
User Guide

AWS Fault Injection Service

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Fault Injection Service User Guide

AWS Fault Injection Service: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Fault Injection Service User Guide

Table of Contents

What is AWS FIS? ... 1
Concepts ... 1

Actions ... 2
Targets ... 2
Stop conditions .. 2

Supported AWS services ... 3
Access AWS FIS ... 3
Pricing ... 4

Plan your experiments .. 5
Basic principles and guidelines .. 5
Experiment planning guidelines .. 6

Tutorials .. 8
Test instance stop and start .. 8

Prerequisites ... 8
Step 1: Create an experiment template ... 8
Step 2: Start the experiment ... 11
Step 3: Track the experiment progress .. 12
Step 4: Verify the experiment result .. 12
Step 5: Clean up ... 13

Run CPU stress on an instance ... 13
Prerequisites ... 14
Step 1: Create a CloudWatch alarm for a stop condition ... 14
Step 2: Create an experiment template ... 15
Step 3: Start the experiment ... 17
Step 4: Track the experiment progress .. 18
Step 5: Verify the experiment results .. 18
Step 6: Clean up ... 13

Test Spot Instance interruptions ... 20
Prerequisites ... 21
Step 1: Create an experiment template ... 22
Step 2: Start the experiment ... 24
Step 3: Track the experiment progress .. 25
Step 4: Verify the experiment result .. 25
Step 5: Clean up ... 26

iii

AWS Fault Injection Service User Guide

Simulate a connectivity event ... 27
Prerequisites ... 27
Step 1: Create an AWS FIS experiment template .. 28
Step 2: Ping an Amazon S3 endpoint .. 29
Step 3: Start your AWS FIS experiment ... 30
Step 4: Track your AWS FIS experiment progress .. 31
Step 5: Verify Amazon S3 network disruption ... 31
Step 5: Clean up ... 31

Schedule a recurring experiment .. 32
Prerequisites ... 33
Step 1: Create an IAM role and policy ... 33
Step 2: Create an Amazon EventBridge Scheduler .. 35
Step 3: Verify your experiment .. 36
Step 4: Clean up ... 36

Actions .. 37
Action identifiers .. 37
Action parameters .. 37
Action targets .. 38
Actions reference .. 39

Fault injection actions .. 40
Wait action ... 42
Amazon CloudWatch actions .. 42
Amazon DynamoDB actions ... 43
Amazon EBS actions ... 45
Amazon EC2 actions ... 46
Amazon ECS actions ... 51
Amazon EKS actions ... 57
Amazon ElastiCache actions ... 68
Network actions .. 68
Amazon RDS actions .. 72
Amazon S3 actions ... 74
Systems Manager actions .. 75

Use SSM documents .. 77
Use the aws:ssm:send-command action .. 77
Pre-configured AWS FIS SSM documents .. 78
Examples ... 87

iv

AWS Fault Injection Service User Guide

Troubleshooting .. 87
Use the ECS task actions .. 87

Actions ... 88
Limitations .. 88
Requirements ... 88
Reference version of the script .. 91
Example experiment template ... 94

Use the EKS pod actions .. 95
Actions ... 95
Limitations .. 95
Requirements ... 96
Create a service role for the Kubernetes service account .. 96
Configure the Kubernetes service account .. 96
Map your experiment role to the Kubernetes user .. 98
Pod container images .. 98
Example experiment template .. 100

List the actions ... 101
Experiment templates ... 104

Template components .. 104
Template syntax ... 104
Get started .. 105
Action set ... 105

Action syntax ... 105
Action duration ... 106
Example actions .. 107

Targets .. 109
Target syntax ... 110
Resource types .. 111
Identify target resources ... 112
Selection mode ... 115
Example targets .. 116
Example filters .. 117

Stop conditions .. 121
Stop condition syntax .. 121
Learn more ... 122

Experiment role .. 122

v

AWS Fault Injection Service User Guide

Prerequisites .. 123
Option 1: Create an experiment role and attach an AWS managed policy 124
Option 2: Create an experiment role and add an inline policy document 125

Experiment options ... 127
Account targeting ... 128
Empty target resolution mode .. 129
Actions mode ... 129

Work with experiment templates ... 130
Create an experiment template .. 130
View experiment templates ... 133
Generate a target preview from an experiment template ... 134
Start an experiment from a template .. 134
Update an experiment template ... 135
Tag experiment templates .. 136
Delete an experiment template .. 136

Example templates .. 138
Stop EC2 instances based on filters .. 138
Stop a specified number of EC2 instances ... 139
Run a pre-configured AWS FIS SSM document ... 140
Run a predefined Automation runbook .. 141
Throttle API actions on EC2 instances with the target IAM role .. 142
Stress test CPU of pods in a Kubernetes cluster ... 144

Multi-account experiments ... 147
Concepts ... 147

Orchestrator account ... 147
Target accounts ... 148
Target account configurations ... 148

Prerequisites .. 148
Permissions .. 148
Stop conditions (optional) .. 151

Work with multi-account experiments .. 151
Best practices .. 152
Create a multi-account experiemnt template .. 152
Update a target account configuration ... 153
Delete a target account configuration ... 154

Scenario library ... 156

vi

AWS Fault Injection Service User Guide

Working with scenarios .. 156
Viewing a scenario ... 156
Using a scenario .. 157
Exporting a scenario .. 158

Scenarios reference ... 158
AZ Availability: Power Interruption .. 160

Actions .. 161
Limitations .. 164
Requirements ... 164
Permissions .. 164
Scenario Content .. 168

Cross-Region: Connectivity .. 174
Actions .. 174
Limitations .. 176
Requirements ... 176
Permissions .. 176
Scenario Content .. 183

Experiments ... 187
Start an experiment .. 187
View your experiments ... 188

Experiment states ... 188
Action states .. 189

Tag an experiment ... 189
Stop an experiment ... 190
List resolved targets .. 190

Experiment scheduler .. 192
Getting started ... 192
Schedule an FIS experiment .. 196
To update schedule using the console .. 197
Updating the Experiment Schedule ... 197
Disable or Delete an Experiment Execution using the console .. 198

Monitoring ... 199
Monitor using CloudWatch .. 200

Monitor AWS FIS experiments ... 200
AWS FIS usage metrics .. 201

Monitor using EventBridge .. 202

vii

AWS Fault Injection Service User Guide

Experiment logging ... 203
Permissions .. 204
Log schema .. 204
Log destinations ... 205
Example log records .. 206
Enable experiment logging .. 211
Disable experiment logging ... 211

Log API calls with AWS CloudTrail ... 212
Use CloudTrail ... 212
Understand AWS FIS log file entries .. 213

Security .. 218
Data protection .. 218

Encryption at rest ... 219
Encryption in transit .. 220

Identity and access management ... 220
Audience ... 220
Authenticating with identities ... 221
Managing access using policies ... 224
How AWS Fault Injection Service works with IAM ... 226
Policy examples .. 233
Use service-linked roles ... 243
AWS managed policies .. 245

Infrastructure security ... 250
AWS PrivateLink ... 250

Considerations ... 250
Create an interface VPC endpoint .. 251
Create a VPC endpoint policy .. 251

Tag your resources .. 253
Tagging restrictions ... 253
Work with tags ... 253

Quotas and limitations ... 255
Document history .. 266

viii

AWS Fault Injection Service User Guide

What is AWS Fault Injection Service?

AWS Fault Injection Service (AWS FIS) is a managed service that enables you to perform fault
injection experiments on your AWS workloads. Fault injection is based on the principles of chaos
engineering. These experiments stress an application by creating disruptive events so that you
can observe how your application responds. You can then use this information to improve the
performance and resiliency of your applications so that they behave as expected.

To use AWS FIS, you set up and run experiments that help you create the real-world conditions
needed to uncover application issues that can be difficult to find otherwise. AWS FIS provides
templates that generate disruptions, and the controls and guardrails that you need to run
experiments in production, such as automatically rolling back or stopping the experiment if specific
conditions are met.

Important

AWS FIS carries out real actions on real AWS resources in your system. Therefore, before
you use AWS FIS to run experiments in production, we strongly recommend that you
complete a planning phase and run the experiments in a pre-production environment.

For more information about planning your experiment, see Test Reliability and Plan your AWS FIS
experiments. For more information about AWS FIS, see AWS Fault Injection Service.

AWS FIS concepts

To use AWS FIS, you run experiments on your AWS resources to test your theory of how an
application or system will perform under fault conditions. To run experiments, you first create an
experiment template. An experiment template is the blueprint of your experiment. It contains the
actions, targets, and stop conditions for the experiment. After you create an experiment template,
you can use it to run an experiment. While your experiment is running, you can track its progress
and view its status. An experiment is complete when all of the actions in the experiment have run.

Concepts 1

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/test-reliability.html
https://aws.amazon.com/fis/

AWS Fault Injection Service User Guide

Actions

An action is an activity that AWS FIS performs on an AWS resource during an experiment. AWS
FIS provides a set of preconfigured actions based on the type of AWS resource. Each action runs
for a specified duration during an experiment, or until you stop the experiment. Actions can run
sequentially or simultaneously (in parallel).

Targets

A target is one or more AWS resources on which AWS FIS performs an action during an experiment.
You can choose specific resources, or you can select a group of resources based on specific criteria,
such as tags or state.

Stop conditions

AWS FIS provides the controls and guardrails that you need to run experiments safely on your AWS
workloads. A stop condition is a mechanism to stop an experiment if it reaches a threshold that you
define as an Amazon CloudWatch alarm. If a stop condition is triggered while the experiment is
running, AWS FIS stops the experiment.

Actions 2

AWS Fault Injection Service User Guide

Supported AWS services

AWS FIS provides preconfigured actions for specific types of targets across AWS services. AWS FIS
supports actions for target resources for the following AWS services:

• Amazon CloudWatch

• Amazon DynamoDB

• Amazon EBS

• Amazon EC2

• Amazon ECS

• Amazon EKS

• Amazon ElastiCache

• Amazon RDS

• Amazon S3

• AWS Systems Manager

• Amazon VPC

For single-account experiments, the target resources must be in the same AWS account as the
experiment. You can run AWS FIS experiments that target resources in a different AWS account
account using AWS FIS multi-account experiments.

For more information, see Actions for AWS FIS.

Access AWS FIS

You can work with AWS FIS in any of the following ways:

• AWS Management Console — Provides a web interface that you can use to access AWS FIS. For
more information, see Working with the AWS Management Console.

• AWS Command Line Interface (AWS CLI) — Provides commands for a broad set of AWS services,
including AWS FIS, and is supported on Windows, macOS, and Linux. For more information, see
AWS Command Line Interface. For more information about the commands for AWS FIS, see fis in
the AWS CLI Command Reference.

Supported AWS services 3

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/latest/reference/fis/

AWS Fault Injection Service User Guide

• AWS CloudFormation — Create templates that describe your AWS resources. You use the
templates to provision and manage these resources as a single unit. For more information, see
the AWS Fault Injection Service resource type reference.

• AWS SDKs — Provides language-specific APIs and takes care of many of the connection
details, such as calculating signatures, handling request retries, and handling errors. For more
information, see AWS SDKs.

• HTTPS API — Provides low-level API actions that you can call using HTTPS requests. For more
information, see the AWS Fault Injection Service API Reference.

Pricing for AWS FIS

You are charged per minute that an action runs, from start to finish, based on the number of target
accounts for your experiment. For more information, see AWS FIS Pricing.

Pricing 4

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_FIS.html
http://aws.amazon.com/tools/#SDKs
https://docs.aws.amazon.com/fis/latest/APIReference/
https://aws.amazon.com/fis/pricing/

AWS Fault Injection Service User Guide

Plan your AWS FIS experiments

Fault injection is the process of stressing an application in testing or production environments by
creating disruptive events, such as server outages or API throttling. From observing how the system
responds, you can then implement improvements. When you run experiments on your system, it
can help you to identify systemic weaknesses in a controlled manner, before those weaknesses
affect the customers who depend on your system. Then you can proactively address the issues to
help prevent unpredictable outcomes.

Before you get started running fault injection experiments using AWS FIS, we recommend that you
familiarize yourself with the following principles and guidelines.

Important

AWS FIS carries out real actions on real AWS resources in your system. Therefore, before
you get started using AWS FIS to run experiments, we strongly recommend that you first
complete a planning phase and a test in a pre-production or test environment.

Contents

• Basic principles and guidelines

• Experiment planning guidelines

Basic principles and guidelines

Before starting experiments with AWS FIS, take the following steps:

1. Identify the target deployment for the experiment — Start by identifying the target
deployment. If this is your first experiment, we recommend starting in a pre-production or test
environment.

2. Review the application architecture — You must ensure that you have identified all of the
application components, dependencies, and recovery procedures for each component. Begin
with reviewing the application architecture. Depending on the application, refer to the AWS
Well-Architected Framework.

Basic principles and guidelines 5

https://docs.aws.amazon.com/wellarchitected/latest/framework/
https://docs.aws.amazon.com/wellarchitected/latest/framework/

AWS Fault Injection Service User Guide

3. Define steady-state behavior — Define the steady-state behavior of your system in terms of
important technical and business metrics, such as latency, CPU load, failed sign-ins per minute,
number of retries, or page load speed.

4. Form a hypothesis — Form a hypothesis of how you expect the system behavior to change
during the experiment. A hypothesis definition follows this format:

If fault injection action is performed, the business or technical metric impact
should not exceed value.

For example, a hypothesis for an authentication service might read as follows: "If network
latency increases by 10%, there is less than a 1% increase in sign-in failures." After the
experiment is completed, you evaluate whether the application resiliency aligns with your
business and technical expectations.

We also recommend following these guidelines when working with AWS FIS:

• Always start experimenting with AWS FIS in a test environment. Never start with a production
environment. As you progress in your fault injection experiments, you can experiment in other
controlled environments beyond the test environment.

• Build your team’s confidence in your application resilience by starting with small, simple
experiments, such as running the aws:ec2:stop-instances action on one target.

• Fault injection can cause real issues. Proceed with caution and make sure that your first fault
injections are on test instances so that no customers are affected.

• Test, test, and test some more. Fault injection is meant to be implemented in a controlled
environment with well-planned experiments. This allows you to build confidence in the abilities
of your application and your tools to withstand turbulent conditions.

• We strongly recommend that you have an excellent monitoring and alerting program in place
before you begin. Without it, you won’t be able to understand or measure the impact of your
experiments, which is critical to sustainable fault injection practices.

Experiment planning guidelines

With AWS FIS, you run experiments on your AWS resources to test your theory of how an
application or system will perform under fault conditions.

The following are recommended guidelines for planning your AWS FIS experiments.

Experiment planning guidelines 6

AWS Fault Injection Service User Guide

• Review outage history — Review the previous outages and events for your system. This can help
you to build up a picture of the overall health and resiliency of your system. Before you start
running experiments on your system, you should address known issues and weaknesses in your
system.

• Identify services with the largest impact — Review your services and identify the ones that
have the biggest impact on your end users or customers if they go down or do not function
correctly.

• Identify the target system — The target system is the system on which you will run
experiments. If you are new to AWS FIS or you have never run fault injection experiments before,
we recommend that you start by running experiments on a pre-production or test system.

• Consult with your team — Ask what they are worried about. You can form a hypothesis to
prove or disprove their concerns. You can also ask your team what they are not worried about.
This question can reveal two common fallacies: the sunk cost fallacy and the confirmation bias
fallacy. Forming a hypothesis based on your team’s answers can help provide more information
about the reality of your system’s state.

• Review your application architecture — Conduct a review of your system or application and
ensure that you have identified all of the application components, dependencies, and recovery
procedures for every component.

We recommend that you review the AWS Well-Architected Framework. The framework can help
you build secure, high-performing, resilient, and efficient infrastructure for your applications and
workloads. For more information, see AWS Well-Architected.

• Identify the applicable metrics — You can monitor the impact of an experiment on your AWS
resources using Amazon CloudWatch metrics. You can use these metrics to determine the
baseline or "steady state" when your application is performing optimally. Then, you can monitor
these metrics during or after the experiment to determine the impact. For more information, see
Monitor AWS FIS usage metrics using Amazon CloudWatch.

• Define an acceptable performance threshold for your system — Identify the metric that
represents an acceptable, steady state for your system. You will use this metric to create one or
more CloudWatch alarms that represent a stop condition for your experiment. If the alarm is
triggered, the experiment is automatically stopped. For more information, see Stop conditions
for AWS FIS.

Experiment planning guidelines 7

https://aws.amazon.com/architecture/well-architected/

AWS Fault Injection Service User Guide

Tutorials for AWS Fault Injection Service

The following tutorials show you how to create and run experiments using AWS Fault Injection
Service (AWS FIS).

Tutorials

• Tutorial: Test instance stop and start using AWS FIS

• Tutorial: Run CPU stress on an instance using AWS FIS

• Tutorial: Test Spot Instance interruptions using AWS FIS

• Tutorial: Simulate a connectivity event

• Tutorial: Schedule a recurring experiment

Tutorial: Test instance stop and start using AWS FIS

You can use AWS Fault Injection Service (AWS FIS) to test how your applications handle instance
stop and start. Use this tutorial to create an experiment template that uses the AWS FIS
aws:ec2:stop-instances action to stop one instance and then a second instance.

Prerequisites

To complete this tutorial, ensure that you do the following:

• Launch two test EC2 instances in your account. After you launch your instances, note the IDs of
both instances.

• Create an IAM role that enables the AWS FIS service to perform the aws:ec2:stop-instances
action on your behalf. For more information, see IAM roles for AWS FIS experiments.

• Ensure that you have access to AWS FIS. For more information, see AWS FIS policy examples.

Step 1: Create an experiment template

Create the experiment template using the AWS FIS console. In the template, you specify two
actions that will run sequentially for three minutes each. The first action stops one of the test
instances, which AWS FIS chooses randomly. The second action stops both test instances.

Test instance stop and start 8

AWS Fault Injection Service User Guide

To create an experiment template

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. Choose Create experiment template.

4. For Description and name, enter a description and a name for the template.

5. For Actions, do the following:

a. Choose Add action.

b. Enter a name for the action. For example, enter stopOneInstance.

c. For Action type, choose aws:ec2:stop-instances.

d. For Target keep the target that AWS FIS creates for you.

e. For Action parameters, Start instances after duration, specify 3 minutes (PT3M).

f. Choose Save.

6. For Targets, do the following:

a. Choose Edit for the target that AWS FIS automatically created for you in the previous step.

b. Replace the default name with a more descriptive name. For example, enter
oneRandomInstance.

c. Verify that Resource type is aws:ec2:instance.

d. For Target method, choose Resource IDs, and then choose the IDs of the two test
instances.

e. For Selection mode, choose Count. For Number of resources, enter 1.

f. Choose Save.

7. Choose Add target and do the following:

a. Enter a name for the target. For example, enter bothInstances.

b. For Resource type, choose aws:ec2:instance.

c. For Target method, choose Resource IDs, and then choose the IDs of the two test
instances.

d. For Selection mode, choose All.

e. Choose Save.

8. From the Actions section, choose Add action. Do the following:Step 1: Create an experiment template 9

https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

a. For Name, enter a name for the action. For example, enter stopBothInstances.

b. For Action type, choose aws:ec2:stop-instances.

c. For Start after, choose the first action that you added (stopOneInstance).

d. For Target, choose the second target that you added (bothInstances).

e. For Action parameters, Start instances after duration, specify 3 minutes (PT3M).

f. Choose Save.

9. For Service Access, choose Use an existing IAM role, and then choose the IAM role that
you created as described in the prerequisites for this tutorial. If your role is not displayed,
verify that it has the required trust relationship. For more information, see the section called
“Experiment role”.

10. (Optional) For Tags, choose Add new tag and specify a tag key and tag value. The tags that
you add are applied to your experiment template, not the experiments that are run using the
template.

11. Choose Create experiment template. When prompted for confirmation, enter create and
then choose Create experiment template.

(Optional) To view the experiment template JSON

Choose the Export tab. The following is an example of the JSON created by the preceding console
procedure.

{
 "description": "Test instance stop and start",
 "targets": {
 "bothInstances": {
 "resourceType": "aws:ec2:instance",
 "resourceArns": [
 "arn:aws:ec2:region:123456789012:instance/instance_id_1",
 "arn:aws:ec2:region:123456789012:instance/instance_id_2"
],
 "selectionMode": "ALL"
 },
 "oneRandomInstance": {
 "resourceType": "aws:ec2:instance",
 "resourceArns": [
 "arn:aws:ec2:region:123456789012:instance/instance_id_1",
 "arn:aws:ec2:region:123456789012:instance/instance_id_2"

Step 1: Create an experiment template 10

AWS Fault Injection Service User Guide

],
 "selectionMode": "COUNT(1)"
 }
 },
 "actions": {
 "stopBothInstances": {
 "actionId": "aws:ec2:stop-instances",
 "parameters": {
 "startInstancesAfterDuration": "PT3M"
 },
 "targets": {
 "Instances": "bothInstances"
 },
 "startAfter": [
 "stopOneInstance"
]
 },
 "stopOneInstance": {
 "actionId": "aws:ec2:stop-instances",
 "parameters": {
 "startInstancesAfterDuration": "PT3M"
 },
 "targets": {
 "Instances": "oneRandomInstance"
 }
 }
 },
 "stopConditions": [
 {
 "source": "none"
 }
],
 "roleArn": "arn:aws:iam::123456789012:role/AllowFISEC2Actions",
 "tags": {}
}

Step 2: Start the experiment

When you have finished creating your experiment template, you can use it to start an experiment.

Step 2: Start the experiment 11

AWS Fault Injection Service User Guide

To start an experiment

1. You should be on the details page for the experiment template that you just created.
Otherwise, choose Experiment templates and then select the ID of the experiment template
to open the details page.

2. Choose Start experiment.

3. (Optional) To add a tag to your experiment, choose Add new tag and enter a tag key and a tag
value.

4. Choose Start experiment. When prompted for confirmation, enter start and choose Start
experiment.

Step 3: Track the experiment progress

You can track the progress of a running experiment until the experiment is completed, stopped, or
failed.

To track the progress of an experiment

1. You should be on the details page for the experiment that you just started. Otherwise, choose
Experiments and then select the ID of the experiment to open the details page.

2. To view the state of the experiment, check State in the Details pane. For more information,
see experiment states.

3. When the state of the experiment is Running, go to the next step.

Step 4: Verify the experiment result

You can verify that the instances were stopped and started by the experiment as expected.

To verify the result of the experiment

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/ in a new browser tab
or window. This allows you to continue to track the progress of the experiment in the AWS FIS
console while viewing the result of the experiment in the Amazon EC2 console.

2. In the navigation pane, choose Instances.

3. When the state of the first action changes from Pending to Running (AWS FIS console), the
state of one of the target instances changes from Running to Stopped (Amazon EC2 console).

Step 3: Track the experiment progress 12

https://console.aws.amazon.com/ec2/

AWS Fault Injection Service User Guide

4. After three minutes, the state of the first action changes to Completed, the state of the
second action changes to Running, and the state of the other target instance changes to
Stopped.

5. After three minutes, the state of the second action changes to Completed, the state of the
target instances changes to Running, and the state of the experiment changes to Completed.

Step 5: Clean up

If you no longer need the test EC2 instances that you created for this experiment, you can
terminate them.

To terminate the instances

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances.

3. Select both test instances and choose Instance state, Terminate instance.

4. When prompted for confirmation, choose Terminate.

If you no longer need the experiment template, you can delete it.

To delete an experiment template using the AWS FIS console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. Select the experiment template, and choose Actions, Delete experiment template.

4. When prompted for confirmation, enter delete and then choose Delete experiment
template.

Tutorial: Run CPU stress on an instance using AWS FIS

You can use AWS Fault Injection Service (AWS FIS) to test how your applications handle CPU stress.
Use this tutorial to create an experiment template that uses AWS FIS to run a pre-configured
SSM document that runs CPU stress on an instance. The tutorial uses a stop condition to halt the
experiment when the CPU utilization of the instance exceeds a configured threshold.

For more information, see the section called “Pre-configured AWS FIS SSM documents”.

Step 5: Clean up 13

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

Prerequisites

Before you can use AWS FIS to run CPU stress, complete the following prerequisites.

Create an IAM role

Create a role and attach a policy that enables AWS FIS to use the aws:ssm:send-command action
on your behalf. For more information, see IAM roles for AWS FIS experiments.

Verify access to AWS FIS

Ensure that you have access to AWS FIS. For more information, see AWS FIS policy examples.

Prepare a test EC2 instance

• Launch an EC2 instance using Amazon Linux 2 or Ubuntu, as required by the pre-configured SSM
documents.

• The instance must be managed by SSM. To verify that the instance is managed by SSM,
open the Fleet Manager console. If the instance is not managed by SSM, verify that
the SSM Agent is installed and that the instance has an attached IAM role with the
AmazonSSMManagedInstanceCore policy. To verify the installed SSM Agent, connect to your
instance and run the following command.

Amazon Linux 2

yum info amazon-ssm-agent

Ubuntu

apt list amazon-ssm-agent

• Enable detailed monitoring for the instance. This provides data in 1-minute periods, for an
additional charge. Select the instance and choose Actions, Monitor and troubleshoot, Manage
detailed monitoring.

Step 1: Create a CloudWatch alarm for a stop condition

Configure a CloudWatch alarm so that you can stop the experiment if CPU utilization exceeds the
threshold that you specify. The following procedure sets the threshold to 50% CPU utilization for
the target instance. For more information, see Stop conditions.

Prerequisites 14

https://console.aws.amazon.com/systems-manager/managed-instances

AWS Fault Injection Service User Guide

To create an alarm that indicates when CPU utilization exceeds a threshold

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances.

3. Select the target instance and choose Actions, Monitor and troubleshoot, Manage
CloudWatch alarms.

4. For Alarm notification, use the toggle to turn off Amazon SNS notifications.

5. For Alarm thresholds, use the following settings:

• Group samples by: Maximum

• Type of data to sample: CPU utilization

• Percent: 50

• Period: 1 Minute

6. When you're done configuring the alarm, choose Create.

Step 2: Create an experiment template

Create the experiment template using the AWS FIS console. In the template, you specify the
following action to run: aws:ssm:send-command/AWSFIS-Run-CPU-Stress.

To create an experiment template

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. Choose Create experiment template.

4. For Description and name, enter a description and a name for the template.

5. For Actions, do the following:

a. Choose Add action.

b. Enter a name for the action. For example, enter runCpuStress.

c. For Action type, choose aws:ssm:send-command/AWSFIS-Run-CPU-Stress. This
automatically adds the ARN of the SSM document to Document ARN.

d. For Target keep the target that AWS FIS creates for you.

e. For Action parameters, Document parameters, enter the following:

Step 2: Create an experiment template 15

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

{"DurationSeconds":"120"}

f. For Action parameters, Duration, specify 5 minutes (PT5M).

g. Choose Save.

6. For Targets, do the following:

a. Choose Edit for the target that AWS FIS automatically created for you in the previous step.

b. Replace the default name with a more descriptive name. For example, enter
testInstance.

c. Verify that Resource type is aws:ec2:instance.

d. For Target method, choose Resource IDs, and then choose the ID of the test instance.

e. For Selection mode, choose All.

f. Choose Save.

7. For Service Access, choose Use an existing IAM role, and then choose the IAM role that
you created as described in the prerequisites for this tutorial. If your role is not displayed,
verify that it has the required trust relationship. For more information, see the section called
“Experiment role”.

8. For Stop conditions, select the CloudWatch alarm that you created in Step 1.

9. (Optional) For Tags, choose Add new tag and specify a tag key and tag value. The tags that
you add are applied to your experiment template, not the experiments that are run using the
template.

10. Choose Create experiment template.

(Optional) To view the experiment template JSON

Choose the Export tab. The following is an example of the JSON created by the preceding console
procedure.

{
 "description": "Test CPU stress predefined SSM document",
 "targets": {
 "testInstance": {
 "resourceType": "aws:ec2:instance",
 "resourceArns": [
 "arn:aws:ec2:region:123456789012:instance/instance_id"
],

Step 2: Create an experiment template 16

AWS Fault Injection Service User Guide

 "selectionMode": "ALL"
 }
 },
 "actions": {
 "runCpuStress": {
 "actionId": "aws:ssm:send-command",
 "parameters": {
 "documentArn": "arn:aws:ssm:region::document/AWSFIS-Run-CPU-Stress",
 "documentParameters": "{\"DurationSeconds\":\"120\"}",
 "duration": "PT5M"
 },
 "targets": {
 "Instances": "testInstance"
 }
 }
 },
 "stopConditions": [
 {
 "source": "aws:cloudwatch:alarm",
 "value": "arn:aws:cloudwatch:region:123456789012:alarm:awsec2-instance_id-
GreaterThanOrEqualToThreshold-CPUUtilization"
 }
],
 "roleArn": "arn:aws:iam::123456789012:role/AllowFISSSMActions",
 "tags": {}
}

Step 3: Start the experiment

When you have finished creating your experiment template, you can use it to start an experiment.

To start an experiment

1. You should be on the details page for the experiment template that you just created.
Otherwise, choose Experiment templates and then select the ID of the experiment template
to open the details page.

2. Choose Start experiment.

3. (Optional) To add a tag to your experiment, choose Add new tag and enter a tag key and a tag
value.

4. Choose Start experiment. When prompted for confirmation, enter start. Choose Start
experiment.

Step 3: Start the experiment 17

AWS Fault Injection Service User Guide

Step 4: Track the experiment progress

You can track the progress of a running experiment until the experiment completes, stops, or fails.

To track the progress of an experiment

1. You should be on the details page for the experiment that you just started. Otherwise, choose
Experiments and then select the ID of the experiment to open the details page for the
experiment.

2. To view the state of the experiment, check State in the Details pane. For more information,
see experiment states.

3. When the experiment state is Running, go to the next step.

Step 5: Verify the experiment results

You can monitor the CPU utilization of your instance while the experiment is running. When the
CPU utilization reaches the threshold, the alarm is triggered and the experiment is halted by the
stop condition.

To verify the results of the experiment

1. Choose the Stop conditions tab. The green border and green checkmark icon indicate that the
initial state of the alarm is OK. The red line indicates the alarm threshold. If you prefer a more
detailed graph, choose Enlarge from the widget menu.

Step 4: Track the experiment progress 18

AWS Fault Injection Service User Guide

2. When CPU utilization exceeds the threshold, the red border and red exclamation point icon
in the Stop conditions tab indicate that the alarm state changed to ALARM. In the Details
pane, the state of the experiment is Stopped. If you select the state, the message displayed is
"Experiment halted by stop condition".

3. When CPU utilization decreases below the threshold, the green border and green checkmark
icon indicate that the alarm state changed to OK.

Step 5: Verify the experiment results 19

AWS Fault Injection Service User Guide

4. (Optional) Choose View in alarms from the widget menu. This opens the alarm details page
in the CloudWatch console, where you can get more detail about the alarm or edit the alarm
settings.

Step 6: Clean up

If you no longer need the test EC2 instance that you created for this experiment, you can terminate
it.

To terminate the instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances.

3. Select the test instances and choose Instance state, Terminate instance.

4. When prompted for confirmation, choose Terminate.

If you no longer need the experiment template, you can delete it.

To delete an experiment template using the AWS FIS console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. Select the experiment template, and choose Actions, Delete experiment template.

4. When prompted for confirmation, enter delete and then choose Delete experiment
template.

Tutorial: Test Spot Instance interruptions using AWS FIS

Spot Instances use spare EC2 capacity that is available, for up to a 90% discount compared to
On-Demand pricing. However, Amazon EC2 can interrupt your Spot Instances when it needs the
capacity back. When using Spot Instances, you must be prepared for potential interruptions. For
more information, see Spot Instance interruptions in the Amazon EC2 User Guide.

You can use AWS Fault Injection Service (AWS FIS) to test how your applications handle a Spot
Instance interruption. Use this tutorial to create an experiment template that uses the AWS

Step 6: Clean up 20

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/fis/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html

AWS Fault Injection Service User Guide

FIS aws:ec2:send-spot-instance-interruptions action to interrupt one of your Spot
Instances.

Alternatively, to initiate the experiment using the Amazon EC2 console, see Initiate a Spot Instance
interruption in the Amazon EC2 User Guide.

Prerequisites

Before you can use AWS FIS to interrupt a Spot Instance, complete the following prerequisites.

1. Create an IAM role

Create a role and attach a policy that enables AWS FIS to perform the aws:ec2:send-spot-
instance-interruptions action on your behalf. For more information, see IAM roles for AWS
FIS experiments.

2. Verify access to AWS FIS

Ensure that you have access to AWS FIS. For more information, see AWS FIS policy examples.

3. (Optional) Create a Spot Instance request

If you'd like a new Spot Instance to use for this experiment, use the run-instances command to
request a Spot Instance. The default is to terminate Spot Instances that are interrupted. If you set
the interruption behavior to stop, you must also set the type to persistent. For this tutorial, do
not set the interruption behavior to hibernate, as the hibernation process begins immediately.

aws ec2 run-instances \
 --image-id ami-0ab193018fEXAMPLE \
 --instance-type "t2.micro" \
 --count 1 \
 --subnet-id subnet-1234567890abcdef0 \
 --security-group-ids sg-111222333444aaab \
 --instance-market-options file://spot-options.json \
 --query Instances[*].InstanceId

The following is an example of the spot-options.json file.

{
 "MarketType": "spot",
 "SpotOptions": {
 "SpotInstanceType": "persistent",
 "InstanceInterruptionBehavior": "stop"

Prerequisites 21

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/initiate-a-spot-instance-interruption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/initiate-a-spot-instance-interruption.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/run-instances.html

AWS Fault Injection Service User Guide

 }
}

The --query option in the example command makes it so that the command returns only the
instance ID of the Spot Instance. The following is example output.

[
 "i-0abcdef1234567890"
]

4. Add a tag so that AWS FIS can identify the target Spot Instance

Use the create-tags command to add the tag Name=interruptMe to your target Spot Instance.

aws ec2 create-tags \
 --resources i-0abcdef1234567890 \
 --tags Key=Name,Value=interruptMe

Step 1: Create an experiment template

Create the experiment template using the AWS FIS console. In the template, you specify the action
that will run. The action interrupts the Spot Instance with the specified tag. If there is more than
one Spot Instance with the tag, AWS FIS chooses one of them at random.

To create an experiment template

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. Choose Create experiment template.

4. For Description and name, enter a description and a name for the template.

5. For Actions, do the following:

a. Choose Add action.

b. Enter a name for the action. For example, enter interruptSpotInstance.

c. For Action type, choose aws:ec2:send-spot-instance-interruptions.

d. For Target keep the target that AWS FIS creates for you.

e. For Action parameters, Duration before interruption, specify 2 Minutes (PT2M).

f. Choose Save.

Step 1: Create an experiment template 22

https://docs.aws.amazon.com/cli/latest/reference/ec2/create-tags.html
https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

6. For Targets, do the following:

a. Choose Edit for the target that AWS FIS automatically created for you in the previous step.

b. Replace the default name with a more descriptive name. For example, enter
oneSpotInstance.

c. Verify that Resource type is aws:ec2:spot-instance.

d. For Target method, choose Resource tags, filters, and parameters.

e. For Resource tags, choose Add new tag, and enter the tag key and tag value. Use the tag
that you added to the Spot Instance to interrupt, as described in the Prerequisites for this
tutorial.

f. For Resource filters choose Add new filter and enter State.Name as the path and
running as the value.

g. For Selection mode, choose Count. For Number of resources, enter 1.

h. Choose Save.

7. For Service Access, choose Use an existing IAM role, and then choose the IAM role that
you created as described in the prerequisites for this tutorial. If your role is not displayed,
verify that it has the required trust relationship. For more information, see the section called
“Experiment role”.

8. (Optional) For Tags, choose Add new tag and specify a tag key and tag value. The tags that
you add are applied to your experiment template, not the experiments that are run using the
template.

9. Choose Create experiment template. When prompted for confirmation, enter create and
then choose Create experiment template.

(Optional) To view the experiment template JSON

Choose the Export tab. The following is an example of the JSON created by the preceding console
procedure.

{
 "description": "Test Spot Instance interruptions",
 "targets": {
 "oneSpotInstance": {
 "resourceType": "aws:ec2:spot-instance",
 "resourceTags": {
 "Name": "interruptMe"

Step 1: Create an experiment template 23

AWS Fault Injection Service User Guide

 },
 "filters": [
 {
 "path": "State.Name",
 "values": [
 "running"
]
 }
],
 "selectionMode": "COUNT(1)"
 }
 },
 "actions": {
 "interruptSpotInstance": {
 "actionId": "aws:ec2:send-spot-instance-interruptions",
 "parameters": {
 "durationBeforeInterruption": "PT2M"
 },
 "targets": {
 "SpotInstances": "oneSpotInstance"
 }
 }
 },
 "stopConditions": [
 {
 "source": "none"
 }
],
 "roleArn": "arn:aws:iam::123456789012:role/AllowFISSpotInterruptionActions",
 "tags": {
 "Name": "my-template"
 }
}

Step 2: Start the experiment

When you have finished creating your experiment template, you can use it to start an experiment.

To start an experiment

1. You should be on the details page for the experiment template that you just created.
Otherwise, choose Experiment templates and then select the ID of the experiment template
to open the details page.

Step 2: Start the experiment 24

AWS Fault Injection Service User Guide

2. Choose Start experiment.

3. (Optional) To add a tag to your experiment, choose Add new tag and enter a tag key and a tag
value.

4. Choose Start experiment. When prompted for confirmation, enter start and choose Start
experiment.

Step 3: Track the experiment progress

You can track the progress of a running experiment until the experiment is completed, stopped, or
failed.

To track the progress of an experiment

1. You should be on the details page for the experiment that you just started. Otherwise, choose
Experiments and then select the ID of the experiment to open the details page.

2. To view the state of the experiment, check State in the Details pane. For more information,
see experiment states.

3. When the state of the experiment is Running, go to the next step.

Step 4: Verify the experiment result

When the action for this experiment is completed, the following occurs:

• The target Spot Instance receives an instance rebalance recommendation.

• A Spot Instance interruption notice is issued two minutes before Amazon EC2 terminates or
stops your instance.

• After two minutes, the Spot Instance is terminated or stopped.

• A Spot Instance that was stopped by AWS FIS remains stopped until you restart it.

To verify that the instance was interrupted by the experiment

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the navigation pane, open Spot Requests and Instances in separate browser tabs or
windows.

Step 3: Track the experiment progress 25

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/rebalance-recommendations.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html#spot-instance-termination-notices
https://console.aws.amazon.com/ec2/

AWS Fault Injection Service User Guide

3. For Spot Requests, select the Spot Instance request. The initial status is fulfilled. After the
experiment completes, the status changes as follows:

• terminate - The status changes to instance-terminated-by-experiment.

• stop - The status changes to marked-for-stop-by-experiment and then instance-
stopped-by-experiment.

4. For Instances, select the Spot Instance. The initial status is Running. Two minutes after you
receive the Spot Instance interruption notice, the status changes as follows:

• stop - The status changes to Stopping and then Stopped.

• terminate - The status changes to Shutting-down and then Terminated.

Step 5: Clean up

If you created the test Spot Instance for this experiment with an interruption behavior of stop and
you no longer need it, you can cancel the Spot Instance request and terminate the Spot Instance.

To cancel the request and terminate the instance using the AWS CLI

1. Use the cancel-spot-instance-requests command to cancel the Spot Instance request.

aws ec2 cancel-spot-instance-requests --spot-instance-request-ids sir-ksie869j

2. Use the terminate-instances command to terminate the instance.

aws ec2 terminate-instances --instance-ids i-0abcdef1234567890

If you no longer need the experiment template, you can delete it.

To delete an experiment template using the AWS FIS console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. Select the experiment template, and choose Actions, Delete experiment template.

4. When prompted for confirmation, enter delete and then choose Delete experiment
template.

Step 5: Clean up 26

https://docs.aws.amazon.com/cli/latest/reference/ec2/cancel-spot-instance-requests.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/terminate-instances.html
https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

Tutorial: Simulate a connectivity event

You can use AWS Fault Injection Service (AWS FIS) to simulate a variety of connectivity events. AWS
FIS simulates connectivity events by blocking network connections in one of the following ways:

• all – Denies all traffic entering and leaving the subnet. Note that this option allows intra-subnet
traffic, including traffic to and from network interfaces in the subnet.

• availability-zone – Denies intra-VPC traffic to and from subnets in other Availability Zones.

• dynamodb – Denies traffic to and from the Regional endpoint for DynamoDB in the current
Region.

• prefix-list – Denies traffic to and from the specified prefix list.

• s3 – Denies traffic to and from the Regional endpoint for Amazon S3 in the current Region.

• vpc – Denies traffic entering and leaving the VPC.

Use this tutorial to create an experiment template that uses the AWS FIS
aws:network:disrupt-connectivity action to introduce connectivity loss with Amazon S3 in
a target subnet.

Topics

• Prerequisites

• Step 1: Create an AWS FIS experiment template

• Step 2: Ping an Amazon S3 endpoint

• Step 3: Start your AWS FIS experiment

• Step 4: Track your AWS FIS experiment progress

• Step 5: Verify Amazon S3 network disruption

• Step 5: Clean up

Prerequisites

Before beginning this tutorial, you need a role with the appropriate permissions in your AWS
account, and a test Amazon EC2 instance:

A role with permissions in your AWS account

Simulate a connectivity event 27

AWS Fault Injection Service User Guide

Create a role and attach a policy that enables AWS FIS to perform the aws:network:disrupt-
connectivity action on your behalf.

Your IAM role requires the following policy:

• AWSFaultInjectionSimulatorNetworkAccess – Grants AWS FIS service permission in Amazon
EC2 networking and other required services to perform AWS FIS actions related to network
infrastructure.

Note

For simplicity, this tutorial uses an AWS managed policy. For production use, we
recommend that you instead grant only the minimum permissions necessary for your use
case.
For more information about how to create an IAM role, see IAM roles for AWS FIS
experiments (AWS CLI) or Creating an IAM role (console) in the IAM User Guide.

A test Amazon EC2 instance

Launch and connect to a test Amazon EC2 instance. You can use the following tutorial to launch
and connect to an Amazon EC2 instance: Tutorial: Get started with Amazon EC2 Linux instances in
the Amazon EC2 User Guide.

Step 1: Create an AWS FIS experiment template

Create the experiment template by using the AWS FIS AWS Management Console. An AWS
FIS template is made up of actions, targets, stop conditions, and an experiment role. For more
information about how the templates work, see Experiment templates for AWS FIS.

Before you begin, make sure you have the following ready:

• An IAM role with the correct permissions.

• An Amazon EC2 instance.

• The subnet ID of your Amazon EC2 instance.

To create an experiment template

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

Step 1: Create an AWS FIS experiment template 28

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSFaultInjectionSimulatorNetworkAccess
https://docs.aws.amazon.com/fis/latest/userguide/getting-started-iam-service-role
https://docs.aws.amazon.com/fis/latest/userguide/getting-started-iam-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted
https://docs.aws.amazon.com/fis/latest/userguide/experiment-templates
https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

2. In the left navigation pane, choose Experiment templates.

3. Choose Create experiment template.

4. Enter a description for the template, such as Amazon S3 Network Disrupt
Connectivity.

5. Under Actions, choose Add action.

a. For the Name, enter disruptConnectivity.

b. For Action type, select aws:network:disrupt-connectivity.

c. Under Action parameters, set the Duration to 2 minutes.

d. Under Scope, select s3.

e. At the top, choose Save.

6. Under Targets, you should see the target that has been created automatically. Choose Edit.

a. Verify that Resource type is aws:ec2:subnet.

b. Under Target method, select Resource IDs, and then choose the subnet that you used
when creating your Amazon EC2 instance in the Prerequisites steps.

c. Verify that Selection mode is All.

d. Choose Save.

7. Under Service Access, select the IAM role that you created as described in the Prerequisites for
this tutorial. If your role is not displayed, verify that it has the required trust relationship. For
more information, see the section called “Experiment role”.

8. (Optional) Under Stop conditions, you can select a CloudWatch alarm to stop the experiment
if the condition occurs. For more information, see Stop conditions for AWS FIS.

9. (Optional) Under Logs, you can select an Amazon S3 bucket, or send logs to CloudWatch for
your experiment.

10. Choose Create experiment template, and when prompted for confirmation, enter create.
Then choose Create experiment template.

Step 2: Ping an Amazon S3 endpoint

Verify that your Amazon EC2 instance is able to reach an Amazon S3 endpoint.

1. Connect to the Amazon EC2 instance that you created in the Prerequisites steps.

Step 2: Ping an Amazon S3 endpoint 29

https://docs.aws.amazon.com/fis/latest/userguide/fis-tutorial-disrupt-connectivity.html#disrupt-connectivity-prerequisites
https://docs.aws.amazon.com/fis/latest/userguide/fis-tutorial-disrupt-connectivity.html#disrupt-connectivity-prerequisites
https://docs.aws.amazon.com/fis/latest/userguide/stop-conditions
https://docs.aws.amazon.com/fis/latest/userguide/fis-tutorial-disrupt-connectivity.html#disrupt-connectivity-prerequisites

AWS Fault Injection Service User Guide

For troubleshooting, see Troubleshoot connecting to your instance in the Amazon EC2 User
Guide.

2. Check to see the AWS Region where your instance is located. You can do this in the Amazon
EC2 console or by running the following command.

hostname

For example, if you launched an Amazon EC2 instance in us-west-2, you'll see the following
output.

[ec2-user@ip-172.16.0.0 ~]$ hostname
ip-172.16.0.0.us-west-2.compute.internal

3. Ping an Amazon S3 endpoint in your AWS Region. Replace AWS Region with your Region.

ping -c 1 s3.AWS Region.amazonaws.com

For the output, you should see a successful ping with 0% packet loss, as shown in the
following example.

PING s3.us-west-2.amazonaws.com (x.x.x.x) 56(84) bytes of data.
64 bytes from s3-us-west-2.amazonaws.com (x.x.x.x: icmp_seq=1 ttl=249 time=1.30 ms

--- s3.us-west-2.amazonaws.com ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.306/1.306/1.306/0.000 ms

Step 3: Start your AWS FIS experiment

Start an experiment with the experiment template that you just created.

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the left navigation pane, choose Experiment templates.

3. Select the ID of the experiment template that you created to open its details page.

4. Choose Start experiment.

5. (Optional) In the confirmation page, add tags for your experiment.

Step 3: Start your AWS FIS experiment 30

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting
https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

6. In the confirmation page, choose Start experiment.

Step 4: Track your AWS FIS experiment progress

You can track the progress of a running experiment until the experiment is completed, stopped, or
has failed.

1. You should be on the details page for the experiment that you just started. If you're not,
choose Experiments, and then select the ID of the experiment to open its details page.

2. To view the state of the experiment, check the State in the details pane. For more information,
see Experiment states.

3. When the state of the experiment is Running, move to the next step.

Step 5: Verify Amazon S3 network disruption

You can validate the experiment progress by by pinging the Amazon S3 endpoint.

• From your Amazon EC2 instance, ping the Amazon S3 endpoint in your AWS Region. Replace
AWS Region with your Region.

ping -c 1 s3.AWS Region.amazonaws.com

For the output, you should see an unsuccessful ping with 100% packet loss, as shown in the
following example.

ping -c 1 s3.us-west-2.amazonaws.com
PING s3.us-west-2.amazonaws.com (x.x.x.x) 56(84) bytes of data.

--- s3.us-west-2.amazonaws.com ping statistics ---
1 packets transmitted, 0 received, 100% packet loss, time 0ms

Step 5: Clean up

If you no longer need the Amazon EC2 instance that you created for this experiment or the AWS
FIS template, you can remove them.

Step 4: Track your AWS FIS experiment progress 31

https://docs.aws.amazon.com/fis/latest/userguide/experiments.html#experiment-states

AWS Fault Injection Service User Guide

To remove the Amazon EC2 instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances.

3. Select the test instance, choose Instance state, and then choose Terminate instance.

4. When prompted for confirmation, choose Terminate.

To delete the experiment template using the AWS FIS console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. Select the experiment template, and then choose Actions, Delete experiment template.

4. When prompted for confirmation, enter delete, and then choose Delete experiment
template.

Tutorial: Schedule a recurring experiment

With AWS Fault Injection Service (AWS FIS), you can perform fault injection experiments on your
AWS workloads. These experiments run on templates that contain one or more actions to run on
specified targets. When you also use Amazon EventBridge, you can schedule your experiments as a
one-time task or recurring tasks.

Use this tutorial to create an EventBridge schedule that runs an AWS FIS experiment template
every 5 minutes.

Tasks

• Prerequisites

• Step 1: Create an IAM role and policy

• Step 2: Create an Amazon EventBridge Scheduler

• Step 3: Verify your experiment

• Step 4: Clean up

Schedule a recurring experiment 32

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

Prerequisites

Before beginning this tutorial, must have an AWS FIS experiment template that you want to run
on a schedule. If you already have a working experiment template, make note of the template ID
and AWS Region. Otherwise, you can create a template by following the instructions in the section
called “Test instance stop and start”, and then return to this tutorial.

Step 1: Create an IAM role and policy

To create an IAM role and policy

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles, and then Create Role.

3. Choose Custom trust policy, and then insert the following snippet to allow Amazon
EventBridge Scheduler to assume the role on your behalf.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "scheduler.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Choose Next.

4. Under Add permissions, choose Create policy.

5. Choose JSON, and then insert the following policy. Replace the your-experiment-
template-id value with the template ID of your experiment from the Prerequisites steps.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Prerequisites 33

https://console.aws.amazon.com/iam/

AWS Fault Injection Service User Guide

 "Effect": "Allow",
 "Action": "fis:StartExperiment",
 "Resource": [
 "arn:aws:fis:*:*:experiment-template/your-experiment-template-id",
 "arn:aws:fis:*:*:experiment/*"
]
 }
]
}

You can restrict the scheduler to only run AWS FIS experiments that have a specific tag value.
For example, the following policy grants the StartExperiment permission for all AWS FIS
experiment templates, but restricts the scheduler to only run experiments that are tagged
Purpose=Schedule.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "fis:StartExperiment",
 "Resource": "arn:aws:fis:*:*:experiment/*"
 },
 {
 "Effect": "Allow",
 "Action": "fis:StartExperiment",
 "Resource": "arn:aws:fis:*:*:experiment-template/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Purpose": "Schedule"
 }
 }
 }
]
}

Choose Next: Tags.

6. Choose Next: Review.

7. Under Review policy, name your policy FIS_RecurringExperiment, and then choose
Create policy.

Step 1: Create an IAM role and policy 34

AWS Fault Injection Service User Guide

8. Under Add permissions, add the new FIS_RecurringExperiment policy to your role, and
then choose Next.

9. Under Name, review, and create, name the role FIS_RecurringExperiment_role, and
then choose Create role.

Step 2: Create an Amazon EventBridge Scheduler

To create an Amazon EventBridge Scheduler

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the left navigation pane, choose Schedules.

3. Verify that you are in the same AWS Region as your AWS FIS experiment template.

4. Choose Create schedule, and fill in the following:

• Under Schedule name, insert FIS_recurring_experiment_tutorial.

• Under Schedule pattern, select Recurring schedule.

• Under Schedule type, select Rate-based schedule.

• Under Rate expression, choose 5 minutes.

• Under Flexible time window, select Off.

• (Optional) Under Timeframe, select your time zone.

• Choose Next.

5. Under Select target, choose All APIs, and then search for AWS FIS.

6. Choose AWS FIS, and then select StartExperiment.

7. Under Input, insert the following JSON payload. Replace the your-experiment-template-
id value with the template ID of your experiment. The ClientToken is a unique identifier for
the scheduler. In this tutorial, we are using a context keyword allowed by Amazon EventBridge
Scheduler. For more information, see Adding context attributes in the Amazon EventBridge
User Guide.

{
 "ClientToken": "<aws.scheduler.execution-id>",
 "ExperimentTemplateId": "your-experiment-template-id"
}

Step 2: Create an Amazon EventBridge Scheduler 35

https://console.aws.amazon.com/events/
https://docs.aws.amazon.com/scheduler/latest/UserGuide/managing-schedule-context-attributes.html

AWS Fault Injection Service User Guide

Choose Next.

8. (Optional) Under Settings, you can set the Retry policy, Dead-letter queue (DLQ), and
Encryption settings. Alternatively, you can keep the default values.

9. Under Permissions, select Use existing role, and then search for
FIS_RecurringExperiment_role.

10. Choose Next.

11. Under Review and create schedule, review your scheduler details, and then choose Create
schedule.

Step 3: Verify your experiment

To verify that your AWS FIS experiment ran on schedule

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the left navigation pane, choose Experiments.

3. Five minutes after you create your schedule, you should see your experiment running.

Step 4: Clean up

To disable your Amazon EventBridge Scheduler

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the left navigation pane, choose Schedules.

3. Select your newly created scheduler, and then choose Disable.

Step 3: Verify your experiment 36

https://console.aws.amazon.com/fis/
https://console.aws.amazon.com/events/

AWS Fault Injection Service User Guide

Actions for AWS FIS

An action is the fault injection activity that you run on a target using AWS Fault Injection Service
(AWS FIS). AWS FIS provides preconfigured actions for specific types of targets across AWS services.
You add actions to an experiment template, which you then use to run experiments.

Contents

• Action identifiers

• Action parameters

• Action targets

• AWS FIS actions reference

• Use Systems Manager SSM documents with AWS FIS

• Use the AWS FIS aws:ecs:task actions

• Use the AWS FIS aws:eks:pod actions

• List the AWS FIS actions using the AWS CLI

Action identifiers

Each AWS FIS action has an identifier with the following format:

aws:service-name:action-type

For example, the following action stops the target Amazon EC2 instances:

aws:ec2:stop-instances

For a complete list of actions, see the AWS FIS actions reference. To get the list using the AWS CLI,
see List the actions.

Action parameters

Some AWS FIS actions have additional parameters that are specific to the action. These parameters
are used to pass information to AWS FIS when the action is run.

Action identifiers 37

AWS Fault Injection Service User Guide

AWS FIS supports custom fault types using the aws:ssm:send-command action, which uses
the SSM Agent and an SSM command document to create the fault condition on the targeted
instances. The aws:ssm:send-command action includes a documentArn parameter that takes the
Amazon Resource Name (ARN) of an SSM document as a value. You specify values for parameters
when you add the action to your experiment template.

For more information about specifying parameters for the aws:ssm:send-command action, see
Use the aws:ssm:send-command action.

Where possible, you can input a rollback configuration (also referred to as a post action) within the
action parameters. A post action returns the target to the state that it was in before the action was
run. The post action runs after the time specified in the action duration. Not all actions can support
post actions. For example, if the action terminates an Amazon EC2 instance, you cannot recover the
instance after it has been terminated.

Action targets

An action runs on the target resources that you specify. After you define a target, you can specify
its name when you define an action.

"targets": {
 "resource_type": "resource_name"
}

AWS FIS actions support the following resource types for action targets:

• Auto Scaling groups – Amazon EC2 Auto Scaling groups

• Buckets – Amazon S3 buckets

• Cluster – Amazon EKS clusters

• Clusters – Amazon ECS clusters or Amazon Aurora DB clusters

• DBInstances – Amazon RDS DB instances

• Encrypted global tables – Amazon DynamoDB; global tables encrypted with a customer
managed key

• Global tables – Amazon DynamoDB; global tables

• Instances – Amazon EC2 instances

Action targets 38

AWS Fault Injection Service User Guide

• Nodegroups – Amazon EKS node groups

• Pods – Kubernetes pods on Amazon EKS

• ReplicationGroups – ElastiCache Redis Replication Groups

• Roles – IAM roles

• SpotInstances – Amazon EC2 Spot Instances

• Subnets – VPC subnets

• Tasks – Amazon ECS tasks

• TransitGateways – Transit gateways

• Volumes – Amazon EBS volumes

For examples, see the section called “Example actions”.

AWS FIS actions reference

This reference describes the common actions in AWS FIS, including information about the action
parameters and the required IAM permissions. You can also list the supported AWS FIS actions
using the AWS FIS console or the list-actions command from the AWS Command Line Interface
(AWS CLI).

For more information, see Actions for AWS FIS and How AWS Fault Injection Service works with
IAM.

Actions

• Fault injection actions

• Wait action

• Amazon CloudWatch actions

• Amazon DynamoDB actions

• Amazon EBS actions

• Amazon EC2 actions

• Amazon ECS actions

• Amazon EKS actions

• Amazon ElastiCache actions

Actions reference 39

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/list-actions.html

AWS Fault Injection Service User Guide

• Network actions

• Amazon RDS actions

• Amazon S3 actions

• Systems Manager actions

Fault injection actions

AWS FIS supports the following fault injection actions.

Actions

• aws:fis:inject-api-internal-error

• aws:fis:inject-api-throttle-error

• aws:fis:inject-api-unavailable-error

aws:fis:inject-api-internal-error

Injects Internal Errors into requests made by the the target IAM role.

Resource type

• aws:iam:role

Parameters

• duration – The duration, from one minute to 12 hours. In the AWS FIS API, the value is a string in
ISO 8601 format. For example, PT1M represents one minute. In the AWS FIS console, you enter
the number of seconds, minutes, or hours.

• service – The target AWS API namespace. The supported value is ec2.

• percentage – The percentage (1-100) of calls to inject the fault into.

• operations – The operations to inject the fault into, separated using commas. For a list of the API
actions for the ec2 namespace, see Actions in the Amazon EC2 API Reference.

Permissions

• fis:InjectApiInternalError

Fault injection actions 40

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_Operations.html

AWS Fault Injection Service User Guide

aws:fis:inject-api-throttle-error

Injects throttling errors into requests made by the target IAM role.

Resource type

• aws:iam:role

Parameters

• duration – The duration, from one minute to 12 hours. In the AWS FIS API, the value is a string in
ISO 8601 format. For example, PT1M represents one minute. In the AWS FIS console, you enter
the number of seconds, minutes, or hours.

• service – The target AWS API namespace. The supported value is ec2.

• percentage – The percentage (1-100) of calls to inject the fault into.

• operations – The operations to inject the fault into, separated using commas. For a list of the API
actions for the ec2 namespace, see Actions in the Amazon EC2 API Reference.

Permissions

• fis:InjectApiThrottleError

aws:fis:inject-api-unavailable-error

Injects Unavailable errors into requests made by the target IAM role.

Resource type

• aws:iam:role

Parameters

• duration – The duration, from one minute to 12 hours. In the AWS FIS API, the value is a string in
ISO 8601 format. For example, PT1M represents one minute. In the AWS FIS console, you enter
the number of seconds, minutes, or hours.

• service – The target AWS API namespace. The supported value is ec2.

• percentage – The percentage (1-100) of calls to inject the fault into.

Fault injection actions 41

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_Operations.html

AWS Fault Injection Service User Guide

• operations – The operations to inject the fault into, separated using commas. For a list of the API
actions for the ec2 namespace, see Actions in the Amazon EC2 API Reference.

Permissions

• fis:InjectApiUnavailableError

Wait action

AWS FIS supports the following wait action.

aws:fis:wait

Runs the AWS FIS wait action.

Parameters

• duration – The duration, from one minute to 12 hours. In the AWS FIS API, the value is a string in
ISO 8601 format. For example, PT1M represents one minute. In the AWS FIS console, you enter
the number of seconds, minutes, or hours.

Permissions

• None

Amazon CloudWatch actions

AWS FIS supports the following Amazon CloudWatch action.

aws:cloudwatch:assert-alarm-state

Verifies that the specified alarms are in one of the specified alarm states.

Resource type

• None

Wait action 42

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_Operations.html

AWS Fault Injection Service User Guide

Parameters

• alarmArns – The ARNs of the alarms, separated by commas. You can specify up to five alarms.

• alarmStates – The alarm states, separated by commas. The possible alarm states are OK, ALARM,
and INSUFFICIENT_DATA.

Permissions

• cloudwatch:DescribeAlarms

Amazon DynamoDB actions

AWS FIS supports the following Amazon DynamoDB action.

aws:dynamodb:global-table-pause-replication

Pauses Amazon DynamoDB global table replication to any replica table. Tables may continue to be
replicated for up to 5 minutes after action begins.

The following statement will be dynamically appended to the policy for the target DynamoDB
global table:

{
 "Statement":[
 {
 "Sid": "DoNotModifyFisDynamoDbPauseReplicationEXPxxxxxxxxxxxxxxx"
 "Effect":"Deny",
 "Principal":{
 "AWS":"arn:aws:iam::123456789012:role/aws-service-role/
replication.dynamodb.amazonaws.com/AWSServiceRoleForDynamoDBReplication"
 },
 "Action":[
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:DescribeTable",
 "dynamodb:UpdateTable",
 "dynamodb:Scan",
 "dynamodb:DescribeTimeToLive",

Amazon DynamoDB actions 43

AWS Fault Injection Service User Guide

 "dynamodb:UpdateTimeToLive"
],
 "Resource":"arn:aws:dynamodb:us-east-1:123456789012:table/ExampleGlobalTable",
 "Condition": {
 "DateLessThan": {
 "aws:CurrentTime": "2024-04-10T09:51:41.511Z"
 }
 }
 }
]
}

The following statement will be dynamically appended to the policy for stream for the target
DynamoDB global table:

{
 "Statement":[
 {
 "Sid": "DoNotModifyFisDynamoDbPauseReplicationEXPxxxxxxxxxxxxxxx"
 "Effect":"Deny",
 "Principal":{
 "AWS":"arn:aws:iam::123456789012:role/aws-service-role/
replication.dynamodb.amazonaws.com/AWSServiceRoleForDynamoDBReplication"
 },
 "Action":[
 "dynamodb:GetRecords",
 "dynamodb:DescribeStream",
 "dynamodb:GetShardIterator"
],
 "Resource":"arn:aws:dynamodb:us-east-1:123456789012:table/ExampleGlobalTable/
stream/2023-08-31T09:50:24.025",
 "Condition": {
 "DateLessThan": {
 "aws:CurrentTime": "2024-04-10T09:51:41.511Z"
 }
 }
]
}

If a target table or stream does not have any attached resource polices, a resource policy is
created for the duration of the experiment, and automatically deleted when the experiment
ends. Otherwise, the fault statement is inserted into an existing policy, without any additional

Amazon DynamoDB actions 44

AWS Fault Injection Service User Guide

modifications to the existing policy statements. The fault statement is then removed from the
policy at the end of the experiment.

Resource type

• aws:dynamodb:global-table

Parameters

• duration – In the AWS FIS API, the value is a string in ISO 8601 format. For example, PT1M
represents one minute. In the AWS FIS console, you enter the number of seconds, minutes, or
hours.

Permissions

• dynamodb:PutResourcePolicy

• dynamodb:DeleteResourcePolicy

• dynamodb:GetResourcePolicy

• dynamodb:DescribeTable

• tag:GetResources

Amazon EBS actions

AWS FIS supports the following Amazon EBS action.

aws:ebs:pause-volume-io

Pauses I/O operations on target EBS volumes. The target volumes must be in the same Availability
Zone and must be attached to instances built on the Nitro System. The volumes can't be attached
to instances on an Outpost.

To initiate the experiment using the Amazon EC2 console, see Fault testing on Amazon EBS in the
Amazon EC2 User Guide.

Resource type

• aws:ec2:ebs-volume

Amazon EBS actions 45

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-fis.html

AWS Fault Injection Service User Guide

Parameters

• duration – The duration, from one second to 12 hours. In the AWS FIS API, the value is a string in
ISO 8601 format. For example, PT1M represents one minute, PT5S represents five seconds, and
PT6H represents six hours. In the AWS FIS console, you enter the number of seconds, minutes,
or hours. If the duration is small, such as PT5S, the I/O is paused for the specified duration, but
it might take longer for the experiment to complete due to the time it takes to initialize the
experiment.

Permissions

• ec2:DescribeVolumes

• ec2:PauseVolumeIO

• tag:GetResources

Amazon EC2 actions

AWS FIS supports the following Amazon EC2 actions.

Actions

• aws:ec2:api-insufficient-instance-capacity-error

• aws:ec2:asg-insufficient-instance-capacity-error

• aws:ec2:reboot-instances

• aws:ec2:send-spot-instance-interruptions

• aws:ec2:stop-instances

• aws:ec2:terminate-instances

AWS FIS also supports fault injection actions through the AWS Systems Manager SSM Agent.
Systems Manager uses an SSM document that defines actions to perform on EC2 instances. You
can use your own document to inject custom faults, or you can use pre-configured SSM documents.
For more information, see the section called “Use SSM documents”.

aws:ec2:api-insufficient-instance-capacity-error

Injects InsufficientInstanceCapacity error responses on requests made by the target
IAM roles. Supported operations are RunInstances, CreateCapacityReservation, StartInstances,

Amazon EC2 actions 46

AWS Fault Injection Service User Guide

CreateFleet calls. Requests that include capacity asks in multiple Availability Zones are not
supported. This action doesn't support defining targets using resource tags, filters, or parameters.

Resource type

• aws:iam:role

Parameters

• duration – In the AWS FIS API, the value is a string in ISO 8601 format. For example, PT1M
represents one minute. In the AWS FIS console, you enter the number of seconds, minutes, or
hours.

• availabilityzoneIdentifiers – The comma separated list of Availability Zones. Supports Zone IDs
(e.g. "use1-az1, use1-az2") and Zone names (e.g. "us-east-1a").

• percentage – The percentage (1-100) of calls to inject the fault into.

Permissions

• ec2:InjectApiErrorwith condition key ec2:FisActionId value set to aws:ec2:api-
insufficient-instance-capacity-error and ec2:FisTargetArns condition key set to
target IAM roles.

For an example policy, see Example: Use condition keys for ec2:InjectApiError.

aws:ec2:asg-insufficient-instance-capacity-error

Injects InsufficientInstanceCapacity error responses on requests made by the target Auto
Scaling groups. This action only supports Auto Scaling groups using launch templates. To learn
more about insufficient instance capacity errors, see the Amazon EC2 user guide.

Resource type

• aws:ec2:autoscaling-group

Amazon EC2 actions 47

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/troubleshooting-launch.html#troubleshooting-launch-capacity

AWS Fault Injection Service User Guide

Parameters

• duration – In the AWS FIS API, the value is a string in ISO 8601 format. For example, PT1M
represents one minute. In the AWS FIS console, you enter the number of seconds, minutes, or
hours.

• availabilityzoneIdentifiers – The comma separated list of Availability Zones. Supports Zone IDs
(e.g. "use1-az1, use1-az2") and Zone names (e.g. "us-east-1a").

• percentage – Optional. The percentage (1-100) of the target Auto Scaling group's launch
requests to inject the fault. The default is 100.

Permissions

• ec2:InjectApiErrorwith condition key ec2:FisActionId value set to aws:ec2:asg-
insufficient-instance-capacity-error and ec2:FisTargetArns condition key set to
target Auto Scaling groups.

• autoscaling:DescribeAutoScalingGroups

For an example policy, see Example: Use condition keys for ec2:InjectApiError.

aws:ec2:reboot-instances

Runs the Amazon EC2 API action RebootInstances on the target EC2 instances.

Resource type

• aws:ec2:instance

Parameters

• None

Permissions

• ec2:RebootInstances

• ec2:DescribeInstances

Amazon EC2 actions 48

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RebootInstances.html

AWS Fault Injection Service User Guide

AWS managed policy

• AWSFaultInjectionSimulatorEC2Access

aws:ec2:send-spot-instance-interruptions

Interrupts the target Spot Instances. Sends a Spot Instance interruption notice to target Spot
Instances two minutes before interrupting them. The interruption time is determined by the
specified durationBeforeInterruption parameter. Two minutes after the interruption time, the
Spot Instances are terminated or stopped, depending on their interruption behavior. A Spot
Instance that was stopped by AWS FIS remains stopped until you restart it.

Immediately after the action is initiated, the target instance receives an EC2 instance rebalance
recommendation. If you specified durationBeforeInterruption, there could be a delay between the
rebalance recommendation and the interruption notice.

For more information, see the section called “Test Spot Instance interruptions”. Alternatively, to
initiate the experiment by using the Amazon EC2 console, see Initiate a Spot Instance interruption
in the Amazon EC2 User Guide.

Resource type

• aws:ec2:spot-instance

Parameters

• durationBeforeInterruption – The time to wait before interrupting the instance, from 2 to
15 minutes. In the AWS FIS API, the value is a string in ISO 8601 format. For example, PT2M
represents two minutes. In the AWS FIS console, you enter the number of minutes.

Permissions

• ec2:SendSpotInstanceInterruptions

• ec2:DescribeInstances

AWS managed policy

• AWSFaultInjectionSimulatorEC2Access

Amazon EC2 actions 49

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEC2Access.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html#spot-instance-termination-notices
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/rebalance-recommendations.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/rebalance-recommendations.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/initiate-a-spot-instance-interruption.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEC2Access.html

AWS Fault Injection Service User Guide

aws:ec2:stop-instances

Runs the Amazon EC2 API action StopInstances on the target EC2 instances.

Resource type

• aws:ec2:instance

Parameters

• startInstancesAfterDuration – Optional. The time to wait before starting the instance, from one
minute to 12 hours. In the AWS FIS API, the value is a string in ISO 8601 format. For example,
PT1M represents one minute. In the AWS FIS console, you enter the number of seconds, minutes,
or hours. If the instance has an encrypted EBS volume, you must grant AWS FIS permission to the
KMS key used to encrypt the volume, or add the experiment role to the KMS key policy.

• completeIfInstancesTerminated – Optional. If true, and if startInstancesAfterDuration
is also true, this action will not fail when targeted EC2 instances have been terminated by a
separate request outside of FIS and cannot be restarted. For example, Auto Scaling groups may
terminate stopped EC2 instances under their control before this action completes. The default is
false.

Permissions

• ec2:StopInstances

• ec2:StartInstances

• ec2:DescribeInstances – Optional. Required with completeIfInstancesTerminated to
validate instance state at end of action.

• kms:CreateGrant – Optional. Required with startInstancesAfterDuration to restart instances
with encrypted volumes.

AWS managed policy

• AWSFaultInjectionSimulatorEC2Access

aws:ec2:terminate-instances

Runs the Amazon EC2 API action TerminateInstances on the target EC2 instances.

Amazon EC2 actions 50

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_StopInstances.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEC2Access.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_TerminateInstances.html

AWS Fault Injection Service User Guide

Resource type

• aws:ec2:instance

Parameters

• None

Permissions

• ec2:TerminateInstances

• ec2:DescribeInstances

AWS managed policy

• AWSFaultInjectionSimulatorEC2Access

Amazon ECS actions

AWS FIS supports the following Amazon ECS actions.

Actions

• aws:ecs:drain-container-instances

• aws:ecs:stop-task

• aws:ecs:task-cpu-stress

• aws:ecs:task-io-stress

• aws:ecs:task-kill-process

• aws:ecs:task-network-blackhole-port

• aws:ecs:task-network-latency

• aws:ecs:task-network-packet-loss

aws:ecs:drain-container-instances

Runs the Amazon ECS API action UpdateContainerInstancesState to drain the specified percentage
of underlying Amazon EC2 instances on the target clusters.

Amazon ECS actions 51

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEC2Access.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateContainerInstancesState.html

AWS Fault Injection Service User Guide

Resource type

• aws:ecs:cluster

Parameters

• drainagePercentage – The percentage (1-100).

• duration – The duration, from one minute to 12 hours. In the AWS FIS API, the value is a string in
ISO 8601 format. For example, PT1M represents one minute. In the AWS FIS console, you enter
the number of seconds, minutes, or hours.

Permissions

• ecs:DescribeClusters

• ecs:UpdateContainerInstancesState

• ecs:ListContainerInstances

• tag:GetResources

AWS managed policy

• AWSFaultInjectionSimulatorECSAccess

aws:ecs:stop-task

Runs the Amazon ECS API action StopTask to stop the target task.

Resource type

• aws:ecs:task

Parameters

• None

Permissions

• ecs:DescribeTasks

Amazon ECS actions 52

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorECSAccess.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_StopTask.html

AWS Fault Injection Service User Guide

• ecs:ListTasks

• ecs:StopTask

• tag:GetResources

AWS managed policy

• AWSFaultInjectionSimulatorECSAccess

aws:ecs:task-cpu-stress

Runs CPU stress on the target tasks. Uses the AWSFIS-Run-CPU-Stress SSM document. The tasks
must be managed by AWS Systems Manager. For more information, see Use the ECS task actions.

Resource type

• aws:ecs:task

Parameters

• duration – The duration of the stress test, in ISO 8601 format.

• percent – Optional. The target load percentage, from 0 (no load) to 100 (full load). The default is
100.

• workers – Optional. The number of stressors to use. The default is 0, which uses all stressors.

• installDependencies – Optional. If this value is True, Systems Manager installs the required
dependencies on the sidecar container for the SSM agent, if they are not already installed. The
default is True. The dependency is stress-ng.

Permissions

• ssm:SendCommand

• ssm:ListCommands

• ssm:CancelCommand

Amazon ECS actions 53

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorECSAccess.html
https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-CPU-Stress/description

AWS Fault Injection Service User Guide

aws:ecs:task-io-stress

Runs I/O stress on the target tasks. Uses the AWSFIS-Run-IO-Stress SSM document. The tasks must
be managed by AWS Systems Manager. For more information, see Use the ECS task actions.

Resource type

• aws:ecs:task

Parameters

• duration – The duration of the stress test, in ISO 8601 format.

• percent – Optional. The percentage of free space on the file system to use during the stress test.
The default is 80%.

• workers – Optional. The number of workers. Workers perform a mix of sequential, random, and
memory-mapped read/write operations, forced synchronizing, and cache dropping. Multiple
child processes perform different I/O operations on the same file. The default is 1.

• installDependencies – Optional. If this value is True, Systems Manager installs the required
dependencies on the sidecar container for the SSM agent, if they are not already installed. The
default is True. The dependency is stress-ng.

Permissions

• ssm:SendCommand

• ssm:ListCommands

• ssm:CancelCommand

aws:ecs:task-kill-process

Stops the specified process in the tasks, using the killall command. Uses the AWSFIS-Run-Kill-
Process SSM document. The task definition must have pidMode set to task. The tasks must be
managed by AWS Systems Manager. For more information, see Use the ECS task actions.

Resource type

• aws:ecs:task

Amazon ECS actions 54

https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-IO-Stress/description
https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Kill-Process/description
https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Kill-Process/description

AWS Fault Injection Service User Guide

Parameters

• processName – The name of the process to stop.

• signal – Optional. The signal to send along with the command. The possible values are SIGTERM
(which the receiver can choose to ignore) and SIGKILL (which cannot be ignored). The default is
SIGTERM.

• installDependencies – Optional. If this value is True, Systems Manager installs the required
dependencies on the sidecar container for the SSM agent, if they are not already installed. The
default is True. The dependency is killall.

Permissions

• ssm:SendCommand

• ssm:ListCommands

• ssm:CancelCommand

aws:ecs:task-network-blackhole-port

Drops inbound or outbound traffic for the specified protocol and port. Uses the AWSFIS-Run-
Network-Blackhole-Port SSM document. The task definition must have pidMode set to task. The
tasks must be managed by AWS Systems Manager. You can't set networkMode to bridge in the
task definition. For more information, see Use the ECS task actions.

Resource type

• aws:ecs:task

Parameters

• duration – The duration of the test, in ISO 8601 format.

• port – The port number.

• trafficType – The type of traffic. The possible values are ingress and egress.

• protocol – Optional. The protocol. The possible values are tcp and udp. The default is tcp.

• installDependencies – Optional. If this value is True, Systems Manager installs the required
dependencies on the sidecar container for the SSM agent, if they are not already installed. The
default is True. The dependencies are atd, dig, and iptables.

Amazon ECS actions 55

https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Network-Blackhole-Port/description
https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Network-Blackhole-Port/description

AWS Fault Injection Service User Guide

Permissions

• ssm:SendCommand

• ssm:ListCommands

• ssm:CancelCommand

aws:ecs:task-network-latency

Adds latency and jitter to the network interface using the tc tool for traffic to or from specific
sources. Uses the AWSFIS-Run-Network-Latency-Sources SSM document. The task definition must
have pidMode set to task. The tasks must be managed by AWS Systems Manager. You can't
set networkMode to bridge in the task definition. For more information, see Use the ECS task
actions.

Resource type

• aws:ecs:task

Parameters

• duration – The duration of the test, in ISO 8601 format.

• interface – Optional. The network interface. The default is eth0.

• delayMilliseconds – Optional. The delay, in milliseconds. The default is 200.

• jitterMilliseconds – Optional. The jitter, in milliseconds. The default is 10.

• sources – Optional. The sources, separated by commas. The possible values are: an IPv4 address,
an IPv4 CIDR block, a domain name, DYNAMODB, and S3. If you specify DYNAMODB or S3, this
applies only to the Regional endpoint in the current Region. The default is 0.0.0.0/0, which
matches all IPv4 traffic.

• installDependencies – Optional. If this value is True, Systems Manager installs the required
dependencies on the sidecar container for the SSM agent, if they are not already installed. The
default is True. The dependencies are atd, dig, jq, and tc.

Permissions

• ssm:SendCommand

• ssm:ListCommands

Amazon ECS actions 56

https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Network-Latency-Sources/description

AWS Fault Injection Service User Guide

• ssm:CancelCommand

aws:ecs:task-network-packet-loss

Adds packet loss to the network interface using the tc tool. Uses the AWSFIS-Run-Network-Packet-
Loss-Sources SSM document. The task definition must have pidMode set to task. The tasks
must be managed by AWS Systems Manager. You can't set networkMode to bridge in the task
definition. For more information, see Use the ECS task actions.

Resource type

• aws:ecs:task

Parameters

• duration – The duration of the test, in ISO 8601 format.

• interface – Optional. The network interface. The default is eth0.

• lossPercent – Optional. The percentage of packet loss. The default is 7%.

• sources – Optional. The sources, separated by commas. The possible values are: an IPv4 address,
an IPv4 CIDR block, a domain name, DYNAMODB, and S3. If you specify DYNAMODB or S3, this
applies only to the Regional endpoint in the current Region. The default is 0.0.0.0/0, which
matches all IPv4 traffic.

• installDependencies – Optional. If this value is True, Systems Manager installs the required
dependencies on the sidecar container for the SSM agent, if they are not already installed. The
default is True. The dependencies are atd, dig, jq, and tc.

Permissions

• ssm:SendCommand

• ssm:ListCommands

• ssm:CancelCommand

Amazon EKS actions

AWS FIS supports the following Amazon EKS actions.

Amazon EKS actions 57

https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Network-Packet-Loss-Sources/description
https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Network-Packet-Loss-Sources/description

AWS Fault Injection Service User Guide

Actions

• aws:eks:inject-kubernetes-custom-resource

• aws:eks:pod-cpu-stress

• aws:eks:pod-delete

• aws:eks:pod-io-stress

• aws:eks:pod-memory-stress

• aws:eks:pod-network-blackhole-port

• aws:eks:pod-network-latency

• aws:eks:pod-network-packet-loss

• aws:eks:terminate-nodegroup-instances

aws:eks:inject-kubernetes-custom-resource

Runs a ChaosMesh or Litmus experiment on a single target cluster. You must install ChaosMesh or
Litmus on the target cluster.

When you create an experiment template and define a target of type aws:eks:cluster, you
must target this action to a single Amazon Resource Name (ARN). This action doesn't support
defining targets using resource tags, filters, or parameters.

When you install ChaosMesh, you must specify the appropriate container runtime. Starting with
Amazon EKS version 1.23, the default runtime changed from Docker to containerd. Starting with
version 1.24, Docker was removed.

Resource type

• aws:eks:cluster

Parameters

• kubernetesApiVersion – The API version of the Kubernetes custom resource. The possible values
are chaos-mesh.org/v1alpha1 | litmuschaos.io/v1alpha1.

• kubernetesKind – The Kubernetes custom resource kind. The value depends on the API version.

• chaos-mesh.org/v1alpha1 – The possible values are AWSChaos | DNSChaos |
GCPChaos | HTTPChaos | IOChaos | JVMChaos | KernelChaos | NetworkChaos |

Amazon EKS actions 58

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

AWS Fault Injection Service User Guide

PhysicalMachineChaos | PodChaos | PodHttpChaos | PodIOChaos | PodNetworkChaos |
Schedule | StressChaos | TimeChaos |

• litmuschaos.io/v1alpha1 – The possible value is ChaosEngine.

• kubernetesNamespace – The Kubernetes namespace.

• kubernetesSpec – The spec section of the Kubernetes custom resource, in JSON format.

• maxDuration – The maximum time allowed for the automation execution to complete, from one
minute to 12 hours. In the AWS FIS API, the value is a string in ISO 8601 format. For example,
PT1M represents one minute. In the AWS FIS console, you enter the number of seconds, minutes,
or hours.

Permissions

No AWS Identity and Access Management (IAM) permissions are required for this action. The
permissions required to use this action are controlled by Kubernetes using RBAC authorization.
For more information, see Using RBAC Authorization in the official Kubernetes documentation.
For more information about Chaos Mesh, see the official Chaos Mesh documentation. For more
information about Litmus, see the official Litmus documentation.

aws:eks:pod-cpu-stress

Runs CPU stress on the target pods. For more information, see Use the EKS pod actions.

Resource type

• aws:eks:pod

Parameters

• duration – The duration of the stress test, in ISO 8601 format.

• percent – Optional. The target load percentage, from 0 (no load) to 100 (full load). The default is
100.

• workers – Optional. The number of stressors to use. The default is 0, which uses all stressors.

• kubernetesServiceAccount – The Kubernetes service account. For information about the
required permissions, see the section called “Configure the Kubernetes service account”.

• fisPodContainerImage – Optional. The container image used to create the fault injector pod. The
default is to use the images provided by AWS FIS. For more information, see the section called
“Pod container images”.

Amazon EKS actions 59

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://chaos-mesh.org/docs/
https://docs.litmuschaos.io/docs/introduction/what-is-litmus/

AWS Fault Injection Service User Guide

• maxErrorsPercent – Optional. The percentage of targets that can fail before the fault injection
fails. The default is 0.

• fisPodLabels – Optional. The Kubernetes labels that are attached to the fault orchestration pod
created by FIS.

• fisPodAnnotations – Optional. The Kubernetes annotations that are attached to the fault
orchestration pod created by FIS.

• fisPodSecurityPolicy – Optional. The Kubernetes Security Standards policy to use for the
fault orchestration pod created by FIS and the ephemeral containers. Possible values are
privileged, baseline and restricted. This action is compatible with all policy levels.

Permissions

• eks:DescribeCluster

• ec2:DescribeSubnets

• tag:GetResources

AWS managed policy

• AWSFaultInjectionSimulatorEKSAccess

aws:eks:pod-delete

Deletes the target pods. For more information, see Use the EKS pod actions.

Resource type

• aws:eks:pod

Parameters

• gracePeriodSeconds – Optional. The duration, in seconds, to wait for the pod to terminate
gracefully. If the value is 0, we perform the action immediately. If the value is nil, we use the
default grace period for the pod.

• kubernetesServiceAccount – The Kubernetes service account. For information about the
required permissions, see the section called “Configure the Kubernetes service account”.

Amazon EKS actions 60

https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEKSAccess.html

AWS Fault Injection Service User Guide

• fisPodContainerImage – Optional. The container image used to create the fault injector pod. The
default is to use the images provided by AWS FIS. For more information, see the section called
“Pod container images”.

• maxErrorsPercent – Optional. The percentage of targets that can fail before the fault injection
fails. The default is 0.

• fisPodLabels – Optional. The Kubernetes labels that are attached to the fault orchestration pod
created by FIS.

• fisPodAnnotations – Optional. The Kubernetes annotations that are attached to the fault
orchestration pod created by FIS.

• fisPodSecurityPolicy – Optional. The Kubernetes Security Standards policy to use for the
fault orchestration pod created by FIS and the ephemeral containers. Possible values are
privileged, baseline and restricted. This action is compatible with all policy levels.

Permissions

• eks:DescribeCluster

• ec2:DescribeSubnets

• tag:GetResources

AWS managed policy

• AWSFaultInjectionSimulatorEKSAccess

aws:eks:pod-io-stress

Runs I/O stress on the target pods. For more information, see Use the EKS pod actions.

Resource type

• aws:eks:pod

Parameters

• duration – The duration of the stress test, in ISO 8601 format.

Amazon EKS actions 61

https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEKSAccess.html

AWS Fault Injection Service User Guide

• workers – Optional. The number of workers. Workers perform a mix of sequential, random, and
memory-mapped read/write operations, forced synchronizing, and cache dropping. Multiple
child processes perform different I/O operations on the same file. The default is 1.

• percent – Optional. The percentage of free space on the file system to use during the stress test.
The default is 80%.

• kubernetesServiceAccount – The Kubernetes service account. For information about the
required permissions, see the section called “Configure the Kubernetes service account”.

• fisPodContainerImage – Optional. The container image used to create the fault injector pod. The
default is to use the images provided by AWS FIS. For more information, see the section called
“Pod container images”.

• maxErrorsPercent – Optional. The percentage of targets that can fail before the fault injection
fails. The default is 0.

• fisPodLabels – Optional. The Kubernetes labels that are attached to the fault orchestration pod
created by FIS.

• fisPodAnnotations – Optional. The Kubernetes annotations that are attached to the fault
orchestration pod created by FIS.

• fisPodSecurityPolicy – Optional. The Kubernetes Security Standards policy to use for the
fault orchestration pod created by FIS and the ephemeral containers. Possible values are
privileged, baseline and restricted. This action is compatible with all policy levels.

Permissions

• eks:DescribeCluster

• ec2:DescribeSubnets

• tag:GetResources

AWS managed policy

• AWSFaultInjectionSimulatorEKSAccess

aws:eks:pod-memory-stress

Runs memory stress on the target pods. For more information, see Use the EKS pod actions.

Amazon EKS actions 62

https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEKSAccess.html

AWS Fault Injection Service User Guide

Resource type

• aws:eks:pod

Parameters

• duration – The duration of the stress test, in ISO 8601 format.

• workers – Optional. The number of stressors to use. The default is 1.

• percent – Optional. The percentage of virtual memory to use during the stress test. The default
is 80%.

• kubernetesServiceAccount – The Kubernetes service account. For information about the
required permissions, see the section called “Configure the Kubernetes service account”.

• fisPodContainerImage – Optional. The container image used to create the fault injector pod. The
default is to use the images provided by AWS FIS. For more information, see the section called
“Pod container images”.

• maxErrorsPercent – Optional. The percentage of targets that can fail before the fault injection
fails. The default is 0.

• fisPodLabels – Optional. The Kubernetes labels that are attached to the fault orchestration pod
created by FIS.

• fisPodAnnotations – Optional. The Kubernetes annotations that are attached to the fault
orchestration pod created by FIS.

• fisPodSecurityPolicy – Optional. The Kubernetes Security Standards policy to use for the
fault orchestration pod created by FIS and the ephemeral containers. Possible values are
privileged, baseline and restricted. This action is compatible with all policy levels.

Permissions

• eks:DescribeCluster

• ec2:DescribeSubnets

• tag:GetResources

AWS managed policy

• AWSFaultInjectionSimulatorEKSAccess

Amazon EKS actions 63

https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEKSAccess.html

AWS Fault Injection Service User Guide

aws:eks:pod-network-blackhole-port

Drops inbound or outbound traffic for the specified protocol and port. Only compatible with the
Kubernetes Security Standards privilegedpolicy. For more information, see Use the EKS pod
actions.

Resource type

• aws:eks:pod

Parameters

• duration – The duration of the test, in ISO 8601 format.

• protocol – Optional. The protocol. The possible values are tcp and udp. The default is tcp.

• trafficType – The type of traffic. The possible values are ingress and egress.

• port – The port number.

• kubernetesServiceAccount – The Kubernetes service account. For information about the
required permissions, see the section called “Configure the Kubernetes service account”.

• fisPodContainerImage – Optional. The container image used to create the fault injector pod. The
default is to use the images provided by AWS FIS. For more information, see the section called
“Pod container images”.

• maxErrorsPercent – Optional. The percentage of targets that can fail before the fault injection
fails. The default is 0.

• fisPodLabels – Optional. The Kubernetes labels that are attached to the fault orchestration pod
created by FIS.

• fisPodAnnotations – Optional. The Kubernetes annotations that are attached to the fault
orchestration pod created by FIS.

Permissions

• eks:DescribeCluster

• ec2:DescribeSubnets

• tag:GetResources

Amazon EKS actions 64

https://kubernetes.io/docs/concepts/security/pod-security-standards/

AWS Fault Injection Service User Guide

AWS managed policy

• AWSFaultInjectionSimulatorEKSAccess

aws:eks:pod-network-latency

Adds latency and jitter to the network interface using the tc tool for traffic to or from specific
sources. Only compatible with the Kubernetes Security Standards privilegedpolicy. For more
information, see Use the EKS pod actions.

Resource type

• aws:eks:pod

Parameters

• duration – The duration of the test, in ISO 8601 format.

• interface – Optional. The network interface. The default is eth0.

• delayMilliseconds – Optional. The delay, in milliseconds. The default is 200.

• jitterMilliseconds – Optional. The jitter, in milliseconds. The default is 10.

• sources – Optional. The sources, separated by commas. The possible values are: an IPv4 address,
an IPv4 CIDR block, a domain name, DYNAMODB, and S3. If you specify DYNAMODB or S3, this
applies only to the Regional endpoint in the current Region. The default is 0.0.0.0/0, which
matches all IPv4 traffic.

• kubernetesServiceAccount – The Kubernetes service account. For information about the
required permissions, see the section called “Configure the Kubernetes service account”.

• fisPodContainerImage – Optional. The container image used to create the fault injector pod. The
default is to use the images provided by AWS FIS. For more information, see the section called
“Pod container images”.

• maxErrorsPercent – Optional. The percentage of targets that can fail before the fault injection
fails. The default is 0.

• fisPodLabels – Optional. The Kubernetes labels that are attached to the fault orchestration pod
created by FIS.

• fisPodAnnotations – Optional. The Kubernetes annotations that are attached to the fault
orchestration pod created by FIS.

Amazon EKS actions 65

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEKSAccess.html
https://kubernetes.io/docs/concepts/security/pod-security-standards/

AWS Fault Injection Service User Guide

Permissions

• eks:DescribeCluster

• ec2:DescribeSubnets

• tag:GetResources

AWS managed policy

• AWSFaultInjectionSimulatorEKSAccess

aws:eks:pod-network-packet-loss

Adds packet loss to the network interface using the tc tool. Only compatible with the Kubernetes
Security Standards privilegedpolicy. For more information, see Use the EKS pod actions.

Resource type

• aws:eks:pod

Parameters

• duration – The duration of the test, in ISO 8601 format.

• interface – Optional. The network interface. The default is eth0.

• lossPercent – Optional. The percentage of packet loss. The default is 7%.

• sources – Optional. The sources, separated by commas. The possible values are: an IPv4 address,
an IPv4 CIDR block, a domain name, DYNAMODB, and S3. If you specify DYNAMODB or S3, this
applies only to the Regional endpoint in the current Region. The default is 0.0.0.0/0, which
matches all IPv4 traffic.

• kubernetesServiceAccount – The Kubernetes service account. For information about the
required permissions, see the section called “Configure the Kubernetes service account”.

• fisPodContainerImage – Optional. The container image used to create the fault injector pod. The
default is to use the images provided by AWS FIS. For more information, see the section called
“Pod container images”.

• maxErrorsPercent – Optional. The percentage of targets that can fail before the fault injection
fails. The default is 0.

Amazon EKS actions 66

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEKSAccess.html
https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://kubernetes.io/docs/concepts/security/pod-security-standards/

AWS Fault Injection Service User Guide

• fisPodLabels – Optional. The Kubernetes labels that are attached to the fault orchestration pod
created by FIS.

• fisPodAnnotations – Optional. The Kubernetes annotations that are attached to the fault
orchestration pod created by FIS.

Permissions

• eks:DescribeCluster

• ec2:DescribeSubnets

• tag:GetResources

AWS managed policy

• AWSFaultInjectionSimulatorEKSAccess

aws:eks:terminate-nodegroup-instances

Runs the Amazon EC2 API action TerminateInstances on the target node group.

Resource type

• aws:eks:nodegroup

Parameters

• instanceTerminationPercentage – The percentage (1-100) of instances to terminate.

Permissions

• ec2:DescribeInstances

• ec2:TerminateInstances

• eks:DescribeNodegroup

• tag:GetResources

Amazon EKS actions 67

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEKSAccess.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_TerminateInstances.html

AWS Fault Injection Service User Guide

AWS managed policy

• AWSFaultInjectionSimulatorEKSAccess

Amazon ElastiCache actions

AWS FIS supports the following ElastiCache action.

aws:elasticache:interrupt-cluster-az-power

Interrupts power to nodes in the specified Availability Zone for target Redis Replication Groups.
When a primary node is targeted, the corresponding read replica with the least replication lag
is promoted to primary. Read replica replacements in the specified Availability Zone are blocked
for the duration of this action, which means that target Replication Groups operate with reduced
capacity.

Resource type

• aws:elasticache:redis-replicationgroup

Parameters

• duration – The duration, from one minute to 12 hours. In the AWS FIS API, the value is a string in
ISO 8601 format. For example, PT1M represents one minute. In the AWS FIS console, you enter
the number of seconds, minutes, or hours.

Permissions

• elasticache:InterruptClusterAzPower

• elasticache:DescribeReplicationGroups

• tag:GetResources

Network actions

AWS FIS supports the following network actions.

Actions

Amazon ElastiCache actions 68

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEKSAccess.html

AWS Fault Injection Service User Guide

• aws:network:disrupt-connectivity

• aws:network:route-table-disrupt-cross-region-connectivity

• aws:network:transit-gateway-disrupt-cross-region-connectivity

aws:network:disrupt-connectivity

Denies the specified traffic to the target subnets. Uses network ACLs.

Resource type

• aws:ec2:subnet

Parameters

• scope – The type of traffic to deny. When the scope is not all, the maximum number of entries
in network ACLs is 20. The possible values are:

• all – Denies all traffic entering and leaving the subnet. Note that this option allows intra-
subnet traffic, including traffic to and from network interfaces in the subnet.

• availability-zone – Denies intra-VPC traffic to and from subnets in other Availability
Zones. The maximum number of subnets that can be targeted in a VPC is 30.

• dynamodb – Denies traffic to and from the Regional endpoint for DynamoDB in the current
Region.

• prefix-list – Denies traffic to and from the specified prefix list.

• s3 – Denies traffic to and from the Regional endpoint for Amazon S3 in the current Region.

• vpc – Denies traffic entering and leaving the VPC.

• duration – The duration, from one minute to 12 hours. In the AWS FIS API, the value is a string in
ISO 8601 format. For example, PT1M represents one minute. In the AWS FIS console, you enter
the number of seconds, minutes, or hours.

• prefixListIdentifier – If the scope is prefix-list, this is the identifier of the customer
managed prefix list. You can specify a name, an ID, or an ARN. The prefix list can have at most 10
entries.

Permissions

• ec2:CreateNetworkAcl – Creates the network ACL with the tag managedByFIS=true.

Network actions 69

AWS Fault Injection Service User Guide

• ec2:CreateNetworkAclEntry – The network ACL must have the tag managedByFIS=true.

• ec2:CreateTags

• ec2:DeleteNetworkAcl – The network ACL must have the tag managedByFIS=true.

• ec2:DescribeManagedPrefixLists

• ec2:DescribeNetworkAcls

• ec2:DescribeSubnets

• ec2:DescribeVpcs

• ec2:GetManagedPrefixListEntries

• ec2:ReplaceNetworkAclAssociation

AWS managed policy

• AWSFaultInjectionSimulatorNetworkAccess

aws:network:route-table-disrupt-cross-region-connectivity

Blocks traffic that originates in the target subnets and is destined for the specified Region. Creates
route tables that include all routes for the Region to isolate. To allow FIS to create these route
tables, raise the Amazon VPC quota for routes per route table to 250 plus the number of
routes in your existing route tables.

Resource type

• aws:ec2:subnet

Parameters

• region – The code of the Region to isolate (for example, eu-west-1).

• duration – The length of time the action lasts. In the AWS FIS API, the value is a string in ISO
8601 format. For example, PT1M represents one minute. In the AWS FIS console, you enter the
number of seconds, minutes, or hours.

Permissions

• ec2:AssociateRouteTable

Network actions 70

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorNetworkAccess.html

AWS Fault Injection Service User Guide

• ec2:CreateManagedPrefixList †

• ec2:CreateNetworkInterface †

• ec2:CreateRoute †

• ec2:CreateRouteTable †

• ec2:CreateTags †

• ec2:DeleteManagedPrefixList †

• ec2:DeleteNetworkInterface †

• ec2:DeleteRouteTable †

• ec2:DescribeManagedPrefixLists

• ec2:DescribeNetworkInterfaces

• ec2:DescribeRouteTables

• ec2:DescribeSubnets

• ec2:DescribeVpcPeeringConnections

• ec2:DescribeVpcs

• ec2:DisassociateRouteTable

• ec2:GetManagedPrefixListEntries

• ec2:ModifyManagedPrefixList †

• ec2:ModifyVpcEndpoint

• ec2:ReplaceRouteTableAssociation

† Scoped using the tag managedByFIS=true.

AWS managed policy

• AWSFaultInjectionSimulatorNetworkAccess

aws:network:transit-gateway-disrupt-cross-region-connectivity

Blocks traffic from the target transit gateway peering attachments that is destined for the specified
Region.

Resource type

• aws:ec2:transit-gateway

Network actions 71

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorNetworkAccess.html

AWS Fault Injection Service User Guide

Parameters

• region – The code of the Region to isolate (for example, eu-west-1).

• duration – The length of time the action lasts. In the AWS FIS API, the value is a string in ISO
8601 format. For example, PT1M represents one minute. In the AWS FIS console, you enter the
number of seconds, minutes, or hours.

Permissions

• ec2:AssociateTransitGatewayRouteTable

• ec2:DescribeTransitGatewayAttachments

• ec2:DescribeTransitGatewayPeeringAttachments

• ec2:DescribeTransitGateways

• ec2:DisassociateTransitGatewayRouteTable

AWS managed policy

• AWSFaultInjectionSimulatorNetworkAccess

Amazon RDS actions

AWS FIS supports the following Amazon RDS actions.

Actions

• aws:rds:failover-db-cluster

• aws:rds:reboot-db-instances

aws:rds:failover-db-cluster

Runs the Amazon RDS API action FailoverDBCluster on the target Aurora DB cluster.

Resource type

• aws:rds:cluster

Amazon RDS actions 72

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorNetworkAccess.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverDBCluster.html

AWS Fault Injection Service User Guide

Parameters

• None

Permissions

• rds:FailoverDBCluster

• rds:DescribeDBClusters

• tag:GetResources

AWS managed policy

• AWSFaultInjectionSimulatorRDSAccess

aws:rds:reboot-db-instances

Runs the Amazon RDS API action RebootDBInstance on the target DB instance.

Resource type

• aws:rds:db

Parameters

• forceFailover – Optional. If the value is true, and if instances are Multi-AZ, forces failover from
one Availability Zone to another. The default is false.

Permissions

• rds:RebootDBInstance

• rds:DescribeDBInstances

• tag:GetResources

AWS managed policy

• AWSFaultInjectionSimulatorRDSAccess

Amazon RDS actions 73

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorRDSAccess.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RebootDBInstance.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorRDSAccess.html

AWS Fault Injection Service User Guide

Amazon S3 actions

AWS FIS supports the following Amazon S3 action.

Actions

• aws:s3:bucket-pause-replication

aws:s3:bucket-pause-replication

Pauses replication from target source buckets to destination buckets. Destination buckets can
be in different AWS Regions or within the same Region as the source bucket. Existing objects
may continue to be replicated for up to one hour after action begins. This action only supports
targeting by tags. To learn more about Amazon S3 Replication, see the Amazon S3 user guide.

Resource type

• aws:s3:bucket

Parameters

• duration – The duration, from one minute to 12 hours. In the AWS FIS API, the value is a string in
ISO 8601 format. For example, PT1M represents one minute. In the AWS FIS console, you enter
the number of seconds, minutes, or hours.

• region – The AWS region where destination buckets are located.

• destinationBuckets – Optional. Comma separated list of destination S3 bucket(s).

• prefixes – Optional. Comma separated list of S3 object key prefixes from replication rule filters.
Replication rules of target buckets with a filter based on the prefix(es) will be paused.

Permissions

• S3:PutReplicationConfiguration with condition key S3:IsReplicationPauseRequest
set to True

• S3:GetReplicationConfiguration with condition key S3:IsReplicationPauseRequest
set to True

• S3:PauseReplication

• S3:ListAllMyBuckets

Amazon S3 actions 74

https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html

AWS Fault Injection Service User Guide

• tag:GetResources

For an example policy, see Example: Use condition keys for aws:s3:bucket-pause-
replication.

Systems Manager actions

AWS FIS supports the following Systems Manager actions.

Actions

• aws:ssm:send-command

• aws:ssm:start-automation-execution

aws:ssm:send-command

Runs the Systems Manager API action SendCommand on the target EC2 instances. The Systems
Manager document (SSM document) defines the actions that Systems Manager performs on your
instances. For more information, see Use the aws:ssm:send-command action.

Resource type

• aws:ec2:instance

Parameters

• documentArn – The Amazon Resource Name (ARN) of the document. In the console, this
parameter is completed for you if you choose a value from Action type that corresponds to one
of the pre-configured AWS FIS SSM documents.

• documentVersion – Optional. The version of the document. If empty, the default version runs.

• documentParameters – Conditional. The required and optional parameters that the document
accepts. The format is a JSON object with keys that are strings and values that are either strings
or arrays of strings.

• duration – The duration, from one minute to 12 hours. In the AWS FIS API, the value is a string in
ISO 8601 format. For example, PT1M represents one minute. In the AWS FIS console, you enter
the number of seconds, minutes, or hours.

Systems Manager actions 75

https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_SendCommand.html

AWS Fault Injection Service User Guide

Permissions

• ssm:SendCommand

• ssm:ListCommands

• ssm:CancelCommand

AWS managed policy

• AWSFaultInjectionSimulatorEC2Access

aws:ssm:start-automation-execution

Runs the Systems Manager API action StartAutomationExecution.

Resource type

• None

Parameters

• documentArn – The Amazon Resource Name (ARN) of the automation document.

• documentVersion – Optional. The version of the document. If empty, the default version runs.

• documentParameters – Conditional. The required and optional parameters that the document
accepts. The format is a JSON object with keys that are strings and values that are either strings
or arrays of strings.

• maxDuration – The maximum time allowed for the automation execution to complete, from one
minute to 12 hours. In the AWS FIS API, the value is a string in ISO 8601 format. For example,
PT1M represents one minute. In the AWS FIS console, you enter the number of seconds, minutes,
or hours.

Permissions

• ssm:GetAutomationExecution

• ssm:StartAutomationExecution

• ssm:StopAutomationExecution

• iam:PassRole – Optional. Required if the automation document assumes a role.

Systems Manager actions 76

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEC2Access.html
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_StartAutomationExecution.html

AWS Fault Injection Service User Guide

AWS managed policy

• AWSFaultInjectionSimulatorSSMAccess

Use Systems Manager SSM documents with AWS FIS

AWS FIS supports custom fault types through the AWS Systems Manager SSM Agent and the
AWS FIS action aws:ssm:send-command. Pre-configured Systems Manager SSM documents (SSM
documents) that can be used to create common fault injection actions are available as public AWS
documents that begin with the AWSFIS- prefix.

SSM Agent is Amazon software that can be installed and configured on Amazon EC2 instances,
on-premises servers, or virtual machines (VMs). This makes it possible for Systems Manager to
manage these resources. The agent processes requests from Systems Manager, and then runs them
as specified in the request. You can include your own SSM document to inject custom faults, or
reference one of the public Amazon-owned documents.

Requirements

For actions that require SSM Agent to run the action on the target, you must ensure the following:

• The agent is installed on the target. SSM Agent is installed by default on some Amazon
Machine Images (AMIs). Otherwise, you can install the SSM Agent on your instances. For more
information, see Manually install SSM Agent for EC2 instances in the AWS Systems Manager User
Guide.

• Systems Manager has permission to perform actions on your instances. You grant access using
an IAM instance profile. For more information, see Create an IAM instance profile for Systems
Manager and Attach an IAM instance profile to an EC2 instance in the AWS Systems Manager User
Guide.

Use the aws:ssm:send-command action

An SSM document defines the actions that Systems Manager performs on your managed instances.
Systems Manager includes a number of pre-configured documents, or you can create your own.
For more information about creating your own SSM document, see Creating Systems Manager
documents in the AWS Systems Manager User Guide. For more information about SSM documents
in general, see AWS Systems Manager documents in the AWS Systems Manager User Guide.

Use SSM documents 77

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorSSMAccess.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-manual-agent-install.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-instance-profile.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-instance-profile.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-launch-managed-instance.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/create-ssm-doc.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/create-ssm-doc.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-ssm-docs.html

AWS Fault Injection Service User Guide

AWS FIS provides pre-configured SSM documents. You can view the pre-configured
SSM documents under Documents in the AWS Systems Manager console: https://
console.aws.amazon.com/systems-manager/documents. You can also choose from a selection of
pre-configured documents in the AWS FIS console. For more information, see Pre-configured AWS
FIS SSM documents.

To use an SSM document in your AWS FIS experiments, you can use the aws:ssm:send-command
action. This action fetches and runs the specified SSM document on your target instances.

When you use the aws:ssm:send-command action in your experiment template, you must specify
additional parameters for the action, including the following:

• documentArn – Required. The Amazon Resource Name (ARN) of the SSM document.

• documentParameters – Conditional. The required and optional parameters that the SSM
document accepts. The format is a JSON object with keys that are strings and values that are
either strings or arrays of strings.

• documentVersion – Optional. The version of the SSM document to run.

You can view the information for an SSM document (including the parameters for the document)
by using the Systems Manager console or the command line.

To view information about an SSM document using the console

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-
manager/.

2. In the navigation pane, choose Documents.

3. Select the document, and choose the Details tab.

To view information about an SSM document using the command line

Use the SSM describe-document command.

Pre-configured AWS FIS SSM documents

You can use pre-configured AWS FIS SSM documents with the aws:ssm:send-command action in
your experiment templates.

Pre-configured AWS FIS SSM documents 78

https://console.aws.amazon.com/systems-manager/documents
https://console.aws.amazon.com/systems-manager/documents
https://console.aws.amazon.com/systems-manager/
https://console.aws.amazon.com/systems-manager/
https://docs.aws.amazon.com/cli/latest/reference/ssm/describe-document.html

AWS Fault Injection Service User Guide

Requirements

• The pre-configured SSM documents provided by AWS FIS are supported only on the following
operating systems:

• Amazon Linux 2023, Amazon Linux 2, Amazon Linux

• Ubuntu

• RHEL 7, 8, 9

• CentOS 7, 8, 9

• The pre-configured SSM documents provided by AWS FIS are supported only on EC2 instances.
They are not supported on other types of managed nodes, such as on-premises servers.

To use these SSM documents in experiments on ECS tasks, use the corresponding the section called
“Amazon ECS actions”. For example, the aws:ecs:task-cpu-stress action uses the AWSFIS-Run-CPU-
Stress document.

Documents

• AWSFIS-Run-CPU-Stress

• AWSFIS-Run-Disk-Fill

• AWSFIS-Run-IO-Stress

• AWSFIS-Run-Kill-Process

• AWSFIS-Run-Memory-Stress

• AWSFIS-Run-Network-Blackhole-Port

• AWSFIS-Run-Network-Latency

• AWSFIS-Run-Network-Latency-Sources

• AWSFIS-Run-Network-Packet-Loss

• AWSFIS-Run-Network-Packet-Loss-Sources

AWSFIS-Run-CPU-Stress

Runs CPU stress on an instance using the stress-ng tool. Uses the AWSFIS-Run-CPU-Stress SSM
document.

Action type (console only)

Pre-configured AWS FIS SSM documents 79

https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-CPU-Stress/description

AWS Fault Injection Service User Guide

aws:ssm:send-command/AWSFIS-Run-CPU-Stress

ARN

arn:aws:ssm:region::document/AWSFIS-Run-CPU-Stress

Document parameters

• DurationSeconds – Required. The duration of the CPU stress test, in seconds.

• CPU – Optional. The number of CPU stressors to use. The default is 0, which uses all CPU
stressors.

• LoadPercent – Optional. The target CPU load percentage, from 0 (no load) to 100 (full load). The
default is 100.

• InstallDependencies – Optional. If the value is True, Systems Manager installs the required
dependencies on the target instances if they are not already installed. The default is True. The
dependency is stress-ng.

The following is an example of the string you can enter in the console.

{"DurationSeconds":"60", "InstallDependencies":"True"}

AWSFIS-Run-Disk-Fill

Allocates disk space on the root volume of an instance to simulate a disk full fault. Uses the
AWSFIS-Run-Disk-Fill SSM document.

If the experiment injecting this fault is stopped, either manually or through a stop condition, AWS
FIS attempts to roll back by canceling the running SSM document. However, if the disk is 100%
full, either due to the fault or the fault plus application activity, Systems Manager might be unable
to complete the cancel operation. Therefore, if you might need to stop the experiment, ensure that
the disk will not become 100% full.

Action type (console only)

aws:ssm:send-command/AWSFIS-Run-Disk-Fill

ARN

arn:aws:ssm:region::document/AWSFIS-Run-Disk-Fill

Pre-configured AWS FIS SSM documents 80

https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Disk-Fill/description

AWS Fault Injection Service User Guide

Document parameters

• DurationSeconds – Required. The duration of the disk fill test, in seconds.

• Percent – Optional. The percentage of the disk to allocate during the disk fill test. The default is
95%.

• InstallDependencies – Optional. If the value is True, Systems Manager installs the required
dependencies on the target instances if they are not already installed. The default is True. The
dependencies are atd and fallocate.

The following is an example of the string you can enter in the console.

{"DurationSeconds":"60", "InstallDependencies":"True"}

AWSFIS-Run-IO-Stress

Runs IO stress on an instance using the stress-ng tool. Uses the AWSFIS-Run-IO-Stress SSM
document.

Action type (console only)

aws:ssm:send-command/AWSFIS-Run-IO-Stress

ARN

arn:aws:ssm:region::document/AWSFIS-Run-IO-Stress

Document parameters

• DurationSeconds – Required. The duration of the IO stress test, in seconds.

• Workers – Optional. The number of workers that perform a mix of sequential, random, and
memory-mapped read/write operations, forced synchronizing, and cache dropping. Multiple
child processes perform different I/O operations on the same file. The default is 1.

• Percent – Optional. The percentage of free space on the file system to use during the IO stress
test. The default is 80%.

• InstallDependencies – Optional. If the value is True, Systems Manager installs the required
dependencies on the target instances if they are not already installed. The default is True. The
dependency is stress-ng.

Pre-configured AWS FIS SSM documents 81

https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-IO-Stress/description

AWS Fault Injection Service User Guide

The following is an example of the string you can enter in the console.

{"Workers":"1", "Percent":"80", "DurationSeconds":"60", "InstallDependencies":"True"}

AWSFIS-Run-Kill-Process

Stops the specified process in the instance, using the killall command. Uses the AWSFIS-Run-Kill-
Process SSM document.

Action type (console only)

aws:ssm:send-command/AWSFIS-Run-Kill-Process

ARN

arn:aws:ssm:region::document/AWSFIS-Run-Kill-Process

Document parameters

• ProcessName – Required. The name of the process to stop.

• Signal – Optional. The signal to send along with the command. The possible values are SIGTERM
(which the receiver can choose to ignore) and SIGKILL (which cannot be ignored). The default is
SIGTERM.

• InstallDependencies – Optional. If the value is True, Systems Manager installs the required
dependencies on the target instances if they are not already installed. The default is True. The
dependency is killall.

The following is an example of the string you can enter in the console.

{"ProcessName":"myapplication", "Signal":"SIGTERM"}

AWSFIS-Run-Memory-Stress

Runs memory stress on an instance using the stress-ng tool. Uses the AWSFIS-Run-Memory-Stress
SSM document.

Action type (console only)

aws:ssm:send-command/AWSFIS-Run-Memory-Stress

ARN

Pre-configured AWS FIS SSM documents 82

https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Kill-Process/description
https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Kill-Process/description
https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Memory-Stress/description

AWS Fault Injection Service User Guide

arn:aws:ssm:region::document/AWSFIS-Run-Memory-Stress

Document parameters

• DurationSeconds – Required. The duration of the memory stress test, in seconds.

• Workers – Optional. The number of virtual memory stressors. The default is 1.

• Percent – Required. The percentage of virtual memory to use during the memory stress test.

• InstallDependencies – Optional. If the value is True, Systems Manager installs the required
dependencies on the target instances if they are not already installed. The default is True. The
dependency is stress-ng.

The following is an example of the string you can enter in the console.

{"Percent":"80", "DurationSeconds":"60", "InstallDependencies":"True"}

AWSFIS-Run-Network-Blackhole-Port

Drops inbound or outbound traffic for the protocol and port using the iptables tool. Uses the
AWSFIS-Run-Network-Blackhole-Port SSM document.

Action type (console only)

aws:ssm:send-command/AWSFIS-Run-Network-Blackhole-Port

ARN

arn:aws:ssm:region::document/AWSFIS-Run-Network-Blackhole-Port

Document parameters

• Protocol – Required. The protocol. The possible values are tcp and udp.

• Port – Required. The port number.

• TrafficType – Optional. The type of traffic. The possible values are ingress and egress. The
default is ingress.

• DurationSeconds – Required. The duration of the network blackhole test, in seconds.

• InstallDependencies – Optional. If the value is True, Systems Manager installs the required
dependencies on the target instances if they are not already installed. The default is True. The
dependencies are atd, dig, and iptables.

Pre-configured AWS FIS SSM documents 83

https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Network-Blackhole-Port/description

AWS Fault Injection Service User Guide

The following is an example of the string you can enter in the console.

{"Protocol":"tcp", "Port":"8080", "TrafficType":"egress", "DurationSeconds":"60",
 "InstallDependencies":"True"}

AWSFIS-Run-Network-Latency

Adds latency to the network interface using the tc tool. Uses the AWSFIS-Run-Network-Latency
SSM document.

Action type (console only)

aws:ssm:send-command/AWSFIS-Run-Network-Latency

ARN

arn:aws:ssm:region::document/AWSFIS-Run-Network-Latency

Document parameters

• Interface – Optional. The network interface. The default is eth0.

• DelayMilliseconds – Optional. The delay, in milliseconds. The default is 200.

• DurationSeconds – Required. The duration of the network latency test, in seconds.

• InstallDependencies – Optional. If the value is True, Systems Manager installs the required
dependencies on the target instances if they are not already installed. The default is True. The
dependencies are atd, dig, and tc.

The following is an example of the string you can enter in the console.

{"DelayMilliseconds":"200", "Interface":"eth0", "DurationSeconds":"60",
 "InstallDependencies":"True"}

AWSFIS-Run-Network-Latency-Sources

Adds latency and jitter to the network interface using the tc tool for traffic to or from specific
sources. Uses the AWSFIS-Run-Network-Latency-Sources SSM document.

Action type (console only)

Pre-configured AWS FIS SSM documents 84

https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Network-Latency/description
https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Network-Latency-Sources/description

AWS Fault Injection Service User Guide

aws:ssm:send-command/AWSFIS-Run-Network-Latency-Sources

ARN

arn:aws:ssm:region::document/AWSFIS-Run-Network-Latency-Sources

Document parameters

• Interface – Optional. The network interface. The default is eth0.

• DelayMilliseconds – Optional. The delay, in milliseconds. The default is 200.

• JitterMilliseconds – Optional. The jitter, in milliseconds. The default is 10.

• Sources – Required. The sources, separated by commas. The possible values are: an IPv4 address,
an IPv4 CIDR block, a domain name, DYNAMODB, and S3. If you specify DYNAMODB or S3, this
applies only to the Regional endpoint in the current Region.

• TrafficType – Optional. The type of traffic. The possible values are ingress and egress. The
default is ingress.

• DurationSeconds – Required. The duration of the network latency test, in seconds.

• InstallDependencies – Optional. If the value is True, Systems Manager installs the required
dependencies on the target instances if they are not already installed. The default is True. The
dependencies are atd, dig, jq, and tc.

The following is an example of the string you can enter in the console.

{"DelayMilliseconds":"200", "JitterMilliseconds":"15",
 "Sources":"S3,www.example.com,72.21.198.67", "Interface":"eth0",
 "TrafficType":"egress", "DurationSeconds":"60", "InstallDependencies":"True"}

AWSFIS-Run-Network-Packet-Loss

Adds packet loss to the network interface using the tc tool. Uses the AWSFIS-Run-Network-Packet-
Loss SSM document.

Action type (console only)

aws:ssm:send-command/AWSFIS-Run-Network-Packet-Loss

ARN

Pre-configured AWS FIS SSM documents 85

https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Network-Packet-Loss/description
https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Network-Packet-Loss/description

AWS Fault Injection Service User Guide

arn:aws:ssm:region::document/AWSFIS-Run-Network-Packet-Loss

Document parameters

• Interface – Optional. The network interface. The default is eth0.

• LossPercent – Optional. The percentage of packet loss. The default is 7%.

• DurationSeconds – Required. The duration of the network packet loss test, in seconds.

• InstallDependencies – Optional. If the value is True, Systems Manager installs the required
dependencies on the target instances. The default is True. The dependencies are atd, dig, and tc.

The following is an example of the string you can enter in the console.

{"LossPercent":"15", "Interface":"eth0", "DurationSeconds":"60",
 "InstallDependencies":"True"}

AWSFIS-Run-Network-Packet-Loss-Sources

Adds packet loss to the network interface using the tc tool for traffic to or from specific sources.
Uses the AWSFIS-Run-Network-Packet-Loss-Sources SSM document.

Action type (console only)

aws:ssm:send-command/AWSFIS-Run-Network-Packet-Loss-Sources

ARN

arn:aws:ssm:region::document/AWSFIS-Run-Network-Packet-Loss-Sources

Document parameters

• Interface – Optional. The network interface. The default is eth0.

• LossPercent – Optional. The percentage of packet loss. The default is 7%.

• Sources – Required. The sources, separated by commas. The possible values are: an IPv4 address,
an IPv4 CIDR block, a domain name, DYNAMODB, and S3. If you specify DYNAMODB or S3, this
applies only to the Regional endpoint in the current Region.

• TrafficType – Optional. The type of traffic. The possible values are ingress and egress. The
default is ingress.

• DurationSeconds – Required. The duration of the network packet loss test, in seconds.

Pre-configured AWS FIS SSM documents 86

https://console.aws.amazon.com/systems-manager/documents/AWSFIS-Run-Network-Packet-Loss-Sources/description

AWS Fault Injection Service User Guide

• InstallDependencies – Optional. If the value is True, Systems Manager installs the required
dependencies on the target instances. The default is True. The dependencies are atd, dig, jq,
and tc.

The following is an example of the string you can enter in the console.

{"LossPercent":"15", "Sources":"S3,www.example.com,72.21.198.67", "Interface":"eth0",
 "TrafficType":"egress", "DurationSeconds":"60", "InstallDependencies":"True"}

Examples

For an example experiment template, see the section called “Run a pre-configured AWS FIS SSM
document”.

For an example tutorial, see Run CPU stress on an instance.

Troubleshooting

Use the following procedure to troubleshoot issues.

To troubleshoot issues with SSM documents

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-
manager/.

2. In the navigation pane, choose Node Management, Run Command.

3. On the Command history tab, use the filters to locate the run of the document.

4. Choose the ID of the command to open its details page.

5. Choose the ID of the instance. Review the output and errors for each step.

Use the AWS FIS aws:ecs:task actions

You can use the aws:ecs:task actions to inject faults into your Amazon ECS tasks.

These actions use an SSM agent as a sidecar container to run SSM documents that will perform the
fault injection and registers Amazon ECS tasks as SSM managed instances via the sidecar container.
To use these actions, you will need to update your Amazon ECS task definitions to add the SSM
agent as a sidecar container so that it registers the task where its running as an SSM managed

Examples 87

https://console.aws.amazon.com/systems-manager/
https://console.aws.amazon.com/systems-manager/

AWS Fault Injection Service User Guide

instance. When you run a AWS FIS experiment targeting aws:ecs:task, AWS FIS maps the
target Amazon ECS tasks you specify on a AWS FIS experiment template to a set of SSM managed
instances using a resource tag, ECS_TASK_ARN, that is added to the managed instance. The tag
value is the ARN of the associated Amazon ECS task where the SSM documents should be executed,
so should not be removed when running the experiment.

Actions

• the section called “aws:ecs:task-cpu-stress”

• the section called “aws:ecs:task-io-stress”

• the section called “aws:ecs:task-kill-process”

• the section called “aws:ecs:task-network-blackhole-port”

• the section called “aws:ecs:task-network-latency”

• the section called “aws:ecs:task-network-packet-loss”

Limitations

• The following actions do not work with AWS Fargate:

• aws:ecs:task-kill-process

• aws:ecs:task-network-blackhole-port

• aws:ecs:task-network-latency

• aws:ecs:task-network-packet-loss

• If you enabled ECS Exec, you must disable it before you can use these actions.

Requirements

• Add the following permissions to the AWS FIS experiment role:

• ssm:SendCommand

• ssm:ListCommands

• ssm:CancelCommand

• Add the following permissions to the Amazon ECS task IAM role:

• ssm:CreateActivation

• ssm:AddTagsToResource

Actions 88

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

AWS Fault Injection Service User Guide

• iam:PassRole

Note that you can specify the ARN of the managed instance role as the resource for
iam:PassRole.

• Create an Amazon ECS task execution IAM role and add the AmazonECSTaskExecutionRolePolicy
managed policy.

• Add the following permissions to the managed instance role attached to tasks registered as
managed instances:

• ssm:DeleteActivation

• ssm:DeregisterManagedInstance

• Add the AmazonSSMManagedInstanceCore managed policy to the managed instance role
attached to tasks registered as managed instances.

• Set the environment variable MANAGED_INSTANCE_ROLE_NAME to the name of the managed
instance role.

• Add an SSM agent container to the ECS task definition. The command script registers ECS tasks
as managed instances.

{
 "name": "amazon-ssm-agent",
 "image": "public.ecr.aws/amazon-ssm-agent/amazon-ssm-agent:latest",
 "cpu": 0,
 "links": [],
 "portMappings": [],
 "essential": false,
 "entryPoint": [],
 "command": [
 "/bin/bash",
 "-c",
 "set -e; yum upgrade -y; yum install jq procps awscli -y; term_handler()
 { echo \"Deleting SSM activation $ACTIVATION_ID\"; if ! aws ssm delete-
activation --activation-id $ACTIVATION_ID --region $ECS_TASK_REGION; then
 echo \"SSM activation $ACTIVATION_ID failed to be deleted\" 1>&2; fi;
 MANAGED_INSTANCE_ID=$(jq -e -r .ManagedInstanceID /var/lib/amazon/ssm/registration);
 echo \"Deregistering SSM Managed Instance $MANAGED_INSTANCE_ID\"; if ! aws
 ssm deregister-managed-instance --instance-id $MANAGED_INSTANCE_ID --region
 $ECS_TASK_REGION; then echo \"SSM Managed Instance $MANAGED_INSTANCE_ID
 failed to be deregistered\" 1>&2; fi; kill -SIGTERM $SSM_AGENT_PID; }; trap
 term_handler SIGTERM SIGINT; if [[-z $MANAGED_INSTANCE_ROLE_NAME]]; then
 echo \"Environment variable MANAGED_INSTANCE_ROLE_NAME not set, exiting\"

Requirements 89

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonECSTaskExecutionRolePolicy.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSSMManagedInstanceCore.html

AWS Fault Injection Service User Guide

 1>&2; exit 1; fi; if ! ps ax | grep amazon-ssm-agent | grep -v grep > /dev/
null; then if [[-n $ECS_CONTAINER_METADATA_URI_V4]] ; then echo \"Found ECS
 Container Metadata, running activation with metadata\"; TASK_METADATA=$(curl
 \"${ECS_CONTAINER_METADATA_URI_V4}/task\"); ECS_TASK_AVAILABILITY_ZONE=$(echo
 $TASK_METADATA | jq -e -r '.AvailabilityZone'); ECS_TASK_ARN=$(echo $TASK_METADATA
 | jq -e -r '.TaskARN'); ECS_TASK_REGION=$(echo $ECS_TASK_AVAILABILITY_ZONE | sed
 's/.$//'); ECS_TASK_AVAILABILITY_ZONE_REGEX='^(af|ap|ca|cn|eu|me|sa|us|us-gov)-
(central|north|(north(east|west))|south|south(east|west)|east|west)-[0-9]{1}[a-z]
{1}$'; if ! [[$ECS_TASK_AVAILABILITY_ZONE =~ $ECS_TASK_AVAILABILITY_ZONE_REGEX]];
 then echo \"Error extracting Availability Zone from ECS Container Metadata,
 exiting\" 1>&2; exit 1; fi; ECS_TASK_ARN_REGEX='^arn:(aws|aws-cn|aws-us-gov):ecs:
[a-z0-9-]+:[0-9]{12}:task/[a-zA-Z0-9_-]+/[a-zA-Z0-9]+$'; if ! [[$ECS_TASK_ARN
 =~ $ECS_TASK_ARN_REGEX]]; then echo \"Error extracting Task ARN from ECS
 Container Metadata, exiting\" 1>&2; exit 1; fi; CREATE_ACTIVATION_OUTPUT=
$(aws ssm create-activation --iam-role $MANAGED_INSTANCE_ROLE_NAME --
tags Key=ECS_TASK_AVAILABILITY_ZONE,Value=$ECS_TASK_AVAILABILITY_ZONE
 Key=ECS_TASK_ARN,Value=$ECS_TASK_ARN Key=FAULT_INJECTION_SIDECAR,Value=true --
region $ECS_TASK_REGION); ACTIVATION_CODE=$(echo $CREATE_ACTIVATION_OUTPUT | jq
 -e -r .ActivationCode); ACTIVATION_ID=$(echo $CREATE_ACTIVATION_OUTPUT | jq -e
 -r .ActivationId); if ! amazon-ssm-agent -register -code $ACTIVATION_CODE -id
 $ACTIVATION_ID -region $ECS_TASK_REGION; then echo \"Failed to register with AWS
 Systems Manager (SSM), exiting\" 1>&2; exit 1; fi; amazon-ssm-agent & SSM_AGENT_PID=
$!; wait $SSM_AGENT_PID; else echo \"ECS Container Metadata not found, exiting\"
 1>&2; exit 1; fi; else echo \"SSM agent is already running, exiting\" 1>&2; exit 1;
 fi"
],
 "environment": [
 {
 "name": "MANAGED_INSTANCE_ROLE_NAME",
 "value": "SSMManagedInstanceRole"
 }
],
 "environmentFiles": [],
 "mountPoints": [],
 "volumesFrom": [],
 "secrets": [],
 "dnsServers": [],
 "dnsSearchDomains": [],
 "extraHosts": [],
 "dockerSecurityOptions": [],
 "dockerLabels": {},
 "ulimits": [],
 "logConfiguration": {},
 "systemControls": []

Requirements 90

AWS Fault Injection Service User Guide

}

For a more readable version of the script, see the section called “Reference version of the script”.

• When using the aws:ecs:task-network-blackhole-port, aws:ecs:task-network-
latency, and aws:ecs:task-network-packet-loss actions, you must update the SSM
Agent container in the ECS task definition using one of the following options.

• Option 1 – Add the specific Linux capability.

"linuxParameters": {
 "capabilities": {
 "add": [
 "NET_ADMIN"
]
 }
},

• Option 2 – Add all Linux capabilities.

"privileged": true,

• When using the aws:ecs:task-kill-process, aws:ecs:task-network-blackhole-
port, aws:ecs:task-network-latency, and aws:ecs:task-network-packet-loss
actions, the ECS task definition must have pidMode set to task.

Reference version of the script

The following is a more readable version of the script in the Requirements section, for your
reference.

#!/usr/bin/env bash

This is the activation script used to register ECS tasks as Managed Instances in SSM
The script retrieves information form the ECS task metadata endpoint to add three
 tags to the Managed Instance
- ECS_TASK_AVAILABILITY_ZONE: To allow customers to target Managed Instances / Tasks
 in a specific Availability Zone
- ECS_TASK_ARN: To allow customers to target Managed Instances / Tasks by using the
 Task ARN
- FAULT_INJECTION_SIDECAR: To make it clear that the tasks were registered as
 managed instance for fault injection purposes. Value is always 'true'.

Reference version of the script 91

AWS Fault Injection Service User Guide

The script will leave the SSM Agent running in the background
When the container running this script receives a SIGTERM or SIGINT signal, it will
 do the following cleanup:
- Delete SSM activation
- Deregister SSM managed instance

set -e # stop execution instantly as a query exits while having a non-zero

yum upgrade -y
yum install jq procps awscli -y

term_handler() {
 echo "Deleting SSM activation $ACTIVATION_ID"
 if ! aws ssm delete-activation --activation-id $ACTIVATION_ID --region
 $ECS_TASK_REGION; then
 echo "SSM activation $ACTIVATION_ID failed to be deleted" 1>&2
 fi

 MANAGED_INSTANCE_ID=$(jq -e -r .ManagedInstanceID /var/lib/amazon/ssm/registration)
 echo "Deregistering SSM Managed Instance $MANAGED_INSTANCE_ID"
 if ! aws ssm deregister-managed-instance --instance-id $MANAGED_INSTANCE_ID --region
 $ECS_TASK_REGION; then
 echo "SSM Managed Instance $MANAGED_INSTANCE_ID failed to be deregistered" 1>&2
 fi

 kill -SIGTERM $SSM_AGENT_PID
}
trap term_handler SIGTERM SIGINT

check if the required IAM role is provided
if [[-z $MANAGED_INSTANCE_ROLE_NAME]] ; then
 echo "Environment variable MANAGED_INSTANCE_ROLE_NAME not set, exiting" 1>&2
 exit 1
fi

check if the agent is already running (it will be if ECS Exec is enabled)
if ! ps ax | grep amazon-ssm-agent | grep -v grep > /dev/null; then

 # check if ECS Container Metadata is available
 if [[-n $ECS_CONTAINER_METADATA_URI_V4]] ; then

 # Retrieve info from ECS task metadata endpoint
 echo "Found ECS Container Metadata, running activation with metadata"
 TASK_METADATA=$(curl "${ECS_CONTAINER_METADATA_URI_V4}/task")

Reference version of the script 92

AWS Fault Injection Service User Guide

 ECS_TASK_AVAILABILITY_ZONE=$(echo $TASK_METADATA | jq -e -r '.AvailabilityZone')
 ECS_TASK_ARN=$(echo $TASK_METADATA | jq -e -r '.TaskARN')
 ECS_TASK_REGION=$(echo $ECS_TASK_AVAILABILITY_ZONE | sed 's/.$//')

 # validate ECS_TASK_AVAILABILITY_ZONE
 ECS_TASK_AVAILABILITY_ZONE_REGEX='^(af|ap|ca|cn|eu|me|sa|us|us-gov)-(central|north|
(north(east|west))|south|south(east|west)|east|west)-[0-9]{1}[a-z]{1}$'
 if ! [[$ECS_TASK_AVAILABILITY_ZONE =~ $ECS_TASK_AVAILABILITY_ZONE_REGEX]] ; then
 echo "Error extracting Availability Zone from ECS Container Metadata, exiting"
 1>&2
 exit 1
 fi

 # validate ECS_TASK_ARN
 ECS_TASK_ARN_REGEX='^arn:(aws|aws-cn|aws-us-gov):ecs:[a-z0-9-]+:[0-9]{12}:task/[a-
zA-Z0-9_-]+/[a-zA-Z0-9]+$'
 if ! [[$ECS_TASK_ARN =~ $ECS_TASK_ARN_REGEX]] ; then
 echo "Error extracting Task ARN from ECS Container Metadata, exiting" 1>&2
 exit 1
 fi

 # Create activation tagging with Availability Zone and Task ARN
 CREATE_ACTIVATION_OUTPUT=$(aws ssm create-activation \
 --iam-role $MANAGED_INSTANCE_ROLE_NAME \
 --tags Key=ECS_TASK_AVAILABILITY_ZONE,Value=$ECS_TASK_AVAILABILITY_ZONE
 Key=ECS_TASK_ARN,Value=$ECS_TASK_ARN Key=FAULT_INJECTION_SIDECAR,Value=true \
 --region $ECS_TASK_REGION)

 ACTIVATION_CODE=$(echo $CREATE_ACTIVATION_OUTPUT | jq -e -r .ActivationCode)
 ACTIVATION_ID=$(echo $CREATE_ACTIVATION_OUTPUT | jq -e -r .ActivationId)

 # Register with AWS Systems Manager (SSM)
 if ! amazon-ssm-agent -register -code $ACTIVATION_CODE -id $ACTIVATION_ID -region
 $ECS_TASK_REGION; then
 echo "Failed to register with AWS Systems Manager (SSM), exiting" 1>&2
 exit 1
 fi

 # the agent needs to run in the background, otherwise the trapped signal
 # won't execute the attached function until this process finishes
 amazon-ssm-agent &
 SSM_AGENT_PID=$!

 # need to keep the script alive, otherwise the container will terminate

Reference version of the script 93

AWS Fault Injection Service User Guide

 wait $SSM_AGENT_PID

 else
 echo "ECS Container Metadata not found, exiting" 1>&2
 exit 1
 fi

else
 echo "SSM agent is already running, exiting" 1>&2
 exit 1
fi

Example experiment template

The following is an example experiment template for the the section called “aws:ecs:task-cpu-
stress” action.

{
 "description": "Run CPU stress on the target ECS tasks",
 "targets": {
 "myTasks": {
 "resourceType": "aws:ecs:task",
 "resourceArns": [
 "arn:aws:ecs:us-east-1:111122223333:task/my-
cluster/09821742c0e24250b187dfed8EXAMPLE"
],
 "selectionMode": "ALL"
 }
 },
 "actions": {
 "EcsTask-cpu-stress": {
 "actionId": "aws:ecs:task-cpu-stress",
 "parameters": {
 "duration": "PT1M"
 },
 "targets": {
 "Tasks": "myTasks"
 }
 }
 },
 "stopConditions": [
 {
 "source": "none",

Example experiment template 94

AWS Fault Injection Service User Guide

 }
],
 "roleArn": "arn:aws:iam::111122223333:role/fis-experiment-role",
 "tags": {}
}

Use the AWS FIS aws:eks:pod actions

You can use the aws:eks:pod actions to inject faults into the Kubernetes pods running in your EKS
clusters.

Actions

• the section called “aws:eks:pod-cpu-stress”

• the section called “aws:eks:pod-delete”

• the section called “aws:eks:pod-io-stress”

• the section called “aws:eks:pod-memory-stress”

• the section called “aws:eks:pod-network-blackhole-port”

• the section called “aws:eks:pod-network-latency”

• the section called “aws:eks:pod-network-packet-loss”

Limitations

• The following actions do not work with AWS Fargate:

• aws:eks:pod-network-blackhole-port

• aws:eks:pod-network-latency

• aws:eks:pod-network-packet-loss

• The following actions do not support the bridge network mode:

• aws:eks:pod-network-blackhole-port

• aws:eks:pod-network-latency

• aws:eks:pod-network-packet-loss

• You can't identify targets of type aws:eks:pod in your experiment template using resource ARNs
or resource tags. You must identify targets using the required resource parameters.

Use the EKS pod actions 95

https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/networking-networkmode.html

AWS Fault Injection Service User Guide

• The actions aws:eks:pod-network-latency and aws:eks:pod-network-packet-
loss should not be run in parallel and target the same pod. Depending on the value of the
maxErrors parameter you specify, the action may end in completed or in failed state:

• If maxErrorsPercent is 0 (default), the action will end in failed state.

• Otherwise, the failure will add up to the maxErrorsPercent budget. If the number of failed
injections do not reach the provided maxErrors, the action will end up in completed state.

• You can identify these failures from the logs of the injected ephemeral container in the target
pod. It will fail with Exit Code: 16.

• The action aws:eks:pod-network-blackhole-port should not be run in parallel with
other actions that target the same pod and use the same trafficType. Parallel actions using
different traffic types are supported.

• FIS can only monitor the status of fault injection when the securityContext of the target
pods is set to readOnlyRootFilesystem: false. Without this configuration, all EKS pod
actions will fail.

Requirements

• Install the AWS CLI on your computer. This is needed only if you'll use the AWS CLI to create IAM
roles. For more information, see Installing or updating the AWS CLI.

• Install kubectl on your computer. This is needed only to interact with the EKS cluster to
configure or monitor the target application. For more information, see https://kubernetes.io/
docs/tasks/tools/.

• The minimum supported version of EKS is 1.23.

Create a service role for the Kubernetes service account

Create an IAM role to use as a service role. For more information, see the section called
“Experiment role”.

Configure the Kubernetes service account

Configure a Kubernetes service account to run experiments with targets in the specified Kubernetes
namespace. In the following example, the service account is myserviceaccount and the
namespace is default. Note that default is one of the standard Kubernetes namespaces.

Requirements 96

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/

AWS Fault Injection Service User Guide

To configure your Kubernetes service account

1. Create a file named rbac.yaml and add the following.

kind: ServiceAccount
apiVersion: v1
metadata:
 namespace: default
 name: myserviceaccount

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: default
 name: role-experiments
rules:
- apiGroups: [""]
 resources: ["configmaps"]
 verbs: ["get", "create", "patch", "delete"]
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["create", "list", "get", "delete", "deletecollection"]
- apiGroups: [""]
 resources: ["pods/ephemeralcontainers"]
 verbs: ["update"]
- apiGroups: [""]
 resources: ["pods/exec"]
 verbs: ["create"]
- apiGroups: ["apps"]
 resources: ["deployments"]
 verbs: ["get"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: bind-role-experiments
 namespace: default
subjects:
- kind: ServiceAccount
 name: myserviceaccount
 namespace: default

Configure the Kubernetes service account 97

AWS Fault Injection Service User Guide

- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: fis-experiment
roleRef:
 kind: Role
 name: role-experiments
 apiGroup: rbac.authorization.k8s.io

2. Run the following command.

kubectl apply -f rbac.yaml

Map your experiment role to the Kubernetes user

Use the following command to create an identity mapping. For more information, see Manage IAM
users and roles in the eksctl documentation.

eksctl create iamidentitymapping \
 --arn arn:aws:iam::123456789012:role/fis-experiment-role \
 --username fis-experiment \
 --cluster my-cluster

Pod container images

The pod container images provided by AWS FIS are hosted in Amazon ECR. When you reference an
image from Amazon ECR, you must use the full image URI.

AWS Region Image URI

US East (Ohio) 051821878176.dkr.ecr.us-east-2.amazonaws.com/aws-
fis-pod:0.1

US East (N. Virginia) 731367659002.dkr.ecr.us-east-1.amazonaws.com/aws-
fis-pod:0.1

US West (N. Californi
a)

080694859247.dkr.ecr.us-west-1.amazonaws.com/aws-
fis-pod:0.1

Map your experiment role to the Kubernetes user 98

https://eksctl.io/usage/iam-identity-mappings/
https://eksctl.io/usage/iam-identity-mappings/

AWS Fault Injection Service User Guide

AWS Region Image URI

US West (Oregon) 864386544765.dkr.ecr.us-west-2.amazonaws.com/aws-
fis-pod:0.1

Africa (Cape Town) 056821267933.dkr.ecr.af-south-1.amazonaws.com/
aws-fis-pod:0.1

Asia Pacific (Hong
Kong)

246405402639.dkr.ecr.ap-east-1.amazonaws.com/aws-
fis-pod:0.1

Asia Pacific (Mumbai) 524781661239.dkr.ecr.ap-south-1.amazonaws.com/
aws-fis-pod:0.1

Asia Pacific (Seoul) 526524659354.dkr.ecr.ap-northeast-2.amazonaws
.com/aws-fis-pod:0.1

Asia Pacific (Singapor
e)

316401638346.dkr.ecr.ap-southeast-1.amazonaws
.com/aws-fis-pod:0.1

Asia Pacific (Sydney) 488104106298.dkr.ecr.ap-southeast-2.amazonaws
.com/aws-fis-pod:0.1

Asia Pacific (Tokyo) 635234321696.dkr.ecr.ap-northeast-1.amazonaws
.com/aws-fis-pod:0.1

Canada (Central) 490658072207.dkr.ecr.ca-central-1.amazonaws.com/
aws-fis-pod:0.1

Europe (Frankfurt) 713827034473.dkr.ecr.eu-central-1.amazonaws.com/
aws-fis-pod:0.1

Europe (Ireland) 205866052826.dkr.ecr.eu-west-1.amazonaws.com/aws-
fis-pod:0.1

Europe (London) 327424803546.dkr.ecr.eu-west-2.amazonaws.com/aws-
fis-pod:0.1

Pod container images 99

AWS Fault Injection Service User Guide

AWS Region Image URI

Europe (Milan) 478809367036.dkr.ecr.eu-south-1.amazonaws.com/
aws-fis-pod:0.1

Europe (Paris) 154605889247.dkr.ecr.eu-west-3.amazonaws.com/aws-
fis-pod:0.1

Europe (Stockholm) 263175118295.dkr.ecr.eu-north-1.amazonaws.com/
aws-fis-pod:0.1

Middle East (Bahrain) 065825543785.dkr.ecr.me-south-1.amazonaws.com/
aws-fis-pod:0.1

South America (São
Paulo)

767113787785.dkr.ecr.sa-east-1.amazonaws.com/aws-
fis-pod:0.1

AWS GovCloud (US-
East)

246533647532.dkr.ecr.us-gov-east-1.amazonaws.com/
aws-fis-pod:0.1

AWS GovCloud (US-
West)

246529956514.dkr.ecr.us-gov-west-1.amazonaws.com/
aws-fis-pod:0.1

Example experiment template

The following is an example experiment template for the the section called “aws:eks:pod-network-
latency” action.

{
 "description": "Add latency and jitter to the network interface for the target EKS
 pods",
 "targets": {
 "myPods": {
 "resourceType": "aws:eks:pod",
 "parameters": {
 "clusterIdentifier": "mycluster",
 "namespace": "default",
 "selectorType": "labelSelector",
 "selectorValue": "mylabel=mytarget"
 },

Example experiment template 100

AWS Fault Injection Service User Guide

 "selectionMode": "COUNT(3)"
 }
 },
 "actions": {
 "EksPod-latency": {
 "actionId": "aws:eks:pod-network-latency",
 "description": "Add latency",
 "parameters": {
 "kubernetesServiceAccount": "myserviceaccount",
 "duration": "PT5M",
 "delayMilliseconds": "200",
 "jitterMilliseconds": "10",
 "sources": "0.0.0.0/0"
 },
 "targets": {
 "Pods": "myPods"
 }
 }
 },
 "stopConditions": [
 {
 "source": "none",
 }
],
 "roleArn": "arn:aws:iam::111122223333:role/fis-experiment-role",
 "tags": {
 "Name": "EksPodNetworkLatency"
 }
}

List the AWS FIS actions using the AWS CLI

You can use the AWS Command Line Interface (AWS CLI) to view information about the actions
that AWS FIS supports.

Prerequisite

Install the AWS CLI on your computer. To get started, see the AWS Command Line Interface User
Guide. For more information about the commands for AWS FIS, see fis in the AWS CLI Command
Reference.

Example: List the names of all actions

List the actions 101

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/reference/fis/index.html

AWS Fault Injection Service User Guide

You can list the names of all actions using the list-actions command as follows.

aws fis list-actions --query "actions[*].[id]" --output text | sort

The following is example output.

aws:cloudwatch:assert-alarm-state
aws:dynamodb:global-table-pause-replication
aws:ebs:pause-volume-io
aws:ec2:api-insufficient-instance-capacity-error
aws:ec2:asg-insufficient-instance-capacity-error
aws:ec2:reboot-instances
aws:ec2:send-spot-instance-interruptions
aws:ec2:stop-instances
aws:ec2:terminate-instances
aws:ecs:drain-container-instances
aws:ecs:stop-task
aws:eks:inject-kubernetes-custom-resource
aws:eks:terminate-nodegroup-instances
aws:elasticache:interrupt-cluster-az-power
aws:fis:inject-api-internal-error
aws:fis:inject-api-throttle-error
aws:fis:inject-api-unavailable-error
aws:fis:wait
aws:network:disrupt-connectivity
aws:network:route-table-disrupt-cross-region-connectivity
aws:network:transit-gateway-disrupt-cross-region-connectivity
aws:rds:failover-db-cluster
aws:rds:reboot-db-instances
aws:s3:bucket-pause-replication
aws:ssm:send-command
aws:ssm:start-automation-execution

Example: View information about an action

After you have the name of an action, you can view detailed information about the action using the
get-action command as follows.

aws fis get-action --id aws:ec2:reboot-instances

The following is example output.

List the actions 102

https://docs.aws.amazon.com/cli/latest/reference/fis/list-actions.html
https://docs.aws.amazon.com/cli/latest/reference/fis/get-action.html

AWS Fault Injection Service User Guide

{
 "action": {
 "id": "aws:ec2:reboot-instances",
 "description": "Reboot the specified EC2 instances.",
 "targets": {
 "Instances": {
 "resourceType": "aws:ec2:instance"
 }
 },
 "tags": {}
 }
}

List the actions 103

AWS Fault Injection Service User Guide

Experiment templates for AWS FIS

An experiment template contains one or more actions to run on specified targets during an
experiment. It also contains the stop conditions that prevent the experiment from going out of
bounds. After you create an experiment template, you can use it to run an experiment.

Template components

You'll use the following components to construct experiment templates:

Action set

The AWS FIS actions that you want to run. Actions can be run in a set order that you specify, or
they can be run simultaneously. For more information, see Action set.

Targets

The AWS resources on which a specific action is carried out. For more information, see Targets.

Stop conditions

The CloudWatch alarms that define a threshold at which your application performance is not
acceptable. If a stop condition is triggered while an experiment is running, AWS FIS stops the
experiment. For more information, see Stop conditions.

Experiment role

An IAM role that grants AWS FIS the permissions required so that it can run experiments on
your behalf. For more information, see Experiment role.

Experiment options

Options for the experiment template. For more information, see Experiment options.

Your account has quotas related to AWS FIS. For example, there is a quota on the number of
actions per experiment template. For more information, see Quotas and limitations.

Template syntax

The following is the syntax for an experiment template.

{

Template components 104

AWS Fault Injection Service User Guide

 "description": "string",
 "targets": {},
 "actions": {},
 "stopConditions": [],
 "roleArn": "arn:aws:iam::123456789012:role/AllowFISActions",
 "experimentOptions":{},
 "tags": {}
 }

For examples, see Example templates.

Get started

To create an experiment template using the AWS Management Console, see Create an experiment
template.

To create an experiment template using the AWS CLI, see Example AWS FIS experiment templates.

Action set for AWS FIS

To create an experiment template, you must define one or more actions to make up the action set.
For a list of predefined actions provided by AWS FIS, see Actions.

You can run an action only once during an experiment. To run the same AWS FIS action more than
once in the same experiment, add it to the template multiple times using different names.

Contents

• Action syntax

• Action duration

• Example actions

Action syntax

The following is the syntax for an action set.

{
 "actions": {
 "action_name": {
 "actionId": "aws:service:action-type",

Get started 105

AWS Fault Injection Service User Guide

 "description": "string",
 "parameters": {
 "name": "value"
 },
 "startAfter": ["action_name", ...],
 "targets": {
 "resource_type": "target_name"
 }
 }
 }
}

When you define an action, you provide the following:

action_name

A name for the action.

actionId

The action identifier.

description

An optional description.

parameters

Any action parameters.

startAfter

Any actions that must complete before this action can start. Otherwise, the action runs at the
start of the experiment.

targets

Any action targets.

For examples, see the section called “Example actions”.

Action duration

If an action includes a parameter that you can use to specify the duration of the action, by default,
the action is considered complete only after the specified duration has elapsed. If you have set

Action duration 106

AWS Fault Injection Service User Guide

the emptyTargetResolutionMode experiment option to skip, then the action will complete
immediately with status 'skipped' when no targets were resolved. For example, if you specify a
duration of 5 minutes, AWS FIS considers the action complete after 5 minutes. It then starts the
next action, until all actions are complete.

Duration can be either the length of time that an action condition is maintained or the length of
time for which metrics are monitored. For example, latency is injected for the duration of time
specified. For near instantaneous action types, such as terminating an instance, stop conditions are
monitored for the duration of time specified.

If an action includes a post action within the action parameters, the post action runs after the
action completes. The time it takes to complete the post action might cause a delay between the
specified action duration and the beginning of the next action (or the end of the experiment, if all
other actions are complete).

Example actions

The following are example actions.

Examples

• Stop EC2 instances

• Interrupt Spot Instances

• Disrupt network traffic

• Terminate EKS workers

Example: Stop EC2 instances

The following action stops the EC2 instances identified using the target named
targetInstances. After two minutes, it restarts the target instances.

"actions": {
 "stopInstances": {
 "actionId": "aws:ec2:stop-instances",
 "parameters": {
 "startInstancesAfterDuration": "PT2M"
 },
 "targets": {
 "Instances": "targetInstances"

Example actions 107

AWS Fault Injection Service User Guide

 }
 }
}

Example: Interrupt Spot Instances

The following action stops the Spot Instances identified using the target named
targetSpotInstances. It waits two minutes before interrupting the Spot Instance.

"actions": {
 "interruptSpotInstances": {
 "actionId": "aws:ec2:send-spot-instance-interruptions",
 "parameters": {
 "durationBeforeInterruption": "PT2M"
 },
 "targets": {
 "SpotInstances": "targetSpotInstances"
 }
 }
}

Example: Disrupt network traffic

The following action denies traffic between the target subnets and subnets in other Availability
Zones.

"actions": {
 "disruptAZConnectivity": {
 "actionId": "aws:network:disrupt-connectivity",
 "parameters": {
 "scope": "availability-zone",
 "duration": "PT5M"
 },
 "targets": {
 "Subnets": "targetSubnets"
 }
 }
}

Example: Terminate EKS workers

Example actions 108

AWS Fault Injection Service User Guide

The following action terminates 50% of the EC2 instances in the EKS cluster identified using the
target named targetNodeGroups.

"actions": {
 "terminateWorkers": {
 "actionId": "aws:eks:terminate-nodegroup-instances",
 "parameters": {
 "instanceTerminationPercentage": "50"
 },
 "targets": {
 "Nodegroups": "targetNodeGroups"
 }
 }
}

Targets for AWS FIS

A target is one or more AWS resources on which an action is performed by AWS Fault Injection
Service (AWS FIS) during an experiment. Targets can be in the same AWS account as the
experiment, or in a different account using a multi-account experiment. To learn more about
targeting resources in a different account, see Multi-account experiments.

You define targets when you create an experiment template. You can use the same target for
multiple actions in your experiment template.

AWS FIS identifies all targets at the start of the experiment, before starting any of the actions in
the actions set. AWS FIS uses the target resources that it selects for the entire experiment. If no
targets are found, the experiment fails.

Contents

• Target syntax

• Resource types

• Identify target resources

• Resource filters

• Resource parameters

• Selection mode

• Example targets

Targets 109

AWS Fault Injection Service User Guide

• Example filters

Target syntax

The following is the syntax for a target.

{
 "targets": {
 "target_name": {
 "resourceType": "resource-type",
 "resourceArns": [
 "resource-arn"
],
 "resourceTags": {
 "tag-key": "tag-value"
 },
 "parameters": {
 "parameter-name": "parameter-value"
 },
 "filters": [
 {
 "path": "path-string",
 "values": ["value-string"]
 }
],
 "selectionMode": "value"
 }
 }
}

When you define a target, you provide the following:

target_name

A name for the target.

resourceType

The resource type.

resourceArns

The Amazon Resource Names (ARN) of specific resources.

Target syntax 110

AWS Fault Injection Service User Guide

resourceTags

The tags applied to specific resources.

parameters

The parameters that identify targets using specific attributes.

filters

The resource filters scopes the identified target resources using specific attributes.

selectionMode

The selection mode for the identified resources.

For examples, see the section called “Example targets”.

Resource types

Each AWS FIS action is performed on a specific AWS resource type. When you define a target, you
must specify exactly one resource type. When you specify a target for an action, the target must be
the resource type supported by the action.

The following resource types are supported by AWS FIS:

• aws:dynamodb:global-table – An Amazon DynamoDB global table

• aws:ec2:autoscaling-group – An Amazon EC2 Auto Scaling group

• aws:ec2:ebs-volume – An Amazon EBS volume

• aws:ec2:instance – An Amazon EC2 instance

• aws:ec2:spot-instance – An Amazon EC2 Spot Instance

• aws:ec2:subnet – An Amazon VPC subnet

• aws:ec2:transit-gateway – A transit gateway

• aws:ecs:cluster – An Amazon ECS cluster

• aws:ecs:task – An Amazon ECS task

• aws:eks:cluster – An Amazon EKS cluster

• aws:eks:nodegroup – An Amazon EKS node group

• aws:eks:pod – A Kubernetes pod

Resource types 111

AWS Fault Injection Service User Guide

• aws:elasticache:redis-replicationgroup – An ElastiCache Redis Replication Group

• aws:iam:role – An IAM role

• aws:rds:cluster – An Amazon Aurora DB cluster

• aws:rds:db – An Amazon RDS DB instance

• aws:s3:bucket – An Amazon S3 bucket

Identify target resources

When you define a target in the AWS FIS console, you can choose specific AWS resources (of a
specific resource type) to target. Or, you can let AWS FIS identify a group of resources based on the
criteria that you provide.

To identify your target resources, you can specify the following:

• Resource IDs – The resource IDs of specific AWS resources. All resource IDs must represent the
same type of resource.

• Resource tags – The tags applied to specific AWS resources.

• Resource filters – The path and values that represent resources with specific attributes. For more
information, see Resource filters.

• Resource parameters – The parameters that represent resources that meet specific criteria. For
more information, see Resource parameters.

Considerations

• You can't specify both a resource ID and a resource tag for the same target.

• You can't specify both a resource ID and a resource filter for the same target.

• If you specify a resource tag with an empty tag value, it is not equivalent to a wildcard. It
matches resources that have a tag with the specified tag key and an empty tag value.

Resource filters

Resource filters are queries that identify target resources according to specific attributes. AWS
FIS applies the query to the output of an API action that contains the canonical description of the
AWS resource, according to the resource type that you specify. Resources that have attributes that
match the query are included in the target definition.

Identify target resources 112

AWS Fault Injection Service User Guide

Each filter is expressed as an attribute path and possible values. A path is a sequence of elements,
separated by periods, that describe the path to reach an attribute in the output of the Describe
action for a resource. Each element must be expressed in Pascal case, even if the output of the
Describe action for a resource is in camel case. For example, you should use AvailabilityZone,
not availablityZone as an attribute element.

"filters": [
 {
 "path": "component.component.component",
 "values": [
 "string"
]
 }
],

The following table includes the API actions and AWS CLI commands that you can use to get the
canonical descriptions for each resource type. AWS FIS runs these actions on your behalf to apply
the filters that you specify. The corresponding documentation describes the resources that are
included in the results by default. For example, the documentation for DescribeInstances states
that recently terminated instances might appear in the results.

Resource type API action AWS CLI command

aws:ec2:autoscaling-group DescribeAutoScalingGroups describe-auto-scaling-groups

aws:ec2:ebs-volume DescribeVolumes describe-volumes

aws:ec2:instance DescribeInstances describe-instances

aws:ec2:subnet DescribeSubnets describe-subnets

aws:ec2:transit-gateway DescribeTransitGateways describe-transit-gateways

aws:ecs:cluster DescribeClusters describe-clusters

aws:ecs:task DescribeTasks describe-tasks

aws:eks:cluster DescribeClusters describe-clusters

aws:eks:nodegroup DescribeNodegroup describe-nodegroup

Identify target resources 113

https://docs.aws.amazon.com/autoscaling/ec2/APIReference/API_DescribeAutoScalingGroups.html
https://docs.aws.amazon.com/cli/latest/reference/autoscaling/describe-auto-scaling-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeVolumes.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-volumes.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSubnets.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-subnets.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeTransitGateways.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-transit-gateways.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/describe-clusters.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeTasks.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/describe-tasks.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/cli/latest/reference/eks/describe-clusters.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_DescribeNodegroup.html
https://docs.aws.amazon.com/cli/latest/reference/eks/describe-nodegroup.html

AWS Fault Injection Service User Guide

Resource type API action AWS CLI command

aws:elasticache:redis-repli
cationgroup

DescribeReplicationGroups describe-replication-groups

aws:iam:role ListRoles list-roles

aws:rds:cluster DescribeDBClusters describe-db-clusters

aws:rds:db DescribeDBInstances describe-db-instances

aws:s3:bucket ListBuckets list-buckets

The following logic applies to all resource filters:

• Values inside a filter – OR

• Values across filters – AND

For examples, see the section called “Example filters”.

Resource parameters

Resource parameters identify target resources according to specific criteria.

The following resource type supports parameters.

aws:ec2:ebs-volume

• availabilityZoneIdentifier – The code (for example, us-east-1a) of the Availability
Zone that contains the target volumes.

aws:ec2:subnet

• availabilityZoneIdentifier – The code (for example, us-east-1a) or AZ ID (for example,
use1-az1) of the Availability Zone that contains the target subnets.

• vpc – The VPC that contains the target subnets. Does not support more than one VPC per
account.

aws:ecs:task

• cluster – The cluster that contains the target tasks.

Identify target resources 114

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeReplicationGroups.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-replication-groups.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRoles.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-roles.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListBuckets.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/list-buckets.html

AWS Fault Injection Service User Guide

• service – The service that contains the target tasks.

aws:eks:pod

• availabilityZoneIdentifier – Optional. The Availability Zone that contains the target
pods. For example, us-east-1d. We determine the Availability Zone of a pod by comparing
its hostIP and the CIDR of the cluster subnet.

• clusterIdentifier – Required. The name or ARN of the target EKS cluster.

• namespace – Required. The Kubernetes namespace of the target pods.

• selectorType – Required. The selector type. The possible values are labelSelector,
deploymentName, and podName.

• selectorValue – Required. The selector value. This value depends on the value of
selectorType.

• targetContainerName – Optional. The name of the target container as defined in the pod
spec. The default is the first container defined in each target pod spec.

aws:rds:cluster

• writerAvailabilityZoneIdentifiers – Optional. The Availability Zones of the writer
of the DB cluster. Possible values are: a comma separated list of Availability Zone identifiers,
all.

aws:rds:db

• availabilityZoneIdentifiers – Optional. The Availability Zones of the DB instance to
be affected. Possible values are: a comma separated list of Availability Zone identifiers, all.

aws:elasticache:redis-replicationgroup

• availabilityZoneIdentifier – Required. The code (for example, us-east-1a) or AZ ID
(for example, use1-az1) of the Availability Zone that contains the target nodes.

Selection mode

You scope the identified resources by specifying a selection mode. AWS FIS supports the following
selection modes:

• ALL – Run the action on all targets.

• COUNT(n) – Run the action on the specified number of targets, chosen from the identified
targets at random. For example, COUNT(1) selects one of the identified targets.

Selection mode 115

AWS Fault Injection Service User Guide

• PERCENT(n) – Run the action on the specified percentage of targets, chosen from the identified
targets at random. For example, PERCENT(25) selects 25% of the identified targets.

If you have an odd number of resources and specify 50%, AWS FIS rounds down. For example, if
you add five Amazon EC2 instances as targets and scope to 50%, AWS FIS rounds down to two
instances. You can't specify a percentage that is less than one resource. For example, if you add
four Amazon EC2 instances and scope to 5%, AWS FIS can't select an instance.

If you define multiple targets using the same target resource type, AWS FIS can select the same
resource multiple times.

Regardless of which selection mode you use, if the scope that you specify identifies no resources,
the experiment fails.

Example targets

The following are example targets.

Examples

• Instances in the specified VPC with the specified tags

• Tasks with the specified parameters

Example: Instances in the specified VPC with the specified tags

The possible targets for this example are Amazon EC2 instances in the specified VPC with the tag
env=prod. The selection mode specifies that AWS FIS chooses one of these targets at random.

{
 "targets": {
 "randomInstance": {
 "resourceType": "aws:ec2:instance",
 "resourceTags": {
 "env": "prod"
 },
 "filters": [
 {
 "path": "VpcId",
 "values": [

Example targets 116

AWS Fault Injection Service User Guide

 "vpc-aabbcc11223344556"
]
 }
],
 "selectionMode": "COUNT(1)"
 }
 }
}

Example: Tasks with the specified parameters

The possible targets for this example are Amazon ECS tasks with the specified cluster and service.
The selection mode specifies that AWS FIS choose one of these targets at random.

{
 "targets": {
 "randomTask": {
 "resourceType": "aws:ecs:task",
 "parameters": {
 "cluster": "myCluster",
 "service": "myService"
 },
 "selectionMode": "COUNT(1)"
 }
 }
}

Example filters

The following are example filters.

Examples

• EC2 instances

• DB clusters

Example: EC2 instances

When you specify a filter for an action that supports the aws:ec2:instance resource type, AWS FIS
uses the Amazon EC2 describe-instances command and applies the filter to identify the targets.

Example filters 117

AWS Fault Injection Service User Guide

The describe-instances command returns JSON output where each instance is a structure under
Instances. The following is partial output that includes fields marked with italics. We'll
provide examples that use these fields to specify an attribute path from the structure of the JSON
output.

{
 "Reservations": [
 {
 "Groups": [],
 "Instances": [
 {
 "ImageId": "ami-00111111111111111",
 "InstanceId": "i-00aaaaaaaaaaaaaaa",
 "InstanceType": "t2.micro",
 "KeyName": "virginia-kp",
 "LaunchTime": "2020-09-30T11:38:17.000Z",
 "Monitoring": {
 "State": "disabled"
 },
 "Placement": {
 "AvailabilityZone": "us-east-1a",
 "GroupName": "",
 "Tenancy": "default"
 },
 "PrivateDnsName": "ip-10-0-1-240.ec2.internal",
 "PrivateIpAddress": "10.0.1.240",
 "ProductCodes": [],
 "PublicDnsName": "ec2-203-0-113-17.compute-1.amazonaws.com",
 "PublicIpAddress": "203.0.113.17",
 "State": {
 "Code": 16,
 "Name": "running"
 },
 "StateTransitionReason": "",
 "SubnetId": "subnet-aabbcc11223344556",
 "VpcId": "vpc-00bbbbbbbbbbbbbbbbb",
 ...
 },
 ...
 {
 ...
 }
],

Example filters 118

AWS Fault Injection Service User Guide

 "OwnerId": "123456789012",
 "ReservationId": "r-aaaaaabbbbb111111"
 },
 ...
]
}

To select instances in a specific Availability Zone using a resource filter, specify the attribute path
for AvailabilityZone and the code for the Availability Zone as the value. For example:

"filters": [
 {
 "path": "Placement.AvailabilityZone",
 "values": ["us-east-1a"]
 }
],

To select instances in a specific subnet using a resource filter, specify the attribute path for
SubnetId and the ID of the subnet as the value. For example:

"filters": [
 {
 "path": "SubnetId",
 "values": ["subnet-aabbcc11223344556"]
 }
],

To select instances that are in a specific instance state, specify the attribute path for Name and one
of the following state names as the value: pending | running | shutting-down | terminated |
stopping | stopped. For example:

"filters": [
 {
 "path": "State.Name",
 "values": ["running"]
 }
],

Example: Amazon RDS cluster (DB cluster)

Example filters 119

AWS Fault Injection Service User Guide

When you specify a filter for an action that supports the aws:rds:cluster resource type, AWS FIS
runs the Amazon RDS describe-db-clusters command and applies the filter to identify the targets.

The describe-db-clusters command returns JSON output similar to the following for each DB
cluster. The following is partial output that includes fields marked with italics. We'll provide
examples that use these fields to specify an attribute path from the structure of the JSON output.

[
 {
 "AllocatedStorage": 1,
 "AvailabilityZones": [
 "us-east-2a",
 "us-east-2b",
 "us-east-2c"
],
 "BackupRetentionPeriod": 7,
 "DatabaseName": "",
 "DBClusterIdentifier": "database-1",
 "DBClusterParameterGroup": "default.aurora-postgresql11",
 "DBSubnetGroup": "default-vpc-01234567abc123456",
 "Status": "available",
 "EarliestRestorableTime": "2020-11-13T15:08:32.211Z",
 "Endpoint": "database-1.cluster-example.us-east-2.rds.amazonaws.com",
 "ReaderEndpoint": "database-1.cluster-ro-example.us-east-2.rds.amazonaws.com",
 "MultiAZ": false,
 "Engine": "aurora-postgresql",
 "EngineVersion": "11.7",
 ...
 }
]

To apply a resource filter that returns only the DB clusters that use a specific DB engine, specify
the attribute path as Engine and the value as aurora-postgresql as shown in the following
example.

"filters": [
 {
 "path": "Engine",
 "values": ["aurora-postgresql"]
 }
],

Example filters 120

AWS Fault Injection Service User Guide

To apply a resource filter that returns only the DB clusters in a specific Availability Zone, specify the
attribute path and value as shown in the following example.

"filters": [
 {
 "path": "AvailabilityZones",
 "values": ["us-east-2a"]
 }
],

Stop conditions for AWS FIS

AWS Fault Injection Service (AWS FIS) provides controls and guardrails for you to run experiments
safely on AWS workloads. A stop condition is a mechanism to stop an experiment if it reaches a
threshold that you define as an Amazon CloudWatch alarm. If a stop condition is triggered during
an experiment, AWS FIS stops the experiment. You cannot resume a stopped experiment.

To create a stop condition, first define the steady state for your application or service. The steady
state is when your application is performing optimally, defined in terms of business or technical
metrics. For example, latency, CPU load, or number of retries. You can use the steady state to
create a CloudWatch alarm that you can use to stop an experiment if your application or service
reaches a state where its performance is not acceptable. For more information, see Using Amazon
CloudWatch alarms in the Amazon CloudWatch User Guide.

Your account has a quota on the number of stop conditions that you can specify in an experiment
template. For more information, see Quotas and limitations for AWS Fault Injection Service.

Stop condition syntax

When you create an experiment template, you specify one or more stop conditions by specifying
the CloudWatch alarms that you created.

{
 "stopConditions": [
 {
 "source": "aws:cloudwatch:alarm",
 "value": "arn:aws:cloudwatch:region:123456789012:alarm:alarm-name"
 }
]

Stop conditions 121

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

AWS Fault Injection Service User Guide

}

The following example indicates that the experiment template does not specify a stop condition.

{
 "stopConditions": [
 {
 "source": "none"
 }
]
}

Learn more

For a tutorial that demonstrates how to create a CloudWatch alarm and add a stop condition to an
experiment template, see Run CPU stress on an instance.

For more information about the CloudWatch metrics that are available for the resource types
supported by AWS FIS, see the following:

• Monitor your instances using CloudWatch

• Amazon ECS CloudWatch metrics

• Monitoring Amazon RDS metrics using CloudWatch

• Monitoring Run Command metrics using CloudWatch

IAM roles for AWS FIS experiments

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. To use AWS FIS, you must create an IAM role that grants AWS
FIS the permissions required so that AWS FIS can run experiments on your behalf. You specify this
experiment role when you create an experiment template. For a single-account experiment, the
IAM policy for the experiment role must grant permission to modify the resources that you specify
as targets in your experiment template. For a multi-account experiment, the experiment role must
grant the orchestrator role permission to assume the IAM role for each target account. For more
information, see Permissions for multi-account experiments.

We recommend that you follow the standard security practice of granting least privilege. You can
do so by specifying specific resource ARNs or tags in your policies.

Learn more 122

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-cloudwatch.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-metrics.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/monitoring-cloudwatch.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/monitoring-cloudwatch-metrics.html

AWS Fault Injection Service User Guide

To help you get started with AWS FIS quickly, we provide AWS managed policies that you can
specify when you create an experiment role. Alternatively, you can also use these policies as a
model as you create your own inline policy documents.

Contents

• Prerequisites

• Option 1: Create an experiment role and attach an AWS managed policy

• Option 2: Create an experiment role and add an inline policy document

Prerequisites

Before you begin, install the AWS CLI and create the required trust policy.

Install the AWS CLI

Before you begin, install and configure the AWS CLI. When you configure the AWS CLI, you
are prompted for AWS credentials. The examples in this procedure assume that you also
configured a default Region. Otherwise, add the --region option to each command. For more
information, see Installing or updating the AWS CLI and Configuring the AWS CLI.

Create a trust relationship policy

An experiment role must have a trust relationship that allows the AWS FIS service to assume
the role. Create a text file named fis-role-trust-policy.json and add the following trust
relationship policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "fis.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Prerequisites 123

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

AWS Fault Injection Service User Guide

We recommend that you use the aws:SourceAccount and aws:SourceArn condition keys to
protect yourself against the confused deputy problem. The source account is the owner of the
experiment and the source ARN is the ARN of the experiment. For example, you should add the
following condition block to your trust policy.

"Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account_id"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:fis:region:account_id:experiment/*"
 }
}

Add permissions to assume target account roles (multi-account experiments only)

For multi-account experiments, you need permissions that allows orchestrator account to
assume target account roles. You can modify the following example and add as an inline policy
document to assume target account roles:

{
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource":[
 "arn:aws:iam::target_account_id:role/role_name"
]
}

Option 1: Create an experiment role and attach an AWS managed
policy

Use one of the AWS managed policies from AWS FIS to get started quickly.

To create an experiment role and attach an AWS managed policy

1. Verify that there is a managed policy for the AWS FIS actions in your experiment. Otherwise,
you'll need to create your own inline policy document instead. For more information, see the
section called “AWS managed policies”.

Option 1: Create an experiment role and attach an AWS managed policy 124

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

AWS Fault Injection Service User Guide

2. Use the following create-role command to create a role and add the trust policy that you
created in the prerequisites.

aws iam create-role --role-name my-fis-role --assume-role-policy-document
 file://fis-role-trust-policy.json

3. Use the following attach-role-policy command to attach the AWS managed policy.

aws iam attach-role-policy --role-name my-fis-role --policy-arn fis-policy-arn

Where fis-policy-arn is one of the following:

• arn:aws:iam::aws:policy/service-role/AWSFaultInjectionSimulatorEC2Access

• arn:aws:iam::aws:policy/service-role/AWSFaultInjectionSimulatorECSAccess

• arn:aws:iam::aws:policy/service-role/AWSFaultInjectionSimulatorEKSAccess

• arn:aws:iam::aws:policy/service-role/AWSFaultInjectionSimulatorNetworkAccess

• arn:aws:iam::aws:policy/service-role/AWSFaultInjectionSimulatorRDSAccess

• arn:aws:iam::aws:policy/service-role/AWSFaultInjectionSimulatorSSMAccess

Option 2: Create an experiment role and add an inline policy document

Use this option for actions that don't have a managed policy, or to include only the permissions
that are required for your specific experiment.

To create an experiment and add an inline policy document

1. Use the following create-role command to create a role and add the trust policy that you
created in the prerequisites.

aws iam create-role --role-name my-fis-role --assume-role-policy-document
 file://fis-role-trust-policy.json

2. Create a text file named fis-role-permissions-policy.json and add a permissions
policy. For an example that you can use as a starting point, see the following.

• Fault injection actions – Start from the following policy.

{
Option 2: Create an experiment role and add an inline policy document 125

https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html

AWS Fault Injection Service User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowFISExperimentRoleFaultInjectionActions",
 "Effect": "Allow",
 "Action": [
 "fis:InjectApiInternalError",
 "fis:InjectApiThrottleError",
 "fis:InjectApiUnavailableError"
],
 "Resource": "arn:*:fis:*:*:experiment/*"
 }
]
}

• Amazon EBS actions – Start from the following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVolumes"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:PauseVolumeIO"
],
 "Resource": "arn:aws:ec2:*:*:volume/*"
 }
]
}

• Amazon EC2 actions – Start from the AWSFaultInjectionSimulatorEC2Access policy.

• Amazon ECS actions – Start from the AWSFaultInjectionSimulatorECSAccess policy.

• Amazon EKS actions – Start from the AWSFaultInjectionSimulatorEKSAccess policy.

• Network actions – Start from the AWSFaultInjectionSimulatorNetworkAccess policy.

• Amazon RDS actions – Start from the AWSFaultInjectionSimulatorRDSAccess policy.

Option 2: Create an experiment role and add an inline policy document 126

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEC2Access.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorECSAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEKSAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorNetworkAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorRDSAccess.html

AWS Fault Injection Service User Guide

• Systems Manager actions – Start from the AWSFaultInjectionSimulatorSSMAccess policy.

3. Use the following put-role-policy command to add the permissions policy that you created in
the previous step.

aws iam put-role-policy --role-name my-fis-role --policy-name my-fis-policy --
policy-document file://fis-role-permissions-policy.json

Experiment options

Experiment options are optional settings for an experiment. You can define certain experiment
options on the experiment template. Additional experiment options are set when you begin the
experiment.

The following is the syntax for experiment options that you define on the experiment template.

{
 "experimentOptions": {
 "accountTargeting": "single-account | multi-account",
 "emptyTargetResolutionMode": "fail | skip"
 }
}

If you do not specify any experiment options when you create the experiment template, the
default for each option is used.

The following is the syntax for experiment options that you set when you begin the experiment.

{
 "experimentOptions": {
 "actionsMode": "run-all | skip-all"
 }
}

If you do not specify any experiment options when you begin the experiment, the default run-all
is used.

Contents

• Account targeting

Experiment options 127

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorSSMAccess.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html

AWS Fault Injection Service User Guide

• Empty target resolution mode

• Actions mode

Account targeting

If you have multiple AWS accounts with resources that you want to target in an experiment, you
can define a multi-account experiment using the account targeting experiment option. You run
multi-account experiments from an orchestrator account that impacts resources in multiple target
accounts. The orchestrator account owns the AWS FIS experiment template and experiment. A
target account is an individual AWS account with resources that can be affected by an AWS FIS
experiment. For more information, see Multi-account experiments for AWS FIS.

You use account targeting to indicate the location of your target resources. You can provide two
values for account targeting:

• single-account – Default. The experiment will only target resources in the AWS account where
AWS FIS experiment runs.

• multi-account – The experiment can target resources in multiple AWS accounts.

Target account configurations

To run a multi-account experiment, you must define one or more target account configurations. A
target account configuration specifies the accountId, roleArn, and description for each account with
resources targeted in the experiment. The account IDs of the target account configurations for an
experiment template must be unique.

When you create a multi-account experiment template, the experiment template will return a
read-only field, targetAccountConfigurationsCount, that is a count of all the target account
configurations for the experiment template.

The following is the syntax for a target account configuration.

{
 accountId: "123456789012",
 roleArn: "arn:aws:iam::123456789012:role/AllowFISActions",
 description: "fis-ec2-test"
}

Account targeting 128

AWS Fault Injection Service User Guide

When you create a target account configuration, you provide the following:

accountId

12-digit AWS account ID of the target account.

roleArn

An IAM Role granting AWS FIS permissions to take actions in target account.

description

An optional description.

To learn more about how to work with target account configurations, see the section called “Work
with multi-account experiments”.

Empty target resolution mode

This mode gives you the option to allow experiments to complete even when a target resource is
not resolved.

• fail – Default. If no resources are resolved for the target, the experiment is terminated
immediately with a status of failed.

• skip – If no resources are resolved for the target, the experiment will continue and any actions
with no resolved targets are skipped. Actions with targets that are defined using unique
identifiers, such as ARNs, cannot be skipped. If a target defined using a unique identifier is not
found the experiment is terminated immediately with a status of failed

Actions mode

Actions mode is an optional parameter that you can specify when you start an experiment. You can
set actions mode to skip-all to generate a target preview before injecting faults into your target
resources. The target preview allows you to verify the following:

• That you have configured your experiment template to target the resources you expect. The
actual resources that are targeted when you start this experiment may be different from the
preview because resources may be removed, updated, or sampled randomly.

• That your logging configurations are set up correctly.

Empty target resolution mode 129

AWS Fault Injection Service User Guide

• That for multi-account experiments you have correctly set up an IAM role for each of your target
account configurations.

Note

The skip-all mode does not allow you to verify that you have the necessary permissions
to run the AWS FIS experiment and take actions on your resources.

The actions mode parameter accepts the following values:

• run-all - (Default) The experiment will take actions on target resources.

• skip-all - The experiment will skip all actions on target resources.

To learn more about how to set the actions mode parameter when you start an experiment, see
Generate a target preview from an experiment template.

Work with AWS FIS experiment templates

You can create and manage experiment templates using the AWS FIS console or the command line.
After you create an experiment template, you can use it to run an experiment.

Tasks

• Create an experiment template

• View experiment templates

• Generate a target preview from an experiment template

• Start an experiment from a template

• Update an experiment template

• Tag experiment templates

• Delete an experiment template

Create an experiment template

Before you begin, complete the following tasks:

Work with experiment templates 130

AWS Fault Injection Service User Guide

• Plan your experiment.

• Create an IAM role that grants the AWS FIS service permission to perform actions on your behalf.
For more information, see IAM roles for AWS FIS experiments.

• Ensure that you have access to AWS FIS. For more information, see AWS FIS policy examples.

To create an experiment template using the console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. Choose Create experiment template.

4. (Optional) For Account targeting, choose Multiple accounts to configure a multi-account
experiment template.

5. For Account targeting, choose Confirm.

6. For Description and name, enter a description and a name for the template.

7. For Actions, specify the set of actions for the template. For each action, choose Add action
and complete the following:

• For Name, enter a name for the action.

Allowed characters are alphanumeric characters, hyphens (-), and underscores(_). The name
must start with a letter. No spaces are allowed. Each action name must be unique in this
template.

• (Optional) For Description, enter a description for the action. The maximum length is 512
characters.

• (Optional) For Start after, select another action defined in this template that must be
completed before the current action starts. Otherwise, the action runs at the start of the
experiment.

• For Action type, choose the AWS FIS action.

• For Target, choose a target that you defined in the Targets section. If you haven't defined a
target for this action yet, AWS FIS creates a new target for you.

• For Action parameters, specify the parameters for the action. This section appears only if
the AWS FIS action has parameters.

• Choose Save.

Create an experiment template 131

https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

8. For Targets, define the target resources on which to carry out the actions. You must specify
at least one resource ID or one resource tag as a target. Choose Edit to edit the target that
AWS FIS created for you in the previous step, or choose Add target. For each target, do the
following:

• For Name, enter a name for the target.

Allowed characters are alphanumeric characters, hyphens (-), and underscores(_). The name
must start with a letter. No spaces are allowed. Each target name must be unique in this
template.

• For Resource type, choose a resource type that is supported for the action.

• For Target method, do one of the following:

• Choose Resource IDs and then choose or add the resource IDs.

• Choose Resource tags, filters, and parameters and then add the tags and filters that you
need. For more information, see the section called “Identify target resources”.

• For Selection mode, choose Count to run the action on the specified number of identified
targets or choose Percent to run the action on the specified percentage of identified targets.
By default, the action runs on all identified targets.

• Choose Save.

9. To update an action with the target that you created, find the action under Actions, choose
Edit, and then update Target. You can use the same target for multiple actions.

10. (Multi-account experiments only) For Target account configurations, add a Role ARN and
optional description for each target account. To upload the target account role ARNs with a
CSV file, choose Upload role ARNs for all target accounts and then choose Choose .CSV file

11. For Service Access, choose Use an existing IAM role, and then choose the IAM role that
you created as described in the prerequisites for this tutorial. If your role is not displayed,
verify that it has the required trust relationship. For more information, see the section called
“Experiment role”.

12. (Optional) For Stop conditions, select the Amazon CloudWatch alarms for the stop conditions.
For more information, see Stop conditions for AWS FIS.

13. (Optional) For Logs, configure the destination option. To send logs to an S3 bucket, choose
Send to an Amazon S3 bucket and enter the bucket name and prefix. To send logs to
CloudWatch Logs, choose Send to CloudWatch Logs and enter the log group.

Create an experiment template 132

AWS Fault Injection Service User Guide

14. (Optional) For Tags, choose Add new tag and specify a tag key and tag value. The tags that
you add are applied to your experiment template, not the experiments that are run using the
template.

15. Choose Create experiment template. When prompted for confirmation, enter create and
choose Create experiment template.

To create an experiment template using the CLI

Use the create-experiment-template command.

You can load an experiment template from a JSON file.

Use the --cli-input-json parameter.

aws fis create-experiment-template --cli-input-json fileb://<path-to-json-file>

For more information, see Generating a CLI skeleton template in the AWS Command Line Interface
User Guide. For example templates, see Example AWS FIS experiment templates.

View experiment templates

You can view the experiment templates that you created.

To view an experiment template using the console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. To view information about a specific template, select the Experiment template ID.

4. In the Details section, you can view the description and stop conditions for the template.

5. To view the actions for the experiment template, choose Actions.

6. To view the targets for the experiment template, choose Targets.

7. To view the tags for the experiment template, choose Tags.

To view an experiment template using the CLI

Use the list-experiment-templates command to get a list of experiment templates, and use the
get-experiment-template command to get information about a specific experiment template.

View experiment templates 133

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/create-experiment-template.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-skeleton.html
https://console.aws.amazon.com/fis/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/list-experiment-templates.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/get-experiment-template.html

AWS Fault Injection Service User Guide

Generate a target preview from an experiment template

Before you start an experiment, you can generate a target preview to verify that your experiment
template is configured to target the expected resources. The resources that are targeted when
you begin the actual experiment may be different from those in the preview, as resources may
be removed, updated, or sampled randomly. When you generate a target preview, you start an
experiment that skips all actions.

Note

Generating a target preview does not allow you to verify that you have the necessary
permissions to take actions on your resources.

To start a target preview using the console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. To view the targets for the experiment template, choose Targets.

4. To verify your target resources for the experiment template, choose Generate Preview. When
you run an experiment, this target preview will be automatically updated with the targets from
the most recent experiment.

To start a target preview using the CLI

• Run the following start-experiment command. Replace the values in italics with your own
values.

aws fis start-experiment \
 --experiment-options actionsMode=skip-all \
 --experiment-template-id EXTxxxxxxxxx

Start an experiment from a template

After you have created an experiment template, you can start experiments using that template.

Generate a target preview from an experiment template 134

https://console.aws.amazon.com/fis/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/start-experiment.html

AWS Fault Injection Service User Guide

When you start an experiment, we create a snapshot of the specified template and use that
snapshot to run the experiment. Therefore, if the experiment template is updated or deleted while
the experiment is running, those changes have no impact on the running experiment.

When you start an experiment, AWS FIS creates a service-linked role on your behalf. For more
information, see Use service-linked roles for AWS Fault Injection Service.

After you start the experiment, you can stop it at any time. For more information, see Stop an
experiment.

To start an experiment using the console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. (Optional) To generate a preview to verify your targets:

• Choose Targets.

• Choose Generate preview.

4. Select the experiment template, and choose Start experiment.

5. (Optional) To add a tag to your experiment, choose Add new tag and enter a tag key and a tag
value.

6. Choose Start experiment. When prompted for confirmation, enter start and choose Start
experiment.

To start an experiment using the CLI

Use the start-experiment command.

Update an experiment template

You can update an existing experiment template. When you update an experiment template, the
changes do not affect any running experiments that use the template.

To update an experiment template using the console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. Select the experiment template, and choose Actions, Update experiment template.

Update an experiment template 135

https://console.aws.amazon.com/fis/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/start-experiment.html
https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

4. Modify the template details as needed, and choose Update experiment template.

To update an experiment template using the CLI

Use the update-experiment-template command.

Tag experiment templates

You can apply your own tags to experiment templates to help you organize them. You can also
implement tag-based IAM policies to control access to experiment templates.

To tag an experiment template using the console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. Select the experiment template and choose Actions, Manage tags.

4. To add a new tag, choose Add new tag, and then specify a key and value.

To remove a tag, choose Remove for the tag.

5. Choose Save.

To tag an experiment template using the CLI

Use the tag-resource command.

Delete an experiment template

If you no longer need an experiment template, you can delete it. When you delete an experiment
template, any running experiments that use the template are not affected. The experiment
continues to run until completed or stopped. However, experiment templates that are deleted are
not available for viewing from the Experiments page in the console.

To delete an experiment template using the console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. Select the experiment template, and choose Actions, Delete experiment template.

4. When prompted for confirmation, enter delete and choose Delete experiment template.

Tag experiment templates 136

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/update-experiment-template.html
https://console.aws.amazon.com/fis/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/tag-resource.html
https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

To delete an experiment template using the CLI

Use the delete-experiment-template command.

Delete an experiment template 137

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/delete-experiment-template.html

AWS Fault Injection Service User Guide

Example AWS FIS experiment templates

If you're using the AWS FIS API or a command line tool to create an experiment template, you
can construct the template in JavaScript Object Notation (JSON). For more information about the
components of an experiment template, see Template components.

To create an experiment using one of the example templates, save it to a JSON file (for example,
my-template.json), replace the placeholder values in italics with your own values, and then
run the following create-experiment-template command.

aws fis create-experiment-template --cli-input-json file://my-template.json

Example templates

• Stop EC2 instances based on filters

• Stop a specified number of EC2 instances

• Run a pre-configured AWS FIS SSM document

• Run a predefined Automation runbook

• Throttle API actions on EC2 instances with the target IAM role

• Stress test CPU of pods in a Kubernetes cluster

Stop EC2 instances based on filters

The following example stops all running Amazon EC2 instances in the specified Region with the
specified tag in the specified VPC. It restarts them after two minutes.

{
 "tags": {
 "Name": "StopEC2InstancesWithFilters"
 },
 "description": "Stop and restart all instances in us-east-1b with the tag env=prod
 in the specified VPC",
 "targets": {
 "myInstances": {
 "resourceType": "aws:ec2:instance",
 "resourceTags": {
 "env": "prod"

Stop EC2 instances based on filters 138

https://docs.aws.amazon.com/cli/latest/reference/fis/create-experiment-template.html

AWS Fault Injection Service User Guide

 },
 "filters": [
 {
 "path": "Placement.AvailabilityZone",
 "values": ["us-east-1b"]
 },
 {
 "path": "State.Name",
 "values": ["running"]
 },
 {
 "path": "VpcId",
 "values": ["vpc-aabbcc11223344556"]
 }
],
 "selectionMode": "ALL"
 }
 },
 "actions": {
 "StopInstances": {
 "actionId": "aws:ec2:stop-instances",
 "description": "stop the instances",
 "parameters": {
 "startInstancesAfterDuration": "PT2M"
 },
 "targets": {
 "Instances": "myInstances"
 }
 }
 },
 "stopConditions": [
 {
 "source": "aws:cloudwatch:alarm",
 "value": "arn:aws:cloudwatch:us-east-1:111122223333:alarm:alarm-name"
 }
],
 "roleArn": "arn:aws:iam::111122223333:role/role-name"
}

Stop a specified number of EC2 instances

The following example stops three instances with the specified tag. AWS FIS selects the specific
instances to stop at random. It restarts these instances after two minutes.

Stop a specified number of EC2 instances 139

AWS Fault Injection Service User Guide

{
 "tags": {
 "Name": "StopEC2InstancesByCount"
 },
 "description": "Stop and restart three instances with the specified tag",
 "targets": {
 "myInstances": {
 "resourceType": "aws:ec2:instance",
 "resourceTags": {
 "env": "prod"
 },
 "selectionMode": "COUNT(3)"
 }
 },
 "actions": {
 "StopInstances": {
 "actionId": "aws:ec2:stop-instances",
 "description": "stop the instances",
 "parameters": {
 "startInstancesAfterDuration": "PT2M"
 },
 "targets": {
 "Instances": "myInstances"
 }
 }
 },
 "stopConditions": [
 {
 "source": "aws:cloudwatch:alarm",
 "value": "arn:aws:cloudwatch:us-east-1:111122223333:alarm:alarm-name"
 }
],
 "roleArn": "arn:aws:iam::111122223333:role/role-name"
}

Run a pre-configured AWS FIS SSM document

The following example runs a CPU fault injection for 60 seconds on the specified EC2 instance
using a pre-configured AWS FIS SSM document, AWSFIS-Run-CPU-Stress. AWS FIS monitors the
experiment for two minutes.

{

Run a pre-configured AWS FIS SSM document 140

AWS Fault Injection Service User Guide

 "tags": {
 "Name": "CPUStress"
 },
 "description": "Run a CPU fault injection on the specified instance",
 "targets": {
 "myInstance": {
 "resourceType": "aws:ec2:instance",
 "resourceArns": ["arn:aws:ec2:us-east-1:111122223333:instance/instance-
id"],
 "selectionMode": "ALL"
 }
 },
 "actions": {
 "CPUStress": {
 "actionId": "aws:ssm:send-command",
 "description": "run cpu stress using ssm",
 "parameters": {
 "duration": "PT2M",
 "documentArn": "arn:aws:ssm:us-east-1::document/AWSFIS-Run-CPU-Stress",
 "documentParameters": "{\"DurationSeconds\": \"60\",
 \"InstallDependencies\": \"True\", \"CPU\": \"0\"}"
 },
 "targets": {
 "Instances": "myInstance"
 }
 }
 },
 "stopConditions": [
 {
 "source": "aws:cloudwatch:alarm",
 "value": "arn:aws:cloudwatch:us-east-1:111122223333:alarm:alarm-name"
 }
],
 "roleArn": "arn:aws:iam::111122223333:role/role-name"
}

Run a predefined Automation runbook

The following example publishes a notification to Amazon SNS using a runbook provided by
Systems Manager, AWS-PublishSNSNotification. The role must have permissions to publish
notifications to the specified SNS topic.

Run a predefined Automation runbook 141

https://docs.aws.amazon.com/systems-manager-automation-runbooks/latest/userguide/automation-aws-publishsnsnotification.html

AWS Fault Injection Service User Guide

{
 "description": "Publish event through SNS",
 "stopConditions": [
 {
 "source": "none"
 }
],
 "targets": {
 },
 "actions": {
 "sendToSns": {
 "actionId": "aws:ssm:start-automation-execution",
 "description": "Publish message to SNS",
 "parameters": {
 "documentArn": "arn:aws:ssm:us-east-1::document/AWS-
PublishSNSNotification",
 "documentParameters": "{\"Message\": \"Hello, world\", \"TopicArn\":
 \"arn:aws:sns:us-east-1:111122223333:topic-name\"}",
 "maxDuration": "PT1M"
 },
 "targets": {
 }
 }
 },
 "roleArn": "arn:aws:iam::111122223333:role/role-name"
}

Throttle API actions on EC2 instances with the target IAM role

The following example throttles 100% of the API calls specified in the action definition for API calls
made by the IAM role(s) specified in the target definition.

Note

If you wish to target EC2 instances that are members of an Auto Scaling group, please use
the aws:ec2:asg-insufficient-instance-capacity-error action, and target by Auto Scaling
group instead. For more information, see

Injects InsufficientInstanceCapacity error responses on requests made by
the target Auto Scaling groups. This action only supports Auto Scaling groups using

Throttle API actions on EC2 instances with the target IAM role 142

AWS Fault Injection Service User Guide

launch templates. To learn more about insufficient instance capacity errors, see the
Amazon EC2 user guide.

Resource type

• aws:ec2:autoscaling-group

Parameters

• duration – In the AWS FIS API, the value is a string in ISO 8601 format. For
example, PT1M represents one minute. In the AWS FIS console, you enter the
number of seconds, minutes, or hours.

• availabilityzoneIdentifiers – The comma separated list of Availability Zones.
Supports Zone IDs (e.g. "use1-az1, use1-az2") and Zone names (e.g. "us-
east-1a").

• percentage – Optional. The percentage (1-100) of the target Auto Scaling group's
launch requests to inject the fault. The default is 100.

Permissions

• ec2:InjectApiErrorwith condition key ec2:FisActionId value set to
aws:ec2:asg-insufficient-instance-capacity-error and
ec2:FisTargetArns condition key set to target Auto Scaling groups.

• autoscaling:DescribeAutoScalingGroups
For an example policy, see Example: Use condition keys for
ec2:InjectApiError.

.

{
 "tags": {
 "Name": "ThrottleEC2APIActions"
 },
 "description": "Throttle the specified EC2 API actions on the specified IAM role",
 "targets": {
 "myRole": {

Throttle API actions on EC2 instances with the target IAM role 143

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/troubleshooting-launch.html#troubleshooting-launch-capacity

AWS Fault Injection Service User Guide

 "resourceType": "aws:iam:role",
 "resourceArns": ["arn:aws:iam::111122223333:role/role-name"],
 "selectionMode": "ALL"
 }
 },
 "actions": {
 "ThrottleAPI": {
 "actionId": "aws:fis:inject-api-throttle-error",
 "description": "Throttle APIs for 5 minutes",
 "parameters": {
 "service": "ec2",
 "operations": "DescribeInstances,DescribeVolumes",
 "percentage": "100",
 "duration": "PT2M"
 },
 "targets": {
 "Roles": "myRole"
 }
 }
 },
 "stopConditions": [
 {
 "source": "aws:cloudwatch:alarm",
 "value": "arn:aws:cloudwatch:us-east-1:111122223333:alarm:alarm-name"
 }
],
 "roleArn": "arn:aws:iam::111122223333:role/role-name"
}

Stress test CPU of pods in a Kubernetes cluster

The following example uses Chaos Mesh to stress test the CPU of pods in an Amazon EKS
Kubernetes cluster for one minute.

{
 "description": "ChaosMesh StressChaos example",
 "targets": {
 "Cluster-Target-1": {
 "resourceType": "aws:eks:cluster",
 "resourceArns": [
 "arn:aws:eks:arn:aws::111122223333:cluster/cluster-id"
],

Stress test CPU of pods in a Kubernetes cluster 144

AWS Fault Injection Service User Guide

 "selectionMode": "ALL"
 }
 },
 "actions": {
 "TestCPUStress": {
 "actionId": "aws:eks:inject-kubernetes-custom-resource",
 "parameters": {
 "maxDuration": "PT2M",
 "kubernetesApiVersion": "chaos-mesh.org/v1alpha1",
 "kubernetesKind": "StressChaos",
 "kubernetesNamespace": "default",
 "kubernetesSpec": "{\"selector\":{\"namespaces\":[\"default\"],
\"labelSelectors\":{\"run\":\"nginx\"}},\"mode\":\"all\",\"stressors\": {\"cpu\":
{\"workers\":1,\"load\":50}},\"duration\":\"1m\"}"
 },
 "targets": {
 "Cluster": "Cluster-Target-1"
 }
 }
 },
 "stopConditions": [{
 "source": "none"
 }],
 "roleArn": "arn:aws:iam::111122223333:role/role-name",
 "tags": {}
}

The following example uses Litmus to stress test the CPU of pods in an Amazon EKS Kubernetes
cluster for one minute.

{
 "description": "Litmus CPU Hog",
 "targets": {
 "MyCluster": {
 "resourceType": "aws:eks:cluster",
 "resourceArns": [
 "arn:aws:eks:arn:aws::111122223333:cluster/cluster-id"
],
 "selectionMode": "ALL"
 }
 },
 "actions": {
 "MyAction": {

Stress test CPU of pods in a Kubernetes cluster 145

AWS Fault Injection Service User Guide

 "actionId": "aws:eks:inject-kubernetes-custom-resource",
 "parameters": {
 "maxDuration": "PT2M",
 "kubernetesApiVersion": "litmuschaos.io/v1alpha1",
 "kubernetesKind": "ChaosEngine",
 "kubernetesNamespace": "litmus",
 "kubernetesSpec": "{\"engineState\":\"active\",\"appinfo\":
{\"appns\":\"default\",\"applabel\":\"run=nginx\",\"appkind\":\"deployment\"},
\"chaosServiceAccount\":\"litmus-admin\",\"experiments\":[{\"name\":\"pod-cpu-hog
\",\"spec\":{\"components\":{\"env\":[{\"name\":\"TOTAL_CHAOS_DURATION\",\"value\":
\"60\"},{\"name\":\"CPU_CORES\",\"value\":\"1\"},{\"name\":\"PODS_AFFECTED_PERC\",
\"value\":\"100\"},{\"name\":\"CONTAINER_RUNTIME\",\"value\":\"docker\"},{\"name\":
\"SOCKET_PATH\",\"value\":\"/var/run/docker.sock\"}]},\"probe\":[]}}],\"annotationCheck
\":\"false\"}"
 },
 "targets": {
 "Cluster": "MyCluster"
 }
 }
 },
 "stopConditions": [{
 "source": "none"
 }],
 "roleArn": "arn:aws:iam::111122223333:role/role-name",
 "tags": {}
}

Stress test CPU of pods in a Kubernetes cluster 146

AWS Fault Injection Service User Guide

Multi-account experiments for AWS FIS

With a multi-account experiment, you can set up and run real-world failure scenarios on an
application that spans multiple AWS accounts within a Region. You run multi-account experiments
from an orchestrator account that impacts resources in multiple target accounts.

When you run a multi-account experiment, target accounts with affected resources will be notified
via their AWS Health dashboards, providing awareness to users in the target accounts. With multi-
account experiments, you can:

• Run real world failure scenarios on applications that span multiple accounts with the central
controls and guardrails that AWS FIS provides.

• Control the effects of a multi-account experiment using IAM roles with fine-grained permissions
and tags to define the scope of each target.

• Centrally view the actions AWS FIS takes in each account from the AWS Management Console
and through AWS FIS logs.

• Monitor and audit API calls AWS FIS makes in each account with AWS CloudTrail.

This section helps you get started with multi-account experiments.

Topics

• Concepts for multi-account experiments

• Prerequisites for multi-account experiments

• Work with multi-account experiments

Concepts for multi-account experiments

The following are the key concepts for multi-account experiments:

Orchestrator account

The orchestrator account acts as a central account to configure and manage the experiment in
the AWS FIS Console, as well as to centralize logging. The orchestrator account owns the AWS FIS
experiment template and experiment.

Concepts 147

AWS Fault Injection Service User Guide

Target accounts

A target account is an individual AWS account with resources that can be affected by an AWS FIS
multi-account experiment.

Target account configurations

You define the target accounts that are part of an experiment by adding target account
configurations to the experiment template. A target account configuration is an element of the
experiment template that is required for multi-account experiments. You define one for each target
account by setting an AWS account ID, IAM role, and an optional description.

Prerequisites for multi-account experiments

To use stop conditions for a multi-account experiment, you must first configure cross-account
alarms. IAM roles are defined when you create a multi-account experiment template. You can
create the necessary IAM roles before you create the template.

Content

• Permissions for multi-account experiments

• Stop conditions for multi-account experiments (optional)

Permissions for multi-account experiments

Multi-account experiments use IAM role chaining to grant permissions to AWS FIS to take actions
on resources in target accounts. For multi-account experiments, you set up IAM roles in each target
account and the orchestrator account. These IAM roles require a trust relationship between the
target accounts and the orchestrator account, and between the orchestrator account and AWS FIS.

The IAM roles for the target accounts contain the permissions required to take action on resources
and are created for an experiment template by adding target account configurations. You will
create an IAM role for the orchestrator account with permission to assume the roles of target
accounts and establish a trust relationship with AWS FIS. This IAM role is used as the roleArn for
the experiment template.

To learn more about role chaining, see Roles Terms and concepts. in IAM's User Guide

Target accounts 148

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html

AWS Fault Injection Service User Guide

In the following example, you will set up permissions for an orchestrator account A to run an
experiment with aws:ebs:pause-volume-io in target account B.

1. In account B, create an IAM role with the permissions required to run the action. For permissions
required for each action, see the section called “Actions reference”. The following example
shows the permissions a target account grants to run the EBS Pause Volume IO action the
section called “aws:ebs:pause-volume-io”.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVolumes"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:PauseVolumeIO"
],
 "Resource": "arn:aws:ec2:region:accountIdB:volume/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "tag:GetResources"
],
 "Resource": "*"
 }
]
}

2. Next, add a trust policy in account B that creates a trust relationship with account A. Choose a
name for the IAM role for account A, which you will create in step 3.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Permissions 149

AWS Fault Injection Service User Guide

 "Effect": "Allow",
 "Principal": {
 "AWS": "AccountIdA"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringLike":{
 "sts:ExternalId": "arn:aws:fis:region:accountIdA:experiment/*"
 },
 "ArnEquals": {
 "aws:PrincipalArn": "arn:aws:iam::accountIdA:role/role_name"
 }
 }
 }
]
}

3. In account A, create an IAM role. This role name must match the role you specified in the trust
policy in step 2. To target multiple accounts, you grant the orchestrator permissions to assume
each role. The following example shows the permissions for account A to assume account B. If
you have additional target accounts, you will add additional role ARNs to this policy. You can
only have one role ARN per target account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": [
 "arn:aws:iam::accountIdB:role/role_name"
]
 }
]
}

4. This IAM role for account A is used as the roleArn for the experiment template. The following
example shows the trust policy required in the IAM role that grants AWS FIS permissions to
assume account A, the orchestrator account.

{
 "Version": "2012-10-17",

Permissions 150

AWS Fault Injection Service User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "fis.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

You can also use Stacksets to provision multiple IAM roles at one time. To use CloudFormation
StackSets, you will need to set up the necessary StackSet permissions in your AWS accounts. To
learn more, see Working with AWS CloudFormation StackSets.

Stop conditions for multi-account experiments (optional)

A stop condition is a mechanism to stop an experiment if it reaches a threshold that you define
as an alarm. To set up a stop condition for your multi-account experiment, you can use cross-
account alarms. You must enable sharing in each target account to make the alarm available to
the orchestrator account using read-only permissions. Once shared, you can combine metrics from
different target accounts using Metric Math. Then, you can add this alarm as a stop condition for
the experiment.

To learn more about cross-account dashboards, see Enabling cross-account functionality in
CloudWatch.

Work with multi-account experiments

You can create and manage multi-account experiment templates using the AWS FIS console or
the command line. You create a multi-account experiment by specifying the account targeting
experiment option as "multi-account", and adding target account configurations. After you
create a multi-account experiment template, you can use it to run an experiment.

Content

• Best practices for multi-account experiments

• Create a multi-account experiment template

Stop conditions (optional) 151

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/what-is-cfnstacksets.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Cross-Account-Cross-Region.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Cross-Account-Cross-Region.html

AWS Fault Injection Service User Guide

• Update a target account configuration

• Delete a target account configuration

Best practices for multi-account experiments

The following are best practices to using multi-account experiments:

• When you configure targets for multi-account experiments, we recommend targeting with
consistent resource tags across all target accounts. An AWS FIS experiment will resolve resources
with consistent tags in each target account. An action must resolve at least one target resource in
any target account or will fail, except for experiments with emptyTargetResolutionMode set
to skip. Action quotas apply per account. If you want to target resources by resource ARNs, the
same single-account limit per action applies.

• When you target resources in one or more availability zones using parameters or filters, you
should specify an AZ ID, not an AZ name. The AZ ID is a unique and consistent identifier for an
Availability Zone across accounts. To learn how to find the AZ ID for the availability zones in your
account, see Availability Zone IDs for your AWS resources.

Create a multi-account experiment template

To learn how to create an experiment template via the AWS Management Console

See Create an experiment template.

To create an experiment template using the CLI

1. Open the AWS Command Line Interface

2. To create an experiment from a saved JSON file with the account targeting experiment option
set to "multi-account" (for example, my-template.json), replace the placeholder values
in italics with your own values, and then run the following create-experiment-template
command.

aws fis create-experiment-template --cli-input-json file://my-template.json

This will return the experiment template in the response. Copy the id from the response,
which is the ID of the experiment template.

Best practices 152

https://docs.aws.amazon.com/ram/latest/userguide/working-with-az-ids.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/create-experiment-template.html

AWS Fault Injection Service User Guide

3. Run the create-target-account-configuration command to add a target account configuration
to the experiment template. Replace the placeholder values in italics with your own values,
using the id from step 2 as the value for the --experiment-template-id parameter, and
then run the following. The --description parameter is optional. Repeat this step for each
target account.

aws fis create-target-account-configuration --experiment-template-id EXTxxxxxxxxx
 --account-id 111122223333 --role-arn arn:aws:iam::111122223333:role/role-name --
description "my description"

4. Run the get-target-account-configuration command to retrieve the details for a specific target
account configuration.

aws fis get-target-account-configuration --experiment-template-id EXTxxxxxxxxx --
account-id 111122223333

5. Once you have added all your target account configurations, you can run the list-target-
account-configurations command command to see that your target account configurations
have been created.

aws fis list-target-account-configurations --experiment-template-id EXTxxxxxxxxx

You can also verify that you have added target account configurations by running
the get-experiment-template command. The template will return a read-only field
targetAccountConfigurationsCount that is a count of all the target account
configurations on the experiment template.

6. When you are ready, you can run the experiment template using the start-experiment
command.

aws fis start-experiment --experiment-template-id EXTxxxxxxxxx

Update a target account configuration

You can update an existing target account configuration if you want to change the role ARN or
description for the the account. When you update a target account configuration, the changes do
not affect any running experiments that use the template.

Update a target account configuration 153

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/create-target-account-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/get-target-account-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/list-target-account-configurations.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/list-target-account-configurations.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/get-experiment-template.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/start-experiment.html

AWS Fault Injection Service User Guide

To update a target account configuration using the AWS Management Console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates

3. Select the experiment template, and choose Actions, Update experiment template.

4. Modify the target account configurations, and choose Update experiment template.

To update a target account configuration using the CLI

Run the update-target-account-configuration command to command, replacing the placeholder
values in italics with your own values. The --role-arn and --description parameters are
optional, and will not be updated if not included.

aws fis update-target-account-configuration --experiment-template-id EXTxxxxxxxxx
 --account-id 111122223333 --role-arn arn:aws:iam::111122223333:role/role-name --
description "my description"

Delete a target account configuration

If you no longer need a target account configuration, you can delete it. When you delete a target
account configuration, any running experiments that use the template are not affected. The
experiment continues to run until completed or stopped.

To delete a target account configuration using the AWS Management Console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. Select the experiment template, and choose Actions, Update.

4. Under Target account configurations, select Remove for the target account Role ARN you
want to delete.

To delete a target account configuration using the CLI

Run the delete-target-account-configuration command, replacing the placeholder values in
italics with your own values.

Delete a target account configuration 154

https://console.aws.amazon.com/fis/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/update-target-account-configuration.html
https://console.aws.amazon.com/fis/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/delete-target-account-configuration.html

AWS Fault Injection Service User Guide

aws fis update-target-account-configuration --experiment-template-id EXTxxxxxxxxx --
account-id 111122223333

Delete a target account configuration 155

AWS Fault Injection Service User Guide

AWS FIS Scenario library

Scenarios define events or conditions that customers can apply to test the resiliency of their
applications, such as the interruption of compute resources on which the application is running.
Scenarios are created and owned by AWS, and minimize undifferentiated heavy lifting by providing
you with a group of pre-defined targets and fault actions (e.g., stopping 30% of instances in an
autoscaling group) for common application impairments.

Topics

• Working with AWS FIS scenarios

• Scenarios in the AWS FIS scenarios library

• AZ Availability: Power Interruption

• Cross-Region: Connectivity

Working with AWS FIS scenarios

Scenarios are provided through a console-only scenario library and run using an AWS FIS
experiment template. In order to run an experiment using a scenario, you will select the scenario
from the library, specify parameters matching your workload details, and save it as an experiment
template in your account.

Topics

• Viewing a scenario

• Using a scenario

• Exporting a scenario

Viewing a scenario

To view a scenario using the console:

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Scenario library.

3. To view information about a specific scenario, select the scenario card to bring up a split panel.

Working with scenarios 156

https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

• In the Description tab in the split panel at the bottom of the page, you can view a short
description of the scenario. You can also find a short summary of pre-requisites containing
a summary of the target resources required and any actions you need to take to prepare the
resources for use with the scenario. Finally you can also see additional information about the
targets and actions in the scenario as well as the anticipated duration when the experiment
runs successfully with default settings.

• In the Content tab in the split panel at the bottom of the page, you can preview a partially
populated version of the experiment template that will be created from the scenario.

• In the Details tab in the split panel at the bottom of the page, you can find a detailed
explanation how the scenario is implemented. This may contain detailed information about
how individual aspects of the scenario are approximated. Where applicable you can also read
about what metrics to use as stop conditions and to provide observability to learn from the
experiment. Finally you will find recommendations how to expand the resulting experiment
template.

Using a scenario

To use a scenario using the console:

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Scenario library.

3. To view information about a specific scenario, select the scenario card to bring up a split panel

4. To use the scenario, select the scenario card and choose Create template with scenario.

5. In the Create experiment template view fill in any missing items.

a. Some scenarios allow you to bulk edit parameters that are shared across multiple actions
or targets. This functionality will be disabled once you make any changes to the scenario,
including changes by the bulk parameter editing. To use this feature select the Edit bulk
parameters button. Edit parameters in the modal and select the Save button.

b. Some experiment templates may have missing action or target parameters, highlighted
on each action and target card. Select the Edit button for each card, add the missing
information, and select the Save button on the card.

c. All templates require a Service access execution role. You can choose an existing role or
create a new role for this experiment template.

Using a scenario 157

https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

d. We recommend defining one or more optional Stop conditions by selecting an existing AWS
CloudWatch alarm. Learn more about Stop conditions for AWS FIS. If you don't have an alarm
configured yet, you can follow the instructions at Using Amazon CloudWatch Alarms and
update the experiment template later.

e. We recommend enabling optional experiment Logs to Amazon CloudWatch logs or to an
Amazon S3 bucket. Learn more about Experiment logging for AWS FIS. If you don't have
appropriate resources configured yet, you can update the experiment template later.

6. In the Create experiment template select Create experiment template.

7. From the Experiment templates view of the AWS FIS console select Start experiment. Learn
more about Experiments for AWS FIS.

Exporting a scenario

Scenarios are a console-only experience. While similar to experiment templates, scenarios are not
complete experiment templates and can not be directly imported into AWS FIS. If you wish to use
scenarios as part of your own automation, you can use one of two paths:

1. Follow the steps in Using a scenario to create a valid AWS FIS experiment template and export
that template.

2. Follow the steps in Viewing a scenario and in step 3, from the Content tab, copy and save the
scenario content, then add missing parameters manually to create a valid experiment template.

Scenarios in the AWS FIS scenarios library

Scenarios included in the scenario library are designed to use tags where possible and each
scenario describes the required tags in the Prerequisites and How it works sections of the scenario
description. You can tag your resources with those pre-defined tags or you can set your own tags
using the bulk parameter editing experience (see Using a scenario).

This reference describes the common scenarios in the AWS FIS scenario library. You can also list the
supported scenarios using the AWS FIS console.

For more information, see Working with scenarios.

AWS FIS supports the following Amazon EC2 scenarios. These scenarios target instances using tags.
You can use your own tags or use the default tags included in the scenario. Some of these scenarios
use SSM documents.

Exporting a scenario 158

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/whitepapers/latest/tagging-best-practices/what-are-tags.html
https://docs.aws.amazon.com/fis/latest/userguide/scenario-library-usage.html
https://docs.aws.amazon.com/whitepapers/latest/tagging-best-practices/what-are-tags.html
https://docs.aws.amazon.com/fis/latest/userguide/actions-ssm-agent.html

AWS Fault Injection Service User Guide

• EC2 stress: instance failure - Explore the effect of instance failure by stopping one or more EC2
instances.

Target instances in the current region that have a specific tag attached. In this scenario we will
stop those instances and restart them at the end of the action duration, by default 5 min.

• EC2 stress: Disk - Explore impact of increased disk utilization on your EC2 based application.

In this scenario we will target EC2 instances in the current region that have a specific tag
attached. In this scenario you can customize an increasing amount disk utilization injected on
targeted EC2 instances for the action duration, by default 5 min for each disk stress action.

• EC2 stress: CPU - Explore impact of increased CPU on your EC2 based application.

In this scenario we will target EC2 instances in the current region that have a specific tag
attached. In this scenario you can customize an increasing amount of CPU stress injected on
targeted EC2 instances for the action duration, by default 5 min for each CPU stress action.

• EC2 stress: Memory - Explore impact of increased memory utilization on your EC2 based
application.

In this scenario we will target EC2 instances in the current region that have a specific tag
attached. In this scenario you can customize an increasing amount of memory stress injected on
targeted EC2 instances for the action duration, by default 5 min for each memory stress action.

• EC2 stress: Network Latency - Explore impact of increased network latency on your EC2 based
application.

In this scenario we will target EC2 instances in the current region that have a specific tag
attached. In this scenario you can customize an increasing amount of network latency injected on
targeted EC2 instances for the action duration, by default 5 min for each latency action.

AWS FIS supports the following Amazon EKS scenarios. These scenarios target EKS pods using a
Kubernetes application labels. You can use your own labels or use the default labels included in the
scenario. For more information about EKS with FIS, see Use the EKS pod actions.

• EKS stress: Pod Delete - Explore the effect of EKS pod failure by deleting one or more pods.

In this scenario we will target pods in the current region that are associated with an application
label. In this scenario we will terminate all matched pods. Re-creation of pods will be controlled
by kubernetes configuration.

Scenarios reference 159

AWS Fault Injection Service User Guide

• EKS stress: CPU - Explore impact of increased CPU on your EKS based application.

In this scenario we will target pods in the current region that are associated with an application
label. In this scenario you can customize an increasing amount of CPU stress injected on targeted
EKS pods for the action duration, by default 5 min for each CPU stress action.

• EKS stress: Disk - Explore impact of increased disk utilization on your EKS based application.

In this scenario we will target pods in the current region that are associated with an application
label. In this scenario you can customize an increasing amount of disk stress injected on targeted
EKS pods for the action duration, by default 5 min for each CPU stress action.

• EKS stress: Memory - Explore impact of increased memory utilization on your EKS based
application.

In this scenario we will target pods in the current region that are associated with an application
label. In this scenario you can customize an increasing amount of memory stress injected on
targeted EKS pods for the action duration, by default 5 min for each memory stress action.

• EKS stress: Network latency - Explore impact of increased network latency on your EKS based
application.

In this scenario we will target pods in the current region that are associated with an application
label. In this scenario you can customize an increasing amount of network latency injected on
targeted EKS pods for the action duration, by default 5 min for each latency action.

AWS FIS supports the following scenarios for multi-AZ and multi-Region applications. These
scenarios target multiple resource types.

• AZ Availability: Power Interruption - Inject the expected symptoms of a complete interruption
of power in an Availability Zone (AZ). Learn more about AZ Availability: Power Interruption.

• Cross-Region: Connectivity - Block application network traffic from the experiment Region to
the destination Region and pause cross-Region data replication. Learn more about using Cross-
Region: Connectivity.

AZ Availability: Power Interruption

You can use the AZ Availability: Power Interruption scenario to induce the expected symptoms of a
complete interruption of power in an Availability Zone (AZ).

AZ Availability: Power Interruption 160

AWS Fault Injection Service User Guide

This scenario can be used to demonstrate that multi-AZ applications operate as expected during
a single, complete AZ power interruption. It includes loss of zonal compute (Amazon EC2, EKS,
and ECS), no re-scaling of compute in the AZ, subnet connectivity loss, RDS failover, ElastiCache
failover, and unresponsive EBS volumes. By default, actions for which no targets are found will be
skipped.

Actions

Together, the following actions create many of the expected symptoms of a complete power
interruption in a single AZ. AZ Availability: Power Interruption only affects services that are
expected to see impact during a single AZ power interruption. By default, the scenario injects
power interruption symptoms for 30 minutes and then, for an additional 30 minutes, injects
symptoms that may occur during recovery.

Stop-Instances

During an AZ power interruption, EC2 instances in the affected AZ will shut down. After power is
restored instances will reboot. AZ Availability: Power Interruption includes aws:ec2:stop-instances
to stop all instances in the affected AZ for the interruption duration. After the duration, the
instances are restarted. Stopping EC2 instances managed by Amazon EKS causes dependent EKS
pods to be deleted. Stopping EC2 instances managed by Amazon ECS causes dependent ECS tasks
to be stopped.

This action targets EC2 instances running in the affected AZ. By default, it targets instances with a
tag named AzImpairmentPower with a value of StopInstances. You can add this tag to your
instances or replace the default tag with your own tag in the experiment template. By default, if no
valid instances are found this action will be skipped.

Stop-ASG-Instances

During an AZ power interruption, EC2 instances managed by an Auto Scaling group in the affected
AZ will shut down. After power is restored instances will reboot. AZ Availability: Power Interruption
includes aws:ec2:stop-instances to stop all instances, including those managed by Auto Scaling, in
the affected AZ for the interruption duration. After the duration, the instances are restarted.

This action targets EC2 instances running in the affected AZ. By default, it targets instances with a
tag named AzImpairmentPower with a value of IceAsg. You can add this tag to your instances
or replace the default tag with your own tag in the experiment template. By default, if no valid
instances are found this action will be skipped.

Actions 161

https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#stop-instances
https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#stop-instances

AWS Fault Injection Service User Guide

Pause Instance Launches

During an AZ power interruption, EC2 API calls to provision capacity in the AZ will fail. In
particular, the following APIs will be impacted: ec2:StartInstances, ec2:CreateFleet, and
ec2:RunInstances. AZ Availability: Power Interruption includes includes aws:ec2:api-insufficient-
instance-capacity-error to prevent new instances from being provisioned in the affected AZ.

This action targets IAM roles used to provision instances. These must be targeted using an ARN. By
default, if no valid IAM roles are found this action will be skipped.

Pause ASG Scaling

During an AZ power interruption, EC2 API calls made by the Auto Scaling control plane to
recover lost capacity in the AZ will fail. In particular, the following APIs will be impacted:
ec2:StartInstances, ec2:CreateFleet, and ec2:RunInstances. AZ Availability: Power
Interruption includes aws:ec2:asg-insufficient-instance-capacity-error to prevent new instances
from being provisioned in the affected AZ. This also prevents Amazon EKS and Amazon ECS from
scaling in the affected AZ.

This action targets Auto Scaling groups. By default, it targets Auto Scaling groups with a tag
named AzImpairmentPower with a value of IceAsg. You can add this tag to your Auto Scaling
groups or replace the default tag with your own tag in the experiment template. By default, if no
valid Auto Scaling groups are found this action will be skipped.

Pause Network Connectivity

During an AZ power interruption, networking in the AZ will be unavailable. When this happens
some AWS services may take up to a few minutes to update DNS to reflect that private endpoints
in the affected AZ are not available. During this time, DNS lookups may return inaccessible IP
addresses. AZ Availability: Power Interruption includes aws:network:disrupt-connectivity to block
all network connectivity for all subnets in the affected AZ for 2 minutes. This will force timeouts
and DNS refreshes for most applications. Ending the action after 2 minutes allows for subsequent
recovery of regional service DNS while the AZ continues to be unavailable.

This action targets subnets. By default, it targets clusters with a tag named AzImpairmentPower
with a value of DisruptSubnet. You can add this tag to your subnets or replace the default tag
with your own tag in the experiment template. By default, if no valid subnets are found this action
will be skipped.

Actions 162

https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#api-ice
https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#api-ice
https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#asg-ice
https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#network-actions-reference

AWS Fault Injection Service User Guide

Failover RDS

During an AZ power interruption, RDS nodes in the affected AZ will shut down. Single AZ RDS
nodes in the affected AZ will be fully unavailable. For multi-AZ clusters, the writer node will
failover into an unaffected AZ and reader nodes in the affected AZ will be unavailable. For multi-
AZ clusters, AZ Availability: Power Interruption includes aws:rds:failover-db-cluster to failover if the
writer is in the affected AZ.

This action targets RDS clusters. By default, it targets clusters with a tag named
AzImpairmentPower with a value of DisruptRds. You can add this tag to your clusters or
replace the default tag with your own tag in the experiment template. By default, if no valid
clusters are found this action will be skipped.

Pause ElastiCache Redis

During an AZ power interruption, ElastiCache nodes in the AZ are unavailable. AZ Availability:
Power Interruption includes aws:elasticache:interrupt-cluster-az-power to terminate ElastiCache
nodes in the affected AZ. For the duration of the interruption, new instances will not be
provisioned in the affected AZ, so the cluster will remain at reduced capacity.

This action targets ElastiCache clusters. By default, it targets clusters with a tag named
AzImpairmentPower with a value of ElasticacheImpact. You can add this tag to your clusters
or replace the default tag with your own tag in the experiment template. By default, if no valid
clusters are found this action will be skipped. Note that only clusters with writer nodes in the
affected AZ will be considered valid targets.

Pause EBS I/O

After an AZ power interruption, once power is restored a very small percentage of instances may
experience unresponsive EBS volumes. AZ Availability: Power Interruption includes aws:ebs:pause-
io to leave 1 EBS volume in an unresponsive state.

By default, only volumes set to persist after the instance is terminated are targeted. This action
targets volumes with a tag named AzImpairmentPower with a value of APIPauseVolume. You
can add this tag to your volumes or replace the default tag with your own tag in the experiment
template. By default, if no valid volumes are found this action will be skipped.

Actions 163

https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#failover-db-cluster
https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#interrupt-elasticache
https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#ebs-actions-reference
https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#ebs-actions-reference

AWS Fault Injection Service User Guide

Limitations

• This scenario does not include stop conditions. The correct stop conditions for your application
should be added to the experiment template.

• Amazon EKS Pods running on AWS Fargate are not supported.

• Amazon ECS tasks running on AWS Fargate are not supported.

• Amazon RDS Multi-AZ with two readable standby DB instances is not supported. In this case, the
instances will be terminated, RDS will failover, and capacity will immediately be provisioned back
in the affected AZ. The readable standby in the affected AZ will remain available.

Requirements

• Add the required permission to the AWS FIS experiment role.

• Resource tags must be applied to resources that are to be targeted by the experiment. These can
use your own tagging convention or the default tags defined in the scenario.

Permissions

The following policy grants AWS FIS the necessary permissions to execute an experiment with the
AZ Availability: Power Interruption scenario. This policy must be attached to the experiment role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowFISExperimentLoggingActionsCloudwatch",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogDelivery",
 "logs:PutResourcePolicy",
 "logs:DescribeResourcePolicies",
 "logs:DescribeLogGroups"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateTags",

Limitations 164

https://docs.aws.amazon.com/fis/latest/userguide/stop-conditions.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html#multi-az-db-clusters-migrating-to-with-read-replica
https://docs.aws.amazon.com/fis/latest/userguide/getting-started-iam-service-role.html
https://docs.aws.amazon.com/fis/latest/userguide/getting-started-iam-service-role.html

AWS Fault Injection Service User Guide

 "Resource": "arn:aws:ec2:*:*:network-acl/*",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "CreateNetworkAcl",
 "aws:RequestTag/managedByFIS": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateNetworkAcl",
 "Resource": "arn:aws:ec2:*:*:network-acl/*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/managedByFIS": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkAclEntry",
 "ec2:DeleteNetworkAcl"
],
 "Resource": [
 "arn:aws:ec2:*:*:network-acl/*",
 "arn:aws:ec2:*:*:vpc/*"
],
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/managedByFIS": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateNetworkAcl",
 "Resource": "arn:aws:ec2:*:*:vpc/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVpcs",
 "ec2:DescribeManagedPrefixLists",

Permissions 165

AWS Fault Injection Service User Guide

 "ec2:DescribeSubnets",
 "ec2:DescribeNetworkAcls"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "ec2:ReplaceNetworkAclAssociation",
 "Resource": [
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:network-acl/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "rds:FailoverDBCluster"
],
 "Resource": [
 "arn:aws:rds:*:*:cluster:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "rds:RebootDBInstance"
],
 "Resource": [
 "arn:aws:rds:*:*:db:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:DescribeReplicationGroups",
 "elasticache:InterruptClusterAzPower"
],
 "Resource": [
 "arn:aws:elasticache:*:*:replicationgroup:*"
]
 },
 {
 "Sid": "TargetResolutionByTags",
 "Effect": "Allow",

Permissions 166

AWS Fault Injection Service User Guide

 "Action": [
 "tag:GetResources"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:StartInstances",
 "ec2:StopInstances"
],
 "Resource": "arn:aws:ec2:*:*:instance/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeInstances"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant"
],
 "Resource": [
 "arn:aws:kms:*:*:key/*"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": "ec2.*.amazonaws.com"
 },
 "Bool": {
 "kms:GrantIsForAWSResource": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVolumes"
],
 "Resource": "*"
 },

Permissions 167

AWS Fault Injection Service User Guide

 {
 "Effect": "Allow",
 "Action": [
 "ec2:PauseVolumeIO"
],
 "Resource": "arn:aws:ec2:*:*:volume/*"
 },
 {
 "Sid": "AllowInjectAPI",
 "Effect": "Allow",
 "Action": [
 "ec2:InjectApiError"
],
 "Resource": [
 "*"
],
 "Condition": {
 "ForAnyValue:StringEquals": {
 "ec2:FisActionId": [
 "aws:ec2:api-insufficient-instance-capacity-error",
 "aws:ec2:asg-insufficient-instance-capacity-error"
]
 }
 }
 },
 {
 "Sid": "DescribeAsg",
 "Effect": "Allow",
 "Action": [
 "autoscaling:DescribeAutoScalingGroups"
],
 "Resource": [
 "*"
]
 }
]
}

Scenario Content

The following content defines the scenario. This JSON can be saved and used to create an
experiment template using the create-experiment-template command from the AWS Command

Scenario Content 168

https://docs.aws.amazon.com/fis/latest/userguide/experiment-templates.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/create-experiment-template.html

AWS Fault Injection Service User Guide

Line Interface (AWS CLI). For the most recent version of the scenario, visit the scenario library in the
FIS console.

{
 "targets": {
 "IAM-role": {
 "resourceType": "aws:iam:role",
 "resourceArns": [],
 "selectionMode": "ALL"
 },
 "EBS-Volumes": {
 "resourceType": "aws:ec2:ebs-volume",
 "resourceTags": {
 "AzImpairmentPower": "ApiPauseVolume"
 },
 "selectionMode": "COUNT(1)",
 "parameters": {
 "availabilityZoneIdentifier": "us-east-1a"
 },
 "filters": [
 {
 "path": "Attachments.DeleteOnTermination",
 "values": [
 "false"
]
 }
]
 },
 "EC2-Instances": {
 "resourceType": "aws:ec2:instance",
 "resourceTags": {
 "AzImpairmentPower": "StopInstances"
 },
 "filters": [
 {
 "path": "State.Name",
 "values": [
 "running"
]
 },
 {
 "path": "Placement.AvailabilityZone",
 "values": [

Scenario Content 169

AWS Fault Injection Service User Guide

 "us-east-1a"
]
 }
],
 "selectionMode": "ALL"
 },
 "ASG": {
 "resourceType": "aws:ec2:autoscaling-group",
 "resourceTags": {
 "AzImpairmentPower": "IceAsg"
 },
 "selectionMode": "ALL"
 },
 "ASG-EC2-Instances": {
 "resourceType": "aws:ec2:instance",
 "resourceTags": {
 "AzImpairmentPower": "IceAsg"
 },
 "filters": [
 {
 "path": "State.Name",
 "values": [
 "running"
]
 },
 {
 "path": "Placement.AvailabilityZone",
 "values": [
 "us-east-1a"
]
 }
],
 "selectionMode": "ALL"
 },
 "Subnet": {
 "resourceType": "aws:ec2:subnet",
 "resourceTags": {
 "AzImpairmentPower": "DisruptSubnet"
 },
 "filters": [
 {
 "path": "AvailabilityZone",
 "values": [
 "us-east-1a"

Scenario Content 170

AWS Fault Injection Service User Guide

]
 }
],
 "selectionMode": "ALL",
 "parameters": {}
 },
 "RDS-Cluster": {
 "resourceType": "aws:rds:cluster",
 "resourceTags": {
 "AzImpairmentPower": "DisruptRds"
 },
 "selectionMode": "ALL",
 "parameters": {
 "writerAvailabilityZoneIdentifiers": "us-east-1a"
 }
 },
 "ElastiCache-Cluster": {
 "resourceType": "aws:elasticache:redis-replicationgroup",
 "resourceTags": {
 "AzImpairmentPower": "DisruptElasticache"
 },
 "selectionMode": "ALL",
 "parameters": {
 "availabilityZoneIdentifier": "us-east-1a"
 }
 }
 },
 "actions": {
 "Pause-Instance-Launches": {
 "actionId": "aws:ec2:api-insufficient-instance-capacity-error",
 "parameters": {
 "availabilityZoneIdentifiers": "us-east-1a",
 "duration": "PT30M",
 "percentage": "100"
 },
 "targets": {
 "Roles": "IAM-role"
 }
 },
 "Pause-EBS-IO": {
 "actionId": "aws:ebs:pause-volume-io",
 "parameters": {
 "duration": "PT30M"
 },

Scenario Content 171

AWS Fault Injection Service User Guide

 "targets": {
 "Volumes": "EBS-Volumes"
 },
 "startAfter": [
 "Stop-Instances",
 "Stop-ASG-Instances"
]
 },
 "Stop-Instances": {
 "actionId": "aws:ec2:stop-instances",
 "parameters": {
 "completeIfInstancesTerminated": "true",
 "startInstancesAfterDuration": "PT30M"
 },
 "targets": {
 "Instances": "EC2-Instances"
 }
 },
 "Pause-ASG-Scaling": {
 "actionId": "aws:ec2:asg-insufficient-instance-capacity-error",
 "parameters": {
 "availabilityZoneIdentifiers": "us-east-1a",
 "duration": "PT30M",
 "percentage": "100"
 },
 "targets": {
 "AutoScalingGroups": "ASG"
 }
 },
 "Stop-ASG-Instances": {
 "actionId": "aws:ec2:stop-instances",
 "parameters": {
 "completeIfInstancesTerminated": "true",
 "startInstancesAfterDuration": "PT30M"
 },
 "targets": {
 "Instances": "ASG-EC2-Instances"
 }
 },
 "Pause-network-connectivity": {
 "actionId": "aws:network:disrupt-connectivity",
 "parameters": {
 "duration": "PT2M",
 "scope": "all"

Scenario Content 172

AWS Fault Injection Service User Guide

 },
 "targets": {
 "Subnets": "Subnet"
 }
 },
 "Failover-RDS": {
 "actionId": "aws:rds:failover-db-cluster",
 "parameters": {},
 "targets": {
 "Clusters": "RDS-Cluster"
 }
 },
 "Pause-ElastiCache": {
 "actionId": "aws:elasticache:interrupt-cluster-az-power",
 "parameters": {
 "duration": "PT30M"
 },
 "targets": {
 "ReplicationGroups": "ElastiCache-Cluster"
 }
 }
 },
 "stopConditions": [
 {
 "source": "aws:cloudwatch:alarm",
 "value": ""
 }
],
 "roleArn": "",
 "tags": {
 "Name": "AZ Impairment: Power Interruption"
 },
 "logConfiguration": {
 "logSchemaVersion": 2
 },
 "experimentOptions": {
 "accountTargeting": "single-account",
 "emptyTargetResolutionMode": "skip"
 },
 "description": "Affect multiple resource types in a single AZ, targeting by tags
 and explicit ARNs, to approximate power interruption in one AZ."
}

Scenario Content 173

AWS Fault Injection Service User Guide

Cross-Region: Connectivity

You can use the Cross-Region: Connectivity scenario to block application network traffic from the
experiment Region to the destination Region and pause cross-Region replication for Amazon S3
and Amazon DynamoDB. Cross Region: Connectivity affects outbound application traffic from the
Region in which you run the experiment (experiment Region). Stateless inbound traffic from the
Region you wish to isolate from the experiment region (destination Region) may not be blocked.
Traffic from AWS managed services may not be blocked.

This scenario can be used to demonstrate that multi-Region applications operate as expected when
resources in the destination Region are not accessible from the experiment Region. It includes
blocking network traffic from the experiment Region to the destination Region by targeting transit
gateways and route tables. It also pauses cross-Region replication for S3 and DynamoDB. By
default, actions for which no targets are found will be skipped.

Actions

Together, the following actions block cross-Region connectivity for the included AWS services. The
actions are run in parallel. By default, the scenario blocks traffic for 3 hours, which you can increase
up to a maximum 12 Hour duration.

Disrupt Transit Gateway Connectivity

Cross Region: Connectivity includes aws:network:transit-gateway-disrupt-cross-region-connectivity
to block cross-Region network traffic from VPCs in the experiment Region to VPCs in the destination
Region connected by a transit gateway. This does not affect access to VPC endpoints within the
experiment Region but will block traffic from the experiment Region destined for a VPC endpoint in
the destination Region.

This action targets transit gateways connecting the experiment Region and the destination Region.
By default, it targets transit gateways with a tag named DisruptTransitGateway with a value
of Allowed. You can add this tag to your transit gateways or replace the default tag with your own
tag in the experiment template. By default, if no valid transit gateways are found this action will be
skipped.

Disrupt Subnet Connectivity

Cross Region: Connectivity includes aws:network:route-table-disrupt-cross-region-connectivity
to block cross-Region network traffic from VPCs in the experiment Region to public AWS IP

Cross-Region: Connectivity 174

https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#network-actions-reference
https://docs.aws.amazon.com/vpc/latest/tgw/tgw-transit-gateways.html#tgw-tagging
https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#network-actions-reference

AWS Fault Injection Service User Guide

blocks in the destination Region. These public IP blocks include AWS service endpoints in the
destination Region, e.g. the S3 regional endpoint, and AWS IP blocks for managed services, e.g. the
IP addresses used for load balancers and Amazon API Gateway. This action also blocks network
connectivity over cross-Region VPC Peering connections from the experiment Region to the
destination Region. It does not affect access to VPC endpoints in the experiment Region but will
block traffic from the experiment Region destined for a VPC endpoint in the destination Region.

This action targets subnets in the experiment Region. By default, it targets subnets with a tag
named DisruptSubnet with a value of Allowed. You can add this tag to your subnets or replace
the default tag with your own tag in the experiment template. By default, if no valid subnets are
found this action will be skipped.

Pause S3 Replication

Cross Region: Connectivity includes aws:s3:bucket-pause-replication to pause S3 replication from
the experiment Region to the destination Region for the targeted buckets. Replication from the
destination Region to the experiment Region will be unaffected. After the scenario ends, bucket
replication will resume from the point it was paused. Note that the time it takes for replication to
keep all objects in sync will vary based on the duration of the experiment, and the rate of object
upload to the bucket.

This action targets S3 buckets in the experiment Region with Cross-Region Replication (CRR)
enabled to an S3 bucket in the destination Region. By default, it targets buckets with a tag named
DisruptS3 with a value of Allowed. You can add this tag to your buckets or replace the default
tag with your own tag in the experiment template. By default, if no valid buckets are found this
action will be skipped.

Pause DynamoDB Replication

Cross-Region: Connectivity includes aws:dynamodb:global-table-pause-replication to pause
replication between the experiment Region and all other Regions, including the destination Region.
This prevents replication into and out of the experiment Region but does not affect replication
between other Regions. After the scenario ends, table replication will resume from the point it was
paused. Note that the time it takes for replication to keep all data in sync will vary based on the
duration of the experiment and the rate of changes to the table.

This action targets DynamoDB global tables in the experiment Region. By default, it targets tables
with a tag named DisruptDynamoDb with a value of Allowed. You can add this tag to your tables

Actions 175

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#s3-actions-reference-fis
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/view-bucket-properties.html
https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#dynamodb-actions-reference
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/encryption.tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tagging.html

AWS Fault Injection Service User Guide

or replace the default tag with your own tag in the experiment template. By default, if no valid
global tables are found this action will be skipped.

Limitations

• This scenario does not include stop conditions. The correct stop conditions for your application
should be added to the experiment template.

Requirements

• Add the required permission to the AWS FIS experiment role.

• Resource tags must be applied to resources that are to be targeted by the experiment. These can
use your own tagging convention or the default tags defined in the scenario.

Permissions

The following policy grants AWS FIS the necessary permissions to execute an experiment with the
Cross-Region: Connectivity scenario. This policy must be attached to the experiment role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RouteTableDisruptConnectivity1",
 "Effect": "Allow",
 "Action": "ec2:CreateRouteTable",
 "Resource": "arn:aws:ec2:*:*:route-table/*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/managedByFIS": "true"
 }
 }
 },
 {
 "Sid": "RouteTableDisruptConnectivity2",
 "Effect": "Allow",
 "Action": "ec2:CreateRouteTable",
 "Resource": "arn:aws:ec2:*:*:vpc/*"
 },
 {

Limitations 176

https://docs.aws.amazon.com/fis/latest/userguide/stop-conditions.html
https://docs.aws.amazon.com/fis/latest/userguide/getting-started-iam-service-role.html
https://docs.aws.amazon.com/fis/latest/userguide/getting-started-iam-service-role.html

AWS Fault Injection Service User Guide

 "Sid": "RouteTableDisruptConnectivity21",
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "arn:aws:ec2:*:*:route-table/*",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "CreateRouteTable",
 "aws:RequestTag/managedByFIS": "true"
 }
 }
 },
 {
 "Sid": "RouteTableDisruptConnectivity3",
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "arn:aws:ec2:*:*:network-interface/*",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "CreateNetworkInterface",
 "aws:RequestTag/managedByFIS": "true"
 }
 }
 },
 {
 "Sid": "RouteTableDisruptConnectivity4",
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "arn:aws:ec2:*:*:prefix-list/*",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "CreateManagedPrefixList",
 "aws:RequestTag/managedByFIS": "true"
 }
 }
 },
 {
 "Sid": "RouteTableDisruptConnectivity5",
 "Effect": "Allow",
 "Action": "ec2:DeleteRouteTable",
 "Resource": [
 "arn:aws:ec2:*:*:route-table/*",
 "arn:aws:ec2:*:*:vpc/*"
],
 "Condition": {

Permissions 177

AWS Fault Injection Service User Guide

 "StringEquals": {
 "ec2:ResourceTag/managedByFIS": "true"
 }
 }
 },
 {
 "Sid": "RouteTableDisruptConnectivity6",
 "Effect": "Allow",
 "Action": "ec2:CreateRoute",
 "Resource": "arn:aws:ec2:*:*:route-table/*",
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/managedByFIS": "true"
 }
 }
 },
 {
 "Sid": "RouteTableDisruptConnectivity7",
 "Effect": "Allow",
 "Action": "ec2:CreateNetworkInterface",
 "Resource": "arn:aws:ec2:*:*:network-interface/*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/managedByFIS": "true"
 }
 }
 },
 {
 "Sid": "RouteTableDisruptConnectivity8",
 "Effect": "Allow",
 "Action": "ec2:CreateNetworkInterface",
 "Resource": [
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:security-group/*"
]
 },
 {
 "Sid": "RouteTableDisruptConnectivity9",
 "Effect": "Allow",
 "Action": "ec2:DeleteNetworkInterface",
 "Resource": "arn:aws:ec2:*:*:network-interface/*",
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/managedByFIS": "true"

Permissions 178

AWS Fault Injection Service User Guide

 }
 }
 },
 {
 "Sid": "RouteTableDisruptConnectivity10",
 "Effect": "Allow",
 "Action": "ec2:CreateManagedPrefixList",
 "Resource": "arn:aws:ec2:*:*:prefix-list/*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/managedByFIS": "true"
 }
 }
 },
 {
 "Sid": "RouteTableDisruptConnectivity11",
 "Effect": "Allow",
 "Action": "ec2:DeleteManagedPrefixList",
 "Resource": "arn:aws:ec2:*:*:prefix-list/*",
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/managedByFIS": "true"
 }
 }
 },
 {
 "Sid": "RouteTableDisruptConnectivity12",
 "Effect": "Allow",
 "Action": "ec2:ModifyManagedPrefixList",
 "Resource": "arn:aws:ec2:*:*:prefix-list/*",
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/managedByFIS": "true"
 }
 }
 },
 {
 "Sid": "RouteTableDisruptConnectivity13",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DescribeVpcPeeringConnections",
 "ec2:DescribeManagedPrefixLists",

Permissions 179

AWS Fault Injection Service User Guide

 "ec2:DescribeSubnets",
 "ec2:DescribeRouteTables",
 "ec2:DescribeVpcEndpoints"
],
 "Resource": "*"
 },
 {
 "Sid": "RouteTableDisruptConnectivity14",
 "Effect": "Allow",
 "Action": "ec2:ReplaceRouteTableAssociation",
 "Resource": [
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:route-table/*"
]
 },
 {
 "Sid": "RouteTableDisruptConnectivity15",
 "Effect": "Allow",
 "Action": "ec2:GetManagedPrefixListEntries",
 "Resource": "arn:aws:ec2:*:*:prefix-list/*"
 },
 {
 "Sid": "RouteTableDisruptConnectivity16",
 "Effect": "Allow",
 "Action": "ec2:AssociateRouteTable",
 "Resource": [
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:route-table/*"
]
 },
 {
 "Sid": "RouteTableDisruptConnectivity17",
 "Effect": "Allow",
 "Action": "ec2:DisassociateRouteTable",
 "Resource": [
 "arn:aws:ec2:*:*:route-table/*"
],
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/managedByFIS": "true"
 }
 }
 },
 {

Permissions 180

AWS Fault Injection Service User Guide

 "Sid": "RouteTableDisruptConnectivity18",
 "Effect": "Allow",
 "Action": "ec2:DisassociateRouteTable",
 "Resource": [
 "arn:aws:ec2:*:*:subnet/*"
]
 },
 {
 "Sid": "RouteTableDisruptConnectivity19",
 "Effect": "Allow",
 "Action": "ec2:ModifyVpcEndpoint",
 "Resource": [
 "arn:aws:ec2:*:*:route-table/*"
],
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/managedByFIS": "true"
 }
 }
 },
 {
 "Sid": "RouteTableDisruptConnectivity20",
 "Effect": "Allow",
 "Action": "ec2:ModifyVpcEndpoint",
 "Resource": [
 "arn:aws:ec2:*:*:vpc-endpoint/*"
]
 },
 {
 "Sid": "TransitGatewayDisruptConnectivity1",
 "Effect": "Allow",
 "Action": [
 "ec2:DisassociateTransitGatewayRouteTable",
 "ec2:AssociateTransitGatewayRouteTable"
],
 "Resource": [
 "arn:aws:ec2:*:*:transit-gateway-route-table/*",
 "arn:aws:ec2:*:*:transit-gateway-attachment/*"
]
 },
 {
 "Sid": "TransitGatewayDisruptConnectivity2",
 "Effect": "Allow",
 "Action": [

Permissions 181

AWS Fault Injection Service User Guide

 "ec2:DescribeTransitGatewayPeeringAttachments",
 "ec2:DescribeTransitGatewayAttachments",
 "ec2:DescribeTransitGateways"
],
 "Resource": "*"
 },
 {
 "Sid": "S3CrossRegion1",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets"
],
 "Resource": "*"
 },
 {
 "Sid": "S3CrossRegion2",
 "Effect": "Allow",
 "Action": [
 "tag:GetResources"
],
 "Resource": "*"
 },
 {
 "Sid": "S3CrossRegion3",
 "Effect": "Allow",
 "Action": [
 "s3:PauseReplication"
],
 "Resource": "arn:aws:s3:::*",
 "Condition": {
 "StringLike": {
 "s3:DestinationRegion": "*"
 }
 }
 },
 {
 "Sid": "S3CrossRegion4",
 "Effect": "Allow",
 "Action": [
 "s3:GetReplicationConfiguration",
 "s3:PutReplicationConfiguration"
],
 "Resource": "arn:aws:s3:::*",
 "Condition": {

Permissions 182

AWS Fault Injection Service User Guide

 "BoolIfExists": {
 "s3:isReplicationPauseRequest": "true"
 }
 }
 },
 {
 "Sid": "DdbCrossRegion1",
 "Effect": "Allow",
 "Action": [
 "tag:GetResources"
],
 "Resource": "*"
 },
 {
 "Sid": "DdbCrossRegion2",
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:DescribeGlobalTable"
],
 "Resource": [
 "arn:aws:dynamodb:*:*:table/*",
 "arn:aws:dynamodb:*:*:global-table/*"
]
 },
 {
 "Sid": "DdbCrossRegion3",
 "Effect": "Allow",
 "Action": [
 "kms:DescribeKey",
 "kms:GetKeyPolicy",
 "kms:PutKeyPolicy"
],
 "Resource": "arn:aws:kms:*:*:key/*"
 }
]
}

Scenario Content

The following content defines the scenario. This JSON can be saved and used to create an
experiment template using the create-experiment-template command from the AWS Command

Scenario Content 183

https://docs.aws.amazon.com/fis/latest/userguide/experiment-templates.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/create-experiment-template.html

AWS Fault Injection Service User Guide

Line Interface (AWS CLI). For the most recent version of the scenario, visit the scenario library in the
FIS console.

{
 "targets": {
 "Transit-Gateway": {
 "resourceType": "aws:ec2:transit-gateway",
 "resourceTags": {
 "TgwTag": "TgwValue"
 },
 "selectionMode": "ALL"
 },
 "Subnet": {
 "resourceType": "aws:ec2:subnet",
 "resourceTags": {
 "SubnetKey": "SubnetValue"
 },
 "selectionMode": "ALL",
 "parameters": {}
 },
 "S3-Bucket": {
 "resourceType": "aws:s3:bucket",
 "resourceTags": {
 "S3Impact": "Allowed"
 },
 "selectionMode": "ALL"
 },
 "DynamoDB-Global-Table": {
 "resourceType": "aws:dynamodb:encrypted-global-table",
 "resourceTags": {
 "DisruptDynamoDb": "Allowed"
 },
 "selectionMode": "ALL"
 }
 },
 "actions": {
 "Disrupt-Transit-Gateway-Connectivity": {
 "actionId": "aws:network:transit-gateway-disrupt-cross-region-
connectivity",
 "parameters": {
 "duration": "PT3H",
 "region": "eu-west-1"
 },

Scenario Content 184

AWS Fault Injection Service User Guide

 "targets": {
 "TransitGateways": "Transit-Gateway"
 }
 },
 "Disrupt-Subnet-Connectivity": {
 "actionId": "aws:network:route-table-disrupt-cross-region-
connectivity",
 "parameters": {
 "duration": "PT3H",
 "region": "eu-west-1"
 },
 "targets": {
 "Subnets": "Subnet"
 }
 },
 "Pause-S3-Replication": {
 "actionId": "aws:s3:bucket-pause-replication",
 "parameters": {
 "duration": "PT3H",
 "region": "eu-west-1"
 },
 "targets": {
 "Buckets": "S3-Bucket"
 }
 },
 "Pause-DynamoDB-Replication": {
 "actionId": "aws:dynamodb:encrypted-global-table-pause-
replication",
 "parameters": {
 "duration": "PT3H"
 },
 "targets": {
 "Tables": "DynamoDB-Global-Table"
 }
 }
 },
 "stopConditions": [
 {
 "source": "none"
 }
],
 "roleArn": "",
 "logConfiguration": {
 "logSchemaVersion": 2

Scenario Content 185

AWS Fault Injection Service User Guide

 },
 "tags": {
 "Name": "Cross-Region: Connectivity"
 },
 "experimentOptions": {
 "accountTargeting": "single-account",
 "emptyTargetResolutionMode": "skip"
 },
 "description": "Block application network traffic from experiment Region to
 target Region and pause cross-Region replication"
}

Scenario Content 186

AWS Fault Injection Service User Guide

Experiments for AWS FIS

AWS FIS enables you to perform fault injection experiments on your AWS workloads. To get
started, create an experiment template. After you create an experiment template, you can use it to
start an experiment.

An experiment is finished when one of the following occurs:

• All actions in the template completed successfully.

• A stop condition is triggered.

• An action cannot be completed because of an error. For example, if the target cannot be found.

• The experiment is stopped manually.

You cannot resume a stopped or failed experiment. You also cannot rerun a completed experiment.
However, you can start a new experiment from the same experiment template. You can optionally
update the experiment template before you specify it again in a new experiment.

Tasks

• Start an experiment

• View your experiments

• Tag an experiment

• Stop an experiment

• List resolved targets

Start an experiment

You start an experiment from an experiment template. For more information, see Start an
experiment from a template.

You can schedule your experiments as a one-time task or recurring tasks using Amazon
EventBridge. For more information, see Tutorial: Schedule a recurring experiment.

You can monitor your experiment using any of the following features:

• View your experiments in the AWS FIS console. For more information, see View your experiments.

Start an experiment 187

AWS Fault Injection Service User Guide

• View Amazon CloudWatch metrics for the target resources in your experiments or view AWS FIS
usage metrics. For more information, see Monitor using CloudWatch.

• Enable experiment logging to capture detailed information about your experiment as it runs. For
more information see Experiment logging.

View your experiments

You can view the progress of a running experiment, and you can view experiments that have
completed, stopped, or failed.

Stopped, completed, and failed experiments are automatically removed from your account after
120 days.

To view experiments using the console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiments.

3. Choose the Experiment ID of the experiment to open its details page.

4. Do one or more of the following:

• Check Details, State for the state of the experiment.

• Choose the Actions tab for information about the experiment actions.

• Choose the Targets tab for information about the experiment targets.

• Choose the Timeline tab for a visual representation of the actions based on their start and
end times.

To view experiments using the CLI

Use the list-experiments command to get a list of experiments, and use the get-experiment
command to get information about a specific experiment.

Experiment states

An experiment can be in one of the following states:

• pending – The experiment is pending.

• initiating – The experiment is preparing to start.

View your experiments 188

https://console.aws.amazon.com/fis/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/list-experiments.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/get-experiment.html

AWS Fault Injection Service User Guide

• running – The experiment is running.

• completed – All actions in the experiment completed successfully.

• stopping – The stop condition was triggered or the experiment was stopped manually.

• stopped – All running or pending actions in the experiment are stopped.

• failed – The experiment failed due to an error, such as insufficient permissions or incorrect
syntax.

Action states

An action can be in one of the following states:

• pending – The action is pending, either because the experiment hasn't started or the action is to
start later in the experiment.

• initiating – The action is preparing to start.

• running – The action is running.

• completed – The action completed successfully.

• cancelled – The experiment stopped before the action started.

• skipped – The action has been skipped.

• stopping – The action is stopping.

• stopped – All running or pending actions in the experiment are stopped.

• failed – The action failed due to a client error, such as insufficient permissions or incorrect
syntax.

Tag an experiment

You can apply tags to experiments to help you organize them. You can also implement tag-based
IAM policies to control access to experiments.

To tag an experiment using the console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiments.

3. Select the experiment and choose Actions, Manage tags.

4. To add a new tag, choose Add new tag, and specify a key and value.

Action states 189

https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

To remove a tag, choose Remove for the tag.

5. Choose Save.

To tag an experiment using the CLI

Use the tag-resource command.

Stop an experiment

You can stop a running experiment at any time. When you stop an experiment, any post actions
that have not been completed for an action are completed before the experiment stops. You
cannot resume a stopped experiment.

To stop an experiment using the console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiments.

3. Select the experiment, and choose Stop experiment.

4. In the confirmation dialog box, choose Stop experiment.

To stop an experiment using the CLI

Use the stop-experiment command.

List resolved targets

You can view information for resolved targets for an experiment after target resolution has ended.

To view resolved targets using the console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiments.

3. Select the experiment, and choose Report.

4. View resolved target information under Resources.

To view resolved targets using the CLI

Stop an experiment 190

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/tag-resource.html
https://console.aws.amazon.com/fis/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/stop-experiment.html
https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

Use the list-experiment-resolved-targets command.

List resolved targets 191

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/list-experiment-resolved-targets.html

AWS Fault Injection Service User Guide

Experiment scheduler

With AWS Fault Injection Service (FIS), you can perform fault injection experiments on your AWS
workloads. These experiments run on templates that contain one or more actions to run on
specified targets. You can now schedule your experiments as a one-time task or recurring tasks
natively from the FIS Console. In addition to scheduled rules, FIS now offers a new scheduling
capability. FIS now integrates with EventBridge Scheduler and creates rules on your behalf.
EventBridge Scheduler is a serverless scheduler that allows you to create, run, and manage tasks
from one central, managed service.

Important

Experiment Scheduler with AWS Fault Injection Service is not available in AWS GovCloud
(US-East) and AWS GovCloud (US-West).

Topics

• Getting started

• Schedule an FIS experiment

• To update schedule using the console

• Updating the Experiment Schedule

• Disable or Delete an Experiment Execution using the console

Getting started

An execution role is an IAM role that AWS Fault Injection Service assumes in order to interact
with EventBridge scheduler and for Event Bridge scheduler to Start FIS Experiment. You attach
permission policies to this role to grant EventBridge Scheduler access to invoke FIS Experiment. The
following steps describe how to create a new execution role and a policy to allow EventBridge to
Start an Experiment.

Create scheduler role using the AWS CLI

This is IAM role that is needed for Event Bridge to be able to schedule experiment on behalf of the
customer.

Getting started 192

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html

AWS Fault Injection Service User Guide

1. Copy the following assume role JSON policy and save it locally as fis-execution-
role.json. This trust policy allows EventBridge Scheduler to assume the role on your behalf.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "scheduler.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. From the AWS Command Line Interface (AWS CLI), enter the following command to create a new
role. Replace FisSchedulerExecutionRole with the name you want to give this role.

aws iam create-role --role-name FisSchedulerExecutionRole --assume-role-policy-
document file://fis-execution-role.json

If successful, you'll see the following output:

{
 "Role": {
 "Path": "/",
 "RoleName": "FisSchedulerExecutionRole",
 "RoleId": "AROAZL22PDN5A6WKRBQNU",
 "Arn": "arn:aws:iam::123456789012:role/FisSchedulerExecutionRole",
 "CreateDate": "2023-08-24T17:23:05+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "scheduler.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }

Getting started 193

AWS Fault Injection Service User Guide

]
 }
 }
}

3. To create a new policy that allows EventBridge Scheduler to invoke the experiment, copy
the following JSON and save it locally as fis-start-experiment-permissions.json.
The following policy allows EventBridge Scheduler to call the fis:StartExperiment
action on all experiment templates in your account. Replace the * at the end of
"arn:aws:fis:*:*:experiment-template/*" with the ID of your experiment template if
you want to limit the role to a single experiment template.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "fis:StartExperiment",
 "Resource": [
 "arn:aws:fis:*:*:experiment-template/*",
 "arn:aws:fis:*:*:experiment/*"
]
 }
]
}

4. Run the following command to create the new permission policy. Replace
FisSchedulerPolicy with the name you want to give this policy.

aws iam create-policy --policy-name FisSchedulerPolicy --policy-document file://fis-
start-experiment-permissions.json

If successful, you'll see the following output. Note the policy ARN. You use this ARN in the next
step to attach the policy to our execution role.

{
 "Policy": {
 "PolicyName": "FisSchedulerPolicy",
 "PolicyId": "ANPAZL22PDN5ESVUWXLBD",

Getting started 194

AWS Fault Injection Service User Guide

 "Arn": "arn:aws:iam::123456789012:policy/FisSchedulerPolicy",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2023-08-24T17:34:45+00:00",
 "UpdateDate": "2023-08-24T17:34:45+00:00"
 }
}

5. Run the following command to attach the policy to your execution role. Replace your-
policy-arn with the ARN of the policy you created in the previous step. Replace
FisSchedulerExecutionRole with the name of your execution role.

aws iam attach-role-policy --policy-arn your-policy-arn --role-name
 FisSchedulerExecutionRole

The attach-role-policy operation doesn't return a response on the command line.

6. You can restrict the scheduler to only run AWS FIS experiments that have a specific tag value.
For example, the following policy grants the fis:StartExperiment permission for all AWS
FIS experiment templates, but restricts the scheduler to only run experiments that are tagged
Purpose=Schedule.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "fis:StartExperiment",
 "Resource": "arn:aws:fis:*:*:experiment/*"
 },
 {
 "Effect": "Allow",
 "Action": "fis:StartExperiment",
 "Resource": "arn:aws:fis:*:*:experiment-template/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Purpose": "Schedule"
 }

Getting started 195

AWS Fault Injection Service User Guide

 }
 }
]
}

Schedule an FIS experiment

Before you schedule an experiment, you need one or more Experiment templates for your schedule
to invoke. You can use an existing AWS resource, or create a new one.

Once experiment template is created, click on Actions and select Schedule experiment. You will be
redirected to schedule experiment page. The name of the schedule will be filled in for you.

Follow to the schedule pattern section and choose either one-time schedule or recurring. Fill in
required input fields and navigate to permissions.

Schedule state will be enabled by default. Note: if you disable schedule state, the experiment will
not be scheduled even if you create a schedule.

AWS FIS Experiment Scheduler is built on top of EventBridge Scheduler. You can refer the
documentation for the various schedule types supported.

Schedule an FIS experiment 196

https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html

AWS Fault Injection Service User Guide

To update schedule using the console

1. Open the AWS FIS console.

2. In the left navigation pane, choose Experiment Templates .

3. Choose Experiment Template for which you want to create the schedule.

4. Click Actions, and select Schedule Experiment from the dropdown.

a. Under Schedule name, name is auto populated.

b. Under Schedule pattern, select Recurring schedule.

c. Under Schedule type, you can select a Rate-based schedule, see schedule types .

d. Under Rate expression, choose a rate that is slower than the execution time of your
experiment, e.g. 5 minutes.

e. Under Timeframe, select your Time Zone .

f. Under Start Date and Time, specify a start date and time.

g. Under End Date and Time, specify an end date and time

h. Under Schedule State, toggle the Enable Schedule Option.

i. Under Permissions, select Use existing role, and then search for
FisSchedulerExecutionRole.

j. Choose Next.

5. Select Review and create schedule, review your scheduler details, and then choose Create
schedule.

Updating the Experiment Schedule

You can update an experiment schedule so that it occurs at a specific date and time that suits you.

To update an experiment execution using the console

1. Open the Amazon FIS console.

2. In the navigation pane, choose Experiment Templates.

3. Choose Resource type: Experiment Template for which a schedule is already created.

4. Click on the Experiment ID for the template. Then navigate to schedules Tab.

5. Check if there is a existing schedule associated with the experiment. Select the schedule
associated and Click the button Update Schedule.

To update schedule using the console 197

https://console.aws.amazon.com/fis
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html
https://docs.aws.amazon.com/fis

AWS Fault Injection Service User Guide

Disable or Delete an Experiment Execution using the console

To stop an experiment from executing or running on a schedule, you can delete or disable the rule.
The following steps walk you through how to delete or disable an Experiment Execution.

To delete or disable a rule

1. Open the Amazon FIS console.

2. In the navigation pane, choose Experiment Templates.

3. Choose Resource type: Experiment Template for which a schedule is already created.

4. Click on the Experiment ID for the template. Then navigate to schedules Tab.

5. Check if there is a existing schedule associated with the experiment. Select the schedule
associated and Click the button Update Schedule.

6. Do one of the following:

a. To delete the schedule, select the button next to the rule Delete Schedule. Type delete and
click the Delete Schedule button.

b. To disable the schedule, select the button next to the rule Disable Schedule. Type disable
and click the Disable Schedule button.

Disable or Delete an Experiment Execution using the console 198

https://docs.aws.amazon.com/fis

AWS Fault Injection Service User Guide

Monitoring AWS FIS

You can use the following tools to monitor the progress and impact of your AWS Fault Injection
Service (AWS FIS) experiments.

AWS FIS console and AWS CLI

Use the AWS FIS console or the AWS CLI to monitor the progress of a running experiment. You
can view the status of each action in the experiment, and the results of each action. For more
information, see the section called “View your experiments”.

CloudWatch usage metrics and alarms

Use CloudWatch usage metrics to provide visibility into your account's usage of resources.
AWS FIS usage metrics correspond to AWS service quotas. You can configure alarms that alert
you when your usage approaches a service quota. For more information, see Monitor using
CloudWatch.

You can also create stop conditions for your AWS FIS experiments by creating CloudWatch
alarms that define when an experiment goes out of bounds. When the alarm is triggered, the
experiment stops. For more information, see Stop conditions. For more information about
creating CloudWatch alarms, see Create a CloudWatch Alarm Based on a Static Threshold and
Creating a CloudWatch Alarm Based on Anomaly Detection in the Amazon CloudWatch User
Guide.

AWS FIS experiment logging

Enable experiment logging to capture detailed information about your experiment as it runs.
For more information see Experiment logging.

Experiment state change events

Amazon EventBridge enables you to respond automatically to system events or resource
changes. AWS FIS emits a notification when the state of an experiment changes. You can
create rules for the events that you are interested in that specify the automated action to take
when an event matches a rule. For example, sending a notification to an Amazon SNS topic or
invoking a Lambda function. For more information, see Monitor using EventBridge.

CloudTrail logs

Use AWS CloudTrail to capture detailed information about the calls made to the AWS FIS API
and store them as log files in Amazon S3. CloudTrail also logs calls made to service APIs for the

199

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Create_Anomaly_Detection_Alarm.html

AWS Fault Injection Service User Guide

resources on which you're running experiments. You can use these CloudTrail logs to determine
which calls were made, the source IP address where the call came from, who made the call,
when the call was made, and so on.

AWS Health Dashboard Notifications

AWS Health provides ongoing visibility into your resource performance and the availability of
your AWS services and accounts. When you start an experiment, AWS FIS emits a notification
to your AWS Health Dashboard. The notification is present for the duration of the experiment
in each account that contains resources targeted in an experiment, including multi-account
experiments. Multi-account experiments with only actions that do not include targets, such as
aws:ssm:start-automation-execution and aws:fis:wait, will not emit a notification.
Information about the role used to allow the experiment will be listed under Affected
resources. To learn more about the AWS Health Dashboard, see AWS Health Dashboard in the
AWS Health User Guide.

Note

AWS Health delivers events on a best effort basis.

Monitor AWS FIS usage metrics using Amazon CloudWatch

You can use Amazon CloudWatch to monitor the impact of AWS FIS experiments on targets. You
can also monitor your AWS FIS usage.

For more information about viewing the state of an experiment, see View your experiments.

Monitor AWS FIS experiments

As you plan your AWS FIS experiments, identify the CloudWatch metrics that you can use to
identify the baseline or "steady state" for the target resource types for the experiment. After you
start an experiment, you can monitor those CloudWatch metrics for the targets selected through
the experiment template.

For more information about the available CloudWatch metrics for a target resource type supported
by AWS FIS, see the following:

• Monitor your instances using CloudWatch

• Amazon ECS CloudWatch metrics

Monitor using CloudWatch 200

https://docs.aws.amazon.com/health/latest/ug/cloudwatch-events-health.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-cloudwatch.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-metrics.html

AWS Fault Injection Service User Guide

• Monitoring Amazon RDS metrics using CloudWatch

• Monitoring Run Command metrics using CloudWatch

AWS FIS usage metrics

You can use CloudWatch usage metrics to provide visibility into your account's usage of resources.
Use these metrics to visualize your current service usage on CloudWatch graphs and dashboards.

AWS FIS usage metrics correspond to AWS service quotas. You can configure alarms that alert you
when your usage approaches a service quota. For more information about CloudWatch alarms, see
the Amazon CloudWatch User Guide.

AWS FIS publishes the following metric in the AWS/Usage namespace.

Metric Description

ResourceCount The total number of the specified resource
running on your account. The resource is
defined by the dimensions associated with the
metric.

The following dimensions are used to refine the usage metrics that are published by AWS FIS.

Dimension Description

Service The name of the AWS service containing the
resource. For AWS FIS usage metrics, the value
for this dimension is FIS.

Type The type of entity that is being reported.
Currently, the only valid value for AWS FIS
usage metrics is Resource.

Resource The type of resource that is running. The
possible values are ExperimentTemplate
s for experiment templates, and ActiveExp
eriments for active experiments.

AWS FIS usage metrics 201

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/monitoring-cloudwatch.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/monitoring-cloudwatch-metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

AWS Fault Injection Service User Guide

Dimension Description

Class This dimension is reserved for future use.

Monitor AWS FIS experiments using Amazon EventBridge

When the state of an experiment changes, AWS FIS emits a notification. These notifications are
made available as events through Amazon EventBridge (formerly called CloudWatch Events). AWS
FIS emits these events on a best effort basis. Events are delivered to EventBridge in near real time.

With EventBridge, you can create rules that trigger programmatic actions in response to an event.
For example, you can configure a rule that invokes an SNS topic to send an email notification or
invokes a Lambda function to take some action.

For more information about EventBridge, see Getting started with Amazon EventBridge in the
Amazon EventBridge User Guide.

The following is the syntax of an experiment state change event:

{
 "version": "0",
 "id": "12345678-1234-1234-1234-123456789012",
 "detail-type": "FIS Experiment State Change",
 "source": "aws.fis",
 "account": "123456789012",
 "time": "yyyy-mm-ddThh:mm:ssZ",
 "region": "region",
 "resources": [
 "arn:aws:fis:region:account_id:experiment/experiment-id"
],
 "detail": {
 "experiment-id": "EXPaBCD1efg2HIJkL3",
 "experiment-template-id": "EXTa1b2c3de5f6g7h",
 "new-state": {
 "status": "new_value",
 "reason": "reason_string"
 },
 "old-state": {
 "status": "old_value",
 "reason": "reason_string"

Monitor using EventBridge 202

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html

AWS Fault Injection Service User Guide

 }
 }
}

experiment-id

The ID of the experiment whose state changed.

experiment-template-id

The ID of the experiment template used by the experiment.

new_value

The new state of the experiment. The possible values are:

• completed

• failed

• initiating

• running

• stopped

• stopping

old_value

The previous state of the experiment. The possible values are:

• initiating

• pending

• running

• stopping

Experiment logging for AWS FIS

You can use experiment logging to capture detailed information about your experiment as it runs.

You are charged for experiment logging based on the costs associated with each log destination
type. For more information, see Amazon CloudWatch Pricing (under Paid Tier, Logs, Vended Logs)
and Amazon S3 Pricing.

Experiment logging 203

https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/s3/pricing/

AWS Fault Injection Service User Guide

Permissions

You must grant AWS FIS permissions to send logs to each log destination that you configure. For
more information, see the following in the Amazon CloudWatch Logs User Guide:

• Logs sent to CloudWatch Logs

• Logs sent to Amazon S3

Log schema

The following is the schema used in experiment logging. The current schema version is 2. The fields
for details depend on the value of log_type. The fields for resolved_targets depend on the
value of target_type. For more information, see the section called “Example log records”.

{
 "id": "EXP123abc456def789",
 "log_type": "experiment-start | target-resolution-start | target-resolution-detail
 | target-resolution-end | action-start | action-error | action-end | experiment-end",
 "event_timestamp": "yyyy-mm-ddThh:mm:ssZ",
 "version": "2",
 "details": {
 "account_id":"123456789012",
 "action_end_time": "yyyy-mm-ddThh:mm:ssZ",
 "action_id": "String",
 "action_name": "String",
 "action_start_time": "yyyy-mm-ddThh:mm:ssZ",
 "action_state": {
 "status": "pending | initiating | running | completed | cancelled |
 stopping | stopped | failed",
 "reason": "String"
 },
 "action_targets": "String to string map",
 "error_information": "String",
 "experiment_end_time": "yyyy-mm-ddThh:mm:ssZ",
 "experiment_state": {
 "status": "pending | initiating | running | completed | stopping | stopped
 | failed",
 "reason": "String"
 },
 "experiment_start_time": "yyyy-mm-ddThh:mm:ssZ",
 "experiment_template_id": "String",

Permissions 204

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AWS-logs-and-resource-policy.html#AWS-logs-infrastructure-CWL
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AWS-logs-and-resource-policy.html#AWS-logs-infrastructure-S3

AWS Fault Injection Service User Guide

 "page": Number,
 "parameters": "String to string map",
 "resolved_targets": [
 {
 "field": "value"
 }
],
 "resolved_targets_count": Number,
 "status": "failed | completed",
 "target_name": "String",
 "target_resolution_end_time": "yyyy-mm-ddThh:mm:ssZ",
 "target_resolution_start_time": "yyyy-mm-ddThh:mm:ssZ",
 "target_type": "String",
 "total_pages": Number,
 "total_resolved_targets_count": Number

 }
}

Release notes

• Version 2 introduces:

• The target_type field and changes the resolved_targets field from a list of ARNs to
a list of objects. The valid fields for the resolved_targets object depend on the value of
target_type, which is the resource type of the targets.

• The action-error and target-resolution-detail event types which add the
account_id field.

• Version 1 is the initial release.

Log destinations

AWS FIS supports log delivery to the following destinations:

• An Amazon S3 bucket

• An Amazon CloudWatch Logs log group

S3 log delivery

The logs are delivered to the following location.

Log destinations 205

AWS Fault Injection Service User Guide

bucket-and-optional-prefix/AWSLogs/account-id/fis/region/experiment-
id/YYYY/MM/DD/account-id_awsfislogs_region_experiment-id_YYYYMMDDHHMMZ_hash.log

It can take several minutes before the logs are delivered to the bucket.

CloudWatch Logs log delivery

The logs are delivered to a log stream named /aws/fis/experiment-id.

Logs are delivered to the log group in less than one minute.

Example log records

The following are example log records for an experiment that runs the aws:ec2:reboot-instances
action on an EC2 instance selected at random.

Records

• experiment-start

• target-resolution-start

• target-resolution-detail

• target-resolution-end

• action-start

• action-end

• action-error

• experiment-end

experiment-start

The following is an example record for the experiment-start event.

{
 "id": "EXPhjAXCGY78HV2a4A",
 "log_type": "experiment-start",
 "event_timestamp": "2023-05-31T18:50:45Z",
 "version": "2",
 "details": {
 "experiment_template_id": "EXTCDh1M8HHkhxoaQ",

Example log records 206

AWS Fault Injection Service User Guide

 "experiment_start_time": "2023-05-31T18:50:43Z"
 }
}

target-resolution-start

The following is an example record for the target-resolution-start event.

{
 "id": "EXPhjAXCGY78HV2a4A",
 "log_type": "target-resolution-start",
 "event_timestamp": "2023-05-31T18:50:45Z",
 "version": "2",
 "details": {
 "target_resolution_start_time": "2023-05-31T18:50:45Z",
 "target_name": "EC2InstancesToReboot"
 }
}

target-resolution-detail

The following is an example record for the target-resolution-detail event. If target
resolution fails, the record also includes the error_information field.

{
 "id": "EXPhjAXCGY78HV2a4A",
 "log_type": "target-resolution-detail",
 "event_timestamp": "2023-05-31T18:50:45Z",
 "version": "2",
 "details": {
 "target_resolution_end_time": "2023-05-31T18:50:45Z",
 "target_name": "EC2InstancesToReboot",
 "target_type": "aws:ec2:instance",
 "account_id": "123456789012",
 "resolved_targets_count": 2,
 "status": "completed"

 }
}

target-resolution-end

Example log records 207

AWS Fault Injection Service User Guide

If target resolution fails, the record also includes the error_information field. If total_pages
is greater than 1, the number of resolved targets exceeded the size limit for one record. There are
additional target-resolution-end records that contain the remaining resolved targets.

The following is example record for the target-resolution-end event for an EC2 action.

{
 "id": "EXPhjAXCGY78HV2a4A",
 "log_type": "target-resolution-end",
 "event_timestamp": "2023-05-31T18:50:45Z",
 "version": "2",
 "details": {
 "target_resolution_end_time": "2023-05-31T18:50:46Z",
 "target_name": "EC2InstanceToReboot",
 "target_type": "aws:ec2:instance",
 "resolved_targets": [
 {
 "arn": "arn:aws:ec2:us-east-1:123456789012:instance/
i-0f7ee2abffc330de5"
 }
],
 "page": 1,
 "total_pages": 1
 }
}

The following is example record for the target-resolution-end event for an EKS action.

{
 "id": "EXP24YfiucfyVPJpEJn",
 "log_type": "target-resolution-end",
 "event_timestamp": "2023-05-31T18:50:45Z",
 "version": "2",
 "details": {
 "target_resolution_end_time": "2023-05-31T18:50:46Z",
 "target_name": "myPods",
 "target_type": "aws:eks:pod",
 "resolved_targets": [
 {
 "pod_name": "example-696fb6498b-sxhw5",
 "namespace": "default",
 "cluster_arn": "arn:aws:eks:us-east-1:123456789012:cluster/fis-demo-
cluster",

Example log records 208

AWS Fault Injection Service User Guide

 "target_container_name": "example"
 }
],
 "page": 1,
 "total_pages": 1
 }
}

action-start

The following is an example record for the action-start event. If the experiment template
specifies parameters for the action, the record also includes the parameters field.

{
 "id": "EXPhjAXCGY78HV2a4A",
 "log_type": "action-start",
 "event_timestamp": "2023-05-31T18:50:56Z",
 "version": "2",
 "details": {
 "action_name": "Reboot",
 "action_id": "aws:ec2:reboot-instances",
 "action_start_time": "2023-05-31T18:50:56Z",
 "action_targets": {"Instances":"EC2InstancesToReboot"}
 }
}

action-error

The following is an example record for the action-error event. This event is only returned when
an action fails. It is returned for each account where the action fails.

{
 "id": "EXPhjAXCGY78HV2a4A",
 "log_type": "action-error",
 "event_timestamp": "2023-05-31T18:50:56Z",
 "version": "2",
 "details": {
 "action_name": "pause-io",
 "action_id": "aws:ebs:pause-volume-io",
 "account_id": "123456789012",
 "action_state": {
 "status": "failed",

Example log records 209

AWS Fault Injection Service User Guide

 "reason":"Unable to start Pause Volume IO. Target volumes must be attached
 to an instance type based on the Nitro system. VolumeId(s): [vol-1234567890abcdef0]:"
 }
 }
}

action-end

The following is an example record for the action-end event.

{
 "id": "EXPhjAXCGY78HV2a4A",
 "log_type": "action-end",
 "event_timestamp": "2023-05-31T18:50:56Z",
 "version": "2",
 "details": {
 "action_name": "Reboot",
 "action_id": "aws:ec2:reboot-instances",
 "action_end_time": "2023-05-31T18:50:56Z",
 "action_state": {
 "status": "completed",
 "reason": "Action was completed."
 }
 }
}

experiment-end

The following is an example record for the experiment-end event.

{
 "id": "EXPhjAXCGY78HV2a4A",
 "log_type": "experiment-end",
 "event_timestamp": "2023-05-31T18:50:57Z",
 "version": "2",
 "details": {
 "experiment_end_time": "2023-05-31T18:50:57Z",
 "experiment_state": {
 "status": "completed",
 "reason": "Experiment completed"
 }
 }

Example log records 210

AWS Fault Injection Service User Guide

}

Enable experiment logging

Experiment logging is disabled by default. To receive experiment logs for an experiment, you must
create the experiment from an experiment template with logging enabled. The first time that you
run an experiment that is configured to use a destination that hasn't been used previously for
logging, we delay the experiment to configure log delivery to this destination, which takes about
15 seconds.

To enable experiment logging using the console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. Select the experiment template, and choose Actions, Update experiment template.

4. For Logs, configure the destination options. To send logs to an S3 bucket, choose Send to an
Amazon S3 bucket and enter the bucket name and prefix. To send logs to CloudWatch Logs,
choose Send to CloudWatch Logs and enter the log group.

5. Choose Update experiment template.

To enable experiment logging using the AWS CLI

Use the update-experiment-template command and specify a log configuration.

Disable experiment logging

If you no longer want to receive logs for your experiments, you can disable experiment logging.

To disable experiment logging using the console

1. Open the AWS FIS console at https://console.aws.amazon.com/fis/.

2. In the navigation pane, choose Experiment templates.

3. Select the experiment template, and choose Actions, Update experiment template.

4. For Logs, clear Send to an Amazon S3 bucket and Send to CloudWatch Logs.

5. Choose Update experiment template.

To disable experiment logging using the AWS CLI

Enable experiment logging 211

https://console.aws.amazon.com/fis/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/update-experiment-template.html
https://console.aws.amazon.com/fis/

AWS Fault Injection Service User Guide

Use the update-experiment-template command and specify an empty log configuration.

Log API calls with AWS CloudTrail

AWS Fault Injection Service (AWS FIS) is integrated with AWS CloudTrail, a service that provides a
record of actions taken by a user, a role, or an AWS service in AWS FIS. CloudTrail captures all API
calls for AWS FIS as events. The calls that are captured include calls from the AWS FIS console and
code calls to the AWS FIS API operations. If you create a trail, you can enable continuous delivery
of CloudTrail events to an Amazon S3 bucket, including events for AWS FIS. If you don't configure
a trail, you can still view the most recent events in the CloudTrail console in Event history. Using
the information collected by CloudTrail, you can determine the request that was made to AWS FIS,
the IP address from which the request was made, who made the request, when it was made, and
additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Use CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs
in AWS FIS, that activity is recorded in a CloudTrail event along with other AWS service events in
Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for AWS FIS, create a trail.
A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create
a trail in the console, the trail applies to all AWS Regions. The trail logs events from all Regions in
the AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally,
you can configure other AWS services to further analyze and act upon the event data collected in
CloudTrail logs. For more information, see the following:

• Create a Trail for Your AWS Account

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All AWS FIS actions are logged by CloudTrail and are documented in the AWS Fault Injection
Service API Reference. For the experiment actions that are carried out on a target resource, view

Log API calls with AWS CloudTrail 212

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/update-experiment-template.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/fis/latest/APIReference/
https://docs.aws.amazon.com/fis/latest/APIReference/

AWS Fault Injection Service User Guide

the API reference documentation for the service that owns the resource. For example, for actions
that are carried out on an Amazon EC2 instance, see the Amazon EC2 API Reference.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understand AWS FIS log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following is an example CloudTrail log entry for a call to the AWS FIS StopExperiment
action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:jdoe",
 "arn": "arn:aws:sts::111122223333:assumed-role/example/jdoe",
 "accountId": "111122223333",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAIOSFODNN7EXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/example",
 "accountId": "111122223333",
 "userName": "example"
 },
 "webIdFederationData": {},
 "attributes": {

Understand AWS FIS log file entries 213

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS Fault Injection Service User Guide

 "creationDate": "2020-12-03T09:40:42Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2020-12-03T09:44:20Z",
 "eventSource": "fis.amazonaws.com",
 "eventName": "StopExperiment",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.51.100.25",
 "userAgent": "Boto3/1.22.9 Python/3.8.13 Linux/5.4.186-113.361.amzn2int.x86_64
 Botocore/1.25.9",
 "requestParameters": {
 "clientToken": "1234abc5-6def-789g-012h-ijklm34no56p",
 "experimentTemplateId": "ABCDE1fgHIJkLmNop",
 "tags": {}
 },
 "responseElements": {
 "experiment": {
 "actions": {
 "exampleAction1": {
 "actionId": "aws:ec2:stop-instances",
 "duration": "PT10M",
 "state": {
 "reason": "Initial state",
 "status": "pending"
 },
 "targets": {
 "Instances": "exampleTag1"
 }
 },
 "exampleAction2": {
 "actionId": "aws:ec2:stop-instances",
 "duration": "PT10M",
 "state": {
 "reason": "Initial state",
 "status": "pending"
 },
 "targets": {
 "Instances": "exampleTag2"
 }
 }
 },
 "creationTime": 1605788649.95,

Understand AWS FIS log file entries 214

AWS Fault Injection Service User Guide

 "endTime": 1606988660.846,
 "experimentTemplateId": "ABCDE1fgHIJkLmNop",
 "id": "ABCDE1fgHIJkLmNop",
 "roleArn": "arn:aws:iam::111122223333:role/AllowFISActions",
 "startTime": 1605788650.109,
 "state": {
 "reason": "Experiment stopped",
 "status": "stopping"
 },
 "stopConditions": [
 {
 "source": "aws:cloudwatch:alarm",
 "value": "arn:aws:cloudwatch:us-east-1:111122223333:alarm:example"
 }
],
 "tags": {},
 "targets": {
 "ExampleTag1": {
 "resourceTags": {
 "Example": "tag1"
 },
 "resourceType": "aws:ec2:instance",
 "selectionMode": "RANDOM(1)"
 },
 "ExampleTag2": {
 "resourceTags": {
 "Example": "tag2"
 },
 "resourceType": "aws:ec2:instance",
 "selectionMode": "RANDOM(1)"
 }
 }
 }
 },
 "requestID": "1abcd23e-f4gh-567j-klm8-9np01q234r56",
 "eventID": "1234a56b-c78d-9e0f-g1h2-34jk56m7n890",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"

}

Understand AWS FIS log file entries 215

AWS Fault Injection Service User Guide

The following is an example CloudTrail log entry for an API action that AWS FIS invoked
as part of an experiment that includes the aws:ssm:send-command AWS FIS action. The
userIdentity element reflects a request made with temporary credentials obtained by
assuming a role. The name of the assumed role appears in userName. The ID of the experiment,
EXP21nT17WMzA6dnUgz, appears in principalId and as part of the ARN of the assumed role.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROATZZZ4JPIXUEXAMPLE:EXP21nT17WMzA6dnUgz",
 "arn": "arn:aws:sts::111122223333:assumed-role/AllowActions/
EXP21nT17WMzA6dnUgz",
 "accountId": "111122223333",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROATZZZ4JPIXUEXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/AllowActions",
 "accountId": "111122223333",
 "userName": "AllowActions"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-05-30T13:23:19Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "fis.amazonaws.com"
 },
 "eventTime": "2022-05-30T13:23:19Z",
 "eventSource": "ssm.amazonaws.com",
 "eventName": "ListCommands",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "fis.amazonaws.com",
 "userAgent": "fis.amazonaws.com",
 "requestParameters": {
 "commandId": "51dab97f-489b-41a8-a8a9-c9854955dc65"
 },
 "responseElements": null,
 "requestID": "23709ced-c19e-471a-9d95-cf1a06b50ee6",
 "eventID": "145fe5a6-e9d5-45cc-be25-b7923b950c83",

Understand AWS FIS log file entries 216

AWS Fault Injection Service User Guide

 "readOnly": true,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Understand AWS FIS log file entries 217

AWS Fault Injection Service User Guide

Security in AWS Fault Injection Service

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to AWS Fault Injection
Service, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using AWS FIS. The following topics show you how to configure AWS FIS to meet your security and
compliance objectives. You also learn how to use other AWS services that help you to monitor and
secure your AWS FIS resources.

Contents

• Data protection in AWS Fault Injection Service

• Identity and access management for AWS Fault Injection Service

• Infrastructure security in AWS Fault Injection Service

• Access AWS FIS using an interface VPC endpoint (AWS PrivateLink)

Data protection in AWS Fault Injection Service

The AWS shared responsibility model applies to data protection in AWS Fault Injection Service. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks

Data protection 218

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Fault Injection Service User Guide

for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with AWS FIS or other AWS services using the console, API, AWS CLI, or AWS SDKs.
Any data that you enter into tags or free-form text fields used for names may be used for billing or
diagnostic logs. If you provide a URL to an external server, we strongly recommend that you do not
include credentials information in the URL to validate your request to that server.

Encryption at rest

AWS FIS always encrypts your data at rest. Data in AWS FIS is encrypted at rest using transparent
server-side encryption. This helps reduce the operational burden and complexity involved in
protecting sensitive data. With encryption at rest, you can build security-sensitive applications that
meet encryption compliance and regulatory requirements.

Encryption at rest 219

https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

AWS Fault Injection Service User Guide

Encryption in transit

AWS FIS encrypts data in transit between the service and other integrated AWS services. All data
that passes between AWS FIS and integrated services is encrypted using Transport Layer Security
(TLS). For more information about other integrated AWS services, see Supported AWS services.

Identity and access management for AWS Fault Injection
Service

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS FIS resources. IAM is an AWS service that you can use
with no additional charge.

Contents

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS Fault Injection Service works with IAM

• AWS Fault Injection Service policy examples

• Use service-linked roles for AWS Fault Injection Service

• AWS managed policies for AWS Fault Injection Service

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS FIS.

Service user – If you use the AWS FIS service to do your job, then your administrator provides you
with the credentials and permissions that you need. As you use more AWS FIS features to do your
work, you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator.

Service administrator – If you're in charge of AWS FIS resources at your company, you probably
have full access to AWS FIS. It's your job to determine which AWS FIS features and resources your

Encryption in transit 220

AWS Fault Injection Service User Guide

service users should access. You must then submit requests to your IAM administrator to change
the permissions of your service users. Review the information on this page to understand the basic
concepts of IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to AWS FIS.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.

Authenticating with identities 221

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

AWS Fault Injection Service User Guide

We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

Authenticating with identities 222

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose

AWS Fault Injection Service User Guide

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

Authenticating with identities 223

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html

AWS Fault Injection Service User Guide

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A

Managing access using policies 224

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

AWS Fault Injection Service User Guide

user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Managing access using policies 225

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

AWS Fault Injection Service User Guide

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS Fault Injection Service works with IAM

Before you use IAM to manage access to AWS FIS, learn what IAM features are available to use with
AWS FIS.

How AWS Fault Injection Service works with IAM 226

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

AWS Fault Injection Service User Guide

IAM features you can use with AWS Fault Injection Service

IAM feature AWS FIS support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles Yes

To get a high-level view of how AWS FIS and other AWS services work with most IAM features, see
AWS services that work with IAM in the IAM User Guide.

Identity-based policies for AWS FIS

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

How AWS Fault Injection Service works with IAM 227

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

AWS Fault Injection Service User Guide

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for AWS FIS

To view examples of AWS FIS identity-based policies, see AWS Fault Injection Service policy
examples.

Resource-based policies within AWS FIS

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for AWS FIS

Supports policy actions Yes

How AWS Fault Injection Service works with IAM 228

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS Fault Injection Service User Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of AWS FIS actions, see Actions defined by AWS Fault Injection Service in the Service
Authorization Reference.

Policy actions in AWS FIS use the following prefix before the action:

fis

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "fis:action1",
 "fis:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word List, include the following action:

"Action": "fis:List*"

Policy resources for AWS FIS

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,

How AWS Fault Injection Service works with IAM 229

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsfaultinjectionservice.html#amazonec2-actions-as-permissions

AWS Fault Injection Service User Guide

specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

Some AWS FIS API actions support multiple resources. To specify multiple resources in a single
statement, separate the ARNs with commas.

"Resource": [
 "resource1",
 "resource2"
]

To see a list of AWS FIS resource types and their ARNs, see Resource types defined by AWS Fault
Injection Service in the Service Authorization Reference. To learn with which actions you can specify
the ARN of each resource, see Actions defined by AWS Fault Injection Service.

Policy condition keys for AWS FIS

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

How AWS Fault Injection Service works with IAM 230

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsfaultinjectionservice.html#amazonec2-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsfaultinjectionservice.html#amazonec2-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsfaultinjectionservice.html#amazonec2-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

AWS Fault Injection Service User Guide

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of AWS FIS condition keys, see Condition keys for AWS Fault Injection Service in the
Service Authorization Reference. To learn with which actions and resources you can use a condition
key, see Actions defined by AWS Fault Injection Service.

To view examples of AWS FIS identity-based policies, see AWS Fault Injection Service policy
examples.

ACLs in AWS FIS

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with AWS FIS

Supports ABAC (tags in policies) Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

How AWS Fault Injection Service works with IAM 231

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsfaultinjectionservice.html#amazonec2-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsfaultinjectionservice.html#amazonec2-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS Fault Injection Service User Guide

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

To view an example identity-based policy for limiting access to a resource based on the tags for
that resource, see Example: Use tags to control resource usage.

Using temporary credentials with AWS FIS

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for AWS FIS

Supports forward access sessions (FAS) Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a

How AWS Fault Injection Service works with IAM 232

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

AWS Fault Injection Service User Guide

different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for AWS FIS

Supports service roles Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Service-linked roles for AWS FIS

Supports service-linked roles Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing AWS FIS service-linked roles, see Use service-linked roles
for AWS Fault Injection Service.

AWS Fault Injection Service policy examples

By default, users and roles don't have permission to create or modify AWS FIS resources. They also
can't perform tasks by using the AWS Management Console, AWS Command Line Interface (AWS
CLI), or AWS API. To grant users permission to perform actions on the resources that they need, an
IAM administrator can create IAM policies. The administrator can then add the IAM policies to roles,
and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

Policy examples 233

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html

AWS Fault Injection Service User Guide

For details about actions and resource types defined by AWS FIS, including the format of the ARNs
for each of the resource types, see Actions, resources, and condition keys for AWS Fault Injection
Service in the Service Authorization Reference.

Contents

• Policy best practices

• Example: Use the AWS FIS console

• Example: List available AWS FIS actions

• Example: Create an experiment template for a specific action

• Example: Start an experiment

• Example: Use tags to control resource usage

• Example: Delete an experiment template with a specific tag

• Example: Allow users to view their own permissions

• Example: Use condition keys for ec2:InjectApiError

• Example: Use condition keys for aws:s3:bucket-pause-replication

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS FIS resources
in your account. These actions can incur costs for your AWS account. When you create or edit
identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to

Policy examples 234

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsfaultinjectionservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsfaultinjectionservice.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

AWS Fault Injection Service User Guide

specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Example: Use the AWS FIS console

To access the AWS Fault Injection Service console, you must have a minimum set of permissions.
These permissions must allow you to list and view details about the AWS FIS resources in your AWS
account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

The following example policy grants permission to list and view all AWS FIS resources using AWS
FIS console, but not to create, update, or delete them. It also grants permissions to view the
available resources used by all AWS FIS actions that you could specify in an experiment template.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FISReadOnlyActions",
 "Effect": "Allow",
 "Action": [

Policy examples 235

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS Fault Injection Service User Guide

 "fis:List*",
 "fis:Get*"
],
 "Resource": "*"
 },
 {
 "Sid": "AdditionalReadOnlyActions",
 "Effect": "Allow",
 "Action": [
 "ssm:Describe*",
 "ssm:Get*",
 "ssm:List*",
 "ec2:DescribeInstances",
 "rds:DescribeDBClusters",
 "ecs:DescribeClusters",
 "ecs:ListContainerInstances",
 "eks:DescribeNodegroup",
 "cloudwatch:DescribeAlarms",
 "iam:ListRoles"
],
 "Resource": "*"
 },
 {
 "Sid": "PermissionsToCreateServiceLinkedRole",
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "fis.amazonaws.com"
 }
 }
 }
]
}

Example: List available AWS FIS actions

The following policy grants permission to list the available AWS FIS actions.

{
 "Version": "2012-10-17",
 "Statement": [

Policy examples 236

AWS Fault Injection Service User Guide

 {
 "Effect": "Allow",
 "Action": [
 "fis:ListActions"
],
 "Resource": "arn:aws:fis:*:*:action/*"
 }
]
}

Example: Create an experiment template for a specific action

The following policy grants permission to create an experiment template for the action
aws:ec2:stop-instances.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PolicyExample",
 "Effect": "Allow",
 "Action": [
 "fis:CreateExperimentTemplate"
],
 "Resource": [
 "arn:aws:fis:*:*:action/aws:ec2:stop-instances",
 "arn:aws:fis:*:*:experiment-template/*"
]
 },
 {
 "Sid": "PolicyPassRoleExample",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::account-id:role/role-name"
]
 }
]
}

Policy examples 237

AWS Fault Injection Service User Guide

Example: Start an experiment

The following policy grants permission to start an experiment using the specified IAM role and
experiment template. It also allows AWS FIS to create a service-linked role on the user's behalf. For
more information, see Use service-linked roles for AWS Fault Injection Service.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PolicyExample",
 "Effect": "Allow",
 "Action": [
 "fis:StartExperiment"
],
 "Resource": [
 "arn:aws:fis:*:*:experiment-template/experiment-template-id",
 "arn:aws:fis:*:*:experiment/*"
]
 },
 {
 "Sid": "PolicyExampleforServiceLinkedRole",
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "fis.amazonaws.com"
 }
 }
 }
]
}

Example: Use tags to control resource usage

The following policy grants permission to run experiments from experiment templates that have
the tag Purpose=Test. It does not grant permission to create or modify experiment templates, or
run experiments using templates that do not have the specified tag.

{
 "Version": "2012-10-17",

Policy examples 238

AWS Fault Injection Service User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": "fis:StartExperiment",
 "Resource": "arn:aws:fis:*:*:experiment-template/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Purpose": "Test"
 }
 }
 }
]
}

Example: Delete an experiment template with a specific tag

The following policy grants permission to delete an experiment template with tag Purpose=Test.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "fis:DeleteExperimentTemplate"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Purpose": "Test"
 }
 }
 }
]
}

Example: Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

Policy examples 239

AWS Fault Injection Service User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Example: Use condition keys for ec2:InjectApiError

The following example policy uses the ec2:FisTargetArns condition key to scope target
resources. This policy allows the AWS FIS actions aws:ec2:api-insufficient-instance-
capacity-error and aws:ec2:asg-insufficient-instance-capacity-error.

{
 "Version": "2012-10-17",
 "Statement": [

Policy examples 240

AWS Fault Injection Service User Guide

 {
 "Effect": "Allow",
 "Action": "ec2:InjectApiError",
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "ec2:FisActionId": [
 "aws:ec2:api-insufficient-instance-capacity-error",
],
 "ec2:FisTargetArns": [
 "arn:aws:iam:*:*:role:role-name"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "ec2:InjectApiError",
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "ec2:FisActionId": [
 "aws:ec2:asg-insufficient-instance-capacity-error"
],
 "ec2:FisTargetArns": [

 "arn:aws:autoscaling:*:*:autoScalingGroup:uuid:autoScalingGroupName/asg-name"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "autoscaling:DescribeAutoScalingGroups",
 "Resource": "*"
 }
]
}

Policy examples 241

AWS Fault Injection Service User Guide

Example: Use condition keys for aws:s3:bucket-pause-replication

The following example policy uses the S3:IsReplicationPauseRequest condition key to allow
PutReplicationConfiguration and GetReplicationConfiguration only when used by
AWS FIS in the context of the AWS FIS action aws:s3:bucket-pause-replication.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "S3:PauseReplication"
],
 "Resource": "arn:aws:s3:::mybucket",
 "Condition": {
 "StringEquals": {
 "s3:DestinationRegion": "region"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "S3:PutReplicationConfiguration",
 "S3:GetReplicationConfiguration"
],
 "Resource": "arn:aws:s3:::mybucket",
 "Condition": {
 "BoolIfExists": {
 "s3:IsReplicationPauseRequest": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "S3:ListBucket"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Effect": "Allow",

Policy examples 242

AWS Fault Injection Service User Guide

 "Action": [
 "tag:GetResources"
],
 "Resource": "*"
 }
]
 }

Use service-linked roles for AWS Fault Injection Service

AWS Fault Injection Service uses AWS Identity and Access Management (IAM) service-linked roles.
A service-linked role is a unique type of IAM role that is linked directly to AWS FIS. Service-linked
roles are predefined by AWS FIS and include all of the permissions that the service requires to call
other AWS services on your behalf.

A service-linked role makes setting up AWS FIS easier because you don’t have to manually add
the necessary permissions to manage monitoring and resource selection for experiments. AWS FIS
defines the permissions of its service-linked roles, and unless defined otherwise, only AWS FIS can
assume its roles. The defined permissions include the trust policy and the permissions policy, and
that permissions policy cannot be attached to any other IAM entity.

In addition to the service-linked role, you must also specify an IAM role that grants permission to
modify the resources that you specify as targets in an experiment template. For more information,
see IAM roles for AWS FIS experiments.

You can delete a service-linked role only after first deleting the related resources. This protects
your AWS FIS resources because you can't inadvertently remove permission to access the resources.

Service-linked role permissions for AWS FIS

AWS FIS uses the service-linked role named AWSServiceRoleForFIS to enable it to manage
monitoring and resource selection for experiments.

The AWSServiceRoleForFIS service-linked role trusts the following services to assume the role:

• fis.amazonaws.com

The AWSServiceRoleForFIS service-linked role uses the managed policy
AmazonFISServiceRolePolicy. This policy enables AWS FIS to manage monitoring and resource

Use service-linked roles 243

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Fault Injection Service User Guide

selection for experiments. For more information, see AmazonFISServiceRolePolicy in the AWS
Managed Policy Reference.

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For the AWSServiceRoleForFIS service-linked role to
be successfully created, the IAM identity that you use AWS FIS with must have the required
permissions. To grant the required permissions, attach the following policy to the IAM identity.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "fis.amazonaws.com"
 }
 }
 }
]
}

For more information, see Service-linked role permissions in the IAM User Guide.

Create a service-linked role for AWS FIS

You don't need to manually create a service-linked role. When you start an AWS FIS experiment in
the AWS Management Console, the AWS CLI, or the AWS API, AWS FIS creates the service-linked
role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you start an AWS FIS experiment, AWS FIS creates the
service-linked role for you again.

Edit a service-linked role for AWS FIS

AWS FIS does not allow you to edit the AWSServiceRoleForFIS service-linked role. After you
create a service-linked role, you cannot change the name of the role because various entities
might reference the role. However, you can edit the description of the role using IAM. For more
information, see Editing a service-linked role in the IAM User Guide.

Use service-linked roles 244

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonFISServiceRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

AWS Fault Injection Service User Guide

Delete a service-linked role for AWS FIS

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Note

If the AWS FIS service is using the role when you try to clean up the resources, then the
cleanup might fail. If that happens, wait for a few minutes and try the operation again.

To clean up AWS FIS resources used by the AWSServiceRoleForFIS

Make sure that none of your experiments are currently running. If necessary, stop your
experiments. For more information, see Stop an experiment.

To manually delete the service-linked role using IAM

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForFIS service-
linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

Supported Regions for AWS FIS service-linked roles

AWS FIS supports using service-linked roles in all of the Regions where the service is available. For
more information, see AWS Fault Injection Service endpoints and quotas.

AWS managed policies for AWS Fault Injection Service

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,

AWS managed policies 245

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/fis.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies

AWS Fault Injection Service User Guide

groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: AmazonFISServiceRolePolicy

This policy is attached to the service-linked role named AWSServiceRoleForFIS to allow AWS FIS to
manage monitoring and resource selection for experiments. For more information, see Use service-
linked roles for AWS Fault Injection Service.

AWS managed policy: AWSFaultInjectionSimulatorEC2Access

Use this policy in an experiment role to grant AWS FIS permission to run experiments that use the
AWS FIS actions for Amazon EC2. For more information, see the section called “Experiment role”.

To view the permissions for this policy, see AWSFaultInjectionSimulatorEC2Access in the AWS
Managed Policy Reference.

AWS managed policy: AWSFaultInjectionSimulatorECSAccess

Use this policy in an experiment role to grant AWS FIS permission to run experiments that use the
AWS FIS actions for Amazon ECS. For more information, see the section called “Experiment role”.

To view the permissions for this policy, see AWSFaultInjectionSimulatorECSAccess in the AWS
Managed Policy Reference.

AWS managed policy: AWSFaultInjectionSimulatorEKSAccess

Use this policy in an experiment role to grant AWS FIS permission to run experiments that use the
AWS FIS actions for Amazon EKS. For more information, see the section called “Experiment role”.

To view the permissions for this policy, see AWSFaultInjectionSimulatorEKSAccess in the AWS
Managed Policy Reference.

AWS managed policy: AWSFaultInjectionSimulatorNetworkAccess

Use this policy in an experiment role to grant AWS FIS permission to run experiments that use the
AWS FIS networking actions. For more information, see the section called “Experiment role”.

To view the permissions for this policy, see AWSFaultInjectionSimulatorNetworkAccess in the AWS
Managed Policy Reference.

AWS managed policies 246

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEC2Access.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorECSAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorEKSAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorNetworkAccess.html

AWS Fault Injection Service User Guide

AWS managed policy: AWSFaultInjectionSimulatorRDSAccess

Use this policy in an experiment role to grant AWS FIS permission to run experiments that use the
AWS FIS actions for Amazon RDS. For more information, see the section called “Experiment role”.

To view the permissions for this policy, see AWSFaultInjectionSimulatorRDSAccess in the AWS
Managed Policy Reference.

AWS managed policy: AWSFaultInjectionSimulatorSSMAccess

Use this policy in an experiment role to grant AWS FIS permission to run experiments that use the
AWS FIS actions for Systems Manager. For more information, see the section called “Experiment
role”.

To view the permissions for this policy, see AWSFaultInjectionSimulatorSSMAccess in the AWS
Managed Policy Reference.

AWS FIS updates to AWS managed policies

View details about updates to AWS managed policies for AWS FIS since this service began tracking
these changes.

Change Description Date

AWSFaultInjectionSimulatorE
CSAccess – Update to an existing
policy

Added permissions to allow AWS FIS
to resolve ECS targets.

January 25,
2024

AWSFaultInjectionSimulatorN
etworkAccess – Update to an
existing policy

Added permissions to allow AWS
FIS to run experiments using the
aws:network:route-table-disrupt-
cross-region-connectivity and
aws:network:transit-gateway-
disrupt-cross-region-connectivity
actions.

January 25,
2024

AWSFaultInjectionSimulatorE
C2Access – Update to an existing
policy

Added permissions to allow AWS FIS
to resolve EC2 instances.

November 13,
2023

AWS managed policies 247

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorRDSAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSFaultInjectionSimulatorSSMAccess.html

AWS Fault Injection Service User Guide

Change Description Date

AWSFaultInjectionSimulatorE
KSAccess – Update to an existing
policy

Added permissions to allow AWS FIS
to resolve EKS targets.

November 13,
2023

AWSFaultInjectionSimulatorR
DSAccess – Update to an existing
policy

Added permissions to allow AWS FIS
to resolve RDS targets.

November 13,
2023

AWSFaultInjectionSimulatorE
C2Access – Update to an existing
policy

Added permissions to allow AWS
FIS to run SSM documents on EC2
instances and to terminate EC2
instances.

June 2, 2023

AWSFaultInjectionSimulatorS
SMAccess – Update to an existing
policy

Added permissions to allow AWS
FIS to run SSM documents on EC2
instances.

June 2, 2023

AWSFaultInjectionSimulatorE
CSAccess – Update to an existing
policy

Added permissions to allow AWS FIS
to run experiments using the new
aws:ecs:task actions.

June 1, 2023

AWSFaultInjectionSimulatorE
KSAccess – Update to an existing
policy

Added permissions to allow AWS FIS
to run experiments using the new
aws:eks:pod actions.

June 1, 2023

AWSFaultInjectionSimulatorE
C2Access – New policy

Added a policy to allow AWS FIS to
run an experiment that uses AWS FIS
actions for Amazon EC2.

October 26,
2022

AWSFaultInjectionSimulatorE
CSAccess – New policy

Added a policy to allow AWS FIS to
run an experiment that uses AWS FIS
actions for Amazon ECS.

October 26,
2022

AWSFaultInjectionSimulatorE
KSAccess – New policy

Added a policy to allow AWS FIS to
run an experiment that uses AWS FIS
actions for Amazon EKS.

October 26,
2022

AWS managed policies 248

AWS Fault Injection Service User Guide

Change Description Date

AWSFaultInjectionSimulatorN
etworkAccess – New policy

Added a policy to allow AWS FIS to
run an experiment that uses AWS FIS
networking actions.

October 26,
2022

AWSFaultInjectionSimulatorR
DSAccess – New policy

Added a policy to allow AWS FIS to
run an experiment that uses AWS FIS
actions for Amazon RDS.

October 26,
2022

AWSFaultInjectionSimulatorS
SMAccess – New policy

Added a policy to allow AWS FIS to
run an experiment that uses AWS FIS
actions for Systems Manager.

October 26,
2022

AmazonFISServiceRolePolicy –
Update to an existing policy

Added permissions to allow AWS FIS
to describe subnets.

October 26,
2022

AmazonFISServiceRolePolicy –
Update to an existing policy

Added permissions to allow AWS FIS
to describe EKS clusters.

July 7, 2022

AmazonFISServiceRolePolicy –
Update to an existing policy

Added permissions to allow AWS FIS
to list and describe the tasks in your
clusters.

February 7,
2022

AmazonFISServiceRolePolicy –
Update to an existing policy

Removed the events:ManagedBy
condition for the events:De
scribeRule action.

January 6, 2022

AmazonFISServiceRolePolicy –
Update to an existing policy

Added permissions to allow AWS FIS
to retrieve history for the CloudWatc
h alarms used in stop conditions.

June 30, 2021

AWS FIS started tracking changes AWS FIS started tracking changes to
its AWS managed policies

March 1, 2021

AWS managed policies 249

AWS Fault Injection Service User Guide

Infrastructure security in AWS Fault Injection Service

As a managed service, AWS Fault Injection Service is protected by AWS global network security.
For information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access AWS FIS through the network. Clients must support the
following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Access AWS FIS using an interface VPC endpoint (AWS
PrivateLink)

You can establish a private connection between your VPC and AWS Fault Injection Service by
creating an interface VPC endpoint. VPC endpoints are powered by AWS PrivateLink, a technology
that enables you to privately access AWS FIS APIs without an internet gateway, NAT device,
VPN connection, or AWS Direct Connect connection. Instances in your VPC don't need public IP
addresses to communicate with AWS FIS APIs.

Each interface endpoint is represented by one or more elastic network interfaces in your subnets.

For more information, see Access AWS services through AWS PrivateLink in the AWS PrivateLink
Guide.

Considerations for AWS FIS VPC endpoints

Before you set up an interface VPC endpoint for AWS FIS, review Access an AWS service using an
interface VPC endpoint in the AWS PrivateLink Guide.

Infrastructure security 250

https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html

AWS Fault Injection Service User Guide

AWS FIS supports making calls to all of its API actions from your VPC.

Create an interface VPC endpoint for AWS FIS

You can create a VPC endpoint for the AWS FIS service using either the Amazon VPC console or the
AWS Command Line Interface (AWS CLI). For more information, see Create a VPC endpoint in the
AWS PrivateLink Guide.

Create a VPC endpoint for AWS FIS using the following service name:
com.amazonaws.region.fis.

If you enable private DNS for the endpoint, you can make API requests to AWS FIS using its default
DNS name for the Region, for example, fis.us-east-1.amazonaws.com.

Create a VPC endpoint policy for AWS FIS

You can attach an endpoint policy to your VPC endpoint that controls access to AWS FIS. The policy
specifies the following information:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Control access to VPC endpoints using endpoint policies in the AWS
PrivateLink Guide.

Example: VPC endpoint policy for specific AWS FIS actions

The following VPC endpoint policy grants access to the listed AWS FIS actions on all resources to all
principals.

{
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "fis:ListExperimentTemplates",
 "fis:StartExperiment",
 "fis:StopExperiment",
 "fis:GetExperiment"

Create an interface VPC endpoint 251

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

AWS Fault Injection Service User Guide

],
 "Resource":"*",
 "Principal":"*"
 }
]
}

Example: VPC endpoint policy that denies access from a specific AWS account

The following VPC endpoint policy denies the specified AWS account access to all actions and
resources, but grants all other AWS accounts access to all actions and resources.

{
 "Statement":[
 {
 "Effect": "Allow",
 "Action": "*",
 "Resource": "*",
 "Principal": "*"
 },
 {
 "Effect":"Deny",
 "Action": "*",
 "Resource": "*",
 "Principal": {
 "AWS": ["123456789012"]
 }
 }
]
}

Create a VPC endpoint policy 252

AWS Fault Injection Service User Guide

Tag your AWS FIS resources

A tag is a metadata label that either you or AWS assigns to an AWS resource. Each tag consists of a
key and a value. For tags that you assign, you define the key and the value. For example, you might
define the key as purpose and the value as test for a resource.

Tags help you do the following:

• Identify and organize your AWS resources. Many AWS services support tagging, so you can assign
the same tag to resources from different services to indicate that the resources are related.

• Control access to your AWS resources. For more information, see Controlling Access Using Tags in
the IAM User Guide.

Tagging restrictions

The following basic restrictions apply to tags on AWS FIS resources:

• Maximum number of tags that you can assign to a resource: 50

• Maximum key length: 128 Unicode characters

• Maximum value length: 256 Unicode characters

• Valid characters for keys and values: a-z, A-Z, 0-9, space, and the following characters: _ . : / = + -
and @

• Keys and values are case sensitive

• You cannot use aws: as a prefix for keys, because it's reserved for AWS use

Work with tags

The following AWS Fault Injection Service (AWS FIS) resources support tagging:

• Actions

• Experiments

• Experiment templates

You can use the console to work with tags for experiments and experiment templates. For more
information, see the following:

Tagging restrictions 253

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

AWS Fault Injection Service User Guide

• Tag an experiment

• Tag experiment templates

You can use the following AWS CLI commands to work with tags for actions, experiments, and
experiment templates:

• tag-resource – Add tags to a resource.

• untag-resource – Remove tags from a resource.

• list-tags-for-resource – List the tags for a specific resource.

Work with tags 254

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/tag-resource.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/untag-resource.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/list-tags-for-resource.html

AWS Fault Injection Service User Guide

Quotas and limitations for AWS Fault Injection Service

Your AWS account has default quotas, formerly referred to as limits, for each AWS service. Unless
otherwise noted, each quota is Region-specific. You can request increases for some quotas, but not
for all quotas.

To view the quotas for AWS FIS, open the Service Quotas console. In the navigation pane, choose
AWS services and select AWS Fault Injection Service.

To request a quota increase, see Requesting a quota increase in the Service Quotas User Guide.

Your AWS account has the following quotas related to AWS FIS.

Name Default Adjustabl
e

Description

Action duration in hours Each supported
Region: 12

No The maximum number of
hours allowed to run one
action in this account in
the current Region.

Actions per experiment template Each supported
Region: 20

No The maximum number
of actions that you can
create in an experiment
template in this account
in the current Region.

Active experiments Each supported
Region: 5

No The maximum number of
active experiments that
you can run simultane
ously in this account in
the current Region.

Completed experiment data retention
in days

Each supported
Region: 120

No The maximum number
of days allowed for AWS
FIS to retain data about
completed experimen

255

https://console.aws.amazon.com/servicequotas/home
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

AWS Fault Injection Service User Guide

Name Default Adjustabl
e

Description

ts in this account in the
current Region.

Experiment duration in hours Each supported
Region: 12

No The maximum number
of hours allowed to run
one experiment in this
account in the current
Region.

Experiment templates Each supported
Region: 500

No The maximum number
of experiment templates
that you can create
in this account in the
current Region.

Maximum number of Managed Prefix
Lists in aws:network:route-table-dis
rupt-cross-region-connectivity

Each supported
Region: 15

No The maximum number of
Managed Prefix Lists that
aws:network:route-table-
disrupt-cross-region-
connectivity will allow,
per action.

Maximum number of Route Tables in
aws:network:route-table-disrupt-cross-
region-connectivity

Each supported
Region: 10

No The maximum number
of Route Tables that
aws:network:route-table-
disrupt-cross-region-
connectivity will allow,
per action.

Maximum number of routes in
aws:network:route-table-disrupt-cross-
region-connectivity

Each supported
Region: 200

No The maximum number
of routes that aws:netwo
rk:route-table-disrupt-
cross-region-connectivity
will allow, per action.

256

AWS Fault Injection Service User Guide

Name Default Adjustabl
e

Description

Parallel actions per experiment Each supported
Region: 10

No The maximum number
of actions that you
can run in parallel in
an experiment in this
account in the current
Region.

Stop conditions per experiment
template

Each supported
Region: 5

No The maximum number of
stop conditions that you
can add to an experiment
template in this account
in the current Region.

Target Auto Scaling groups for
aws:ec2:asg-insufficient-instance-ca
pacity-error

Each supported
Region: 5

Yes The maximum number of
Auto Scaling groups that
aws:ec2:asg-insufficient-
instance-capacity-error
can target when you
identify targets using
tags, per experiment.

Target Buckets for aws:s3:bucket-paus
e-replication

Each supported
Region: 20

Yes The maximum number
of S3 Buckets that
aws:s3:bucket-pause-
replication can target
when you identify
targets using tags, per
experiment.

257

https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-97338E0D
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-4B06CB4E

AWS Fault Injection Service User Guide

Name Default Adjustabl
e

Description

Target Clusters for aws:ecs:drain-cont
ainer-instances

Each supported
Region: 5

Yes The maximum number
of Clusters that aws:ecs:d
rain-container-instances
can target when you
identify targets using
tags, per experiment.

Target Clusters for aws:rds:failover-db-
cluster

Each supported
Region: 5

Yes The maximum number
of Clusters that aws:rds:f
ailover-db-cluster can
target when you identify
targets using tags, per
experiment.

Target DBInstances for aws:rds:reboot-
db-instances

Each supported
Region: 5

Yes The maximum number
of DBInstances that
aws:rds:reboot-db-
instances can target
when you identify
targets using tags, per
experiment.

Target Instances for aws:ec2:reboot-ins
tances

Each supported
Region: 5

Yes The maximum number of
Instances that aws:ec2:r
eboot-instances can
target when you identify
targets using tags, per
experiment.

258

https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-B2CDA938
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-7D222253
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-6CBFC7D2
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-9C6F1F94

AWS Fault Injection Service User Guide

Name Default Adjustabl
e

Description

Target Instances for aws:ec2:stop-insta
nces

Each supported
Region: 5

Yes The maximum number of
Instances that aws:ec2:s
top-instances can target
when you identify
targets using tags, per
experiment.

Target Instances for aws:ec2:terminate-
instances

Each supported
Region: 5

Yes The maximum number of
Instances that aws:ec2:t
erminate-instances can
target when you identify
targets using tags, per
experiment.

Target Instances for aws:ssm:send-
command

Each supported
Region: 5

Yes The maximum number of
Instances that aws:ssm:s
end-command can
target when you identify
targets using tags, per
experiment.

Target Nodegroups for aws:eks:t
erminate-nodegroup-instances

Each supported
Region: 5

Yes The maximum number
of Nodegroups that
aws:eks:terminate-
nodegroup-instances can
target when you identify
targets using tags, per
experiment.

259

https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-3F98B425
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-EE64095D
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-D0A62255
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-CCA14F79

AWS Fault Injection Service User Guide

Name Default Adjustabl
e

Description

Target Pods for aws:eks:pod-cpu-stress Each supported
Region: 50

Yes The maximum number
of Pods that aws:eks:p
od-cpu-stress can target
when you identify
targets using parameters,
per experiment.

Target Pods for aws:eks:pod-delete Each supported
Region: 50

Yes The maximum number of
Pods that aws:eks:pod-
delete can target when
you identify targets
using parameters, per
experiment.

Target Pods for aws:eks:pod-io-stress Each supported
Region: 50

Yes The maximum number of
Pods that aws:eks:pod-
io-stress can target when
you identify targets
using parameters, per
experiment.

Target Pods for aws:eks:pod-memory-
stress

Each supported
Region: 50

Yes The maximum number
of Pods that aws:eks:p
od-memory-stress can
target when you identify
targets using parameters,
per experiment.

260

https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-5A59540D
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-08B3DB00
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-397A8E65
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-B8FF73F5

AWS Fault Injection Service User Guide

Name Default Adjustabl
e

Description

Target Pods for aws:eks:pod-network-
blackhole-port

Each supported
Region: 50

Yes The maximum number
of Pods that aws:eks:p
od-network-blackhole-
port can target when
you identify targets
using parameters, per
experiment.

Target Pods for aws:eks:pod-network-
latency

Each supported
Region: 50

Yes The maximum number
of Pods that aws:eks:p
od-network-latency can
target when you identify
targets using parameters,
per experiment.

Target Pods for aws:eks:pod-network-
packet-loss

Each supported
Region: 50

Yes The maximum number of
Pods that aws:eks:pod-
network-packet-loss can
target when you identify
targets using parameters,
per experiment.

Target ReplicationGroups for aws:elast
icache:interrupt-cluster-az-power

Each supported
Region: 5

Yes The maximum number
of ReplicationGroups
that aws:elasticache:in
terrupt-cluster-az-power
can target when you
identify targets using
tags/parameters, per
experiment.

261

https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-52F95FBE
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-5AC5092A
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-CFF34A14
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-B0012750

AWS Fault Injection Service User Guide

Name Default Adjustabl
e

Description

Target SpotInstances for aws:ec2:send-
spot-instance-interruptions

Each supported
Region: 5

Yes The maximum number
of SpotInstances that
aws:ec2:send-spot-
instance-interruptions
can target when you
identify targets using
tags, per experiment.

Target Subnets for aws:network:disrup
t-connectivity

Each supported
Region: 5

Yes The maximum number of
Subnets that aws:netwo
rk:disrupt-connectivity
can target when you
identify targets using
tags, per experiment.
Quotas above 5 apply
only to parameter
scope:all. If you require a
higher quota for another
scope type, contact
customer support at
https://console.aw
s.amazon.com/support/
home#/.

Target Subnets for aws:network:route-
table-disrupt-cross-region-connectivity

Each supported
Region: 6

Yes The maximum number of
Subnets that aws:netwo
rk:route-table-disrupt-
cross-region-connectiv
ity can target when you
identify targets using
tags, per experiment.

262

https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-F3F4B54A
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-1F59732D
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-100E963F

AWS Fault Injection Service User Guide

Name Default Adjustabl
e

Description

Target Tasks for aws:ecs:stop-task Each supported
Region: 5

Yes The maximum number of
Tasks that aws:ecs:stop-
task can target when you
identify targets using
tags, per experiment.

Target Tasks for aws:ecs:task-cpu-stress Each supported
Region: 5

Yes The maximum number
of Tasks that aws:ecs:t
ask-cpu-stress can
target when you identify
targets using tags/para
meters, per experiment.

Target Tasks for aws:ecs:task-io-stress Each supported
Region: 5

Yes The maximum number of
Tasks that aws:ecs:task-
io-stress can target when
you identify targets
using tags/parameters,
per experiment.

Target Tasks for aws:ecs:task-kill-
process

Each supported
Region: 5

Yes The maximum number
of Tasks that aws:ecs:t
ask-kill-process can
target when you identify
targets using tags/para
meters, per experiment.

Target Tasks for aws:ecs:task-network-
blackhole-port

Each supported
Region: 5

Yes The maximum number
of Tasks that aws:ecs:t
ask-network-blackhole-
port can target when you
identify targets using
tags/parameters, per
experiment.

263

https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-48D12416
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-C901BF0F
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-4939706C
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-0A7016E5
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-5035601B

AWS Fault Injection Service User Guide

Name Default Adjustabl
e

Description

Target Tasks for aws:ecs:task-network-
latency

Each supported
Region: 5

Yes The maximum number
of Tasks that aws:ecs:t
ask-network-latency can
target when you identify
targets using tags/para
meters, per experiment.

Target Tasks for aws:ecs:task-network-
packet-loss

Each supported
Region: 5

Yes The maximum number of
Tasks that aws:ecs:task-
network-packet-loss can
target when you identify
targets using tags/para
meters, per experiment.

Target TransitGateways for aws:netwo
rk:transit-gateway-disrupt-cross-reg
ion-connectivity

Each supported
Region: 5

Yes The maximum number
of Transit Gateways that
aws:network:transit-
gateway-disrupt-cross-
region-connectivity can
target when you identify
targets using tags, per
experiment.

Target account configurations per
experiment template

Each supported
Region: 10

Yes The maximum number of
target account configura
tions that you can
create for an experiment
template in this account
in the current Region.

264

https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-B34128D0
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-52F5389C
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-2CF2B517
https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-47D4AE5B

AWS Fault Injection Service User Guide

Name Default Adjustabl
e

Description

Target tables for aws:dynamodb:globa
l-table-pause-replication action

Each supported
Region: 5

Yes The maximum number
of global tables that
aws:dynamodb:globa
l-table-pause-repl
ication can target, per
experiment.

Your usage of AWS FIS is subject to the following additional limitations:

Name Limitation

Targets for aws:elasticache:in
terrupt-cluster-az-power action

Limited to 10 aws:elasticache:redis-
replicationgroup clusters impaired per
account per region per day. You can request an
increase by creating a support case in the AWS
Support Center Console.

265

https://console.aws.amazon.com/servicequotas/home/services/fis/quotas/L-9FC608C5
https://console.aws.amazon.com/support
https://console.aws.amazon.com/support

AWS Fault Injection Service User Guide

Document history

The following table describes important documentation updates in the AWS Fault Injection Service
User Guide.

Change Description Date

New action You can now use the
aws:dynamodb:globa
l-table-pause-repl
ication action to pause
data replication between
the target global table
and its replica tables. The
aws:dynamodb:encry
pted-global-table-
pause-replication
action will no longer be
supported.

April 24, 2024

New actions mode experimen
t option

You can set actions mode
to skip-all to generate a
target preview before running
an experiment.

March 13, 2024

AWS managed policy updates AWS FIS updated existing
managed policies.

January 25, 2024

New scenarios and actions You can now use AWS FIS
scenarios Cross-Region:Conne
ctivity and AZ Availability:
Power Interruption.

November 30, 2023

New action You can now use the
aws:ec2:asg-insufficient-in
stance-capacity-error action.

November 30, 2023

266

https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#dynamodb-actions-reference
https://docs.aws.amazon.com/fis/latest/userguide/experiment-options.html#actions-mode
https://docs.aws.amazon.com/fis/latest/userguide/experiment-options.html#actions-mode
https://docs.aws.amazon.com/fis/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/fis/latest/userguide/scenario-library-scenarios.html

AWS Fault Injection Service User Guide

New action You can now use the
aws:ec2:api-insufficient-in
stance-capacity-error action.

November 30, 2023

New action You can now use the
aws:network:route-table-dis
rupt-cross-region-connectiv
ity action.

November 30, 2023

New action You can now use the
aws:network:transit-gateway
-disrupt-cross-region-conne
ctivity action.

November 30, 2023

New action You can now use the
aws:dynamodb:encrypted-
global-table-pause-rep
lication action.

November 30, 2023

New action You can now use the
aws:s3:bucket-pause-replica
tion action.

November 30, 2023

New action You can now use the
aws:elasticache:interrupt-c
luster-az-power action.

November 30, 2023

New experiment options You can now use AWS FIS
experiment options for
account targeting and empty
target resolution.

November 27, 2023

Name change of AWS FIS Updated service name to AWS
Fault Injection Service.

November 15, 2023

AWS managed policy updates AWS FIS updated existing
managed policies.

November 13, 2023

267

https://docs.aws.amazon.com/fis/latest/userguide/experiment-options.html
https://docs.aws.amazon.com/fis/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates

AWS Fault Injection Service User Guide

New scenario library You can now use the AWS FIS
scenario library feature.

November 7, 2023

New experiment scheduler You can now use the AWS FIS
experiment scheduler feature.

November 7, 2023

AWS managed policy updates AWS FIS updated existing
managed policies.

June 2, 2023

New actions You can use the new aws:ecs:t
ask and aws:eks:pod actions.

June 1, 2023

AWS managed policy updates AWS FIS updated existing
managed policies.

June 1, 2023

New pre-configured SSM
document

You can use the following
pre-configured SSM
document: AWSFIS-Run-Disk-
Fill.

April 28, 2023

New action You can use the aws:ebs:p
ause-volume-io action to
pause I/O between the target
volumes and the instances
they are attached to.

January 27, 2023

New action You can use the aws:netwo
rk:disrupt-connectivity
action to deny specific
types of traffic to the target
subnets.

October 26, 2022

New action You can use the aws:eks:i
nject-kubernetes-custom-
resource action to run
a ChaosMesh or Litmus
experiment on a single target
cluster.

July 7, 2022

268

https://docs.aws.amazon.com/fis/latest/userguide/scenario-library.html
https://docs.aws.amazon.com/fis/latest/userguide/experiment-scheduler.html
https://docs.aws.amazon.com/fis/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/fis/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates

AWS Fault Injection Service User Guide

Experiment logging You can configure your
experiment templates to send
experiment activity logs to
CloudWatch Logs or to an S3
bucket.

February 28, 2022

New notifications When the state of an
experiment changes, AWS
FIS emits a notification.
These notifications are made
available as events through
Amazon EventBridge.

February 24, 2022

New action You can use the aws:ecs:s
top-task action to stop the
specified task.

February 9, 2022

New action You can use the aws:cloud
watch:assert-alarm-state
action to verify that the
specified alarms are in one of
the specified alarm states.

November 5, 2021

New pre-configured SSM
documents

You can use the following
pre-configured SSM
documents: AWSFIS-Run-IO-
Stress, AWSFIS-Run-Network
-Blackhold-Port, AWSFIS-Ru
n-Network-Latency-Sources,
AWSFIS-Run-Network-Packet-
Loss, and AWSFIS-Run-
Network-Packet-Loss-Sourc
es.

November 4, 2021

269

AWS Fault Injection Service User Guide

New action You can use the aws:ec2:s
end-spot-instance-interrupt
ions action to send a Spot
Instance interruption notice
to target Spot Instances and
then interrupt the target Spot
Instances.

October 20, 2021

New action You can use the aws:ssm:s
tart-automation-execution
action to initiate the
execution of an Automation
runbook.

September 17, 2021

Initial release The initial release of the AWS
Fault Injection Service User
Guide.

March 15, 2021

270

	AWS Fault Injection Service
	Table of Contents
	What is AWS Fault Injection Service?
	AWS FIS concepts
	Actions
	Targets
	Stop conditions

	Supported AWS services
	Access AWS FIS
	Pricing for AWS FIS

	Plan your AWS FIS experiments
	Basic principles and guidelines
	Experiment planning guidelines

	Tutorials for AWS Fault Injection Service
	Tutorial: Test instance stop and start using AWS FIS
	Prerequisites
	Step 1: Create an experiment template
	Step 2: Start the experiment
	Step 3: Track the experiment progress
	Step 4: Verify the experiment result
	Step 5: Clean up

	Tutorial: Run CPU stress on an instance using AWS FIS
	Prerequisites
	Step 1: Create a CloudWatch alarm for a stop condition
	Step 2: Create an experiment template
	Step 3: Start the experiment
	Step 4: Track the experiment progress
	Step 5: Verify the experiment results
	Step 6: Clean up

	Tutorial: Test Spot Instance interruptions using AWS FIS
	Prerequisites
	Step 1: Create an experiment template
	Step 2: Start the experiment
	Step 3: Track the experiment progress
	Step 4: Verify the experiment result
	Step 5: Clean up

	Tutorial: Simulate a connectivity event
	Prerequisites
	Step 1: Create an AWS FIS experiment template
	Step 2: Ping an Amazon S3 endpoint
	Step 3: Start your AWS FIS experiment
	Step 4: Track your AWS FIS experiment progress
	Step 5: Verify Amazon S3 network disruption
	Step 5: Clean up

	Tutorial: Schedule a recurring experiment
	Prerequisites
	Step 1: Create an IAM role and policy
	Step 2: Create an Amazon EventBridge Scheduler
	Step 3: Verify your experiment
	Step 4: Clean up

	Actions for AWS FIS
	Action identifiers
	Action parameters
	Action targets
	AWS FIS actions reference
	Fault injection actions
	aws:fis:inject-api-internal-error
	aws:fis:inject-api-throttle-error
	aws:fis:inject-api-unavailable-error

	Wait action
	aws:fis:wait

	Amazon CloudWatch actions
	aws:cloudwatch:assert-alarm-state

	Amazon DynamoDB actions
	aws:dynamodb:global-table-pause-replication

	Amazon EBS actions
	aws:ebs:pause-volume-io

	Amazon EC2 actions
	aws:ec2:api-insufficient-instance-capacity-error
	aws:ec2:asg-insufficient-instance-capacity-error
	aws:ec2:reboot-instances
	aws:ec2:send-spot-instance-interruptions
	aws:ec2:stop-instances
	aws:ec2:terminate-instances

	Amazon ECS actions
	aws:ecs:drain-container-instances
	aws:ecs:stop-task
	aws:ecs:task-cpu-stress
	aws:ecs:task-io-stress
	aws:ecs:task-kill-process
	aws:ecs:task-network-blackhole-port
	aws:ecs:task-network-latency
	aws:ecs:task-network-packet-loss

	Amazon EKS actions
	aws:eks:inject-kubernetes-custom-resource
	aws:eks:pod-cpu-stress
	aws:eks:pod-delete
	aws:eks:pod-io-stress
	aws:eks:pod-memory-stress
	aws:eks:pod-network-blackhole-port
	aws:eks:pod-network-latency
	aws:eks:pod-network-packet-loss
	aws:eks:terminate-nodegroup-instances

	Amazon ElastiCache actions
	aws:elasticache:interrupt-cluster-az-power

	Network actions
	aws:network:disrupt-connectivity
	aws:network:route-table-disrupt-cross-region-connectivity
	aws:network:transit-gateway-disrupt-cross-region-connectivity

	Amazon RDS actions
	aws:rds:failover-db-cluster
	aws:rds:reboot-db-instances

	Amazon S3 actions
	aws:s3:bucket-pause-replication

	Systems Manager actions
	aws:ssm:send-command
	aws:ssm:start-automation-execution

	Use Systems Manager SSM documents with AWS FIS
	Use the aws:ssm:send-command action
	Pre-configured AWS FIS SSM documents
	AWSFIS-Run-CPU-Stress
	AWSFIS-Run-Disk-Fill
	AWSFIS-Run-IO-Stress
	AWSFIS-Run-Kill-Process
	AWSFIS-Run-Memory-Stress
	AWSFIS-Run-Network-Blackhole-Port
	AWSFIS-Run-Network-Latency
	AWSFIS-Run-Network-Latency-Sources
	AWSFIS-Run-Network-Packet-Loss
	AWSFIS-Run-Network-Packet-Loss-Sources

	Examples
	Troubleshooting

	Use the AWS FIS aws:ecs:task actions
	Actions
	Limitations
	Requirements
	Reference version of the script
	Example experiment template

	Use the AWS FIS aws:eks:pod actions
	Actions
	Limitations
	Requirements
	Create a service role for the Kubernetes service account
	Configure the Kubernetes service account
	Map your experiment role to the Kubernetes user
	Pod container images
	Example experiment template

	List the AWS FIS actions using the AWS CLI

	Experiment templates for AWS FIS
	Template components
	Template syntax
	Get started
	Action set for AWS FIS
	Action syntax
	Action duration
	Example actions

	Targets for AWS FIS
	Target syntax
	Resource types
	Identify target resources
	Resource filters
	Resource parameters

	Selection mode
	Example targets
	Example filters

	Stop conditions for AWS FIS
	Stop condition syntax
	Learn more

	IAM roles for AWS FIS experiments
	Prerequisites
	Option 1: Create an experiment role and attach an AWS managed policy
	Option 2: Create an experiment role and add an inline policy document

	Experiment options
	Account targeting
	Target account configurations

	Empty target resolution mode
	Actions mode

	Work with AWS FIS experiment templates
	Create an experiment template
	View experiment templates
	Generate a target preview from an experiment template
	Start an experiment from a template
	Update an experiment template
	Tag experiment templates
	Delete an experiment template

	Example AWS FIS experiment templates
	Stop EC2 instances based on filters
	Stop a specified number of EC2 instances
	Run a pre-configured AWS FIS SSM document
	Run a predefined Automation runbook
	Throttle API actions on EC2 instances with the target IAM role
	Stress test CPU of pods in a Kubernetes cluster

	Multi-account experiments for AWS FIS
	Concepts for multi-account experiments
	Orchestrator account
	Target accounts
	Target account configurations

	Prerequisites for multi-account experiments
	Permissions for multi-account experiments
	Stop conditions for multi-account experiments (optional)

	Work with multi-account experiments
	Best practices for multi-account experiments
	Create a multi-account experiment template
	Update a target account configuration
	Delete a target account configuration

	AWS FIS Scenario library
	Working with AWS FIS scenarios
	Viewing a scenario
	Using a scenario
	Exporting a scenario

	Scenarios in the AWS FIS scenarios library
	AZ Availability: Power Interruption
	Actions
	Stop-Instances
	Stop-ASG-Instances
	Pause Instance Launches
	Pause ASG Scaling
	Pause Network Connectivity
	Failover RDS
	Pause ElastiCache Redis
	Pause EBS I/O

	Limitations
	Requirements
	Permissions
	Scenario Content

	Cross-Region: Connectivity
	Actions
	Disrupt Transit Gateway Connectivity
	Disrupt Subnet Connectivity
	Pause S3 Replication
	Pause DynamoDB Replication

	Limitations
	Requirements
	Permissions
	Scenario Content

	Experiments for AWS FIS
	Start an experiment
	View your experiments
	Experiment states
	Action states

	Tag an experiment
	Stop an experiment
	List resolved targets

	Experiment scheduler
	Getting started
	Schedule an FIS experiment
	To update schedule using the console
	Updating the Experiment Schedule
	Disable or Delete an Experiment Execution using the console

	Monitoring AWS FIS
	Monitor AWS FIS usage metrics using Amazon CloudWatch
	Monitor AWS FIS experiments
	AWS FIS usage metrics

	Monitor AWS FIS experiments using Amazon EventBridge
	Experiment logging for AWS FIS
	Permissions
	Log schema
	Log destinations
	Example log records
	Enable experiment logging
	Disable experiment logging

	Log API calls with AWS CloudTrail
	Use CloudTrail
	Understand AWS FIS log file entries

	Security in AWS Fault Injection Service
	Data protection in AWS Fault Injection Service
	Encryption at rest
	Encryption in transit

	Identity and access management for AWS Fault Injection Service
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS Fault Injection Service works with IAM
	Identity-based policies for AWS FIS
	Identity-based policy examples for AWS FIS

	Resource-based policies within AWS FIS
	Policy actions for AWS FIS
	Policy resources for AWS FIS
	Policy condition keys for AWS FIS
	ACLs in AWS FIS
	ABAC with AWS FIS
	Using temporary credentials with AWS FIS
	Cross-service principal permissions for AWS FIS
	Service roles for AWS FIS
	Service-linked roles for AWS FIS

	AWS Fault Injection Service policy examples
	Policy best practices
	Example: Use the AWS FIS console
	Example: List available AWS FIS actions
	Example: Create an experiment template for a specific action
	Example: Start an experiment
	Example: Use tags to control resource usage
	Example: Delete an experiment template with a specific tag
	Example: Allow users to view their own permissions
	Example: Use condition keys for ec2:InjectApiError
	Example: Use condition keys for aws:s3:bucket-pause-replication

	Use service-linked roles for AWS Fault Injection Service
	Service-linked role permissions for AWS FIS
	Create a service-linked role for AWS FIS
	Edit a service-linked role for AWS FIS
	Delete a service-linked role for AWS FIS
	Supported Regions for AWS FIS service-linked roles

	AWS managed policies for AWS Fault Injection Service
	AWS managed policy: AmazonFISServiceRolePolicy
	AWS managed policy: AWSFaultInjectionSimulatorEC2Access
	AWS managed policy: AWSFaultInjectionSimulatorECSAccess
	AWS managed policy: AWSFaultInjectionSimulatorEKSAccess
	AWS managed policy: AWSFaultInjectionSimulatorNetworkAccess
	AWS managed policy: AWSFaultInjectionSimulatorRDSAccess
	AWS managed policy: AWSFaultInjectionSimulatorSSMAccess
	AWS FIS updates to AWS managed policies

	Infrastructure security in AWS Fault Injection Service
	Access AWS FIS using an interface VPC endpoint (AWS PrivateLink)
	Considerations for AWS FIS VPC endpoints
	Create an interface VPC endpoint for AWS FIS
	Create a VPC endpoint policy for AWS FIS

	Tag your AWS FIS resources
	Tagging restrictions
	Work with tags

	Quotas and limitations for AWS Fault Injection Service
	Document history

