as np
from mxnet.gluon import nn

ctx = mx.eia()

path='http://data.mxnet.io/models/imagenet/'
[mx.test_utils.download(path+'resnet/50-layers/resnet-50-0000.params'),
mx.test_utils.download(path+'resnet/50-layers/resnet-50-symbol.json'),
mx.test_utils.download(path+'synset.txt')]

with open('synset.txt', 'r') as f:
 labels = [l.rstrip() for l in f]

fname = mx.test_utils.download('https://github.com/dmlc/web-data/blob/master/mxnet/doc/
tutorials/python/predict_image/cat.jpg?raw=true')
img = mx.image.imread(fname) # convert into format (batch, RGB, width, height)
img = img.as_in_context(ctx) # image must be with EIA context
img = mx.image.imresize(img, 224, 224) # resize
img = img.transpose((2, 0, 1)) # channel first
img = img.expand_dims(axis=0) # batchify
img = img.astype(dtype='float32') # match data type

MXNet Elastic Inference with Python 72

Amazon Elastic Inference Developer Guide

resnet50 = nn.SymbolBlock.imports('resnet-50-symbol.json',['data','softmax_label'],
 'resnet-50-0000.params',ctx=ctx) # import hybridized model symbols
label = mx.nd.array([0], ctx=ctx) # dummy softmax label in EIA context
resnet50.hybridize(static_alloc=True, static_shape=True)
prob = resnet50(img, label)
idx = prob.topk(k=5)[0]
for i in idx:
 i = int(i.asscalar())
 print('With prob = %.5f, it contains %s' % (prob[0,i].asscalar(), labels[i]))

Loading From Model Zoo

You can also use pre-trained models from Gluon model zoo as shown in the following:

Note

All pre-trained models expect inputs to be normalized in the same way as described in the
model zoo documentation.

import mxnet as mx
import numpy as np
from mxnet.gluon.model_zoo import vision

ctx = mx.eia()

mx.test_utils.download('http://data.mxnet.io/models/imagenet/synset.txt')
with open('synset.txt', 'r') as f:
 labels = [l.rstrip() for l in f]

fname = mx.test_utils.download('https://github.com/dmlc/web-data/blob/master/mxnet/doc/
tutorials/python/predict_image/cat.jpg?raw=true')
img = mx.image.imread(fname) # convert into format (batch, RGB, width, height)
img = img.as_in_context(ctx) # image must be with EIA context
img = mx.image.imresize(img, 224, 224) # resize
img = mx.image.color_normalize(img.astype(dtype='float32')/255,
 mean=mx.nd.array([0.485, 0.456, 0.406]),
 std=mx.nd.array([0.229, 0.224, 0.225])) # normalize
img = img.transpose((2, 0, 1)) # channel first
img = img.expand_dims(axis=0) # batchify

resnet50 = vision.resnet50_v1(pretrained=True, ctx=ctx) # load model in EIA context

MXNet Elastic Inference with Python 73

https://mxnet.apache.org/api/python/docs/api/gluon/model_zoo/index.html

Amazon Elastic Inference Developer Guide

resnet50.hybridize(static_alloc=True, static_shape=True) # hybridize
prob = resnet50(img).softmax() # predict and normalize output
idx = prob.topk(k=5)[0] # get top 5 result
for i in idx:
 i = int(i.asscalar())
 print('With prob = %.5f, it contains %s' % (prob[0,i].asscalar(), labels[i]))

Troubleshooting

• MXNet Elastic Inference is built with MKL-DNN, so all operations using mx.cpu() are supported
and will run with the same performance as the standard release. MXNet Elastic Inference does
not support mx.gpu(), so all operations using that context will throw an error. Sample error
message:

>>> mx.nd.ones((1),ctx=mx.gpu())
[20:35:32] src/imperative/./ imperative_utils.h:90: GPU support is disabled. Compile
 MXNet with USE_CUDA=1 to enable GPU support.
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/ubuntu/deps/MXNetECL /python/mxnet/ndarray/ndarray.py", line 2421, in
 ones
 return _internal._ones(shape=shape, ctx=ctx, dtype=dtype, **kwargs)
 File "<string>", line 34, in _ones
 File "/home/ubuntu/deps/MXNetECL /python/mxnet/_ctypes/ndarray.py", line 92, in
 _imperative_invoke
 ctypes.byref(out_stypes)))
 File "/home/ubuntu/deps/MXNetECL /python/mxnet/base.py", line 252, in check_call
 raise MXNetError(py_str(_LIB.MXGetLastError()))
mxnet.base.MXNetError: [20:35:32] src/imperative/imperative.cc:79: Operator _ones is
 not implemented for GPU.

• Elastic Inference is only for production inference use cases and does not support any model
training. When you use either the Symbol API or the Module API, do not call the backward()
method or call bind() with for_training=True. This throws an error. Because the default
value of for_training is True, make sure you set for_training=False manually in cases
such as the example in Use Elastic Inference with the MXNet Module API. Sample error using
test.py:

Traceback (most recent call last):
 File "test.py", line 16, in <module>
 label_shapes=mod._label_shapes)

MXNet Elastic Inference with Python 74

Amazon Elastic Inference Developer Guide

 File "/home/ec2-user/.local/lib/python3.6/site-packages/mxnet/module/module.py",
 line 402, in bind
 raise ValueError("for training cannot be set to true with EIA context")
ValueError: for training cannot be set to true with EIA context

• For Gluon, do not call training-specific functions or you will receive the following error:

Traceback (most recent call last):
 File "train_gluon.py", line 44, in <module>
 output = net(data)
 File "/usr/local/lib/python2.7/dist-packages/mxnet/gluon/block.py", line 540, in
 __call__
 out = self.forward(*args)
 File "train_gluon.py", line 24, in forward
 x = self.pool1(F.relu(self.conv1(x)))
 File "/usr/local/lib/python2.7/dist-packages/mxnet/gluon/block.py", line 540, in
 __call__
 out = self.forward(*args)
 File "/usr/local/lib/python2.7/dist-packages/mxnet/gluon/block.py", line 909, in
 forward
 return self._call_cached_op(x, *args)
 File "/usr/local/lib/python2.7/dist-packages/mxnet/gluon/block.py", line 815, in
 _call_cached_op
 out = self._cached_op(*cargs)
 File "/usr/local/lib/python2.7/dist-packages/mxnet/_ctypes/ndarray.py", line 150,
 in __call__
 ctypes.byref(out_stypes)))
 File "/usr/local/lib/python2.7/dist-packages/mxnet/base.py", line 252, in
 check_call
 raise MXNetError(py_str(_LIB.MXGetLastError()))
mxnet.base.MXNetError: [23:10:21] /home/ubuntu/deps/MXNetECL/3rdparty/tvm/nnvm/
include/nnvm/graph.h:230: Check failed: it != attrs.end() Cannot find attribute
 full_ref_count in the graph

• Because training is not allowed, there is no point of initializing an optimizer for inference.

• A model trained on an earlier version of MXNet will work on a later version of MXNet Elastic
Inference because it is backwards compatible (e.g. train model on MXNet 1.3 and run on MXNet
Elastic Inference 1.4). However, you may run into undefined behavior if you train on a later
version of MXNet (e.g. train model on MXNet Master and run on MXNet EI 1.4)

• Different sizes of Elastic Inference accelerators have different amounts of GPU memory. If your
model requires more GPU memory than is available in your accelerator, you get a message that

MXNet Elastic Inference with Python 75

Amazon Elastic Inference Developer Guide

looks like the log below. If you run into this message, you should use a larger accelerator size
with more memory. Stop and restart your instance with a larger accelerator.

mxnet.base.MXNetError: [06:16:17] src/operator/subgraph/eia/eia_subgraph_op.cc:206:
 Last Error:
 EI Error Code: [51, 8, 31]
 EI Error Description: Accelerator out of memory. Consider using a larger
 accelerator.
 EI Request ID: MX-A19B0DE6-7999-4580-8C49-8EA 7ADSFFCB -- EI Accelerator ID:
 eia-cb0aasdfdfsdf2a acab7
 EI Client Version: 1.2.12

• For Gluon, remember that both the model and input array (image) must be allocated in the
Elastic Inference context. If either the model parameters or an input are allocated in a different
context, you will see one of the following errors:

MXNetError: [21:59:27] src/imperative/cached_op.cc:866:
 Check failed: inputs[i]->ctx() == default_ctx (eia(0) vs. cpu(0))
 CachedOp requires all inputs to live on the same context.
 But data is on cpu(0) while resnetv10_conv0_weight is on eia(0)

RuntimeError: Parameter 'resnetv10_conv0_weight' was not
 initialized on context eia(0). It was only initialized on [cpu(0)].

• For Gluon, make sure you hybridize the model and pass the static_alloc=True and
static_shape=True options. Otherwise, MXNet will run inference in imperative mode on CPU
and won’t invoke any Elastic Inference functionality. In this case, you won’t see Elastic Inference
info messages, and may see MKLDNN info instead like the following:

[21:40:20] src/operator/nn/mkldnn/mkldnn_base.cc:74: Allocate 147456 bytes with
 malloc directly
[21:40:20] src/operator/nn/mkldnn/mkldnn_base.cc:74: Allocate 3211264 bytes with
 malloc directly
[21:40:20] src/operator/nn/mkldnn/mkldnn_base.cc:74: Allocate 9437184 bytes with
 malloc directly

• When you are using Symbol/Module API, you should always allocate arrays in the CPU context
and bind with the Elastic Inference context. If you allocate arrays in the Elastic Inference context,
you will see the following error when you try to bind the model:

MXNet Elastic Inference with Python 76

Amazon Elastic Inference Developer Guide

Traceback (most recent call last):
 File "symbol.py", line 43, in <module>
 exe = sym.bind(ctx=ctx, args=args, aux_states=aux, grad_req='null')
 File "/home/ubuntu/.local/lib/python2.7/site-packages/mxnet/symbol/symbol.py",
 line 1706, in bind
 ctypes.byref(handle)))
 File "/home/ubuntu/.local/lib/python2.7/site-packages/mxnet/base.py", line 252,
 in check_call
 raise MXNetError(py_str(_LIB.MXGetLastError()))
 mxnet.base.MXNetError: [00:05:25] src/executor/../common/exec_utils.h:516: Check
 failed: x == default_ctx Input array is in eia(0) while binding with ctx=cpu(0).
 All arguments must be in global context (cpu(0)) unless group2ctx is specified for
 cross-device graph.

• Calling reshape explicitly by using either the Module or the Symbol API, or implicitly using
different shapes for input NDArrays in different forward passes can lead to OOM errors. Before
being reshaped, the model is not cleaned up on the accelerator until the session is destroyed. In
Gluon, inferring with inputs of differing shapes will result in the model re-allocating memory.
For Elastic Inference, this means that the model will be re-loaded on the accelerator leading
to performance degradation and potential OOM errors. MXNet does not support the reshape
operation for the EIA context. Using different input data sizes or batch sizes is not supported and
may result in the following error. You can either pad your data so all shapes are the same or bind
the model with different shapes to use multiple executors. The latter option may result in out-of-
memory errors because the model is duplicated on the accelerator.

mxnet.base.MXNetError: [17:06:11] src/operator/subgraph/eia/eia_subgraph_op.cc:224:
 Last Error:
 EI Error Code: [52, 3, 32]
 EI Error Description: Invalid tensor on accelerator
 EI Request ID: MX-96534015-D443-4EC2-B184-ABBBDB1B150E -- EI Accelerator ID:
 eia-a9957ab65c5f44de975944a641c86b03
 EI Client Version: 1.3.1

MXNet Elastic Inference with Deep Java Library (DJL)

The Amazon Elastic Inference (EI) accelerator library lets you use EI seamlessly, with few changes
to your Apache MXNet (incubating) code. The Deep Java Library (DJL) supports EI through
partitioning and optimizing it for the EIA backend.

MXNet Elastic Inference with Deep Java Library (DJL) 77

Amazon Elastic Inference Developer Guide

Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for
deep learning. DJL makes it easy to train models in Java, as well as use models trained in other
frameworks such as Apache MXNet. Using the DJL MXNet engine, it is possible to run EI from Java
just like running it in Python. This can make it easy to integrate into existing Java code or the wide
variety of big-data and production Java libraries.

Note

This topic covers using Elastic Inference enabled MXNet version 1.7.0 and later. For
information about using Elastic Inference enabled MXNet 1.5.1 and earlier, see MXNet
Elastic Inference 1.5.1 with Java .

Environment Setup

Set up Elastic Inference and DJL with the MXNet engine by completing the following steps.

Setup for Elastic Inference

DJL requires JDK8 or above to be installed on the machine. To support EI from MXNet, download
the EI binary and set the MXNET_EXTRA_LIBRARY_PATH environment variable with the path to
your EI binary. For example, run the following commands to get the required EI library:

curl -o ei.whl https://amazonei-apachemxnet.s3.amazonaws.com/eimx-1.0-py2.py3-none-
manylinux1_x86_64.whl
unzip ei.whl
export MXNET_EXTRA_LIBRARY_PATH=$(pwd)/eimx/libeimx.so

Setup for DJL with MXNet engine

When setting up DJL, there are no special instructions. Add DJL and the DJL dependencies for
MXNet as usual. Here is a sample of the Gradle dependencies:

dependencies {
 implementation "ai.djl:api:0.10.0"
 implementation "ai.djl.mxnet:mxnet-engine:0.10.0"
 runtimeOnly "ai.djl.mxnet:mxnet-native-auto:1.7.0-backport"
}

MXNet Elastic Inference with Deep Java Library (DJL) 78

https://djl.ai/

Amazon Elastic Inference Developer Guide

As shown in the previous step, import the DJL API, MXNet engine, and MXNet native packages.
Read the DJL MXNet documentation for more information about these dependencies and
additional dependency options.

Note

Note: EI is supported only for DJL 0.10.0 with MXNet 1.7.0 for the 1.0 version of eimx
package.

Using DJL with MXNet on EI

For information about DJL, see the DJL quick start instructions and the load your mxnet model
tutorial. You can also get started by using a Jupyter Notebook with the Java kernel that can be
setup with the instructions found in the DJL jupyter README.

DJL supports EI only for models that were built and exported from Apache MXNet. Models trained
in DJL or the other DJL engines are not currently supported.

DJL can load models using the ModelZoo.loadModel(criteria) method. loadModel accepts
a single argument, criteria, which describes the model that you are trying to load, where it
is located, what pre-processing and post-processing to use, and other model loading options.
While it is often used for searching and filtering the built-in DJL model zoo, it can also be used to
load custom models from various sources including local files, http web locations, within a jar in
your classpath, and from a bucket in Amazon S3. For more information, see DJL model loading
documentation.

In general, all you need to do to support EI on MXNet inference using DJL is to add the following
option to your criteria:

.optOption("MxOptimizeFor", "EIA") // Use EI Acceleration

Example

To show how the inference process works, the following is a Gradle setup for a simple image
classification example. Provide a template project that can be run using the following command:

MXNet Elastic Inference with Deep Java Library (DJL) 79

http://docs.djl.ai/mxnet/mxnet-engine/index.html#installation
http://docs.djl.ai/docs/quick_start.html
http://docs.djl.ai/jupyter/load_mxnet_model.html
http://docs.djl.ai/jupyter/load_mxnet_model.html
https://github.com/awslabs/djl/blob/master/jupyter/README.md
http://docs.djl.ai/docs/load_model.html
http://docs.djl.ai/docs/load_model.html
http://docs.djl.ai/docs/load_model.html#criteria-class

Amazon Elastic Inference Developer Guide

curl -O https://djl-ai.s3.amazonaws.com/resources/demo/eia/eia.zip
unzip eia.zip
cd eia
./gradlew run

Inside of the package, you will find a README.md that contains the instructions to run the project.
Now let’s take a look at the key components in this package.

build.gradle

The following code loads the DJL API package and MXNet dependencies.

plugins {
 id 'application'
}

group = 'ai.djl.examples'
version = '0.0.1-SNAPSHOT'

repositories {
 jcenter()
}

application {
 mainClassName = System.getProperty("main", "ai.djl.examples.Example")
}

dependencies {
 implementation "ai.djl:api:0.10.0"
 implementation "ai.djl.mxnet:mxnet-model-zoo:0.10.0"
 runtimeOnly "ai.djl.mxnet:mxnet-native-auto:1.7.0-backport"
}

Example.java

The following is a part of the Example.java file. It shows the core steps to load the model and run
inference.

String modelUrl = "https://alpha-djl-demos.s3.amazonaws.com/model/djl-blockrunner/
mxnet_resnet18.zip?model_name=resnet18_v1";

MXNet Elastic Inference with Deep Java Library (DJL) 80

Amazon Elastic Inference Developer Guide

// Build criteria to load the model
Criteria<Image, Classifications> criteria = Criteria.builder()
 .setTypes(Image.class, Classifications.class)
 .optModelUrls(modelUrl)
 .optOption("MxOptimizeFor", "EIA") // Use EI Acceleration
 .optTranslator(ImageClassificationTranslator.builder()
 .addTransform(new Resize(224, 224))
 .addTransform(new ToTensor())
 .optApplySoftmax(true).build())
 .build();
// Run inference with DJL
try (ZooModel<Image, Classifications> model = ModelZoo.loadModel(criteria);
 Predictor<Image, Classifications> predictor = model.newPredictor()) {
 // load image
 String imageURL = "https://raw.githubusercontent.com/awslabs/djl/master/examples/
src/test/resources/kitten.jpg";
 Image image = ImageFactory.getInstance().fromUrl(imageURL);
 // Run inference with DJL
 System.out.println(predictor.predict(image));
}

The sample output log is like the following:

src/eia_lib.cc:264 MXNet version 10700 supported
[22:36:31] src/c_api/c_api.cc:354: Found 1 operators in library
[22:36:31] src/c_api/c_api.cc:419: Op[0] _eia_subgraph_op
[22:36:31] src/c_api/c_api.cc:420: isSubgraphOp
[22:36:31] src/c_api/c_api.cc:988: Found 1 partitioners in library
[22:36:31] src/c_api/c_api.cc:1004: Partitioner[0] EIA
[22:36:31] src/c_api/c_api.cc:1026: Strategy[0] strategy1 subgraphOp:
 '_eia_subgraph_op'
[22:36:31] src/c_api/c_api.cc:1049: Found 0 graph passes in library
[22:36:31] src/nnvm/legacy_json_util.cc:209: Loading symbol saved by previous version
 v1.5.0. Attempting to upgrade...
[22:36:31] src/nnvm/legacy_json_util.cc:217: Symbol successfully upgraded!
Using Amazon Elastic Inference Client Library Version: 1.8.0
Number of Elastic Inference Accelerators Available: 1
Elastic Inference Accelerator ID: eia-dd4389f3d32043da924e2cc90076d58d
Elastic Inference Accelerator Type: eia1.large
Elastic Inference Accelerator Ordinal: 0

[

MXNet Elastic Inference with Deep Java Library (DJL) 81

Amazon Elastic Inference Developer Guide

 class: "n02123045 tabby, tabby cat", probability: 0.41073
 class: "n02124075 Egyptian cat", probability: 0.29393
 class: "n02123159 tiger cat", probability: 0.19337
 class: "n02123394 Persian cat", probability: 0.04586
 class: "n02127052 lynx, catamount", probability: 0.00911
]

Troubleshooting

The following are issues that you might run into and possible solutions.

• If you see the error Deep Learning Engine not Found, it’s most likely because of one of the
following reasons:

• Unsatisfied Link error - DJL requires Amazon Linux 2, Ubuntu 16.04, and the above versions to
run the MXNet project. This issue is typically caused by a mismatch in the System and package
versions.

• No write access to the cache folder - DJL defaults to caching content in the $HOME/.djl.ai
folder. You might receive this error if you don’t have write access to this location. You can
override the DJL_CACHE_DIR environment variable to set an alternative cache directory. For
information, see Resource Caches in the DJL documentation.

• If you see either of the following error messages:

src/c_api/c_api_symbolic.cc:1498: Error optimizing for backend 'EIA' cannot be found

Exception in thread "main" ai.djl.engine.EngineException: No deep learning engine
 found.
...
Caused by: ai.djl.engine.EngineException: Failed to load MXNet native library
...
Caused by: java.io.FileNotFoundException: Extra Library not found: /home/ubuntu/eimx/
eimx/libeimx.so

This means that the MXNET_EXTRA_LIBRARY_PATH environment variable is not set, it points to
a file other than libeimx.so library, or it points to a file that does not exist.

• If your inference speed does not improve:

Check if you have something in your log similar to the following:

MXNet Elastic Inference with Deep Java Library (DJL) 82

https://docs.djl.ai/docs/development/cache_management.html#resource-caches

Amazon Elastic Inference Developer Guide

Number of Elastic Inference Accelerators Available: 1
Elastic Inference Accelerator ID: eia-#########################
Elastic Inference Accelerator Type: eiaX.YYYYYY
Elastic Inference Accelerator Ordinal: 0

EI accelerated inference should always print this piece of information to specify the backend you
are using. There should be no additional error thrown in the inference process.

• For all other issues, refer to the DJL Trouble shooting page.

MXNet Elastic Inference 1.5.1 with Java

Starting from Apache MXNet version 1.4, the Java API can now integrate with Amazon Elastic
Inference. You can use Elastic Inference with the following MXNet Java API operations:

• MXNet Java Infer API

Topics

• Install Amazon EI Enabled Apache MXNet

• Check MXNet for Java Version

• Use Amazon Elastic Inference with the MXNet Java Infer API

• More Models and Resources

• Troubleshooting

Install Amazon EI Enabled Apache MXNet

Amazon Elastic Inference enabled Apache MXNet is available in the AWS Deep Learning AMI. A
maven repository is also available on Amazon S3. You can build this repository into your own
Amazon Linux or Ubuntu AMIs, or Docker containers.

For Maven projects, Elastic Inference Java can be included by adding the following to your project's
pom.xml:

<repositories>
 <repository>
 <id>Amazon Elastic Inference</id>

MXNet Elastic Inference with Deep Java Library (DJL) 83

https://docs.djl.ai/docs/development/troubleshooting.html
https://s3.console.aws.amazon.com/s3/buckets/amazonei-apachemxnet/scala/

Amazon Elastic Inference Developer Guide

 <url>https://s3.amazonaws.com/amazonei-apachemxnet/scala</url>
 </repository>
</repositories>

In addition, add the Elastic Inference flavor of MXNet as a dependency using:

 <dependency>
 <groupId>com.amazonaws.ml.mxnet</groupId>
 <artifactId>mxnet-full_2.11-linux-x86_64-eia</artifactId>
 <version>[1.4.0,)</version>
 </dependency>

Check MXNet for Java Version

Use the commit hash number to determine which release of the Java-specific version of MXNet is
installed using the following code:

// Imports
import org.apache.mxnet.javaapi.*;

// Lines to run
Version$ version$ = Version$.MODULE$;
System.out.println(version$.getCommitHash());

You can then compare the commit hash with the Release Notes to find the specific info about the
version you have.

Use Amazon Elastic Inference with the MXNet Java Infer API

To use Amazon Elastic Inference with the MXNet Java Infer API, pass Context.eia() as the
context when creating the Infer Predictor object. See the MXNet Infer Reference for more
information. The following example uses the pre-trained real model (Resnet-152):

package mxnet;

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.net.URL;
import java.util.Arrays;

MXNet Elastic Inference with Deep Java Library (DJL) 84

https://aws.amazon.com/releasenotes/release-amazon-elastic-inference-mxnet-on-2019-06-25/
https://mxnet.incubator.apache.org/api/scala/docs/api/#org.apache.mxnet.infer.package

Amazon Elastic Inference Developer Guide

import java.util.Comparator;
import java.util.List;
import java.util.stream.IntStream;
import org.apache.commons.io.FileUtils;
import org.apache.mxnet.infer.javaapi.ObjectDetector;
import org.apache.mxnet.infer.javaapi.Predictor;
import org.apache.mxnet.javaapi.*;

public class Example {
 public static void main(String[] args) throws IOException {
 String urlPath = "http://data.mxnet.io/models/imagenet";
 String filePath = System.getProperty("java.io.tmpdir");

 // Download Model and Image
 FileUtils.copyURLToFile(new URL(urlPath + "/resnet/152-layers/
resnet-152-0000.params"),
 new File(filePath + "resnet-152/resnet-152-0000.params"));
 FileUtils.copyURLToFile(new URL(urlPath + "/resnet/152-layers/resnet-152-
symbol.json"),
 new File(filePath + "resnet-152/resnet-152-symbol.json"));
 FileUtils.copyURLToFile(new URL(urlPath + "/synset.txt"),
 new File(filePath + "resnet-152/synset.txt"));
 FileUtils.copyURLToFile(new URL("https://github.com/dmlc/web-data/blob/master/
mxnet/doc/tutorials/python/predict_image/cat.jpg?raw=true"),
 new File(filePath + "cat.jpg"));

 List<Context> contexts = Arrays.asList(Context.eia());
 Shape inputShape = new Shape(new int[]{1, 3, 224, 224});
 List<DataDesc> inputDesc = Arrays.asList(new DataDesc("data", inputShape,
 DType.Float32(), "NCHW"));
 Predictor predictor = new Predictor(filePath + "resnet-152/resnet-152",
 inputDesc, contexts, 0);

 BufferedImage originalImg = ObjectDetector.loadImageFromFile(filePath +
 "cat.jpg");
 BufferedImage resizedImg = ObjectDetector.reshapeImage(originalImg, 224, 224);
 NDArray img = ObjectDetector.bufferedImageToPixels(resizedImg, new Shape(new
 int[]{1, 3, 224, 224}));

 List<NDArray> predictResults =
 predictor.predictWithNDArray(Arrays.asList(img));
 float[] results = predictResults.get(0).toArray();

MXNet Elastic Inference with Deep Java Library (DJL) 85

Amazon Elastic Inference Developer Guide

 List<String> synsetLines = FileUtils.readLines(new File(filePath + "resnet-152/
synset.txt"));

 int[] best = IntStream.range(0, results.length)
 .boxed().sorted(Comparator.comparing(i -> -results[i]))
 .mapToInt(ele -> ele).toArray();

 for (int i = 0; i < 5; i++) {
 int ind = best[i];
 System.out.println(i + ": " + synsetLines.get(ind) + " - " + best[ind]);
 }

 }
}

More Models and Resources

For more tutorials and examples, see:

• the framework's official Java documentation

• Java API Reference

• Apache MXNet website

Troubleshooting

• MXNet EI is built with MKL-DNN. All operations using Context.cpu() are supported and will run
with the same performance as the standard release. MXNet EI does not support Context.gpu().
All operations using that context will throw an error.

• You cannot allocate memory for NDArray on the remote accelerator by writing something like
this:

x = NDArray.array(Array(1,2,3),
 ctx=Context.eia())

This throws an error. Instead you should use Context.cpu(). Look at the previous bind()
example to see how MXNet automatically transfers your data to the accelerator as necessary.
Sample error message:

• Elastic Inference is only for production inference use cases and does not support any model
training. When you use either the Symbol API or the Module API, do not call the backward()

MXNet Elastic Inference with Deep Java Library (DJL) 86

https://mxnet.incubator.apache.org/api/java/docs/api/#package
https://mxnet.incubator.apache.org/

Amazon Elastic Inference Developer Guide

method or call bind() with forTraining=True. This throws an error. Because the default
value of forTraining is True, make sure you set for_training=False manually in cases
such as the example in Use Elastic Inference with the MXNet Module API. Sample error using
test.py:

• Because training is not allowed, there is no point of initializing an optimizer for inference.

• A model trained on an earlier version of MXNet will work on a later version of MXNet EI because
it is backwards compatible. For example, you can train a model on MXNet 1.3 and run it on
MXNet EI 1.4. However, you may run into undefined behavior if you train on a later version of
MXNet. For example, training a model on MXNet Master and running on MXNet EI 1.4.

• Different sizes of EI accelerators have different amounts of GPU memory. If your model requires
more GPU memory than is available in your accelerator, you get a message that looks like the log
below. If you run into this message, you should use a larger accelerator size with more memory.
Stop and restart your instance with a larger accelerator.

• Calling reshape explicitly by using either the Module or the Symbol API can lead to OOM errors.
Implicitly using different shapes for input NDArrays in different forward passes can also lead
to OOM errors. Before being reshaped, the model is not cleaned up on the accelerator until the
session is destroyed.

MXNet Elastic Inference 1.5.1 with Scala

Starting from Apache MXNet version 1.4, the Scala API can now integrate with Amazon Elastic
Inference. You can use Elastic Inference with the following MXNet Scala API operations:

• MXNet Scala Symbol API

• MXNet Scala Module API

• MXNet Scala Infer API

Topics

• Install Elastic Inference Enabled Apache MXNet

• Check MXNet for Scala Version

• Use Amazon Elastic Inference with the MXNet Symbol API

• Use Amazon Elastic Inference with the MXNet Module API

• Use Amazon Elastic Inference with the MXNet Infer API

• More Models and Resources

MXNet Elastic Inference with Deep Java Library (DJL) 87

Amazon Elastic Inference Developer Guide

• Troubleshooting

Install Elastic Inference Enabled Apache MXNet

Elastic Inference enabled Apache MXNet is available in the AWS Deep Learning AMI. A maven
repository is also available on Amazon S3. You can build it in to your own Amazon Linux or Ubuntu
AMIs, or Docker containers.

For Maven projects, Elastic Inference with Scala can be included by adding the following to your
project's pom.xml:

<repositories>
 <repository>
 <id>Amazon Elastic Inference</id>
 <url>https://s3.amazonaws.com/amazonei-apachemxnet/scala</url>
 </repository>
</repositories>

In addition, add the Elastic Inference flavor of MXNet as a dependency using:

 <dependency>
 <groupId>com.amazonaws.ml.mxnet</groupId>
 <artifactId>mxnet-full_2.11-linux-x86_64-eia</artifactId>
 <version>[1.4.0,)</version>
 </dependency>

Check MXNet for Scala Version

You can use the commit hash number to determine which release of the Scala-specific version of
MXNet is installed using the following code:

// Imports
import org.apache.mxnet.util.Version

// Line to run
println(Version.getCommitHash)

You can then compare the commit hash with the Release Notes to find the specific info about the
version you have.

MXNet Elastic Inference with Deep Java Library (DJL) 88

https://s3.console.aws.amazon.com/s3/buckets/amazonei-apachemxnet/scala/
https://aws.amazon.com/releasenotes/release-amazon-elastic-inference-mxnet-on-2019-06-25/

Amazon Elastic Inference Developer Guide

Use Amazon Elastic Inference with the MXNet Symbol API

To use Elastic Inference with the MXNet Symbol API, pass Context.eia() as the context in
a call to either the Symbol.bind or Symbol.simpleBind methods. See the MXNet Symbol
Reference for more information.

The following is an example using Context.eia() in a call to simpleBind:

import org.apache.mxnet._

object Example {

 def main(args: Array[String]): Unit = {
 val data = Symbol.Variable("data", shape=Shape(1))
 val sym = Symbol.api.exp(Some(data))

 // Pass mx.eia() as context during simple bind operation
 val executor = sym.simpleBind(Context.eia(), gradReq = "null", shapeDict =
 Map("data" -> Shape(1)))
 for(i <- 1 to 10) {
 executor.forward(false, ("data", NDArray.ones(1)))
 println(s"Inference ${i}, output = ${executor.outputs.head}")
 }
 }
}

Note, the GPU context is not supported. All values and computations that are not Elastic Inference
should use the CPU context. Use the Elastic Inference context only with the bind call.

The following is an example using bind. Note, you cannot use the Elastic Inference context to
allocate memory or it will throw an error.

import org.apache.mxnet._

object Example {

 def main(args: Array[String]): Unit = {
 val a = Symbol.Variable("a")
 val b = Symbol.Variable("b")

MXNet Elastic Inference with Deep Java Library (DJL) 89

https://mxnet.incubator.apache.org/api/scala/docs/api/#org.apache.mxnet.Symbol
https://mxnet.incubator.apache.org/api/scala/docs/api/#org.apache.mxnet.Symbol

Amazon Elastic Inference Developer Guide

 val c = a + b

 // Even for EIA workloads, declare NDArrays on the CPU
 val aData = NDArray.array(Array(1f,2f), Shape(2), Context.cpu())
 val bData = NDArray.array(Array(2f,3f), Shape(2), Context.cpu())

 // Then in the bind call, use Context.eia()
 val executor = c.bind(Context.eia(), Map("a" -> aData, "b" -> bData))

 // The forward call is performed on the remote accelerator
 executor.forward()
 println(s"1st Inference, output = ${executor.outputs.head}")

 // Subsequent calls can pass new data in a forward call
 executor.forward(false, ("a", NDArray.ones((2))), ("b", NDArray.ones((2))))
 println(s"2nd Inference, output = ${executor.outputs.head}")
 }
}

Use Amazon Elastic Inference with the MXNet Module API

To use Elastic Inference with the MXNet Module API, pass Context.eia() as the context when
creating the Module object. See the MXNet Module Reference for more information.

The following is an example using Elastic Inference with the Module API on a pre-trained real
model (Resnet-152).

import java.io.File
import java.net.URL

import org.apache.commons.io.FileUtils
import org.apache.mxnet._
import org.apache.mxnet.infer.ImageClassifier
import org.apache.mxnet.module.Module

import scala.io.Source

object Example {

 def main(args: Array[String]): Unit = {
 val urlPath = "http://data.mxnet.io/models/imagenet"
 val filePath = System.getProperty("java.io.tmpdir")

MXNet Elastic Inference with Deep Java Library (DJL) 90

https://mxnet.incubator.apache.org/api/scala/docs/api/#org.apache.mxnet.module.package

Amazon Elastic Inference Developer Guide

 // Download Model and Image
 FileUtils.copyURLToFile(new URL(s"${urlPath}/resnet/152-layers/
resnet-152-0000.params"),
 new File(s"${filePath}resnet-152/resnet-152-0000.params"))
 FileUtils.copyURLToFile(new URL(s"${urlPath}/resnet/152-layers/resnet-152-
symbol.json"),
 new File(s"${filePath}resnet-152/resnet-152-symbol.json"))
 FileUtils.copyURLToFile(new URL(s"${urlPath}/synset.txt"),
 new File(s"${filePath}resnet-152/synset.txt"))
 FileUtils.copyURLToFile(new URL("https://github.com/dmlc/web-data/blob/master/
mxnet/doc/tutorials/python/predict_image/cat.jpg?raw=true"),
 new File(s"${filePath}cat.jpg"))

 // Load model
 val (symbol, argParams, auxParams) = Model.loadCheckpoint(s"${filePath}resnet-152/
resnet-152", 0)
 val mod = new Module(symbol, contexts = Context.eia(), labelNames = IndexedSeq())
 mod.bind(dataShapes=IndexedSeq(DataDesc("data", Shape(1, 3, 224, 224))),
 forTraining = false)
 mod.setParams(argParams, auxParams, allowMissing = true)
 val labels = Source.fromFile(s"${filePath}resnet-152/
synset.txt").getLines().map(_.trim).toIndexedSeq

 // Load image
 val originalImg = ImageClassifier.loadImageFromFile(s"${filePath}cat.jpg")
 val resizedImg = ImageClassifier.reshapeImage(originalImg, 224, 224)
 val img = ImageClassifier.bufferedImageToPixels(resizedImg, Shape(1, 3, 224, 224))

 mod.forward(new DataBatch(IndexedSeq(img), IndexedSeq(), IndexedSeq(), 0))

 val probabilities = mod.getOutputs().head.head.toArray
 val best = probabilities.zipWithIndex.sortBy(-_._1).take(5)
 best.zipWithIndex.foreach {
 case ((prob, nameIndex), i) => println(s"Option ${i}: ${labels(nameIndex)} -
 ${prob}")
 }
 }
}

MXNet Elastic Inference with Deep Java Library (DJL) 91

Amazon Elastic Inference Developer Guide

Use Amazon Elastic Inference with the MXNet Infer API

To use Elastic Inference with the MXNet Infer API, pass Context.eia() as the context when
creating the Infer Predictor object. See the MXNet Infer Reference for more information. The
following example also uses the pre-trained real model (Resnet-152).

import java.io.File
import java.net.URL

import org.apache.commons.io.FileUtils
import org.apache.mxnet._
import org.apache.mxnet.infer.ImageClassifier

object Example {

 def main(args: Array[String]): Unit = {
 val urlPath = "http://data.mxnet.io/models/imagenet"
 val filePath = System.getProperty("java.io.tmpdir")

 // Download Model and Image
 FileUtils.copyURLToFile(new URL(s"${urlPath}/resnet/152-layers/
resnet-152-0000.params"),
 new File(s"${filePath}resnet-152/resnet-152-0000.params"))
 FileUtils.copyURLToFile(new URL(s"${urlPath}/resnet/152-layers/resnet-152-
symbol.json"),
 new File(s"${filePath}resnet-152/resnet-152-symbol.json"))
 FileUtils.copyURLToFile(new URL(s"${urlPath}/synset.txt"),
 new File(s"${filePath}resnet-152/synset.txt"))
 FileUtils.copyURLToFile(new URL("https://github.com/dmlc/web-data/blob/master/
mxnet/doc/tutorials/python/predict_image/cat.jpg?raw=true"),
 new File(s"${filePath}cat.jpg"))

 val inputShape = Shape(1, 3, 224, 224)
 val inputDesc = IndexedSeq(DataDesc("data", inputShape, DType.Float32, "NCHW"))
 val imgClassifier = new ImageClassifier(s"${filePath}resnet-152/resnet-152",
 inputDesc, Context.eia())

 val img = ImageClassifier.loadImageFromFile(s"${filePath}cat.jpg")
 val topK = 5
 val output = imgClassifier.classifyImage(img, Some(topK)).head

 output.zipWithIndex.foreach{

MXNet Elastic Inference with Deep Java Library (DJL) 92

https://mxnet.incubator.apache.org/api/scala/docs/api/#org.apache.mxnet.infer.package

Amazon Elastic Inference Developer Guide

 case ((name, prob), i) => println(s"Option ${i}: ${name} - ${prob}")
 }
 }
}

More Models and Resources

For more tutorials and examples, see:

• The framework's official Scala documentation

• Scala API Reference

• Apache MXNet website

Troubleshooting

• MXNet Elastic Inference is built with MKL-DNN, so all operations using Context.cpu() are
supported and runs with the same performance as the standard release. MXNet Elastic Inference
does not support Context.gpu(), so all operations using that context will throw an error.

• You cannot allocate memory for NDArray on the remote accelerator by writing something like
the following.

 x = NDArray.array(Array(1,2,3),
 ctx=Context.eia())

This throws an error. Instead you should use Context.cpu(). Look at the previous bind()
example to see how MXNet automatically transfers your data to the accelerator as necessary.
Sample error message:

• Amazon Elastic Inference is only for production inference use cases and does not support
any model training. When you use either the Symbol API or the Module API, do not call the
backward() method or call bind() with forTraining=True. This throws an error. Because
the default value of forTraining is True, make sure you set for_training=False manually
in cases such as the example in Use Elastic Inference with the MXNet Module API. Sample error
using test.py:

• Because training is not allowed, there is no point tp initializing an optimizer for inference.

• A model trained on an earlier version of MXNet will work on a later version of MXNet EI because
it is backwards compatible. For example, you can train a model on MXNet 1.3 and run it on
MXNet EI 1.4. However, you may run into undefined behavior if you train on a later version

MXNet Elastic Inference with Deep Java Library (DJL) 93

https://mxnet.incubator.apache.org/api/scala/docs/api/#org.apache.mxnet.package
https://mxnet.incubator.apache.org/

Amazon Elastic Inference Developer Guide

of MXNet. For example training a model on MXNet Master and running it on MXNet Elastic
Inference 1.4.

• Different sizes of Elastic Inference accelerators have different amounts of GPU memory. If your
model requires more GPU memory than is available in your accelerator, you get a message that
looks like the log below. If you run into this message, you should use a larger accelerator size
with more memory. Stop and restart your instance with a larger accelerator.

• Calling reshape explicitly by using either the Module or the Symbol API can lead to OOM errors.
Implicitly using different shapes for input NDArrays in different forward passes can also lead
to OOM errors. Before being reshaped, the model is not cleaned up on the accelerator until the
session is destroyed.

Using PyTorch Models with Elastic Inference

This release of Elastic Inference enabled PyTorch has been tested to perform well and provide cost-
saving benefits with the following deep learning use cases and network architectures (and similar
variants).

Note

Elastic Inference enabled PyTorch is only available with Amazon Deep Learning Containers
v27 and later.

Use Case Example Network Topology

Image Recognition Inception, ResNet, VGG

Semantic Segmentation UNet

Text Embeddings BERT

Transformers GPT

Topics

• Compile Elastic Inference-enabled PyTorch models

• Additional Requirements and Considerations

PyTorch Models 94

Amazon Elastic Inference Developer Guide

• PyTorch Elastic Inference with Python

Compile Elastic Inference-enabled PyTorch models

Elastic Inference-enabled PyTorch only supports TorchScript compiled models. You can compile
a PyTorch model into TorchScript using either tracing or scripting. Both produce a computation
graph, but differ in how they do so.

Scripting a model is the preferred way of compiling to TorchScript because it preserves all model
logic. However, the set of models that can be scripted is smaller than the set of traceable models.
Your model might be traceable, but not scriptable, or not traceable at all. You may need to modify
your model code to make it TorchScript compatible.

Because of the way that Elastic Inference handles control-flow operations in PyTorch, inference
latency might be noticeable for scripted models that contain many conditional branches. Try both
tracing and scripting to see how your model performs with Elastic Inference. It is likely that a
traced model performs better than its scripted version.

Scripting

Scripting performs direct analysis of the source code to construct a computation graph and
preserve control flow.

The following example code shows how to compile a model using scripting. It uses the TorchVision
pretrained weights for ResNet18. The resulting scripted model can still be saved to a file, then
loaded with torch.jit.load using Elastic Inference-enabled PyTorch.

import torchvision, torch
ImageNet pretrained models take inputs of this size.
x = torch.rand(1,3,224,224)
Call eval() to set model to inference mode
model = torchvision.models.resnet18(pretrained=True).eval()
scripted_model = torch.jit.script(model)

Tracing

Tracing takes a sample input and records the operations performed when executing the model on
that particular input. This means that control flow may be erased because the graph is compiled
by tracing the code with just one input. For example, a model definition might have code to pad

Compile Elastic Inference-enabled PyTorch models 95

https://pytorch.org/docs/1.3.1/jit.html
https://pytorch.org/docs/1.3.1/jit.html#torch.jit.trace
https://pytorch.org/docs/1.3.1/jit.html#torch.jit.script

Amazon Elastic Inference Developer Guide

images of a particular size x. If the model is traced with an image of a different size y, then future
inputs of size x fed to the traced model will not be padded. This happens because the code path
was never run while tracing with the sample input.

The following example shows how to compile a model using tracing. It uses the TorchVision
pretrained weights for ResNet18. The torch.jit.optimized_execution context block is
required to use traced models with Elastic Inference. This function is only available through the
Elastic Inference enabled PyTorch framework.

If you are tracing your model with the basic PyTorch framework, don't include the
torch.jit.optimized_execution context. The resulting traced model can still be saved to a
file, then loaded with torch.jit.load using Elastic Inference-enabled PyTorch.

import torchvision, torch
ImageNet pretrained models take inputs of this size.
x = torch.rand(1,3,224,224)
Call eval() to set model to inference mode
model = torchvision.models.resnet18(pretrained=True).eval()

Required when using Elastic Inference
with torch.jit.optimized_execution(True, {‘target_device’: ‘eia:0’}):
 traced_model = torch.jit.trace(model, x)

Saving and loading a compiled model

The output of tracing and scripting is a ScriptModule, the TorchScript version of the basic PyTorch
nn.Module. Serializing and de-serializing a TorchScript module is as easy as calling torch.jit.save()
and torch.jit.load() respectively. This is the JIT version of saving and loading a basic PyTorch model
using torch.save() and torch.load().

torch.jit.save(traced_model, 'resnet18_traced.pt')
torch.jit.save(scripted_model, 'resnet18_scripted.pt')

traced_model = torch.jit.load('resnet18_traced.pt')
scripted_model = torch.jit.load('resnet18_scripted.pt')

Saved TorchScript models are not bound to specific classes and code directories, unlike basic
PyTorch models. You can directly load saved TorchScript models without instantiating the model
class first.

Compile Elastic Inference-enabled PyTorch models 96

https://pytorch.org/docs/1.3.1/jit.html#torch.jit.ScriptModule
https://pytorch.org/docs/stable/nn.html?highlight=module#torch.nn.Module
https://pytorch.org/docs/1.3.1/jit.html#torch.jit.save
https://pytorch.org/docs/1.3.1/jit.html#torch.jit.load

Amazon Elastic Inference Developer Guide

CPU training requirement

PyTorch does not save models in a device-agnostic way. Model training frequently happens in a
CUDA context on a GPU. However, the Elastic Inference enabled PyTorch framework is CPU-only on
the client side, even though your model runs in a CUDA context on the server.

Tracing models may lead to tensor creation on a specific device. When this happens, you may
get errors when loading the model onto a different device. To avoid device-related errors,
load your model by explicitly specifying the CPU device using torch.jit.load(model,
map_location=torch.device('cpu')). This forces all model tensors to CPU. If you still get
an error, cast your model to CPU before saving it. This can be done on any instance type, including
GPU instances. For more information, see TorchScript’s Frequently Asked Questions.

Additional Requirements and Considerations

Framework Paradigms: Dynamic versus Static Computational Graphs

All deep learning frameworks view models as directed acyclic graphs. However, the frameworks
differ in how they allow you to specify models. TensorFlow and MXNet use static computation
graphs, meaning that the computation graph must be defined and built before it's run. In contrast,
PyTorch uses dynamic computational graphs. This means that models are imperatively specified
by using idiomatic Python code, and then the computation graph is built at execution time. Rather
than being predetermined, the graph’s structure can change during execution.

Productionizing PyTorch with TorchScript

TorchScript addresses the limitations of the computation graph being built at execution time
with JIT. JIT is a just-in-time compiler that compiles and exports models to a Python-free
representation. By converting PyTorch models into TorchScript, users can run their models in any
production environment. JIT also performs graph-level optimizations, providing a performance
boost over basic PyTorch.

To use Elastic Inference enabled PyTorch, you must convert your models to the TorchScript format.

Model Format

Basic PyTorch uses dynamic computational graphs. This means that models are specified with
idiomatic Python code and the computation graph is built at execution time. Elastic Inference
supports TorchScript saved models. TorchScript uses Torch.JIT, a just-in-time compiler, to produce
models that can be serialized and optimized from PyTorch code. These models can be run

Additional Requirements and Considerations 97

https://pytorch.org/docs/1.3.1/jit.html#id66
https://pytorch.org/docs/1.3.1/jit.html
https://pytorch.org/docs/1.3.1/jit.html

Amazon Elastic Inference Developer Guide

anywhere, including environments without Python. Torch.JIT offers two ways to compile a PyTorch
model: tracing and scripting. Both produce a computation graph, but differ in how they do so. For
more information on compiling using Torch.JIT, see Compile Elastic Inference-enabled PyTorch
models. For more information about running inference using TorchScript, see Use Elastic Inference
with PyTorch for inference.

Additional Resources

For more information about using TorchScript, see the TorchScript tutorial.

The following pretrained PyTorch models can be used with Elastic Inference:

• TorchVision

• Torch.Hub

PyTorch Elastic Inference with Python

The Amazon Elastic Inference enabled version of PyTorch lets you use Elastic Inference seamlessly,
with few changes to your PyTorch code. The following tutorial shows how to perform inference
using an Elastic Inference accelerator.

Note

Elastic Inference enabled PyTorch is only available with Amazon Deep Learning Containers
version 27 and later.

Topics

• Install Elastic Inference Enabled PyTorch

• Activate the PyTorch Elastic Inference Environment

• Use Elastic Inference with PyTorch for inference

Install Elastic Inference Enabled PyTorch

Preinstalled Elastic Inference Enabled PyTorch

The Elastic Inference enabled packages are available in the AWS Deep Learning AMI. You also have
Docker container options through the Amazon Deep Learning Containers.

PyTorch Elastic Inference with Python 98

https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html
https://pytorch.org/docs/stable/torchvision/index.html
https://pytorch.org/hub/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/containers/

Amazon Elastic Inference Developer Guide

Installing Elastic Inference Enabled PyTorch

If you're not using a AWS Deep Learning AMI instance, you can download the packages from the
Amazon S3 bucket to build it into your own Amazon Linux or Ubuntu AMIs.

Activate the PyTorch Elastic Inference Environment

If you are using the AWS Deep Learning AMI, activate the Python 3 Elastic Inference enabled
PyTorch environment. Python 2 is not supported for Elastic Inference enabled PyTorch.

• For PyTorch 1.3.1, run the following to activate the environment:

source activate amazonei_pytorch_p36

• For PyTorch 1.5.1, run the following to activate the environment:

source activate amazonei_pytorch_latest_p36

• For PyTorch 1.5.1 in Deep Learning AMI (Amazon Linux 2), run the following to activate the
environment:

source activate amazonei_pytorch_latest_p37

If you are using a different AMI or a container, access the environment where PyTorch is installed.

The remaining parts of this guide assume you are using one of these PyTorch environment. If you
are switching from MXNet or TensorFlow Elastic Inference environments, you must stop and then
start your instance in order to reattach the Elastic Inference accelerator. Rebooting is not sufficient
since the process of switching frameworks requires a complete shut down.

Use Elastic Inference with PyTorch for inference

With Elastic Inference enabled PyTorch, the inference API is largely unchanged. However, you must
use the with torch.jit.optimized_execution() context to trace or script your models into
TorchScript, then perform inference. There are also differences between the PyTorch 1.3.1 and
1.5.1 APIs that are demonstrated in the following tutorial.

Run Inference with a ResNet-50 Model

To run inference using Elastic Inference enabled PyTorch, do the following.

PyTorch Elastic Inference with Python 99

https://amazonei-pytorcheia.s3.amazonaws.com/releases/v1.0.0/torcheia-1.0.0-cp36-cp36m-manylinux1_x86_64.whl

Amazon Elastic Inference Developer Guide

1. Download a picture of a cat to your current directory.

curl -O https://s3.amazonaws.com/model-server/inputs/kitten.jpg

2. Download a list of ImageNet class mappings to your current directory.

wget https://aws-dlc-sample-models.s3.amazonaws.com/pytorch/imagenet_classes.txt

3. Use the built-in EI Tool to get the device ordinal number of all attached Elastic Inference
accelerators. For more information on EI Tool, see Monitoring Elastic Inference Accelerators.

• For PyTorch 1.3.1, run the following:

/opt/amazon/ei/ei_tools/bin/ei describe-accelerators --json

• For PyTorch 1.5.1, run the following:

~/anaconda3/envs/amazonei_pytorch_latest_p36/lib/python3.6/site-packages/
torcheia/bin/ei describe-accelerators --json

• For PyTorch 1.5.1 in Deep Learning AMI (Amazon Linux 2), run the following:

~/anaconda3/envs/amazonei_pytorch_latest_p37/lib/python3.7/site-packages/
torcheia/bin/ei describe-accelerators --json

Your output should look like the following:

{
 "ei_client_version": "1.5.0",
 "time": "Fri Nov 1 03:09:38 2019",
 "attached_accelerators": 2,
 "devices": [
 {
 "ordinal": 0,
 "type": "eia1.xlarge",
 "id": "eia-679e4c622d584803aed5b42ab6a97706",
 "status": "healthy"
 },
 {
 "ordinal": 1,
 "type": "eia1.xlarge",

PyTorch Elastic Inference with Python 100

https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-monitoring.html

Amazon Elastic Inference Developer Guide

 "id": "eia-6c414c6ee37a4d93874afc00825c2f28",
 "status": "healthy"
 }
]
}

You use the device ordinal of your desired Elastic Inference accelerator to run inference.

4. Use your preferred text editor to create a script that has the following content. Name it
pytorch_resnet50_inference.py. This script uses ImageNet pretrained TorchVision
model weights for ResNet-50, a popular convolutional neural network for image classification.
It traces the weights with an image tensor and saves it. The script then loads the saved model,
performs inference on the input, and prints out the top predicted ImageNet classes. The
implementation of the script differs between PyTorch 1.3.1 and 1.5.1.

For PyTorch 1.3.1

This script uses the torch.jit.optimized_execution context, which is necessary to use
the Elastic Inference accelerator. If you don't use the torch.jit.optimized_execution
context correctly, then inference runs entirely on the client instance and doesn't use
the attached accelerator. The Elastic Inference enabled PyTorch framework accepts two
parameters for this context, while the vanilla PyTorch framework accepts only one parameter.
The second parameter is used to specify the accelerator device ordinal. target_device
should be set to the device's ordinal number, not its ID. Ordinals are numbered beginning with
0.

Note

This script specifies the CPU device when loading the model. This avoids potential
problems if the model was traced and saved using a GPU context.

import torch, torchvision
import PIL
from torchvision import transforms
from PIL import Image

def get_image(filename):
 im = Image.open(filename)
 # ImageNet pretrained models required input images to have width/height of 224

PyTorch Elastic Inference with Python 101

Amazon Elastic Inference Developer Guide

 # and color channels normalized according to ImageNet distribution.
 im_process = transforms.Compose([transforms.Resize([224, 224]),
 transforms.ToTensor(),
 transforms.Normalize(mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])])
 im = im_process(im) # 3 x 224 x 224
 return im.unsqueeze(0) # Add dimension to become 1 x 3 x 224 x 224

im = get_image('kitten.jpg')

eval() toggles inference mode
model = torchvision.models.resnet50(pretrained=True).eval()
Compile model to TorchScript via tracing
Here want to use the first attached accelerator, so we specify ordinal 0.
with torch.jit.optimized_execution(True, {'target_device': 'eia:0'}):
 # You can trace with any input
 model = torch.jit.trace(model, im)

Serialize model
torch.jit.save(model, 'resnet50_traced.pt')

Deserialize model
model = torch.jit.load('resnet50_traced.pt', map_location=torch.device('cpu'))

Perform inference. Make sure to disable autograd and use EI execution context
with torch.no_grad():
 with torch.jit.optimized_execution(True, {'target_device': 'eia:device
 ordinal'}):
 probs = model(im)

Torchvision implementation doesn't have Softmax as last layer.
Use Softmax to convert activations to range 0-1 (probabilities)
probs = torch.nn.Softmax(dim=1)(probs)

Get top 5 predicted classes
classes = eval(open('imagenet_classes.txt').read())
pred_probs, pred_indices = torch.topk(probs, 5)
pred_probs = pred_probs.squeeze().numpy()
pred_indices = pred_indices.squeeze().numpy()

for i in range(len(pred_indices)):
 curr_class = classes[pred_indices[i]]
 curr_prob = pred_probs[i]

PyTorch Elastic Inference with Python 102

Amazon Elastic Inference Developer Guide

 print('{}: {:.4f}'.format(curr_class, curr_prob))

For PyTorch 1.5.1

This script uses the torch.jit.attach_eia API to attach an accelerator device to a model.
If you don't attach the device using torch.jit.attach_eia correctly, then inference runs
entirely on the client instance and doesn't use the attached accelerator. The Elastic Inference
enabled PyTorch framework accepts two parameters for this context. The second parameter is
used to specify the accelerator device ordinal. target_device should be set to the device's
ordinal number, not its ID. Ordinals are numbered beginning with 0.

In the script, torch.jit.attach_eia uses PyTorch’s freeze module API, so the returned
model has no attributes from the original model except for the forward method.
torch.jit.attach_eia also allocates resources on the accelerator for every model it
returns. This is why it should be called minimally. For example, avoid calling it in for loops.
There are only some rare circumstances where you might need to re-attach the Elastic
Inference device. For example, if you change any attributes in the original model object, you
will need to re-attach the Elastic Inference device using torch.jit.attach_eia.

Note

This script specifies the CPU device when loading the model. This avoids potential
problems if the model was traced and saved using a GPU context.

import torch, torcheia, torchvision
import PIL
from torchvision import transforms
from PIL import Image

def get_image(filename):
 im = Image.open(filename)
 # ImageNet pretrained models required input images to have width/height of 224
 # and color channels normalized according to ImageNet distribution.
 im_process = transforms.Compose([transforms.Resize([224, 224]),
 transforms.ToTensor(),
 transforms.Normalize(mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])])
 im = im_process(im) # 3 x 224 x 224

PyTorch Elastic Inference with Python 103

https://github.com/pytorch/pytorch/blob/v1.5.1/torch/csrc/jit/passes/freeze_module.h

Amazon Elastic Inference Developer Guide

 return im.unsqueeze(0) # Add dimension to become 1 x 3 x 224 x 224

im = get_image('kitten.jpg')

eval() toggles inference mode
model = torchvision.models.resnet50(pretrained=True).eval()

Convert model to torchscript
model = torch.jit.script(model)

Serialize model
torch.jit.save(model, 'resnet50_traced.pt')

Deserialize model
model = torch.jit.load('resnet50_traced.pt', map_location=torch.device('cpu'))

Disable profiling executor. This is required for Elastic inference.
torch._C._jit_set_profiling_executor(False)

Attach Accelerator using device ordinal
eia_model = torcheia.jit.attach_eia(model, 0)

Perform inference. Make sure to disable autograd.
with torch.no_grad():
 with torch.jit.optimized_execution(True):
 probs = eia_model.forward(im)

Torchvision implementation doesn't have Softmax as last layer.
Use Softmax to convert activations to range 0-1 (probabilities)
probs = torch.nn.Softmax(dim=1)(probs)

Get top 5 predicted classes
classes = eval(open('imagenet_classes.txt').read())
pred_probs, pred_indices = torch.topk(probs, 5)
pred_probs = pred_probs.squeeze().numpy()
pred_indices = pred_indices.squeeze().numpy()

for i in range(len(pred_indices)):
 curr_class = classes[pred_indices[i]]
 curr_prob = pred_probs[i]
 print('{}: {:.4f}'.format(curr_class, curr_prob))

PyTorch Elastic Inference with Python 104

Amazon Elastic Inference Developer Guide

Note

For any PyTorch version, you don’t have to save and load your model. You can compile
your model, then directly do inference with it. The benefit to saving your model is that
it will save time for future inference jobs.

5. Run the inference script.

python pytorch_resnet50_inference.py

Your output should be similar to the following. The model predicts that the image is most
likely to be a tabby cat, followed by a tiger cat.

Using Amazon Elastic Inference Client Library Version: 1.6.2
Number of Elastic Inference Accelerators Available: 1
Elastic Inference Accelerator ID: eia-53ab0670550948e88d7aac0bd331a583
Elastic Inference Accelerator Type: eia2.medium
Elastic Inference Accelerator Ordinal: 0

tabby, tabby cat: 0.4674
tiger cat: 0.4526
Egyptian cat: 0.0667
plastic bag: 0.0025
lynx, catamount: 0.0007

Monitoring Elastic Inference Accelerators

The following tools are provided to monitor and check the status of your Elastic Inference
accelerators.

EI_VISIBLE_DEVICES

EI_VISIBLE_DEVICES is an environment variable that you use to control which Elastic Inference
accelerator devices are visible to the deep learning frameworks. EI_VISIBLE_DEVICES can also
be used with EI Tool. The variable is a comma-separated list of device ordinal numbers or device
IDs. Use EI Tool to see all attached Elastic Inference accelerator devices.

Monitoring Elastic Inference Accelerators 105

Amazon Elastic Inference Developer Guide

EI_VISIBLE_DEVICES is used as follows. In this example, only the device with the ordinal number
value 3 will be used when starting the server.

EI_VISIBLE_DEVICES=3 amazonei_tensorflow_model_server --port=8502 --rest_api_port=8503
 --model_name=ssdresnet --model_base_path=/home/ec2-user/models/ssdresnet

If EI_VISIBLE_DEVICES is not set, then all attached devices are visible. If EI_VISIBLE_DEVICES
is set to an empty string, then none of the devices are visible.

Using EI_VISIBLE_DEVICES with Multiple Devices

To pass multiple devices with EI_VISIBLE_DEVICES, use a comma-separated list. This list can
contain device ordinal numbers or device IDs. The following command shows the use of multiple
devices with EI Tool:

EI_VISIBLE_DEVICES=1,3 /opt/amazon/ei/ei_tools/bin/ei describe-accelerators -j

When using multiple Elastic Inference accelerators with EI_VISIBLE_DEVICES, the devices visible
to the framework take on new ordinal numbers within the process. They will be labeled within
the process starting from zero. This change only happens within the process. It does not have
any impact on the ordinal numbers of the devices outside of the process. It also does not impact
devices that are not included in EI_VISIBLE_DEVICES.

Exporting EI_VISIBLE_DEVICES

To set the EI_VISIBLE_DEVICES variable for use with all child processes of the current shell
process, use the following command:

export EI_VISIBLE_DEVICES=1,3

All subsequently launched processes use this value. You must override or update the
EI_VISIBLE_DEVICES value to change this behavior.

EI Tool

The EI Tool is a binary that comes with the latest version, v26.0, of the Conda DLAMI. You can
also download it from the Amazon S3 Bucket. It can be used to monitor the status of multiple
Elastic Inference accelerators.

EI Tool 106

https://amazonei-tools.s3.amazonaws.com/v1.5.3/ei_tools_1.5.3.tar.gz

Amazon Elastic Inference Developer Guide

By default, running EI Tool as follows prints basic information about the Elastic Inference
accelerators attached to the Amazon Elastic Compute Cloud instance.

ubuntu@ip-10-0-0-98:/opt/amazon/ei/ei_tools/bin$./ei describe-accelerators
EI Client Version: 1.5.0Time: Fri Nov 1 03:09:15 2019
Attached accelerators: 2
Device 0:
 Type: eia1.xlarge
 Id: eia-679e4c622d584803aed5b42ab6a97706
 Status: healthy
Device 1:
 Type: eia1.xlarge
 Id: eia-6c414c6ee37a4d93874afc00825c2f28
 Status: healthy

The following topic describes options for using EI Tool from the command line.

Getting Help

There are two ways to get help when using EI Tool. The following are the two methods for
accessing help.

• The EI Tool will output usage information if a command is not provided.

ubuntu@ip-10-0-0-98:/opt/amazon/ei/ei_tools/bin$./ei
Usage: ei describe-accelerators [options]
Print description of attached accelerators.
Options:
-j, --json Print description of attached accelerators in JSON format.
-h, --help Print this help instructions and exit.
ubuntu@ip-10-0-0-98:~/ei_tools/bin$ echo $?
1

• You can use the -h and —help switches to output the same information.

ubuntu@ip-10-0-0-98:/opt/amazon/ei/ei_tools/bin$./ei describe-accelerators -h
Usage: ei describe-accelerators [options]
Print description of attached accelerators.
Options:
-j, --json Print description of attached accelerators in JSON format.
-h, --help Print this help instructions and exit.

EI Tool 107

Amazon Elastic Inference Developer Guide

ubuntu@ip-10-0-0-98:/opt/amazon/ei/ei_tools/bin$./ei describe-accelerators --help
Usage: ei describe-accelerators [options]
Print description of attached accelerators.
Options:
-j, --json Print description of attached accelerators in JSON format.
-h, --help Print this help instructions and exit.

JSON

The EI Tool supports JSON output when describing attached Elastic Inference accelerators. The -
j/--json switches can be used to print the accelerator state description as a JSON object.

ubuntu@ip-10-0-0-98:/opt/amazon/ei/ei_tools/bin$./ei describe-accelerators -j
{
 "ei_client_version": "1.5.0",
 "time": "Fri Nov 1 03:09:38 2019",
 "attached_accelerators": 2,
 "devices": [
 {
 "ordinal": 0,
 "type": "eia1.xlarge",
 "id": "eia-679e4c622d584803aed5b42ab6a97706",
 "status": "healthy"
 },
 {
 "ordinal": 1,
 "type": "eia1.xlarge",
 "id": "eia-6c414c6ee37a4d93874afc00825c2f28",
 "status": "healthy"
 }
]
}

ubuntu@ip-10-0-0-98:/opt/amazon/ei/ei_tools/bin$./ei describe-accelerators --json
{
 "ei_client_version": "1.5.0",
 "time": "Fri Nov 1 03:10:15 2019",
 "attached_accelerators": 2,
 "devices": [
 {

EI Tool 108

Amazon Elastic Inference Developer Guide

 "ordinal": 0,
 "type": "eia1.xlarge",
 "id": "eia-679e4c622d584803aed5b42ab6a97706",
 "status": "healthy"
 },
 {
 "ordinal": 1,
 "type": "eia1.xlarge",
 "id": "eia-6c414c6ee37a4d93874afc00825c2f28",
 "status": "healthy"
 }
]
}

Errors

Errors encountered when running EI Tool are output to stderr. The following illustrates an
error encountered due to blocked outgoing traffic.

ubuntu@ip-10-0-0-98:/opt/amazon/ei/ei_tools/bin$./ei describe-accelerators
[Fri Nov 1 03:20:29 2019, 046923us] [Connect] Failed. Error message - Last Error:
 EI Error Code: [1, 4, 1]
 EI Error Description: Internal error
 EI Request ID: MX-EFBD3C87-6E8E-4E99-
A855-949CB2A24E7F -- EI Accelerator ID: eia-679e4c622d584803aed5b42ab6a97706
 EI Client Version: 1.5.0
[Fri Nov 1 03:20:44 2019, 055905us] [Connect] Failed. Error message - Last Error:
 EI Error Code: [1, 4, 1]
 EI Error Description: Internal error
 EI Request ID: MX-BD40C53D-6BBC-49A8-
AF6D-27FF542DA38A -- EI Accelerator ID: eia-6c414c6ee37a4d93874afc00825c2f28
 EI Client Version: 1.5.0
EI Client Version: 1.5.0Time: Fri Nov 1 03:20:44 2019
Attached accelerators: 2
Device 0:
 Type: eia1.xlarge
 Id: eia-679e4c622d584803aed5b42ab6a97706
 Status: not reachable
Device 1:
 Type: eia1.xlarge
 Id: eia-6c414c6ee37a4d93874afc00825c2f28
 Status: not reachable

EI Tool 109

Amazon Elastic Inference Developer Guide

ubuntu@ip-10-0-0-98:~/ei_tools/bin$ echo $?
0

It’s important to note that a JSON object is also output when the -j/--json switches are set.
Even though errors encountered when running EI Tool are output to stderr, the stdout can
still be parsed as a JSON object.

ubuntu@ip-10-0-0-98:/opt/amazon/ei/ei_tools/bin$./ei describe-accelerators -j
E1101 03:54:54.084712 25091 log_stream.cpp:232] [Connect] Failed. Error message - Last Error:
 EI Error Code: [1, 4, 1]
 EI Error Description: Internal error

 EI Request ID: MX-192D16B1-65CD-43AA-9CA8-0D717D134C0E -- EI Accelerator ID: eia-679e4c622d584803aed5b42ab6a97706
 EI Client Version: 1.5.0
E1101 03:55:09.096704 25091 log_stream.cpp:232] [Connect] Failed. Error message - Last Error:
 EI Error Code: [1, 4, 1]
 EI Error Description: Internal error
 EI Request ID: MX-A4C4C90E-FC13-4D58-
AA4F-54382222E8D7 -- EI Accelerator ID: eia-6c414c6ee37a4d93874afc00825c2f28
 EI Client Version: 1.5.0
{
 "ei_client_version": "1.5.0",
 "time": "Fri Nov 1 03:55:09 2019",
 "attached_accelerators": 2,
 "devices": [
 {
 "ordinal": 0,
 "type": "eia1.xlarge",
 "id": "eia-679e4c622d584803aed5b42ab6a97706",
 "status": "not reachable"
 },
 {
 "ordinal": 1,
 "type": "eia1.xlarge",
 "id": "eia-6c414c6ee37a4d93874afc00825c2f28",
 "status": "not reachable"
 }
]
}

EI Tool 110

Amazon Elastic Inference Developer Guide

Using EI Tool with LD_LIBRARY_PATH

If there has been a change to your local LD_LIBRARY_PATH variable, you may have to modify your
use of EI_Tool. Include the following LD_LIBRARY_PATH value when using EI_Tool:

LD_LIBRARY_PATH=/opt/amazon/ei/ei_tools/lib

The following example uses this value with a single Elastic Inference accelerator:

EI_VISIBLE_DEVICES=1 LD_LIBRARY_PATH=/opt/amazon/ei/ei_tools/lib /opt/amazon/ei/
ei_tools/bin/ei describe-accelerators -j
{
 "ei_client_version": "1.5.3",
 "time": "Tue Nov 19 16:57:21 2019",
 "attached_accelerators": 1,
 "devices": [
 {
 "ordinal": 0,
 "type": "eia1.xlarge",
 "id": "eia-7f127e2640e642d48a7d4673a57581be",
 "status": "healthy"
 }
]
}

Health Check

You can use Health Check to monitor the health of your Elastic Inference accelerators. The exit
code of the Health Check command is 0 if all accelerators are healthy and reachable. If they are
not, then the exit code is 1.

ubuntu@ip-10-0-0-98:/opt/amazon/ei/ei_tools/bin$./health_check
EI Client Version: 1.5.0
Device 0: healthy
Device 1: healthy
ubuntu@ip-10-0-0-98:/opt/amazon/ei/ei_tools/bin$ echo $?
0

The following illustrates an error due to blocked traffic received when running Health Check.

Health Check 111

Amazon Elastic Inference Developer Guide

ubuntu@ip-10-0-0-98:/opt/amazon/ei/ei_tools/bin$./health_check
[Fri Nov 1 07:00:47 2019, 134735us] [Connect] Failed. Error message - Last Error:
 EI Error Code: [1, 4, 1]
 EI Error Description: Internal error
 EI Request ID: MX-
A0558121-49D8-48DB-8CCB-9322D78BFCA5 -- EI Accelerator ID: eia-679e4c622d584803aed5b42ab6a97706
 EI Client Version: 1.5.0
Device 0: not reachable
[Fri Nov 1 07:01:02 2019, 143732us] [Connect] Failed. Error message - Last Error:
 EI Error Code: [1, 4, 1]
 EI Error Description: Internal error
 EI Request ID: MX-AC879033-FB46-46EE-B2B6-A76F5E674E0D
 -- EI Accelerator ID: eia-6c414c6ee37a4d93874afc00825c2f28
 EI Client Version: 1.5.0
Device 1: not reachable
ubuntu@ip-10-0-0-98:/opt/amazon/ei/ei_tools/bin$ echo $?
1

MXNet Elastic Inference with SageMaker

By using Amazon Elastic Inference, you can speed up the throughput and decrease the latency
of getting real-time inferences from your deep learning models that are deployed as Amazon
SageMaker hosted models, but at a fraction of the cost of using a GPU instance for your endpoint.

For more information, see the Amazon SageMaker Elastic Inference Documentation

MXNet Elastic Inference with SageMaker 112

https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-hosting.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-hosting.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html

Amazon Elastic Inference Developer Guide

Using Amazon Deep Learning Containers With Elastic
Inference

Amazon Deep Learning Containers with Amazon Elastic Inference (Elastic Inference) are a set of
Docker images for serving models in TensorFlow, Apache MXNet (MXNet), and PyTorch. Deep
Learning Containers can include a wide variety of options for deep learning. These containers are
only available for inference jobs and should not be used for training. See Deep Learning Containers
Images for training images. For community discussion, see the Deep Learning Containers
Discussion Forum

You can use Deep Learning Containers with Elastic Inference on Amazon Elastic Compute Cloud
(Amazon EC2) and Amazon Elastic Container Service (Amazon ECS).

Topics

• Using Amazon Deep Learning Containers with Amazon Elastic Inference on Amazon EC2

• Using Deep Learning Containers with Amazon Deep Learning Containers on Amazon ECS

• Using Amazon Deep Learning Containers with Elastic Inference on Amazon SageMaker

Using Amazon Deep Learning Containers with Amazon Elastic
Inference on Amazon EC2

Amazon Deep Learning Containers with Amazon Elastic Inference (Elastic Inference) are a set of
Docker images for serving models in TensorFlow, Apache MXNet (MXNet), and PyTorch on Amazon
Elastic Compute Cloud (Amazon EC2). Deep Learning Containers provide optimized environments
with TensorFlow, MXNet, and PyTorch. They are available in the Amazon Elastic Container Registry
(Amazon ECR).

These tutorials describe how to use Deep Learning Containers with Elastic Inference on Amazon
Elastic Compute Cloud (Amazon EC2).

Topics

• Prerequisites

• Using TensorFlow Elastic Inference accelerators on EC2

• Using MXNet Elastic Inference accelerators on Amazon EC2

Using Amazon Deep Learning Containers with Amazon Elastic Inference on Amazon EC2 113

https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-images.html
https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-images.html
https://forums.aws.amazon.com/forum.jspa?forumID=341
https://forums.aws.amazon.com/forum.jspa?forumID=341

Amazon Elastic Inference Developer Guide

• Using PyTorch Elastic Inference accelerators on Amazon EC2

Prerequisites

Before you start this tutorial, set up the following resources in the AWS Management Console.

1. Create an AWS Identity and Access Management (IAM) user and attach the following policies:

• AmazonECS_FullAccess Policy

• AmazonEC2ContainerRegistryFullAccess

2. Follow the instructions for Setting Up EI with the following modification:

Create a security group (use the default VPC, or create a VPC with an internet gateway) and
open the ports necessary for your desired inference server:

• All frameworks require: 22 for SSH and 443 for HTTPS

• TensorFlow inference: 8500 and 8501 open to TCP traffic

• MXNet and PyTorch inference: 80 and 8081 open to TCP traffic

3. Launch an Amazon EC2 instance with the Elastic Inference role using the AWS Deep Learning
Base Amazon Machine Image (AMI). Because you need only the AWS Command Line Interface
(AWS CLI) and Docker, this is the best AMI.

4. SSH into the Amazon EC2 instance.

5. On the instance, run the following commands using the keys associated with the user created
in Step1. Confirm that Elastic Inference is available in your region.

aws configure set aws_access_key_id <access_key_id>

aws configure set aws_secret_access_key <secret_access_key>

aws configure set region <region>

aws ecr get-login-password --region us-east-1 | docker login --username AWS --
password-stdin 763104351884.dkr.ecr.us-east-1.amazonaws.com

Prerequisites 114

https://console.aws.amazon.com/iam/home?region=us-east-1#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAmazonECS_FullAccess
https://console.aws.amazon.com/iam/home?region=us-east-1#/policies/arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryFullAccess
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/setting-up-ei.html

Amazon Elastic Inference Developer Guide

Using TensorFlow Elastic Inference accelerators on EC2

When using Elastic Inference, you can use the same Amazon EC2 instance for models on two
different frameworks. To do so, use the console to stop the Amazon EC2 instance and restart it,
instead of rebooting it. The Elastic Inference accelerator doesn't detach when you reboot the
instance.

To use the Elastic Inference accelerator with TensorFlow

1. From the command line of your Amazon EC2 instance, pull the TF-EI image from Amazon
Elastic Container Registry (Amazon ECR) with the following code. To select an image, see Deep
Learning Containers Images.

docker pull 763104351884.dkr.ecr.<region>.amazonaws.com/tensorflow-inference-
eia:<image_tag>

2. Clone the GitHub Tensorflow repository for serving the half_plus_three model.

https://github.com/tensorflow/serving.git

3. Run the container with entry point for TF-half-plus-three. You can get the <image_id> by
running the docker images command.

docker run -p 8500:8500 -p 8501:8501 --name tensorflow-inference \
 --mount type=bind,source=$(pwd)/serving/tensorflow_serving/
servables/tensorflow/testdata/saved_model_half_plus_three,target=/models/
saved_model_half_plus_three \
 -e MODEL_NAME=saved_model_half_plus_three -d <image_id>

4. Begin inference on the same instance using a query with the REST API.

curl -d '{"instances": [1.0, 2.0, 5.0]}' -X POST http://127.0.0.1:8501/v1/models/
saved_model_half_plus_three:predict

5. Optionally, query from another Amazon EC2 instance. Make sure that the 8500 and 8501 ports
are exposed in the security group.

curl -d '{"instances": [1.0, 2.0, 5.0]}' -X POST http://
<ec2_public_ip_address>:8501/v1/models/saved_model_half_plus_three:predict

6. The results should look something like the following.

Using TensorFlow Elastic Inference accelerators on EC2 115

https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-images.html
https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-images.html
https://github.com/tensorflow/

Amazon Elastic Inference Developer Guide

{
 "predictions": [2.5, 3.0, 4.5
]
}

Using MXNet Elastic Inference accelerators on Amazon EC2

When using Elastic Inference, you can use the same Amazon EC2 instance for models on two
different frameworks. To do so, use the console to top the Amazon EC2 instance and restart it,
instead of rebooting it. The Elastic Inference accelerator doesn't detach when you reboot the
instance.

To use the Elastic Inference accelerator with MXNet

1. Pull the MXNet-Elastic Inference image from Amazon Elastic Container Registry (Amazon ECR).
To select an image, see Deep Learning Containers Images.

docker pull 763104351884.dkr.ecr.<region>.amazonaws.com/mxnet-inference-
eia:<image_tag>

2. Run the container with the following command. You can get the <image_id> by running the
docker images command.

docker run -itd --name mxnet_inference -p 80:8080 -p 8081:8081 <image_id> \
 mxnet-model-server --start --foreground \
 --mms-config /home/model-server/config.properties \
 --models resnet-152-eia=https://s3.amazonaws.com/model-server/
model_archive_1.0/resnet-152-eia.mar

3. Download the input image for the test.

curl -O https://s3.amazonaws.com/model-server/inputs/kitten.jpg

4. Begin inference using a query with the REST API.

curl -X POST http://127.0.0.1:80/predictions/resnet-152-eia -T kitten.jpg

5. The results should look something like the following.

Using MXNet Elastic Inference accelerators on Amazon EC2 116

https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-images.html

Amazon Elastic Inference Developer Guide

[
 {
 "probability": 0.8582226634025574,
 "class": "n02124075 Egyptian cat"
 },
 {
 "probability": 0.09160050004720688,
 "class": "n02123045 tabby, tabby cat"
 },
 {
 "probability": 0.037487514317035675,
 "class": "n02123159 tiger cat"
 },
 {
 "probability": 0.0061649843119084835,
 "class": "n02128385 leopard, Panthera pardus"
 },
 {
 "probability": 0.003171598305925727,
 "class": "n02127052 lynx, catamount"
 }
]

Using PyTorch Elastic Inference accelerators on Amazon EC2

When using Elastic Inference, you can use the same Amazon EC2 instance for models on multiple
frameworks. To do so, use the console to stop the Amazon EC2 instance and restart it, instead of
rebooting it. The Elastic Inference accelerator doesn't detach when you reboot the instance.

To use the Elastic Inference accelerators with PyTorch

1. From the terminal of your Amazon EC2 instance, pull the Elastic Inference enabled PyTorch
image from Amazon Elastic Container Registry (Amazon ECR) with the following code. To
select an image, see Deep Learning Containers Images.

docker pull 763104351884.dkr.ecr.<region>.amazonaws.com/pytorch-inference-
eia:<image_tag>

2. Run the container with the following command. You can get the <image_id> by running the
docker images command.

Using PyTorch Elastic Inference accelerators on Amazon EC2 117

https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-images.html

Amazon Elastic Inference Developer Guide

• For PyTorch 1.5.1 with Elastic Inference:

docker run -itd --name pytorch_inference_eia -p 80:8080 -p 8081:8081 <image_id> \
 mxnet-model-server --start --foreground \
 --mms-config /home/model-server/config.properties \
 --models densenet-eia=https://aws-dlc-sample-models.s3.amazonaws.com/
pytorch/densenet_eia/densenet_eia_v1_5_1.mar

• For PyTorch 1.3.1 with Elastic Inference:

docker run -itd --name pytorch_inference_eia -p 80:8080 -p 8081:8081 <image_id> \
 mxnet-model-server --start --foreground \
 --mms-config /home/model-server/config.properties \
 --models densenet-eia=https://aws-dlc-sample-models.s3.amazonaws.com/
pytorch/densenet_eia/densenet_eia_v1_3_1.mar

3. Download an image of a flower to use as the input image for the test.

curl -O https://s3.amazonaws.com/model-server/inputs/flower.jpg

4. Begin inference using a query with the REST API.

curl -X POST http://127.0.0.1:80/predictions/densenet-eia -T flower.jpg

5. The results should look something like the following.

[
 [
 "pot, flowerpot",
 14.690367698669434
],
 [
 "sulphur butterfly, sulfur butterfly",
 9.29893970489502
],
 [
 "bee",
 8.29178237915039
],
 [
 "vase",
 6.987090587615967

Using PyTorch Elastic Inference accelerators on Amazon EC2 118

Amazon Elastic Inference Developer Guide

],
 [
 "hummingbird",
 4.341294765472412
]
]

Using Deep Learning Containers with Amazon Deep Learning
Containers on Amazon ECS

Amazon Deep Learning Containers are a set of Docker images for training and serving models in
TensorFlow, Apache MXNet (MXNet), and PyTorch on Amazon Elastic Container Service (Amazon
ECS). Deep Learning Containers provide optimized environments with TensorFlow, MXNet, and
PyTorch. They are available in Amazon Elastic Container Registry (Amazon ECR).

This tutorial describes how to use Deep Learning Containers with Elastic Inference on Amazon ECS.

Topics

• Prerequisites

• Using TensorFlow Elastic Inference accelerators on Amazon ECS

• Using MXNet Elastic Inference accelerators on Amazon ECS

• Using PyTorch Elastic Inference accelerators on Amazon ECS

Prerequisites

Your Amazon ECS container instances require at least version 1.30.0 of the container agent. For
information about checking your agent version and updating to the latest version, see Updating
the Amazon ECS Container Agent.

Resource Setup

To complete the tutorial, set up the following resources in the AWS Console

1. Perform the steps for Setting Up Deep Learning Containers on ECS.

• If you create a VPC and security group, ensure that there is a subnet in an Availability Zone
with Elastic Inference available.

Using Deep Learning Containers with Amazon Deep Learning Containers on Amazon ECS 119

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-update.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-update.html
https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-ecs-setup-prerequisites.html

Amazon Elastic Inference Developer Guide

2. Follow the instructions for Setting Up EI with the following modifications:

Complete all sections except Launching an Instance with Elastic Inference.

Create a security group (use the default VPC, or create a VPC with an internet gateway) and
open the ports necessary for your desired inference server:

• Both frameworks require: 22 for SSH and 443 for HTTPS

• TensorFlow inference: 8500 and 8501 open to TCP traffic

• MXNet and PyTorch inference: 80 and 8081 open to TCP traffic

Add the ec2-role-trust-policy.json IAM policy described in the Elastic Inference setup
instructions to the ecsInstanceRole IAM role.

Using TensorFlow Elastic Inference accelerators on Amazon ECS

To use the Elastic Inference accelerator with TensorFlow

1. Create an Amazon ECS cluster named tensorflow-eia on AWS in an AWS Region that has
access to Elastic Inference.

aws ecs create-cluster --cluster-name tensorflow-eia \
 --region <region>

2. Create a text file called tf_script.txt and add the following text.

#!/bin/bash
echo ECS_CLUSTER=tensorflow-eia >> /etc/ecs/ecs.config

3. Create a text file called my_mapping.txt and add the following text.

[
 {
 "DeviceName": "/dev/xvda",
 "Ebs": {
 "VolumeSize": 100
 }
 }

Using TensorFlow Elastic Inference accelerators on Amazon ECS 120

https://docs.aws.amazon.com/elastic-inference/latest/developerguide/setting-up-ei.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/setting-up-ei.html#eia-launch

Amazon Elastic Inference Developer Guide

]

4. Launch an Amazon EC2 instance in the cluster that you created in Step 1 without attaching an
Elastic Inference accelerator. Use Amazon ECS-optimized AMIs to get an image-id.

aws ec2 run-instances --image-id <ECS_Optimized_AMI> \
 --count 1 \
 --instance-type <cpu_instance_type> \
 --key-name <name_of_key_pair_on_ec2_console>
 --security-group-ids <sg_created_with_vpc> \
 --iam-instance-profile Name="ecsInstanceRole" \
 --user-data file://tf_script.txt \
 --block-device-mapping file://my_mapping.txt \
 --region <region> \
 --subnet-id <subnet_with_ei_endpoint>

5. For all Amazon EC2 instances that you launch, use the ecsInstanceRole IAM role. Make note of
the public IPv4 address when the instance is started.

6. Create a TensorFlow inference task definition with the name tf_task_def.json. Set “image”
to any TensorFlow image name. To select an image, see Prebuilt Amazon SageMaker Docker
Images. For "deviceType" options, see Launching an Instance with Elastic Inference.

{
 "requiresCompatibilities":[
 "EC2"
],
 "containerDefinitions":[
 {
 "entryPoint":[
 "/bin/bash",
 "-c",
 "mkdir -p /test && cd /test && git clone -b r1.14 https://
github.com/tensorflow/serving.git && cd / && /usr/bin/tensorflow_model_server
 --port=8500 --rest_api_port=8501 --model_name=saved_model_half_plus_three --
model_base_path=/test/serving/tensorflow_serving/servables/tensorflow/testdata/
saved_model_half_plus_three"
],
 "name":"tensorflow-inference-container",
 "image":"<tensorflow-image-uri>",
 "memory":8111,
 "cpu":256,
 "essential":true,

Using TensorFlow Elastic Inference accelerators on Amazon ECS 121

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html
https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html
https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/setting-up-ei.html#eia-launch

Amazon Elastic Inference Developer Guide

 "portMappings":[
 {
 "hostPort":8500,
 "protocol":"tcp",
 "containerPort":8500
 },
 {
 "hostPort":8501,
 "protocol":"tcp",
 "containerPort":8501
 },
 {
 "containerPort":80,
 "protocol":"tcp"
 }
],
 "healthCheck":{
 "retries":2,
 "command":[
 "CMD-SHELL",
 "LD_LIBRARY_PATH=/opt/ei_health_check/lib /opt/ei_health_check/
health_check"
],
 "timeout":5,
 "interval":30,
 "startPeriod":60
 },
 "logConfiguration":{
 "logDriver":"awslogs",
 "options":{
 "awslogs-group":"/ecs/tensorflow-inference-eia",
 "awslogs-region":"<region>",
 "awslogs-stream-prefix":"half-plus-three",
 "awslogs-create-group":"true"
 }
 },
 "resourceRequirements":[
 {
 "type":"InferenceAccelerator",
 "value":"device_1"
 }
]
 }
],

Using TensorFlow Elastic Inference accelerators on Amazon ECS 122

Amazon Elastic Inference Developer Guide

 "inferenceAccelerators":[
 {
 "deviceName":"device_1",
 "deviceType":"<EIA_instance_type>"
 }
],
 "volumes":[

],
 "networkMode":"bridge",
 "placementConstraints":[

],
 "family":"tensorflow-eia"
}

7. Register the TensorFlow inference task definition. Note the task definition family and revision
number from the output of the following command.

aws ecs register-task-definition --cli-input-json file://tf_task_def.json --
region <region>

8. Create a TensorFlow inference service.

aws ecs create-service --cluster tensorflow-eia --service-name tf-eia1 --task-
definition tensorflow-eia:<revision_number> --desired-count 1 --scheduling-
strategy="REPLICA" --region <region>

9. Begin inference using a query with the REST API.

curl -d '{"instances": [1.0, 2.0, 5.0]}' -X POST http://<public-ec2-ip-
address>:8501/v1/models/saved_model_half_plus_three:predict

10. The results should look something like the following.

{
 "predictions": [2.5, 3.0, 4.5
]
}

Using TensorFlow Elastic Inference accelerators on Amazon ECS 123

Amazon Elastic Inference Developer Guide

Using MXNet Elastic Inference accelerators on Amazon ECS

To use the Elastic Inference accelerator with MXNet

1. Create an Amazon ECS cluster with named mxnet-eia on AWS in an AWS Region that has
access to Elastic Inference.

aws ecs create-cluster --cluster-name mxnet-eia \
 --region <region>

2. Create a text file called mx_script.txt and add the following text.

#!/bin/bash
echo ECS_CLUSTER=mxnet-eia >> /etc/ecs/ecs.config

3. Create a text file called my_mapping.txt and add the following text.

[
 {
 "DeviceName": "/dev/xvda",
 "Ebs": {
 "VolumeSize": 100
 }
 }
]

4. Launch an Amazon EC2 instance in the cluster that you created in Step 1 without attaching an
Elastic Inference accelerator. To select an AMI, see Amazon ECS-optimized AMIs.

aws ec2 run-instances --image-id <ECS_Optimized_AMI> \
 --count 1 \
 --instance-type <cpu_instance_type> \
 --key-name <name_of_key_pair_on_ec2_console>
 --security-group-ids <sg_created_with_vpc> \
 --iam-instance-profile Name="ecsInstanceRole" \
 --user-data file://mx_script.txt \
 --block-device-mapping file://my_mapping.txt \
 --region <region> \
 --subnet-id <subnet_with_ei_endpoint>

Using MXNet Elastic Inference accelerators on Amazon ECS 124

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html

Amazon Elastic Inference Developer Guide

5. Create an MXNet inference task definition named mx_task_def.json. Set “image” to any
MXNet image name. To select an image, see Prebuilt Amazon SageMaker Docker Images. For
"deviceType" options, see Launching an Instance with Elastic Inference.

{
 "requiresCompatibilities":[
 "EC2"
],
 "containerDefinitions":[
 {
 "entryPoint":[
 "/bin/bash",
 "-c",
 "/usr/local/bin/mxnet-model-server --start --foreground --mms-
config /home/model-server/config.properties --models resnet-152-eia=https://
s3.amazonaws.com/model-server/model_archive_1.0/resnet-152-eia.mar"],
 "name":"mxnet-inference-container",
 "image":"<mxnet-image-name>",
 "memory":8111,
 "cpu":256,
 "essential":true,
 "portMappings":[
 {
 "hostPort":80,
 "protocol":"tcp",
 "containerPort":8080
 },
 {
 "hostPort":8081,
 "protocol":"tcp",
 "containerPort":8081
 }
],
 "healthCheck":{
 "retries":2,
 "command":[
 "CMD-SHELL",
 "LD_LIBRARY_PATH=/opt/ei_health_check/lib /opt/ei_health_check/bin/
health_check"
],
 "timeout":5,
 "interval":30,
 "startPeriod":60

Using MXNet Elastic Inference accelerators on Amazon ECS 125

https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/setting-up-ei.html#eia-launch

Amazon Elastic Inference Developer Guide

 },
 "logConfiguration":{
 "logDriver":"awslogs",
 "options":{
 "awslogs-group":"/ecs/mxnet-inference-eia",
 "awslogs-region":"<region>",
 "awslogs-stream-prefix":"squeezenet",
 "awslogs-create-group":"true"
 }
 },
 "resourceRequirements":[
 {
 "type":"InferenceAccelerator",
 "value":"device_1"
 }
]
 }
],
 "inferenceAccelerators":[
 {
 "deviceName":"device_1",
 "deviceType":"<EIA_instance_type>"
 }
],
 "volumes":[

],
 "networkMode":"bridge",
 "placementConstraints":[

],
 "family":"mxnet-eia"
}

6. Register the MXNet inference task definition. Note the task definition family and revision
number in the output.

aws ecs register-task-definition --cli-input-json file://mx_task_def.json --
region <region>

7. Create an MXNet inference service.

Using MXNet Elastic Inference accelerators on Amazon ECS 126

Amazon Elastic Inference Developer Guide

aws ecs create-service --cluster mxnet-eia --service-name mx-eia1 --task-definition
 mxnet-eia:<revision_number> --desired-count 1 --scheduling-strategy="REPLICA" --
region <region>

8. Download the input image for the test.

curl -O https://s3.amazonaws.com/model-server/inputs/kitten.jpg

9. Begin inference using a query with the REST API.

curl -X POST http://<ec2_public_ip_address>:80/predictions/resnet-152-eia -T
 kitten.jpg

10. The results should look something like the following.

[
 {
 "probability": 0.8582226634025574,
 "class": "n02124075 Egyptian cat"
 },
 {
 "probability": 0.09160050004720688,
 "class": "n02123045 tabby, tabby cat"
 },
 {
 "probability": 0.037487514317035675,
 "class": "n02123159 tiger cat"
 },
 {
 "probability": 0.0061649843119084835,
 "class": "n02128385 leopard, Panthera pardus"
 },
 {
 "probability": 0.003171598305925727,
 "class": "n02127052 lynx, catamount"
 }
]

Using MXNet Elastic Inference accelerators on Amazon ECS 127

Amazon Elastic Inference Developer Guide

Using PyTorch Elastic Inference accelerators on Amazon ECS

To use Elastic Inference accelerators with PyTorch

1. From your terminal, create an Amazon ECS cluster named pytorch-eia on AWS in an AWS
Region that has access to Elastic Inference.

aws ecs create-cluster --cluster-name pytorch-eia \
 --region <region>

2. Create a text file called pt_script.txt and add the following text.

#!/bin/bash
echo ECS_CLUSTER=pytorch-eia >> /etc/ecs/ecs.config

3. Create a text file called my_mapping.txt and add the following text.

[
 {
 "DeviceName": "/dev/xvda",
 "Ebs": {
 "VolumeSize": 100
 }
 }
]

4. Launch an Amazon EC2 instance in the cluster that you created in Step 1 without attaching an
Elastic Inference accelerator. To select an AMI, see Amazon ECS-optimized AMIs.

aws ec2 run-instances --image-id <ECS_Optimized_AMI> \
 --count 1 \
 --instance-type <cpu_instance_type> \
 --key-name <name_of_key_pair_on_ec2_console>
 --security-group-ids <sg_created_with_vpc> \
 --iam-instance-profile Name="ecsInstanceRole" \
 --user-data file://pt_script.txt \
 --block-device-mapping file://my_mapping.txt \
 --region <region> \
 --subnet-id <subnet_with_ei_endpoint>

Using PyTorch Elastic Inference accelerators on Amazon ECS 128

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html

Amazon Elastic Inference Developer Guide

5. Create a PyTorch inference task definition named pt_task_def.json. Set “image” to any
PyTorch image name. To select an image, see Prebuilt Amazon SageMaker Docker Images. For
"deviceType" options, see Launching an Instance with Elastic Inference.

{
 "requiresCompatibilities":[
 "EC2"
],
 "containerDefinitions":[
 {
 "entryPoint":[
 "/bin/bash",
 "-c",
 "mxnet-model-server --start --foreground --mms-config /home/
model-server/config.properties --models densenet-eia=https://aws-dlc-sample-
models.s3.amazonaws.com/pytorch/densenet_eia/densenet_eia.mar"],
 "name":"pytorch-inference-container",
 "image":"<pytorch-image-name>",
 "memory":8111,
 "cpu":256,
 "essential":true,
 "portMappings":[
 {
 "hostPort":80,
 "protocol":"tcp",
 "containerPort":8080
 },
 {
 "hostPort":8081,
 "protocol":"tcp",
 "containerPort":8081
 }
],
 "healthCheck":{
 "retries":2,
 "command":[
 "CMD-SHELL",
 "LD_LIBRARY_PATH=/opt/ei_health_check/lib /opt/ei_health_check/bin/
health_check"
],
 "timeout":5,
 "interval":30,
 "startPeriod":60

Using PyTorch Elastic Inference accelerators on Amazon ECS 129

https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/setting-up-ei.html#eia-launch

Amazon Elastic Inference Developer Guide

 },
 "logConfiguration":{
 "logDriver":"awslogs",
 "options":{
 "awslogs-group":"/ecs/pytorch-inference-eia",
 "awslogs-region":"<region>",
 "awslogs-stream-prefix":"densenet-eia",
 "awslogs-create-group":"true"
 }
 },
 "resourceRequirements":[
 {
 "type":"InferenceAccelerator",
 "value":"device_1"
 }
]
 }
],
 "inferenceAccelerators":[
 {
 "deviceName":"device_1",
 "deviceType":"<EIA_instance_type>"
 }
],
 "volumes":[

],
 "networkMode":"bridge",
 "placementConstraints":[

],
 "family":"pytorch-eia"
}

6. Register the PyTorch inference task definition. Note the task definition family and revision
number in the output.

aws ecs register-task-definition --cli-input-json file://pt_task_def.json --
region <region>

7. Create a PyTorch inference service.

Using PyTorch Elastic Inference accelerators on Amazon ECS 130

Amazon Elastic Inference Developer Guide

aws ecs create-service --cluster pytorch-eia --service-name pt-eia1 --task-
definition pytorch-eia:<revision_number> --desired-count 1 --scheduling-
strategy="REPLICA" --region <region>

8. Download the input image for the test.

curl -O https://s3.amazonaws.com/model-server/inputs/flower.jpg

9. Begin inference using a query with the REST API.

curl -X POST http://<ec2_public_ip_address>:80/predictions/densenet-eia -T
 flower.jpg

10. The results should look something like the following.

[
 [
 "pot, flowerpot",
 14.690367698669434
],
 [
 "sulphur butterfly, sulfur butterfly",
 9.29893970489502
],
 [
 "bee",
 8.29178237915039
],
 [
 "vase",
 6.987090587615967
],
 [
 "hummingbird",
 4.341294765472412
]
]

Using PyTorch Elastic Inference accelerators on Amazon ECS 131

Amazon Elastic Inference Developer Guide

Using Amazon Deep Learning Containers with Elastic Inference
on Amazon SageMaker

Amazon Deep Learning Containers with Elastic Inference are a set of Docker images for serving
models in TensorFlow, Apache MXNet (MXNet), and PyTorch on Amazon SageMaker. Deep Learning
Containers provide optimized environments with TensorFlow, MXNet, and PyTorch. They are
available in the Amazon Elastic Container Registry (Amazon ECR).

For more information, see Amazon SageMaker Elastic Inference.

Using Amazon Deep Learning Containers with Elastic Inference on Amazon SageMaker 132

https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html

Amazon Elastic Inference Developer Guide

Security in Amazon Elastic Inference

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Elastic Inference,
see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Elastic Inference. The following topics show you how to configure Elastic Inference to meet
your security and compliance objectives. You also learn how to use other AWS services that help
you to monitor and secure your Elastic Inference resources.

Topics

• Identity and Access Management for Amazon Elastic Inference

• Logging and Monitoring in Amazon Elastic Inference

• Compliance Validation for Amazon Elastic Inference

• Resilience in Amazon Elastic Inference

• Infrastructure Security in Amazon Elastic Inference

• Configuration and Vulnerability Analysis in Amazon Elastic Inference

Identity and Access Management for Amazon Elastic Inference

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)

Identity and Access Management 133

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Elastic Inference Developer Guide

and authorized (have permissions) to use resources. IAM is an AWS service that you can use with no
additional charge.

Your Identity and Access Management options may vary depending on what your Elastic Inference
accelerator is attached to. For more information on Identity and Access Management, see:

• Identity and Access Management for Amazon EC2

• Identity and Access Management for Amazon Elastic Container Service

• Identity and Access Management for Amazon SageMaker

Topics

• Authenticating With Identities

• Managing Access Using Policies

Authenticating With Identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication

Authenticating With Identities 134

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-iam.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html

Amazon Elastic Inference Developer Guide

(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

IAM Users and Groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM Roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

Authenticating With Identities 135

https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html

Amazon Elastic Inference Developer Guide

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked

Authenticating With Identities 136

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Elastic Inference Developer Guide

roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing Access Using Policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-Based Policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can

Managing Access Using Policies 137

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Elastic Inference Developer Guide

perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-Based Policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access Control Lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other Policy Types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user

Managing Access Using Policies 138

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

Amazon Elastic Inference Developer Guide

or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple Policy Types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

Logging and Monitoring in Amazon Elastic Inference

Your Amazon Elastic Inference instance comes with tools to monitor the health and status of your
accelerators. You can also monitor your Elastic Inference accelerators using Amazon CloudWatch,
which collects metrics about your usage and performance. For more information, see Monitoring
Elastic Inference Accelerators and Using CloudWatch Metrics to Monitor Elastic Inference.

Compliance Validation for Amazon Elastic Inference

Third-party auditors assess the security and compliance of Amazon Elastic Inference as part of
multiple AWS compliance programs. The supported compliance programs may vary depending

Logging and Monitoring 139

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-monitoring.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-monitoring.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-cloudwatch-metrics.html

Amazon Elastic Inference Developer Guide

on what your Elastic Inference accelerator is attached to. For information on the supported
compliance programs, see:

• Compliance Validation for Amazon EC2

• Compliance Validation for Amazon SageMaker

• Compliance Validation for Amazon Elastic Container Service

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using Elastic Inference is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Resilience in Amazon Elastic Inference

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

Resilience 140

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compliance-validation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/SERVICENAME-compliance.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-compliance.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

Amazon Elastic Inference Developer Guide

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Features to support you data resiliency needs may vary depending on what your Elastic Inference
accelerator is attached to. For information on features to help support your data resiliency and
backup needs, see:

• Resilience in Amazon EC2

• Resilience in Amazon SageMaker

Infrastructure Security in Amazon Elastic Inference

The infrastructure security of Amazon Elastic Inference may vary depending on what your Elastic
Inference accelerator is attached to. For more information, see:

• Infrastructure Security in Amazon EC2

• Infrastructure Security in Amazon SageMaker

• Infrastructure Security in Amazon Elastic Container Service

Configuration and Vulnerability Analysis in Amazon Elastic
Inference

AWS supplies updates for Amazon Elastic Inference that do not require any customer action.
These updates to Elastic Inference and the supported frameworks are built into the latest Elastic
Inference version. Because AWS provides new libraries for Elastic Inference, you must launch a new
instance with an Elastic Inference accelerator attached. It is your responsibility to ensure that you
are using the latest Elastic Inference accelerator version. For more setup information, see Setting
Up to Launch Amazon EC2 with Elastic Inference and Using AWS Deep Learning Containers With
Elastic Inference.

Infrastructure Security 141

https://aws.amazon.com/about-aws/global-infrastructure/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/disaster-recovery-resiliency.html
https://docs.aws.amazon.com/sagemaker/latest/dg/disaster-recovery-resiliency.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/infrastructure-security.html
https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-security.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/infrastructure-security.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/setting-up-ei.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/setting-up-ei.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-dlc.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-dlc.html

Amazon Elastic Inference Developer Guide

Using CloudWatch Metrics to Monitor Elastic Inference

You can monitor your Elastic Inference accelerators using Amazon CloudWatch, which collects
metrics about your usage and performance. Amazon CloudWatch records these statistics for a
period of two weeks. You can access historical information and gain a better perspective of how
your service is performing.

By default, Elastic Inference sends metric data to CloudWatch in 5-minute periods.

For more information, see the Amazon CloudWatch User Guide.

Note

Amazon CloudWatch metrics are only emitted when your Elastic Inference accelerator is
attached to an Amazon EC2 instance.

Topics

• Elastic Inference Metrics and Dimensions

• Creating CloudWatch Alarms to Monitor Elastic Inference

Elastic Inference Metrics and Dimensions

The client instance connects to one or more Elastic Inference accelerators through a PrivateLink
endpoint. The client instance then inspects the input model’s operators. If there are any operators
that cannot run on the Elastic Inference accelerator, the client code partitions the execution graph.
Only subgraphs with supported operators are loaded and run on the accelerator. The rest of the
subgraphs run on the client instance. In the case of graph partitioning, each inference call on the
client instance can result in multiple inference requests on an accelerator. This happens because
evaluating each subgraph on the accelerator requires a separate inference call. Some CloudWatch
metrics collected on the accelerator give you subgraph metrics and are called out accordingly.

Metrics are grouped first by the service namespace, then by the various dimension combinations
within each namespace. You can use the following procedures to view the metrics for Elastic
Inference.

Elastic Inference Metrics and Dimensions 142

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

Amazon Elastic Inference Developer Guide

To view metrics using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. If necessary, change the Region. From the navigation bar, select the region where Elastic
Inference resides. For more information, see Regions and Endpoints.

3. In the navigation pane, choose Metrics.

4. Under All metrics, select a metrics category, and then scroll down to view the full list of
metrics.

To view metrics (AWS CLI)

• At a command prompt, enter the following command:

aws cloudwatch list-metrics --namespace " AWS/ElasticInference "

CloudWatch displays the following metrics for Elastic Inference.

Metric Description

AcceleratorHealthCheckFailed Reports whether the Elastic Inference
accelerator has passed a status health check
in the last minute. A value of zero (0) indicates
that the status check passed. A value of one
(1) indicates a status check failure.

Units: Count

ConnectivityCheckFailed Reports whether connectivity to the Elastic
Inference accelerator is active or has failed in
the last minute. A value of zero (0) indicates
that a connection from the client instance was
received in the last minute. A value of one
(1) indicates that no connection was received
from the client instance in the last minute.

Units: Count

Elastic Inference Metrics and Dimensions 143

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Elastic Inference Developer Guide

Metric Description

AcceleratorMemoryUsage The memory of the Elastic Inference accelerat
or used in the last minute.

Units: Bytes

AcceleratorUtilization The percentage of the Elastic Inference
accelerator used for computation in the last
minute.

Units: Percent

AcceleratorTotalInferenceCount The number of inference requests reaching the
Elastic Inference accelerator in the last minute.
The requests represent the total number of
separate calls on all subgraphs on the Elastic
Inference accelerator.

Units: Count

AcceleratorSuccessfulInferenceCount The number of successful inference requests
reaching the Elastic Inference accelerator
in the last minute. The requests represent
the total number of separate calls on all
subgraphs on the Elastic Inference accelerator.

Units: Count

AcceleratorInferenceWithClientErrorCount The number of inference requests reaching the
Elastic Inference accelerator in the last minute
that resulted in a 4xx error. The requests
represent the total number of separate calls
on all subgraphs on the Elastic Inference
accelerator.

Units: Count

Elastic Inference Metrics and Dimensions 144

Amazon Elastic Inference Developer Guide

Metric Description

AcceleratorInferenceWithServerErrorCount The number of inference requests reaching the
Elastic Inference accelerator in the last minute
that resulted in a 5xx error. The requests
represent the total number of separate calls
on all subgraphs on the Elastic Inference
accelerator.

Units: Count

You can filter the Elastic Inference data using the following dimensions.

Dimension Description

ElasticInferenceAcceleratorId This dimension filters the data by the Elastic
Inference accelerator.

InstanceId This dimension filters the data by instance
to which the Elastic Inference accelerator is
attached.

Creating CloudWatch Alarms to Monitor Elastic Inference

You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes
state. An alarm watches a single metric over a time period that you specify. It sends a notification
to an SNS topic based on the value of the metric relative to a given threshold. This takes place over
a number of time periods.

For example, you can create an alarm that monitors the health of an Elastic Inference accelerator.
It sends a notification when the Elastic Inference accelerator fails a status health check for three
consecutive 5-minute periods.

To create an alarm for Elastic Inference accelerator health status

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Alarms, Create Alarm.

Creating CloudWatch Alarms to Monitor Elastic Inference 145

https://console.aws.amazon.com/cloudwatch/

Amazon Elastic Inference Developer Guide

3. Choose Amazon EI Metrics.

4. Select the Amazon EI and the AcceleratorHealthCheckFailed metric and choose Next.

5. Configure the alarm as follows, and then choose Create Alarm:

• Under Alarm Threshold, enter a name and description. For Whenever, choose => and enter
1. For the consecutive periods, enter 3.

• Under Actions, select an existing notification list or choose New list.

• Under Alarm Preview, select a period of 5 minutes.

Creating CloudWatch Alarms to Monitor Elastic Inference 146

Amazon Elastic Inference Developer Guide

Troubleshooting

The following are common Amazon Elastic Inference errors and troubleshooting steps.

Topics

• Issues Launching Accelerators

• Resolving Configuration Issues

• Issues Running AWS Batch

• Resolving Permission Issues

• Stop and Start the Instance

• Troubleshooting Model Performance

• Submitting Feedback

• Amazon Elastic Inference Error Codes

Issues Launching Accelerators

Ensure that you are launching in a Region where Elastic Inference accelerators are available. For
more information, see the Region Table.

Resolving Configuration Issues

If you launched your instance with the Deep Learning AMI (DLAMI), run python ~/anaconda3/
bin/EISetupValidator.py to verify that the instance is correctly configured. You can also
download the EISetupValidator.py script and run 'python EISetupValidator.py.

Issues Running AWS Batch

Running an AWS Batch job from an Amazon EC2 instance with Elastic Inference may throw the
following error:

[Sat Nov 23 20:21:11 2019, 792775us] Error during accelerator discovery
[Sat Nov 23 20:21:11 2019, 792895us] Failed to detect any accelerator
[Sat Nov 23 20:21:11 2019, 792920us] Warning - Preconditions not met for reaching
 Accelerator

Issues Launching Accelerators 147

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://s3.console.aws.amazon.com/s3/buckets/amazonei/

Amazon Elastic Inference Developer Guide

To fix this issue, unset the ECS_CONTAINER_METADATA_URI environment variable for the
processes using Elastic Inference enabled frameworks. The ECS_CONTAINER_METADATA_URI
environment variable is automatically set for containers launched as Amazon Elastic Container
Service tasks. AWS Batch uses Amazon ECS to run containerized jobs. The following shows how to
unset the ECS_CONTAINER_METADATA_URI variable.

env -u ECS_CONTAINER_METADATA_URI python script_using_tf_predictor_api.py
env -u ECS_CONTAINER_METADATA_URI amazonei_tensorflow_model_server
env -u ECS_CONTAINER_METADATA_URI python script_using_ei_mxnet.py

This does not unset ECS_CONTAINER_METADATA_URI globally. It only unsets it for
the relevant processes, so unsetting it will not have any undesirable side-effects. Once
ECS_CONTAINER_METADATA_URI is no longer set, Elastic Inference should work with AWS Batch.

Resolving Permission Issues

If you are unable to successfully connect to accelerators, verify that you have completed the
following:

• Set up a Virtual Private Cloud (VPC) endpoint for Elastic Inference for the subnet in which you
have launched your instance.

• Configure security groups for the instance and VPC endpoints with outbound rules that allow
communications for HTTPS (Port 443). Configure the VPC endpoint security group with an
inbound rule that allows HTTPS traffic.

• Add an IAM instance role with the elastic-inference:Connect permission to the instance from
which you are connecting to the accelerator.

• Check CloudWatch Logs to verify that your accelerator is healthy. The Amazon EC2 instance
details from the console contain a link to CloudWatch, which allows you to view the health of its
associated accelerator.

Stop and Start the Instance

If your Elastic Inference accelerator is in an unhealthy state, stopping and starting it again is the
simplest option. For more information, see Stopping and Starting Your Instances.

Resolving Permission Issues 148

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html#starting-stopping-instances

Amazon Elastic Inference Developer Guide

Warning

When you stop an instance, the data on any instance store volumes is erased. If you have
any data to preserve on instance store volumes, make sure to back it up to persistent
storage.

Troubleshooting Model Performance

Elastic Inference accelerates operations defined by frameworks like TensorFlow and MXNet. While
Elastic Inference accelerates most:

• neural network

• math

• array manipulation

• control flow

operators, there are many operators that Elastic Inference does not accelerate. These include

• training-related operators

• input/output operators

• operators in contrib

When a model contains operators that Elastic Inference does not accelerate, the framework runs
them on the instance. The frequency and location of these operators within a model graph can
have an impact on the model's inference performance with Elastic Inference accelerators. If your
model is known to benefit from GPU acceleration and does not perform well on Elastic Inference,
contact AWS Support or amazon-ei-feedback@amazon.com.

Submitting Feedback

Contact AWS Support or send feedback to: amazon-ei-feedback@amazon.com.

Troubleshooting Model Performance 149

Amazon Elastic Inference Developer Guide

Amazon Elastic Inference Error Codes

The Amazon Elastic Inference service manages the lifecycle of Elastic Inference accelerators and is
accessible as an AWS PrivateLink endpoint service. The client instance (Amazon Elastic Compute
Cloud (Amazon EC2), Amazon SageMaker or the Amazon Elastic Container Service (Amazon
ECS) container instance) connects to an AWS PrivateLink endpoint to reach an Elastic Inference
accelerator. The Elastic Inference version of the framework code includes an Elastic Inference
client library (ECL) that is compatible with machine learning frameworks including TensorFlow,
Apache MXNet, and PyTorch. ECL communicates with the Elastic Inference accelerator through AWS
PrivateLink. The Elastic Inference-enabled framework running on the client instance maintains a
persistent connection to the Elastic Inference accelerator via a keep-alive thread using ECL. You can
see the health status of the accelerator on your Amazon CloudWatch metrics for Elastic Inference.

When you make the first inference call to an accelerator after you provision any service instance,
it takes longer than subsequent infer calls. During this time, the Elastic Inference service sets up
a session between the client instance and the Elastic Inference accelerator. The client code also
inspects the model’s operators. If there are any operators that cannot run on the Elastic Inference
accelerator, the client code partitions the execution graph and only loads the subgraphs with
operators that are supported on the accelerator. This implies that some of the subgraphs are run
on the accelerator and the others are run locally. Any subsequent inference calls take less time
to run because they use the already-initialized sessions. They also run on an Elastic Inference
accelerator that has already loaded the model. If your model includes any operator that is not
supported on Elastic Inference, the inference calls have higher latency. You can see CloudWatch
metrics for the subgraphs that run on the Elastic Inference accelerator.

A list of these errors is provided in the following table. When you set up the Elastic Inference
accelerators and make inference calls in the different components described, you might have errors
that provide three comma-delimited numbers. For example [21, 5, 28]. Look up the third error
code number (in the example, 28), which is an ECL status code, in the table here to learn more. The
first two numbers are internal error codes that help Amazon investigate issues and are represented
with an x and y in the following table.

[x, y, ECL STATUS CODE] Error Description

[x,y,1] The Elastic Inference accelerator had an
error. Retry the request. If this doesn't work,

Amazon Elastic Inference Error Codes 150

Amazon Elastic Inference Developer Guide

[x, y, ECL STATUS CODE] Error Description

upgrade to a larger Elastic Inference accelerat
or size.

[x,y,6] Failed to parse the model. First, update
to the latest client library version and
retry. If this doesn't work, contact
<amazon-ei-feedback@amazon.com> .

[x,y,7] This typically happens when Elastic Inference
has not been set up correctly. Use the
following resources to check your Elastic
Inference setup:
For SageMaker: Set Up to Use EI

For Amazon EC2: Setting Up to Launch
Amazon EC2 with Elastic Inference

For Amazon ECS: Verify that your ecs-ei-
task-role has been created correctly for
the Amazon ECS container instance. For an
example, see Setting up an ECS container
instance for Elastic Inference in the blog post
Running Amazon Elastic Inference Workloads
on Amazon ECS.

[x,y,8] The client instance or Amazon ECS task
is unable to authenticate with the Elastic
Inference accelerator. To configure the
required permissions, see Configuring an
Instance Role with an Elastic Inference Policy.

[x,y,9] Authentication failed during
SigV4 signing. Contact
<amazon-ei-feedback@amazon.com> .

Amazon Elastic Inference Error Codes 151

https://docs.aws.amazon.com/sagemaker/latest/dg/ei-setup.html
https://aws.amazon.com/blogs/machine-learning/running-amazon-elastic-inference-workloads-on-amazon-ecs/
https://aws.amazon.com/blogs/machine-learning/running-amazon-elastic-inference-workloads-on-amazon-ecs/

Amazon Elastic Inference Developer Guide

[x, y, ECL STATUS CODE] Error Description

[x,y,10] Stop the client instance, then start it again.
If this doesn't work, provision a new client
instance with a new accelerator. For Amazon
ECS, stop the current task and launch a new
one.

[x,y,12] Model not loaded on the Elastic Inference
accelerator. Retry your inference
 request. If this doesn't work, contact
<amazon-ei-feedback@amazon.com> .

[x,y,13] An inference session is not active for the
Elastic Inference accelerator. Retry your
inference request. If this doesn't work, contact
<amazon-ei-feedback@amazon.com> .

[x,y,15] An internal error occurred on the Elastic
Inference accelerator. Retry your inference
request. If this doesn't work, contact
<amazon-ei-feedback@amazon.com> .

[x,y,16] An internal error occurred. Retry your
inference request. If this doesn't work, contact
<amazon-ei-feedback@amazon.com> .

[x,y,17] An internal error occurred. Retry your
inference request. If this doesn't work, contact
<amazon-ei-feedback@amazon.com> .

[x,y,19] Typically indicates there are no accelerators
attached to the Amazon EC2 or SageMaker
instance. Also the client is run outside of the
Amazon ECS task container. Verify your setup
according to Setting Up to Launch Amazon
EC2 with Elastic Inference. If this doesn't work,
contact<amazon-ei-feedback@amazon.com> .

Amazon Elastic Inference Error Codes 152

Amazon Elastic Inference Developer Guide

[x, y, ECL STATUS CODE] Error Description

[x,y,23] An internal error occurred. Contact
<amazon-ei-feedback@amazon.com> .

[x,y,24] An internal error occurred. Contact
<amazon-ei-feedback@amazon.com> .

[x,y,25] An internal error occurred. Contact
<amazon-ei-feedback@amazon.com> .

[x,y,26] An internal error occurred. Contact
<amazon-ei-feedback@amazon.com> .

[x,y,28] Configure your client instance and
Elastic Inference AWS PrivateLink
endpoint in the same subnet. If they
already are in the same subnet, contact
<amazon-ei-feedback@amazon.com>

[x,y,29] An internal error occurred. Retry your
inference request. If this doesn't work, contact
<amazon-ei-feedback@amazon.com> .

[x,y,30] Unable to connect to the Elastic
Inference accelerator. Stop and restart
the client instance. For Amazon ECS,
stop the current task and launch a
new one. If this doesn't work, contact
<amazon-ei-feedback@amazon.com> .

[x,y,31] Elastic Inference accelerator is out of memory.
Use a larger Elastic Inference accelerator.

Amazon Elastic Inference Error Codes 153

Amazon Elastic Inference Developer Guide

[x, y, ECL STATUS CODE] Error Description

[x,y,32] Tensors that are not valid were passed to
the Elastic Inference accelerator. Using
different input data sizes or batch sizes is not
supported and might result in this error. You
can either pad your data so all shapes are the
same or bind the model with different shapes
to use multiple executors. The latter option
may result in out-of-memory errors because
the model is duplicated on the accelerator.

[x,y,34] An internal error occurred. Contact
<amazon-ei-feedback@amazon.com> .

[x,y,35] Unable to locate SSL certificates on
the client instance. Check /etc/ssl/
certs for the following certifica
tes: ca-bundle.crt , Amazon_Ro
ot_CA_#.pem . If they are present, contact
<amazon-ei-feedback@amazon.com> .

[x,y,36] Your Elastic Inference accelerator is not set
up properly or the Elastic Inference service
is currently unavailable. First, verify that
the accelerator has been set up correctly
using Setting Up to Launch Amazon EC2 with
Elastic Inference and retry your request after
15 seconds. If it still doesn't work, contact
<amazon-ei-feedback@amazon.com> .

Amazon Elastic Inference Error Codes 154

Amazon Elastic Inference Developer Guide

[x, y, ECL STATUS CODE] Error Description

[x,y,39] The model type that was received does not
match the model type that was expected.
For example, you sent an MXNet model when
the accelerator was expecting a TensorFlo
w model. Stop and then restart the client
instance to load the correct model and retry
the request. For Amazon ECS, stop the current
task and launch a new one with the correct
model and retry the request.

[x,y,40] An internal error occurred. Contact
<amazon-ei-feedback@amazon.com> .

[x,y,41] An internal error occurred. Contact
<amazon-ei-feedback@amazon.com> .

[x,y,42] Elastic Inference accelerator provisioning is in
progress. Please retry your request in a few
minutes.

[x,y,43] This typically happens when the load model
request took longer than the default client
timeout. Retry the request to see if this
resolves the issue. If it does not, contact
<amazon-ei-feedback@amazon.com> .

[x,y,45] The Elastic Inference accelerator state is
unknown. Stop and restart the client instance.
For Amazon ECS, stop the current task and
launch a new one.

Amazon Elastic Inference Error Codes 155

Amazon Elastic Inference Developer Guide

[x, y, ECL STATUS CODE] Error Description

[x,y,46] If you were unable to resolve the
issue using the Elastic Inference error
message provided, please contact
<amazon-ei-feedback@amazon.com> .
If applicable, please provide any Elastic
Inference error codes and error messages that
you received.

Amazon Elastic Inference Error Codes 156

Amazon Elastic Inference Developer Guide

Document History for Developer Guide

The following table describes the documentation for this release of Amazon Elastic Inference.

• API version: latest

• Latest documentation update: April 16, 2019

Change Description Date

Multiple Accelerators Information on attaching
multiple Elastic Inference
accelerators was added to the
setup guide.

December 2, 2019

Amazon Elastic Inference Elastic Inference prerequisites
and related info were added
to the setup guide.

April 16, 2019

157

Amazon Elastic Inference Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

158

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon Elastic Inference
	Table of Contents
	What Is Amazon Elastic Inference?
	Prerequisites
	Pricing for Amazon Elastic Inference
	Elastic Inference Uses
	Amazon Elastic Inference Basics
	Elastic Inference Uses

	Before you get started with Amazon Elastic Inference
	Amazon Elastic Inference Service Limits
	Choosing an Instance and Accelerator Type for Your Model
	Using Amazon Elastic Inference with EC2 Auto Scaling

	Working with Amazon Elastic Inference
	Setting Up to Launch Amazon EC2 with Elastic Inference
	Configuring Your Security Groups for Elastic Inference
	Configure Your Security Groups for Elastic Inference

	Configuring AWS PrivateLink Endpoint Services
	Configuring an Instance Role with an Elastic Inference Policy
	Launching an Instance with Elastic Inference

	Using TensorFlow Models with Elastic Inference
	Elastic Inference Enabled TensorFlow
	Preinstalled EI Enabled TensorFlow
	Installing EI Enabled TensorFlow

	Additional Requirements and Considerations
	TensorFlow Elastic Inference with Python
	Activate the Tensorflow Elastic Inference Environment
	Use Elastic Inference with TensorFlow Serving
	Use Elastic Inference with the TensorFlow EIPredictor API
	Use Elastic Inference with TensorFlow Predictor Example
	Use Elastic Inference with the TensorFlow Keras API
	TensorFlow Keras API Example

	TensorFlow 2 Elastic Inference with Python
	Activate the Tensorflow 2 Elastic Inference Environment
	Use Elastic Inference with TensorFlow 2 Serving
	Use Elastic Inference with the TensorFlow 2 EIPredictor API
	Use Elastic Inference with TensorFlow 2 Predictor Example
	Use Elastic Inference with the TensorFlow 2 Keras API
	TensorFlow 2 Keras API Example

	Use Elastic Inference with SageMaker Neo compiled models

	Using MXNet Models with Elastic Inference
	More Models and Resources
	MXNet Elastic Inference with Python
	Elastic Inference Enabled Apache MXNet
	Preinstalled Elastic Inference Enabled MXNet
	Installing Elastic Inference Enabled MXNet

	Activate the MXNet Elastic Inference Environment
	Validate MXNet for Elastic Inference Setup
	Check MXNet for Elastic Inference Version
	Using Multiple Elastic Inference Accelerators with MXNet
	Use Elastic Inference with the MXNet Symbol API
	Use Elastic Inference with the MXNet Module API
	Use Elastic Inference with the MXNet Gluon API
	Loading parameters
	Loading Symbol and Parameters Files
	Loading From Model Zoo

	Troubleshooting
	MXNet Elastic Inference 1.5.1 with Python
	Elastic Inference Enabled Apache MXNet
	Preinstalled Elastic Inference Enabled MXNet
	Installing Elastic Inference Enabled MXNet

	Activate the MXNet Elastic Inference Environment
	Validate MXNet for Elastic Inference Setup
	Check MXNet for Elastic Inference Version
	Using Multiple Elastic Inference Accelerators with MXNet
	Use Elastic Inference with the MXNet Symbol API
	Use Elastic Inference with the MXNet Module API
	Use Elastic Inference with the MXNet Gluon API
	Loading parameters
	Loading Symbol and Parameters Files
	Loading From Model Zoo

	Troubleshooting

	MXNet Elastic Inference with Deep Java Library (DJL)
	Environment Setup
	Setup for Elastic Inference
	Setup for DJL with MXNet engine

	Using DJL with MXNet on EI
	Example
	build.gradle
	Example.java

	Troubleshooting
	MXNet Elastic Inference 1.5.1 with Java
	Install Amazon EI Enabled Apache MXNet
	Check MXNet for Java Version
	Use Amazon Elastic Inference with the MXNet Java Infer API
	More Models and Resources
	Troubleshooting

	MXNet Elastic Inference 1.5.1 with Scala
	Install Elastic Inference Enabled Apache MXNet
	Check MXNet for Scala Version
	Use Amazon Elastic Inference with the MXNet Symbol API
	Use Amazon Elastic Inference with the MXNet Module API
	Use Amazon Elastic Inference with the MXNet Infer API
	More Models and Resources
	Troubleshooting

	Using PyTorch Models with Elastic Inference
	Compile Elastic Inference-enabled PyTorch models
	Scripting
	Tracing
	Saving and loading a compiled model
	CPU training requirement

	Additional Requirements and Considerations
	PyTorch Elastic Inference with Python
	Install Elastic Inference Enabled PyTorch
	Preinstalled Elastic Inference Enabled PyTorch
	Installing Elastic Inference Enabled PyTorch

	Activate the PyTorch Elastic Inference Environment
	Use Elastic Inference with PyTorch for inference

	Monitoring Elastic Inference Accelerators
	EI_VISIBLE_DEVICES
	Using EI_VISIBLE_DEVICES with Multiple Devices
	Exporting EI_VISIBLE_DEVICES

	EI Tool
	Getting Help
	JSON
	Errors
	Using EI Tool with LD_LIBRARY_PATH

	Health Check

	MXNet Elastic Inference with SageMaker

	Using Amazon Deep Learning Containers With Elastic Inference
	Using Amazon Deep Learning Containers with Amazon Elastic Inference on Amazon EC2
	Prerequisites
	Using TensorFlow Elastic Inference accelerators on EC2
	Using MXNet Elastic Inference accelerators on Amazon EC2
	Using PyTorch Elastic Inference accelerators on Amazon EC2

	Using Deep Learning Containers with Amazon Deep Learning Containers on Amazon ECS
	Prerequisites
	Using TensorFlow Elastic Inference accelerators on Amazon ECS
	Using MXNet Elastic Inference accelerators on Amazon ECS
	Using PyTorch Elastic Inference accelerators on Amazon ECS

	Using Amazon Deep Learning Containers with Elastic Inference on Amazon SageMaker

	Security in Amazon Elastic Inference
	Identity and Access Management for Amazon Elastic Inference
	Authenticating With Identities
	AWS account root user
	IAM Users and Groups
	IAM Roles

	Managing Access Using Policies
	Identity-Based Policies
	Resource-Based Policies
	Access Control Lists (ACLs)
	Other Policy Types
	Multiple Policy Types

	Logging and Monitoring in Amazon Elastic Inference
	Compliance Validation for Amazon Elastic Inference
	Resilience in Amazon Elastic Inference
	Infrastructure Security in Amazon Elastic Inference
	Configuration and Vulnerability Analysis in Amazon Elastic Inference

	Using CloudWatch Metrics to Monitor Elastic Inference
	Elastic Inference Metrics and Dimensions
	Creating CloudWatch Alarms to Monitor Elastic Inference

	Troubleshooting
	Issues Launching Accelerators
	Resolving Configuration Issues
	Issues Running AWS Batch
	Resolving Permission Issues
	Stop and Start the Instance
	Troubleshooting Model Performance
	Submitting Feedback
	Amazon Elastic Inference Error Codes

	Document History for Developer Guide
	AWS Glossary

