
Developer Guide

Amazon GameLift

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon GameLift Developer Guide

Amazon GameLift: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon GameLift Developer Guide

Table of Contents

What is Amazon GameLift? ... 1
Uses of Amazon GameLift .. 1
Get started with Amazon GameLift solutions .. 1

Amazon GameLift hosting for custom servers ... 2
Amazon GameLift hosting with Realtime Servers .. 2
Amazon GameLift FleetIQ for hosting on Amazon EC2 .. 3
Amazon GameLift FlexMatch for matchmaking ... 3
Amazon GameLift Anywhere hardware hosting ... 3

Accessing Amazon GameLift .. 4
Pricing for Amazon GameLift .. 5
How Amazon GameLift works ... 5

Key components .. 5
Hosting game servers ... 6
Running game sessions .. 6
Scaling fleet capacity ... 7
Monitoring Amazon GameLift .. 8
Using other AWS resources ... 8

How players connect to games ... 8
Game architecture with managed Amazon GameLift ... 9

Setting up .. 12
Set up an account .. 12

Sign up for an AWS account .. 13
Create a user with administrative access ... 13
Manage user permissions for Amazon GameLift ... 14
Set up programmatic access for users ... 15
Set up programmatic access for your game ... 17
IAM permission examples ... 18
Set up an IAM service role .. 22

Development support ... 25
For game servers .. 25
For game client services .. 27
For Realtime Servers .. 27

Manage your game hosting costs ... 28
Create billing alerts to monitor usage ... 29

iii

Amazon GameLift Developer Guide

Track costs per Amazon GameLift fleet ... 29
Set unused fleet capacity to zero ... 29

Amazon GameLift hosting locations .. 29
Amazon GameLift hosting .. 30
Local Zones .. 31
Amazon GameLift Anywhere .. 32
Amazon GameLift FlexMatch ... 33
Amazon GameLift in China ... 33

Getting started .. 34
Custom game server example ... 34
Realtime Servers example game .. 34

Managed hosting roadmap ... 36
Choose a hosting option .. 36
Prepare your game .. 38

Prepare your custom game server .. 38
Prepare your Realtime server ... 39

Test your integration ... 39
Plan and deploy your resources .. 40

Deploy your resources ... 40
Design your backend service ... 41

Authenticating your players ... 41
Serverless backend ... 42
WebSocket-based backend ... 43

Set up metrics and logging ... 45
Launch checklists .. 46

Onboarding .. 46
Testing ... 47
Launch ... 48
Post-launch ... 48

Preparing games for Amazon GameLift ... 49
Integrate games with custom game servers .. 49

Amazon GameLift interactions .. 50
Integrate a game server .. 54
Integrate a game client ... 64
Game engines and Amazon GameLift .. 70

Integrating games with the plugin for Unity ... 96

iv

Amazon GameLift Developer Guide

Plugin for Unity guide (server SDK 5.x) ... 96
Plugin for Unity guide (server SDK 4.x) ... 113

Integrating games with the plugin for Unreal .. 140
About the plugin .. 141
Plugin workflow .. 141
Install the plugin .. 142
Set up an AWS user profile .. 146
Set up local testing with Anywhere ... 147
Deploy your game to managed Amazon EC2 fleets ... 160

Set up for iterative development ... 164
Build a cloud-based test environment ... 166
Set up local testing .. 169
Amazon GameLift Agent ... 174
Set up local testing (legacy) .. 176

Adding FlexMatch matchmaking .. 184
Get fleet data ... 184
Integrating games with Realtime Servers .. 185

What are Realtime servers? .. 185
Managing game sessions .. 186
Client server interaction .. 186
Customizing a server ... 187
Deploying and updating ... 188
Integrating a game client ... 188
Customizing a Realtime script ... 194

Managing hosting with containers [Preview] .. 200
Key features .. 200
Using container fleets during public preview .. 201
How containers work .. 201

Container fleet components .. 201
Common architectures .. 203
Core concepts .. 205

Development roadmap ... 208
Integrate your game with Amazon GameLift .. 210

Integration tools ... 211
Build your game server for Linux ... 212
Test integration with an Anywhere fleet ... 212

v

Amazon GameLift Developer Guide

Prepare a container image ... 214
Create working directory .. 214
Build your image .. 216
Push your image ... 225

Design a container fleet ... 226
Architect your fleet container structure ... 226
Set resource limits .. 227
Designate essential containers .. 229
Configure network connections .. 230
Set up health checks for containers ... 234
Set container dependencies ... 235
Configure a container fleet .. 235

Create container group definitions .. 237
Before you start .. 237
Clone a container group definition ... 237
Create a replica container group definition .. 238
Create a container definition JSON file ... 241

Create a container fleet .. 242
Manage your container fleets ... 248

View resources ... 248
Update resources .. 249
Delete resources .. 249

Scaling container fleets .. 249
Managing hosting resources ... 251

Uploading builds and scripts ... 252
Upload a build .. 252
Upload a script .. 261

Setting up fleets .. 266
Fleet design guide .. 266
Create a new fleet .. 274
Manage your fleets .. 290
Add an alias to a fleet ... 293
Debug fleet issues .. 295
Remotely connect to fleet instances .. 298

Scaling hosting capacity ... 307
To manage fleet capacity in the console .. 307

vi

Amazon GameLift Developer Guide

Set hosting capacity limits ... 308
Manually set fleet capacity .. 310
Auto scale fleet capacity ... 312

Setting up queues ... 318
Design a queue ... 319
Best practices .. 327
Create a queue .. 328
Set up event notification .. 331
Tutorial: Queues for Spot Instances ... 335

Manage resources with AWS CloudFormation ... 343
Best practices .. 344
Using AWS CloudFormation stacks ... 345
Updating builds ... 349

VPC peering .. 351
To set up VPC peering for an existing fleet .. 352
To set up VPC peering with a new fleet .. 354
Troubleshooting VPC peering issues .. 357

Viewing game data .. 359
View your Amazon GameLift status .. 359
View your builds .. 361

Build details ... 362
View your scripts .. 362

Script details .. 363
View your fleets ... 363
View fleet details ... 363

Details ... 364
Metrics ... 365
Events .. 365
Scaling ... 365
Locations .. 366
Game sessions ... 367

View game and player info ... 367
Details ... 367
Player sessions .. 368
Player information .. 369

View your aliases ... 369

vii

Amazon GameLift Developer Guide

Alias details .. 369
View your queues .. 370

View queue details ... 370
Monitoring Amazon GameLift .. 373

Monitor with CloudWatch .. 373
Metrics dimensions ... 374
Fleet metrics .. 375
Queue metrics ... 387
FlexMatch metrics ... 390
FleetIQ metrics .. 394

Logging API calls ... 396
Amazon GameLift information in CloudTrail .. 396
Understanding Amazon GameLift log file entries ... 397

Logging server messages ... 400
Logging for custom servers ... 400
Logging for Realtime Servers .. 403

Security .. 408
Data protection .. 409

Encryption at rest ... 410
Encryption in transit .. 410
Internetwork traffic privacy .. 411

Identity and access management ... 411
Audience ... 412
Authenticating with identities ... 412
Managing access using policies ... 416
How Amazon GameLift works with IAM .. 418
Identity-based policy examples ... 426
Troubleshooting .. 431

Logging and monitoring with Amazon GameLift ... 433
Compliance validation .. 433
Resilience ... 435
Infrastructure security ... 436
Configuration and vulnerability analysis .. 436
Security best practices .. 437

Don't open ports to the Internet .. 437
Learn more ... 438

viii

Amazon GameLift Developer Guide

Amazon GameLift reference guides ... 439
Service API reference (AWS SDK) ... 439

Set up and manage Amazon GameLift hosting resources ... 439
Start game sessions and join players ... 443

Server SDK reference .. 444
Migrate to server SDK 5.x ... 445
Server SDK reference for C++ .. 448
Server SDK reference for C# .. 522
Server SDK reference for Go .. 585
Server SDK reference for Unreal Engine ... 611

Game session placement events ... 672
Placement event syntax .. 672
PlacementFulfilled .. 673
PlacementCancelled ... 675
PlacementTimedOut .. 676
PlacementFailed .. 677

Realtime Servers reference .. 678
Realtime client API (C#) reference .. 678
Realtime Servers script reference ... 692

Estimating price ... 701
Estimate Amazon GameLift hosting .. 701

Amazon GameLift instances ... 701
Data transfer out (DTO) .. 703

Estimate Amazon GameLift standalone FlexMatch .. 704
Quotas and supported Regions .. 707
Release notes and SDK versions ... 708

SDK versions ... 708
Release notes .. 714

AWS Glossary ... 743

ix

Amazon GameLift Developer Guide

What is Amazon GameLift?

You can use Amazon GameLift to deploy, operate, and scale dedicated, low-cost servers in the
cloud for session-based multiplayer games. Built on AWS global computing infrastructure, Amazon
GameLift helps deliver high-performance, high-reliability game servers while dynamically scaling
your resource usage to meet worldwide player demand.

Uses of Amazon GameLift

Amazon GameLift supports these use cases and more:

• Deploy your own custom multiplayer game servers for hosting in the cloud.

• Run low cost hosting resources using Amazon Elastic Compute Cloud (Amazon EC2) Spot
Instances.

• Automatically scale the amount of hosting resources that your game needs based on usage.

• Manage your Amazon EC2 compute resources all in one place using Amazon GameLift FleetIQ.

• Match players in multiplayer games with Amazon GameLift FlexMatch.

• Iteratively test your game server and client builds with Amazon GameLift Anywhere.

• Use your own hardware while managing it all in one place with Amazon GameLift Anywhere.

Tip

To try out Amazon GameLift game server hosting, see Getting started with Amazon
GameLift.

Get started with Amazon GameLift solutions

Amazon GameLift solutions for game developers

• Amazon GameLift hosting for custom servers

• Amazon GameLift hosting with Realtime Servers

• Amazon GameLift FleetIQ for hosting on Amazon EC2

• Amazon GameLift FlexMatch for matchmaking

Uses of Amazon GameLift 1

https://aws.amazon.com/ec2/

Amazon GameLift Developer Guide

• Amazon GameLift Anywhere hardware hosting

Amazon GameLift hosting for custom servers

Amazon GameLift replaces the work required to host your own custom game servers. Auto scaling
capabilities help you avoid paying for more resources than you need. Auto scaling also helps make
sure that you always have games available for new players to join with minimal waiting.

For more information about Amazon GameLift hosting, see How Amazon GameLift works.

Key features

• Use Amazon GameLift management features, including auto scaling, multi-location queues, and
game session placement.

• Deploy game servers to run on Amazon Linux or Windows Server operating systems.

• Manage game sessions and player sessions.

• Set up customized health tracking for server processes to detect problems and to resolve poor-
performing processes.

• Manage your game resources using AWS CloudFormation templates for Amazon GameLift.

Amazon GameLift hosting with Realtime Servers

Use Realtime Servers to stand up games that don't need custom-built game servers. This
lightweight server solution provides game servers that you can configure to fit your game.

For more information about Amazon GameLift hosting with Realtime Servers, see Integrating
games with Amazon GameLift Realtime Servers.

Key features

• Use Amazon GameLift management features, including auto scaling, multi-location queues, and
game session placement.

• Use Amazon GameLift hosting resources and choose the type of AWS computing hardware for
your fleets.

• Take advantage of a full network stack for game client and server interaction.

• Get core game server functionality with customizable server logic.

• Make live updates to Realtime configurations and server logic.

Amazon GameLift hosting for custom servers 2

Amazon GameLift Developer Guide

Amazon GameLift FleetIQ for hosting on Amazon EC2

Use Amazon GameLift FleetIQ to work directly with your hosting resources in Amazon EC2 and
Amazon EC2 Auto Scaling. This provides the benefit of Amazon GameLift optimizations for
inexpensive, resilient game hosting. This solution is for game developers who need more flexibility
than what fully managed Amazon GameLift solutions provide.

For information about how Amazon GameLift FleetIQ works with Amazon EC2 and EC2 Auto
Scaling for game hosting, see the Amazon GameLift FleetIQ Developer Guide.

Key features

• Get optimized Spot Instance balancing using the FleetIQ algorithm.

• Use player routing features to manage your game server resources efficiently, and provide a
better player experience for joining games.

• Automatically scale hosting capacity based on player usage.

• Directly manage Amazon EC2 instances in your own AWS account.

• Use any of the supported game server executable formats, including Windows, Linux, containers,
and Kubernetes.

Amazon GameLift FlexMatch for matchmaking

Use FlexMatch to build custom rule sets to define multiplayer matches for your game. FlexMatch
uses rule sets to compare compatible players for each match and provide players with the ideal
multiplayer experience.

For more information about FlexMatch, see What is Amazon GameLift FlexMatch?

Key features

• Balance match creation speed and match quality.

• Match players or teams based on defined characteristics.

• Define rules to place players into matches based on latency.

Amazon GameLift Anywhere hardware hosting

Use Amazon GameLift Anywhere fleets with Amazon GameLift game session management,
including matchmaking, to host your custom game servers anywhere you want to. Anywhere

Amazon GameLift FleetIQ for hosting on Amazon EC2 3

https://docs.aws.amazon.com/gamelift/latest/fleetiqguide/gsg-intro.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html

Amazon GameLift Developer Guide

fleets are particularly useful as test environments for rapid, iterative game development. Set
up an Anywhere fleet for your own local workstation or a set of cloud-based hosting resources.
For production hosting, you might use a hybrid approach with Anywhere fleets for on-premises
hardware supplemented by Amazon GameLift managed fleets.

For more information about testing with Anywhere, see Set up local testing with Amazon GameLift
Anywhere. For more information about setting up an Anywhere fleet, see Setting up Amazon
GameLift fleets.

Key features

• Perform fast, iterative testing as you develop your multiplayer games.

• Use Amazon GameLift tools to manage game servers that are hosted on your own hardware.

• Take advantage of available hardware that is closest to your players, anywhere.

Accessing Amazon GameLift

Use these tools to work with Amazon GameLift.

Amazon GameLift SDKs

The Amazon GameLift SDKs contain the libraries needed to communicate with Amazon
GameLift from your game clients, game servers, and game services. For more information, see
Development support with Amazon GameLift.

Amazon GameLift Realtime Client SDK

The Realtime Client SDK enables a game client to connect to the Realtime server, join game
sessions, and stay in sync with other players. Download the SDK and learn more about making
API calls with the Realtime Servers client API (C#).

Amazon GameLift console

Use the AWS Management Console for Amazon GameLift to manage your game deployments,
configure resources, and track player usage and performance metrics. The Amazon GameLift
console provides a GUI alternative to managing resources programmatically with the AWS
Command Line Interface (AWS CLI).

Accessing Amazon GameLift 4

https://aws.amazon.com/gamelift/getting-started/
https://console.aws.amazon.com/gamelift

Amazon GameLift Developer Guide

AWS CLI

Use this command line tool to make calls to the AWS SDK, including the Amazon GameLift API.
For information about using the AWS CLI, see Getting started with the AWS CLI in the AWS
Command Line Interface User Guide.

Pricing for Amazon GameLift

Amazon GameLift charges for instances by duration of use, and for bandwidth by quantity of data
transferred. For a complete list of charges and prices for Amazon GameLift, see Amazon GameLift
Pricing.

For information about calculating the cost of hosting your games or matchmaking with Amazon
GameLift, see Generating Amazon GameLift pricing estimates, which describes how to use the AWS
Pricing Calculator.

How Amazon GameLift works

This topic covers the core components for game hosting and describes how Amazon GameLift
makes your multiplayer game servers available to players.

Ready to prepare your game for hosting on Amazon GameLift? Check out Amazon GameLift
managed hosting roadmap.

Key components

Setting up Amazon GameLift to host your game involves working with the following components.
The diagram in Game architecture with managed Amazon GameLift visualizes the relationships
between these components.

• A game server is your game's server software running on a fleet. You upload your game server
build or script to Amazon GameLift and tell Amazon GameLift. When you use Amazon GameLift
Anywhere or Amazon GameLift FleetIQ, you upload your game server build directly to the
compute resource.

• A game session is an in progress game with players. You define the basic characteristics of a
game session, such as its life span and number of players. Players then connect to the game
server to join a game session.

Pricing for Amazon GameLift 5

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://aws.amazon.com/gamelift/pricing
https://aws.amazon.com/gamelift/pricing
https://calculator.aws/#/createCalculator/GameLift
https://calculator.aws/#/createCalculator/GameLift

Amazon GameLift Developer Guide

• A game client is your game's software running on a player's device. A game client connects to a
game server through backend services to join a game session, based on connection information
that it receives from Amazon GameLift.

• Backend services are additional, custom services that handle tasks related to Amazon GameLift.
As a best practice, your backend services should handle all game client communication with
Amazon GameLift.

Hosting game servers

With Amazon GameLift, you can host your game servers in three different ways: Managed Amazon
GameLift, Amazon GameLift FleetIQ, and Amazon GameLift Anywhere. For more information about
Amazon GameLift FleetIQ, see What is Amazon GameLift FleetIQ?

You can design a fleet to fit your game's needs. For more information about designing a fleet, see
Amazon GameLift fleet design guide.

Managed Amazon GameLift

With managed Amazon GameLift, you can host your game servers on Amazon GameLift virtual
computing resources, called instances. Set up your hosting resources by creating a fleet of
instances and deploying them to run your game servers.

Amazon GameLift Anywhere

With Amazon GameLift Anywhere, you can host your game servers on compute that you manage.
Set up your hosting resources by creating an Anywhere fleet that references your compute.

Fleet aliases

An alias is a designation that you can transfer between fleets, making it a convenient way to have
a generic fleet location. You can use an alias to switch game clients from using one fleet to another
without changing your game client. You can also create a terminal alias that you point to content.

Running game sessions

After you deploy your game server build to a fleet and Amazon GameLift launches game server
processes on each instance, the fleet can host game sessions. Amazon GameLift starts new game
sessions when your game client service sends a placement request to the backend service or to
Amazon GameLift.

Hosting game servers 6

https://docs.aws.amazon.com/gamelift/latest/fleetiqguide/gsg-intro.html

Amazon GameLift Developer Guide

Game session placement and the FleetIQ algorithm

Queues use the FleetIQ algorithm to select an available game server to host a new game session.
The key component for game session placement is the Amazon GameLift game session queue. You
assign a game session queue a list of fleets, which determines where the queue can place game
sessions. For more information about game session queues and how to design them for your game,
see Design a game session queue.

Player connections to games

As part of the game session placement process, the queue or game session prompts the selected
game server to start a new game session. The game server responds to the prompt and reports
back to Amazon GameLift when it's ready to accept player connections. Amazon GameLift then
delivers connection information to the backend service or game client service. Your game clients
use this information to connect directly to the game session and begin gameplay.

Scaling fleet capacity

When a fleet is active and ready to host game sessions, you can adjust your fleet capacity to meet
player demand. We recommend that you find a balance between all incoming players finding a
game quickly and overspending on resources that sit idle.

Amazon GameLift provides a highly effective auto scaling tool, or you can manually set fleet
capacity. For more information, see Scaling Amazon GameLift hosting capacity.

Auto scaling

Amazon GameLift provides two methods of auto scaling:

• Target-based auto scaling

• Auto scale with rule-based policies

Additional scaling features

• Game session protection – Prevent Amazon GameLift from ending game sessions that are
hosting active players during a scale-down event.

• Scaling limits – Control overall instance usage by setting minimum and maximum limits on the
number of instances in a fleet.

• Suspending auto scaling – Suspend auto scaling at the fleet location level without changing or
deleting your auto scaling policies.

Scaling fleet capacity 7

Amazon GameLift Developer Guide

• Scaling metrics – Track a fleet's history of capacity and scaling events.

Monitoring Amazon GameLift

When you have fleets up and running, Amazon GameLift collects a variety of information to help
you monitor the performance of your deployed game servers. You can use this information to
optimize your use of resources, troubleshoot issues, and gain insight into how players are active in
your games. Amazon GameLift collects the following:

• Fleet, location, game session, and player session details

• Usage metrics

• Server process health

• Game session logs

For more information about monitoring in Amazon GameLift, see Monitoring Amazon GameLift.

Using other AWS resources

Your game servers and applications can communicate with other AWS resources. For example,
you might use a set of web services for player authentication or social networking. For your game
servers to access AWS resources that your AWS account manages, explicitly allow Amazon GameLift
to access your AWS resources.

Amazon GameLift provides a couple of options for managing this type of access. For more
information, see Communicate with other AWS resources from your fleets.

How players connect to games

A game session is an instance of your game running on Amazon GameLift. To play your game, a
player can either find and join an existing game session or create a new game session and join it.
A player joins by creating a player session for the game session. If the game session is open for
players, then Amazon GameLift reserves a slot for the player and provides connection information.
The player can then connect to the game session and claim the reserved slot.

For detailed information about creating and managing game sessions and player sessions with
custom game servers, see Add Amazon GameLift to your game client. For information about
connecting players to Realtime Servers, see Integrating a game client for Realtime Servers.

Monitoring Amazon GameLift 8

Amazon GameLift Developer Guide

Amazon GameLift provides several features related to game and player sessions.

Host game sessions on best available resources across multiple locations

Choose from multiple options when configuring how Amazon GameLift selects resources to
host new game sessions. If you're running fleets in multiple locations, then you can design
game session queues that place new game sessions on any fleet regardless of location.

Control player access to game sessions

Configure game sessions to allow or deny join requests from new players, regardless of the
number of players connected.

Use custom game and player data

Add custom data to game session objects and player session objects. Amazon GameLift passes
game session data to a game server when starting a new game session. Amazon GameLift
passes player session data to the game server when a player connects to the game session.

Filter and sort available game sessions

Use session search and sort to find the best possible match for a prospective player, or let
player choose from a list of available game sessions. Use session search and sort to find game
sessions based on session characteristics . You can also search and sort based on your own
custom game data.

Track game and player usage data

Automatically have logs stored for completed game sessions. You can set up log storage when
integrating Amazon GameLift into your game servers. For more information, see Logging server
messages in Amazon GameLift.

Use the Amazon GameLift console to view detailed information about game sessions, including
session metadata, settings, and player session data. For more information, see View data on
game and player sessions and Metrics.

Game architecture with managed Amazon GameLift

The following diagram illustrates the key components of a game architecture that's hosted using
the managed Amazon GameLift solution.

Game architecture with managed Amazon GameLift 9

Amazon GameLift Developer Guide

The key components of this architecture include the following:

Game clients

To join a game hosted on Amazon GameLift, your game client must first find an available
game session. The game client searches for existing game sessions, requests matchmaking,
or starts a new game session by communicating with Amazon GameLift through a backend
service. The backend service makes requests to Amazon GameLift, and in response, the service
receives game session information, which it relays back to the game client. The game client
then connects to the game server. For more information, see Preparing games for Amazon
GameLift.

Game architecture with managed Amazon GameLift 10

Amazon GameLift Developer Guide

Backend services

A backend service handles communication between game clients and Amazon GameLift
by calling the Amazon GameLift service API operations in the AWS SDK. You can also use
backend services for other game-specific tasks such as player authentication and authorization,
inventory, or currency control. For more information, see Design your game client service.

External services

Your game can rely on an external service, such as for validating a subscription membership.
An external service can pass information to your game servers through a backend service and
Amazon GameLift.

Game servers

You upload your game server software to Amazon GameLift, and Amazon GameLift then
deploys it onto hosting machines to host game sessions and accept player connections. Game
servers communicate with Amazon GameLift to start game sessions, validate newly connected
players, and report the status of game sessions, player connections, and available resources.

Custom game servers communicate with Amazon GameLift by using the Amazon GameLift
Server SDK. Game clients connect directly to a game server after receiving connection details
from Amazon GameLift through a backend service. For more information, see Integrate games
with custom game servers.

Realtime servers are game servers that run your custom script. When joining a game, a
game client connects directly to a Realtime server using the Realtime Client SDK. For more
information, see Integrating games with Amazon GameLift Realtime Servers.

Host management tools

When setting up and managing hosting resources, game owners use hosting management
tools to manage game server builds or scripts, fleets, matchmaking, and queues. The Amazon
GameLift tool set in the AWS SDK and the console provides multiple ways for you to manage
your hosting resources. You can remotely access any individual game server for troubleshooting.

Game architecture with managed Amazon GameLift 11

Amazon GameLift Developer Guide

Setting up

Get help with setting up your AWS account to use Amazon GameLift to host your multiplayer
games.

Tip

To try out Amazon GameLift game server hosting, see Getting started with Amazon
GameLift.

Topics

• Set up an AWS account

• Development support with Amazon GameLift

• Manage your game hosting costs

• Amazon GameLift hosting locations

Set up an AWS account

To start using Amazon GameLift, create and set up your AWS account. There's no charge to create
an AWS account. This section walks you through creating your account, setting up your users, and
configuring permissions.

Topics

• Sign up for an AWS account

• Create a user with administrative access

• Manage user permissions for Amazon GameLift

• Set up programmatic access for users

• Set up programmatic access for your game

• IAM permission examples for Amazon GameLift

• Set up an IAM service role for Amazon GameLift

Set up an account 12

Amazon GameLift Developer Guide

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Sign up for an AWS account 13

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html

Amazon GameLift Developer Guide

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Manage user permissions for Amazon GameLift

Create additional users or extend access permissions to existing users as needed for your Amazon
GameLift resources. As a best practice (Security best practices in IAM), apply least-privilege
permissions for all users. For guidance on permissions syntax, see IAM permission examples for
Amazon GameLift.

Manage user permissions for Amazon GameLift 14

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon GameLift Developer Guide

Use following instructions to set user permissions based on how you manage the users in your AWS
account.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

When working with IAM users, as a best practice always attach permissions to roles or user groups,
not individual users.

Set up programmatic access for users

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

Set up programmatic access for users 15

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon GameLift Developer Guide

Which user needs
programmatic access?

To By

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

Set up programmatic access for users 16

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

Amazon GameLift Developer Guide

Which user needs
programmatic access?

To By

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

If you use access keys, see Best practices for managing AWS access keys.

Set up programmatic access for your game

Most games use backend services to communicate with Amazon GameLift using the AWS SDKs. For
example, you use a backend service (acting on behalf of game clients) to request game sessions,
place players into games, and other tasks. These services need programmatic access and security
credentials to authenticate calls to Amazon GameLift service APIs.

For Amazon GameLift, you manage this access by creating a player user in AWS Identity and Access
Management (IAM). Manage player user permissions through one of the following options:

• Create an IAM role with player user permissions and allow the player user to assume the role
when needed. The backend service must include code to assume this role before making requests
to Amazon GameLift. In accordance with security best practices, roles provide limited, temporary

Set up programmatic access for your game 17

https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/accounts/latest/reference/credentials-access-keys-best-practices.html

Amazon GameLift Developer Guide

access. You can use roles for workloads running on AWS resources (IAM roles) or outside of AWS
(IAM Roles Anywhere).

• Create an IAM user group with player user permissions and add your player user to the group.
This option gives your player user long-term credentials, which the backend service must store
and use when communicating with Amazon GameLift.

For permissions policy syntax, see Player user permission examples.

For more information on managing permissions for use by a workload, see IAM Identities:
Temporary credentials in IAM.

IAM permission examples for Amazon GameLift

Use the syntax in these examples to set AWS Identity and Access Management (IAM) permissions
for users that need access to Amazon GameLift resources. For more information on managing user
permissions, see Manage user permissions for Amazon GameLift. When managing permissions for
users outside of the IAM Identity Center, as a best practice always attach permissions to IAM roles
or user groups, not individual users.

If you're using Amazon GameLift FleetIQ as a standalone solution, see Set up your AWS account for
Amazon GameLift FleetIQ.

Administrator permission examples

These examples give a user full access to manage Amazon GameLift game hosting resources.

Example Syntax for Amazon GameLift resource permissions

The following example extends access to all Amazon GameLift resources.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "gamelift:*",
 "Resource": "*"
 }
}

IAM permission examples 18

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_non-aws.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_temp-creds
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_temp-creds
https://docs.aws.amazon.com/gamelift/latest/fleetiqguide/gsg-iam-permissions.html
https://docs.aws.amazon.com/gamelift/latest/fleetiqguide/gsg-iam-permissions.html

Amazon GameLift Developer Guide

Example Syntax for Amazon GameLift resource permissions with support for Regions that
aren't enabled by default

The following example extends access to all Amazon GameLift resources and AWS Regions that
aren't enabled by default. For more information about Regions that aren't enabled by default and
how to enable them, see Managing AWS Regions in the AWS General Reference.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeRegions",
 "gamelift:*"
],
 "Resource": "*"
 }
}

Example Syntax for Amazon GameLift resource and PassRole permissions

The following example extends access to all Amazon GameLift resources and allows a user to pass
an IAM service role to Amazon GameLift. A service role gives Amazon GameLift limited ability
to access other resources and services on your behalf, as is described in Set up an IAM service
role for Amazon GameLift. For example, when responding to a CreateBuild request, Amazon
GameLift needs access to your build files in an Amazon S3 bucket. For more information about the
PassRole action, see IAM: Pass an IAM role to a specific AWS service in the IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "gamelift:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {

IAM permission examples 19

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_iam-passrole-service.html

Amazon GameLift Developer Guide

 "iam:PassedToService": "gamelift.amazonaws.com"
 }
 }
 }
]
}

Player user permission examples

These examples allow a backend service or other entity to make API calls to the Amazon GameLift
API. They cover the common scenarios for managing game sessions, player sessions, and
matchmaking. For more details, see Set up programmatic access for your game.

Example Syntax for game session placement permissions

The following example extends access to the Amazon GameLift APIs that use game session
placement queues to create game sessions and manage player sessions.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "PlayerPermissionsForGameSessionPlacements",
 "Effect": "Allow",
 "Action": [
 "gamelift:StartGameSessionPlacement",
 "gamelift:DescribeGameSessionPlacement",
 "gamelift:StopGameSessionPlacement",
 "gamelift:CreatePlayerSession",
 "gamelift:CreatePlayerSessions",
 "gamelift:DescribeGameSessions"
],
 "Resource": "*"
 }
}

Example Syntax for matchmaking permissions

The following example extends access to the Amazon GameLift APIs that manage FlexMatch
matchmaking activities. FlexMatch matches players for new or existing game sessions and initiates
game session placement for games hosted on Amazon GameLift. For more information about
FlexMatch, see What is Amazon GameLift FlexMatch?

IAM permission examples 20

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html

Amazon GameLift Developer Guide

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "PlayerPermissionsForGameSessionMatchmaking",
 "Effect": "Allow",
 "Action": [
 "gamelift:StartMatchmaking",
 "gamelift:DescribeMatchmaking",
 "gamelift:StopMatchmaking",
 "gamelift:AcceptMatch",
 "gamelift:StartMatchBackfill",
 "gamelift:DescribeGameSessions"
],
 "Resource": "*"
 }
}

Example Syntax for manual game session placement permissions

The following example extends access to the Amazon GameLift APIs that manually create game
sessions and player sessions on specified fleets. This scenario supports games that don't use
placement queues, such as games that let players join by choosing from a list of available game
sessions (the "list-and-pick" method).

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "PlayerPermissionsForManualGameSessions",
 "Effect": "Allow",
 "Action": [
 "gamelift:CreateGameSession",
 "gamelift:DescribeGameSessions",
 "gamelift:SearchGameSessions",
 "gamelift:CreatePlayerSession",
 "gamelift:CreatePlayerSessions",
 "gamelift:DescribePlayerSessions"
],
 "Resource": "*"
 }
}

IAM permission examples 21

Amazon GameLift Developer Guide

Set up an IAM service role for Amazon GameLift

Some Amazon GameLift features require you to extend limited access to AWS resources that you
own. You can do this by creating an AWS Identity and Access Management (IAM) role. An IAM role
is an IAM identity that you can create in your account that has specific permissions. An IAM role is
similar to an IAM user in that it is an AWS identity with permissions policies that determine what
the identity can and cannot do in AWS. However, instead of being uniquely associated with one
person, a role is intended to be assumable by anyone who needs it. Also, a role does not have
standard long-term credentials such as a password or access keys associated with it. Instead, when
you assume a role, it provides you with temporary security credentials for your role session.

This topic covers how to create a role that you can use with your Amazon GameLift managed fleets.
If you use Amazon GameLift FleetIQ to optimize game hosting on your Amazon Elastic Compute
Cloud (Amazon EC2) instances, see Set up your AWS account for Amazon GameLift FleetIQ.

In the following procedure, create a role with a custom permissions policy and a trust policy that
allows Amazon GameLift to assume the role.

Create a custom IAM role

Step 1: Create a permissions policy.

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter or paste a JSON policy document. For details about the IAM policy language, see IAM
JSON policy reference.

6. Resolve any security warnings, errors, or general warnings generated during policy validation,
and then choose Next.

Set up an IAM service role 22

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/gamelift/latest/fleetiqguide/gsg-iam-permissions.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_policy-validator.html

Amazon GameLift Developer Guide

Note

You can switch between the Visual and JSON editor options anytime. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring in the
IAM User Guide.

7. (Optional) When you create or edit a policy in the AWS Management Console, you can
generate a JSON or YAML policy template that you can use in AWS CloudFormation templates.

To do this, in the Policy editor choose Actions, and then choose Generate CloudFormation
template. To learn more about AWS CloudFormation, see AWS Identity and Access
Management resource type reference in the AWS CloudFormation User Guide.

8. When you are finished adding permissions to the policy, choose Next.

9. On the Review and create page, enter a Policy name and a Description (optional) for the
policy that you are creating. Review Permissions defined in this policy to see the permissions
that are granted by your policy.

10. (Optional) Add metadata to the policy by attaching tags as key-value pairs. For more
information about using tags in IAM, see Tagging IAM resources in the IAM User Guide.

11. Choose Create policy to save your new policy.

Step 2: Create a role that Amazon GameLift can assume.

1. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

2. On the Select trusted entity page, choose the Custom trust policy option. This selection
opens the Custom trust policy editor.

3. Replace the default JSON syntax with the following, and then choose Next to continue.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "gamelift.amazonaws.com"
 },
 "Action": "sts:AssumeRole"

Set up an IAM service role 23

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_IAM.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_IAM.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html

Amazon GameLift Developer Guide

 }
]
}

4. On the Add permissions page, locate and select the permissions policy that you created in
Step 1. Choose Next to continue.

5. On the Name, review and create page, enter a Role name and a Description (optional) for the
role that you are creating. Review the Trust entities and Added permissions.

6. Choose Create role to save your new role.

Permission policy syntax

• Permissions for Amazon GameLift to assume the service role

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "gamelift.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

• Permissions to access AWS Regions that aren't enabled by default

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "gamelift.amazonaws.com",
 "gamelift.ap-east-1.amazonaws.com",
 "gamelift.me-south-1.amazonaws.com",
 "gamelift.af-south-1.amazonaws.com",

Set up an IAM service role 24

Amazon GameLift Developer Guide

 "gamelift.eu-south-1.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Development support with Amazon GameLift

Amazon GameLift provides a set of SDKs that you can use with your game hosting solutions. Use
Amazon GameLift SDKs to add functionality to game servers, game clients, and backend services
that interact with the Amazon GameLift service.

For the latest information about Amazon GameLift SDK versions and SDK compatibility, see
Amazon GameLift release notes.

For game servers

Integrate and build your 64-bit game servers with the Amazon GameLift server SDK. Game servers
use the server SDK to communicate with the Amazon GameLift service to start and manage game
sessions. For information on integrating the server SDK, see the topics in Preparing games for
Amazon GameLift.

Development operating systems

The Amazon GameLift server SDK supports the following development environments:

• Windows

• Linux

Programming languages

The Amazon GameLift server SDK is available in the following languages. Download Server SDKs.
For version-specific information and install instructions, see the included readme files in each
package.

• C++ server SDK

• SDK reference

Development support 25

https://aws.amazon.com/gamelift/getting-started-sdks/

Amazon GameLift Developer Guide

• SDK integration

• C# server SDK (versions may support .NET 4 and .NET 6)

• SDK reference

• SDK integration

• Go

• SDK reference

• SDK integration

Game engines

Use language-specific SDKs with any engine that supports C++, C#, or Go libraries. In addition,
Amazon GameLift offers plugins for the following game engines. Download Amazon GameLift
plugins

• Unity

• C# server SDK plugin for Unity is a lightweight plugin with pre-built libraries that you can
install using the Unity package manager. Use this plugin with the following Unity versions:
2020.3 LTS, 2021.3 LTS and 2022.3 LTS for Windows and Mac OS. It supports Unity's .NET
Framework and .NET Standard profiles, with .NET Standard 2.1 and .NET 4.x.

• Integrate Amazon GameLift into a Unity project

• Standalone plugin for Unity 2021.3 LTS and 2022.3 LTS is a full-featured plugin with the C#
SDK libraries built for Unity and GUI elements for configuring and deploying Amazon GameLift
resources for hosting.

• Amazon GameLift plugin for Unity guide for server SDK 5.x

• Amazon GameLift server SDK reference for C#

• Unreal Engine

• C++ server SDK plugin for Unreal is a lightweight plugin consisting of C++ Unreal source code
that you can build into libraries for use with Unreal Engine versions 4, 5, and 5.1.

• Integrate Amazon GameLift into an Unreal Engine project

• Amazon GameLift Unreal Engine server SDK 5.x reference

• Standalone plugin for Unreal Engine 5.0, 5.1, and 5.2 is a full-featured plugin with the C++ for
Unreal server SDK libraries and AWS SDK. The plugin is installed in the Unreal editor, with UI
elements and supporting materials for configuring and deploying Amazon GameLift resources
for hosting.

For game servers 26

https://aws.amazon.com/gamelift/getting-started/
https://aws.amazon.com/gamelift/getting-started/

Amazon GameLift Developer Guide

• Integrating games with the Amazon GameLift plugin for Unreal Engine

• Amazon GameLift Unreal Engine server SDK 5.x reference

Game server operating systems

The Amazon GameLift server SDK supports game servers that are built run on the following
platforms:

• Windows Server 2016

• Amazon Linux 2023

• Amazon Linux 2

Note

Amazon Linux 2 (AL2) will reach end of support on June 30, 2025. See more details in
the Amazon Linux 2 FAQs. For game servers that are hosted on AL2 and use Amazon
GameLift server SDK 4.x., first update the game server build to server SDK 5.x, and then
deploy to AL2023 instances. See Migrate to Amazon GameLift server SDK 5.x.

For game client services

Create a 64-bit backend service for your game clients using the AWS SDK with the Amazon
GameLift API. Your backend service handles client-side interactions with the Amazon GameLift to
start new game sessions, join players to games, and other tasks. Download the AWS SDK.

For more information about using the AWS SDK with Amazon GameLift, see the following
resources:

• Amazon GameLift API Reference

• Client service integration

For Realtime Servers

Configure and deploy Realtime servers to host your multiplayer games. To allow your game clients
to connect to Realtime servers, use the Amazon GameLift Realtime Client SDK. Game clients use
this SDK to exchange messages with a Realtime server and with other game clients that connect to

For game client services 27

https://aws.amazon.com/windows/products/ec2/windows-server-2016/
https://aws.amazon.com/linux/amazon-linux-2023/
https://aws.amazon.com/amazon-linux-2/
https://aws.amazon.com/amazon-linux-2/faqs/
https://aws.amazon.com/developer/tools/#SDKs
https://docs.aws.amazon.com/gamelift/latest/apireference/Welcome.html

Amazon GameLift Developer Guide

the server. To get started, download the Amazon GameLift Realtime Client SDK. For configuration
information, see Integrating a game client for Realtime Servers.

SDK support

The Realtime Client SDK contains source for the following languages:

• C# (.NET)

'

Development environments

Build the SDK from source as needed for the following supported development operating systems
and game engines:

• Operating systems – Windows, Linux, Android, iOS

• Game engines – Unity, engines that support C# libraries

Game server operating systems

You can deploy Realtime servers onto hosting resources that run on the following platforms:

• Amazon Linux

• Amazon Linux 2

Note

AL2 is nearing end of support. See more details in the Amazon Linux 2 FAQs.

Manage your game hosting costs

Your AWS bill reflects your game hosting costs. You can view estimated charges for the
current month, and final charges for previous months on the Billing console at https://
console.aws.amazon.com/billing/. For more information about tools and resources to help you
manage your AWS costs, see the AWS Billing User Guide. This guide can help you review your
resource consumption, establish future usage, and determine your scaling needs.

In particular, consider these tips to help you manage the cost of Amazon GameLift services.

Manage your game hosting costs 28

https://aws.amazon.com/gamelift/getting-started/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-2/
https://aws.amazon.com/amazon-linux-2/faqs/
https://console.aws.amazon.com/billing/
https://console.aws.amazon.com/billing/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html

Amazon GameLift Developer Guide

Create billing alerts to monitor usage

Set up an AWS Free Tier usage alert to notify you when your usage is nearing or exceeding the
Free Tier limits for Amazon GameLift and other AWS services. You can configure the alerts to take
action based on your usage levels. For example, you can automatically set your budget to zero
when your reach a Free Tier limit.

You can also set Amazon CloudWatch billing alerts to get notifications when usage hits custom
thresholds.

For more information, see these topics in the AWS Billing User Guide:

• Tracking your AWS Free Tier usage

• Billing alert preferences

Track costs per Amazon GameLift fleet

Use AWS cost allocation tags to organize and track your game hosting costs based on Amazon
GameLift Amazon EC2 fleets and other EC2 resources. By tagging your fleets, either individually or
by groups, you can create cost allocation reports that categorize costs based on the assigned tag.
You can use this type of report to identify how fleets are contributing to your hosting costs. You
can also use tags to filter views in AWS Cost Explorer.

For more information, see these topics:

• Using AWS cost allocation tags, AWS Billing User Guide

• Analyzing your costs with AWS Cost Explorer, AWS Cost Management User Guide

Set unused fleet capacity to zero

Fleets can continue to incur costs even when they're not in use hosting game sessions. To avoid
incurring unnecessary charges, scale your fleet down to zero when not in use. If you use auto
scaling, suspend this activity and manually set the fleet capacity.

Amazon GameLift hosting locations

Amazon GameLift is available in multiple AWS Regions and Local Zones. For a complete list of
locations, see Amazon GameLift endpoints and quotas in the AWS General Reference.

Create billing alerts to monitor usage 29

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/tracking-free-tier-usage.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-pref.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/cost-management/latest/userguide/ce-what-is.html
https://docs.aws.amazon.com/general/latest/gr/gamelift.html

Amazon GameLift Developer Guide

Amazon GameLift hosting

When you create a Amazon GameLift fleet, Amazon GameLift creates the fleet's resources in your
current AWS Region. Amazon GameLift calls this Region the fleet's home Region. To manage a fleet,
access it from its home Region.

Multi-location fleets deploy instances to other locations in addition to the fleet's home Region.
With multi-location fleets, you can manage capacity for each location individually, and you can
place game sessions by location. Multi-location fleets can have remote locations in any Region or
Local Zone that Amazon GameLift supports. The following diagram depicts a multi-location fleet
with resources in two Regions. In the diagram, the us-west-2 Region includes two game servers,
and the us-east-2 Region has one game server.

If you choose to use a multi-location fleet with instances in Regions that aren't enabled by default,
you must enable those Regions in your AWS account. Also, your Amazon GameLift administrator
policy must allow the ec2:DescribeRegions action. For more information about Regions that
aren't enabled by default and how to enable them, see Managing AWS Regions in the AWS General
Reference. For a policy example with Regions that aren't enabled by default, see Administrator
permission examples.

Amazon GameLift hosting 30

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html

Amazon GameLift Developer Guide

Important

To use Regions that aren't enabled by default, enable them in your AWS account.

• Fleets with Regions that aren't enabled that you created before February 28, 2022 are
unaffected.

• To create new multi-location fleets or to update existing multi-location fleets, first
enable any Regions that you choose to use.

For game session placement, you can create game session queues in any location that Amazon
GameLift supports. Amazon GameLift places game sessions from the location where you created
the queue.

Local Zones

A Local Zone is an extension of an AWS Region in geographic proximity to your users. Local Zones
have their own connections to the internet. Local Zones also support AWS Direct Connect so that
resources created in a Local Zone can serve local users with low-latency communications. For more
information, see AWS Local Zones.

The code for a Local Zone is its Region code, followed by an identifier that indicates its physical
location. For example, the us-west-2-lax-1 Local Zone is in Los Angeles. For a list of available
Local Zones, see Available Local Zones.

Amazon GameLift hosts your games in each of the locations that you choose for your fleet. The
following diagram depicts a fleet with two game servers in the us-west-2 Region, one game
server in the us-east-2 Region, and one game server in the us-west-2-lax-1 Local Zone.

Local Zones 31

https://aws.amazon.com/about-aws/global-infrastructure/localzones/

Amazon GameLift Developer Guide

Available Local Zones

The following table lists the available Local Zones and their physical locations.

Local Zone Location (metro area)

us-east-1-atl-1 Atlanta

us-east-1-chi-1 Chicago

us-east-1-dfw-1 Dallas

us-east-1-iah-1 Houston

us-east-1-mci-1 Kansas City

us-west-2-den-1 Denver

us-west-2-lax-1 Los Angeles

us-west-2-phx-1 Phoenix

Amazon GameLift Anywhere

You can use Amazon GameLift Anywhere to create fleets with your own hardware, and manage
your game builds, scripts, game servers, and clients using Amazon GameLift. Amazon GameLift

Amazon GameLift Anywhere 32

Amazon GameLift Developer Guide

Anywhere is available in all Regions that Amazon GameLift supports. For more information about
creating an Anywhere fleet and testing your game server integration, see Create an Amazon
GameLift Anywhere fleet and Set up local testing with Amazon GameLift Anywhere.

With Amazon GameLift Anywhere you create custom locations that represent the physical location
of the hardware you are using to host your Amazon GameLift integrated game servers.

Amazon GameLift FlexMatch

For FlexMatch, you can host match-generated game sessions in any location that Amazon GameLift
supports. Actual matchmaking activity takes place in the AWS Region where you chose to create
your matchmaker resources. Amazon GameLift routes match requests to the matchmaker and
processes them in that location. For more information about Amazon GameLift FlexMatch, see
What is Amazon GameLift FlexMatch?

AWS Regions that support FlexMatch resources

Amazon GameLift in China

When using Amazon GameLift for resources in the China (Beijing) Region, operated by Sinnet, or
the China (Ningxia) Region, operated by NWCD, you must have a separate AWS (China) account.
Note that some features are unavailable in the China Regions. For more information about using
Amazon GameLift in these Regions, see the following resources:

• Amazon Web Services in China

• Amazon GameLift (Getting Started with Amazon Web Services in China)

Amazon GameLift FlexMatch 33

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-regions.html
https://www.amazonaws.cn/en/about-aws/china/
https://docs.amazonaws.cn/en_us/aws/latest/userguide/gamelift.html

Amazon GameLift Developer Guide

Getting started with Amazon GameLift

We recommend that you try the following examples before you use Amazon GameLift for your own
game. The custom game server example gives you experience with game hosting in the Amazon
GameLift console. The Realtime Servers example shows you how to prepare a game for hosting
using Realtime Servers.

To get started with Amazon GameLift for your own game, see Amazon GameLift managed hosting
roadmap.

Custom game server example

This example demonstrates a live custom game on Amazon GameLift. The example walks you
through the following steps:

• Creating an example game build.

• Creating a fleet to run the game server.

• Connecting to the game server from the example game client.

• Reviewing fleet and game session metrics.

After these steps, you can start up multiple game clients and play the game to generate hosting
data. Then, you can explore the Amazon GameLift console to view your hosting resources, track
metrics, and experiment with ways to scale hosting capacity.

To get started, sign in to the Amazon GameLift console.

Realtime Servers example game

This example is a complete multiplayer game named Mega Frog Race, with source code included.
The example shows how to integrate your game client with Realtime Servers. You can also use this
example game as a starting point to experiment with other Amazon GameLift features such as
FlexMatch.

For a hands-on tutorial, see Creating Servers for Multiplayer Mobile Games with Just a Few Lines of
JavaScript on the AWS for Games Blog.

For the source code of Mega Frog Race, see the GitHub repository.

Custom game server example 34

https://console.aws.amazon.com/gamelift/sample-game
https://aws.amazon.com/blogs/gametech/creating-servers-for-multiplayer-mobile-games-with-amazon-gamelift/
https://aws.amazon.com/blogs/gametech/creating-servers-for-multiplayer-mobile-games-with-amazon-gamelift/
https://github.com/aws-samples/megafrograce-gamelift-realtime-servers-sample

Amazon GameLift Developer Guide

The source code includes the following parts:

• Game client – A source code for the C++ game client, created in Unity. The game client gets
game session connection information, connects to the server, and exchanges updates with other
players.

• Backend service – A source code for an AWS Lambda function that manages direct API calls to
Amazon GameLift.

• Realtime script – A source script file that configures a fleet of Realtime Servers for the game. This
script includes the minimum configuration required for Realtime Servers to communicate with
Amazon GameLift and to host games.

Realtime Servers example game 35

Amazon GameLift Developer Guide

Amazon GameLift managed hosting roadmap

This topic helps you choose from the different Amazon GameLift hosting options for your session-
based multiplayer game. The rest of the topics in this section walk you through how to use Amazon
GameLift for your managed hosting.

Before you start preparing to launch your game to production, fill out the launch questionnaire to
begin working with the Amazon GameLift team.

Topics

• Choose a hosting option

• Prepare your game for Amazon GameLift

• Test your integration with Amazon GameLift

• Plan and deploy your Amazon GameLift resources

• Design your game client service

• Set up metrics and logging for Amazon GameLift

• Game launch checklists

Choose a hosting option

The following flowchart asks questions to lead you to the correct Amazon GameLift solution for
your use case.

1. Do you want a managed solution for game server management?

• Yes – Continue to step two.

• No – Consider self-managed game servers on Amazon EC2 instances.

2. Do you need full control of the instances hosting your game servers?

• Yes – Consider Amazon GameLift FleetIQ.

• No – Continue to step 3.

3. Do you have existing infrastructure you want to use with Amazon GameLift?

• Yes – Consider Amazon GameLift Anywhere.

• No – Continue to step four.

Choose a hosting option 36

Amazon GameLift Developer Guide

4. Is your game lightweight without existing game server logic?

• Yes – Consider Realtime servers.

• No – Consider custom servers.

Here's some more information about some of the Amazon GameLift hosting options mentioned in
the flowchart:

Amazon GameLift Anywhere

Use Amazon GameLift Anywhere to host your games on your own hardware with the benefit
of Amazon GameLift management tools. You can also use Anywhere fleets to test your game
servers iteratively. For more information, see Create an Amazon GameLift Anywhere fleet.

Choose a hosting option 37

Amazon GameLift Developer Guide

Managed Amazon GameLift

There are two options for managed Amazon GameLift hosting:

Custom servers – Amazon GameLift hosts your custom server that runs your game server
binary.

Realtime Servers – Amazon GameLift hosts your lightweight game server.

Amazon GameLift FleetIQ

In the flowchart, a lift and shift migration refers to a migration when you can't make changes to
the game architecture. Using Amazon GameLift FleetIQ requires fewer changes to your existing
deployment and provides Amazon GameLift tools for fleet management. For more information,
see the Amazon GameLift FleetIQ Developer Guide.

If you decide to use Amazon GameLift Anywhere or managed Amazon GameLift, continue to
Prepare your game for Amazon GameLift.

Prepare your game for Amazon GameLift

This topic describes the steps for preparing your multiplayer game for integration with managed
Amazon GameLift hosting. To prepare your game, you must activate communication between it
and Amazon GameLift.

Prepare your custom game server

To start and stop game sessions, and to perform other tasks, a game server must be able to notify
Amazon GameLift about its status. To activate communication with Amazon GameLift, add code to
your game server project. For more information, see Integrate games with custom game servers.

1. Prepare your custom game server for hosting on Amazon GameLift.

• Get the Amazon GameLift Server SDK and build it for your preferred programming language
and game engine.

• Add code to your game server project to activate communication with Amazon GameLift.

2. Prepare your game client to connect to Amazon GameLift hosted game sessions.

• Add the AWS SDK to your backend service and game client project. For more information,
see Download Amazon GameLift SDKs for client services.

Prepare your game 38

https://docs.aws.amazon.com/gamelift/latest/fleetiqguide
https://aws.amazon.com/gamelift/getting-started/#Developer_Resources_and_Documentation

Amazon GameLift Developer Guide

• Add functionality to retrieve information on game sessions, place new game sessions, and
reserve space for players on a game session.

• (Optional) Use FlexMatch for player matchmaking. For more information, see FlexMatch
integration with Amazon GameLift hosting.

Prepare your Realtime server

Amazon GameLift Realtime Servers provides a lightweight server solution that you can configure
to fit your game. A Realtime server provides the same benefits that Amazon GameLift offers to
game servers, but with reduced game server customizability.

Create a Realtime script for hosting on Amazon GameLift.

Realtime scripts contain your server configuration and optional custom game logic. Realtime
servers are built to start and stop game sessions, accept player connections, and manage
communication with Amazon GameLift and between players in a game. There are also hooks for
you to add custom server logic for your game. Realtime servers use Node.js and JavaScript. For
more information, see Creating a Realtime script and Test your integration with Amazon GameLift.

Test your integration with Amazon GameLift

Amazon GameLift supports fast iteration when testing your game servers. This topic guides you
through the types of testing available.

Custom game servers

Use Amazon GameLift to integrate hardware anywhere in your environment into your Amazon
GameLift game hosting architecture. Amazon GameLift Anywhere registers your hardware with
Amazon GameLift in an Anywhere fleet, so that you can test using your own local development
computer. For more information about testing with Amazon GameLift Anywhere, see Set up local
testing with Amazon GameLift Anywhere. For more information about using Amazon GameLift
Anywhere for hosting your games with on-premises solutions, see Choosing Amazon GameLift
compute resources.

Realtime Servers

With Realtime Servers, you can update your scripts at any time. When you update a Realtime script,
Amazon GameLift distributes the new version to your hosting resources within minutes. After

Prepare your Realtime server 39

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-tasks.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-tasks.html

Amazon GameLift Developer Guide

Amazon GameLift deploys the new script, all new game sessions use the new script version. After
Amazon GameLift deploys the new script, you can begin testing immediately. For more information
about Realtime Servers see, Integrating games with Amazon GameLift Realtime Servers

Plan and deploy your Amazon GameLift resources

Use the following tips to help plan your global Amazon GameLift resources deployment. For
information about where you can host your games with Amazon GameLift, see Amazon GameLift
hosting locations.

To deploy your Amazon GameLift resources, complete the following tasks:

• Package and upload your game server to Amazon GameLift or to your hardware. When
uploading your server to Amazon GameLift, you upload it only to the home AWS Region of your
fleet. Amazon GameLift automatically distributes the server to other locations in the fleet. For
more information, see Uploading builds and scripts to Amazon GameLift.

• Design and deploy a Amazon GameLift fleet for your game. Determine the type of computing
resources to use, which locations to deploy to, whether to use queues, and other options. For
more information, see Amazon GameLift fleet design guide.

• Create queues to manage new game session placements and Spot Instance strategies. For
more information, see Design a game session queue.

• Use automatic scaling to manage your fleet's hosting capacity for expected player demand.
For more information, see Scaling Amazon GameLift hosting capacity.

• Use FlexMatch matchmaking rules for your game. For more information, see FlexMatch
integration with Amazon GameLift hosting.

Automatically deploy your Amazon GameLift resources

To streamline the global deployment of your Amazon GameLift resources, we recommend that you
use infrastructure as code (IaC) to define the resources. Because Amazon GameLift supports AWS
CloudFormation templates, you can set parameters in the templates for any deployment-specific
configurations.

To manage the deployment of your AWS CloudFormation stacks, we also recommend using
continuous integration and continuous delivery (CI/CD) tools and services such as AWS
CodePipeline. These help you deploy automatically or with approval whenever you build game
server binary.

Plan and deploy your resources 40

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-tasks.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-tasks.html
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/infrastructure-as-code.html

Amazon GameLift Developer Guide

The following are some common steps of Amazon GameLift resources deployment for a new game
server version that you can automate using a CI/CD tool or service:

• Building and testing your game server binary.

• Uploading the binary to Amazon GameLift or your hardware.

• Deploying new fleets in the new build.

• After you deploy the new fleets, removing the previous version fleets from your Amazon
GameLift queue and replacing them with the new fleets.

• After the previous version fleets successfully end all game sessions, deleting the AWS
CloudFormation stacks of those fleets.

You can also use the AWS Cloud Development Kit (AWS CDK) to define your Amazon GameLift
resources. For more information about the AWS CDK, see the AWS Cloud Development Kit (AWS
CDK) Developer Guide.

Design your game client service

We recommend that you implement a game client service that authenticates your players and
communicates with the Amazon GameLift API. By implementing a custom game client service, you
can:

• Customize authentication for your players.

• Control how Amazon GameLift matches and starts game sessions.

• Use your player database for player attributes such as skill rating for matchmaking instead of
trusting the client.

Using a game client service also reduces security risks introduced by game clients interacting
directly with your Amazon GameLift API.

Authenticating your players

You can use Amazon Cognito and player session IDs to authenticate your game clients. To manage
the lifecycle and properties of your player identities, use Amazon Cognito user pools.

If you prefer, build a custom identity solution and host it on AWS. You can also use Lambda
authorizers for custom authorization logic with API Gateway.

Design your backend service 41

https://docs.aws.amazon.com/cdk/v2/guide/
https://docs.aws.amazon.com/cdk/v2/guide/

Amazon GameLift Developer Guide

Additional resources:

• Using identity pools (federated identities) (Amazon Cognito Developer Guide)

• Getting started with user pools (Amazon Cognito Developer Guide)

• How to Set Up Player Authentication with Amazon Cognito (AWS for Games Blog)

Standalone game session servers with a serverless backend

Using a serverless client service architecture, the backend can view the status of matchmaking
tickets from a highly scalable database instead of by directly accessing the Amazon GameLift API.

The following diagram shows a serverless backend built with AWS services that matches players
into games running on Amazon GameLift fleets. The following list provides a description for each
numbered callout in the diagram. To try out this example, see Multiplayer Session-based Game
Hosting on AWS on GitHub.

1. The game client requests an Amazon Cognito user identity from an Amazon Cognito identity
pool.

Serverless backend 42

https://docs.aws.amazon.com/cognito/latest/developerguide/identity-pools.html
https://docs.aws.amazon.com/cognito/latest/developerguide/getting-started-with-cognito-user-pools.html
https://aws.amazon.com/blogs/gametech/how-to-set-up-player-authentication-with-amazon-cognito/
https://github.com/aws-samples/aws-gamelift-and-serverless-backend-sample
https://github.com/aws-samples/aws-gamelift-and-serverless-backend-sample

Amazon GameLift Developer Guide

2. The game client receives temporary access credentials and requests a game session through an
Amazon API Gateway API.

3. API Gateway invokes an AWS Lambda function.

4. The Lambda function requests player data from an Amazon DynamoDB NoSQL table. The
function provides the Amazon Cognito identity in the request context data.

5. The Lambda function requests a match through Amazon GameLift FlexMatch matchmaking.

6. FlexMatch matches a group of players with suitable latency, and then requests a game session
placement through a Amazon GameLift queue. The queue has fleets with one or more AWS
Region locations in it.

7. After Amazon GameLift places the session on one of the fleet's locations, Amazon GameLift
sends an event notification to an Amazon Simple Notification Service (Amazon SNS) topic.

8. A Lambda function receives the Amazon SNS event and processes it.

9. If the matchmaking ticket is a MatchmakingSucceeded event, then the Lambda function
writes the result, along with the port and IP address of the game server, to a DynamoDB table.

10.The game client makes a signed request to API Gateway to view the status of the matchmaking
ticket on a specific interval.

11.API Gateway uses a Lambda function that checks the matchmaking ticket status.

12.The Lambda function checks the DynamoDB table to see if the ticket is successful. If it has
succeeded, the function sends the game server's port and IP address, along with the player
session ID, back to the client. If the ticket hasn't succeeded, the function sends a response
verifying that the match isn't ready yet.

13.The game client connects to the game server using TCP or UDP by using the port and IP address
that the backend service provides. The game client then sends the player session ID to the game
server, which then validates the ID using the Amazon GameLift Server SDK.

Standalone game session servers with a WebSocket-based backend

Using an Amazon API Gateway WebSocket-based architecture, you can make matchmaking
requests with WebSockets and send push notifications for matchmaking completion using server-
initiated messages. This architecture improves performance by having two-way communication
between the client and the server.

For more information about using API Gateway WebSock APIs, see Working with WebSocket APIs.

WebSocket-based backend 43

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api.html

Amazon GameLift Developer Guide

The following diagram shows a WebSocket-based backend architecture that uses API Gateway and
other AWS services to match players into games running on Amazon GameLift fleets. The following
list provides a description for each numbered callout in the diagram.

1. The game client requests an Amazon Cognito user identity from an Amazon Cognito identity
pool.

2. The game client signs a WebSocket connection to an API Gateway API with the Amazon Cognito
credentials.

WebSocket-based backend 44

Amazon GameLift Developer Guide

3. API Gateway calls an AWS Lambda function on the connection. The function stores the
connection information in an Amazon DynamoDB table.

4. The game client sends a message to a Lambda function, through the API Gateway API over the
WebSocket connection, to request a session.

5. A Lambda function receives the message and then requests a match through Amazon GameLift
FlexMatch matchmaking.

6. After FlexMatch matches a group of players, FlexMatch requests a game session placement
through a Amazon GameLift queue.

7. After Amazon GameLift places the session on one of the fleet's locations, Amazon GameLift
sends an event notification to an Amazon Simple Notification Service (Amazon SNS) topic.

8. A Lambda function receives the Amazon SNS event and processes it.

9. If the matchmaking ticket is a MatchmakingSucceeded event, then the Lambda function
requests the correct player connection from DynamoDB. The function then sends a message
to the game client through the API Gateway API over the WebSocket connection. In this
architecture, the game client doesn't actively poll the status of matchmaking.

10.The game client receives the port and IP address of the game server, along with the player
session ID, through the WebSocket connection.

11.The game client connects to the game server using TCP or UDP using the port and IP address
that the backend service provides. The game client also sends the player session ID to the game
server, which then validates the ID using the Amazon GameLift Server SDK.

Set up metrics and logging for Amazon GameLift

You can use data collected from your Amazon GameLift game servers and resources to help
identify anomalies. You can also use metrics to help improve performance.

Key areas to observe for Amazon GameLift include:

• Amazon GameLift service metrics – Amazon GameLift provides Amazon CloudWatch metrics
on your resources including game servers, fleets, queues, and FlexMatch. You can find these
metrics in the Amazon GameLift console and the CloudWatch console. For more information
about Amazon GameLift metrics in CloudWatch, see Monitor Amazon GameLift with Amazon
CloudWatch.

• Game server metrics – Amazon GameLift can't access your game server metrics. However, you
can send custom metrics to CloudWatch directly from your game server by using the CloudWatch

Set up metrics and logging 45

Amazon GameLift Developer Guide

agent. You can also use the fleet AWS Identity and Access Management (IAM) role and the AWS
SDK to send metrics directly to CloudWatch. For an example of how to configure metrics, see
Multiplayer Session-based Game Hosting on AWS on GitHub. This repository includes an example
CloudWatch agent configuration and code for a C# StatsD client.

• Game server logs – To configure your game server log files on the game server, use the Amazon
GameLift Server SDK configuration. You can also use Amazon CloudWatch Logs as a real-time
log management solution, and you can configure logs with the CloudWatch agent. For more
information, see Logging server messages in Amazon GameLift.

Game launch checklists

You can use these checklists to validate the phases of deployment of your game. In the checklists,
items marked [Critical] are critical for your production launch.

Topics

• Onboarding

• Testing

• Launch

• Post-launch

Onboarding

Use the following checklist to track items for onboarding your game for Amazon GameLift hosting.
Items marked [Critical] are critical for your production launch.

• [Critical] Fill out the Amazon GameLift onboarding questionnaire in the Amazon GameLift
console.

• [Critical] Design and implement a backend service for game clients to interact with your game
servers.

• [Critical] Create AWS Identity and Access Management (IAM) roles that you provide to Amazon
GameLift server instances for access to other AWS resources.

• [Critical] Design and implement failover to other AWS Regions for FlexMatch and queues.

• Plan the rollout of fleets to your target locations, considering your game's queue and fleet
structure.

Launch checklists 46

https://github.com/aws-samples/aws-gamelift-and-serverless-backend-sample#multiplayer-session-based-game-hosting-on-aws
https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

• Automate your deployment using infrastructure as code (IaC) with AWS CloudFormation and the
AWS Cloud Development Kit (AWS CDK).

• Collect logs and analytics using Amazon CloudWatch and Amazon Simple Storage Service
(Amazon S3).

Testing

Use the following checklist to track testing items while developing your game with Amazon
GameLift hosting. Items marked [Critical] are critical for your production launch.

• [Critical] Complete the launch questionnaire, and submit the completed questionnaire to the
Amazon GameLift launch team. You can find the launch questionnaire in the Amazon GameLift
console.

• [Critical] Request increases for Amazon GameLift service quotas and other AWS service quotas
so that your live environment can scale up to production needs.

• [Critical] Verify that the open ports on live fleets match the range of ports that your servers
could use.

• [Critical] Close RDP port 3389 and SSH port 22.

• Develop a plan for the DevOps management of your game. If you're using Amazon CloudWatch
Logs or Amazon CloudWatch custom metrics, define alarms for severe or critical problems on the
server fleet. Simulate failures and test the runbooks.

• Verify that the number of servers running on an instance at full usage are within the capabilities
of the server instance type.

• Tune your scaling policy to be more conservative at first and provide more idle capacity than you
think you need. You can optimize for cost later. Consider the use of target-based scaling policy
with 20 percent idle capacity.

• Use FlexMatch latency rules to match players who are geographically near the same AWS Region.
Test how this behaves under load with synthetic latency data from your load test client.

• Load test your player authentication and game session infrastructure to see if it scales effectively
to meet demand.

• Verify that a server left running for several days can still accept connections.

• Raise your AWS Support plan level to Business or Enterprise so that AWS can respond to you
during problems or outages.

Testing 47

https://console.aws.amazon.com/gamelift/prepare-to-launch
https://console.aws.amazon.com/gamelift/prepare-to-launch
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html

Amazon GameLift Developer Guide

Launch

Use the following checklist to track launch items for your game hosted on Amazon GameLift. Items
marked [Critical] are critical for your production launch.

• [Critical] Set the fleet protection policy to full protection on all live fleets so that scaling down
doesn't stop active game sessions.

• [Critical] Set fleet maximum sizes high enough to accommodate peak anticipated demand, at
minimum. We recommend that you double your maximum size for unanticipated demand.

• Encourage your whole dev team to participate in the launch event and monitor your game
launch in a launch room.

• Monitor player latency and player experience.

Post-launch

Use the following checklist to track post-launch items for your game hosted on Amazon GameLift.

• Tune scaling rules to minimize idle capacity.

• Modify FlexMatch rules or add additional locations based on your latency requirements.

• Optimize the server executable, as its performance efficiency directly affects the fleet costs. To
run more game sessions with the same infrastructure, increase the number of server processes
per instance.

• Use your analytics data to drive continued development, improve player experience and game
longevity, and optimize monetization.

Launch 48

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html

Amazon GameLift Developer Guide

Preparing games for Amazon GameLift

Get your multiplayer games ready for hosting on Amazon GameLift. Integrate Amazon GameLift
hosting features into your game projects and build your game server and client servers. Set up a
hosted test environment to support rapid iterative game development and testing.

Topics

• Integrate games with custom game servers

• Integrating games with the Amazon GameLift plugin for Unity

• Integrating games with the Amazon GameLift plugin for Unreal Engine

• Set up for iterative development with Amazon GameLift Anywhere

• Adding FlexMatch matchmaking

• Get fleet data for a Amazon GameLift instance

• Integrating games with Amazon GameLift Realtime Servers

Integrate games with custom game servers

Amazon GameLift provides a full tool set for preparing your multiplayer games and custom game
servers to run on Amazon GameLift. The Amazon GameLift SDKs contain libraries needed for game
clients and servers to communicate with Amazon GameLift. For more information about the SDKs
and where to get them, see Development support with Amazon GameLift.

The topics in this section contain detailed instructions about how to add Amazon GameLift
functionality to your game client and game server before deploying on Amazon GameLift. For
a complete roadmap to getting your game up and running on Amazon GameLift, see Amazon
GameLift managed hosting roadmap.

Topics

• Amazon GameLift and game client server interactions

• Integrate your game server with Amazon GameLift

• Integrate your game client with Amazon GameLift

• Game engines and Amazon GameLift

Integrate games with custom game servers 49

Amazon GameLift Developer Guide

Amazon GameLift and game client server interactions

This topic describes the interactions between the game client, a backend service, a game server,
and Amazon GameLift.

The following diagram illustrates interactions between the game client, backend service, Amazon
GameLift SDK, managed EC2 game server, Amazon GameLift server SDK, and Amazon GameLift.
For a detailed description of the interactions shown, see the following sections on this page.

Amazon GameLift interactions 50

Amazon GameLift Developer Guide

Initialize a game server

The following steps describe the interactions that occur when you prepare your game server to
host game sessions.

Amazon GameLift interactions 51

Amazon GameLift Developer Guide

1. Amazon GameLift launches the server executable on an Amazon Elastic Compute Cloud
(Amazon EC2) instance.

2. The game server calls:

a. InitSDK() to initialize the server SDK.

b. ProcessReady() to communicate game session readiness, connection information, and
location of game session log files.

The server process then waits for a callback from Amazon GameLift.

3. Amazon GameLift updates the status of the server process to ACTIVE to enable game session
placement.

4. Amazon GameLift begins calling the onHealthCheck callback and continues to call it
periodically while the server process is active. The server process can report healthy or not
healthy within one minute.

Create a game session

After you've initialized your game server, the following interactions occur when you create game
sessions to host your players.

1. The backend service calls the SDK operation StartGameSessionPlacement().

2. Amazon GameLift creates a new GameSessionPlacement ticket with status PENDING and
returns it to the backend service.

3. The backend service obtains a placement ticket status from a queue. For more information, see
Set up event notification for game session placement.

4. Amazon GameLift starts game session placement by selecting an appropriate fleet and
searching for an active server process in a fleet with 0 game sessions. When Amazon GameLift
locates a server process, Amazon GameLift does the following:

a. Creates a GameSession object with the game session settings and player data from the
placement request with an ACTIVATING status.

b. Invokes the onStartGameSession callback on the server process. Amazon GameLift
passes information to the GameSession object indicating that the server process may set
up the game session.

c. Changes the server process's number of game sessions to 1.

Amazon GameLift interactions 52

Amazon GameLift Developer Guide

5. The server process runs the onStartGameSession callback function. When the server process
is ready to accept player connections, it calls ActivateGameSession() and waits for player
connections.

6. Amazon GameLift updates the GameSession object with connection information for
the server process. (This information includes the port setting that was reported with
ProcessReady().) Amazon GameLift also changes the status to ACTIVE.

7. The backend service calls DescribeGameSessionPlacement() to detect the updated ticket
status. The backend service then uses the connection information to connect the game client
to the server process and join the game session.

Add a player to a game

This sequence describes the process of adding a player to an existing game session. Player sessions
can also be requested as part of a game session placement request.

1. The backend service calls the client API operation CreatePlayerSession() with a game
session ID.

2. Amazon GameLift checks the game session status (must be ACTIVE), and looks for an open
player slot in the game session. If a slot is available, then Amazon GameLift does the following:

a. Creates a new PlayerSession object and sets the status to RESERVED.

b. Responds to the backend service request with the PlayerSession object.

3. The backend service connects the game client directly to the server process with the player
session ID.

4. The server calls the server API operation AcceptPlayerSession() to validate the player
session ID. If validated, then Amazon GameLift passes the PlayerSession object to the
server process. The server process either accepts or rejects the connection.

5. Amazon GameLift does one of the following:

a. If the connection is accepted, then Amazon GameLift sets the PlayerSession status to
ACTIVE.

b. If no response is received within 60 seconds of the backend server's original
CreatePlayerSession() call, then Amazon GameLift changes the PlayerSession
status to TIMEDOUT and reopens the player slot in the game session.

Amazon GameLift interactions 53

Amazon GameLift Developer Guide

Remove a player

When removing players from a game session to create space for new players to join, the following
interactions occur.

1. A player disconnects from the game.

2. The server detects the lost connection and calls the server API operation
RemovePlayerSession().

3. Amazon GameLift changes the PlayerSession status to COMPLETED and reopens the player
slot in the game session.

Shut down the game session

This sequence of interactions occurs when a server process shuts down the current game session.

1. The server shuts down the game session and server.

2. The server calls ProcessEnding() to Amazon GameLift.

3. Amazon GameLift does the following:

a. Uploads game session logs to Amazon Simple Storage Service (Amazon S3).

b. Changes the GameSession status to TERMINATED.

c. Changes the server process status to TERMINATED.

d. Recycles instance resources.

Integrate your game server with Amazon GameLift

After your custom game server is deployed and running on Amazon GameLift instances, it must
be able to interact with Amazon GameLift (and potentially other resources). This section describes
how to integrate your game server software with Amazon GameLift.

Note

These instructions assume that you've created an AWS account and that you have an
existing game server project.

The topics in this section describe how to handle the following integration tasks:

Integrate a game server 54

Amazon GameLift Developer Guide

• Establish communication between Amazon GameLift and your game servers.

• Generate and use a TLS certificate to establish a secure connection between game client and
game server.

• Provide permissions for your game server software to interact with other AWS resources.

• Allow game server processes to get information about the fleet that they're running on.

Topics

• Add Amazon GameLift to your game server

• Communicate with other AWS resources from your fleets

Add Amazon GameLift to your game server

Your custom game server must communicate with Amazon GameLift, because each game server
process must be able to respond to events that Amazon GameLift starts. Your game server must
also keep Amazon GameLift informed about the server process status and player connections.
For more information about how your game server, backend service, game client, and Amazon
GameLift work together to manage game hosting, see Amazon GameLift and game client server
interactions.

To prepare your game server to interact with Amazon GameLift, add the Amazon GameLift Server
SDK to your game server project and build in the functionality described in this topic. The Server
SDK is available in several languages. For more information about the Amazon GameLift Server
SDK, see Development support with Amazon GameLift.

Server SDK API references:

• Amazon GameLift server SDK 5.x reference for C++

• Amazon GameLift server SDK 5.x reference for C# and Unity

• Amazon GameLift Unreal Engine server SDK 5.x reference

Initialize the server process

Add code to establish communication with Amazon GameLift and to report that the server process
is ready to host a game session. This code must run before any Amazon GameLift code.

Integrate a game server 55

Amazon GameLift Developer Guide

1. Initialize Amazon GameLift API client by calling InitSdk(). To initialize a server process
on a Amazon GameLift Anywhere compute resource, call InitSdk() with the following
ServerParameters:

• The URL of the websocket used to connect to your game server.

• The ID of the process used to host your game server.

• The ID of the compute hosting your game server processes.

• The ID of the GameLift fleet containing your Amazon GameLift Anywhere compute.

• The authorization token generated by the Amazon GameLift operation
GetComputeAuthToken.

Note

To initialize a game server on a Amazon GameLift managed Amazon EC2 instance,
construct your ServerParameters using the default InitSDK() (C++) (C#) (Unreal)
constructor (without parameters). Amazon GameLift sets up the compute environment
and automatically connects to Amazon GameLift for you.

2. Notify Amazon GameLift that a server process is ready to host a game session. Call
ProcessReady() (C++) (C#) (Unreal) with the following information. (Note that you should
call ProcessReady() only once per server process).

• The port number that the server process uses. The backend service provides the port
number and an IP address to game clients to connect to the server process and join a game
session.

• The location of files, such as game session logs, that you want Amazon GameLift to retain.
The server process generates these files during a game session. They're temporarily stored
on the instance where the server process is running, and they're lost when the instance shuts
down. Any files that you list are uploaded to Amazon GameLift. You can access these files
through the Amazon GameLift console or by calling the Amazon GameLift API operation
GetGameSessionLogUrl().

• The names of callback functions that Amazon GameLift can call to your server process. Your
game server must implement these functions. For more information, see (C++) (C#) (Unreal)
.

Integrate a game server 56

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAuthToken.html
https://console.aws.amazon.com/gamelift
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetGameSessionLogUrl.html

Amazon GameLift Developer Guide

• (Optional) onHealthCheck – Amazon GameLift calls this function regularly to request a
health status report from the server.

• onStartGameSession – Amazon GameLift calls this function in response to the client
request CreateGameSession().

• onProcessTerminate – Amazon GameLift forces the server process to stop, letting it
shut down gracefully.

• (Optional) onUpdateGameSession – Amazon GameLift delivers an updated game session
object to the game server or provides a status update on a match backfill request. The
FlexMatch backfill feature requires this callback.

You can also set up a game server to securely access AWS resources that you own or control.
For more information, see Communicate with other AWS resources from your fleets.

(Optional) Report server process health

Add code to your game server to implement the callback function onHealthCheck(). Amazon
GameLift invokes this callback method periodically to collect health metrics. To implement this
callback function, do the following:

• Evaluate the health status of the server process. For example, you might report the server
process as unhealthy if any external dependencies have failed.

• Complete the health evaluation and respond to the callback within 60 seconds. If Amazon
GameLift doesn't receive a response in that time, it automatically considers the server process to
be unhealthy.

• Return a Boolean value: true for healthy, false for unhealthy.

If you don't implement a health check callback, then Amazon GameLift considers the server
process to be healthy unless the server doesn't respond.

Amazon GameLift uses server process health to end unhealthy processes and clear up resources.
If a server process continues to report as unhealthy or doesn't respond for three consecutive
health checks, then Amazon GameLift might shut down the process and start a new one. Amazon
GameLift collects metrics on a fleet's server process health.

Integrate a game server 57

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html

Amazon GameLift Developer Guide

(Optional) Get a TLS certificate

If the server process is running on a fleet that has TLS certificate generation activated, then you
can retrieve the TLS certificate to establish a secure connection with a game client and to encrypt
client server communication. A copy of the certificate is stored on the instance. To get the file
location, call GetComputeCertificate() (C++) (C#) (Unreal) .

Start a game session

Add code to implement the callback function onStartGameSession. Amazon GameLift invokes
this callback to start a game session on the server.

The onStartGameSession function takes a GameSession object as an input parameter. This
object includes key game session information, such as maximum players. It can also include game
data and player data. The function implementation should do the following tasks:

• Initiate actions to create a new game session based on the GameSession properties. At
minimum, the game server must associate the game session ID, which game clients reference
when connecting to the server process.

• Process game data and player data as needed. This data is in the GameSession object.

• Notify Amazon GameLift when a new game session is ready to accept players. Call the server
API operation ActivateGameSession() (C++) (C#) (Unreal) . In response to a successful call,
Amazon GameLift changes the game session status to ACTIVE.

(Optional) Validate a new player

If you're tracking the status of player sessions, then add code to validate a new player when they
connect to a game server. Amazon GameLift tracks current players and available game session
slots.

For validation, a game client requesting access to the game session must include a player session
ID. Amazon GameLift automatically generates this ID when a player asks to join a game using
StartGameSessionPlacement() or StartMatchmaking(). The player session then reserves an open
slot in a game session.

When the game server process receives a game client connection request, it calls
AcceptPlayerSession() (C++) (C#) (Unreal) with the player session ID. In response, Amazon
GameLift verifies that the player session ID corresponds to an open slot reserved in the game
session. After Amazon GameLift validates the player session ID, the server process accepts the

Integrate a game server 58

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartMatchmaking.html

Amazon GameLift Developer Guide

connection. The player can then join the game session. If Amazon GameLift doesn't validate the
player session ID, then the server process denies the connection.

(Optional) Report a player session ending

If you're tracking the status of player sessions, then add code to notify Amazon GameLift when
a player leaves the game session. This code should run whenever the server process detects a
dropped connection. Amazon GameLift uses this notification to track current players and available
slots in the game session.

To handle dropped connections, in your code, add a call to the server API operation
RemovePlayerSession() (C++) (C#) (Unreal) with the corresponding player session ID.

End a game session

Add code to the server process shutdown sequence to notify Amazon GameLift when a game
session is ending. To recycle and refresh hosting resources, Amazon GameLift shuts down server
processes after the game session is complete.

At the start of the server process shutdown code, call the server API operation ProcessEnding()
(C++) (C#) (Unreal) . This call notifies Amazon GameLift that the server process is shutting down.
Amazon GameLift changes the game session status and server process status to TERMINATED.
After calling ProcessEnding(), it's safe for the process to shut down.

Respond to a server process shutdown notification

Add code to shut down the server process in response to a notification from Amazon GameLift.
Amazon GameLift sends this notification when the server process consistently reports unhealthy, or
if the instance where the server process is running is being terminated. Amazon GameLift can stop
an instance as part of a capacity scale-down event, or in response to Spot Instance interruption.

To handle a shutdown notification, make the following changes to your game server code:

• Implement the callback function onProcessTerminate(). This function should call the
code that shuts down the server process. When Amazon GameLift invokes this operation, Spot
Instance interruptions provide a two-minute notice. This notice gives the server process time to
disconnect players gracefully, preserve game state data, and perform other cleanup tasks.

• Call the server API operation GetTerminationTime() (C++) (C#) (Unreal) from your game
server shutdown code. If Amazon GameLift has issued a call to stop the server process, then
GetTerminationTime() returns the estimated termination time.

Integrate a game server 59

Amazon GameLift Developer Guide

• At the start of your game server shutdown code, call the server API operation
ProcessEnding() (C++) (C#) (Unreal) . This call notifies Amazon GameLift that the server
process is shutting down, and Amazon GameLift then changes the server process status to
TERMINATED. After calling ProcessEnding(), it's safe for the process to shut down.

Communicate with other AWS resources from your fleets

When you're creating a game server build for deployment on Amazon GameLift fleets, you might
want the applications in your game build to communicate directly and securely with other AWS
resources that you own. Because Amazon GameLift manages your game hosting fleets, you must
give Amazon GameLift limited access to these resources and services.

Some example scenarios include:

• Use an Amazon CloudWatch agent to collect metrics, logs, and traces from managed EC2 fleets
and Anywhere fleets

• Send instance log data to Amazon CloudWatch Logs.

• Obtain game files stored in an Amazon Simple Storage Service (Amazon S3) bucket.

• Read and write game data (such as game modes or inventory) stored in an Amazon DynamoDB
database or other data storage service.

• Send signals directly to an instance using Amazon Simple Queue Service (Amazon SQS).

• Access custom resources that are deployed and running on Amazon Elastic Compute Cloud
(Amazon EC2).

Amazon GameLift supports these methods for establishing access:

• Access AWS resources with an IAM role

• Access AWS resources with VPC peering

Access AWS resources with an IAM role

Use an IAM role to specify who can access your resources and set limits on that access. Trusted
parties can "assume" a role and get temporary security credentials that authorize them to interact
with the resources. When the parties make API requests related to the resource, they must include
the credentials.

To set up access controlled by an IAM role, do the following tasks:

Integrate a game server 60

Amazon GameLift Developer Guide

1. Create the IAM role

2. Modify applications to acquire credentials

3. Associate a fleet with the IAM role

Create the IAM role

In this step, you create an IAM role, with a set of permissions to control access to your AWS
resources and a trust policy that gives Amazon GameLift rights to use the role's permissions.

For instructions on how to set up the IAM role , see Set up an IAM service role for Amazon
GameLift. When creating the permissions policy, choose specific services, resources, and actions
that your applications need to work with. As a best practice, limit the scope of the permissions as
much as possible.

After you create the role, take note of the role's Amazon Resource Name (ARN). You need the role
ARN during fleet creation.

Modify applications to acquire credentials

In this step, you configure your applications to acquire security credentials for the IAM role and
use them when interacting with your AWS resources . See the following table to determine how to
modify your applications based on (1) the type of application, and (2) the server SDK version your
game uses to communicate with Amazon GameLift.

 Game server applications Other applications

Using server
SDK version 5.x

Call the server SDK method
GetFleetRoleCredentials()
from your game server code.

Add code to the application to pull
credentials from a shared file on the
fleet instance.

Using server
SDK version 4
or earlier

Call AWS Security Token Service
(AWS STS) AssumeRole with the
role ARN.

Call AWS Security Token Service
(AWS STS) AssumeRole with the
role ARN.

For games integrated with server SDK 5.x, this diagram illustrates how applications in your
deployed game build can acquire credentials for the IAM role.

Integrate a game server 61

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

Amazon GameLift Developer Guide

Call GetFleetRoleCredentials() (server SDK 5.x)

In your game server code, which should already be integrated with the Amazon GameLift
server SDK 5.x, call GetFleetRoleCredentials (C++) (C#) (Unreal) to retrieve a set of
temporary credentials. When the credentials expire, you can refresh them with another call to
GetFleetRoleCredentials.

Use shared credentials (server SDK 5.x)

For non-server applications that are deployed with game server builds using server SDK 5.x, add
code to get and use credentials stored in a shared file. Amazon GameLift generates a credentials
profile for each fleet instance. The credentials are available for use by all applications on the
instance. Amazon GameLift continually refreshes the temporary credentials.

You must configure a fleet to generate the shared credentials file on fleet creation.

In each application that needs to use the shared credentials file, specify the file location and profile
name, as follows:

Windows:

[credentials]

Integrate a game server 62

Amazon GameLift Developer Guide

shared_credential_profile= "FleetRoleCredentials"
shared_credential_file= "C:\\Credentials\\credentials"

Linux:

[credentials]
shared_credential_profile= "FleetRoleCredentials"
shared_credential_file= "/local/credentials/credentials"

Example: Set up a CloudWatch agent to collect metrics for Amazon GameLift fleet instances

If you want to use an Amazon CloudWatch agent to collect metrics, logs, and traces from your
Amazon GameLift fleets, use this method to authorize the agent to emit the data to your account.
In this scenario, take the following steps:

1. Retrieve or write the CloudWatch agent config.json file.

2. Update the common-config.toml file for the agent to identify the credentials file name and
profile name, as described above.

3. Set up your game server build install script to install and start the CloudWatch agent.

Use AssumeRole() (server SDK 4)

Add code to your applications to assume the IAM role and get credentials to interact with your AWS
resources. Any application that runs on an Amazon GameLift fleet instance with server SDK 4 or
earlier can assume the IAM role.

In the application code, before accessing an AWS resource, the application must call the AWS
Security Token Service (AWS STS) AssumeRole API operation and specify the role ARN. This
operation returns a set of temporary credentials that authorizes the application to access to the
AWS resource. For more information, see Using temporary credentials with AWS resources in the
IAM User Guide.

Associate a fleet with the IAM role

After you've created the IAM role and updated the applications in your game server build to get
and use the access credentials, you can deploy a fleet. When you configure the new fleet, set the
following parameters:

• InstanceRoleArn – Set this parameter to the ARN of the IAM role.

Integrate a game server 63

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_FleetAttributes.html#gamelift-Type-FleetAttributes-InstanceRoleArn

Amazon GameLift Developer Guide

• InstanceRoleCredentialsProvider – To prompt Amazon GameLift to generate a shared credentials
file for each fleet instance, set this parameter to SHARED_CREDENTIAL_FILE.

You must set these values when you create the fleet. They can't be updated later.

Access AWS resources with VPC peering

You can use Amazon Virtual Private Cloud (Amazon VPC) peering to communicate between
applications running on a Amazon GameLift instance and another AWS resource. A VPC is a virtual
private network that you define that includes a set of resources managed through your AWS
account. Each Amazon GameLift fleet has its own VPC. With VPC peering, you can establish a direct
network connection between the VPC for your fleet and for your other AWS resources.

Amazon GameLift streamlines the process of setting up VPC peering connections for your game
servers. It handles peering requests, updates route tables, and configures the connections as
required. For instructions about how to set up VPC peering for your game servers, see VPC peering
for Amazon GameLift.

Integrate your game client with Amazon GameLift

The topics in this section describe the managed Amazon GameLift functionality that you can add
to a backend service. A backend service handles the following tasks:

• Requests information about active game sessions from Amazon GameLift.

• Joins a player to an existing game session.

• Creates a new game session and joins players to it.

• Changes metadata for an existing game session.

For more information about how game clients interact with Amazon GameLift and game servers
running on Amazon GameLift, see Amazon GameLift and game client server interactions.

Prerequisites

• An AWS account.

• A game server build uploaded to Amazon GameLift.

• A fleet for hosting your games.

Topics

Integrate a game client 64

https://docs.aws.amazon.com/gamelift/latest/apireference/API_FleetAttributes.html#gamelift-Type-FleetAttributes-InstanceRoleCredentialsProvider

Amazon GameLift Developer Guide

• Add Amazon GameLift to your game client

• Generate player IDs

Add Amazon GameLift to your game client

Integrate Amazon GameLift into game components that need game session information, create
new game sessions, and add players to games. Depending on your game architecture, this
functionality is in backend services that handle tasks such as player authentication, matchmaking,
or game session placement.

Note

For detailed information about how to set up matchmaking for your Amazon GameLift
hosted game, see the Amazon GameLift FlexMatch Developer Guide.

Set up Amazon GameLift on a backend service

Add code to initialize an Amazon GameLift client and store key settings. This code must run before
any code dependent on Amazon GameLift.

1. Set up a client configuration. Use the default client configuration or create a custom client
configuration object. For more information, see AWS::Client::ClientConfiguration (C++) or
AmazonGameLiftConfig (C#).

A client configuration specifies a target region and endpoint to use when contacting Amazon
GameLift. Region identifies the set of deployed resources (fleets, queues, and matchmakers)
to use. The default client configuration sets location to the US East (N. Virginia) Region. To use
any other Region, create a custom configuration.

2. Initialize an Amazon GameLift client. Use Aws::GameLift::GameLiftClient() (C++) or
AmazonGameLiftClient() (C#) with a default client configuration or a custom client
configuration.

3. Add a mechanism to generate a unique identifier for each player. For more information, see
Generate player IDs.

4. Collect and store the following information:

• Target fleet – Many Amazon GameLift API requests must specify a fleet. To do so, use either
a fleet ID or an alias ID that points to the target fleet. As a best practice, use fleet aliases

Integrate a game client 65

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-core/html/struct_aws_1_1_client_1_1_client_configuration.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/GameLift/TGameLiftConfig.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-gamelift/html/class_aws_1_1_game_lift_1_1_game_lift_client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/GameLift/TGameLiftClient.html

Amazon GameLift Developer Guide

so that you can switch players from one fleet to another without having to update your
backend services.

• Target queue – For games that use multi-fleet queues to place new game sessions, specify
the name of the queue to use.

• AWS credentials – All calls to Amazon GameLift must provide credentials for the AWS
account that hosts the game. You acquire these credentials by creating a player user, as
described in Set up programmatic access for your game. Depending on how you manage
access for the player user, do the following:

• If you use a role to manage player user permissions, add code to assume the role
before calling an Amazon GameLift API. The request to assume the role returns a set of
temporary security credentials. For more information, see Switching to an IAM role (AWS
API) in the IAM User Guide.

• If you have long-term security credentials, configure your code to locate and use stored
credentials. See Authenticate using long-term credentials in in the AWS SDKs and Tools
Reference Guide. For information on storing credentials, see theAWS API references for (C+
+) and (.NET).

• If you have temporary security credentials, add code to regularly refresh the credentials
using the AWS Security Token Service (AWS STS), as described in Using temporary
security credentials with the AWS SDKs in the IAM User Guide. The code must request new
credentials before the old ones expire.

Get game sessions

Add code to discover available game sessions and manage game session settings and metadata.

Search for active game sessions

Use SearchGameSessions to get information about a specific game session, all active sessions, or
sessions that meet a set of search criteria. This call returns a GameSession object for each active
game session that matches your search request.

Use search criteria to get a filtered list of active game sessions for players to join. For example, you
can filter sessions as follows:

• Exclude game sessions that are full: CurrentPlayerSessionCount =
MaximumPlayerSessionCount.

Integrate a game client 66

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-api.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-api.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-core/html/class_aws_1_1_auth_1_1_a_w_s_credentials.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-core/html/class_aws_1_1_auth_1_1_a_w_s_credentials.html
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/net-dg-config-creds.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk
https://docs.aws.amazon.com/gamelift/latest/apireference/API_SearchGameSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

• Choose game sessions based on length of time that the session has been running: Evaluate
CreationTime.

• Find game sessions based on a custom game property: gameSessionProperties.gameMode
= "brawl".

Manage game sessions

Use any of the following operations to retrieve or update game session information.

• DescribeGameSessionDetails() – Get a game session's protection status in addition to game
session information.

• UpdateGameSession() – Change a game session's metadata and settings as needed.

• GetGameSessionLogUrl – Access stored game session logs.

Create game sessions

Add code to start new game sessions on your deployed fleets and make them available to players.
There are two options for creating game sessions, depending on whether you're deploying your
game in multiple AWS Regions or in a single Region.

Create a game session in a multi-location queue

Use StartGameSessionPlacement to place a request for a new game session in a queue. To use this
operation, create a queue. This determines where Amazon GameLift places the new game session.
For more information about queues and how to use them, see Setting up Amazon GameLift queues
for game session placement.

When creating a game session placement, specify the name of the queue to use, a game session
name, a maximum number of concurrent players, and an optional set of game properties. You can
also optionally provide a list of players to automatically join the game session. If you include player
latency data for relevant Regions, then Amazon GameLift uses this information to place the new
game session on a fleet that provides the ideal gameplay experience for the players.

Game session placement is an asynchronous process. After you've placed a request,
you can let it succeed or time out. You can also cancel the request at any time using
StopGameSessionPlacement. To check the status of your placement request, call
DescribeGameSessionPlacement.

Create a game session on a specific fleet

Integrate a game client 67

https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionDetails.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetGameSessionLogUrl.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StopGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionPlacement.html

Amazon GameLift Developer Guide

Use CreateGameSession to create a new session on a specified fleet. This synchronous operation
succeeds or fails depending on whether the fleet has resources available to host a new game
session. After Amazon GameLift creates the new game session and returns a GameSession object,
you can join players to it.

When you use this operation, provide a fleet ID or alias ID, a session name, and the maximum
number of concurrent players for the game. Optionally, you can include a set of game properties.
Game properties are defined in an array of key-value pairs.

If you use the Amazon GameLift resource protection feature to limit the number of game sessions
that one player can create, then provide the game session creator's player ID.

Join a player to a game session

Add code to reserve a player slot in an active game session and connect game clients to game
sessions.

1. Reserve a player slot in a game session

To reserve a player slot, create a new player session for the game session. For more
information about player sessions, see How players connect to games.

There are two ways to create new player sessions:

• Use StartGameSessionPlacement to reserve slots for one or more players in the new game
session.

• Reserve player slots for one or more players using CreatePlayerSession or
CreatePlayerSessions with a game session ID.

Amazon GameLift first verifies that the game session is accepting new players and has
available player slots. If successful, Amazon GameLift reserves a slot for the player, creates the
new player session, and returns a PlayerSession object. This object contains the DNS name, IP
address, and port that a game client needs to connect to the game session.

A player session request must include a unique ID for each player. For more information, see
Generate player IDs.

A player session can include a set of custom player data. This data is stored in the newly
created player session object, which you can retrieve by calling DescribePlayerSessions().
Amazon GameLift also passes this object to the game server when the player connects directly

Integrate a game client 68

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_PlayerSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribePlayerSessions.html

Amazon GameLift Developer Guide

to the game session. When requesting multiple player sessions, provide a string of player data
for each player that's mapped to the player ID in the request.

2. Connect to a game session

Add code to the game client to retrieve the PlayerSession object, which contains the game
session's connection information. Use this information to establish a direct connection to the
server.

• You can connect using the specified port and the DNS name or IP address assigned to the
server process.

• If your fleets have TLS certificate generation enabled, then connect using the DNS name and
port.

• If your game server validates incoming player connections, then reference the player session
ID.

After making the connection, the game client and server process communicate directly
without involving Amazon GameLift. The server maintains communication with Amazon
GameLift to report player connection status, health status, and more. If the game server
validates incoming players, then it verifies that the player session ID matches a reserved slot in
the game session, and accepts or denies the player connection. When the player disconnects,
the server process reports the dropped connection.

Use game session properties

Your game client can pass data into a game session by using a game property. Game properties
are key-value pairs that your game server can add, read, list, and change. You can pass in a game
property when you're creating a new game session, or later when the game session is active. A
game session can contain up to 16 game properties. You cannot delete game properties.

For example, your game offers these difficulty levels: Novice, Easy, Intermediate, and
Expert. A player chooses Easy, and then begins the game. Your game client requests new
game session from Amazon GameLift by using either StartGameSessionPlacement or
CreateGameSession as explained in the preceding sections. In the request, the client passes this :
{"Key": "Difficulty", "Value":"Easy"}.

In response to the request, Amazon GameLift creates a GameSession object that contains the
specified game property. Amazon GameLift then instructs an available game server to start the

Integrate a game client 69

Amazon GameLift Developer Guide

new game session and passes the GameSession object. The game server starts a game session
with a Difficulty of Easy.

Learn more

• GameProperty data type

• SearchGameSessions() examples

• UpdateGameSession() GameProperties parameter

Generate player IDs

Amazon GameLift uses a player session to represent a player connected to a game session. Amazon
GameLift creates a player session each time a player connects to a game session using a game
client integrated with Amazon GameLift. When a player leaves a game, the player session ends.
Amazon GameLift doesn't reuse player sessions.

The following code example randomly generates unique player IDs:

bool includeBrackets = false;
bool includeDashes = true;
string playerId = AZ::Uuid::CreateRandom().ToString<string>(includeBrackets,
 includeDashes);

For more information about player sessions, see View data on game and player sessions.

Game engines and Amazon GameLift

You can use the managed Amazon GameLift service with most major game engines that support
C++ or C# libraries, including O3DE, Unreal Engine, and Unity. Build the version you need for your
game; see the README files with each version for build instructions and minimum requirements.
For more information on available Amazon GameLift SDKs, supported development platforms and
operating systems, see Development support with Amazon GameLift for game servers.

In addition to the engine-specific information provided in this topic, find additional help with
integrating Amazon GameLift into your game servers, clients and services in the following topics:

• Amazon GameLift managed hosting roadmap – A six-step workflow for successfully integrating
Amazon GameLift into your game and setting up hosting resources.

Game engines and Amazon GameLift 70

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameProperty.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_SearchGameSessions.html#API_SearchGameSessions_Examples
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateGameSession.html#gamelift-UpdateGameSession-request-GameProperties

Amazon GameLift Developer Guide

• Add Amazon GameLift to your game server – Detailed instructions on integrating Amazon
GameLift into a game server.

• Add Amazon GameLift to your game client – Detailed instructions on integrating into a game
client or service, including creating game sessions and joining players to games.

O3DE

Game servers

Prepare your game servers for hosting on Amazon GameLift using the Amazon GameLift Server
SDK for C++. See Add Amazon GameLift to your game server to get help with integrating the
required functionality into your game server.

Game clients and services

Enable your game clients and/or game services to interact with Amazon GameLift service, such
as to find available game sessions or create new ones, and add players to games. Core client
functionality is provided in the AWS SDK for C++. To integrate Amazon GameLift into your O3DE
game project, see Add Amazon GameLift to an O3DE game client and server and Add Amazon
GameLift to your game client.

Unreal Engine

Game servers

Prepare your game servers for hosting on Amazon GameLift by adding the Amazon GameLift
Server SDK for Unreal Engine to your project and implementing the required server functionality.
For help setting up the Unreal Engine plugin and adding Amazon GameLift code, see Integrate
Amazon GameLift into an Unreal Engine project.

Game clients and services

Enable your game clients and/or game services to interact with Amazon GameLift service, such
as to find available game sessions or create new ones, and add players to games. Core client
functionality is provided in the AWS SDK for C++. To integrate Amazon GameLift into your Unreal
Engine game project, see Add Amazon GameLift to your game client.

Unity

Game servers

Game engines and Amazon GameLift 71

https://sdk.amazonaws.com/cpp/api/LATEST/namespace_aws_1_1_game_lift.html
https://sdk.amazonaws.com/cpp/api/LATEST/namespace_aws_1_1_game_lift.html

Amazon GameLift Developer Guide

Prepare your game servers for hosting on Amazon GameLift by adding the Amazon GameLift
Server SDK for C# to your project and implementing the required server functionality. For help
setting up with Unity and adding Amazon GameLift code, see Integrate Amazon GameLift into a
Unity project.

Game clients and services

Enable your game clients and/or game services to interact with Amazon GameLift service, such
as to find available game sessions or create new ones, and add players to games. Core client
functionality is provided in the AWS SDK for .NET. To integrate Amazon GameLift into your Unity
game project, see Add Amazon GameLift to your game client.

Other engines

For a full list of the Amazon GameLift SDKs available for game servers and clients, see the section
called “Development support”.

Add Amazon GameLift to an O3DE game client and server

You can use O3DE, an open-source, cross-platform, real time 3D engine to create high performance
interactive experiences, including games and simulations. The O3DE renderer and tools
are wrapped in a modular framework that you can modify and extend with your preferred
development tools.

The modular framework uses Gems that contain libraries with standard interfaces and assets.
Select your own Gems to choose what functionality to add based on your requirements.

The Amazon GameLift Gem provides the following features:

Amazon GameLift integration

A framework to extend the O3DE networking layer and to let the Multiplayer Gem work with
the Amazon GameLift dedicated server solution. The Gem provides integrations with both the
Amazon GameLift server SDK and the AWS SDK client (to call the Amazon GameLift service
itself).

Build and package management

Instructions to package and optionally upload the dedicated server build and an AWS Cloud
Development Kit (AWS CDK) (AWS CDK) application to set up and update resources.

Game engines and Amazon GameLift 72

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/

Amazon GameLift Developer Guide

Amazon GameLift Gem setup

Follow the procedures in this section to set up the Amazon GameLift Gem in O3DE.

Prerequisites

• Set up your AWS account for Amazon GameLift. For more information, see Set up an AWS
account.

• Set up AWS credentials for O3DE. For more information see, Configuring AWS Credentials.

• Set up the AWS CLI and AWS CDK. For more information, AWS Command Line Interface and AWS
Cloud Development Kit (AWS CDK).

Turn on the Amazon GameLift Gem and its dependencies

1. Open the Project Manager.

2. Open the menu under your project and choose Edit Project Setting....

3. Choose Configure Gems.

4. Turn on the Amazon GameLift Gem and the following dependent Gems:

• AWS Core Gem – Provide the framework to use AWS services in O3DE.

• Multiplayer Gem – Provides multiplayer functionality by extending the networking
framework.

Include the Amazon GameLift Gem static library

1. Include the Gem::AWSGameLift.Server.Static as BUILD_DEPENDENCIES for your project
server target.

ly_add_target(
 NAME YourProject.Server.Static STATIC
 ...
 BUILD DEPENDCIES
 PUBLIC
 ...
 PRIVATE
 ...
 Gem::AWSGameLift.Server.Static
)

Game engines and Amazon GameLift 73

https://www.o3de.org/docs/user-guide/gems/reference/aws/aws-core/configuring-credentials/
https://aws.amazon.com/cli/
https://aws.amazon.com/cdk/
https://aws.amazon.com/cdk/
https://www.o3de.org/docs/user-guide/gems/reference/aws/aws-core/
https://www.o3de.org/docs/user-guide/gems/reference/multiplayer/multiplayer-gem/

Amazon GameLift Developer Guide

2. Set AWSGameLiftService to required for your project server system component.

void
 YourProjectServerSystemComponent::GetRequiredServices(AZ::ComponentDescriptor::DependencyArrayType&
 required)
{
 ...
 required.push_back(AZ_CRC_CE("AWSGameLiftServerService"));
 ...
}

3. (Optional) To make Amazon GameLift service requests in C++, include
Gem::AWSGameLift.Client.Static in the BUILD_DEPENDENCIES for your client target.

ly_add_target(
 NAME YourProject.Client.Static STATIC
 ...
 BUILD_DEPENDENCIES
 PUBLIC
 ...
 PRIVATE
 ...
 Gem::AWSCore.Static
 Gem::AWSGameLift.Client.Static
}

Integrate your game and dedicated server

Manage game sessions within your game and dedicated game server with the Session Management
Integration. To support FlexMatch, see FlexMatch Integration.

Integrate Amazon GameLift into an Unreal Engine project

This topic explains how to set up the Amazon GameLift C++ server SDK plugin for Unreal Engine
and integrate it into your game projects.

Additional resources:

• Server SDK plugin for Unreal download site

• Amazon GameLift Unreal Engine server SDK 5.x reference

• the section called “Development support”

Game engines and Amazon GameLift 74

https://www.o3de.org/docs/user-guide/gems/reference/aws/aws-gamelift/session-management/integration/
https://www.o3de.org/docs/user-guide/gems/reference/aws/aws-gamelift/session-management/integration/
https://www.o3de.org/docs/user-guide/gems/reference/aws/aws-gamelift/flexmatch/integration/
https://aws.amazon.com/gamelift/getting-started/

Amazon GameLift Developer Guide

Prerequisites

Before you procced, make sure you have reviewed the following prerequisites:

Prerequisites

• A computer capable of running Unreal Engine. For more information on Unreal Engine
requirements, see Unreal Engine's Hardware and Software Specifications documentation.

• Microsoft Visual Studio 2019 or newer version.

• CMake version 3.1 or later.

• Python version 3.6 or later.

• A Git client available on the PATH.

• An Epic games account. Sign up for an account at the official Unreal Engine website.

• A GitHub account associated with your Unreal Engine account. For more information, see
Accessing Unreal Engine source code on GitHub on the Unreal Engine website.

Note

Amazon GameLift currently supports the following versions of Unreal Engine:

• 4.22

• 4.23

• 4.24

• 4.25

• 4.26

• 4.27

• 5.1.0

• 5.1.1

• 5.2

• 5.3

Game engines and Amazon GameLift 75

https://docs.unrealengine.com/5.0/en-US/hardware-and-software-specifications-for-unreal-engine/
https://www.unrealengine.com
https://www.unrealengine.com/ue-on-github

Amazon GameLift Developer Guide

Build Unreal Engine from source

Standard versions of the Unreal Engine editor, downloaded through the Epic launcher, only
allow Unreal client application builds. In order to build an Unreal server application, you need
to download and build Unreal Engine from source, using the Unreal Engine Github repo. For
more information, see the Building Unreal Engine from Source tutorial on the Unreal Engine
documentation website.

Note

If you haven't already done so, follow the instructions at Accessing Unreal Engine source
code on GitHub to link your GitHub account to your Epic Games account.

To clone the Unreal Engine source to your development environment

1. Clone the Unreal Engine source to your development environment in a branch of your choice.

git clone https://github.com/EpicGames/UnrealEngine.git

2. Check out the tag of the version that you're using to develop your game. For example, the
following example checks out Unreal Engine version 5.1.1:

git checkout tags/5.1.1-release -b 5.1.1-release

3. Navigate to the root folder of the local repository. When you're in the root folder, run the
following file: Setup.bat.

4. While in the root folder, also run the file: GenerateProjectFiles.bat.

5. After running the files from the previous steps, an Unreal Engine solution file, UE5.sln, is
created. Open Visual Studio, and in the Visual Studio editor open the UE5.sln file.

6. In Visual Studio, open the View menu and choose the Solution Explorer option. This opens
the context menu of the Unreal project node. In the Solution Explorer window, right-click the
UE5.sln file (it can be listed as just UE5), then choose Build to build the Unreal project with
the Development Editor Win64 target.

Note

The build can take over an hour to complete.

Game engines and Amazon GameLift 76

https://docs.unrealengine.com/5.1/building-unreal-engine-from-source/
https://www.unrealengine.com/ue-on-github
https://www.unrealengine.com/ue-on-github

Amazon GameLift Developer Guide

Once the build is complete, you are ready to open the Unreal Development Editor and create or
import a project.

Configure your Unreal project for the plugin

Follow these steps to get the Amazon GameLift server SDK plugin for Unreal Engine ready for your
game server projects.

To configure your project for the plugin

1. With Visual Studio open, navigate to the Solution Explorer pane and choose the UE5 file to
open the context menu for the Unreal project. In the context menu, choose the Set as Startup
Project option.

2. At the top of your Visual Studio window, choose Start Debugging (green arrow).

This action starts your new source-built instance of Unreal Editor. For more information about
using the Unreal Editor, see Unreal Editor Interface on the Unreal Engine documentation
website.

3. Close the Visual Studio window you opened, since the Unreal Editor opens a another Visual
Studio window that contains the Unreal project and your game project.

4. In the Unreal editor, do one of the following:

• Choose an existing Unreal project that you want to integrate with Amazon GameLift.

• Create a new project. To experiment with the Amazon GameLift plugin for Unreal, try
using Unreal engine's Third Person template. For more information about this template,
see Third Person template on the Unreal Engine documentation website.

Alternatively, configure a new project with the following settings:

• C++

• With starter content

• Desktop

• A project name. In the examples in this topic, we named our project
GameLiftUnrealApp.

5. In Visual Studio's Solution Explorer, navigate to the location of your Unreal project. In the
Unreal Source folder, find a file named Your-application-name.Target.cs.

For example: GameLiftUnrealApp.Target.cs.
Game engines and Amazon GameLift 77

https://docs.unrealengine.com/5.1/en-US/unreal-editor-interface/
https://docs.unrealengine.com/5.1/en-US/third-person-template-in-unreal-engine/

Amazon GameLift Developer Guide

6. Make a copy of this file and name the copy: Your-application-nameServer.Target.cs.

7. Open the new file and make the following changes:

• Change the class and constructor to match the filename.

• Change the Type from TargetType.Game to TargetType.Server.

• The final file will look like the following example:

 public class GameLiftUnrealAppServerTarget : TargetRules
 {
 public GameLiftUnrealAppServerTarget(TargetInfo Target) : base(Target)
 {
 Type = TargetType.Server;
 DefaultBuildSettings = BuildSettingsVersion.V2;
 IncludeOrderVersion = EngineIncludeOrderVersion.Unreal5_1;
 ExtraModuleNames.Add("GameLiftUnrealApp");
 }
 }

Your project is now configured to accept the Amazon GameLift server SDK plugin.

The next task is to build the C++ server SDK libraries for Unreal so that you can import them into
your project.

To build the C++ server SDK libraries for Unreal

1. Download the Amazon GameLift C++ server SDK plugin for Unreal.

Note

Putting the SDK in the default download directory can result in build failure due to
the path exceeding the 260 character limit. For example: C:\Users\Administrator
\Downloads\GameLift-SDK-Release-06_15_2023\GameLift-Cpp-
ServerSDK-5.0.4
We recommend that you move the SDK to another directory, for example C:
\GameLift-Cpp-ServerSDK-5.0.4.

2. Download and install OpenSSL. For more information on downloading OpenSSL, read the
Github OpenSSL build and install documentation.

Game engines and Amazon GameLift 78

https://aws.amazon.com/gamelift/getting-started/
https://github.com/openssl/openssl#build-and-install

Amazon GameLift Developer Guide

For more information, read the OpenSSL Notes for Windows platforms documentation.

Note

The version of OpenSSL that you use to build the Amazon GameLift server SDK should
match the version of OpenSSL used by Unreal to package your game server. You can
find version information in the Unreal installation directory ...Engine\Source
\ThirdParty\OpenSSL.

3. With the libraries downloaded, build the C++ server SDK libraries for Unreal Engine.

In the GameLift-Cpp-ServerSDK-<version> directory in the downloaded SDK, compile
with the -DBUILD_FOR_UNREAL=1 parameter and build the server SDK. The following
examples show how to compile using cmake.

Run the following commands in your terminal:

mkdir cmake-build
cmake.exe -G "Visual Studio 17 2022" -DCMAKE_BUILD_TYPE=Release -S . -B ./cmake-
build -DBUILD_FOR_UNREAL=1 -A x64
cmake.exe --build ./cmake-build --target ALL_BUILD --config Release

The Windows build creates the following binary files in the out\gamelift-server-sdk
\Release folder:

• cmake-build\prefix\bin\aws-cpp-sdk-gamelift-server.dll

• cmake-build\prefix\bin\aws-cpp-sdk-gamelift-server.lib

Copy the two library files to the ThirdParty\GameLiftServerSDK\Win64 folder in the
Amazon GameLift Unreal Engine plugin package.

Use the following procedure to import the Amazon GameLift plugin into your example project.

Import the Amazon GameLift plugin

1. Locate the GameLiftServerSDK folder that you extracted from the plugin in the earlier
procedure.

Game engines and Amazon GameLift 79

https://github.com/openssl/openssl/blob/master/NOTES-WINDOWS.md

Amazon GameLift Developer Guide

2. Locate the Plugins in your game project root folder. (If the folder does not exist, then create
it there.)

3. Copy the GameLiftServerSDK folder into the Plugins.

This will allow the Unreal project to see the plugin.

4. Add the Amazon GameLift server SDK plugin to the game's .uproject file.

In the example, the app is called GameLiftUnrealApp, so the file will be
GameLiftUnrealApp.uproject.

5. Edit the .uproject file to add the plugin to your game project.

"Plugins": [
 {
 "Name": "GameLiftServerSDK",
 "Enabled": true
 }
]

6. Make sure the game's ModuleRules takes a dependency on the plugin. Open the .Build.cs
file and add the Amazon GameLiftServerSDK dependency. This file is found under Your-
application-name/Source//Your-application-name/.

For example, the tutorial filepath is ../GameLiftUnrealApp/Source/
GameLiftUnrealApp/GameLiftUnrealApp.Build.cs.

7. Add "GameLiftServerSDK" to the end of the list of PublicDependencyModuleNames.

using UnrealBuildTool;
using System.Collections.Generic;
public class GameLiftUnrealApp : ModuleRules
 {
 public GameLiftUnrealApp(TargetInfo Target)
 {
 PublicDependencyModuleNames.AddRange(new string[] { "Core", "CoreUObject",
 "Engine", "InputCore", "GameLiftServerSDK" });
 bEnableExceptions = true;
 }
 }

Game engines and Amazon GameLift 80

Amazon GameLift Developer Guide

The plugin should now be working for your application. Continue with the next section to integrate
Amazon GameLift functionality into your game.

Add Amazon GameLift server code to your Unreal project

You've configured and set up your Unreal Engine environment, and you can now integrate a game
server with Amazon GameLift. The code presented in this topic makes required calls to the Amazon
GameLift service. It also implements a set of callback functions that respond to requests from the
Amazon GameLift service. For more information on each function and what the code does, see
Initialize the server process. For more information on the SDK actions and datatypes uised in this
code, read Amazon GameLift server SDK reference for Unreal Engine.

To initialize a game server with Amazon GameLift, use the following procedure.

Note

The Amazon GameLift-specific code provided in the following section depends on the
use of a WITH_GAMELIFT preprocessor flag. This flag is true only when both of these
conditions are met:

• Target.Type == TargetRules.TargetType.Server

• The plugins found the Amazon GameLift server SDK binaries.

This ensures that only Unreal Server builds invoke Amazon GameLift's backend API. It also
lets you to write code that will execute properly for all the different Unreal targets your
game might produce.

Integrate a game server with Amazon GameLift

1. In Visual Studio, open the .sln file for your application. For our example, the file
GameLiftUnrealApp.sln is found in the root folder.

2. With the solution open, locate your application's Your-application-nameGameMode.h file.
Example: GameLiftUnrealAppGameMode.h.

3. Change the header file to align with the following example code. Be sure to replace
"GameLiftUnrealApp" with your own application name.

#pragma once

Game engines and Amazon GameLift 81

https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html#gamelift-sdk-server-initialize

Amazon GameLift Developer Guide

#include "CoreMinimal.h"
#include "GameFramework/GameModeBase.h"
#include "GameLiftServerSDK.h"
#include "GameLiftUnrealAppGameMode.generated.h"

DECLARE_LOG_CATEGORY_EXTERN(GameServerLog, Log, All);

UCLASS(minimalapi)
class AGameLiftUnrealAppGameMode : public AGameModeBase
{
 GENERATED_BODY()

public:
 AGameLiftUnrealAppGameMode();

protected:
 virtual void BeginPlay() override;

private:
 // Process Parameters needs to remain in scope for the lifetime of the app
 FProcessParameters m_params;

 void InitGameLift();
};

4. Open the related source file Your-application-nameGameMode.cpp file. In our Example:
GameLiftUnrealAppGameMode.cpp. and change the code to align with the following
example code. Be sure to replace "GameLiftUnrealApp" with your own application name.

This sample shows how to add all of the required elements for integration with Amazon
GameLift, as described in Add Amazon GameLift to your game server. This includes:

• Initializing an Amazon GameLift API client.

• Implementing callback functions to respond to requests from the Amazon GameLift service,
including OnStartGameSession, OnProcessTerminate, and onHealthCheck.

• Calling ProcessReady() with a designated port to notify the Amazon GameLiftservice when
ready to host game sessions.

#include "GameLiftUnrealAppGameMode.h"
#include "GameLiftUnrealAppCharacter.h"

Game engines and Amazon GameLift 82

https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html

Amazon GameLift Developer Guide

#include "UObject/ConstructorHelpers.h"

DEFINE_LOG_CATEGORY(GameServerLog);

AGameLiftUnrealAppGameMode::AGameLiftUnrealAppGameMode()
{
 // set default pawn class to our Blueprinted character
 static ConstructorHelpers::FClassFinder<APawn> PlayerPawnBPClass(TEXT("/Game/
ThirdPerson/Blueprints/BP_ThirdPersonCharacter"));
 if (PlayerPawnBPClass.Class != NULL)
 {
 DefaultPawnClass = PlayerPawnBPClass.Class;
 }
}

void AGameLiftUnrealAppGameMode::BeginPlay()
{
#if WITH_GAMELIFT
 InitGameLift();
#endif
}

void AGameLiftUnrealAppGameMode::InitGameLift()
{
 UE_LOG(GameServerLog, Log, TEXT("Initializing the GameLift Server"));

 //Getting the module first.
 FGameLiftServerSDKModule* gameLiftSdkModule =
 &FModuleManager::LoadModuleChecked<FGameLiftServerSDKModule>(FName("GameLiftServerSDK"));

 //Define the server parameters for a GameLift Anywhere fleet. These are not
 needed for a GameLift managed EC2 fleet.
 FServerParameters serverParameters;

 //AuthToken returned from the "aws gamelift get-compute-auth-token" API. Note
 this will expire and require a new call to the API after 15 minutes.
 if (FParse::Value(FCommandLine::Get(), TEXT("-authtoken="),
 serverParameters.m_authToken))
 {
 UE_LOG(GameServerLog, Log, TEXT("AUTH_TOKEN: %s"),
 *serverParameters.m_authToken)
 }

Game engines and Amazon GameLift 83

Amazon GameLift Developer Guide

 //The Host/compute-name of the GameLift Anywhere instance.
 if (FParse::Value(FCommandLine::Get(), TEXT("-hostid="),
 serverParameters.m_hostId))
 {
 UE_LOG(GameServerLog, Log, TEXT("HOST_ID: %s"), *serverParameters.m_hostId)
 }

 //The Anywhere Fleet ID.
 if (FParse::Value(FCommandLine::Get(), TEXT("-fleetid="),
 serverParameters.m_fleetId))
 {
 UE_LOG(GameServerLog, Log, TEXT("FLEET_ID: %s"),
 *serverParameters.m_fleetId)
 }

 //The WebSocket URL (GameLiftServiceSdkEndpoint).
 if (FParse::Value(FCommandLine::Get(), TEXT("-websocketurl="),
 serverParameters.m_webSocketUrl))
 {
 UE_LOG(GameServerLog, Log, TEXT("WEBSOCKET_URL: %s"),
 *serverParameters.m_webSocketUrl)
 }

 //The PID of the running process
 serverParameters.m_processId = FString::Printf(TEXT("%d"),
 GetCurrentProcessId());
 UE_LOG(GameServerLog, Log, TEXT("PID: %s"), *serverParameters.m_processId);

 //InitSDK establishes a local connection with GameLift's agent to enable
 further communication.
 //Use InitSDK(serverParameters) for a GameLift Anywhere fleet.
 //Use InitSDK() for a GameLift managed EC2 fleet.
 gameLiftSdkModule->InitSDK(serverParameters);

 //Implement callback function onStartGameSession
 //GameLift sends a game session activation request to the game server
 //and passes a game session object with game properties and other settings.
 //Here is where a game server takes action based on the game session object.
 //When the game server is ready to receive incoming player connections,
 //it invokes the server SDK call ActivateGameSession().
 auto onGameSession = [=](Aws::GameLift::Server::Model::GameSession gameSession)
 {
 FString gameSessionId = FString(gameSession.GetGameSessionId());

Game engines and Amazon GameLift 84

Amazon GameLift Developer Guide

 UE_LOG(GameServerLog, Log, TEXT("GameSession Initializing: %s"),
 *gameSessionId);
 gameLiftSdkModule->ActivateGameSession();
 };

 m_params.OnStartGameSession.BindLambda(onGameSession);

 //Implement callback function OnProcessTerminate
 //GameLift invokes this callback before shutting down the instance hosting this
 game server.
 //It gives the game server a chance to save its state, communicate with
 services, etc.,
 //and initiate shut down. When the game server is ready to shut down, it
 invokes the
 //server SDK call ProcessEnding() to tell GameLift it is shutting down.
 auto onProcessTerminate = [=]()
 {
 UE_LOG(GameServerLog, Log, TEXT("Game Server Process is terminating"));
 gameLiftSdkModule->ProcessEnding();
 };

 m_params.OnTerminate.BindLambda(onProcessTerminate);

 //Implement callback function OnHealthCheck
 //GameLift invokes this callback approximately every 60 seconds.
 //A game server might want to check the health of dependencies, etc.
 //Then it returns health status true if healthy, false otherwise.
 //The game server must respond within 60 seconds, or GameLift records 'false'.
 //In this example, the game server always reports healthy.
 auto onHealthCheck = []()
 {
 UE_LOG(GameServerLog, Log, TEXT("Performing Health Check"));
 return true;
 };

 m_params.OnHealthCheck.BindLambda(onHealthCheck);

 //The game server gets ready to report that it is ready to host game sessions
 //and that it will listen on port 7777 for incoming player connections.
 m_params.port = 7777;

 //Here, the game server tells GameLift where to find game session log files.
 //At the end of a game session, GameLift uploads everything in the specified
 //location and stores it in the cloud for access later.

Game engines and Amazon GameLift 85

Amazon GameLift Developer Guide

 TArray<FString> logfiles;
 logfiles.Add(TEXT("GameLift426Test/Saved/Logs/GameLift426Test.log"));
 m_params.logParameters = logfiles;

 //The game server calls ProcessReady() to tell GameLift it's ready to host game
 sessions.
 UE_LOG(GameServerLog, Log, TEXT("Calling Process Ready"));
 gameLiftSdkModule->ProcessReady(m_params);
}

5. Build game project for both of the following target types: Development Editor and
Development Server.

Note

You don't need to rebuild the solution. Instead, build just the project under the Games
folder that matches the name of your app. Otherwise Visual Studio rebuilds the entire
UE5 project, which might take up to an hour.

6. Once both builds are complete, close Visual Studio and open your project's .uproject file to
open it in the Unreal Editor.

7. In Unreal Editor, package the server build of your game. To choose a target, go to Platforms,
Windows and select Your-application-nameServer.

8. To start the process of building the server application, go to Platforms, Windows and select
Package Project. When the build is complete, you should have an executable. In the case of
our example, the file name is GameLiftUnrealAppServer.exe.

9. Building a server application in Unreal Editor produces two executables. One is located in the
root of the game build folder and acts as a wrapper for the actual server executable.

When creating an Amazon GameLift fleet with your server build, we recommend that you
pass in the actual server executable as the runtime configuration launch path. For example, in
your game build folder, you might have a GameLiftFPS.exe file at the root and another at
\GameLiftFPS\Binaries\Win64\GameLiftFPSServer.exe. When creating a fleet, we
recommend you use C:\GameLiftFPS\Binaries\Win64\GameLiftFPSServer.exe as the
launch path of the runtime configuration.

10. Make sure to open the necessary UDP ports on the Amazon GameLift fleet, so that the game
server can communicate with game clients. By default, Unreal Engine uses port 7777. For more
information, see UpdateFleetPortSettings in the Amazon GameLift service API reference guide.

Game engines and Amazon GameLift 86

https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateFleetPortSettings.html

Amazon GameLift Developer Guide

11. Create an install.bat file for your game build. This install script runs whenever the game
build is deployed to a Amazon GameLift fleet. Here's an example install.bat file:

VC_redist.x64.exe /q
UE5PrereqSetup_x64.exe /q

For some versions of Unreal Engine, the install.bat should instead be

VC_redist.x64.exe /q
UEPrereqSetup_x64.exe /q

Note

The file path to the <>PrereqSetup_x64.exe file is Engine\Extras\Redist\en-
us.

12. Now you can package and upload your game build to Amazon GameLift.

The version of OpenSSL you package with your game build needs to match the version that
the game engine used when building the game server. Make sure you package the correct
OpenSSL version with your game server build. For the Windows OS, the OpenSSL format is
.dll.

Note

Package the OpenSSL DLLs in your game server build. Be sure to package the same
version of OpenSSL that you used when building the game server.

• libssl-1_1-x64.dll

libcrypto-1_1-x64.dll

Package your dependencies along with your game server executable in the root of a zip
file. For example, openssl-lib dlls should be in the same directory as the .exe file.

Game engines and Amazon GameLift 87

Amazon GameLift Developer Guide

Next steps

You've configured and set up your Unreal Engine environment, and you can now start integrating
Amazon GameLift into your game.

For more information about adding Amazon GameLift to your game, see the following:

• Add Amazon GameLift to your game server

• Amazon GameLift server SDK reference for Unreal Engine

For instructions about testing your game, see Set up local testing with Amazon GameLift Anywhere
.

Integrate Amazon GameLift into a Unity project

This topic explains how to set up the Amazon GameLift C# Server SDK plugin for Unity and
integrate it into your game projects.

Additional resources:

• Amazon GameLift server SDK download site

• Amazon GameLift server SDK 5.x reference for C# and Unity

• the section called “Development support”

Prerequisites

To use the Amazon GameLift C# server SDK plugin for Unity, you need the following components:

• A development environment and Unity Editor version that the plugin supports (see Development
support with Amazon GameLift). For information on Unity versions, see System requirements for
Unity in the Unity documentation.

• The Amazon GameLift server SDK plugin for Unity package. This package includes the server SDK
5+ for C#. You can download the package from this site: Getting Started with Amazon GameLift.

• The third party scoped registry UnityNuGet. This tool manages third-party DLLs. For more
information, see the UnityNuGet Github repository.

Game engines and Amazon GameLift 88

https://aws.amazon.com/gamelift/getting-started/
https://docs.unity3d.com/2023.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2023.1/Documentation/Manual/system-requirements.html
https://aws.amazon.com/gamelift/getting-started/
https://github.com/xoofx/UnityNuGet

Amazon GameLift Developer Guide

Set up UnityNuGet

If you don't have UnityNuGet set up for your game project, use the following steps to install
the tool using the Unity package manager. Alternatively, you can use the NuGet CLI to manually
download the DLLs. For more information, see the Amazon GameLift C# server SDK for Unity
README.

To integrate UnityNuGet into your game project

1. With your project open in the Unity Editor, go to the main menu and select Edit, Project
Settings. From the options, choose the Package Manager section and open the Scoped
Registries group.

2. Choose the + button and enter the following values for the UnityNuGet scoped registry:

Name: Unity NuGet
URL: https://unitynuget-registry.azurewebsites.net
Scope(s): org.nuget

3. For Unity 2021 version users:

After setting up UnityNuGet, check for Assembly Version Validation errors showing in
the Unity console. These errors occur if binding redirects for strongly named assemblies in the
NuGet packages are not resolving correctly to paths within your Unity project. To resolve this
issue, configure Unity's assembly version validation:

a. In the Unity Editor, go to the main menu and select Edit, Project Settings, and open the
Player section.

b. Deselect the Assembly Version Validation option.

Install the plugin

Use the following procedure to install the Amazon GameLift C# server SDK plugin for Unity and
configure log4net logging.

To install the plugin

1. With your project open in the Unity Editor, go to the main menu and select Window, Package
Manager.

2. Choose the + button to add a new package. Choose the option Add package from tarball.

Game engines and Amazon GameLift 89

Amazon GameLift Developer Guide

3. In Select packages on disk, locate the Amazon GameLift C# Server SDK plugin for Unity
download files, and choose the Amazon GameLift Server SDK .tgz file. Choose Open to
install the plugin.

The Amazon GameLift server SDK uses the log4net framework to output log messages. It is
configured to output messages to the terminal of a server build by default, but Unity requires
configuration to add file logging support. You can add this support to your project by importing
the provided sample inside the Amazon GameLift Server SDK package. Use the following procedure
to add the sample and configure log4net:

To configure log4net for file output

1. With your project open in the Unity Editor, go to the main menu and select Window, Package
Manager.

2. From the dropdown menu, select Packages: In Project, and then select Amazon GameLift
Server SDK from the list of packages. This opens the package details.

3. In the package details, select the Samples group option and press Import.

4. The log4net.config file and accompanying LoggingConfiguration.cs script
automatically executes the configuration, which is now set up in the project's Assets/
Samples folder.

Note

If you need to move your log4net.config file to a different folder in the
project, then you must also update the config file's filepath in the script
LoggingConfiguration.cs with the new path. For more information, see the
log4net manual on configuring log4net.

For more detailed instructions and testing guidance, see the README located in the plugin
download.

Set up an Amazon GameLift Anywhere fleet for testing

You can set up your development workstation as an Amazon GameLift Anywhere hosting fleet
to iteratively test your Amazon GameLift integration. With this setup, you can start game server
processes on your workstation, send player join or matchmaking requests to Amazon GameLift to

Game engines and Amazon GameLift 90

https://logging.apache.org/log4net/release/manual/configuration.html

Amazon GameLift Developer Guide

start game sessions, and connect clients to the new game sessions. With your own workstation
set up as a hosting server, you can monitor all aspects of your game integration with Amazon
GameLift.

For instructions on setting up your workstation, see Set up local testing with Amazon GameLift
Anywhere to complete the following steps:

1. Create a custom location for your workstation.

2. Create an Amazon GameLift Anywhere fleet with your new custom location. If successful, this
request returns a fleet ID. Make a note of this value, as you'll need it later.

3. Register your workstation as a compute in the new Anywhere fleet. Provide a unique compute
name and specify the IP address for your workstation. If successful, this request returns a service
SDK endpoint, in the form of a WebSocket URL. Make a note of this value, as you'll need it later.

4. Generate an authentication token for your workstation compute. This short-lived authentication
includes the token and an expiration date. Your game server uses it to authenticate
communication with the Amazon GameLift service. Store the authentication on your workstation
compute so that your running game server processes can access it.

Add Amazon GameLift server code to your Unity project

Your game server communicates with the Amazon GameLift service to receive instructions and
report ongoing status. To accomplish this, you add game server code that uses the Amazon
GameLift server SDK.

The provided code example illustrates the basic required integration elements. It uses a
MonoBehavior to illustrate a simple game server initialization with Amazon GameLift. The
example assumes that the game server runs on an Amazon GameLift Anywhere fleet for testing. It
includes code to:

• Initialize an Amazon GameLift API client. The sample uses the version of InitSDK() with server
parameters for your Anywhere fleet and compute. Use the WebSocket URL, fleet ID, compute
name (host ID), and authentication token, as defined in the previous topic Set up an Amazon
GameLift Anywhere fleet for testing.

• Implement callback functions to respond to requests from the Amazon GameLift service,
including OnStartGameSession, OnProcessTerminate, and onHealthCheck.

• Call ProcessReady() with a designated port to notify the Amazon GameLift service when the
process is ready to host game sessions.

Game engines and Amazon GameLift 91

Amazon GameLift Developer Guide

The code presented in this topic establishes communication with the Amazon GameLift service
and . It also implements a set of callback functions that respond to requests from the . For more
information on each function and what the code does, see Initialize the server process. For more
information on the SDK actions and data types used in this code, read Amazon GameLift server
SDK reference for C#.

This sample shows how to add all the required elements , as described in Add Amazon GameLift to
your game server. It includes:

For more information on adding Amazon GameLift functionality, see these topics:

• Add Amazon GameLift to your game server

• Amazon GameLift server SDK reference for C#

using System.Collections.Generic;
using Aws.GameLift.Server;
using UnityEngine;

public class ServerSDKManualTest : MonoBehaviour
{
 //This example is a simple integration that initializes a game server process
 //that is running on an Amazon GameLift Anywhere fleet.
 void Start()
 {
 //Identify port number (hard coded here for simplicity) the game server is
 listening on for player connections
 var listeningPort = 7777;

 //WebSocketUrl from RegisterHost call
 var webSocketUrl = "wss://us-west-2.api.amazongamelift.com";

 //Unique identifier for this process
 var processId = "myProcess";

 //Unique identifier for your host that this process belongs to
 var hostId = "myHost";

 //Unique identifier for your fleet that this host belongs to
 var fleetId = "myFleet";

 //Authorization token for this host process

Game engines and Amazon GameLift 92

https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html#gamelift-sdk-server-initialize
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html

Amazon GameLift Developer Guide

 var authToken = "myAuthToken";

 //Server parameters are required for a GameLift Anywhere fleet.
 //They are not required for a GameLift managed EC2 fleet.
 ServerParameters serverParameters = new ServerParameters(
 webSocketUrl,
 processId,
 hostId,
 fleetId,
 authToken);

 //InitSDK establishes a local connection with an Amazon GameLift agent
 //to enable further communication.
 var initSDKOutcome = GameLiftServerAPI.InitSDK(serverParameters);
 if (initSDKOutcome.Success)
 {
 //Implement callback functions
 ProcessParameters processParameters = new ProcessParameters(
 //Implement OnStartGameSession callback
 (gameSession) => {
 //GameLift sends a game session activation request to the game
 server
 //with game session object containing game properties and other
 settings.
 //Here is where a game server takes action based on the game
 session object.
 //When the game server is ready to receive incoming player
 connections,
 //it invokes the server SDK call ActivateGameSession().
 GameLiftServerAPI.ActivateGameSession();
 },
 (updateGameSession) => {
 //GameLift sends a request when a game session is updated (such as
 for
 //FlexMatch backfill) with an updated game session object.
 //The game server can examine matchmakerData and handle new
 incoming players.
 //updateReason explains the purpose of the update.
 },
 () => {
 //Implement callback function OnProcessTerminate
 //GameLift invokes this callback before shutting down the instance
 hosting this game server.

Game engines and Amazon GameLift 93

Amazon GameLift Developer Guide

 //It gives the game server a chance to save its state, communicate
 with services, etc.,
 //and initiate shut down. When the game server is ready to shut
 down, it invokes the
 //server SDK call ProcessEnding() to tell GameLift it is shutting
 down.
 GameLiftServerAPI.ProcessEnding();
 },
 () => {
 //Implement callback function OnHealthCheck
 //GameLift invokes this callback approximately every 60 seconds.
 //A game server might want to check the health of dependencies,
 etc.
 //Then it returns health status true if healthy, false otherwise.
 //The game server must respond within 60 seconds, or GameLift
 records 'false'.
 //In this example, the game server always reports healthy.
 return true;
 },
 //The game server gets ready to report that it is ready to host game
 sessions
 //and that it will listen on port 7777 for incoming player connections.
 listeningPort,
 new LogParameters(new List<string>()
 {
 //Here, the game server tells GameLift where to find game session
 log files.
 //At the end of a game session, GameLift uploads everything in the
 specified
 //location and stores it in the cloud for access later.
 "/local/game/logs/myserver.log"
 }));

 //The game server calls ProcessReady() to tell GameLift it's ready to host
 game sessions.
 var processReadyOutcome =
 GameLiftServerAPI.ProcessReady(processParameters);
 if (processReadyOutcome.Success)
 {
 print("ProcessReady success.");
 }
 else
 {

Game engines and Amazon GameLift 94

Amazon GameLift Developer Guide

 print("ProcessReady failure : " +
 processReadyOutcome.Error.ToString());
 }
 }
 else
 {
 print("InitSDK failure : " + initSDKOutcome.Error.ToString());
 }
 }

 void OnApplicationQuit()
 {
 //Make sure to call GameLiftServerAPI.ProcessEnding() and
 GameLiftServerAPI.Destroy() before terminating the server process.
 //These actions notify Amazon GameLift that the process is terminating and
 frees the API client from memory.
 GenericOutcome processEndingOutcome = GameLiftServerAPI.ProcessEnding();
 GameLiftServerAPI.Destroy();
 if (processEndingOutcome.Success)
 {
 Environment.Exit(0);
 }
 else
 {
 Console.WriteLine("ProcessEnding() failed. Error: " +
 processEndingOutcome.Error.ToString());
 Environment.Exit(-1);
 }
 }
}

Additional resources

Use the following resources to test your game server and expand the functionality:

• Set up your development machine as an Amazon GameLift Anywhere fleet and use it for local
testing. See Test your custom server integration.

• Build your game server and upload the build to Amazon GameLift. See Upload a custom server
build to Amazon GameLift.

• Deploy your game server build to an Amazon GameLift managed EC2 fleet. See Create a new
Amazon GameLift fleet.

Game engines and Amazon GameLift 95

https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-testing.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-build-cli-uploading.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-build-cli-uploading.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/fleets-creating-all.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/fleets-creating-all.html

Amazon GameLift Developer Guide

Integrating games with the Amazon GameLift plugin for Unity

The topics in this section describe the Amazon GameLift plugin for Unity and how to use it to
prepare your multiplayer game project for hosting with Amazon GameLift. Work entirely in
your Unity development environment with the plugin's guided workflows to complete the basic
requirements for hosting with Amazon GameLift.

Amazon GameLift is a fully managed service that lets game developers manage and scale
dedicated game servers for session-based multiplayer games. For more information about Amazon
GameLift hosting, see How Amazon GameLift works.

• Amazon GameLift plugin for Unity guide for server SDK 5.x, version 2.0.0, works with server SDK
5.x and supports Amazon GameLift Anywhere.

• Amazon GameLift plugin for Unity guide for server SDK 4.x, version 1.0.0, works with server SDK
4.x or earlier. This version uses Amazon GameLift Local for integration testing.

Amazon GameLift plugin for Unity guide for server SDK 5.x

Amazon GameLift provides tools for preparing your multiplayer game servers to work with Amazon
GameLift. The Amazon GameLift plugin for Unity makes it easier to integrate Amazon GameLift
into your Unity game projects, test your integration with Amazon GameLift Anywhere, and deploy
Amazon GameLift resources for cloud hosting.

This plugin uses AWS CloudFormation templates to deploy hosting solutions for common gaming
scenarios. Use these solutions as provided or customize them as needed for your games.

Topics

• About the plugin

• Plugin workflow

• Plugin for Unity: Install and set up plugin components

• Plugin for Unity: Set up an AWS user profile

• Plugin for Unity: Set up local testing with Amazon GameLift Anywhere

• Plugin for Unity: Deploy your game to managed EC2 fleets

Integrating games with the plugin for Unity 96

Amazon GameLift Developer Guide

About the plugin

The plugin for Unity provides a streamlined getting started experience for integrating and
hosting your Unity multiplayer games with Amazon GameLift. You can take advantage of plugin
functionality and pre-built components to quickly get your games up and running.

The plugin adds tools and functionality to the Unity editor. Use the guided workflows to integrate
Amazon GameLift into your game project, test it locally, and then deploy the game server to
Amazon GameLift cloud hosting.

Use the plugin's pre-built hosting solutions to deploy your game. Set up an Amazon GameLift
Anywhere fleet with your local workstation as a host. For cloud hosting, choose from two common
deployment scenarios that balance player latency, game session availability, and cost in different
ways. One scenario includes a simple FlexMatch matchmaker and rule set. Use these scenarios
to put a basic production-ready hosting solution in place, and then optimize and customize as
needed.

The plugin includes these components:

• Plugin modules for the Unity editor. When the plugin is installed, a new main menu item gives
you access to Amazon GameLift functionality.

• C# libraries for the Amazon GameLift service API with client-side functionality.

• C# libraries for the Amazon GameLift server SDK (version 5.x).

• Sample game content, including assets and scenes, so you can try out Amazon GameLift even if
you don't have a build-ready multiplayer game.

• Solution configurations, provided as AWS CloudFormation templates, that the plugin uses when
deploying your game server to the cloud for hosting.

Plugin workflow

The following steps describe a typical approach to integrating and deploying a game project with
the Amazon GameLift plugin for Unity. You complete these steps by working in the Unity editor
and your game code.

1. Create a user profile that links to your AWS account and provides access credentials for a valid
account user with permissions to use Amazon GameLift.

2. Add server code to your game project to establish communication between a running game
server and the with Amazon GameLift service.

Plugin for Unity guide (server SDK 5.x) 97

Amazon GameLift Developer Guide

3. Add client code to your game project that lets game clients send requests to Amazon GameLift
to start or join a game session and then connect to the game server.

4. Use the Anywhere workflow to set up your local workstation as an Anywhere host for your
game server. Launch your game server and client locally, connect to a game session, and test
your integration.

5. Use the EC2 hosting workflow to upload your integrated game server and deploy a cloud
hosting solution. When your game server is ready, launch your game client locally, connect to a
game session and log in, and play the game.

When working in the plugin, you’ll create and use AWS resources, These actions might incur
charges to the AWS account in use. If you’re new to AWS, actions may be covered under the AWS
Free Tier.

Plugin for Unity: Install and set up plugin components

This section describes how to add the plugin to a Unity project. After the plugin is installed, plugin
functionality is available when you have the project open in the Unity editor.

Before you start

Here’s what you need to use the Amazon GameLift plugin for Unity:

• Unity for Windows 2022 LTS or Unity for MacOS

• Amazon GameLift plugin for Unity download. [Download site] The download includes two
packages:

• Amazon GameLift standalone plugin for Unity

• Amazon GameLift C# server SDK for Unity

• Microsoft Visual Studio 2019 or newer.

• A multiplayer game project with C# game code.

• The third party scoped registry UnityNuGet. This tool manages third-party DLLs. For more
information, see the UnityNuGet Github repository.

Add the plugin to your game project

Complete the following tasks, working in the Unity editor and your game project files.

Plugin for Unity guide (server SDK 5.x) 98

https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://github.com/aws/amazon-gamelift-plugin-unity
https://github.com/xoofx/UnityNuGet

Amazon GameLift Developer Guide

Step 1: Add UnityNuGet to your game project

If you don't have UnityNuGet set up for your game project, use the following steps to install
the tool using the Unity package manager. Alternatively, you can use the NuGet CLI to manually
download the DLLs. For more information, see the Amazon GameLift C# server SDK for Unity
README.

1. With your project open in the Unity editor, go to the main menu and select Edit, Project
Settings. From the options, choose the Package Manager section and open the Scoped
Registries group.

2. Choose the + button and enter the following values for the UnityNuGet scoped registry:

Name: Unity NuGet
URL: https://unitynuget-registry.azurewebsites.net
Scope(s): org.nuget

For Unity 2021 version users:

After setting up UnityNuGet, check for Assembly Version Validation errors showing in
the Unity console. These errors occur if binding redirects for strongly named assemblies in the
NuGet packages are not resolving correctly to paths within your Unity project. To resolve this issue,
configure Unity's assembly version validation:

1. In the Unity editor, go to the main menu and select Edit, Project Settings, and open the Player
section.

2. Deselect the Assembly Version Validation option.

Step 2: Add the plugin and C# server SDK packages

1. Unzip the Amazon GameLift plugin for Unity download, which contains both packages.

2. With your project open in the Unity Editor, go to the main menu and select Window, Package
Manager.

3. Choose the + button to add a new package. Choose the option Add package from tarball.

4. In Select packages on disk, locate the Amazon GameLift C# Server SDK plugin for Unity
download files, and choose the com.amazonaws.gameliftserver.sdk-<version>.tgz
file. Choose Open to install the plugin.

Plugin for Unity guide (server SDK 5.x) 99

Amazon GameLift Developer Guide

5. In Select packages on disk, locate the Amazon GameLift standalone plugin for Unity
download files, and choose the file com.amazonaws.gamelift-<version>.tgz. Choose
Open to install the plugin.

6. Verify that the standalone plugin is added to your project. Return to the Unity editor window.
Check the main menu for the new Amazon GameLift menu button.

Step 3: Import the sample game (optional)

The plugin for Unity comes with a set of sample game assets, including scenes, that you can add
to your game project. Importing the sample game gives you a fast path to testing, building, and
deploying a simple multiplayer game with Amazon GameLift. The sample game is already fully
integrated with Amazon GameLift SDKs, so you can skip the integration tasks and complete the
remaining workflow tasks.

When using the sample game, you can set up and join a locally hosted Amazon GameLift Anywhere
fleet in just a few minutes. You can deploy the game to Amazon GameLift and join a live, cloud-
hosted game in under an hour.

To import the sample game:

1. With your game project open in the Unity Editor, go to the Amazon GameLift menu and select
Sample Game, Import Sample Game.

2. After the files are imported, go to the Amazon GameLift menu again and select Sample
Game, Initialize Settings. This step configures your project for building the game client and
server.

When installation is complete, you’ll see two new scenes added to your game project. You’ll also
see some additional project assets, including a GameLiftClientSettings asset.

For more details on the sample’s UI and gameplay, see the sample game readme.

Plugin for Unity: Set up an AWS user profile

After installing the plugin, set up a profile and link it to a valid AWS account user. You can maintain
multiple profiles, but you can only have one profile active at a time. Whenever you work in the
plugin, select a profile to use.

Plugin for Unity guide (server SDK 5.x) 100

Amazon GameLift Developer Guide

Maintaining multiple profiles gives you the ability to switch between different hosting scenarios.
For example, you might set up profiles with the same AWS credentials but different AWS Regions.
Or you might set up profiles with different AWS accounts or with different users/permission sets.

Note

If you’ve installed the AWS CLI on your workstation and have a profile already configured,
the Amazon GameLift plugin can detect it and will list it as an existing profile. The plugin
automatically selects any profile named [default]. You can use an existing profile or
create a new one.

To set up your AWS profile

1. In the Unity editor main menu, choose Amazon GameLift and select Set AWS Account
Profiles. This action opens the plugin window. Open the page AWS User Profiles.

2. If the plugin detects an existing profile, you won’t be prompted to create one. Select an
existing profile or choose Add another profile to create a new one.

3. If the plugin doesn’t detect an existing profile, it prompts you to create one. You can create a
new profile using either a new or existing AWS account.

Note

You need to use the AWS Management Console to create a new AWS account and
create or update a user with the proper permission set.

When setting up a profile, you need the following information:

• An AWS account. If you need to create a new AWS account, follow the prompts to create the
account. See Create an AWS account for more details.

• An AWS account user with permissions to use Amazon GameLift and other required AWS
services. See Set up an AWS account for instructions on setting up an AWS Identity and
Access Management (IAM) user with Amazon GameLift permissions.

• Credentials for your AWS user. This user also needs programmatic access with long-term
credentials. These credentials consist of an AWS access key ID and AWS secret key. See Get
your access keys for more details.

Plugin for Unity guide (server SDK 5.x) 101

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-creating.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html#cli-authentication-user-get
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html#cli-authentication-user-get

Amazon GameLift Developer Guide

• AWS Region. This is a geographic location where you want to create your AWS resources for
hosting. During development, we recommend using a region close to your physical location
to minimize latency. See the list of supported AWS regions.

4. When you selected or created a profile, check the profile’s bootstrap status and take action as
needed. All profiles must be bootstrapped to use Amazon GameLift plugin functionality.

To bootstrap your profile:

Bootstrapping designates an Amazon S3 bucket for use with the selected user profile. Amazon S3
is a core AWS service for data and object storage. The bucket used to store project configurations,
build artifacts, and other dependencies. Buckets are not shared between other profiles.

Note

Bootstrapping creates new AWS resources and might incur costs.

1. When viewing your profiles in the plugin window AWS User Profiles, select the profile you
want to use. A warning message is displayed if the profile hasn’t been bootstrapped yet.

2. In the Bootstrap your profile section, select a profile from the dropdown list and check the
bootstrap status. If the status indicates that no bucket exists, choose the button Bootstrap
profile. You can set the bucket name to a new bucket name, enter an existing bucket that you
have access to, or keep the auto-generated name.

3. Wait for bootstrap status to change to "Active". This can take a few minutes. When the status is
“Active”, you can use the profile to work with plugin features

Plugin for Unity: Set up local testing with Amazon GameLift Anywhere

In this workflow, you add client and server game code for Amazon GameLift functionality and use
the plugin to designate your local workstation as a test game server host. When you've completed
integration tasks, use the plugin to build your game client and server components.

To start the Amazon GameLift Anywhere workflow:

• In the Unity editor main menu, choose Amazon GameLift and select Host with Anywhere.
This action opens the plugin page for setting up your game with an @Anywhere fleet. The
page presents a five-step process to integrate, build, and launch your game components.

Plugin for Unity guide (server SDK 5.x) 102

https://docs.aws.amazon.com/general/latest/gr/gamelift.html

Amazon GameLift Developer Guide

Set your profile

Choose the profile you want to use when following this workflow. The profile you select impacts all
steps in the workflow. All resources you create are associated with the profile’s AWS account and
are placed in the profile’s default AWS Region. The profile user’s permissions determine your access
to AWS resources and actions.

1. Select a profile from the dropdown list of available profiles. If you don’t have a profile yet or
want to create a new one, go to the Amazon GameLift menu and choose Set AWS Account
Profiles.

2. If bootstrap status is not “Active“, choose Bootstrap profile and wait for the status to change
to “Active“.

Integrate your game with Amazon GameLift

Note

If you imported the sample game, you can skip this step. The sample game assets already
have the necessary server and client code in place.

For this step in the workflow, you make updates to the client and server code in your game project.

• * Game servers must be able to communicate with the Amazon GameLift service to receive
prompts to start a game session, provide game session connection information, and report
status.

• Game clients must be able to get information about game sessions, join or start game sessions,
and get connection information to join a game.

Integrate your server code

If you’re using your own game project with custom scenes, use provided sample code to add
required server code to your game project:

1. In your game project files, open the Assets/Scripts/Server folder. If it doesn’t exist,
create it.

2. Go to the GitHub repo aws/amazon-gamelift-plugin-unity and open the path Samples~/
SampleGame/Assets/Scripts/Server.

Plugin for Unity guide (server SDK 5.x) 103

https://github.com/aws/amazon-gamelift-plugin-unity

Amazon GameLift Developer Guide

3. Locate the file GameLiftServer.cs. and copy it into your game project’s Server folder. When you
build a server executable, use this file as the build target.

The sample code includes these minimum required elements, which use Amazon GameLift C#
server SDK (version 5):

• Initializes an Amazon GameLift API client. The InitSDK() call with server parameters is required
for an Amazon GameLift Anywhere fleet. These settings are automatically set for use in the
plugin.

• Implements required callback functions to respond to requests from the Amazon GameLift
service, including OnStartGameSession, OnProcessTerminate, and onHealthCheck.

• Calls ProcessReady() with a designated port to notify the Amazon GameLift service when the
server process is ready to host game sessions.

If you want to customize the sample server code, see these resources:

• Add Amazon GameLift to your game server

• Amazon GameLift server SDK 5.x reference for C# and Unity

Integrate your client code

If you’re using your own game project with custom scenes, then you need to integrate basic
functionality into your game client. You also need to add UI elements so that players can sign in
and join a game session. Use the Amazon GameLift service APIs (in the AWS SDK) to get game
session information, create new game sessions, or join existing game sessions,

When building a client for local testing with an Anywhere fleet, you can add direct calls to the
Amazon GameLift service. When you develop your game for cloud hosting—or if you plan to use
Anywhere fleets for production hosting—you’ll need to create a client-side backend service to
handle all communication between game clients and the Amazon GameLift service.

To integrate Amazon GameLift into your client code, use the following resources as a guide.

• Integrate the client with the GameLiftCoreApi class in the GitHub repo aws/amazon-gamelift-
plugin-unity. This class provides controls for player authentication and for retrieving game
session information.

Plugin for Unity guide (server SDK 5.x) 104

Amazon GameLift Developer Guide

• View sample game integrations, available in the GitHub repo aws/amazon-gamelift-plugin-unity,
Samples~/SampleGame/Assets/Scripts/Client/GameLiftClient.cs.

• Follow instructions in Add Amazon GameLift to your Unity game client.

For game clients connecting to an Anywhere fleet, your game client needs the following
information. The plugin automatically updates your game project to use the resources that your
create in the plugin.

• FleetId - The unique identifier for your Anywhere fleet.

• FleetLocation - The custom location of your Anywhere fleet.

• AwsRegion - The AWS region where your Anywhere fleet is hosted. This is the region you set in
your user profile.

• ProfileName - An AWS credentials profile on your local machine that allows access to the
AWS SDK for GameLift. The game client uses these credentials to authenticate requests to the
Amazon GameLift service.

Note

The credentials profile is generated by the plugin and stored on the local machine. As
a result, you must run the client on the local machine (or on a machine with the same
profile).

Connect to an Anywhere fleet

In this step, you designate an Anywhere fleet to use. An Anywhere fleet defines a collection of
compute resources, which can be located anywhere, for game server hosting.

• If the AWS account you’re currently using has existing Anywhere fleets, open the Fleet name
dropdown field and choose a fleet. This dropdown only shows the Anywhere fleets in the AWS
Region for the currently active user profile.

• If there are no existing fleets—or you want to create a new one, choose Create new Anywhere
fleet and provide a fleet name.

Plugin for Unity guide (server SDK 5.x) 105

Amazon GameLift Developer Guide

After you’ve chosen an Anywhere fleet for your project, Amazon GameLift verifies that fleet status
is active ad displays the fleet ID. You can track progress of this request in the Unity editor’s output
log.

Register a compute

In this step, you register your local workstation as a compute resource in the new Anywhere fleet.

1. Enter a compute name for your local machine. If you add more than one compute in the fleet,
the names must be unique.

2. Choose Register compute. You can track progress of this request in the Unreal editor’s output
log.

The plugin registers your local workstation with the IP address set to localhost (127.0.0.1). This
setting assumes that you’ll run your game client and server on the same machine.

In response to this action, Amazon GameLift verifies that it can connect to the compute and returns
information about the newly registered compute.

Launch game

In this step you build your game components and launch them to play the game. Complete the
following tasks:

1. Configure your game client. In this step, you prompt the plugin to update a
GameLiftClientSettings asset for your game project. The plugin uses this asset to store
certain information that your game client needs to connect to the Amazon GameLift service.

a. If you didn’t import and initialize the sample game, create a new
GameLiftClientSettings asset. In the Unity editor main menu, choose Assets, Create,
GameLift, Client Settings. If you create multiple copies of GameLiftClientSettings in your
project, the plugin automatically detects this and notifies you which asset the plugin will
update.

b. In Launch Game, choose Configure Client: Apply Anywhere Settings. This action updates
your game client settings to use the Anywhere fleet that you just set up.

2. Build and run your game client.

Plugin for Unity guide (server SDK 5.x) 106

Amazon GameLift Developer Guide

a. Build a client executable using the standard Unity build process. In File, Build Settings,
switch the platform to Windows, Mac, Linux. If you imported the sample game and
initialized the settings, the build list and build target are automatically updated.

b. Launch one or more instances of the newly built game client executable.

3. Launch a game server in your Anywhere fleet. Choose Server: Launch Server in Editor. This
task starts a live server that your client can connect to as long as the Unity editor remains
open.

4. Start or join a game session. In your game client instances, use the UI to join each client to a
game session. How you do this depends on how you added functionality to the client.

If you're using the sample game client, it has the following characteristics:

• A player login component. When connecting to a game server on an Anywhere fleet, there is no
player validation. You can enter any values to join the game session.

• A simple join game UI. When a client attempts to join a game, the client automatically looks
for an active game session with an available player slot. If no game session is available, the
client requests a new game session. If a game session is available, the client requests to join the
available game session. When testing your game with multiple concurrent clients, the first client
starts the game session, and the remaining clients automatically join the existing game session.

• Game sessions with four player slots. You can launch up to four game client instances
concurrently and they will join the same game session.

Launch from a server executable (optional)

You can build and launch your game server executable for testing on an Anywhere fleet.

1. Build a server executable using the standard Unity build process. In File, Build Settings, switch
the platform to Dedicated Server and build.

2. Get a short-term authentication token by calling the AWS CLI command get-compute-auth-
token with your Anywhere fleet ID and AWS Region. The fleet ID is displayed in Connect to an
Anywhere Fleet when you create the fleet. The AWS Region is displayed in Set Your Profile
when you select your active profile.

aws gamelift get-compute-auth-token --fleet-id [your anywhere fleet ID] --region
 [your AWS region]

Plugin for Unity guide (server SDK 5.x) 107

https://docs.aws.amazon.com/cli/latest/reference/gamelift/get-compute-auth-token.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/get-compute-auth-token.html

Amazon GameLift Developer Guide

3. Launch the newly built game server executable from a command line and pass in a valid auth
token.

my_project.exe --authToken [token]

Plugin for Unity: Deploy your game to managed EC2 fleets

In this workflow, you use the plugin to prepare your game for hosting on cloud-based compute
resources that are managed by Amazon GameLift. You add client and server game code for
Amazon GameLift functionality, then upload your server build to the Amazon GameLift service
for hosting. When this workflow is complete, you’ll have game servers running in the cloud and a
working game client that can connect to them.

To start the Amazon GameLift managed Amazon EC2 workflow:

• In the Unity editor main menu, choose Amazon GameLift and select Host with Managed EC2.
This workflow presents a six-step process to integrate, build, deploy, and launch your game
components.

Set your profile

Choose the profile you want to use when following this workflow. The profile you select impacts all
steps in the workflow. All resources you create are associated with the profile’s AWS account and
are placed in the profile’s default AWS Region. The profile user’s permissions determine your access
to AWS resources and actions.

1. Select a profile from the dropdown list of available profiles. If you don’t have a profile yet or
want to create a new one, go to the Amazon GameLift menu and choose Set AWS Account
Profiles.

2. If bootstrap status is not “Active“, choose Bootstrap profile and wait for the status to change
to “Active“.

Integrate your game with Amazon GameLift

For this task, you make updates to the client and server code in your game project.

Plugin for Unity guide (server SDK 5.x) 108

Amazon GameLift Developer Guide

• Game servers must be able to communicate with the Amazon GameLift service to receive
prompts to start a game session, provide game session connection information, and report
status.

• Game clients must be able to get information about game sessions, join or start game sessions,
and get connection information to join a game.

Note

If you imported the sample game, you can skip this step. The sample game assets already
have the necessary server and client code in place.

Integrate your server code

When using your own game project with custom scenes, use the provided sample code to add
required server code to your game project. If you integrated your game project for testing with an
Anywhere fleet, you’ve already completed the instructions in this step.

1. In your game project files, open the Assets/Scripts/Server folder. If it doesn’t exist,
create it.

2. Go to the GitHub repo aws/amazon-gamelift-plugin-unity and open the path Samples~/
SampleGame/Assets/Scripts/Server.

3. Locate the file GameLiftServer.cs and copy it into your game project’s Server folder.
When you build a server executable, use this file as the build target.

The sample code includes these minimum required elements, which use Amazon GameLift C#
server SDK (version 5):

• Initializes an Amazon GameLift API client. The InitSDK() call with server parameters is required
for an Amazon GameLift Anywhere fleet. These settings are automatically set for use in the
plugin.

• Implements required callback functions to respond to requests from the Amazon GameLift
service, including OnStartGameSession, OnProcessTerminate, and onHealthCheck.

• Calls ProcessReady() with a designated port to notify the Amazon GameLift service when the
server process is ready to host game sessions.

Plugin for Unity guide (server SDK 5.x) 109

https://github.com/aws/amazon-gamelift-plugin-unity

Amazon GameLift Developer Guide

If you want to customize the sample server code, see these resources:

• Add Amazon GameLift to your game server

• Amazon GameLift server SDK 5.x reference for C# and Unity

Integrate your client code

For game clients that connect to cloud-based game servers, it’s a best practice to use a client-side
backend service to make calls to the Amazon GameLift service, instead of making the calls directly
from the game client.

In the plugin workflow for hosting on a managed EC2 fleet, each deployment scenario includes a
pre-built backend service that includes the following components:

• A set of Lambda functions and DynamoDB tables that are used to request game sessions and
retrieve game session information. These components use an API gateway as the proxy.

• An Amazon Cognito user pool that generates unique player IDs and authenticates player
connections.

To use these components, your game client needs functionality to send requests to the backend
service to do the following:

• Create a player user in the AWS Cognito user pool and authenticate.

• Join a game session and receive connection information.

• Join a game using matchmaking.

Use the following resources as a guide.

• Integrate the client with the GameLiftCoreApi class in the GitHub repo aws/amazon-gamelift-
plugin-unity. This class provides controls for player authentication and for retrieving game
session information.

• To view the sample game integrations go to the GitHub repo aws/amazon-gamelift-plugin-unity
, Samples~/SampleGame/Assets/Scripts/Client/GameLiftClient.cs.

• Add Amazon GameLift to your Unity game client.

Plugin for Unity guide (server SDK 5.x) 110

https://github.com/aws/amazon-gamelift-plugin-unity/blob/main/Runtime/GameLiftCoreApi.cs
https://github.com/aws/amazon-gamelift-plugin-unity
https://github.com/aws/amazon-gamelift-plugin-unity
https://github.com/aws/amazon-gamelift-plugin-unity
https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-unity-client.html

Amazon GameLift Developer Guide

Select deployment scenario

In this step, you choose the game hosting solution that you want to deploy at this time. You can
have multiple deployments of your game, using any of the scenarios.

• Single-region fleet: Deploys your game server to a single fleet of hosting resources in the
active profile’s default AWS region. This scenario is a good starting point for testing your server
integration with AWS and server build configuration. It deploys the following resources:

• AWS fleet (On-Demand) with your game server build installed and running.

• Amazon Cognito user pool and client to enable players to authenticate and start a game.

• API gateway authorizer that links user pool with APIs.

• WebACl for throttling excessive player calls to API gateway.

• API gateway + Lambda function for players to request a game slot. This function calls
CreateGameSession() if none are available.

• API gateway + Lambda function for players to get connection info for their game request.

• FlexMatch fleet: Deploys your game server to a set of fleets and sets up a FlexMatch
matchmaker with rules to create player matches. This scenario uses low-cost Spot hosting with a
multi-fleet, multi-location structure for durable availability. This approach is useful when you're
ready to start designing a matchmaker component for your hosting solution. In this scenario,
you'll create the basic resources for this solution, which you can customize later as needed. It
deploys the following resources:

• FlexMatch matchmaking configuration and matchmaking rule set to accept player requests
and form matches.

• Three AWS fleets with your game server build installed and running in multiple locations.
Includes two Spot fleets and one On-Demand fleet as a backup.

• AWS game session placement queue that fulfills requests for proposed matches by finding
the best possible hosting resource (based on viability, cost, player latency, etc.) and starting a
game session.

• Amazon Cognito user pool and client to enable players to authenticate and start a game.

• API gateway authorizer that links user pool with APIs.

• WebACl for throttling excessive player calls to API gateway.

• API gateway + Lambda function for players to request a game slot. This function calls
StartMatchmaking().

• API gateway + Lambda function for players to get connection info for their game request.
Plugin for Unity guide (server SDK 5.x) 111

Amazon GameLift Developer Guide

• Amazon DynamoDB tables to store matchmaking tickets for players and game session
information. .

• SNS topic + Lambda function to handle GameSessionQueue events.

Set game parameters

In this step, you describe your game for uploading to AWS .

• Game name: Provide a meaningful name for your game project. This name is used within the
plugin.

• Fleet name: Provide a meaningful name for your managed EC2 fleet. Amazon GameLift uses this
name (along with the fleet ID) when listing resources in the AWS console.

• Build name: Provide a meaningful name for your server build. AWS uses this name to refer to
the copy of your server build that’s uploaded to Amazon GameLift and used for deployments.

• Launch parameters: Enter optional instructions to run when launching the server executable on
a managed EC2 fleet instance. Maximum length is 1024 characters.

• Game server folder: Provide the path to a local folder containing your server build.

• Game server file: Specify the server executable file name.

Deploy scenario

In this step, you deploy your game to a cloud hosting solution based on the deployment scenario
you chose. This process can take several minutes while AWS validates your server build, provisions
hosting resources, installs your game server, launches server processes, and gets them ready to
host game sessions.

To start deployment, choose Deploy CloudFormation. You can track the status of your game
hosting here. For more detailed information, you can sign in to the AWS Management console for
AWS and view event notifications. Be sure to sign in using the same account, user, and AWS Region
as the active user profile in the plugin.

When deployment is complete, you have your game server installed on an AWS EC2 instance. At
least one server process is running and ready to start a game session.

Launch game client

When your fleet is successfully deployed, you now have game servers running and available to host
game sessions. You can now build your client, launch it, connect to join the game session.

Plugin for Unity guide (server SDK 5.x) 112

Amazon GameLift Developer Guide

1. Configure your game client. In this step, you prompt the plugin to update a
GameLiftClientSettings asset for your game project. The plugin uses this asset to store
certain information that your game client needs to connect to the Amazon GameLift service.

a. If you didn’t import and initialize the sample game, create a new
GameLiftClientSettings asset. In the Unity editor main menu, choose Assets, Create,
GameLift, Client Settings. If you create multiple copies of GameLiftClientSettings in your
project, the plugin automatically detects this and notifies you which asset the plugin will
update.

b. In Launch Game, choose Configure Client: Apply Managed EC2 Settings. This action
updates your game client settings to use the managed EC2 fleet that you just deployed.

2. Build your game client. Build a client executable using the standard Unity build process. In File,
Build Settings, switch the platform to Windows, Mac, Linux. If you imported the sample game
and initialized the settings, the build list and build target are automatically updated.

3. Launch the newly build game client executable. To start playing the game, start two to four
client instances and use the UI in each to join a game session.

If you're using the sample game client, it has the following characteristics:

• A player login component. When connecting to a game server on an Anywhere fleet, there is no
player validation. You can enter any values to join the game session.

• A simple join game UI. When a client attempts to join a game, the client automatically looks
for an active game session with an available player slot. If no game session is available, the
client requests a new game session. If a game session is available, the client requests to join the
available game session. When testing your game with multiple concurrent clients, the first client
starts the game session, and the remaining clients automatically join the existing game session.

• Game sessions with four player slots. You can launch up to four game client instances
concurrently and they will join the same game session.

Amazon GameLift plugin for Unity guide for server SDK 4.x

Note

This topic provides information for an earlier version of the Amazon GameLift plugin for
Unity. Version 1.0.0 (released in 2021) uses the Amazon GameLift server SDK 4.x or earlier.
For documentation on the latest version of the plugin, which uses server SDK 5.x and

Plugin for Unity guide (server SDK 4.x) 113

Amazon GameLift Developer Guide

supports Amazon GameLift Anywhere, see Amazon GameLift plugin for Unity guide for
server SDK 5.x.

Amazon GameLift provides tools for preparing your multiplayer game servers to run on Amazon
GameLift. The Amazon GameLift plugin for Unity makes it easier to integrate Amazon GameLift
into your Unity game projects and deploy Amazon GameLift resources for cloud hosting. Use the
plugin for Unity to access Amazon GameLift APIs and deploy AWS CloudFormation templates for
common gaming scenarios.

After you've set up the plugin, you can try out the Amazon GameLift Unity sample on GitHub.

Topics

• Integrate Amazon GameLift with a Unity game server project

• Integrate Amazon GameLift with a Unity game client project

• Install and set up the plugin

• Test your game locally

• Deploy a scenario

• Integrate games with Amazon GameLift in Unity

• Import and run a sample game

Integrate Amazon GameLift with a Unity game server project

Note

This topic provides information for an earlier version of the Amazon GameLift plugin for
Unity. Version 1.0.0 (released in 2021) uses the Amazon GameLift server SDK 4.x or earlier.
For documentation on the latest version of the plugin, which uses server SDK 5.x and
supports Amazon GameLift Anywhere, see Amazon GameLift plugin for Unity guide for
server SDK 5.x.

This topic helps you prepare your custom game server for hosting on Amazon GameLift. The game
server must be able to notify Amazon GameLift about its status, to start and stop game sessions
when prompted, and to perform other tasks. For more information, see Add Amazon GameLift to
your game server.

Plugin for Unity guide (server SDK 4.x) 114

https://github.com/aws-samples/amazon-gamelift-unity

Amazon GameLift Developer Guide

Prerequisites

Before integrating your game server, complete the following tasks:

• Set up an IAM service role for Amazon GameLift

• Plugin for Unity: Install and set up plugin components

Set up a new server process

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Set up communication with Amazon GameLift and report that the server process is ready to host a
game session.

1. Initialize the server SDK by calling InitSDK().

2. To prepare the server to accept a game session, call ProcessReady() with the connection
port and game session location details. Include the names of callback functions that
Amazon GameLift service invokes, such as OnGameSession(), OnGameSessionUpdate(),
OnProcessTerminate(), OnHealthCheck(). Amazon GameLift might take a few minutes
to provide a callback.

3. Amazon GameLift updates the status of the server process to ACTIVE.

4. Amazon GameLift calls onHealthCheck periodically.

The following code example shows how to set up a simple server process with Amazon GameLift.

//initSDK
var initSDKOutcome = GameLiftServerAPI.InitSDK();

//processReady
// Set parameters and call ProcessReady
var processParams = new ProcessParameters(
 this.OnGameSession,
 this.OnProcessTerminate,
 this.OnHealthCheck,

Plugin for Unity guide (server SDK 4.x) 115

Amazon GameLift Developer Guide

 this.OnGameSessionUpdate,
 port,
 // Examples of log and error files written by the game server
 new LogParameters(new List<string>()
 {
 "C:\\game\\logs",
 "C:\\game\\error"
 })
);

var processReadyOutcome = GameLiftServerAPI.ProcessReady(processParams);

// Implement callback functions
void OnGameSession(GameSession gameSession)
{
 // game-specific tasks when starting a new game session, such as loading map
 // When ready to receive players
 var activateGameSessionOutcome = GameLiftServerAPI.ActivateGameSession();
}

void OnProcessTerminate()
{
 // game-specific tasks required to gracefully shut down a game session,
 // such as notifying players, preserving game state data, and other cleanup
 var ProcessEndingOutcome = GameLiftServerAPI.ProcessEnding();
}

bool OnHealthCheck()
{
 bool isHealthy;
 // complete health evaluation within 60 seconds and set health
 return isHealthy;
}

Start a game session

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

After game initialization is complete, you can start a game session.

Plugin for Unity guide (server SDK 4.x) 116

Amazon GameLift Developer Guide

1. Implement the callback function onStartGameSession. Amazon GameLift invokes this
method to start a new game session on the server process and receive player connections.

2. To activate a game session, call ActivateGameSession(). For more information about the
SDK, see Amazon GameLift server SDK (C#) reference: Actions.

The following code example illustrates how to start a game session with Amazon GameLift.

void OnStartGameSession(GameSession gameSession)
{
 // game-specific tasks when starting a new game session, such as loading map
 ...
 // When ready to receive players
 var activateGameSessionOutcome = GameLiftServerAPI.ActivateGameSession();
}

End a game session

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Notify Amazon GameLift when a game session is ending. As a best practice, shut down server
processes after game sessions complete to recycle and refresh hosting resources.

1. Set up a function named onProcessTerminate to receive requests from Amazon GameLift
and call ProcessEnding().

2. The process status changes to TERMINATED.

The following example describes how to end a process for a game session.

var processEndingOutcome = GameLiftServerAPI.ProcessEnding();

if (processReadyOutcome.Success)
 Environment.Exit(0);

// otherwise, exit with error code

Plugin for Unity guide (server SDK 4.x) 117

Amazon GameLift Developer Guide

Environment.Exit(errorCode);

Create server build and upload to Amazon GameLift

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

After you integrate your game server with Amazon GameLift, upload the build files to a fleet so
that Amazon GameLift can deploy it for game hosting. For more information on how to upload
your server to Amazon GameLift, see Upload a custom server build to Amazon GameLift.

Integrate Amazon GameLift with a Unity game client project

Note

This topic provides information for an earlier version of the Amazon GameLift plugin for
Unity. Version 1.0.0 (released in 2021) uses the Amazon GameLift server SDK 4.x or earlier.
For documentation on the latest version of the plugin, which uses server SDK 5.x and
supports Amazon GameLift Anywhere, see Amazon GameLift plugin for Unity guide for
server SDK 5.x.

This topic helps you set up a game client to connect to Amazon GameLift hosted game sessions
through a backend service. Use Amazon GameLift APIs to initiate matchmaking, request game
session placement, and more.

Add code to the backend service project to allow communication with the Amazon GameLift
service. A backend service handles all game client communication with the GameLift service. For
more information about backend services, see Design your game client service.

A backend server handles the following game client tasks:

• Customize authentication for your players.

• Request information about active game sessions from the Amazon GameLift service.

Plugin for Unity guide (server SDK 4.x) 118

Amazon GameLift Developer Guide

• Create a new game session.

• Add a player to an existing game session.

• Remove a player from an existing game session.

Topics

• Prerequisites

• Initialize a game client

• Create game session on a specific fleet

• Add players to game sessions

• Remove a player from a game session

Prerequisites

Before setting up game server communication with the Amazon GameLift client, complete the
following tasks:

• Set up an AWS account

• Plugin for Unity: Install and set up plugin components

• Integrate Amazon GameLift with a Unity game server project

• Setting up Amazon GameLift fleets

Initialize a game client

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Add code to initialize a game client. Run this code on launch, it's necessary for other Amazon
GameLift functions.

1. Initialize AmazonGameLiftClient. Call AmazonGameLiftClient with either a default client
configuration or a custom configuration. For more information on how to configure a client,
see Set up Amazon GameLift on a backend service.

Plugin for Unity guide (server SDK 4.x) 119

Amazon GameLift Developer Guide

2. Generate a unique player id for each player to connect to a game session. For more
information see Generate player IDs.

The following examples shows how to set up a Amazon GameLift client.

public class GameLiftClient
{
 private GameLift gl;
 //A sample way to generate random player IDs.
 bool includeBrackets = false;
 bool includeDashes = true;
 string playerId = AZ::Uuid::CreateRandom().ToString<string>(includeBrackets,
 includeDashes);

 private Amazon.GameLift.Model.PlayerSession psession = null;
 public AmazonGameLiftClient aglc = null;

 public void CreateGameLiftClient()
 {
 //Access Amazon GameLift service by setting up a configuration.
 //The default configuration specifies a location.
 var config = new AmazonGameLiftConfig();
 config.RegionEndpoint = Amazon.RegionEndpoint.USEast1;

 CredentialProfile profile = null;
 var nscf = new SharedCredentialsFile();
 nscf.TryGetProfile(profileName, out profile);
 AWSCredentials credentials = profile.GetAWSCredentials(null);
 //Initialize GameLift Client with default client configuration.
 aglc = new AmazonGameLiftClient(credentials, config);

 }
}

Create game session on a specific fleet

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Plugin for Unity guide (server SDK 4.x) 120

Amazon GameLift Developer Guide

Add code to start new game sessions on your deployed fleets and make them available to players.
After Amazon GameLift has created the new game session and returned a GameSession, you can
add players to it.

• Place a request for a new game session.

• If your game uses fleets, call CreateGameSession() with a fleet or alias ID, a session
name, and maximum number of concurrent players for the game.

• If your game uses queues, call StartGameSessionPlacement().

The following example shows how to create a game session.

public Amazon.GameLift.Model.GameSession()
{
 var cgsreq = new Amazon.GameLift.Model.CreateGameSessionRequest();
 //A unique identifier for the alias with the fleet to create a game session in.
 cgsreq.AliasId = aliasId;
 //A unique identifier for a player or entity creating the game session
 cgsreq.CreatorId = playerId;
 //The maximum number of players that can be connected simultaneously to the game
 session.
 cgsreq.MaximumPlayerSessionCount = 4;

 //Prompt an available server process to start a game session and retrieves
 connection information for the new game session
 Amazon.GameLift.Model.CreateGameSessionResponse cgsres =
 aglc.CreateGameSession(cgsreq);
 string gsid = cgsres.GameSession != null ? cgsres.GameSession.GameSessionId : "N/
A";
 Debug.Log((int)cgsres.HttpStatusCode + " GAME SESSION CREATED: " + gsid);
 return cgsres.GameSession;
}

Add players to game sessions

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Plugin for Unity guide (server SDK 4.x) 121

Amazon GameLift Developer Guide

After Amazon GameLift has created the new game session and returned a GameSession object,
you can add players to it.

1. Reserve a player slot in a game session by creating a new player session. Use
CreatePlayerSession or CreatePlayerSessions with the game session ID and a unique
ID for each player.

2. Connect to the game session. Retrieve the PlayerSession object to get the game session's
connection information. You can use this information to establish a direct connection to the
server process:

a. Use the specified port and either the DNS name or IP address of the server process.

b. Use the DNS name and port of your fleets. The DNS name and port are required if your
fleets have TLS certificate generation enabled.

c. Reference the player session ID. The player session ID is required if your game server
validates incoming player connections.

The following examples demonstrates how to reserve a player spot in a game session.

public Amazon.GameLift.Model.PlayerSession
 CreatePlayerSession(Amazon.GameLift.Model.GameSession gsession)
{
 var cpsreq = new Amazon.GameLift.Model.CreatePlayerSessionRequest();
 cpsreq.GameSessionId = gsession.GameSessionId;
 //Specify game session ID.
 cpsreq.PlayerId = playerId;
 //Specify player ID.
 Amazon.GameLift.Model.CreatePlayerSessionResponse cpsres =
 aglc.CreatePlayerSession(cpsreq);
 string psid = cpsres.PlayerSession != null ? cpsres.PlayerSession.PlayerSessionId :
 "N/A";
 return cpsres.PlayerSession;
}

The following code illustrates how to connect a player with the game session.

public bool ConnectPlayer(int playerIdx, string playerSessionId)
{
 //Call ConnectPlayer with player ID and player session ID.
 return server.ConnectPlayer(playerIdx, playerSessionId);

Plugin for Unity guide (server SDK 4.x) 122

Amazon GameLift Developer Guide

}

Remove a player from a game session

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

You can remove the players from the game session when they leave the game.

1. Notify the Amazon GameLift service that a player has disconnected from the server process.
Call RemovePlayerSession with the player's session ID.

2. Verify that RemovePlayerSession returns Success. Then, Amazon GameLift changes the
player slot to be available, which Amazon GameLift can assign to a new player.

The following example illustrates how to remove a player session.

public void DisconnectPlayer(int playerIdx)
{
 //Receive the player session ID.
 string playerSessionId = playerSessions[playerIdx];
 var outcome = GameLiftServerAPI.RemovePlayerSession(playerSessionId);
 if (outcome.Success)
 {
 Debug.Log (":) PLAYER SESSION REMOVED");
 }
 else
 {
 Debug.Log(":(PLAYER SESSION REMOVE FAILED. RemovePlayerSession()
 returned " + outcome.Error.ToString());
 }
}

Plugin for Unity guide (server SDK 4.x) 123

Amazon GameLift Developer Guide

Install and set up the plugin

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

This section describes how to download, install, and set up the Amazon GameLift plugin for Unity,
version 1.0.0.

Prerequisites

• Unity for Windows 2019.4 LTS, Windows 2020.3 LTS, or Unity for MacOS

• Current version of Java

• Current version of .NET 4.x

To download and install the plugin for Unity

1. Download the Amazon GameLift plugin for Unity. You can find the latest version on the
Amazon GameLift plugin for Unity repository page. Under the latest release, choose Assets,
and then download the com.amazonaws.gamelift-version.tgz file.

2. Launch Unity and choose a project.

3. In the top navigation bar, under Window choose Package Manager:

Plugin for Unity guide (server SDK 4.x) 124

https://github.com/aws/amazon-gamelift-plugin-unity/releases
https://github.com/aws/amazon-gamelift-plugin-unity/releases

Amazon GameLift Developer Guide

4. Under the Package Manager tab choose +, and then choose Add package from tarball...:

5. In the Select packages on disk window, navigate to the com.amazonaws.gamelift folder,
choose the file com.amazonaws.gamelift-version.tgz , and then choose Open:

Plugin for Unity guide (server SDK 4.x) 125

Amazon GameLift Developer Guide

6. After Unity has loaded the plug-in, Amazon GameLift appears as a new item in the Unity
menu. It may take a few minutes to install and recompile scripts. The Amazon GameLift
Plugin Settings tab automatically opens.

7. In the SDK pane, choose Use .NET 4.x.

When configured, the status changes from Not Configured to Configured.

Plugin for Unity guide (server SDK 4.x) 126

Amazon GameLift Developer Guide

Test your game locally

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Use Amazon GameLift Local to run Amazon GameLift on your local device. You can use Amazon
GameLift Local to verify code changes in seconds, without a network connection.

Configure local testing

1. In the plugin for Unity window, choose the Test tab.

2. In the Test pane, choose Download Amazon GameLift Local. The plugin for Unity opens a
browser window and downloads the GameLift_06_03_2021.zip file to your downloads
folder.

The download includes the C# Server SDK, .NET source files, and a .NET component
compatible with Unity.

3. Unzip the downloaded file GameLift_06_03_2021.zip.

4. In the Amazon GameLift Plugin Settings window, choose Amazon GameLift Local Path,
navigate to the unzipped folder, choose the file GameLiftLocal.jar, and then choose Open.

When configured, local testing status changes from Not Configured to Configured.

5. Verify the status of the JRE. If the status is Not Configured, choose Download JRE and install
the recommended Java version.

After you install and configure the Java environment, the status changes to Configured.

Run your local game

1. In the plugin for Unity tab, choose the Test tab.

2. In the Test pane, choose Open Local Test UI.

3. In the Local Testing window, specify a Server executable path. Select ... to select the path and
executable name of your server application.

4. In the Local Testing window, specify a GL Local port.

Plugin for Unity guide (server SDK 4.x) 127

Amazon GameLift Developer Guide

5. Choose Deploy & Run to deploy and run the server.

6. To stop your game server, choose Stop or close the game server windows.

Deploy a scenario

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

A scenario uses an AWS CloudFormation template to create the resources you need to deploy
a cloud hosting solution for your game. This section describes the scenarios Amazon GameLift
provides and how to use them.

Prerequisites

To deploy the scenario, you need an IAM role for the Amazon GameLift service. For information on
how to create a role for Amazon GameLift, see Set up an AWS account.

Each scenario requires permissions to the following resources:

• Amazon GameLift

• Amazon S3

• AWS CloudFormation

• API Gateway

• AWS Lambda

• AWS WAFV2

• Amazon Cognito

Scenarios

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Plugin for Unity guide (server SDK 4.x) 128

Amazon GameLift Developer Guide

The Amazon GameLift Plug-in for Unity includes the following scenarios:

Auth only

This scenario creates a game backend service that performs player authentication without game
server capability. The template creates the following resources in your account:

• An Amazon Cognito user pool to store player authentication information.

• An Amazon API Gateway REST endpoint-backed AWS Lambda handler that starts games and
views game connection information.

Single-Region fleet

This scenario creates a game backend service with a single Amazon GameLift fleet. It creates the
following resources:

• An Amazon Cognito user pool for a player to authenticate and start a game.

• An AWS Lambda handler to search for an existing game session with an open player slot on the
fleet. If it can't find a open slot, it creates a new game session.

Multi-Region fleet with a queue and custom matchmaker

This scenario forms matches by using Amazon GameLift queues and a custom matchmaker to
group together the oldest players in the waiting pool. It creates the following resources:

• An Amazon Simple Notification Service topic that Amazon GameLift publishes messages to. For
more information on SNS topics and notifications, see Set up event notification for game session
placement.

• A Lambda function that's invoked by the message that communicates placement and game
connection details.

• An Amazon DynamoDB table to store placement and game connection details.
GetGameConnection calls read from this table and return the connection information to the
game client.

Spot fleets with a queue and custom matchmaker

This scenario forms matches by using Amazon GameLift queues and a custom matchmaker and
configures three fleets. It creates the following resources:

Plugin for Unity guide (server SDK 4.x) 129

Amazon GameLift Developer Guide

• Two Spot fleets that contain different instance types to provide durability for Spot unavailability.

• An On-Demand fleet that acts as a backup for the other Spot fleets. For more information on
designing your fleets, see Amazon GameLift fleet design guide.

• A Amazon GameLift queue to keep server availability high and cost low. For more information
and best practices about queues, see Design a game session queue.

FlexMatch

This scenario uses FlexMatch, a managed matchmaking service, to match game players together.
For more information about FlexMatch, see What is Amazon GameLift FlexMatch. This scenario
creates the following resources:

• A Lambda function to create a matchmaking ticket after it receives StartGame requests.

• A separate Lambda function to listen to FlexMatch match events.

To avoid unnecessary charges on your AWS account, remove the resources created by each scenario
after you are done using them. Delete the corresponding AWS CloudFormation stack.

Update AWS credentials

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

The Amazon GameLift plugin for Unity requires security credentials to deploy a scenario. You can
either create new credentials or use existing credentials.

For more information about configuring credentials, see Understanding and getting your AWS
credentials.

To update AWS credentials

1. In Unity, in the plugin for Unity tab, choose the Deploy tab.

2. In the Deploy pane, choose AWS Credentials.

3. You can create new AWS credentials or choose existing credentials.

Plugin for Unity guide (server SDK 4.x) 130

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html

Amazon GameLift Developer Guide

• To create credentials, choose Create new credentials profile, and then specify the New
Profile Name, AWS Access Key ID, AWS Secret Key, and AWS Region.

• To choose existing credentials, choose Choose existing credentials profile and then select
a profile name and AWS Region.

4. In the Update AWS Credentials window, choose Update Credentials Profile.

Update account bootstrap

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

The bootstrap location is an Amazon S3 bucket used during deployment. It's used to store game
server assets and other dependencies. The AWS Region you choose for the bucket must be the
same Region you will use for the scenario deployment.

For more information about Amazon S3 buckets, see Creating, configuring, and working with
Amazon Simple Storage Service buckets.

To update the account bootstrap location

1. In Unity, in the plugin for Unity tab, choose the Deploy tab.

2. In the Deploy pane, choose Update Account Bootstrap.

3. In the Account Bootstrapping window, you choose an existing Amazon S3 bucket or create a
new Amazon S3 bucket:

• To choose an existing bucket, choose Choose existing Amazon S3 bucket and Update to
save your selection.

• Choose Create new Amazon S3 bucket to create a new Amazon Simple Storage Service
bucket, then choose a Policy. The policy specifies when the Amazon S3 bucket will be
expire. Choose Create to create the bucket.

Plugin for Unity guide (server SDK 4.x) 131

https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-buckets-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-buckets-s3.html

Amazon GameLift Developer Guide

Deploy a game scenario

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

You can use a scenario to test your game with Amazon GameLift. Each scenario uses a AWS
CloudFormation template to create a stack with the required resources. Most of the scenarios
require a game server executable and build path. When you deploy the scenario, Amazon GameLift
copies game assets to the bootstrap location as part of deployment.

You must configure AWS credentials and an AWS account bootstrap to deploy a scenario.

To deploy a scenario

1. In Unity, in the plugin for Unity tab, choose the Deploy tab.

2. In the Deploy pane, choose Open Deployment UI.

3. In the Deployment window, choose a scenario.

4. Enter a Game Name. It must be unique. The game name is part of the AWS CloudFormation
stack name when you deploy the scenario.

5. Choose the Game Server Build Folder Path. The build folder path points to the folder
containing the server executable and dependencies.

6. Choose the Game Server Build .exe File Path. The build executable file path points to the
game server executable.

7. Choose Start Deployment to begin deploying a scenario. You can follow the status of the
update in the Deployment window under Current State.Scenarios can take several minutes to
deploy.

Plugin for Unity guide (server SDK 4.x) 132

Amazon GameLift Developer Guide

8. When the scenario completes deployment, the Current State updates to include the Cognito
Client ID and API Gateway Endpoint that you can copy and paste into the game.

9. To update game settings, on the Unity menu, choose Go To Client Connection Settings. This
displays an Inspector tab on the right side of the Unity screen.

10. Deselect Local Testing Mode.

11. Enter the API Gateway Endpoint and the Coginito Client ID. Choose the same AWS Region
you used for the scenario deployment. You can then rebuild and run the game client using the
deployed scenario resources.

Deleting resources created by the scenario

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

To delete the resources created for the scenario, delete the corresponding AWS CloudFormation
stack.

To delete resources created by the scenario

1. In the Amazon GameLift plugin for Unity Deployment window, select View AWS
CloudFormation Console to open the AWS CloudFormation console.

2. In the AWS CloudFormation console, choose Stacks, and then choose the stack that includes
the game name specified during deployment.

Plugin for Unity guide (server SDK 4.x) 133

Amazon GameLift Developer Guide

3. Choose Delete to delete the stack. It may take a few minutes to delete a stack. After
AWS CloudFormation deletes the stack used by the scenario, its status changes to
ROLLBACK_COMPLETE.

Integrate games with Amazon GameLift in Unity

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Integrate your Unity game with Amazon GameLift by completing the following tasks:

• Integrate Amazon GameLift with a Unity game server project

• Integrate Amazon GameLift with a Unity game client project

The following diagram shows an example flow of integrating a game. In the diagram, a fleet with
the game server is deployed to Amazon GameLift. The game client communicates with the game
server, which communicates with Amazon GameLift.

Plugin for Unity guide (server SDK 4.x) 134

Amazon GameLift Developer Guide

Import and run a sample game

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

The Amazon GameLift plugin for Unity includes a sample game you can use to explore the basics of
integrating your game with Amazon GameLift. In this section, you build the game client and game
server and then test locally using Amazon GameLift Local.

Prerequisites

• Set up an AWS account

• Install and set up the plugin

Plugin for Unity guide (server SDK 4.x) 135

Amazon GameLift Developer Guide

Build and run the sample game server

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Set up the game server files of the sample game.

1. In Unity, on the menu, choose Amazon GameLift, and then choose Import Sample Game.

2. In the Import Sample Game window, choose Import to import the game, its assets and
dependencies.

3. Build the game server. In Unity, on the menu, choose Amazon GameLift, and then choose
Apply Windows Sample Server Build Settings or Apply MacOS Sample Server Build
Settings. After you configure the game server settings, Unity recompiles the assets.

4. In Unity, on the menu, choose File, and then choose Build. Choose Server Build, choose Build,
and then choose a build folder specifically for server files.

Unity builds the sample game server, placing the executable and required assets in the
specified build folder.

Build and run the sample game client

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Set up the game client files of the sample game.

1. In Unity, on the menu, choose Amazon GameLift, and then choose Apply Windows Sample
Client Build Settings or Apply MacOS Sample Client Build Settings. After the game client
settings are configured, Unity will recompile assets.

2. In Unity, on the menu, select Go To Client Settings. This will display an Inspector tab on
the right side of the Unity screen. In the Amazon GameLift Client Settings tab, select Local
Testing Mode.

Plugin for Unity guide (server SDK 4.x) 136

Amazon GameLift Developer Guide

3. Build the game client. In Unity, on the menu, choose File. Confirm Server Build is not checked,
choose Build, and then select a build folder specifically for client files.

Unity builds the sample game client, placing the executable and required assets in the
specified client build folder.

4. You've no built the game server and client. In the next steps, you run the game and see how it
interacts with Amazon GameLift.

Test the sample game locally

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Run the sample game you imported using Amazon GameLift Local.

1. Launch the game server. In Unity, in the plugin for Unity tab, choose the Deploy tab.

2. In the Test pane, choose Open Local Test UI.

3. In the Local Testing window, specify a Game Server .exe File Path. The path must include the
executable name. For example, C:/MyGame/GameServer/MyGameServer.exe.

4. Choose Deploy and Run. The plugin for Unity launches the game server and opens a Amazon
GameLift Local log window. The windows contains log messages including messages sent
between the game server and Amazon GameLift Local.

5. Launch the game client. Find the build location with the sample game client and choose the
executable file .

6. In the Amazon GameLift Sample Game, provide an email and password and then choose Log
In. The email and password aren't validated or used.

7. In the Amazon GameLift Sample Game, choose Start. The game client looks for a game
session. If it can't find a session, it creates one. The game client then starts the game session.
You can see game activity in the logs.

Sample game server logs

...

Plugin for Unity guide (server SDK 4.x) 137

Amazon GameLift Developer Guide

2021-09-15T19:55:3495 PID:20728 Log :) GAMELIFT AWAKE
2021-09-15T19:55:3512 PID:20728 Log :) I AM SERVER
2021-09-15T19:55:3514 PID:20728 Log :) GAMELIFT StartServer at port 33430.
2021-09-15T19:55:3514 PID:20728 Log :) SDK VERSION: 4.0.2
2021-09-15T19:55:3556 PID:20728 Log :) SERVER IS IN A GAMELIFT FLEET
2021-09-15T19:55:3577 PID:20728 Log :) PROCESSREADY SUCCESS.
2021-09-15T19:55:3577 PID:20728 Log :) GAMELIFT HEALTH CHECK REQUESTED (HEALTHY)
...
2021-09-15T19:55:3634 PID:20728 Log :) GAMELOGIC AWAKE
2021-09-15T19:55:3635 PID:20728 Log :) GAMELOGIC START
2021-09-15T19:55:3636 PID:20728 Log :) LISTENING ON PORT 33430
2021-09-15T19:55:3636 PID:20728 Log SERVER: Frame: 0 HELLO WORLD!
...
2021-09-15T19:56:2464 PID:20728 Log :) GAMELIFT SESSION REQUESTED
2021-09-15T19:56:2468 PID:20728 Log :) GAME SESSION ACTIVATED
2021-09-15T19:56:3578 PID:20728 Log :) GAMELIFT HEALTH CHECK REQUESTED (HEALTHY)
2021-09-15T19:57:3584 PID:20728 Log :) GAMELIFT HEALTH CHECK REQUESTED (HEALTHY)
2021-09-15T19:58:0334 PID:20728 Log SERVER: Frame: 8695 Connection accepted: playerIdx
 0 joined
2021-09-15T19:58:0335 PID:20728 Log SERVER: Frame: 8696 Connection accepted: playerIdx
 1 joined
2021-09-15T19:58:0338 PID:20728 Log SERVER: Frame: 8697 Msg rcvd from playerIdx 0 Msg:
 CONNECT: server IP localhost
2021-09-15T19:58:0338 PID:20728 Log SERVER: Frame: 8697 Msg rcvd from player 0:CONNECT:
 server IP localhost
2021-09-15T19:58:0339 PID:20728 Log SERVER: Frame: 8697 CONNECT: player index 0
2021-09-15T19:58:0339 PID:20728 Log SERVER: Frame: 8697 Msg rcvd from playerIdx 1 Msg:
 CONNECT: server IP localhost
2021-09-15T19:58:0339 PID:20728 Log SERVER: Frame: 8697 Msg rcvd from player 1:CONNECT:
 server IP localhost
2021-09-15T19:58:0339 PID:20728 Log SERVER: Frame: 8697 CONNECT: player index 1

Sample Amazon GameLift Local logs

12:55:26,000 INFO || - [SocketIOServer] main - Session store / pubsub factory used:
 MemoryStoreFactory (local session store only)
12:55:28,092 WARN || - [ServerBootstrap] main - Unknown channel option 'SO_LINGER' for
 channel '[id: 0xe23d0a14]'
12:55:28,101 INFO || - [SocketIOServer] nioEventLoopGroup-2-1 - SocketIO server
 started at port: 5757
12:55:28,101 INFO || - [SDKConnection] main - GameLift SDK server (communicates with
 your game server) has started on http://localhost:5757

Plugin for Unity guide (server SDK 4.x) 138

Amazon GameLift Developer Guide

12:55:28,120 INFO || - [SdkWebSocketServer] WebSocketSelector-20 - WebSocket Server
 started on address localhost/127.0.0.1:5759
12:55:28,166 INFO || - [StandAloneServer] main - GameLift Client server (listens for
 GameLift client APIs) has started on http://localhost:8080
12:55:28,179 INFO || - [StandAloneServer] main - GameLift server sdk http listener has
 started on http://localhost:5758
12:55:35,453 INFO || - [SdkWebSocketServer] WebSocketWorker-12 - onOpen
 socket: /?pID=20728&sdkVersion=4.0.2&sdkLanguage=CSharp and handshake /?
pID=20728&sdkVersion=4.0.2&sdkLanguage=CSharp
12:55:35,551 INFO || - [HostProcessManager] WebSocketWorker-12 - client connected with
 pID 20728
12:55:35,718 INFO || - [GameLiftSdkHttpHandler] GameLiftSdkHttpHandler-thread-0 -
 GameLift API to use: ProcessReady for pId 20728
12:55:35,718 INFO || - [ProcessReadyHandler] GameLiftSdkHttpHandler-thread-0 -
 Received API call for processReady from 20728
12:55:35,738 INFO || - [ProcessReadyHandler] GameLiftSdkHttpHandler-thread-0 -
 onProcessReady data: port: 33430
 12:55:35,739 INFO || - [HostProcessManager] GameLiftSdkHttpHandler-thread-0 -
 Registered new process with pId 20728
12:55:35,789 INFO || - [GameLiftSdkHttpHandler] GameLiftSdkHttpHandler-thread-0 -
 GameLift API to use: ReportHealth for pId 20728
12:55:35,790 INFO || - [ReportHealthHandler] GameLiftSdkHttpHandler-thread-0 -
 Received API call for ReportHealth from 20728
12:55:35,794 INFO || - [ReportHealthHandler] GameLiftSdkHttpHandler-thread-0 -
 ReportHealth data: healthStatus: true
 12:56:24,098 INFO || - [GameLiftHttpHandler] Thread-12 - API to use:
 GameLift.DescribeGameSessions
12:56:24,119 INFO || - [DescribeGameSessionsDispatcher] Thread-12 - Received API call
 to describe game sessions with input: {"FleetId":"fleet-123"}
12:56:24,241 INFO || - [GameLiftHttpHandler] Thread-12 - API to use:
 GameLift.CreateGameSession
12:56:24,242 INFO || - [CreateGameSessionDispatcher] Thread-12 - Received API call to
 create game session with input: {"FleetId":"fleet-123","MaximumPlayerSessionCount":4}
12:56:24,265 INFO || - [HostProcessManager] Thread-12 - Reserved process:
 20728 for gameSession: arn:aws:gamelift:local::gamesession/fleet-123/
gsess-59f6cc44-4361-42f5-95b5-fdb5825c0f3d
12:56:24,266 INFO || - [WebSocketInvoker] Thread-12 - StartGameSessionRequest:
 gameSessionId=arn:aws:gamelift:local::gamesession/fleet-123/
gsess-59f6cc44-4361-42f5-95b5-fdb5825c0f3d, fleetId=fleet-123, gameSessionName=null,
 maxPlayers=4, properties=[], ipAddress=127.0.0.1, port=33430, gameSessionData?=false,
 matchmakerData?=false, dnsName=localhost
12:56:24,564 INFO || - [CreateGameSessionDispatcher] Thread-12 - GameSession with
 id: arn:aws:gamelift:local::gamesession/fleet-123/gsess-59f6cc44-4361-42f5-95b5-
fdb5825c0f3d created

Plugin for Unity guide (server SDK 4.x) 139

Amazon GameLift Developer Guide

12:56:24,585 INFO || - [GameLiftHttpHandler] Thread-12 - API to use:
 GameLift.DescribeGameSessions
12:56:24,585 INFO || - [DescribeGameSessionsDispatcher] Thread-12 - Received API call
 to describe game sessions with input: {"FleetId":"fleet-123"}
12:56:24,660 INFO || - [GameLiftSdkHttpHandler] GameLiftSdkHttpHandler-thread-0 -
 GameLift API to use: GameSessionActivate for pId 20728
12:56:24,661 INFO || - [GameSessionActivateHandler] GameLiftSdkHttpHandler-thread-0 -
 Received API call for GameSessionActivate from 20728
12:56:24,678 INFO || - [GameSessionActivateHandler] GameLiftSdkHttpHandler-thread-0
 - GameSessionActivate data: gameSessionId: "arn:aws:gamelift:local::gamesession/
fleet-123/gsess-59f6cc44-4361-42f5-95b5-fdb5825c0f3d"

Shut down server process

Note

This topic refers to Amazon GameLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

After you're done with your sample game, shut down the server in Unity.

1. In the game client, choose Quit or close the window to stop the game client.

2. In Unity, in the Local Testing window, choose Stop or close the game server windows to stop
the server.

Integrating games with the Amazon GameLift plugin for Unreal
Engine

The topics in this section describe the Amazon GameLift plugin for Unreal Engine (UE) and how to
use it to prepare your multiplayer game project for hosting with Amazon GameLift. Work entirely
in your UE development environment with the plugin's guided workflows to complete the basic
requirements for hosting with Amazon GameLift.

Amazon GameLift is a fully managed service that lets game developers manage and scale
dedicated game servers for session-based multiplayer games. For more information about Amazon
GameLift hosting, see How Amazon GameLift works.

Topics

Integrating games with the plugin for Unreal 140

Amazon GameLift Developer Guide

• About the plugin

• Plugin workflow

• Plugin for Unreal: Install and set up plugin components

• Plugin for Unreal: Set up an AWS user profile

• Plugin for Unreal: Set up local testing with Amazon GameLift Anywhere

• Plugin for Unreal: Deploy your game to managed EC2 fleets

About the plugin

The plugin adds Amazon GameLift tools and functionality to the UE editor. The plugin's guided
workflows to integrate Amazon GameLift into your game project, designate a workstation as a
local host for testing, and deploy the game server to Amazon GameLift cloud hosting.

Use the plugin's pre-built hosting solutions to deploy your game. Set up an Amazon GameLift
Anywhere fleet with your local workstation as a host. For cloud hosting, choose from two common
deployment scenarios that balance player latency, game session availability, and cost in different
ways. One scenario includes a simple FlexMatch matchmaker and rule set. Use these solutions
to get started quickly with a production-ready hosting structure in place, and then optimize and
customize as needed.

The plugin includes these components:

• Plugin modules for the UE editor. When the plugin is installed, a new main menu button gives
you access to Amazon GameLift functionality.

• C++ libraries for the Amazon GameLift service API with client-side functionality.

• Unreal libraries for the Amazon GameLift server SDK (version 5).

• Content for testing, including a startup game map and two testing maps with basic blueprints
and UI elements for use with testing a server integration.

• Editable configurations, in the form of AWS CloudFormation templates, that the plugin uses
when deploying your game server for hosting.

Plugin workflow

The following steps describe a typical approach to integrating and deploying a game project with
the Amazon GameLift plugin for Unreal Engine. You complete these steps by working in the UE
editor and your game code.

About the plugin 141

Amazon GameLift Developer Guide

1. Create a user profile that links to your AWS account and provides access credentials for valid
account user with permissions to use Amazon GameLift.

2. Add server code to your game project to establish communication between a running game
server and the with Amazon GameLift service.

3. Add client code to your game project that lets game clients send requests to Amazon GameLift
to start new game sessions and then connect to them.

4. Use the Anywhere workflow to set up your local workstation as an Anywhere host for your
game server. Launch your game server and client locally through the plugin, connect to a game
session, and test your integration.

5. Use the EC2 hosting workflow to upload your integrated game server and deploy a cloud
hosting solution, When your game server is ready, launch your game client locally through the
plugin, connect to a game session and play the game.

When working in the plugin, you'll create and use AWS resources, These actions might incur
charges to the AWS account in use. If you're new to AWS, these actions might be covered under the
AWS Free Tier.

Plugin for Unreal: Install and set up plugin components

This section describes the initial installation tasks to add the plugin to an Unreal Engine project.
The plugin functionality is available when you have the project open in the Unreal editor.

Note

You can use the Amazon GameLift plugin with a standard version of the UE editor, but you
need to use a source-built version when you package your game server build.

Before you start

Here's what you need to use the Amazon GameLift plugin for Unreal Engine:

• Amazon GameLift plugin for Unreal Engine release package. [Download site].

• Microsoft Visual Studio 2019 or newer.

• A source-built version of the Unreal Engine editor. You need a source-built version to package
the server components for a multiplayer game. For more details, including additional
prerequisites, see the Unreal Engine documentation:

Install the plugin 142

https://aws.amazon.com/free/
https://github.com/aws/amazon-gamelift-plugin-unreal

Amazon GameLift Developer Guide

• Accessing Unreal Engine source code on GitHub You'll need GitHub and Epic Games accounts.

• Building Unreal Engine from Source tutorial.

• A multiplayer game project with C++ game code. If you're working with a Blueprint project, see
Unreal documentation on how to generate C++ source code for your project.

Add the plugin to your game project

Complete the following tasks to add the plugin to your game project.

Build the Amazon GameLift C++ server SDK

1. Unzip the Amazon GameLift plugin for Unreal Engine release package to extract two zip files:

• amazon-gamelift-plugin-unreal-<>-sdk-<>.zip

• GameLift-Cpp-ServerSDK-<>.zip.

Unzip these files.

2. Open the GameLift-Cpp-ServerSDK-<> folder, and then complete the following
instructions for your platform: Linux or Microsoft Windows.

Linux

1. Run the following commands:

mkdir out
cd out
cmake -DBUILD_FOR_UNREAL=1 ..
make

These commands build the /lib/aws-cpp-sdk-gamelift-server.so file.

2. Copy /lib/aws-cpp-sdk-gamelift-server.so to the amazon-gamelift-
plugin-unreal/GameLiftPlugin/Source/GameliftServer/ThirdParty/
GameLiftServerSDK/Linux/x86_64-unknown-linux-gnu/ directory.

Install the plugin 143

https://www.unrealengine.com/ue-on-github
https://docs.unrealengine.com/5.1/building-unreal-engine-from-source/

Amazon GameLift Developer Guide

Microsoft Windows

1. Run the following commands:

mkdir out
cd out
cmake -G "Visual Studio 17 2022" -DBUILD_FOR_UNREAL=1 ..
msbuild ALL_BUILD.vcxproj /p:Configuration=Release

These commands build the following binary files.

• prefix\bin\aws-cpp-sdk-gamelift-server.dll

• prefix\lib\aws-cpp-sdk-gamelift-server.lib

2. Copy the files to the amazon-gamelift-plugin-unreal\GameLiftPlugin\Source
\GameliftServer\ThirdParty\GameLiftServerSDK\Win64\ directory.

Complete the following tasks, working in your game project files.

1. Install the plugin files.

a. Locate your game project root folder, such as ... > Unreal Projects/[project-
name]/. If the Plugins folder doesn't exist there, then create it.

b. Go to the amazon-gamelift-plugin-unreal folder unzipped from amazon-
gamelift-plugin-unreal-<>-sdk-<>.zip. Copy the GameLiftPlugin folder
from the gamelift-plugin-unreal folder to the Plugins folder in the game project
directory.

2. Add the plugin to the .uproject file.

a. In your game project root folder, open the .uproject file.

b. Update the file to add "GameLiftPlugin" and "WebBrowserWidget" to the Plugins section
and enable them. The following code shows the updated .uproject file for a game
called "MyGame".

UnrealProjects > MyGame > MyGame.uproject
{
 ...
 "Plugins": [

Install the plugin 144

Amazon GameLift Developer Guide

 {
 "Name": "ModelingToolsEditorMode",
 "Enabled": true,
 "TargetAllowList": ["Editor"]
 },
 {
 "Name": "GameLiftPlugin",
 "Enabled": true
 },
 {
 "Name": "WebBrowserWidget",
 "Enabled": true
 }
]
}

3. Change the UE editor version for your project.

If you created a project for one editor version and now want to change to another version
(such as a source-build version), you need to update the project.

In your game project root folder, select the .uproject file and choose the option Switch
Unreal Engine Version. Select a new editor version.

4. Rebuild the project solution with your updates.

a. In the project root folder, look for a solution (*.sln) file. If none exists, select the
.uproject file and choose the option Generate Visual Studio project files.

b. Open the solution file and build or rebuild the project.

5. Verify that the plugin is enabled in the UE editor.

Note

If you If you already have the editor open, you might need to restart the editor before
it recognizes the new plugin.

a. Open the project in your chosen UE editor.

b. Check the main editor toolbar for the new Amazon GameLift menu button [need image].

c. Look in the Content Browser for the Amazon GameLift plugin assets. Make sure that your
View Options setting has the Show Plugin Content option selected.

Install the plugin 145

Amazon GameLift Developer Guide

Plugin for Unreal: Set up an AWS user profile

After installing the plugin, set up a profile and link it to a valid AWS account user. You can maintain
multiple profiles, but you can only have one profile active at a time. Whenever you work in the
plugin, select a profile to use.

Maintaining multiple profiles gives you the ability to switch between different hosting scenarios.
For example, you might set up profiles with the same AWS credentials but different AWS Regions.
Or you might set up profiles with different AWS accounts or with different users/permission sets.

Note

If you've installed the AWS CLI on your workstation and have a profile already configured,
the Amazon GameLift plugin can detect it and will list it as an existing profile. The plugin
automatically selects any profile named [default]. You can use an existing profile or
create a new one.

To manage your AWS profiles

1. In the Unreal editor main toolbar, choose the Amazon GameLift menu, and select Set AWS
User Profiles. This action opens Project Settings for the plugin. Expand the section AWS User
Profiles.

2. If the plugin doesn't detect an existing profile, it prompts you to create one. You can create a
new profile using either a new or existing AWS account.

Note

You need to use the AWS Management Console to create a new AWS account and
create or update a user with the proper permission set.

When setting up a profile, you need the following information:

• An AWS account. If you need to create a new AWS account, follow the prompts to create the
account. See Create an AWS account for more details.

• An AWS user with permissions to use Amazon GameLift and other required AWS services.
See Set up an AWS account for instructions on setting up an AWS Identity and Access

Set up an AWS user profile 146

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-creating.html

Amazon GameLift Developer Guide

Management (IAM) user with Amazon GameLift permissions and programmatic access with
long-term credentials.

• Credentials for your AWS user. These credentials consist of an AWS access key ID and AWS
secret key. See Get your access keys for more details.

• AWS region. This is a geographic location where you want to create your AWS resources for
hosting. During development, we recommend using a region close to your physical location.
See the list of supported AWS regions.

3. If the plugin detects an existing profile, you aren't prompted to create one. If you want to
update a profile or create a new one, choose Manage your profile.

To bootstrap your profile:

All profiles must be bootstrapped to use with the Amazon GameLift plugin. Bootstrapping creates
an Amazon S3 bucket specific to the profile. It's used to store project configurations, build artifacts,
and other dependencies. Buckets are not shared between other profiles.

Bootstrapping involves creating new AWS resources and might incur costs.

1. In the Unreal editor main toolbar, choose the Amazon GameLift icon, and select Set AWS
User Profiles. This action opens Project Settings for the plugin. Expand the section AWS User
Profiles.

2. In the Bootstrap your profile section, select a profile from the dropdown list and check the
bootstrap status. If the status indicates that no bucket exists, choose the button Bootstrap
and create profile to create an Amazon S3 bucket for the selected profile.

3. Wait for bootstrap status to change to "Active". This can take a few minutes.

Plugin for Unreal: Set up local testing with Amazon GameLift
Anywhere

In this workflow, you add client and server game code for Amazon GameLift functionality, and use
the plugin to designate your local workstation as a test game server host. When you've completed
integration tasks, use the plugin to build your game client and server components.

Set up local testing with Anywhere 147

https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html#cli-authentication-user-get
https://docs.aws.amazon.com/general/latest/gr/gamelift.html

Amazon GameLift Developer Guide

To start the Amazon GameLift Anywhere workflow:

• In the Unreal editor main toolbar, choose the Amazon GameLift menu, and select Host with
Anywhere. This action opens the plugin page Deploy Anywhere, which presents a six-step
process to integrate, build, and launch your game components.

Step 1: Set your profile

Choose the profile you want to use when following this workflow. The profile you select impacts all
steps in the workflow. All resources you create are associated with the profile's AWS account and
are placed in the profile's default AWS Region. The profile user's permissions determine your access
to AWS resources and actions.

1. Select a profile from the dropdown list of available profiles. If you don't have a profile yet or
want to create a new one, go to the Amazon GameLift menu and choose Set AWS User Profiles.

2. If bootstrap status is not "Active", choose Bootstrap profile and wait for the status to change to
"Active".

Step 2: Set up your game code

In this step, you make a series of updates to your client and server code to add hosting
functionality. If you haven't already set up a source-built version of the Unreal editor, the plugin
provides links to instructions and source code.

With the plugin, can take advantage of some conveniences when integrating your game code. You
can do a minimal integration to set up basic hosting functionality. You can also do a more extensive
custom integration. The information in this section describes the minimal integration option. Use
the test maps included with the plugin to add client Amazon GameLift functionality to your game
project. For server integration, use the provided code sample to update your project's game mode.

Integrate your server game mode

Add server code to your game that enables communication between your game server and the
Amazon GameLift service. Your game server must be able to respond to requests from Amazon
GameLift, such as to start a new game session, and also report status on game server health and
player connections.

1. In your code editor, open the solution (.sln) file for your game project, usually found in the
project root folder. For example: GameLiftUnrealApp.sln.

Set up local testing with Anywhere 148

Amazon GameLift Developer Guide

2. With the solution open, locate the project game mode header file: [project-
name]GameMode.h file. For example: GameLiftUnrealAppGameMode.h.

3. Change the header file to align with the following example code. Be sure to replace
"GameLiftServer" with your own project name. These updates are specific to the game server;
we recommend that you make a backup copy of the original game mode files for use with your
client.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/GameModeBase.h"
#include "GameLiftServerGameMode.generated.h"

struct FProcessParameters;

DECLARE_LOG_CATEGORY_EXTERN(GameServerLog, Log, All);

UCLASS(minimalapi)
class AGameLiftServerGameMode : public AGameModeBase
{
 GENERATED_BODY()

public:
 AGameLiftServerGameMode();

protected:
 virtual void BeginPlay() override;

private:
 void InitGameLift();

private:
 TSharedPtr<FProcessParameters> ProcessParameters;
};

4. Open the related source file [project-name]GameMode.cpp file (for example
GameLiftUnrealAppGameMode.cpp). Change the code to align with the following example
code. Be sure to replace "GameLiftUnrealApp" with your own project name. These updates are

Set up local testing with Anywhere 149

Amazon GameLift Developer Guide

specific to the game server; we recommend that you make a backup copy of the original file
for use with your client.

The following example code shows how to add the minimum required elements for server
integration with Amazon GameLift:

• Initialize an Amazon GameLift API client. The InitSDK() call with server parameters is
required for an Amazon GameLift Anywhere fleet. When you connect to an Anywhere fleet,
the plugin stores the server parameters as console arguments The sample code can access
the values at runtime.

• Implement required callback functions to respond to requests from the Amazon GameLift
service, including OnStartGameSession, OnProcessTerminate, and onHealthCheck.

• Call ProcessReady() with a designated port to notify the Amazon GameLift service when
ready to host game sessions.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

#include "GameLiftServerGameMode.h"

#include "UObject/ConstructorHelpers.h"
#include "Kismet/GameplayStatics.h"

#if WITH_GAMELIFT
#include "GameLiftServerSDK.h"
#include "GameLiftServerSDKModels.h"
#endif

#include "GenericPlatform/GenericPlatformOutputDevices.h"

DEFINE_LOG_CATEGORY(GameServerLog);

AGameLiftServerGameMode::AGameLiftServerGameMode() :
 ProcessParameters(nullptr)
{
 // Set default pawn class to our Blueprinted character
 static ConstructorHelpers::FClassFinder<APawn> PlayerPawnBPClass(TEXT("/Game/
ThirdPerson/Blueprints/BP_ThirdPersonCharacter"));

 if (PlayerPawnBPClass.Class != NULL)

Set up local testing with Anywhere 150

Amazon GameLift Developer Guide

 {
 DefaultPawnClass = PlayerPawnBPClass.Class;
 }

 UE_LOG(GameServerLog, Log, TEXT("Initializing AGameLiftServerGameMode..."));
}

void AGameLiftServerGameMode::BeginPlay()
{
 Super::BeginPlay();

#if WITH_GAMELIFT
 InitGameLift();
#endif
}

void AGameLiftServerGameMode::InitGameLift()
{
#if WITH_GAMELIFT
 UE_LOG(GameServerLog, Log, TEXT("Calling InitGameLift..."));

 // Getting the module first.
 FGameLiftServerSDKModule* GameLiftSdkModule =
 &FModuleManager::LoadModuleChecked<FGameLiftServerSDKModule>(FName("GameLiftServerSDK"));

 //Define the server parameters for a GameLift Anywhere fleet. These are not
 needed for a GameLift managed EC2 fleet.
 FServerParameters ServerParametersForAnywhere;

 bool bIsAnywhereActive = false;
 if (FParse::Param(FCommandLine::Get(), TEXT("glAnywhere")))
 {
 bIsAnywhereActive = true;
 }

 if (bIsAnywhereActive)
 {
 UE_LOG(GameServerLog, Log, TEXT("Configuring server parameters for
 Anywhere..."));

 // If GameLift Anywhere is enabled, parse command line arguments and pass
 them in the ServerParameters object.
 FString glAnywhereWebSocketUrl = "";

Set up local testing with Anywhere 151

Amazon GameLift Developer Guide

 if (FParse::Value(FCommandLine::Get(), TEXT("glAnywhereWebSocketUrl="),
 glAnywhereWebSocketUrl))
 {
 ServerParametersForAnywhere.m_webSocketUrl =
 TCHAR_TO_UTF8(*glAnywhereWebSocketUrl);
 }

 FString glAnywhereFleetId = "";
 if (FParse::Value(FCommandLine::Get(), TEXT("glAnywhereFleetId="),
 glAnywhereFleetId))
 {
 ServerParametersForAnywhere.m_fleetId =
 TCHAR_TO_UTF8(*glAnywhereFleetId);
 }

 FString glAnywhereProcessId = "";
 if (FParse::Value(FCommandLine::Get(), TEXT("glAnywhereProcessId="),
 glAnywhereProcessId))
 {
 ServerParametersForAnywhere.m_processId =
 TCHAR_TO_UTF8(*glAnywhereProcessId);
 }
 else
 {
 // If no ProcessId is passed as a command line argument, generate a
 randomized unique string.
 ServerParametersForAnywhere.m_processId =
 TCHAR_TO_UTF8(
 *FText::Format(
 FText::FromString("ProcessId_{0}"),
 FText::AsNumber(std::time(nullptr))
).ToString()
);
 }

 FString glAnywhereHostId = "";
 if (FParse::Value(FCommandLine::Get(), TEXT("glAnywhereHostId="),
 glAnywhereHostId))
 {
 ServerParametersForAnywhere.m_hostId =
 TCHAR_TO_UTF8(*glAnywhereHostId);
 }

 FString glAnywhereAuthToken = "";

Set up local testing with Anywhere 152

Amazon GameLift Developer Guide

 if (FParse::Value(FCommandLine::Get(), TEXT("glAnywhereAuthToken="),
 glAnywhereAuthToken))
 {
 ServerParametersForAnywhere.m_authToken =
 TCHAR_TO_UTF8(*glAnywhereAuthToken);
 }

 UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_YELLOW);
 UE_LOG(GameServerLog, Log, TEXT(">>>> Web Socket URL: %s"),
 *ServerParametersForAnywhere.m_webSocketUrl);
 UE_LOG(GameServerLog, Log, TEXT(">>>> Fleet ID: %s"),
 *ServerParametersForAnywhere.m_fleetId);
 UE_LOG(GameServerLog, Log, TEXT(">>>> Process ID: %s"),
 *ServerParametersForAnywhere.m_processId);
 UE_LOG(GameServerLog, Log, TEXT(">>>> Host ID (Compute Name): %s"),
 *ServerParametersForAnywhere.m_hostId);
 UE_LOG(GameServerLog, Log, TEXT(">>>> Auth Token: %s"),
 *ServerParametersForAnywhere.m_authToken);
 UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_NONE);
 }

 UE_LOG(GameServerLog, Log, TEXT("Initializing the GameLift Server..."));

 //InitSDK will establish a local connection with GameLift's agent to enable
 further communication.
 FGameLiftGenericOutcome InitSdkOutcome = GameLiftSdkModule-
>InitSDK(ServerParametersForAnywhere);
 if (InitSdkOutcome.IsSuccess())
 {
 UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_GREEN);
 UE_LOG(GameServerLog, Log, TEXT("GameLift InitSDK succeeded!"));
 UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_NONE);
 }
 else
 {
 UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_RED);
 UE_LOG(GameServerLog, Log, TEXT("ERROR: InitSDK failed : ("));
 FGameLiftError GameLiftError = InitSdkOutcome.GetError();
 UE_LOG(GameServerLog, Log, TEXT("ERROR: %s"),
 *GameLiftError.m_errorMessage);
 UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_NONE);
 return;
 }

Set up local testing with Anywhere 153

Amazon GameLift Developer Guide

 ProcessParameters = MakeShared<FProcessParameters>();

 //When a game session is created, GameLift sends an activation request to the
 game server and passes along the game session object containing game properties
 and other settings.
 //Here is where a game server should take action based on the game session
 object.
 //Once the game server is ready to receive incoming player connections, it
 should invoke GameLiftServerAPI.ActivateGameSession()
 ProcessParameters->OnStartGameSession.BindLambda([=]
(Aws::GameLift::Server::Model::GameSession InGameSession)
 {
 FString GameSessionId = FString(InGameSession.GetGameSessionId());
 UE_LOG(GameServerLog, Log, TEXT("GameSession Initializing: %s"),
 *GameSessionId);
 GameLiftSdkModule->ActivateGameSession();
 });

 //OnProcessTerminate callback. GameLift will invoke this callback before
 shutting down an instance hosting this game server.
 //It gives this game server a chance to save its state, communicate with
 services, etc., before being shut down.
 //In this case, we simply tell GameLift we are indeed going to shutdown.
 ProcessParameters->OnTerminate.BindLambda([=]()
 {
 UE_LOG(GameServerLog, Log, TEXT("Game Server Process is terminating"));
 GameLiftSdkModule->ProcessEnding();
 });

 //This is the HealthCheck callback.
 //GameLift will invoke this callback every 60 seconds or so.
 //Here, a game server might want to check the health of dependencies and such.
 //Simply return true if healthy, false otherwise.
 //The game server has 60 seconds to respond with its health status. GameLift
 will default to 'false' if the game server doesn't respond in time.
 //In this case, we're always healthy!
 ProcessParameters->OnHealthCheck.BindLambda([]()
 {
 UE_LOG(GameServerLog, Log, TEXT("Performing Health Check"));
 return true;
 });

 //GameServer.exe -port=7777 LOG=server.mylog
 ProcessParameters->port = FURL::UrlConfig.DefaultPort;

Set up local testing with Anywhere 154

Amazon GameLift Developer Guide

 TArray<FString> CommandLineTokens;
 TArray<FString> CommandLineSwitches;

 FCommandLine::Parse(FCommandLine::Get(), CommandLineTokens,
 CommandLineSwitches);

 for (FString SwitchStr : CommandLineSwitches)
 {
 FString Key;
 FString Value;

 if (SwitchStr.Split("=", &Key, &Value))
 {
 if (Key.Equals("port"))
 {
 ProcessParameters->port = FCString::Atoi(*Value);
 }
 }
 }

 //Here, the game server tells GameLift where to find game session log files.
 //At the end of a game session, GameLift uploads everything in the specified
 //location and stores it in the cloud for access later.
 TArray<FString> Logfiles;
 Logfiles.Add(TEXT("GameServerLog/Saved/Logs/GameServerLog.log"));
 ProcessParameters->logParameters = Logfiles;

 //The game server calls ProcessReady() to tell GameLift it's ready to host game
 sessions.
 UE_LOG(GameServerLog, Log, TEXT("Calling Process Ready..."));
 FGameLiftGenericOutcome ProcessReadyOutcome = GameLiftSdkModule-
>ProcessReady(*ProcessParameters);

 if (ProcessReadyOutcome.IsSuccess())
 {
 UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_GREEN);
 UE_LOG(GameServerLog, Log, TEXT("Process Ready!"));
 UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_NONE);
 }
 else
 {
 UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_RED);
 UE_LOG(GameServerLog, Log, TEXT("ERROR: Process Ready Failed!"));
 FGameLiftError ProcessReadyError = ProcessReadyOutcome.GetError();

Set up local testing with Anywhere 155

Amazon GameLift Developer Guide

 UE_LOG(GameServerLog, Log, TEXT("ERROR: %s"),
 *ProcessReadyError.m_errorMessage);
 UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_NONE);
 }

 UE_LOG(GameServerLog, Log, TEXT("InitGameLift completed!"));
#endif
}

Integrate your client game map

The startup game map contains blueprint logic and UI elements that already include basic code
to request game sessions and use connection information to connect to a game session. You can
use the map as is or modify these as needed. Use the startup game map with other game assets,
such as the Third Person template project provided by Unreal Engine. These assets are available
in Content Browser. You can use them to test the plugin's deployment workflows, or as a guide to
create a custom backend service for your game.

The startup map has the following characteristics:

• It includes logic for both an Anywhere fleet and a managed EC2 fleet. When you run your client,
you can choose to connect to either fleet.

• Client functionality includes find a game session (SearchGameSessions()), create a new game
session (CreateGameSession()), and join a game session directly.

• It gets a unique player ID from your project's Amazon Cognito user pool (this is part of a
deployed Anywhere solution).

To use the startup game map

1. In the UE editor, open the Project Settings, Maps & Modes page, and expand the Default
Maps section.

2. For Editor Startup Map, select "StartupMap" from the dropdown list. You might need to
search for the file, which is located in ... > Unreal Projects/[project-name]/
Plugins/Amazon GameLift Plugin Content/Maps.

3. For Game Default Map, select the same "StartupMap" from the dropdown list.

Set up local testing with Anywhere 156

Amazon GameLift Developer Guide

4. For Server Default Map, select "ThirdPersonMap". This is a default map included in your game
project. This map is designed for two players in the game.

5. Open the details panel for the server default map. Set GameMode Override to "None".

6. Expand the Default Modes section, and set Global Default Server Game Mode to the game
mode you updated for your server integration.

After you've made these changes to your project, you're ready to build your game components.

Build your game components

1. Create new server and client target files

a. In your game project folder, go to the Source folder and find the Target.cs files.

b. Copy the file [project-name]Editor.Target.cs to two new files named [project-
name]Client.Target.cs and [project-name]Server.Target.cs.

c. Edit each of the new files to update the class name and target type values, as shown:

UnrealProjects > MyGame > Source > MyGameClient.Target.cs
// Copyright Epic Games, Inc. All Rights Reserved.

using UnrealBuildTool;
using System.Collections.Generic;

public class MyGameClientTarget : TargetRules
{
 public MyGameClientTarget(TargetInfo Target) : base(Target)
 {
 Type = TargetType.Client;
 DefaultBuildSettings = BuildSettingsVersion.V2;
 IncludeOrderVersion = EngineIncludeOrderVersion.Unreal5_1;
 ExtraModuleNames.Add("MyGame");
 }
}

UnrealProjects > MyGame > Source > MyGameServer.Target.cs
// Copyright Epic Games, Inc. All Rights Reserved.

using UnrealBuildTool;
using System.Collections.Generic;

Set up local testing with Anywhere 157

Amazon GameLift Developer Guide

public class MyGameServerTarget : TargetRules
{
 public MyGameServerTarget(TargetInfo Target) : base(Target)
 {
 Type = TargetType.Server;
 DefaultBuildSettings = BuildSettingsVersion.V2;
 IncludeOrderVersion = EngineIncludeOrderVersion.Unreal5_1;
 ExtraModuleNames.Add("MyGame");
 }
}

2. Update the .Build.cs file.

a. Open the .Build.cs file for your project. This file is located in UnrealProjects/
[project name]/Source/[project name]/[project name].Build.cs.

b. Update the ModuleRules class as shown in the following code sample.

public class MyGame : ModuleRules
{
 public GameLiftUnrealApp(TargetInfo Target)
 {
 PublicDependencyModuleNames.AddRange(new string[] { "Core", "CoreUObject",
 "Engine", "InputCore" });
 bEnableExceptions = true;

 if (Target.Type == TargetRules.TargetType.Server)
 {
 PublicDependencyModuleNames.AddRange(new string[]
 { "GameLiftServerSDK" });
 PublicDefinitions.Add("WITH_GAMELIFT=1");
 }
 else
 {
 PublicDefinitions.Add("WITH_GAMELIFT=0");
 }
 }
}

3. Rebuild your game project solution.

4. Open your game project in a source-built version of the Unreal Engine editor.

5. Do the following for both your client and server:

Set up local testing with Anywhere 158

Amazon GameLift Developer Guide

a. Choose a target. Go to Platforms, Windows and select one of the following:

• Server: [your-application-name]Server

• Client: [your-application-name]Client

b. Start the build. Go to Platform, Windows, Package Project.

Each packaging process generates an executable: [your-application-name]Client.exe or
[your-application-name]Server.exe.

In the plugin, set the paths to the client and server build executables on your local workstation.

Step 3: Connect to an Anywhere fleet

In this step, you designate an Anywhere fleet to use. An Anywhere fleet defines a collection of
compute resources, which can be located anywhere, for game server hosting.

• If the AWS account you're currently using has existing Anywhere fleets, open the Fleet name
dropdown field and choose a fleet. This dropdown only shows the Anywhere fleets in the AWS
Region for the currently active user profile.

• If there are no existing fleets—or you want to create a new one, choose Create new Anywhere
fleet and provide a fleet name.

After you've chosen an Anywhere fleet for your project, Amazon GameLift verifies that fleet status
is active ad displays the fleet ID. You can track progress of this request in the Unreal editor's output
log.

Step 4: Register your workstation

In this step, you register your local workstation as a compute resource in the new Anywhere fleet.

1. Enter a compute name for your local machine. If you add more than one compute in the fleet,
the names must be unique.

2. Provide an IP address for your local machine. This field defaults to your machine's public IP
address. You can also use localhost (127.0.0.1) as long as you're running your game client and
server on the same machine.

3. Choose Register compute. You can track progress of this request in the Unreal editor's output
log.

Set up local testing with Anywhere 159

Amazon GameLift Developer Guide

In response to this action, Amazon GameLift verifies that it can connect to the compute and returns
information about the newly registered compute. It also creates the console arguments that your
game executables need when initializing communication with the Amazon GameLift service.

Step 5: Generate auth token

Game server processes that are running on your Anywhere compute need an authentication token
to make calls to the GameLift service. The plugin automatically generates and stores an auth token
for the Anywhere fleet whenever you launch the game server from the plugin. The auth token
value is stored as a command line argument, which your server code can retrieve at runtime.

You do not have to take any action in this step.

Step 6: Launch game

At this point, you've completed all of the tasks needed to launch and play your multiplayer game
on a local workstation using Amazon GameLift.

1. Launch your game server. The game server will notify Amazon GameLift when it is ready to host
game sessions.

2. Launch your game client and use the new functionality to start a new game session. This request
is sent to Amazon GameLift via the new backend service. In response, Amazon GameLift, calls
the game server, running on your local machine, to start a new game session. When the game
session is ready to accept players, Amazon GameLift provides connection information for the
game client to join the game session.

Plugin for Unreal: Deploy your game to managed EC2 fleets

In this workflow, you use the plugin to modify your game for hosting on cloud-based compute
resources managed by Amazon GameLift. You add client and server game code for Amazon
GameLift functionality, then upload your server build to the Amazon GameLift service for
deployment to the cloud-based resources. When this workflow is complete, you'll have a working
game client that can connect to your game servers in the cloud.

To start the Amazon GameLift managed Amazon EC2 workflow:

• In the Unreal editor main toolbar, choose the Amazon GameLift menu, and select Host with
Managed EC2. This action opens the plugin page Deploy Amazon EC2 Fleet, which presents a
six-step process to integrate, build, deploy, and launch your game components.

Deploy your game to managed Amazon EC2 fleets 160

Amazon GameLift Developer Guide

Step 1: Set your profile

Choose the profile you want to use when following this workflow. The profile you select impacts all
steps in the workflow. All resources you create are associated with the profile's AWS account and
are placed in the profile's default AWS Region. The profile user's permissions determine your access
to AWS resources and actions.

1. Select a profile from the dropdown list of available profiles. If you don't have a profile yet or
want to create a new one, go to the Amazon GameLift menu and choose Set AWS User Profiles.

2. If bootstrap status is not "Active", choose Bootstrap profile and wait for the status to change to
"Active".

Step 2: Set up your game code

In this step, you make a series of updates to your client and server code to add hosting
functionality. If you haven't already set up a source-built version of the Unreal editor, the plugin
provides links to instructions and source code.

If you integrated your game for use with an Anywhere fleet, you don't need to make any changes
to your game code. If you're using the startup game map, this works with EC2 deployments also.

• Set up your game code (Anywhere)

• Build your game components

After building your game server, complete the following tasks to prepare it for uploading to
Amazon GameLift.

To package your server build for cloud deployment

In the WindowsServer folder, where the Unreal editor packages your server build files by default,
make the following additions

1. Copy the install script, included in the plugin download, into the root of the WindowsServer
folder. Look for the file [project-name]/Plugins/Resources/CloudFormation/
extra_server_resources/install.bat. Amazon GameLift uses this file to install the
server build on each EC2 hosting resource.

Deploy your game to managed Amazon EC2 fleets 161

Amazon GameLift Developer Guide

2. Copy the VC_redist.x64.exe file, included in your Visual Studio installation, into the root
of the WindowsServer folder. This file is commonly located at C:/Program Files (x86)/
Microsoft Visual Studio/2019/Professional/VC/Redist/MSVC/v142.

3. Copy the OpenSSL DLLs for your game server build into the folder WindowsServer/MyGame/
Binaries/Win64. Make sure the DLLs are for same version used in the server build. Copy the
following files:

• libssl-3-x64.dll

• libcrypto-3-x64.dll

Step 3: Select deployment scenario

In this step, you choose the game hosting solution that you want to deploy at this time. You can
have multiple deployments of your game, using any of the scenarios.

• Single-region fleet: Deploys your game server to a single fleet of hosting resources in the
active profile's default AWS region. This scenario is a good starting point for testing your server
integration with AWS and server build configuration. It deploys the following resources:

• AWS fleet (On-Demand) with your game server build installed and running.

• Amazon Cognito user pool and client to enable players to authenticate and start a game.

• API gateway authorizer that links user pool with APIs.

• WebACl for throttling excessive player calls to API gateway.

• API gateway + Lambda function for players to request a game slot. This function calls
CreateGameSession() if none are available.

• API gateway + Lambda function for players to get connection info for their game request.

• FlexMatch fleet: Deploys your game server to a set of fleets and sets up a FlexMatch matchmaker
with rules to create player matches. This scenario uses low-cost Spot hosting with a multi-fleet,
multi-location structure for durable availability. This approach is useful when you're ready to
start designing a matchmaker component for your hosting solution. In this scenario, you'll create
the basic resources for this solution, which you can customize later as needed. It deploys the
following resources:

• FlexMatch matchmaking configuration and matchmaking rule set to accept player requests
and form matches.

• Three AWS fleets with your game server build installed and running in multiple locations.
Includes two Spot fleets and one On-Demand fleet as a backup.

Deploy your game to managed Amazon EC2 fleets 162

Amazon GameLift Developer Guide

• AWS game session placement queue that fulfills requests for proposed matches by finding
the best possible hosting resource (based on viability, cost, player latency, etc.) and starting a
game session.

• Amazon Cognito user pool and client to enable players to authenticate and start a game.

• API gateway authorizer that links user pool with APIs.

• WebACl for throttling excessive player calls to API gateway.

• API gateway + Lambda function for players to request a game slot. This function calls
StartMatchmaking().

• API gateway + Lambda function for players to get connection info for their game request.

• Amazon DynamoDB tables to store matchmaking tickets for players and game session
information. .

• SNS topic + Lambda function to handle GameSessionQueue events.

Step 4: Set game parameters

In this step, you describe your game for uploading to AWS .

• Server build name: Provide a meaningful name for your game server build. AWS uses this name
to refer to the copy of your server build that's uploaded and used for deployments.

• Server build OS: Enter the operating system that your server is built to run on. This tells AWS
what type of compute resources to use to host your game.

• Game server folder: Identify the path to your local server build folder.

• Game server build: Identify the path to the game server executable.

• Game client path: Identify the path to the game client executable.

• Client configuration output: This field needs to point to a folder in your client build that contains
your AWS configuration. Look for it in the following location: [client-build]/[project-
name]/Content/CloudFormation.

Step 5: Deploy scenario

In this step, you deploy your game to a cloud hosting solution based on the deployment scenario
you chose. This process can take several minutes while AWS validates your server build, provisions
hosting resources, installs your game server, launches server processes, and gets them ready to
host game sessions.

Deploy your game to managed Amazon EC2 fleets 163

Amazon GameLift Developer Guide

To start deployment, choose Deploy CloudFormation. You can track the status of your game
hosting here. For more detailed information, you can sign in to the AWS Management console for
AWS and view event notifications. Be sure to sign in using the same account, user, and AWS Region
as the active user profile in the plugin.

When deployment is complete, you have your game server installed on an AWS EC2 instance. At
least one server process is running and ready to start a game session.

Step 6: Launch client

At this point, you've completed all of the tasks needed to launch and play your multiplayer game
hosted with Amazon GameLift. To play the game, launch an instance of you game client.

If you deployed the single fleet scenario, you can open a single client instance with one player,
enter the server map and move around. Open additional instances of the game client to add a
second player to the same server game map.

If you deployed the FlexMatch scenario, the solution waits for at least two clients to be queued for
game session placement before the players can enter the server map.

Set up for iterative development with Amazon GameLift
Anywhere

Amazon GameLift provides tools and solutions to help you set up a hosted test environment for
use during game development. With these tools, you can create an environment that mirrors the
real-world player experience of managed hosting with Amazon GameLift and supports a rapid,
iterative development process.

With a separate test environment, you remove the overhead of an Amazon GameLift managed
fleet during testing. You no longer have to upload each new game server build iteration, create a
new fleet for it, and then wait 15+ minutes to it to activate. Instead, you can create a new build,
quickly update the test fleet with the new build, start it, and commence testing.

Using an Amazon GameLift Anywhere fleet, you can set up a test environment using a local device,
such as your development workstation. You can also set up a test environment using a cloud-based
hosting resource.

Set up an Anywhere test environment to develop and test a range of scenarios, including these:

Set up for iterative development 164

Amazon GameLift Developer Guide

• Test your game server integration with the Amazon GameLift server SDK. You can test even
without a working game client by using AWS CLI calls to start new game sessions and track game
session events.

• Test interactions between your game client, backend service, and the Amazon GameLift service
as you develop components for your game. Fine-tune the player experience for joining a game.

• Experiment with your FlexMatch matchmaker design. Try out rule set variations and other
matchmaking feature implementations. Set up and test matchmaking backfill.

• Try out other Amazon GameLift hosting features, such as runtime configuration settings (with
the Amazon GameLift Agent) for game server life cycle management.

• Quickly build, test, and repeat to validate all aspects of your game's player experience, including
multiplayer interactions, in a live, hosted environment.

Later, as you prepare your game for launch, you'll want to add Amazon GameLift managed fleets to
fine-tune your hosting configurations and test additional scenarios, including the following:

• Experiment with and test game session queue designs, including use of multi-location fleets,
Spot and On-Demand fleets, and multiple instance types.

• Try out game session placement options with managed fleets, including the use of optional
latency policies and fleet prioritization settings.

• Configure capacity scaling to meet player demand, using automatic or manual scaling options.

• Set up AWS CloudFormation with Amazon GameLift managed fleets to manage your hosting
resources long term.

Topics

• Build a cloud-based test environment

• Set up local testing with Amazon GameLift Anywhere

• Work with the Amazon GameLift Agent and Amazon GameLift Anywhere

• Test your integration using Amazon GameLift Local

Set up for iterative development 165

Amazon GameLift Developer Guide

Build a cloud-based test environment

Note

This topic covers iterative testing for games that are integrated with the Amazon GameLift
server SDK version 5.x. If your game uses server SDK version 4.x or earlier, see Test your
integration using Amazon GameLift Local.

Use an Amazon GameLift Anywhere fleet to iteratively build and test your game components
in a cloud-based hosted environment. Create an Anywhere fleet with hosting resources and a
connection to the Amazon GameLift service, run your game servers on them, and test game
functionality as needed.

Deploy an Anywhere fleet with the Amazon GameLift Agent

If your game server build is integrated with Amazon GameLift SDK 5.x or later, you can deploy it
to a cloud-based Anywhere fleet with the Amazon GameLift Agent. The Agent is a background
process that manages game server life cycle and other tasks on each compute in a fleet. These
tasks include registering the compute with the Amazon GameLift, acquiring an authentication
token, and starting/stopping game server processes based on a set of instructions. The Agent is
controlled by a fleet's runtime configuration, which you can update at any time during the life of
the fleet. (The Agent is automatically deployed to managed EC2 fleets.) For more information and
to download the Agent, see the Amazon GameLift GitHub repository.

Set up iterative testing with Amazon EC2

Use the guided workflow in this Amazon GameLift toolkit solution to set up a cloud-based hosting
environment that mirrors the managed hosting experience with Amazon GameLift.

The GitHub repository provides a set of scripts that automate most of the processes for setting
up a test environment with Amazon GameLift Anywhere and the Amazon GameLift Agent. It also
provides guidance for updating the environment whenever you have a new game server build to
test. You can run a single script that deploys a test environment with a sample game server build,
or you can walk through each step to set it up with your own game server build.

In this workflow, you'll work entirely in the AWS Management Console, using AWS CloudShell to
run scripts and complete command-line tasks.

Build a cloud-based test environment 166

https://github.com/aws/amazon-gamelift-agent
https://github.com/aws/amazon-gamelift-toolkit/tree/main/development-instance-with-amazon-gamelift-anywhere-and-gamelift-agent

Amazon GameLift Developer Guide

Note

For the tasks in this tutorial, you need an AWS account user with permissions for the
following services: Amazon GameLift, AWS CloudShell, Amazon S3, AWS Systems Manager,
Amazon EC2, and AWS Identity and Access Management. Users with admin-level access to
the AWS account already have the required permissions.

The workflow covers the following tasks:

• Package a game server build for Amazon GameLift. The workflow provides a script to build a
sample C++ game server, which has already been integrated with Amazon GameLift server SDK
5.x and is ready for hosting. Alternatively, you can work with your own game project if you've
completed integration.

• Set up an Amazon Simple Storage Service bucket to store game server builds and
dependencies. As you produce new versions of your game builds, you can store them in S3 and
use the scripts to update the Anywhere fleet for game testing.

• Get and build the Amazon GameLift Agent. The Agent manages game server processes on a
hosting resource based on your configuration. It uses the same logic and behaves identically to
Amazon GameLift managed EC2 hosting.

• Set up an Anywhere fleet for your hosting resources. With an Anywhere fleet you can use the
Amazon GameLift service for hosting resources that aren't managed by Amazon GameLift. In this
step, you'll also configure the runtime configuration, which instructs Amazon GameLift Agent
when and how to start game server processes.

• Set up an Amazon EC2 instance. This is your test environment for iterative testing. It is much
faster to use a standard EC2 instance instead of a fully managed Amazon GameLift instance
(which is optimized for production-level usage). With a standard EC2 instance, you can quickly
and continually update the game server as needed.

• Deploy your game server build and Amazon GameLift Agent to the Amazon EC2 instance. The
workflow provides a script that gets the latest version of your game build and all dependencies
and installs it on your EC2 instance. In this workflow, dependencies include the Amazon GameLift
Agent and the CloudWatch Agent.

• Start the Amazon GameLift Agent. Once installed, the Agent automatically starts and begins
executing instructions. These include:

• Register the EC2 instance as a compute in the Amazon GameLift Anywhere fleet.

Build a cloud-based test environment 167

Amazon GameLift Developer Guide

• Establish a WebSocket connection with the Amazon GameLift service and get the latest
runtime configuration.

• Start up game server processes based on the instructions in the runtime configuration. In this
workflow, the Agent is instructed to start a single process of the game server executable.

• Test your game scenarios. With the test environment set up and your latest game server build
installed, you can commence testing. The workflow walks through several steps for testing
including starting a game session. Access CloudWatch game server logs to track progress as the
game session starts up and prepares to accept players.

As you develop your game components, including a game client and client-side backend service,
you can include these in your test scenarios. Use a game client to request a game session,
retrieve connection info from the Amazon GameLift service, and then connect directly to the
game session.

• Deploy a new game server build and repeat tests. As you develop your game, you can generate
new game server builds, then quickly deploy them to the EC2 test environment for testing.
Upload them to the Amazon S3 bucket and then use the workflow scripts to update the test
environment.

Transition your game to Amazon GameLift managed fleets

After you've completed development testing and you're ready to prepare for launch, this is a good
time to switch over to Amazon GameLift managed fleets. Use managed fleets to fine-tune and
test your game hosting resources. Implement your game session placement solution (queues and
matchmakers), select optimum hosting hardware (including Spot fleets) and locations, and choose
a strategy for scaling capacity. You might also want to start using AWS CloudFormation to more
efficiently manage the life cycles of all your game hosting resources, including fleets, queues, and
matchmakers.

It requires minimal effort to transition from a cloud-based Anywhere test fleet to an Amazon
GameLift managed fleet. You don't need to change any game code, and you can reuse the same
queues and matchmakers. Do the following tasks:

• Create an Amazon GameLift build resource. With an Anywhere test fleet, you have to manually
deploy your game server build and dependencies to each fleet compute. With a managed fleet,
upload your game build package to Amazon GameLift, which automatically deploys it to all fleet
computes. See Upload a custom server build to Amazon GameLift for details on packaging your
game build files and creating a build resource with files in an Amazon S3 bucket.

Build a cloud-based test environment 168

Amazon GameLift Developer Guide

• Create a managed fleet. Create a fleet using the console or AWS CLI, specifying an EC2 managed
fleet. This type of fleet requires additional configuration settings, including specifying the build
resource and instance types. You can use the same runtime configuration to manage game server
life cycle on each fleet compute. See Create a Amazon GameLift managed fleet for details on
creating a managed fleet.

• Redirect fleet aliases (optional). If you set up aliases to use with your Anywhere fleets, you can
reuse the same aliases for your managed fleets. See Add an alias to a Amazon GameLift fleet for
details on creating or updating an alias.

Set up local testing with Amazon GameLift Anywhere

Note

This topic covers local testing for games that are integrated with the Amazon GameLift
server SDK version 5.x. If your game uses server SDK version 4.x or earlier, see Test your
integration using Amazon GameLift Local.

Use an Amazon GameLift Anywhere fleet and your own hardware to iteratively build and test your
game components in a simulated hosted environment. Set up an Anywhere fleet and register a
local device to establish a connection to the Amazon GameLift service. Install your game server
build onto the device, start a game server process, and test game functionality as needed. You can
update your game server build as often as needed to test each new build iteration.

With an Anywhere fleet, you can test using the AWS CLI or with test scripts. If you've integrated
a game client with Amazon GameLift, you can run the client on the same local device or on a
different device.

Testing locally with an Anywhere fleet is particularly useful for testing your game server
integration with Amazon GameLift. You have full visibility into all hosting activity on the local
machine, as well as events and logging data.

Note

Are you using the Amazon GameLift plugin for Unreal Engine or Unity? These tools
include guided workflows for setting up local testing with an Anywhere fleet. Follow the

Set up local testing 169

Amazon GameLift Developer Guide

documentation for Plugin for Unity: Set up local testing with Amazon GameLift Anywhere
or Plugin for Unreal: Set up local testing with Amazon GameLift Anywhere.

Topics

• Set up a local Anywhere fleet

• Update and install your game server

• Test game session activity

• Iterate on your game server

• Transition your game to Amazon GameLift managed fleets

Set up a local Anywhere fleet

Follow these steps to create an Anywhere fleet for your local workstation. For detailed instructions
using either the AWS CLI or the AWS Management Console for Amazon GameLift, see Create an
Amazon GameLift Anywhere fleet.

To create the Anywhere fleet

1. Create a custom location for your local workstation. (AWS CLI or console). A custom
location is simply a label for the compute resource you plan to include in your Anywhere fleet.
Custom location names must start with custom-. For example: custom-my_laptop. See
Create a custom location.

2. Create an Anywhere fleet (AWS CLI or console). In this step, create the fleet resource with the
custom location for your local workstation. See Create a fleet.

Make a note of the new fleet's ID or ARN value. You'll need this value for the next step.

3. Register your local workstation as a fleet compute (AWS CLI only). An Anywhere fleet must
have at least one compute resource to host your game servers. See Register your compute. To
add a compute to the fleet, you need the following information:

• A compute name. Each compute in a fleet must have a unique name.

• The Anywhere fleet identifier. You can use either the FleetID or FleetArn.

• The compute's connection info. Specify either an IpAddress or DnsName. This is how
Amazon GameLift and game clients will connect to game servers.

• A custom location in the Anywhere fleet.

Set up local testing 170

Amazon GameLift Developer Guide

Make a note of the GameLiftServiceSdkEndpoint return value. You'll need this value when
you update your game server to run on an Anywhere fleet.

Update and install your game server

This task assumes that you've already integrated a game server build with Amazon GameLift server
SDK 5.x. The integration process involves adding code to your game server so that it can interact
with the Amazon GameLift service to start and manage game sessions.

For an Anywhere fleet, you need to manually configure certain game server settings. On an
Amazon GameLift managed fleet, these settings are configured automatically.

To prepare your game server for an Anywhere fleet

1. Get an authentication token. Your game server must include an authentication token with
every communication with the Amazon GameLift service. Amazon GameLift auth tokens are
short-lived and must be regularly refreshed.

As a best practice, create a script to complete the following tasks:

• Call the AWS CLI action get-compute-auth-token.

• Store the returned token value where game server processes can retrieve it, such as in an
environment variable on the local compute.

Install the script with your game server on the compute. Set the script to run before starting
the first game server process. While game server processes are active, run the script regularly
to maintain a valid auth token. All game server processes on the compute can use the same
auth token.

2. Update your Amazon GameLift game server code. When you integrated your game server
code with the Amazon GameLift server SDK, you added a call to the action InitSdk(). When
the game server runs on an Anywhere fleet, this call requires additional server parameters.
For more information, see Initialize the server process and the Amazon GameLift server SDK
reference for your development language. The server parameters are:

• webSocketUrl – Set this parameter to the GameLiftServiceSdkEndpoint value that
was returned in response to your register-compute call.

Set up local testing 171

Amazon GameLift Developer Guide

• hostId – Set this parameter to the compute name that you specified in your register-
compute call.

• fleetId – Set this parameter to the ID of the Anywhere fleet.

• authToken – Set this parameter to the token that is returned in response to the get-
compute-auth-token call.

• processId – Set this parameter to identify a game server process that's running on the
local compute. Each concurrent game server process must have a unique process ID.

As a best practice, set webSocketUrl, hostId, fleetId, and authToken as environment
variables on the local compute. All server processes that run on the compute use these values.

3. Install the game server build on the local compute. Include all dependencies needed to run the
game server.

4. Start one or more game server processes running on the local compute. When the game server
process calls the server SDK action ProcessReady(), the process is ready to host a game
session.

Test game session activity

Test your game server integration by working with game sessions. If you don't have a game client
integrated with Amazon GameLift functionality, you can use the AWS CLI to start game sessions.
Try the following scenarios:

• Create a game session. Call create-game-session command (or the CreateGameSession API
operation). Specify your Anywhere fleet's ID and custom location. This call returns a unique
identifier for the new game session.

• Check game session status. Call describe-game-sessions command (or the
DescribeGameSessions API action). Specify the game session ID. This call returns detailed game
session information, including the game session status. Game sessions in Active status are ready
for players to connect. To get a list of all game sessions for the fleet, call list-game-sessions
command (or the ListGameSessions API action).

• Connect to the game session. If your game client has the ability to join a game session, use the
connection information included in the game session information.

Set up local testing 172

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/create-game-session.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/describe-game-sessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessions.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/list-game-sessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_ListGameSessions.html

Amazon GameLift Developer Guide

Iterate on your game server

You can use the same Anywhere fleet and compute to test other versions of your game server
build.

1. Clean up your existing GameSession. If the game server process crashes or won't call
ProcessEnding(), Amazon GameLift cleans up the GameSession after the game server
stops sending health checks.

2. Generate a new game server build. Make changes to your game server and package an
revised build.

3. Update the game server build on your local compute. Your previous Anywhere fleet is still
active and your laptop is still registered as a compute resource in the fleet.

4. Get an updated authorization token. Call the get-compute-auth-token CLI command and
store the token on the local compute.

5. Start one or more game server processes running on the local compute. When the game
server process calls ProcessReady(), it's ready to be used for testing.

Transition your game to Amazon GameLift managed fleets

After you've completed development testing and you're ready to prepare for launch, this is a good
time to switch over to Amazon GameLift managed fleets. Use managed fleets to fine-tune and
test your game hosting resources. Implement your game session placement solution (queues and
matchmakers), select optimum hosting hardware (including Spot fleets) and locations, and choose
a strategy for scaling capacity. You might also want to start using AWS CloudFormation to more
efficiently manage the life cycles of all your game hosting resources, including fleets, queues, and
matchmakers.

You need to make a few minor modifications to transition from a local Anywhere test fleet to
an Amazon GameLift managed fleet. You can reuse the same queues and matchmakers. Do the
following tasks:

• Change the game server code call to InitSdk(). Remove the server parameters. For a
managed fleet, Amazon GameLift automatically tracks this information.

• Create an Amazon GameLift build resource. With an Anywhere test fleet, you have to manually
deploy your game server build and dependencies to each fleet compute. With a managed fleet,
you create and upload your game build package to Amazon GameLift, which automatically

Set up local testing 173

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/get-compute-auth-token.html

Amazon GameLift Developer Guide

deploys it to all fleet computes. See Upload a custom server build to Amazon GameLift for
details on packaging your game build files and creating a build resource with files in an Amazon
S3 bucket. Don't include scripts that register a compute and get an authentication token, as
Amazon GameLift automatically handles these tasks with managed fleets.

• Create a managed fleet. Create a fleet using the console or AWS CLI, specifying an EC2 managed
fleet. This type of fleet requires additional configuration settings, including specifying the build
resource and instance types. You alls need to set up a runtime configuration to manage game
server life cycle on each fleet compute. See Create a Amazon GameLift managed fleet for details
on creating a managed fleet.

• Redirect fleet aliases (optional). If you set up aliases to use with your Anywhere fleets, you can
reuse the same aliases for your managed fleets. See Add an alias to a Amazon GameLift fleet for
details on creating or updating an alias.

Work with the Amazon GameLift Agent and Amazon GameLift
Anywhere

The Amazon GameLift Agent is an on-box agent designed to oversee game server processes for
game servers that are integrated with Amazon GameLift server SDK 5.x or later. The Amazon
GameLift agent provides automated process management, hosting management, and logging.

When deployed to a compute, the Amazon GameLift Agent first completes the following tasks:

• Registers the compute with an Amazon GameLift Anywhere fleet using the RegisterCompute API.

• Calls the GetComputeAuthToken API to fetch an authorization token and stores it for use by
server processes that are running on the compute.

• Establishes a WebSocket connection to the Amazon GameLift service.

• Retrieves the latest version of the fleet's runtime configuration and starts server processes based
on the runtime instructions.

Source code and build instructions for the Amazon GameLift Agent are available in the Amazon
GameLift Agent GitHub.

About the Agent

The Amazon GameLift Agent registers a compute resource for an existing Amazon GameLift fleet
using the RegisterCompute API. The application also calls the GetComputeAuthToken API to fetch

Amazon GameLift Agent 174

https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAuthToken.html
https://github.com/aws/amazon-gamelift-agent
https://github.com/aws/amazon-gamelift-agent
https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAuthToken.html

Amazon GameLift Developer Guide

an authorization token for the compute resource, using it to make a web socket connection to the
Amazon GameLift service.

The Amazon GameLift Agent is designed to handle the following for your fleets:

Process management

• Starts new server processes as defined in a fleet's RuntimeConfiguration. The Agent
periodically requests updated runtime configurations from the Amazon GameLift service.

• Terminates processes when a process doesn't activate in time.

• Sends heartbeats to Amazon GameLift. Regular heartbeats are required. If the Agent fails to
send heartbeats, the compute might be marked as stale.

• Reports to Amazon GameLift when a server process terminates.

• Emits fleet events for processes, including:

• SERVER_PROCESS_INVALID_PATH: The game server process launch parameters were
incorrectly configured.

• SERVER_PROCESS_TERMINATED_UNHEALTHY: The game server process did not report a valid
health check within 3 minutes of activating and was therefore terminated.

• SERVER_PROCESS_FORCE_TERMINATED: The game server process did not exit cleanly after
OnProcessTerminate() was sent within 30 seconds.

• SERVER_PROCESS_CRASHED: A game server process crashed for some reason.

Host management

• Receives messages from the Amazon GameLift service to shut down the compute.

• Triggers the compute to be terminated by Amazon GameLift.

Logging

• Uploads logs to an Amazon S3 bucket in your AWS account.

Amazon GameLift Agent 175

Amazon GameLift Developer Guide

Test your integration using Amazon GameLift Local

Note

This topic covers testing for games that are integrated with the Amazon GameLift server
SDK version 4.x or earlier only. Your server SDK package includes a compatible version of
Amazon GameLift Local. If you're using server SDK version 5.x, see Set up local testing with
Amazon GameLift Anywhere for local testing with an Amazon GameLift Anywhere fleet.

Use Amazon GameLift Local to run a limited version of the managed Amazon GameLift service on
a local device and test your game integration against it. This tool is useful when doing iterative
development on your game integration. The alternative—uploading each new build to Amazon
GameLift and configuring a fleet to host your game—can take several or more each time.

With Amazon GameLift Local, you can verify the following:

• Your game server is correctly integrated with the Server SDK and is properly communicating with
the Amazon GameLift service to start new game sessions, accept new players, and report health
and status.

• Your game client is correctly integrated with the AWS SDK for Amazon GameLift and is able to
retrieve information on existing game sessions, start new game sessions, join players to games
and connect to the game session.

Amazon GameLift Local is a command-line tool that starts a self-contained version of the
managed Amazon GameLift service. Amazon GameLift Local also provides a running event log of
server process initialization, health checks, and API calls and responses. Amazon GameLift Local
recognizes a subset of the AWS SDK actions for Amazon GameLift. You can make calls from the
AWS CLI or from your game client. All API actions perform locally just as they do in the Amazon
GameLift web service.

Each server process should only host a single game session. The game session is the executable
you use to connect to Amazon GameLift Local. When the game session is completed, you should
call GameLiftServerSDK::ProcessEnding and then exit the process. When testing locally
with Amazon GameLift Local, you can start multiple server processes. Each process will connect to
Amazon GameLift Local. You can then create one game session for each server process. When your

Set up local testing (legacy) 176

Amazon GameLift Developer Guide

game session ends, your game server process should exit. You must then manually start another
server process.

Amazon GameLift local supports the following APIs:

• CreateGameSession

• CreatePlayerSession

• CreatePlayerSessions

• DescribeGameSessions

• DescribePlayerSessions

Set up Amazon GameLift local

Amazon GameLift Local is provided as an executable .jar file bundled with the Server SDK. It can
be run on Windows or Linux and used with any Amazon GameLift-supported language.

Before running Local, you must also have the following installed.

• A build of the Amazon GameLift Server SDK version 3.1.5 to 4.x.

• Java 8

Test a game server

If you want to test your game server only, you can use the AWS CLI to simulate game client calls to
the Amazon GameLift Local service. This verifies that your game server is performing as expected
with the following:

• The game server launches properly and initializes the Amazon GameLift Server SDK.

• As part of the launch process, the game server notifies Amazon GameLift that the server is ready
to host game sessions.

• The game server sends health status to Amazon GameLift every minute while running.

• The game server responds to requests to start a new game session.

1. Start Amazon GameLift Local.

Open a command prompt window, navigate to the directory containing the file
GameLiftLocal.jar and run it. By default, Local listens for requests from game clients on

Set up local testing (legacy) 177

https://aws.amazon.com/gamelift/getting-started/

Amazon GameLift Developer Guide

port 8080. To specify a different port number, use the -p parameter, as shown in the following
example:

java -jar GameLiftLocal.jar -p 9080

Once Local starts, you see logs indicating that two local servers were started, one listening
for your game server and one listening for your game client or the AWS CLI. Logs continue
to report activity on the two local servers, including communication to and from your game
components.

2. Start your game server.

Start your Amazon GameLift-integrated game server locally. You don't need to change the
endpoint for the game server.

In the Local command prompt window, log messages indicate that your game server
has connected to the Amazon GameLift Local service. This means that your game server
successfully initialized the Amazon GameLift Server SDK (with InitSDK()). It has called
ProcessReady() with the log paths shown and, if successful, is ready to host a game session.
While the game server is running, Amazon GameLift logs each health status report from the
game server. The following log messaging example shows a successfully integrated game
server:

16:50:53,217 INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - SDK
 connected: /127.0.0.1:64247
16:50:53,217 INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - SDK pid is 17040,
 sdkVersion is 3.1.5 and sdkLanguage is CSharp
16:50:53,217 INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - NOTE: Only SDK
 versions 3.1.5 and above are supported in GameLiftLocal!
16:50:53,451 INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - onProcessReady
 received from: /127.0.0.1:64247 and ackRequest requested? true
16:50:53,543 INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - onProcessReady
 data: logPathsToUpload: "C:\\game\\logs"
logPathsToUpload: "C:\\game\\error"
port: 1935

16:50:53,544 INFO || - [HostProcessManager] nioEventLoopGroup-3-1 - Registered new
 process true, true,
16:50:53,558 INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - onReportHealth
 received from /127.0.0.1:64247 with health status: healthy

Set up local testing (legacy) 178

Amazon GameLift Developer Guide

Potential error and warning messages include the following:

• Error: "ProcessReady did not find a process with pID: <process ID>! Was InitSDK()
invoked?"

• Warning: "Process state already exists for process with pID: <process ID>! Is
ProcessReady(...) invoked more than once?"

3. Start the AWS CLI.

Once your game server successfully calls ProcessReady(), you can start making client
calls. Open another command prompt window and start the AWS CLI tool. The AWS CLI by
default uses the Amazon GameLift web service endpoint. You must override this with the Local
endpoint in every request using the --endpoint-url parameter, as shown in the following
example request.

AWS gamelift describe-game-sessions --endpoint-url http://localhost:9080 --fleet-
id fleet-123

In the AWS CLI command prompt window, AWS gamelift commands result in responses as
documented in the AWS CLI Command Reference.

4. Create a game session.

With the AWS CLI, submit a CreateGameSession() request. The request should follow the
expected syntax. For Local, the FleetId parameter can be set to any valid string (^fleet-\S
+).

AWS gamelift create-game-session --endpoint-url http://localhost:9080 --maximum-
player-session-count 2 --fleet-id
 fleet-1a2b3c4d-5e6f-7a8b-9c0d-1e2f3a4b5c6d

In the Local command prompt window, log messages indicate that Amazon GameLift Local has
sent your game server an onStartGameSession callback. If a game session is successfully
created, your game server responds by invoking ActivateGameSession.

13:57:36,129 INFO || - [SDKInvokerImpl]
 Thread-2 - Finished sending event to game server to start a game session:

Set up local testing (legacy) 179

https://docs.aws.amazon.com/cli/latest/reference/gamelift
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html

Amazon GameLift Developer Guide

 arn:aws:gamelift:local::gamesession/
fleet-1a2b3c4d-5e6f-7a8b-9c0d-1e2f3a4b5c6d/gsess-ab423a4b-b827-4765-
aea2-54b3fa0818b6.
 Waiting for ack response.13:57:36,143 INFO || - [SDKInvokerImpl]
 Thread-2 - Received ack response: true13:57:36,144 INFO || -
 [CreateGameSessionDispatcher] Thread-2 - GameSession with id:
 arn:aws:gamelift:local::gamesession/
fleet-1a2b3c4d-5e6f-7a8b-9c0d-1e2f3a4b5c6d/gsess-ab423a4b-b827-4765-
aea2-54b3fa0818b6
 created13:57:36,227 INFO || - [SDKListenerImpl]
 nioEventLoopGroup-3-1 - onGameSessionActivate received
 from: /127.0.0.1:60020 and ackRequest
 requested? true13:57:36,230 INFO || - [SDKListenerImpl]
 nioEventLoopGroup-3-1 - onGameSessionActivate data: gameSessionId:
 "arn:aws:gamelift:local::gamesession/
fleet-1a2b3c4d-5e6f-7a8b-9c0d-1e2f3a4b5c6d/gsess-abcdef12-3456-7890-abcd-
ef1234567890"

In the AWS CLI window, Amazon GameLift responds with a game session object including a
game session ID. Notice that the new game session's status is Activating. The status changes
to Active once your game server invokes ActivateGameSession. If you want to see the changed
status , use the AWS CLI to call DescribeGameSessions().

{
 "GameSession": {
 "Status": "ACTIVATING",
 "MaximumPlayerSessionCount": 2,
 "FleetId": "fleet-1a2b3c4d-5e6f-7a8b-9c0d-1e2f3a4b5c6d",
 "GameSessionId": "arn:aws:gamelift:local::gamesession/
fleet-1a2b3c4d-5e6f-7a8b-9c0d-1e2f3a4b5c6d/gsess-abcdef12-3456-7890-abcd-
ef1234567890",
 "IpAddress": "127.0.0.1",
 "Port": 1935
 }
}

Test a game server and client

To check your full game integration, including connecting players to games, you can run both your
game server and client locally. This allows you to test programmatic calls from your game client to
the Amazon GameLift Local. You can verify the following actions:

Set up local testing (legacy) 180

Amazon GameLift Developer Guide

• The game client is successfully making AWS SDK requests to the Amazon GameLift Local service,
including to create game sessions, retrieve information on existing game sessions, and create
player sessions.

• The game server is correctly validating players when they try to join a game session. For
validated players, the game server may retrieve player data (if implemented).

• The game server reports a dropped connection when a player leaves the game.

• The game server reports ending a game session.

1. Start Amazon GameLift Local.

Open a command prompt window, navigate to the directory containing the file
GameLiftLocal.jar and run it. By default, Local listens for requests from game clients on
port 8080. To specify a different port number, use the -p parameter, as shown in the following
example.

./gamelift-local -p 9080

Once Local starts, you see logs showing that two local servers were started, one listening for
your game server and one listening for your game client or the AWS CLI.

2. Start your game server.

Start your Amazon GameLift-integrated game server locally. See Test a game server for more
detail on message logs.

3. Configure your game client for Local and start it.

To use your game client with the Amazon GameLift Local service, you must make the following
changes to your game client's setup, as described in Set up Amazon GameLift on a backend
service:

• Change the ClientConfiguration object to point to your Local endpoint, such as
http://localhost:9080.

• Set a target fleet ID value. For Local, you do not need a real fleet
ID; set the target fleet to any valid string (^fleet-\S+), such as
fleet-1a2b3c4d-5e6f-7a8b-9c0d-1e2f3a4b5c6d.

• Set AWS credentials. For Local, you do not need real AWS credentials; you can set the access
key and secret key to any string.

Set up local testing (legacy) 181

Amazon GameLift Developer Guide

In the Local command prompt window, once you start the game client, log messages should
indicate that it has initialized the GameLiftClient and is successfully communicated with
the Amazon GameLift service.

4. Test game client calls to the Amazon GameLift service.

Verify that your game client is successfully making any or all of the following API calls:

• CreateGameSession()

• DescribeGameSessions()

• CreatePlayerSession()

• CreatePlayerSessions()

• DescribePlayerSessions()

In the Local command prompt window, only calls to CreateGameSession() result in
log messages. Log messages show when Amazon GameLift Local prompts your game
server to start a game session (onStartGameSession callback) and gets a successful
ActivateGameSession when your game server invokes it. In the AWS CLI window, all API
calls result in responses or error messages as documented.

5. Verify that your game server is validating new player connections.

After creating a game session and a player session, establish a direct connection to the game
session.

In the Local command prompt window, log messages should show that the game server has
sent an AcceptPlayerSession() request to validate the new player connection. If you use
the AWS CLI to call DescribePlayerSessions(), the player session status should change
from Reserved to Active.

6. Verify that your game server is reporting game and player status to the Amazon GameLift
service.

For Amazon GameLift to manage player demand and correctly report metrics, your game
server must report various statuses back to Amazon GameLift. Verify that Local is logging
events related to following actions. You may also want to use the AWS CLI to track status
changes.

Set up local testing (legacy) 182

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribePlayerSessions.html

Amazon GameLift Developer Guide

• Player disconnects from a game session – Amazon GameLift Local log messages
should show that your game server calls RemovePlayerSession(). An AWS CLI call to
DescribePlayerSessions() should reflect a status change from Active to Completed.
You might also call DescribeGameSessions() to check that the game session's current
player count decreases by one.

• Game session ends – Amazon GameLift Local log messages should show that your game
server calls TerminateGameSession().

Note

Previous guidance was to call TerminateGameSession() when ending a game
session. This method is deprecated with Amazon GameLift Server SDK v4.0.1. See
End a game session.

• Server process is terminated – Amazon GameLift Local log messages should show that
your game server calls ProcessEnding(). An AWS CLI call to DescribeGameSessions()
should reflect a status change from Active to Terminated (or Terminating).

Variations with local

When using Amazon GameLift Local, keep in mind the following:

• Unlike the Amazon GameLift web service, Local does not track a server's health status and
initiate the onProcessTerminate callback. Local simply stops logging health reports for the
game server.

• For calls to the AWS SDK, fleet IDs are not validated, and can be any string value that meets the
parameter requirements (^fleet-\S+).

• Game session IDs created with Local have a different structure. They include the string local, as
shown here:

arn:aws:gamelift:local::gamesession/fleet-123/gsess-56961f8e-
db9c-4173-97e7-270b82f0daa6

Set up local testing (legacy) 183

Amazon GameLift Developer Guide

Adding FlexMatch matchmaking

Use Amazon GameLift FlexMatch to add player matchmaking functionality to your Amazon
GameLift hosted games. You can use FlexMatch with either custom game servers or Realtime
Servers.

FlexMatch pairs the matchmaking service with a customizable rules engine. You design how to
match players together based on player attributes and game modes that make sense for your
game. FlexMatch manages the nuts and bolts of evaluating players who are looking for a game,
forming matches with one or more teams, and starting game sessions to host the matches.

To use the full FlexMatch service, you must have your hosting resources set up with queues.
Amazon GameLift uses queues to locate the best possible hosting locations for games across
multiple regions and computing types. In particular, Amazon GameLift queues can use latency
data, when provided by game clients, to place game sessions so that players experience the lowest
possible latency when playing.

For more information on FlexMatch including detailed help with integrating matchmaking into
your games, see these Amazon GameLift FlexMatch Developer Guide topics:

• How Amazon GameLift FlexMatch works

• FlexMatch integration steps

Get fleet data for a Amazon GameLift instance

There are some situations where your custom game build or Realtime Servers script may require
information about the Amazon GameLift fleet. For example, your game build or script might
include code to:

• Monitor activity based on fleet data.

• Roll up metrics to track activity by fleet data. (Many games use this data for LiveOps activities.)

• Provide relevant data to custom game services, such as for matchmaking, additional capacity
scaling, or testing.

Fleet information is available as a JSON file on each instance in the following locations:

• Windows: C:\GameMetadata\gamelift-metadata.json

Adding FlexMatch matchmaking 184

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-tasks.html

Amazon GameLift Developer Guide

• Linux: /local/gamemetadata/gamelift-metadata.json

The gamelift-metadata.json file includes the attributes of a Amazon GameLift fleet resource.

Example JSON file:

{
 "buildArn":"arn:aws:gamelift:us-west-2:123456789012:build/
build-1111aaaa-22bb-33cc-44dd-5555eeee66ff",
 "buildId":"build-1111aaaa-22bb-33cc-44dd-5555eeee66ff",
 "fleetArn":"arn:aws:gamelift:us-west-2:123456789012:fleet/
fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa",
 "fleetDescription":"Test fleet for Really Fun Game v0.8",
 "fleetId":"fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa",
 "fleetName":"ReallyFunGameTestFleet08",
 "fleetType":"ON_DEMAND",
 "instanceRoleArn":"arn:aws:iam::123456789012:role/S3AccessForGameLift",
 "instanceType":"c5.large",
 "serverLaunchPath":"/local/game/reallyfungame.exe"
}

Integrating games with Amazon GameLift Realtime Servers

This topic provides an overview of the managed Amazon GameLift with Realtime Servers solution.
The overview explains when this solution is a good fit for your game, and how Realtime Servers
supports multiplayer gaming.

For a complete roadmap to getting your game up and running, see Amazon GameLift managed
hosting roadmap.

Tip

To try out Amazon GameLift game server hosting, see Getting started with Amazon
GameLift.

What are Realtime servers?

Realtime servers are lightweight, ready-to-go game servers that Amazon GameLift provides for
you to use with your multiplayer games. Realtime servers remove the development, testing, and

Integrating games with Realtime Servers 185

https://docs.aws.amazon.com/gamelift/latest/apireference/API_FleetAttributes.html

Amazon GameLift Developer Guide

deployment process of a custom game server. This solution can help minimize the time and effort
required to complete your game.

Key features

• Full network stack for game client and server interaction

• Core game server functionality

• Customizable server logic

• Live updates to Realtime configurations and server logic

• FlexMatch matchmaking

• Flexible control of hosting resources

Set up Realtime servers by creating a fleet and providing a configuration script. For more
information about creating Realtime servers and how to prepare your game client, see Prepare
your Realtime server.

How Realtime Servers manages game sessions

You can add custom logic for game session management by building it into the Realtime script.
You can write code to access server-specific objects, add event-driven logic using callbacks, or add
logic based on non-event scenarios.

How Realtime clients and servers interact

During a game session, game clients interact by sending messages to the Realtime server through
a backend service. The backend service then relays the messages among game clients to exchange
activity, game state, and relevant game data.

In addition, you can customize how clients and servers interact by adding game logic to the
Realtime script. With custom game logic, a Realtime server might implement callbacks to start
event-driven responses.

Communication protocol

Realtime servers and connected game clients communicate through two channels: a TCP
connection for reliable delivery, and a UDP channel for fast delivery. When creating messages,
game clients choose which protocol to use depending on the nature of the message. Message
delivery is set to UDP by default. If a UDP channel isn't available, Amazon GameLift sends
messages using TCP as a fallback.

Managing game sessions 186

Amazon GameLift Developer Guide

Message content

Message content consists of two elements: a required operation code (opCode) and an optional
payload. A message's opCode identifies a particular player activity or game event, and the payload
provides additional data related to the operation code. Both of these elements are developer-
defined. Your game client acts based on the opCodes in the messages that it receives.

Player groups

Realtime Servers provides functionality to manage groups of players. By default, Amazon GameLift
places all players who connect to a game in an "all players" group. In addition, developers can set
up other groups for their games, and players can be members of multiple groups simultaneously.
Group members can send messages and share game data with all players in the group. One
possible use for groups is to set up player teams and manage team communication.

Realtime Servers with TLS certificates

With Realtime Servers, server authentication and data packet encryption are built into the service.
These security features are enabled when you turn on TLS certificate generation. When a game
client tries to connect with a Realtime server, the server automatically responds with the TLS
certificate, which the client validates. Amazon GameLift handles encryption using TLS for TCP
(WebSockets) communication and DTLS for UDP traffic.

Customizing a Realtime server

A Realtime server performs as a stateless relay server. The Realtime server relays packets of
messages and game data between the game clients connected to the game. However, the Realtime
server doesn't evaluate messages, process data, or perform any gameplay logic. Used in this way,
each game client maintains its own view of the game state and provides updates to other players
through the relay server. Each game client is responsible for incorporating these updates and
reconciling its own game state.

You can customize your servers by adding to the Realtime script functionality. With game logic, for
example, you can build a stateful game with a server-authoritative view of the game state.

Amazon GameLift defines a set of server-side callbacks for Realtime scripts. Implement these
callbacks to add event-driven functionality to your server. For example, you can:

• Authenticate a player when a game client tries to connect to the server.

Customizing a server 187

Amazon GameLift Developer Guide

• Validate whether a player can join a group upon request.

• Determine when to deliver messages from a certain player or to a target player, or perform
additional processing in response.

• Notify all players when a player leaves a group or disconnects from the server.

• View the content of game session objects or message objects, and use the data.

Deploying and updating Realtime Servers

A key advantage of Realtime Servers is the ability to update your scripts at any time. When you
update a script, Amazon GameLift distributes the new version to all hosting resources within
minutes. After Amazon GameLift deploys the new script, all new game sessions created after
that point will use the new script version. (Existing game sessions will continue to use the original
version.)

Get started integrating your game with Realtime Servers:

• Integrating a game client for Realtime Servers

• Creating a Realtime script

Integrating a game client for Realtime Servers

This topic describes how to prepare your game client to be able to join and participate in Amazon
GameLift-hosted game sessions.

There are two sets of tasks needed to prepare your game client:

• Set up your game client to acquire information about existing games, request matchmaking,
start new game sessions, and reserve game session slots for a player.

• Enable your game client to join a game session hosted on a Realtime server and exchange
messages.

Find or create game sessions and player sessions

Set up your game client to find or start game sessions, request FlexMatch matchmaking, and
reserve space for players in a game by creating player sessions. As a best practice, create a backend
service and use it to make the direct requests to the Amazon GameLift service when triggered by a
game client action. The backend service then relays relevant responses back to the game client.

Deploying and updating 188

Amazon GameLift Developer Guide

1. Add the AWS SDK to your game client, initialize an Amazon GameLift client, and configure it
to use the hosting resources in your fleets and queues. The AWS SDK is available in several
languages; see the Amazon GameLift SDKs For game client services.

2. Add GameLift functionality to your backend service. For more detailed instructions, see Add
Amazon GameLift to your game client and Adding FlexMatch matchmaking. The best practice
is to use game session placements to create new game sessions. This method lets you take full
advantage of GameLift's ability to quickly and intelligently place new game sessions, as well as
use player latency data to minimize game lag. At a minimum, your backend service must be able
to request new game sessions and handle game session data in response. You may also want
to add functionality to search for and get information on existing game sessions, and request
player sessions, which effectively reserve a player slot in an existing game session.

3. Convey connection information back to the game client. The backend service receives game
session and player session objects in response to requests to the Amazon GameLift service.
These objects contain information, in particular connection details (IP address and port) and
player session ID, that the game client needs to connect to the game session running on a
Realtime Server.

Connect to games on Realtime Servers

Enable your game client to connect directly with a hosted game session on a Realtime server and
exchange messages with the server and with other players.

1. Get the Realtime Client SDK, build it, and add it to your game client project. See the README file
for more information on SDK requirements and instructions on how to build the client libraries.

2. Call Client() with a client configuration that specifies the type of client/server connection to use.

Note

If you're connecting to a Realtime server that is running on a secured fleet with a TLS
certificate, you must specify a secured connection type.

3. Add the following functionality to your game client. See the Realtime Servers client API (C#)
reference for more information.

• Connect to and disconnect from a game

• Connect()

• Disconnect()

Integrating a game client 189

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html

Amazon GameLift Developer Guide

• Send messages to target recipients

• SendMessage()

• Receive and process messages

• OnDataReceived()

• Join groups and leave player groups

• JoinGroup()

• RequestGroupMembership()

• LeaveGroup()

4. Set up event handlers for the client callbacks as needed. See Realtime Servers client API (C#)
reference: Asynchronous callbacks.

When working with Realtime fleets that have TLS certificate generation enabled, the server is
automatically authenticated using the TLS certificate. TCP and UDP traffic is encrypted in flight to
provide transport layer security. TCP traffic is encrypted using TLS 1.2, and UDP traffic is encrypted
using DTLS 1.2.

Game client examples

Basic realtime client (C#)

This example illustrates a basic game client integration with the Realtime Client SDK (C#). As
shown, the example initializes a Realtime client object, sets up event handlers and implements the
client-side callbacks, connects to a Realtime server, sends a message, and disconnects.

using System;
using System.Text;
using Aws.GameLift.Realtime;
using Aws.GameLift.Realtime.Event;
using Aws.GameLift.Realtime.Types;

namespace Example
{
 /**
 * An example client that wraps the GameLift Realtime client SDK
 *
 * You can redirect logging from the SDK by setting up the LogHandler as such:
 * ClientLogger.LogHandler = (x) => Console.WriteLine(x);
 *

Integrating a game client 190

Amazon GameLift Developer Guide

 */
 class RealTimeClient
 {
 public Aws.GameLift.Realtime.Client Client { get; private set; }

 // An opcode defined by client and your server script that represents a custom
 message type
 private const int MY_TEST_OP_CODE = 10;

 /// Initialize a client for GameLift Realtime and connect to a player session.
 /// <param name="endpoint">The DNS name that is assigned to Realtime server</
param>
 /// <param name="remoteTcpPort">A TCP port for the Realtime server</param>
 /// <param name="listeningUdpPort">A local port for listening to UDP traffic</
param>
 /// <param name="connectionType">Type of connection to establish between client
 and the Realtime server</param>
 /// <param name="playerSessionId">The player session ID that is assigned to the
 game client for a game session </param>
 /// <param name="connectionPayload">Developer-defined data to be used during
 client connection, such as for player authentication</param>
 public RealTimeClient(string endpoint, int remoteTcpPort, int listeningUdpPort,
 ConnectionType connectionType,
 string playerSessionId, byte[] connectionPayload)
 {
 // Create a client configuration to specify a secure or unsecure connection
 type
 // Best practice is to set up a secure connection using the connection type
 RT_OVER_WSS_DTLS_TLS12.
 ClientConfiguration clientConfiguration = new ClientConfiguration()
 {
 // C# notation to set the field ConnectionType in the new instance of
 ClientConfiguration
 ConnectionType = connectionType
 };

 // Create a Realtime client with the client configuration
 Client = new Client(clientConfiguration);

 // Initialize event handlers for the Realtime client
 Client.ConnectionOpen += OnOpenEvent;
 Client.ConnectionClose += OnCloseEvent;
 Client.GroupMembershipUpdated += OnGroupMembershipUpdate;
 Client.DataReceived += OnDataReceived;

Integrating a game client 191

Amazon GameLift Developer Guide

 // Create a connection token to authenticate the client with the Realtime
 server
 // Player session IDs can be retrieved using AWS SDK for GameLift
 ConnectionToken connectionToken = new ConnectionToken(playerSessionId,
 connectionPayload);

 // Initiate a connection with the Realtime server with the given connection
 information
 Client.Connect(endpoint, remoteTcpPort, listeningUdpPort, connectionToken);
 }

 public void Disconnect()
 {
 if (Client.Connected)
 {
 Client.Disconnect();
 }
 }

 public bool IsConnected()
 {
 return Client.Connected;
 }

 /// <summary>
 /// Example of sending to a custom message to the server.
 ///
 /// Server could be replaced by known peer Id etc.
 /// </summary>
 /// <param name="intent">Choice of delivery intent i.e. Reliable, Fast etc. </
param>
 /// <param name="payload">Custom payload to send with message</param>
 public void SendMessage(DeliveryIntent intent, string payload)
 {
 Client.SendMessage(Client.NewMessage(MY_TEST_OP_CODE)
 .WithDeliveryIntent(intent)
 .WithTargetPlayer(Constants.PLAYER_ID_SERVER)
 .WithPayload(StringToBytes(payload)));
 }

 /**
 * Handle connection open events
 */

Integrating a game client 192

Amazon GameLift Developer Guide

 public void OnOpenEvent(object sender, EventArgs e)
 {
 }

 /**
 * Handle connection close events
 */
 public void OnCloseEvent(object sender, EventArgs e)
 {
 }

 /**
 * Handle Group membership update events
 */
 public void OnGroupMembershipUpdate(object sender, GroupMembershipEventArgs e)
 {
 }

 /**
 * Handle data received from the Realtime server
 */
 public virtual void OnDataReceived(object sender, DataReceivedEventArgs e)
 {
 switch (e.OpCode)
 {
 // handle message based on OpCode
 default:
 break;
 }
 }

 /**
 * Helper method to simplify task of sending/receiving payloads.
 */
 public static byte[] StringToBytes(string str)
 {
 return Encoding.UTF8.GetBytes(str);
 }

 /**
 * Helper method to simplify task of sending/receiving payloads.
 */
 public static string BytesToString(byte[] bytes)
 {

Integrating a game client 193

Amazon GameLift Developer Guide

 return Encoding.UTF8.GetString(bytes);
 }
 }
}

Creating a Realtime script

To use Realtime Servers for your game, you need to provide a script (in the form of some JavaScript
code) to configure and optionally customize a fleet of Realtime Servers. This topic covers the key
steps in creating a Realtime script. Once the script is ready, upload it to the Amazon GameLift
service and use it to create a fleet (see Upload a Realtime Servers script to Amazon GameLift).

To prepare a script for use with Realtime Servers, add the following functionality to your Realtime
script.

Manage game session life-cycle (required)

At a minimum, a Realtime script must include the Init() function, which prepares the Realtime
server to start a game session. It is also highly recommended that you also provide a way to
terminate game sessions, to ensure that new game sessions can continue to be started on your
fleet.

The Init() callback function, when called, is passed a Realtime session object, which contains an
interface for the Realtime server. See Realtime Servers interface for more details on this interface.

To gracefully end a game session, the script must also call the Realtime server's
session.processEnding function. This requires some mechanism to determine when to end a
session. The script example code illustrates a simple mechanism that checks for player connections
and triggers game session termination when no players have been connected to the session for a
specified length of time.

Realtime Servers with the most basic configuration--server process initialization and termination--
essentially act as stateless relay servers. The Realtime server relays messages and game data
between game clients that are connected to the game, but takes no independent action to process
data or perform logic. You can optionally add game logic, triggered by game events or other
mechanisms, as needed for your game.

Customizing a Realtime script 194

Amazon GameLift Developer Guide

Add server-side game logic (optional)

You can optionally add game logic to your Realtime script. For example, you might do any or all
of the following. The script example code provides illustration. See Amazon GameLift Realtime
Servers script reference.

• Add event-driven logic. Implement the callback functions to respond to client-server events.
See Script callbacks for Realtime Servers for a complete list of callbacks.

• Trigger logic by sending messages to the server. Create a set of special operation codes for
messages sent from game clients to the server, and add functions to handle receipt. Use the
callback onMessage, and parse the message content using the gameMessage interface (see
gameMessage.opcode).

• Enable game logic to access your other AWS resources. For details, see Communicate with other
AWS resources from your fleets.

• Allow game logic to access fleet information for the instance it is running on. For details, see Get
fleet data for a Amazon GameLift instance.

Realtime Servers script example

This example illustrates a basic script needed to deploy Realtime Servers plus some custom logic.
It contains the required Init() function, and uses a timer mechanism to trigger game session
termination based on length of time with no player connections. It also includes some hooks for
custom logic, including some callback implementations.

// Example Realtime Server Script
'use strict';

// Example override configuration
const configuration = {
 pingIntervalTime: 30000,
 maxPlayers: 32
};

// Timing mechanism used to trigger end of game session. Defines how long, in
 milliseconds, between each tick in the example tick loop
const tickTime = 1000;

// Defines how to long to wait in Seconds before beginning early termination check in
 the example tick loop

Customizing a Realtime script 195

Amazon GameLift Developer Guide

const minimumElapsedTime = 120;

var session; // The Realtime server session object
var logger; // Log at appropriate level
 via .info(), .warn(), .error(), .debug()
var startTime; // Records the time the process started
var activePlayers = 0; // Records the number of connected players
var onProcessStartedCalled = false; // Record if onProcessStarted has been called

// Example custom op codes for user-defined messages
// Any positive op code number can be defined here. These should match your client
 code.
const OP_CODE_CUSTOM_OP1 = 111;
const OP_CODE_CUSTOM_OP1_REPLY = 112;
const OP_CODE_PLAYER_ACCEPTED = 113;
const OP_CODE_DISCONNECT_NOTIFICATION = 114;

// Example groups for user-defined groups
// Any positive group number can be defined here. These should match your client code.
// When referring to user-defined groups, "-1" represents all groups, "0" is reserved.
const RED_TEAM_GROUP = 1;
const BLUE_TEAM_GROUP = 2;

// Called when game server is initialized, passed server's object of current session
function init(rtSession) {
 session = rtSession;
 logger = session.getLogger();
}

// On Process Started is called when the process has begun and we need to perform any
// bootstrapping. This is where the developer should insert any code to prepare
// the process to be able to host a game session, for example load some settings or set
 state
//
// Return true if the process has been appropriately prepared and it is okay to invoke
 the
// GameLift ProcessReady() call.
function onProcessStarted(args) {
 onProcessStartedCalled = true;
 logger.info("Starting process with args: " + args);
 logger.info("Ready to host games...");

 return true;
}

Customizing a Realtime script 196

Amazon GameLift Developer Guide

// Called when a new game session is started on the process
function onStartGameSession(gameSession) {
 // Complete any game session set-up

 // Set up an example tick loop to perform server initiated actions
 startTime = getTimeInS();
 tickLoop();
}

// Handle process termination if the process is being terminated by GameLift
// You do not need to call ProcessEnding here
function onProcessTerminate() {
 // Perform any clean up
}

// Return true if the process is healthy
function onHealthCheck() {
 return true;
}

// On Player Connect is called when a player has passed initial validation
// Return true if player should connect, false to reject
function onPlayerConnect(connectMsg) {
 // Perform any validation needed for connectMsg.payload, connectMsg.peerId
 return true;
}

// Called when a Player is accepted into the game
function onPlayerAccepted(player) {
 // This player was accepted -- let's send them a message
 const msg = session.newTextGameMessage(OP_CODE_PLAYER_ACCEPTED, player.peerId,
 "Peer " + player.peerId + " accepted");
 session.sendReliableMessage(msg, player.peerId);
 activePlayers++;
}

// On Player Disconnect is called when a player has left or been forcibly terminated
// Is only called for players that actually connected to the server and not those
 rejected by validation
// This is called before the player is removed from the player list
function onPlayerDisconnect(peerId) {
 // send a message to each remaining player letting them know about the disconnect
 const outMessage = session.newTextGameMessage(OP_CODE_DISCONNECT_NOTIFICATION,

Customizing a Realtime script 197

Amazon GameLift Developer Guide

 session.getServerId(),
 "Peer " + peerId + " disconnected");
 session.getPlayers().forEach((player, playerId) => {
 if (playerId != peerId) {
 session.sendReliableMessage(outMessage, playerId);
 }
 });
 activePlayers--;
}

// Handle a message to the server
function onMessage(gameMessage) {
 switch (gameMessage.opCode) {
 case OP_CODE_CUSTOM_OP1: {
 // do operation 1 with gameMessage.payload for example sendToGroup
 const outMessage = session.newTextGameMessage(OP_CODE_CUSTOM_OP1_REPLY,
 session.getServerId(), gameMessage.payload);
 session.sendGroupMessage(outMessage, RED_TEAM_GROUP);
 break;
 }
 }
}

// Return true if the send should be allowed
function onSendToPlayer(gameMessage) {
 // This example rejects any payloads containing "Reject"
 return (!gameMessage.getPayloadAsText().includes("Reject"));
}

// Return true if the send to group should be allowed
// Use gameMessage.getPayloadAsText() to get the message contents
function onSendToGroup(gameMessage) {
 return true;
}

// Return true if the player is allowed to join the group
function onPlayerJoinGroup(groupId, peerId) {
 return true;
}

// Return true if the player is allowed to leave the group
function onPlayerLeaveGroup(groupId, peerId) {
 return true;
}

Customizing a Realtime script 198

Amazon GameLift Developer Guide

// A simple tick loop example
// Checks to see if a minimum amount of time has passed before seeing if the game has
 ended
async function tickLoop() {
 const elapsedTime = getTimeInS() - startTime;
 logger.info("Tick... " + elapsedTime + " activePlayers: " + activePlayers);

 // In Tick loop - see if all players have left early after a minimum period of time
 has passed
 // Call processEnding() to terminate the process and quit
 if ((activePlayers == 0) && (elapsedTime > minimumElapsedTime)) {
 logger.info("All players disconnected. Ending game");
 const outcome = await session.processEnding();
 logger.info("Completed process ending with: " + outcome);
 process.exit(0);
 }
 else {
 setTimeout(tickLoop, tickTime);
 }
}

// Calculates the current time in seconds
function getTimeInS() {
 return Math.round(new Date().getTime()/1000);
}

exports.ssExports = {
 configuration: configuration,
 init: init,
 onProcessStarted: onProcessStarted,
 onMessage: onMessage,
 onPlayerConnect: onPlayerConnect,
 onPlayerAccepted: onPlayerAccepted,
 onPlayerDisconnect: onPlayerDisconnect,
 onSendToPlayer: onSendToPlayer,
 onSendToGroup: onSendToGroup,
 onPlayerJoinGroup: onPlayerJoinGroup,
 onPlayerLeaveGroup: onPlayerLeaveGroup,
 onStartGameSession: onStartGameSession,
 onProcessTerminate: onProcessTerminate,
 onHealthCheck: onHealthCheck
};

Customizing a Realtime script 199

Amazon GameLift Developer Guide

Managing hosting with Amazon GameLift containers

This documentation is for a feature that is in public preview release. It is subject to change.

Amazon GameLift provides a complete cloud hosting service to support containerized solutions for
game server hosting. With Amazon GameLift container fleets, you can take advantage of container
benefits such as portability, agility, and fault tolerance.

Key features

The following features are available with Amazon GameLift container fleets.

• Develop a custom container architecture with lightweight containers to run your game server
software on Amazon GameLift hosting resources.

• Include the Amazon GameLift Agent to manage the lifecycle of game server processes inside
your containers. The on-compute Agent carries out your instructions on when and how to start
server processes and how many to maintain for game session hosting.

• Customize resources provided by Amazon GameLift to build container images with your game
server application. Use the provided dockerfile to create a Linux-based container image. Store
images for your container fleets in an Amazon Elastic Container Registry (Amazon ECR) private
repository.

• Deliver low-latency player experiences by deploying container fleet resources to any AWS
Region or Local Zone that Amazon GameLift supports. Create multi-location container fleets for
streamlined fleet management. See Amazon GameLift hosting locations.

• Test your containerized game hosting solutions with an Amazon GameLift Anywhere fleet. Use
Anywhere to locally test your solution development, including your Amazon GameLift SDK
integration and your container image configurations.

• Track game hosting performance with container-specific performance metrics. Monitor the
health of your fleet resources using hardware metrics.

• Use Amazon GameLift game session placement tools, including queues and FlexMatch
matchmaking, to match players to the best possible game sessions being hosted on your
container fleets.

• Manage container fleet resources using AWS CloudFormation templates for Amazon GameLift.

Key features 200

Amazon GameLift Developer Guide

Using container fleets during public preview

The new container fleets feature is currently in public preview. During this phase, the following
Amazon GameLift features are supported:

• Use container fleets to host game servers built for Linux. Container fleets use
Amazon_Linux_2023 and support Linux container images. Windows containers are not
supported.

• Integrate game server projects with Amazon GameLift server SDK version 5+ only. Previous
versions are not supported.

• Use any of the Amazon EC2 On-Demand instance types that Amazon GameLift supports. Spot
fleets are not supported at this time.

How containers work in Amazon GameLift

This documentation is for a feature that is in public preview release. It is subject to change.

Amazon GameLift container fleets are designed to provide flexibility in how you deploy and scale
your containerized applications. It uses the Amazon Elastic Container Service (Amazon ECS) to
manage task deployment and execution for your Amazon GameLift fleets. This topic describes the
basic structural elements for running containers on an Amazon GameLift managed fleet, illustrates
common architectures, and outlines some core concepts.

Container fleet components

Fleet

A container fleet is a collection of Amazon EC2 instances, managed by Amazon GameLift, that
run your containerized game servers. When you create a fleet, you configure how your container
architecture and game server software is deployed to each fleet instance. You can deploy a
container fleet to a single AWS Region or to multiple geographic locations. You can use Amazon
GameLift manual or automatic scaling tools to scale a container fleet's capacity to host game
sessions and players.

Instance

An Amazon EC2 instance is the virtual server that provides compute capacity for your game
hosting. With Amazon GameLift, you can choose from a variety of instance types. Each instance
type offers a different combination of CPU, memory, storage, and networking capacity.

Using container fleets during public preview 201

Amazon GameLift Developer Guide

When you create a container fleet, Amazon GameLift deploys instances based on the instance
type you choose and your fleet configuration. Each deployed fleet instance is identical and runs
your containerized game server software in the same way. The number of instances in a fleet
determines the fleet's size and game hosting capacity.

Container group

Amazon GameLift uses the concept of a container group to describe and manage a set of
containers. A container group is similar to a container "task" or "pod". Within each container
group, you can define how containers share available CPU and memory resources. You can also
set up dependencies between containers and manage the container group's life cycle.

Container groups can replicate across each fleet instance to optimize resource uses. You can
manage replication by setting a container group's scheduling strategy, as follows:

• Replica container groups manage the containers that run your game server application and
supporting software. All container fleets must define a replica container group. A replica
group might have multiple copies on each fleet instance, depending on the container group's
requirements and the resources of the instance type in use. All containers in the replica group
automatically scale together across an instance.

• Daemon container groups, which are optional, might be useful for running background
services or utility programs, such as for monitoring. You game server software doesn't directly
depend on processes in a daemon group. Daemon container groups aren't replicated--each
fleet instance has at most one copy of the daemon group. This means that containers in a
daemon group don't scale across a fleet instance along with containers in a replica group.

A container fleet must have one replica container group and can optionally have one daemon
group.

Container

The container is the most basic element of a container-based architecture. It consists of a
container image with software executables and dependent files. When you define a container to
use with Amazon GameLift, you configure how the software runs in the container.

Each container group in a container fleet must have one container that's designated "essential".
An essential container drives the lifecycle of a container group. If the essential container fails,
the entire container group restarts.

Container types include:

Container fleet components 202

Amazon GameLift Developer Guide

• Essential replica container includes everything you need to run your game server processes
and host game sessions for players. It includes your game server build, which is integrated
with the Amazon GameLift server SDK, and dependent software. It also includes the Amazon
GameLift Agent, which manages the lifecycle of your game server processes. A fleet's replica
container group has exactly one essential replica container.

• Non-essential replica containers, also called "sidecar" containers, run software to support
your game server application. Using a sidecar container lets you run and scale supporting
software alongside your game servers but manage as separate containers. If this type of
container fails, only the container itself restarts; the container group isn't impacted.

• Daemon containers run a daemon service to manage background processes. A common
use for a daemon container is to run an Amazon CloudWatch (CloudWatch) agent to collect
metrics, logs, and traces for your containers. Daemon containers can be essential or non-
essential depending on when a container failure must result in a container group restart.

Compute

A compute is a fleet hosting resource that's registered with the Amazon GameLift service and
is able to communicate with the service. In a container fleet, a compute is a container with a
process that manages the compute registration process. In a container fleet's essential replica
container, the Amazon GameLift Agent automatically registers this container as a compute.

Common architectures

The following diagram illustrates the simplest container fleet structure. In this structure, each
instance in the fleet maintains one copy of the replica container group. The container group has
a single essential container that runs the Amazon GameLift Agent, the game server application,
and all supporting software for hosting game sessions. The Agent implements fleet-specific
instructions to run three server processes concurrently. Because there's one replica container group
per instance, each fleet instance runs three server processes concurrently.

Common architectures 203

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html

Amazon GameLift Developer Guide

This second example illustrates a more complex container fleet design. In this example, the fleet
has a replica container group with multiple containers and a daemon container group with one
container. The fleet configuration puts three copies of the replica container group on each fleet
instance. The daemon container group is never replicated.

Each set of replica group containers in the have three copies on each instance. In each essential
replica container, the Agent is instructed to run two server processes concurrently. As a result, each
fleet instance runs six server processes concurrently (two processes in each of the three essential
replica containers).

Common architectures 204

Amazon GameLift Developer Guide

Core concepts

This section summarizes how Amazon GameLift implements some basic container concepts. For
instructions on how to work with container fleets, see the relevant topics in this guide.

Container group packing

When developing your container structure for deployment in a container fleet, a common goal is
to optimize your use of available computing power. To achieve this goal, find the highest number
of replica container groups you can place on a fleet instance without impacting game server
performance.

Amazon GameLift can help you do this. It calculates a maximum number of replica groups per
instance, based on the following information:

• The fleet's instance type and the CPU and memory resources available.

• The CPU and memory requirements that you set for all containers in your replica group.

The CPU and memory requirements that you set for all containers in a daemon group, if there is
one.

• Resources reserved to manage containers and other critical applications on each instance.

Core concepts 205

Amazon GameLift Developer Guide

When you create a container fleet, you can choose to use the calculated maximum number or you
can override the calculated number by specifying a desired number. As a best practice, experiment
with your containerized game server software to determine accurate resource requirements. Use
this data to find an optimal packing strategy for game server performance.

Game servers and the Amazon GameLift Agent

When you build your essential replica container, you package your game server software and the
Amazon GameLift Agent together in the same container image. This on-compute agent controls
the lifecycle of game servers in the container. In each replica container group, the essential replica
container runs the Agent and all game server processes.

The Amazon GameLift Agent executes instructions in the container fleet's runtime configuration.
The runtime configuration identifies (1) the executable to start running, (2) an optional set of
launch parameters, and (3) the number of processes to run concurrently. A runtime configuration
can have instructions for multiple different executables. At least one instruction must be for the
game server executable. For example, a runtime configuration might instruct the agent to maintain
10 processes of your game server executable for production use, 1 process of the same executable
with special launch parameters for testing, and 1 process for a logging utility.

You can modify a fleet's runtime configuration at any time. The Amazon GameLift Agent
periodically requests updates from the service. When an updated runtime configuration is
available, the Agent receives it and begins implementing the instructions. Actions might include
adding or shutting down server processes.

The Amazon GameLift Agent is an open-source version of the on-compute agent that Amazon
GameLift uses for managed EC2 fleets. This guide provides instructions on how to build the Agent
from source and build it into a container image. The Agent handles the following tasks:

Server process management:

• Start, shut down, and replace server processes based on the runtime configuration.

• Shut down server processes when they don't activate in time.

• Report to Amazon GameLift when a server process terminates.

• Emit fleet events for server processes.

Container management:

• Shut down server processes in response to prompts from Amazon GameLift.

Core concepts 206

Amazon GameLift Developer Guide

• Report container health.

Log uploading tasks:

• Upload game session logs to a designated Amazon S3 bucket.

• Upload on-compute agent logs to a designated Amazon S3 bucket.

Scaling fleet capacity

Fleet capacity measures the number of game sessions that the fleet can host at any one time. You
can also measure capacity based on the number of players the fleet can support simultaneously.

To increase or decrease a fleet's hosting capacity, you add or remove fleet instances. A container
fleet's packing strategy determines how many game sessions run concurrently on each fleet
instance. This number tells you the number of game sessions (and player slots) you add or subtract
when you increase or decrease the fleet capacity.

With container fleets, you can use any of the scaling methods provided by Amazon GameLift. These
include:

• Set fleet capacity manually by setting a specific desired fleet instance count.

• Set up automatic scaling by targeting a desired buffer of available instances (target tracking).
This method automatically maintains a set of idle hosting resources so that incoming players can
always get into games quickly. As player demand increases or decreases, the size of this buffer is
continually adjusted.

• Set up automatic scaling with custom scaling rules (advanced feature).

Game client/server connections

Managed EC2 fleets and container fleets handle connections between game clients and cloud-
hosted game servers in a similar way. When Amazon GameLift creates a new game session,
the service communicates the game session’s connection information. Game clients use the
information to connect directly to the game server that’s hosting the game session. For all types of
fleets, connection information consists of an IP address and port assignment.

When creating a container fleet, you define two sets of port ranges. First, you define a range
of external-facing connection ports that allow game clients to connect to a game. Second, you

Core concepts 207

Amazon GameLift Developer Guide

define a set of internal-only container ports, which are assigned to each game server process that's
running in the container. Amazon GameLift dynamically maps the internal container ports to
external connection ports to give players access to games. This approach provides an additional
layer of security by protecting your game servers from direct access to the container ports.

When defining port ranges for a container fleet, you must provide ranges with enough ports to
accommodate all server processes that run concurrently across the containers on an instance.

For additional control, you also set inbound permissions for a fleet. Inbound permissions determine
which connection ports are open for incoming traffic. You can change a fleet's inbound permissions
at any time. With inbound permissions you can quickly shut down all connection ports, open some,
or open all as needed.

Development roadmap for Amazon GameLift containers

This documentation is for a feature that is in public preview release. It is subject to change.

The following workflow summarizes the steps to get your game servers running on an Amazon
GameLift container fleet.

Step 1: Integrate your game with Amazon GameLift

Add functionality to your game server so that it can communicate with the Amazon GameLift
service when it's deployed to a container fleet. If you’re using FlexMatch matchmaking, add this
functionality to your game server and client. For detailed information, see Integrate your game
with Amazon GameLift.

• Get the Amazon GameLift server SDK (version 5+) and set it up with your game project. The
server SDK is available in C++, C#, and Go.

• Modify your game server code to add required server SDK functionality.

• Package your game server build for Linux. If you’re developing on Windows, this step might
require additional work to set up a Linux environment.

• (Optional) Test your game server integration using an Amazon GameLift Anywhere fleet. Test
before preparing your container image to isolate issues with your integration work. To test
game client/server connections, integrate your game client as well.

Development roadmap 208

Amazon GameLift Developer Guide

Note

If you’re developing on Windows, set up a separate Linux workspace, or use a tool
such as Windows subsystem for Linux (WSL). You'll need a Linux environment to test
your game server build, and also to build and test your container images.

Step 2: Prepare your game server container image

Create a container image that runs your game server processes and store it in an Amazon
Elastic Container Registry (Amazon ECR) repository for use with Amazon GameLift. For detailed
instructions, see Prepare a container image with your game server software.

• Set up a working directory for your container image, with your Linux game build, install
script, and all supporting software and dependencies.

• Get the Amazon GameLift Agent source code, build it, and add the jar file to your working
directory.

• Get the default Dockerfile and modify it to configure a container image with your game
server software.

• Build your container image. Do this step in a Linux environment.

• Create an Amazon ECR private repository and push your container image to it. Create the
repo in the same AWS account and AWS Region where you plan to deploy your container
fleet.

• (optional) Test your container images using your Anywhere fleet. You can set a runtime
configuration to pass instructions to the Amazon GameLift Agent.

Step 3: Create your containers and container groups

Design a container architecture for game hosting on Amazon GameLift. See Design an Amazon
GameLift container fleet and Create container group definitions for an Amazon GameLift
container fleet.

• Define your container configurations. For each container, you’ll define issues such as runtime
processes, memory allocation, health checks, network ports, etc.

• Use the Amazon GameLift console or AWS CLI to create container group definitions with your
container configurations. When you create a container group definition, Amazon GameLift
takes a snapshot of each container images at that time.

Development roadmap 209

Amazon GameLift Developer Guide

Step 4: Deploy your containerized game server to a container fleet

Use the container group definitions created in the previous step to create a container fleet and
deploy your containerized game server software. See Create a Amazon GameLift container fleet.

• Use the Amazon GameLift console or AWS CLI to create a container fleet.

• Track fleet status as fleet instances deploy and activate. Check the fleet creation events to
verify that the fleet is successfully deploying to all locations.

• Verify that game clients can request and join game sessions and play the game. If you have
matchmaking set up, test those scenarios.

Step 5: Manage your fleets

As you prepare for production-level usage, build out your game hosting solution and manage
your hosting lifecycle.

• Create multi-location fleets and fleets in other AWS Regions to support your player base.

• Configure game hosting placement with queues or FlexMatch matchmaking. See these
resources:

• Setting up Amazon GameLift queues for game session placement

• FlexMatch Developer Guide

• Set up automatic scaling to manage fleet capacity based on player demand for game
sessions.

• Set up monitoring for your container fleets. Work with Amazon GameLift metrics, retrieve
game session logs and container logs, set up remote access to individual containers.

• Set up long-term management of container fleets. Use fleet aliases to streamline the
process of updating container fleets. Create AWS CloudFormation templates to manage fleet
lifecycle. See these resources:

• Add an alias to a Amazon GameLift fleet

• Manage resources using AWS CloudFormation

Integrate your game with Amazon GameLift

This documentation is for a feature that is in public preview release. It is subject to change.

Before you can create a container image with your game server software and deploy it to Amazon
GameLift for cloud hosting, first integrate your game project with the Amazon GameLift server

Integrate your game with Amazon GameLift 210

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html

Amazon GameLift Developer Guide

SDK and build a game server to run on Linux. This topic introduces the various integration tools
that Amazon GameLift provides.

Hosted game servers must be able to communicate with the Amazon GameLift service. Set up
communication by adding the Amazon GameLift server SDK (version 5+) to your game project
and modifying your game's server code. Amazon GameLift provides server SDK resources and
documentation to support several languages and game engines.

The integration process for containerized game servers is virtually identical to integrating game
servers for hosting on managed EC2 or Amazon GameLift Anywhere fleets.

Integration tools

Amazon GameLift provides the following tools and language support for integration:

For Unreal Engine developers

Use the lightweight plugin for Unreal. This plugin includes the C++ server SDK libraries with
required Amazon GameLift functionality. Use the documentation to configure your Unreal game
project for the plugin and update your game code with the provided code blocks to add required
functionality for your server and client builds.

• SDK plugin download

• Guide: Integrate your Unreal project with Amazon GameLift

• Reference guide: C++ Server SDK 5 for Unreal

Note: The Amazon GameLift standalone plugin for Unreal Engine doesn't support the use of
container fleets.

For Unity developers

Use the lightweight plugin for Unity. This plugin includes the C# server SDK libraries with required
Amazon GameLift functionality. Use the documentation to configure your Unreal game project for
the plugin and update your game code with the provided code blocks to add required functionality
for your server and client builds.

• SDK plugin download

• Guide: Integrate your Unity project with Amazon GameLift

• Reference guide: C# Server SDK 5 for Unity

Integration tools 211

https://aws.amazon.com/gamelift/getting-started/
https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-engines-setup-unreal.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk5-unreal.html
https://aws.amazon.com/gamelift/getting-started/
https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-engines-unity-using.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk5-csharp.html

Amazon GameLift Developer Guide

Note: The Amazon GameLift standalone plugin for Unity doesn't support the use of container
fleets.

For developers using other game engines

Follow this general server and client integration guidance:

• Integrate a game server

• Integrate a game client

Amazon GameLift offers server SDK 5 libraries for the following languages:

• Server SDK 5 for C++ [SDK download] [Reference guide]

• Server SDK 5 for C# [SDK download] [Reference guide]

• Server SDK 5 for Go [SDK download] [Reference guide]

Build your game server for Linux

Amazon GameLift container fleets support game servers that run on a Linux platform. Here are
some tips for building your game server for a Linux target:

• If you're developing your game with the Unity game engine, the game editor provides built-in
support with no special requirements to build for Linux.

• If you're developing your game in C++, you must include the OpenSSL libraries for Linux when
you build the Amazon GameLift server SDK for C++, and when you build your game server. Also
include the same libraries in your game server container image.

• If you're developing your game with Unreal Engine on Windows, consider these options:

• Work with Unreal Engine to set up a cross-compile tool chain.

• Set up a separate Linux workspace, or use a tool such as Windows subsystem for Linux (WSL).
You can use this environment to run the Unreal Editor on Linux to build your game server.

Test your integration locally

You can test your game integration locally using an Amazon GameLift Anywhere fleet. This
approach is a best practice to help isolate issues directly related to integration. An Anywhere fleet
is a useful tool for running test apps and game scenarios, such as starting/stopping game sessions

Build your game server for Linux 212

https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-client.html
https://aws.amazon.com/gamelift/getting-started/
https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk5-cpp.html
https://aws.amazon.com/gamelift/getting-started/
https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk5-csharp.html
https://aws.amazon.com/gamelift/getting-started/
https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk-go-ref.html
https://dev.epicgames.com/documentation/en-us/unreal-engine/linux-development-requirements-for-unreal-engine?application_version=5.3https://dev.epicgames.com/documentation/en-us/unreal-engine/linux-development-requirements-for-unreal-engine?application_version=5.3

Amazon GameLift Developer Guide

and tracking player connections. You can build and test iteratively much faster with an Anywhere
fleet, which offers greater visibility into hosting activity.

See Set up local testing with Amazon GameLift Anywhere for help with using an Amazon GameLift
Anywhere fleet for integration testing. The workflow for setting up a test environment looks like
this:

1. Set up a local device that's running Linux.

2. Set up an Anywhere fleet. Create a custom location for your local device, create an Anywhere
fleet, and then register your local device as a compute in the fleet.

3. Get an authentication token for your game server. Your integrated server process requires
a token to authenticate with the Amazon GameLift service. You can re-use the same token
for multiple server processes running concurrently This step is required only when using an
Anywhere fleet for integration testing.

Note

Authentication tokens are temporary and must be regularly refreshed. Consider adding a
script to your server build package to request a new token.

4. Update your game server code for Anywhere . When running on an Anywhere fleet, the game
server needs to call the server SDK action InitSdk() (C++) (C#) (Unreal) with the following
server parameters. This step is required only when using an Anywhere fleet for integration
testing. After you add the Amazon GameLift Agent to your container image, it handles these
parameters automatically.

As a best practice, set up your server code to pull these values from environment variables or
from console arguments that you specify on launch.

• webSocketUrl – Use the value of GameLiftServiceSdkEndpoint, which is returned from
the call to register-compute.

• processId – Assign a unique identifier for the server process.

• fleetId – The Anywhere fleet identifier, which is returned from the call to create-fleet.

• authToken – A valid authentication token, which is returned from the call to get-compute-
auth-token.

5. On your local machine, set up your game server build software and launch a server process.

Test integration with an Anywhere fleet 213

Amazon GameLift Developer Guide

If your server integration is successful, the server process calls the server SDK action
InitSDK() to establish connection with the Amazon GameLift service, followed by a call to
ProcessReady() to notify the service that its ready to host a game session.

6. Start a game session. If you've integrated your game client to request a game session, you can
use it to request a new game session. If not, use the AWS CLI command create-game-session.
Amazon GameLift creates a GameSession object and initiates the process to start a new game
session.

If your integration is working, Amazon GameLift calls a server process on your local workstation
to start a new game session (using the onStartGameSession() callback). When a game
session is ready for players, the server process calls ActivateGameSession(). In response,
Amazon GameLift updates the GameSession status and connection information so that a game
client can connect to the game session and play the game.

Prepare a container image with your game server software

This documentation is for a feature that is in public preview release. It is subject to change.

The container is the most basic element of an Amazon GameLift container fleet. Your container
includes your game server, along with with its dependencies such as SDKs, software, directories,
and files.

To function in a container fleet, your game server must run on Linux, and be integrated with server
SDK 5.x.

Topics

• Set up your working directory

• Build your container image

• Push your container image to Amazon ECR

Set up your working directory

Your working directory is where you put all the files you need to build your container image and
define how Amazon GameLift runs it.

Prepare a container image 214

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/create-game-session.html

Amazon GameLift Developer Guide

To set up your container working directory

1. Create the directory where you want to work with your Amazon GameLift container images.

Example

For example:

[~/]$ mkdir -p work/glc/gamebuild && cd work && find .
.
./glc
./glc/gamebuild

2. Clone the Amazon GameLift Agent.

Example

For example:

[~/work]$ git clone https://github.com/aws/amazon-gamelift-agent.git
Cloning into 'amazon-gamelift-agent'...

3. Build the GameLiftAgent using Maven.

Example

For example:

[~/work]$ cd amazon-gamelift-agent

Example

[~/work/amazon-gamelift-agent]$ mvn clean compile assembly:single && \
mv target ../glc && cd .. && find glc

4. Add a game server that's been integrated with server SDK 5.x, built, and packaged into a .ZIP
file.

5. Copy your .ZIP file to ~/work/glc/gamebuild/.

Create working directory 215

https://github.com/aws/amazon-gamelift-agent
https://github.com/aws/amazon-gamelift-agent?tab=readme-ov-file#build-gameliftagent-using-maven

Amazon GameLift Developer Guide

If you don't have an SDK 5.x game server, then you can download and use our sample SimpleServer
game to try using a container fleet.

Example

[~/work]$ curl -o glc/gamebuild/SimpleServer.zip \
'https://ws-assets-prod-iad-r-iad-ed304a55c2ca1aee.s3.us-
east-1.amazonaws.com/086bb355-4fdc-4e63-8ca7-af7cfc45d4f2/
AmazonGameLiftSampleServerBinary.zip' &&
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 5140k 100 5140k 0 0 12.3M 0 --:--:-- --:--:-- --:--:-- 12.3M
glc
glc/target
glc/target/GameLiftAgent-1.0.jar
glc/gamebuild
glc/gamebuild/SimpleServer.zip

Build your container image

Your Dockerfile specifies the environment, software, and instructions to build your container.

To create your Dockerfile

1. Move into the glc subdirectory.

Example

[~/work]$ cd glc && find

.

./target

./target/GameLiftAgent-1.0.jar

./gamebuild

2. Create and open a new Dockerfile.

Example

For example:

[~/work/glc]$ nano Dockerfile

Build your image 216

https://github.com/aws-solutions-library-samples/guidance-for-custom-game-backend-hosting-on-aws/tree/main/BackendFeatures/AmazonGameLiftIntegration/SimpleServer

Amazon GameLift Developer Guide

3. Copy from one of the following templates, and then paste the content into your Dockerfile.

Dockerfile template for your game server

This template contains the minimum instructions that a container needs to usable in an Amazon
GameLift fleet. Modify the content as needed for your game server.

Base image

 # Add the base image that you want to use over here,
 # Make sure to use an image with the same architecture as the
 # Instance type you are planning to use on your fleets.
 # We require JDK to be installed in the base image, so that
 # it can be used to run the &AGS; Agent
FROM public.ecr.aws/amazoncorretto/amazoncorretto:17-amd64
 #
Game build directory

 # Add your game build to gamebuild directory and add the zip file name in the
 'GAME_BUILD_ZIP' env variable below.
 # The game build provided over here needs to be integrated with gamelift server sdk.
 # This template assumes that the game build is in a zip format.
ENV GAME_BUILD_ZIP="<ADD_GAME_BUILD_ZIP_FILE_NAME>" \
 #
Default directory

 # Default directory, the value provided here should be where the game executable
 exists.
 # Provide this same value as your launch path in RuntimeConfiguration when creating a
 fleet.
 # Ref: https://docs.aws.amazon.com/gamelift/latest/apireference/
API_ServerProcess.html
GAME_EXECUTABLE="<ADD NAME OF EXECUTABLE WITHIN THE GAME BUILD>" \
HOME_DIR="/local/game" \
 #
 # Registered compute in anywhere fleet (not used in container fleets)
 # ---
 # Add the name for the registered compute in an anywhere fleet.
 # This environment variable is required only for anywhere fleets, but not for
 container fleets.
 # If it is set for container fleets, it will be overridden by Gamelift.
 GAMELIFT_COMPUTE_NAME="<ADD_COMPUTE_NAME>" \
 #

Build your image 217

Amazon GameLift Developer Guide

Default Gamelift Agent jar

GAMELIFT_AGENT_EXEC="GameLiftAgent-1.0.jar" \
 #
 # This env variable defines the name of the S3 bucket that stores the GameLift Agent
 logs.
 # This S3 bucket should exist in the customer AWS account.
 # In order to allow GameLift agent to upload logs to this s3 bucket, customers would
 need to
 # include s3:PutObject permission in the IAM role provided as instanceRoleArn during
 CreateFleet operation.
GAMELIFT_AGENT_LOGS_BUCKET_NAME="<ADD NAME OF GAMELIFT AGENT LOGS S3 BUCKET>" \
 #

 # This env variable defines the name of the S3 bucket that stores the game session
 logs.
 # This S3 bucket should exist in the customer AWS account.
 # In order to allow GameLift agent to upload logs to this s3 bucket, customers would
 need to
 # include s3:PutObject permission in the IAM role provided as instanceRoleArn during
 CreateFleet operation.

GAME_SESSION_LOGS_BUCKET_NAME="<ADD NAME OF GAME SESSION LOGS S3 BUCKET>" \
#

GAMELIFT_AGENT_LOGS_PATH="/local/game/agentlogs/" \
 #
NOT USED in container fleets - USED in Anywhere fleets
--
 # Specifiy the type of compute resource used to host the game servers.
 # This env variable is required only for anywhere fleets, but not for container
 fleets.
 # If it is set for container fleets, it will be overridden by Gamelift.
#

COMPUTE_TYPE="ANYWHERE" \
 #
 # Specify the credential to be used for creating the client.
 # This env variable is required only for anywhere fleets, but not for container
 fleets.
 # If it is set for container fleets, it will be overridden by Gamelift.
#

CREDENTIAL_PROVIDER="environment-variable"

Build your image 218

Amazon GameLift Developer Guide

USER root

 # intall dependencies as necessary
 RUN yum install -y sudo \
 unzip \
 git \
 shadow-utils \
 iputils \
 tar \
 gcc \
 make \
 openssl-devel \
 zlib-devel \
 vim \
 net-tools \
 nc \
 procps

 # Set up the ground for 'gamescale' user
 RUN groupadd -r gamescale -g 500 && \
 useradd -u 500 -r -g gamescale -m -s /sbin/nologin -c "Gamescale user" gamescale
 && \
 echo "gamescale ALL=(ALL) NOPASSWD: ALL" | (EDITOR="tee -a" visudo) && \
 mkdir -p $HOME_DIR && \
 mkdir $HOME_DIR/mono && \
 chown -R gamescale:gamescale $HOME_DIR

 WORKDIR $HOME_DIR

 # extract game build as necessary
 COPY ./gamebuild/$GAME_BUILD_ZIP .
 RUN unzip ./$GAME_BUILD_ZIP -d ./

 # copy Gamelift Agent jar
 COPY ./gameliftAgent/$GAMELIFT_AGENT_EXEC ./

 # Add permissions to game build and gamelift agent jar
 RUN chmod +x ./$GAME_EXECUTABLE
 RUN chmod +x ./$GAMELIFT_AGENT_EXEC

 # Check if java is installed on the image, if not then the Agent will not be able
 to run
 RUN java --version

Build your image 219

Amazon GameLift Developer Guide

 USER gamescale

 ENV PATH="$PATH:$HOME_DIR/bin:$JAVA_HOME"

 # Change directory to bin
 WORKDIR $HOME_DIR

 # check path before starting the container
 RUN echo $PATH

 # Create logs directory for GameLift Agent & server processes
 RUN mkdir logs
 RUN mkdir agentlogs

 # Start the GameLift Agent
 ENTRYPOINT sleep 90 && java -jar $GAMELIFT_AGENT_EXEC -ip "192.168.1.1" -gslb
 "$GAME_SESSION_LOGS_BUCKET_NAME" -galb "$GAMELIFT_AGENT_LOGS_BUCKET_NAME" -galp
 "$GAMELIFT_AGENT_LOGS_PATH" -glc environment-variable

Dockerfile for the SimpleServer sample

Base image

 # Add the base image that you want to use over here,
 # Make sure to use an image with the same architecture as the
 # Instance type you are planning to use on your fleets.
 # We require JDK to be installed in the base image, so that
 # it can be used to run the &AGS; Agent
FROM public.ecr.aws/amazoncorretto/amazoncorretto:17-amd64
 #
Game build directory

 # Add your game build to gamebuild directory and add the zip file name in the
 'GAME_BUILD_ZIP' env variable below.
 # The game build provided over here needs to be integrated with gamelift server sdk.
 # This template assumes that the game build is in a zip format.
ENV GAME_BUILD_ZIP="SimpleServer.zip" \
 #
Default directory

Build your image 220

Amazon GameLift Developer Guide

 # Default directory, the value provided here should be where the game executable
 exists.
 # Provide this same value as your launch path in RuntimeConfiguration when creating a
 fleet.
 # Ref: https://docs.aws.amazon.com/gamelift/latest/apireference/
API_ServerProcess.html
GAME_EXECUTABLE="GameLiftSampleServer" \
HOME_DIR="/local/game" \
 #
 # Registered compute in anywhere fleet (not used in container fleets)
 # ---
 # Add the name for the registered compute in an anywhere fleet.
 # This environment variable is required only for anywhere fleets, but not for
 container fleets.
 # If it is set for container fleets, it will be overridden by Gamelift.
 GAMELIFT_COMPUTE_NAME="<ADD_COMPUTE_NAME>" \
 #
Default Gamelift Agent jar

GAMELIFT_AGENT_EXEC="GameLiftAgent-1.0.jar" \
 #
 # This env variable defines the name of the S3 bucket that stores the GameLift Agent
 logs.
 # This S3 bucket should exist in the customer AWS account.
 # In order to allow GameLift agent to upload logs to this s3 bucket, customers would
 need to
 # include s3:PutObject permission in the IAM role provided as instanceRoleArn during
 CreateFleet operation.
GAMELIFT_AGENT_LOGS_BUCKET_NAME="<ADD NAME OF GAMELIFT AGENT LOGS S3 BUCKET>" \
 #

 # This env variable defines the name of the S3 bucket that stores the game session
 logs.
 # This S3 bucket should exist in the customer AWS account.
 # In order to allow GameLift agent to upload logs to this s3 bucket, customers would
 need to
 # include s3:PutObject permission in the IAM role provided as instanceRoleArn during
 CreateFleet operation.

GAME_SESSION_LOGS_BUCKET_NAME="<ADD NAME OF GAME SESSION LOGS S3 BUCKET>" \
#

GAMELIFT_AGENT_LOGS_PATH="/local/game/agentlogs/" \
 #

Build your image 221

Amazon GameLift Developer Guide

NOT USED in container fleets - USED in Anywhere fleets
--
 # Specifiy the type of compute resource used to host the game servers.
 # This env variable is required only for anywhere fleets, but not for container
 fleets.
 # If it is set for container fleets, it will be overridden by Gamelift.
#

COMPUTE_TYPE="ANYWHERE" \
 #
 # Specify the credential to be used for creating the client.
 # This env variable is required only for anywhere fleets, but not for container
 fleets.
 # If it is set for container fleets, it will be overridden by Gamelift.
#

CREDENTIAL_PROVIDER="environment-variable"

USER root

 # intall dependencies as necessary
 RUN yum install -y sudo \
 unzip \
 git \
 shadow-utils \
 iputils \
 tar \
 gcc \
 make \
 openssl-devel \
 zlib-devel \
 vim \
 net-tools \
 nc \
 procps

 # Set up the ground for 'gamescale' user
 RUN groupadd -r gamescale -g 500 && \
 useradd -u 500 -r -g gamescale -m -s /sbin/nologin -c "Gamescale user" gamescale
 && \
 echo "gamescale ALL=(ALL) NOPASSWD: ALL" | (EDITOR="tee -a" visudo) && \
 mkdir -p $HOME_DIR && \
 mkdir $HOME_DIR/mono && \
 chown -R gamescale:gamescale $HOME_DIR

Build your image 222

Amazon GameLift Developer Guide

 WORKDIR $HOME_DIR

 # extract game build as necessary
 COPY ./gamebuild/$GAME_BUILD_ZIP .
 RUN unzip ./$GAME_BUILD_ZIP -d ./

 # copy Gamelift Agent jar
 COPY ./target/$GAMELIFT_AGENT_EXEC ./

 # Add permissions to game build and gamelift agent jar
 RUN chmod +x ./$GAME_EXECUTABLE
 RUN chmod +x ./$GAMELIFT_AGENT_EXEC

 # Check if java is installed on the image, if not then the Agent will not be able
 to run
 RUN java --version

 USER gamescale

 ENV PATH "$PATH:$HOME_DIR/bin:$JAVA_HOME"

 # Change directory to bin
 WORKDIR $HOME_DIR

 # check path before starting the container
 RUN echo $PATH

 # Create logs directory for GameLift Agent & server processes
 RUN mkdir logs
 RUN mkdir agentlogs

 # Start the GameLift Agent
 ENTRYPOINT sleep 90 && java -jar $GAMELIFT_AGENT_EXEC -ip "192.168.1.1" -gslb
 "$GAME_SESSION_LOGS_BUCKET_NAME" -galb "$GAMELIFT_AGENT_LOGS_BUCKET_NAME" -galp
 "$GAMELIFT_AGENT_LOGS_PATH" -glc environment-variable

Note

Note: Some of the environment variables in the Dockerfile can be overridden by the
ContainerDefinition.

Build your image 223

https://docs.aws.amazon.com/gamelift/latest/apireference/API_ContainerDefinition.html

Amazon GameLift Developer Guide

To build your container image

1. Build your container image.

If you're using your own SDK 5.x server

You can specify whatever local repository name you want.

Example

[~/work/glc]$ docker build -t <local repository name>:<optional tag> .

If you're using our SimpleServer sample

Example

[~/work/glc]$ docker build -t simple-server:version-1 .
Successfully built 0123456789012
Successfully tagged simple-server:version-1

Note

In following examples, we use simpler-server as the initial REPOSITORY value, and
version-1 as the TAG value.

2. View the list of images and make note of the REPOSITORY and IMAGE ID values. You'll need
them in a procedure below.

Example

[~/work/glc]$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
simple-server version-1 0123456789012 14 minutes ago 1.24GB

Build your image 224

Amazon GameLift Developer Guide

Push your container image to Amazon ECR

Upload your container image to a private repository in Amazon ECR. When you create a container
group definition, you reference this repository location so that Amazon GameLift can take a
snapshot of your container image and use it when deploying a container fleet.

Note

If you don't yet have an Amazon ECR private repository, then create one.

To get your Amazon ECR credentials

• Before you can push your container image to Amazon ECR, you must acquire your AWS
credentials in temporary form and provide them to Docker. Get your Amazon ECR credentials
so that Docker can log in.

Example

[~/work/glc]$ aws ecr get-login-password --region us-west-2 | docker login --
username AWS --password-stdin aws_account_id.dkr.ecr.us-west-2.amazonaws.com
WARNING! Your password will be stored unencrypted in
/home/user-name/.docker/config.json.
Configure a credential helper to remove this warning.
See https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded

To push your container image to Amazon ECR

1. Copy the URI of the Amazon ECR private repository you want to use.

2. Apply an Amazon ECR tag to your container image.

Example

[~/work/glc]$ docker tag <IMAGE ID from above> <Amazon ECR private repository
 URI>:<optional tag>

3. Push your container image to Amazon ECR

Push your image 225

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://console.aws.amazon.com/ecr/private-registry/repositories

Amazon GameLift Developer Guide

Example

[~/work/glc]$ docker image push <Amazon ECR private repository URI>

Design an Amazon GameLift container fleet

This documentation is for a feature that is in public preview release. It is subject to change.

These topics present the key decisions you’ll make when setting up an Amazon GameLift container
fleet. Your decisions impact how you configure settings for containers, container groups, and fleets.

Topics

• Architect your fleet container structure

• Set resource limits

• Designate essential containers

• Configure network connections

• Set up health checks for containers

• Set container dependencies

• Configure a container fleet

Architect your fleet container structure

As a first step, identify the software and resources needed to host your game server, including the
following:

• Your game server application. The application must be integrated with Amazon GameLift
functionality for hosting, including the server SDK version 5+. See Integrate your game with
Amazon GameLift.

• The Amazon GameLift Agent. This on-compute agent maintains communication with the
Amazon GameLift service and manages the lifecycle of all game server processes. For more
details, see Game servers and the Amazon GameLift Agent.

• Additional software and resources as needed. This might include software needed to run your
game server applications. Common supporting software is used for logging and monitoring,
security, content delivery, and data synchronization.

Design a container fleet 226

Amazon GameLift Developer Guide

Next, decide how to structure your software and resources for an Amazon GameLift container fleet.
Amazon GameLift uses container groups to organize containers. A fleet always has one replica
container group and can optionally have a daemon container fleet. For more details, see Container
fleet components.

• Start by designing your replica container group. Consider the following guidelines:

• Bundle your game server application and the Amazon GameLift Agent into the same container.
Make this container the replica group’s only essential container.

• Organize all other software for your game server into containers. You might choose to put
everything into a single container in the replica group. Or you might choose to create one or
more sidecar containers. Some reasons to use sidecars include:

• To set up a startup/shutdown sequence for individual software. You can achieve this by
placing software in separate containers and set up dependencies between them.

• To set container-specific limits for memory and CPU usage.

• To specify different container configuration settings for each container, such as a launch
command, entry point, working directory, environment variables, or health checks.

• Decide whether you need a daemon container group for your fleet. Consider the following:

• Daemon containers are typically used to run background or monitoring processes.

• Containers in a daemon group aren't replicated on a fleet instance. This means that containers
in a daemon group don’t scale along with the replica container group.

• A daemon group can have multiple containers. You can designate any container in a daemon
group as essential.

Set resource limits

For each container group, determine how much memory and CPU the group needs to run its
software. Amazon GameLift relies on this information to manage resources for the container
group. It also uses this information to calculate how many replica container groups a fleet image
can hold. You can also set limits for individual containers.

Set optional limits for containers

Setting container-specific resource limits lets you exert greater control over how individual
containers can use the group’s resources. If you don’t set container-specific limits, all containers
in the group share the group resources. Sharing offers greater flexibility to use resources where

Set resource limits 227

Amazon GameLift Developer Guide

they're needed. It also increases the potential for processes to compete with each other and
result in container failure.

Set any of the following ContainerDefinition properties for any container.

• SoftLimit (memory) – Reserve a minimum amount of memory for the container’s exclusive
use. The container always has the reserved amount available to it. It can exceed this minimum
at any time, if additional resources are available.

• HardLimit (memory) – Set a maximum memory limit for the container. If the container
exceeds this limit, it results in a restart.

• Cpu limit – Reserve a minimum amount of CPU resources for the container's exclusive use.
The container always has the reserved amount available to it. It can exceed this minimum at
any time, if additional resources are available. (1024 CPU units is the equivalent of 1 vCPU.)

Set total resource limits for a container group

Tell Amazon GameLift how much memory and CPU resources each container group needs. The
goal is to allocate enough resources to optimize game server performance. Amazon GameLift
uses these limits to calculate how to pack replica container groups on a fleet instance. You’ll
also use them when choosing an instance type for a container fleet.

Calculate the total memory and CPU needed for all processes in each container in a group.
Consider the following:

• What processes run in all containers in the container group? Add up the resources required for
these processes.

• How many concurrent game server processes do you plan to run in each container group? You
set this value as part of a fleet's runtime configuration, but you need to plan enough memory
for them here (see Optimize your runtime configuration).

Based on your estimate of container group requirements, set the following
ContainerGroupDefinition properties:

• TotalMemoryLimit – Set a maximum memory limit for the container group. All containers
in the group share allocated memory. If you set individual container limits, the total memory
limit must be:

• equal to or greater than the sum of all container soft memory limits

• equal to or greater than the highest hard memory limit for a container in the group

Set resource limits 228

Amazon GameLift Developer Guide

• TotalCpuLimit – Set a maximum CPU limit for the container group. All containers in the
group share allocated CPU resources. If you set individual container limits, the total CPU limit
must be:

• equal to or greater than the sum of all container CPU limits. As a best practice, consider
setting this value to double the sum of the container CPU limits.

Example scenario

Let’s say we’re defining a replica container group with the following three containers:

• Container A is our essential replica container. It runs game server processes and the Amazon
GameLift Agent. We estimate the resource requirements for one game server at 512 MiB and
1024 CPU. We plan to have the container run 10 server processes. Because this container runs
our most critical software, we set a soft memory reserve of 6144 MiB and no hard memory
limit or CPU reserve limit.

• Container B runs supporting software with resource requirements estimated at 1024 MiB and
1536 CPU. We set a soft memory reserve limit of 1024 MiB, a hard memory limit of 2048 MiB,
and a CPU reserve limit of 1024 CPU.

• Container C runs non-critical logging and other monitoring utilities. We set a hard memory
limit of 512 MiB and a CPU reserve limit of 512 CPU.

Using this information, we set the following total limits for the container group:

• Total memory limit: 7680 MiB. This value exceeds (1) the sum of soft memory limits
(6144+1024 MiB), and (2) the highest hard memory limit (1024 MiB).

• Total CPU limit: 13312 CPU. This value exceeds the sum of the CPU limit (1024+512 CPU).

Designate essential containers

For each container, designate the container as essential or non-essential. All container groups must
have at least one essential container. The essential container does the critical work of the container
group, such as hosting your game servers. The essential container is always expected to be running.
If it fails, the entire container group restarts.

• Your fleet’s replica container group can have exactly one essential container. This container runs
the Amazon GameLift Agent and the game server processes it manages.

• If your fleet has a daemon container group, you can designate multiple essential containers.
Make a daemon container essential if you want a container failure to prompt a container group
restart.

Designate essential containers 229

Amazon GameLift Developer Guide

Set the ContainerDefinition property Essential to either true or false for each container.

Configure network connections

You can establish network access to let external traffic connect to any container in a container
fleet. For example, you must establish network connections to the container that runs your game
server processes, so that game clients can join and play your game. Game clients connect to game
servers using ports and IP addresses.

In a container fleet, the connection between a client and server is not direct. Internally, a process in
a container listens on a container port. Externally, incoming traffic connects to a fleet instance using
a connection port. Amazon GameLift maintains the mappings between internal container ports and
external-facing connection ports, so that incoming traffic gets routed to the correct process on the
instance.

Amazon GameLift provides an extra layer of control for your network connections. Each container
fleet has an inbound permissions setting, which lets you control access to each external-facing
connection port. You can't change an existing fleet's port configurations, but you can allow or
restrict access as needed by adjusting the inbound permissions. For example, you can remove
permissions for all connection ports to shut off all access to the fleet's containers.

Configure network connections 230

Amazon GameLift Developer Guide

Set container port ranges

Configure a container definition with enough container ports for any process that needs
external access. Some containers won't need any ports. Others must have enough ports to
assign one to every process that needs one.

Configure network connections 231

Amazon GameLift Developer Guide

Your essential replica container group, which runs your game servers, needs a port
for every concurrently running game server process (as configured in the fleet's
RuntimeConfiguration). The game server process listens on the assigned port and reports it
to Amazon GameLift.

When you create a container group definition, define a container port range for each container
that needs network access (see ContainerDefinitionInput:PortConfiguration) . Make sure that
the range is large enough to assign a port to each process that needs one. Processes must be
assigned port numbers in the container's port configuration.

Set connection port ranges

Configure your container fleet with a set of connection ports. Connection ports provide external
access to the fleet instances that are running your containers. Amazon GameLift assigns
connection ports and maps them to container ports as needed.

When you create a container fleet, define a connection port range (see
ContainerGroupsConfiguration:ConnectionPortRange). Make sure that the range has enough
ports to map to every container port across a fleet instance. To calculate the minimum
connection ports needed, use the following formula:

[Total number of container ports defined for containers in the replica
container group] * [Number of replica container groups per instance] +
[Total number of container ports defined for containers in the daemon
container group]

As a best practice, double the minimum number of connection ports.

Note

The number of connecton ports can potentially limit the number of replica container
groups per instance. If a fleet has only enough connection ports for one replica
container group per instance, Amazon GameLift will deploy only one replica container
group, even if the instances have enough compute power for multiple replica container
groups.

Configure network connections 232

https://docs.aws.amazon.com/gamelift/latest/apireference/API_ContainerDefinitionInput.html#gamelift-Type-ContainerDefinitionInput-PortConfiguration
https://docs.aws.amazon.com/gamelift/latest/apireference/API_ContainerGroupsConfiguration.html#gamelift-Type-ContainerGroupsConfiguration-ConnectionPortRange
https://docs.aws.amazon.com/gamelift/latest/apireference/API_ContainerGroupsConfiguration.html#gamelift-Type-ContainerGroupsConfiguration-ConnectionPortRange

Amazon GameLift Developer Guide

Set inbound permissions

Inbound permissions control external access to a container fleet by specifying which
connection ports to open for incoming traffic. You can use this setting to turn a fleet's network
access on and off as needed.

When you create a container fleet, define a set of inbound permissions (see
CreateFleet:EC2InboundPermissions). Set inbound permission port properties to include some
or all the values in the fleet's connection port settings. To change inbound permissions on an
existing container fleet, call UpdateFleetPortSettings.

Example scenario

This example illustrates how to set all three network connection properties.

• Our fleet's replica container group has 1 container, which runs the game server processes. The
runtime confiruation tells the container to run 10 concurrent game server processes.

In the replica container group definition, we set the PortConfiguration parameter for this
container as follows:

"PortConfiguration": {
 "ContainerPortRanges": [{ "FromPort": 10, "ToPort": 20, "Protocol": "TCP"}]
 }

• Our fleet also has a daemon container group with 1 container. It has 1 process that needs
network access. In the daemon container group definition, we set the PortConfiguration
parameter for this container as follows:

"PortConfiguration": {
 "ContainerPortRanges": [{ "FromPort": 25, "ToPort": 25, "Protocol": "TCP"}] }

• Our fleet is configured with 3 replica container groups per fleet instance. Given this
information, we can use the formula to calculate the number of connection ports we need:

• Minimum: 31 ports [10 replica container ports * 3 replica container groups per instance + 1
daemon container port]

• Best practice: 62 ports [minimum ports * 2]

When creating the container fleet, we set the ConnectionPortRange parameter in
ContainerGroupsConfiguration as follows:

Configure network connections 233

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateFleet.html#gamelift-CreateFleet-request-EC2InboundPermissions
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateFleet.html#gamelift-CreateFleet-request-EC2InboundPermissions
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateFleetPortSettings.html

Amazon GameLift Developer Guide

"ConnectionPortRange": { "FromPort": 1010, "ToPort": 1071 }

• We want to allow access to all available connection ports. When creating the container fleet,
we set the EC2InboundPermissions parameter as follows:

"EC2InboundPermissions": [
 {"FromPort": 1010, "ToPort": 1071, "IpRange": "10.24.34.0/23", "Protocol":
 "TCP"}]

Set up health checks for containers

A container automatically restarts if it experiences a terminal failure and stops running. If the
container is essential, the entire container group restarts.

You can define additional custom criteria to measure container health and use a health check to
test that criteria. To set up a container health check, you can define it in a docker container image
or in your container definition. If you set a health check in the container definition, it overrides any
settings in the container image.

Set optional health checks based on the container type as follows:

• For an essential replica container, don’t configure health checks. The Amazon GameLift Agent
automatically handles health reporting for this container.

• For non-essential replica containers and any daemon containers, you can optionally set health
check parameters.

Set the following ContainerDefinition properties for a container health check:

• Command — Provide a command that checks some aspect of the container’s health. You
decide what criteria to use to measure health. The command must result in an exit value of 1
(unhealthy) or 0 (healthy).

• StartPeriod — Specify an initial delay before health check failures start counting. This delay
gives the container time to bootstrap its processes.

• Interval — Decide how often to run the health check command. How quickly do you want to
detect and resolve a container failure?

Set up health checks for containers 234

Amazon GameLift Developer Guide

• Timeout — Decide how long to wait for success or failure before retrying the health check
command. How long should the health check command take to complete?

• Retries — How many times should the health check command be retried before registering a
failure?

Set container dependencies

Within each container group you can set dependencies between containers based on container
status. A dependency impacts when the dependent container can start or shut down based the
status of another container.

A key use case for dependencies is to create startup and shutdown sequences for the container
group.

For example, you might want Container A to start first and complete successfully before Containers
B and C start. To achieve this, first create a dependency for Container B on Container A, with the
condition that Container A must complete successfully. Then create a dependency for Container C
on Container A with the same condition. Startup sequences occur in reverse order for shutdown.

Configure a container fleet

When you create a container fleet, consider the following decision points. Most of these points are
dependent on your container architecture and configuration.

Decide where you want to deploy your fleet

In general, you want to deploy your fleets geographically near your players to minimize latency.
You can deploy your container fleet to any Each AWS Region that Amazon GameLift supports.
If you want to deploy the same game server to additional geographic locations, you can add
remote locations to the fleet including AWS Regions and Local Zones. For a multi-location
fleet, You can adjust capacity independently in each fleet location. For more information about
supported fleet locations, see Amazon GameLift hosting locations.

Choose an instance type and size for your fleet

Amazon GameLift supports a wide range of Amazon EC2 instances types, all of which are
available for use with a container fleet. Instance type availability and price varies by location.
You can view a list of supported instance types, filtered by location, in the Amazon GameLift
console (under Resources, Instance and service quotas).

Set container dependencies 235

Amazon GameLift Developer Guide

When choosing an instance type, first consider the instance family. Instance families offer
various combinations of CPU, memory, storage, and networking capabilities. Get more
information on EC2 instance families. Within each family you have a range of instance sizes to
choose from. Consider the following issues when selecting an instance size:

• What's the minimum instance size that can support your workload? Use this information to
eliminate any instance types that are too small.

• What instance type sizes are a good fit for your container architecture? Ideally, you want to
choose a size that can accommodate multiple copies of your replica container group with
minimal wasted space.

• What scaling granularity makes sense for your game? Scale fleet capacity involves adding
or removing instances, and each instance represents the ability to host a specific number of
game sessions. Consider how much capacity you want to add or remove with each instance. If
player demand varies by thousands from minute to minute, then it might make sense to use
very large instances that can host hundreds or thousands of game sessions. By contrast, you
might prefer more fine-grained scaling control with smaller instance types.

• Are there cost savings available based on size? You might find that the cost of certain instance
types vary by location due to availability.

Optimize your runtime configuration

A fleet's runtime configuration is a set of instructions for how to run server processes for game
session hosting. These instructions are implemented by the Amazon GameLift Agent in each
replica container group in the fleet.

A fleet's runtime configuration determines how many server processes run concurrently in each
replica container group. This setting impacts how you calculate your container group resource
limits and how you choose an instance type for your fleet. You need to balance these three
elements when designing your fleet.

For more information about how to use runtime configurations, see Manage how Amazon
GameLift launches game servers.

Set other optional fleet settings

You can use the following optional features when configuring a container fleet:

• Set up your game servers to access other AWS resources. See Communicate with other AWS
resources from your fleets.

• Protect game sessions with active players from terminating prematurely during a scale-down
event.

Configure a container fleet 236

https://aws.amazon.com/ec2/instance-types/

Amazon GameLift Developer Guide

• Limit the number of game sessions that one individual can create on the fleet within a limited
span of time.

Create container group definitions for an Amazon GameLift
container fleet

This documentation is for a feature that is in public preview release. It is subject to change.

A container group definition describes how to deploy your containerized game server applications
to a container fleet. It's a blueprint that identifies the set of containers to run on the fleet and how
to run them. When you create a container fleet, you specify the container group definitions to
deploy to the fleet. For more information about container groups, see Container fleet components.

Before you start

Complete the following tasks:

• Design a container architecture for hosting your game servers. See Design an Amazon GameLift
container fleet.

• Plan the container definitions to include in the container group. If you’re using the AWS CLI,
create your container definition in a JSON file.

• Push the final container images to an Amazon Elastic Container Registry (Amazon ECR) registry
in the same AWS Region where you plan to create the container group. Amazon GameLift stores
a snapshot of each image at the time you create container group definition, and uses the copy
when deploying to a container fleet. See Prepare a container image with your game server
software.

• Verify that your AWS user has IAM permissions to access the Amazon ECR repository. See Manage
user permissions for Amazon GameLift. At minimum, you need permissions for the following
actions:

• ecr:DescribeImages

• ecr:BatchGetImage

• ecr:GetDownloadUrlForLayer

Clone a container group definition

You can use the Amazon GameLift console to clone an existing container group definition.

Create container group definitions 237

Amazon GameLift Developer Guide

To clone a container group

1. In the Amazon GameLift console, go to the left navigation pane and choose Container
groups.

2. On the Container groups list page, select the existing container group that you want to clone.
After you select a container group, the Clone button is active.

3. Choose Clone. This action opens the container group creation wizard with pre-filled settings.

4. Enter a new name for the cloned container group. Container group in the same region must
have unique names.

5. Step through the container group and container definition pages, review, and Create the new
container group.

Create a replica container group definition

A replica container group manages your game server software. A replica container group has at
least one container that runs the Amazon GameLift Agent and your game server processes. The
group might have additional “sidecar” containers to run supporting software.

This topic describes how to create a container group definition using the Amazon GameLift console
or AWS CLI tools. For more detailed information on setting container group configurations, refer to
Design an Amazon GameLift container fleet.

Console

In the Amazon GameLift console, select the AWS Region where you want to create the container
group.

Open the console’s left navigation bar and choose Container groups. On the Container groups
page, choose Create container group.

Step 1: Define group details.

1. Enter a container group definition name. This name must be unique to the AWS account
and Region. In the console, group definitions are listed by name, so it can be helpful to
assign meaningful labels.

2. Select the Replica scheduling strategy.

3. For Total memory limit, enter the maximum memory available to the container group. For
help calculating this value, see Set resource limits.

Create a replica container group definition 238

https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

4. For Total CPU limit, enter the maximum computing power available to the container
group. For help calculating this value, see Set resource limits.

Step 2: Add container definitions.

Define the container with your game server application and the Amazon GameLift Agent. This is
your essential replica container.

1. Provide a container definition Name. Each container defined for the group must have a
unique name value.

2. Identify the Amazon ECR image URI of the container image. Enter any of the following
formats:

• Image URI only: [AWS account].dkr.ecr.[AWS Region].amazonaws.com/
[repository ID]

• Image URI + digest: [AWS account].dkr.ecr.[AWS Region].amazonaws.com/
[repository ID]@[digest]

• Image URI + tag: [AWS account].dkr.ecr.[AWS Region].amazonaws.com/
[repository ID]:[tag]

3. For Essential container, Yes is automatically selected for the first container definition.
If you add another container definition, you can toggle this setting on or off for each
definition. For more details, see Designate essential containers.

4. Set one or more Internal container port ranges. This container hosts your game servers, so
define a range with enough ports for each server process to run in the container group. For
more details, see Configure network connections.

5. The optional settings Overrides and Environment variables let you specify values to
pass to the container on launch. Values you set here override any settings already in the
container image.

6. Set optional container Limits to manage resource allocation for this container. For more
details, see Set resource limits.

7. Define additional non-essential containers as needed:

• Provide a container definition Name and ECR image URI. Non-essential containers must
not run the Amazon GameLift Agent.

• Set an Internal container port range only if the containers has processes that need
network access.

Create a replica container group definition 239

Amazon GameLift Developer Guide

• Optionally set up a Health check for the container. When a non-essential container fails
a health check, it prompts a restart of the failing container only.

• Optionally set Overrides, Environment variables, and resource allocation Limits as
needed.

Step 3: Configure dependencies.

If you have more than one container in your container group definition, you can define
dependencies between them. Use dependencies to set up startup and shutdown sequences
based on container condition. For more details, see Set container dependencies.

1. Identify the Container name that you want to add a dependency for. This container doesn't
start until the dependency condition is satisfied.

2. Identify the dependency Container name and Condition. This container must meet the
condition before the dependent container can start.

3. Set additional dependencies as needed. You can create multiple dependencies for any
container. Avoid creating circular dependencies.

Step 4: Review and create.

1. Review all your container group definition settings. You can't change the configuration of
a container group definition after it's created. Use Edit to make changes to any section,
including each of your container definitions for the group.

2. When you're finished reviewing, choose Create.

If your request is successful, the console displays the detail page for the new container
group definition resource. Initially the status is COPYING, as Amazon GameLift starts taking
snapshots of all the container images for the group. When this phase is complete, the
container group definition status changes to READY. A container group definition must be
in READY status before you can create a container fleet with it.

AWS CLI

When you use the AWS CLI to create a container group definition, maintain your container
definition configurations in a separate JSON file. You can reference the file in your CLI
command. See Create a container definition JSON file for schema examples.

Create a replica container group definition 240

Amazon GameLift Developer Guide

Create a container group definition

To create a new container group definition, use the create-container-group-
definition CLI command. For more information about this command, see create-
container-group-definition in the AWS CLI Command Reference.

Example : Replica container group

This example illustrates a request for a replica container group definition. The command
structure for creating replica and daemon group definitions are essentially identical. Specific
details for each type of group are described in the individual container definitions.

This example assumes that you’ve created a JSON file with the container definitions for this
group.

aws gamelift create-container-group-definition \
 --name MyAdventureGameContainerGroup \
 --operating-system AMAZON_LINUX_2023 \
 --scheduling-strategy REPLICA \
 --total-memory-limit 4096 \
 --total-cpu-limit 1024 \
 --container-definitions file://SimpleServer.json

Create a container definition JSON file

When you create a container group definition, you also define the containers for the group. A
container definition specifies the Amazon ECR repository where the container image is stored,
and optional configurations for network ports, limits for CPU and memory usage, and other
settings. We recommend creating a single JSON file with the configurations for all the containers
in a container group. Maintaining a file is useful for storing, sharing, version tracking these critical
configurations. If you use the AWS CLI to create your container group definitions, you can reference
the file in the command.

To create a container definition

1. Create and open a new .JSON file. For example:

[~/work/glc]$ vim SimpleServer.json

Create a container definition JSON file 241

https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-container-group-definition.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-container-group-definition.html

Amazon GameLift Developer Guide

2. Create a separate container definition for each of the containers for the group. Copy the
following example content and modify it as needed for your containers. For details on the
syntax of a container definition, see ContainerDefinitionInput in the Amazon GameLift API
Reference.

3. Save the file locally so that you can refer to it in an AWS CLI command.

Example: Essential replica container definition

Example

This example describes the essential container for your replica container group. The essential
replica container includes your game server application, the Amazon GameLift Agent, and can
include other supporting software for your game hosting. The definition must include a name,
image URI, and a port configuration. This example also sets some container-specific resource limits.

[
 {
 "ContainerName": "SimpleServer",
 "ImageUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/gl-containers:complex-
server",
 "Essential": true,
 "Cpu": 256,
 "MemoryLimits": {
 "HardLimit": 128
 },
 "PortConfiguration": {
 "ContainerPortRanges": [
 {
 "FromPort": 2000,
 "Protocol": "TCP",
 "ToPort": 2100
 }
]
 }
 }
]

Create a Amazon GameLift container fleet

This documentation is for a feature that is in public preview release. It is subject to change.

Create a container fleet 242

https://docs.aws.amazon.com/gamelift/latest/apireference/API_ContainerDefinitionInput.html

Amazon GameLift Developer Guide

When you've created your container group definitions, use the Amazon GameLift console or the
AWS Command Line Interface (AWS CLI) to create a container fleet.

After you create a new fleet, the fleet's status passes through several stages as Amazon GameLift
deploys your container groups onto each fleet instance and starts the game servers. When the fleet
reaches status ACTIVE, it's ready to host game sessions. For help with fleet creation issues, see
Debug Amazon GameLift fleet issues.

Console

In the Amazon GameLift console, select the AWS Region where you want to create the fleet. The
container group definitions must be in the same region where you want to create the fleet.

Open the console’s left navigation bar and choose Fleets. On the Fleets page, choose Create
fleet.

Step 1: Choose compute type

• Choose the Containers compute type.

Step 2: Define fleet details

1. In the Fleet details section, enter a fleet name and description.

2. In the Container group details section, identify the container groups to deploy to the fleet.
You must add a replica container group. You can optionally add a daemon container group.
Each group must be in status READY.

3. Set the Connection port range for the fleet. For more details, see Configure network
connections.

4. Optionally specify the Desired replicas per instance to deploy. You can specify a desired
number or you can let Amazon GameLift calculate the maximum possible number. If you
specify a desired number that's larger than the calculated maximum, fleet creation will fail.
You can't change this setting after the fleet is created. For more details on replica container
group packing, see Core concepts.

5. (Optional) Under Additional details:

a. For Instance role, specify an IAM role that authorizes applications in your game
build to access other AWS resources in your account. For more information, see
Communicate with other AWS resources from your fleets. To create a fleet with

Create a container fleet 243

https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

an instance role, your account must have the IAM PassRole permission. For more
information, see IAM permission examples for Amazon GameLift.

b. For Metric group, Enter the name of a new or existing fleet metric group. You can
aggregate the metrics for multiple fleets by adding them to the same metric group.

Step 3: Define instance details

1. In Instance deployment, select one or more remote locations to deploy instances to. The
home Region is automatically selected (this is the Region that you're creating the fleet in).
If you select additional locations, fleet instances are also deployed in these locations.

Important

To use Regions that aren't enabled by default, enable them in your AWS account.

• Fleets with Regions that aren't enabled that you created before February 28,
2022 are unaffected.

• To create new multi-location fleets or to update existing multi-location fleets,
first enable any Regions that you choose to use.

For more information about Regions that aren't enabled by default and how to
enable them, see Managing AWS Regions in the AWS General Reference.

2. Select an Instance configuration for the fleet. The console automatically calculates the
minimum vCPU and memory required (based on the total limits you set for each container
group). It filters the complete list of available instance types base on resource requirements
and the locations you entered. You can add additional filters as needed.

For more information about choosing an instance type, see Configure a container fleet. The
size of the instance type you choose will impact how replica container groups are packed
onto each fleet instance. Depending on your choice, consider reviewing your setting for
desired replicas per instance.

Step 4: Configure runtime

The runtime configuration determines how game server processes are started and run. These
instructions are passed to the Amazon GameLift Agent, which implements them in the same

Create a container fleet 244

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html

Amazon GameLift Developer Guide

way in each replica container group. You can update a fleet's runtime configuration by calling
UpdateRuntimeConfiguration.

1. For Launch path, enter the path to a game executable.

2. (Optional) For Launch parameters, enter information to pass to your game executable as a
set of command line parameters.

3. Specify the number of Concurrent processes to maintain running in each replica
container group. Review the Amazon GameLift quotas on the number of server processes
per instance. Limits on concurrent server processes per instance apply to the total of
concurrent processes for all configurations. If you configure the fleet to exceed the limit,
the fleet can't activate.

4. Set optional limits on concurrent Game session activations. These settings let you limit the
amount of resources that are consumed when starting a new game session. Game session
activations can have an performance impact on existing game sessions.

5. Set EC2 port settings to allow external traffic to gain access to processes that are running
on the fleet. Specify some or all the connection ports numbers that are defined for the
fleet. You don't have to set these ports when you create the fleet, but without them
no traffic can connect to your game servers. To update a fleet's port settings later, call
UpdateFleetPortSettings

6. Under Game session resource settings configure the following optional features:

a. Turn Game scaling protection policy on or off. With protection on, Amazon GameLift
won't shut down instances during a scale down event if they're hosting an active game
session.

b. Set a maximum Resource creation limit to limit the number of game sessions one
player can create during a specified time span.

Step 5: Configure tags

• (Optional) Add tags to the build by entering Key and Value pairs. Choose Next to continue
to fleet creation review.

Step 6: Review and create.

• Review your fleet configuration settings.

Create a container fleet 245

https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateRuntimeConfiguration.html
https://docs.aws.amazon.com/general/latest/gr/gamelift.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateFleetPortSettings.html

Amazon GameLift Developer Guide

You can update the fleet's metadata and configuration at any time, regardless of fleet
status. For more information, see Manage your Amazon GameLift fleets. You can update
fleet capacity after the fleet has reached ACTIVE status. For more information, see Scaling
Amazon GameLift hosting capacity. You can also add or remove remote locations.

When you're finished reviewing, choose Create.

If your request is successful, the console displays the detail page for the new fleet resource.
Initially the status is NEW, as Amazon GameLift starts the fleet creation process. You can
track the new fleet's status on the Fleets page. A fleet is ready to host game sessions when
it reaches status ACTIVE.

AWS CLI

To create a container fleet with the AWS CLI, open a command line window and use the
create-fleet command. For more information about this command, see create-fleet in
the AWS CLI Command Reference.

The example create-fleet request shown below creates a new container fleet with the
following characteristics:

• The ContainerGroupsConfiguration specifies a single replica container group definition:
MegaFrogRaceServer.NA.v2. Three copies of the replica group will be deployed to each
fleet instance. Each instance has 30 connection ports available for access to processes on the
instance.

• The fleet uses c5.large On-Demand instances.

• It deploys container groups to the following locations:

• us-west-2 (home Region)

• ca-central-1 (remote location)

• Each replica container group on an instance will run 5 game server processes concurrently,
enabling each instance to host up to 15 game sessions at a time.

• In each replica container group, Amazon GameLift allows two new game sessions to activate
at the same time. It also terminates any activating game session if they aren't ready to host
players within 300 seconds.

• All game sessions hosted on instances in this fleet have game session protection turned on.

• Individual players can create three new game sessions within a 15-minute period.

Create a container fleet 246

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/create-fleet.html

Amazon GameLift Developer Guide

aws gamelift create-fleet \
 --name SampleFleet123 \
 --description "The sample test fleet" \
 --compute-type "CONTAINER" \
 --container-groups-configuration
 "ContainerGroupDefinitionNames=['MegaFrogRaceServer.NA.v2'],
 DesiredReplicaContainerGroupPerInstance=3,
 ConnectionPortRange={FromPort=1010,ToPort=1040}" \
 --ec2-instance-type c5.large \
 --region us-west-2 \
 --locations "Location=ca-central-1" \
 --fleet-type ON_DEMAND \
 --runtime-configuration "GameSessionActivationTimeoutSeconds=300,
 MaxConcurrentGameSessionActivations=2, ServerProcesses=[{LaunchPath=/local/game/
MegaFrogRace/server.exe,ConcurrentExecutions=5}]" \
 --new-game-session-protection-policy "FullProtection" \
 --resource-creation-limit-policy "NewGameSessionsPerCreator=3,
 PolicyPeriodInMinutes=15" \
 --ec2-inbound-permissions
 "FromPort=1010,ToPort=1040,IpRange=0.0.0.0/0,Protocol=UDP" \

If the create-fleet request is successful, Amazon GameLift returns a set of fleet attributes that
includes the configuration settings you requested and a new fleet ID. Amazon GameLift then
sets the fleet status and the location statuses to New and initiates the fleet activation process.
You can track the fleet's status and view other fleet information using these CLI commands:

• describe-fleet-events

• describe-fleet-attributes

• describe-fleet-capacity

• describe-fleet-port-settings

• describe-fleet-utilization

• describe-runtime-configuration

• describe-fleet-location-attributes

• describe-fleet-location-capacity

• describe-fleet-location-utilization

You can change the fleet's capacity and other configuration settings as needed using these
commands:

Create a container fleet 247

https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-events.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-attributes.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-capacity.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-port-settings.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-utilization.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-runtime-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-location-attributes.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-location-capacity.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-location-utilization.html

Amazon GameLift Developer Guide

• update-fleet-attributes

• update-fleet-capacity

• update-fleet-port-settings

• update-runtime-configuration

• create-fleet-locations

• delete-fleet-locations

Manage your Amazon GameLift container fleets

This documentation is for a feature that is in public preview release. It is subject to change.

When you want to get information about your container fleet or make changes, you can use the
following actions to manage your container fleet.

View resources

Following are some ways you can get information about the resources in your container fleet.

• DescribeCompute - Returns details about a container registered as a compute.

• DescribeContainerGroupDefinition - Returns details about a container group definition. This
resource describes how the group and its containers are configured.

• DescribeFleetAttributes - Gets fleet attributes, which include the connection port range, and
other attributes.

• DescribeFleetCapacity - Gets a count of the replica container groups in the fleet and their
statuses.

• DescribeRuntimeConfiguration - Describes server processes that run in each replica container
group.

• GetComputeAccess - Provides remote access to an instance hosting the container group.

• GetComputeAuthToken - Requests an authentication token from Amazon GameLift for a
compute resource in a container fleet.

• ListCompute - Lists container groups registered as computes.

• ListContainerGroupDefinitions - Lists the container group definitions.

• ListFleets - Lists fleets that are using a specific container group.

Manage your container fleets 248

https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-attributes.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-capacity.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-port-settings.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-runtime-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-fleet-locations.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/delete-fleet-locations.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_.DescribeCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeContainerGroupDefinition.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetAttributes.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetCapacity.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeRuntimeConfiguration.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAccess.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAuthToken.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_ListCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_ListContainerGroupDefinitions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_ListFleets.html

Amazon GameLift Developer Guide

Update resources

Following are some ways you can create and modify container fleet resources.

• CreateContainerGroupDefinition - Creates a container group definition.

• CreateFleet - Creates a container fleet when ComputeType is set to CONTAINER.

• RegisterCompute - Registers computes with a container fleet.

• UpdateFleetAttributes - Updates a fleet's mutable attributes, such as Anywhere fleet
configuration options.

• UpdateFleetCapacity - Updates capacity settings for a managed EC2 fleet or container fleet.

• UpdateRuntimeConfiguration - Updates the runtime configuration, which describes what server
processes to run in each replica container group registered as compute.

Delete resources

Following are some ways you can remove container fleet resources.

• DeleteContainerGroupDefinition - Deletes a container group definition.

• DeleteFleet - Deletes a fleet.

• DeregisterCompute - Removes a compute resource from a container fleet.

Scaling Amazon GameLift container fleets

This documentation is for a feature that is in public preview release. It is subject to change.

One of the most challenging tasks with game hosting is scaling capacity to meet player demand
without wasting money on resources that you don't need. In a container fleet, you scale your fleet
capacity by adding or removing fleet instances.

When you create a new fleet, Amazon GameLift sets the fleet's desired capacity to one instance
and deploys one instance in the fleet's home region. For a multi-location fleet, Amazon GameLift
deploys one instance to the home region and to each remote location. After the fleet status
reaches ACTIVE, you can raise the desired capacity to scale up, or lower the desired capacity to
scale down.

You can use Amazon GameLift scaling features to change capacity manually or set up automatic
scaling based on player demand:

Update resources 249

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateContainerGroupDefinition.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateFleet.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateFleetAttributes.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateFleetCapacity.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateRuntimeConfiguration.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteContainerGroupDefinition.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteFleet.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeregisterCompute.html

Amazon GameLift Developer Guide

• Set up automatic scaling with target tracking. See Target-based auto scaling.

• Manually change the capacity of your fleet. See Manually set capacity for a Amazon GameLift
fleet.

When scaling a container fleet, consider how adding or removing instances impacts the fleet's
capacity to host game sessions and players.

• Game sessions per instance

• Each game server process running on an instance represents the capacity to host one game
session.

• Use this formula to calculate the number of game sessions that run concurrently on a
container fleet instance:

[Game sessions per instance] = [# of processes per replica container group] * [# of
 replica container groups per instance]

• For processes per replica container group, call DescribeRuntimeConfiguration and count the
number of concurrent executions for game server processes.

• For replica container groups per instance, call DescribeFleetAttributes to get the
DesiredReplicaContainerGroupPerInstance value. If this value isn't set, use the
MaxReplicaContainerGroupsPerInstance value.

• Players per instance

• You decide the number of player slots to allow in each game session. Depending on how your
hosting solution handles game session placement, you might define players per game session
in your matchmaking configuration or in your calls to start a game session placement.

• Use this formula to calculate the number of players that can play your game concurrently on a
container fleet instance:

[Players per instance] = [# of game sessions per instance] * [# of player slots per
 game session]

To get the current total capacity of a container fleet, call DescribeFleetCapacity or
DescribeFleetLocation Capacity to get the number of replica container groups in the fleet. Active
groups are those that are currently hosting game sessions. Idle groups are ready to host a new
game session. Multiply these values by the number of server processes per replica container group.

Scaling container fleets 250

https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeRuntimeConfiguration.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetAttributes.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetCapacity.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetLocationCapacity.html

Amazon GameLift Developer Guide

Managing Amazon GameLift hosting resources

This section provides detailed information about setting up Amazon GameLift managed resources
to run your game servers and host game sessions for players. You must configure and deploy
resources, scale capacity to meet player demand, and locate available resources to host game
sessions.

The following diagram illustrates how Amazon GameLift resource objects relate to each other.
Use a build or script to create a fleet, give a fleet an alias, and add fleets to a game session queue
using their alias. For games that use FlexMatch matchmaking, use the game session queue and a
matchmaking rule set to create a matchmaking configuration.

Game server code

• Build – Your custom-built game server software that runs on Amazon GameLift and hosts
game sessions for your players. A game build represents the set of files that run your game
server on a particular operating system, and that you must integrate with Amazon GameLift.
Upload game build files to Amazon GameLift in the AWS Regions where you plan to set up
fleets. For more information, see Upload a custom server build to Amazon GameLift.

• Script – Your configuration and custom game logic for use with Realtime Servers. Configure
Realtime Servers for your game clients by creating a script using JavaScript, and add custom
game logic to host game sessions for your players. For more information, see Upload a
Realtime Servers script to Amazon GameLift.

251

Amazon GameLift Developer Guide

Fleet

A collection of compute resources that run your game servers and host game sessions for your
players. For information about where you can deploy fleets, see Amazon GameLift hosting
locations. For information about creating fleets, see Setting up Amazon GameLift fleets.

Alias

An abstract identifier for a fleet that you can use to change the fleet that your players are
connected to at any time. For more information, see Add an alias to a Amazon GameLift fleet.

Game session queue

A game session placement mechanism that receives requests for new game sessions and
searches for available game servers to host the new sessions. For more information about game
session queues, see Setting up Amazon GameLift queues for game session placement.

Uploading builds and scripts to Amazon GameLift

Before deploying your multiplayer game servers for hosting with Amazon GameLift, you need
to upload your game server files. The topics in this section provide guidance on preparing and
uploading custom game server build files or Realtime Servers server script files.

Topics

• Upload a custom server build to Amazon GameLift

• Upload a Realtime Servers script to Amazon GameLift

Upload a custom server build to Amazon GameLift

After you integrate your game server with Amazon GameLift, upload the build files to Amazon
GameLift. This topic covers how to package your game's build files, create an optional build install
script, and then upload the files using the AWS Command Line Interface (AWS CLI) or an AWS SDK.

Topics

• Package your game build files

• Create a Amazon GameLift build

• Update your build files

• Add a build install script

Uploading builds and scripts 252

https://aws.amazon.com/cli/

Amazon GameLift Developer Guide

Package your game build files

Before uploading your configured game server to Amazon GameLift, package the game build
files into a build directory. This directory must include all components required to run your game
servers and host game sessions, including the following:

• Game server binaries – The binary files required to run the game server. A build can include
binaries for multiple game servers built to run on the same platform. For a list of supported
platforms, see Development support with Amazon GameLift.

• Dependencies – Any dependent files that your game server executables require to run. Examples
include assets, configuration files, and dependent libraries.

Note

For game builds created with the Amazon GameLift server SDK for C++ (including
those created with the Unreal plugin), include the OpenSSL DLL for the same version of
OpenSSL that you built the server SDK with. See the server SDK README file for more
details.

• Install script (Optional) – A script file to handle tasks that install your game build on Amazon
GameLift hosting servers. Place this file at the root of the build directory. Amazon GameLift runs
the install script as part of fleet creation.

You can set up any application in your build, including your install script, to access your resources
securely on other AWS services. For information about ways to do this, see Communicate with
other AWS resources from your fleets.

After you've packaged your build files, make sure that your game server can run on a clean
installation of your target OS. This verifies that you include all required dependencies in your
package and that your install script is accurate.

Create a Amazon GameLift build

When creating a build and uploading your files, you have a couple of options:

• Create a build from a file directory. This is the simplest and most commonly used option.

• Create a build with files in Amazon Simple Storage Service (Amazon S3). With this option, you
can manage your build versions in Amazon S3.

Upload a build 253

Amazon GameLift Developer Guide

With both methods, Amazon GameLift creates a new build resource with a unique build ID and
other metadata. The build starts in the Initialized status. After Amazon GameLift acquires the
game server files, the build moves to Ready status.

When the build is ready, you can deploy it to a new Amazon GameLift fleet. For more information,
see Create a Amazon GameLift managed fleet.When Amazon GameLift sets up the new fleet, it
downloads the build files to each fleet instance and installs the build files.

Create a build from a file directory

To create a game build stored in any location, including a local directory, use the upload-build
AWS CLI command. This command creates a new build record in Amazon GameLift and uploads
files from a location that you specify.

Send an upload request. In a command line window, enter the following upload-build command
and parameters.

aws gamelift upload-build \
 --name user-defined name of build \
 --operating-system supported OS \
 --server-sdk-version Amazon GameLift server SDK version \
 --build-root build path \
 --build-version user-defined build number \
 --region region name

• operating-system – The game server build's runtime environment. You must specify an OS
value. You can't update this later.

• server-sdk-version – The version of the Amazon GameLift server SDK that your game server is
integrated with. If you don't provide a value, Amazon GameLift uses the default value 4.0.2.
If you specify an incorrect server SDK version, the game server build might fail when calling
InitSdk to establish a connection to the Amazon GameLift service.

• build-root – The directory path of your build files.

• name – A descriptive name for the new build.

• build-version – The version details for the build files.

• region – The AWS Region where you want to create your build. Create the build in the Region
where you plan to deploy fleets. If you're deploying your game in multiple Regions, create a build
in each Region.

Upload a build 254

https://docs.aws.amazon.com/cli/latest/reference/gamelift/upload-build.html

Amazon GameLift Developer Guide

Note

View your current default Region using the aws configure get region. To change your
default Region, use the aws configure set region region name command.

Examples

aws gamelift upload-build \
 --operating-system AMAZON_LINUX_2023 \

 --server-sdk-version "5.0.0" \
 --build-root "~/mygame" \
 --name "My Game Nightly Build" \
 --build-version "build 255" \
 --region us-west-2

aws gamelift upload-build \
 --operating-system WINDOWS_2016 \
 --server-sdk-version "5.0.0" \
 --build-root "C:\mygame" \
 --name "My Game Nightly Build" \
 --build-version "build 255" \
 --region us-west-2

In response to your upload request, Amazon GameLift provides upload progress. On a successful
upload, Amazon GameLift returns the new build record ID. Upload time depends on the size of your
game files and the connection speed.

Create a build with files in Amazon S3

You can store your build files in Amazon S3 and upload them to Amazon GameLift from there.
When you create you build, you specify the S3 bucket location, and Amazon GameLift retrieves the
build files directly from Amazon S3.

To create a build resource

1. Store your build files in Amazon S3. Create a .zip file containing the packaged build files
and upload it to an S3 bucket in your AWS account. Take note of the bucket label and the file
name, you'll need these when creating a Amazon GameLift build.

Upload a build 255

https://docs.aws.amazon.com/cli/latest/reference/configure/get.html
https://docs.aws.amazon.com/cli/latest/reference/configure/set.html

Amazon GameLift Developer Guide

2. Give Amazon GameLift access to your build files. Create an IAM role by following the
instructions in Access a game build file in Amazon S3. After you've created the role, take note
of the new role's Amazon Resource Name (ARN), you'll need this when creating a build.

3. Create a build. Use the Amazon GameLift console or the AWS CLI to create a new build
record. You must have the PassRole permission, as described in IAM permission examples for
Amazon GameLift.

Console

1. In the Amazon GameLift console, in the navigation pane, choose Hosting, Builds.

2. On the Builds page, choose Create build.

3. On the Create build page, under Build settings, do the following:

a. For Name, enter a script name.

b. For Version, enter a version. Because you can update the content of a build, version
data can help you track updates.

c. For Operating system (OS), choose the OS of your game server build. You can't update
this value later.

d. For Game server build, enter the S3 URI of the build object that you uploaded to
Amazon S3, and choose the Object version. If you don't remember the Amazon S3 URI
and object version, choose Browse S3 and search for the build object.

e. For IAM role, choose the role that you created that gives Amazon GameLift access to
your S3 bucket and build object.

4. (Optional) Under Tags, add tags to the build by entering Key and Value pairs.

5. Choose Create.

Amazon GameLift assigns an ID to the new build and uploads the designated .zip file. You can
view the new build, including the status, on the Builds page.

AWS CLI

To define the new build and upload your server build files, use the create-build command.

1. Open a command line window and switch to a directory where you can use the AWS CLI.

2. Enter the following create-build command:

Upload a build 256

https://console.aws.amazon.com/gamelift/
https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-build.html

Amazon GameLift Developer Guide

aws gamelift create-build \
 --name user-defined name of build \
 --server-sdk-version Amazon GameLift server SDK version \
 --operating-system supported OS \
 --build-version user-defined build number \
 --storage-location "Bucket"=S3 bucket label,"Key"=Build .zip file
 name,"RoleArn"=Access role ARN} \
 --region region name

• name – A descriptive name for the new build.

• server-sdk-version – The version of the Amazon GameLift server SDK you used to
integrate your game server with Amazon GameLift. If you don't provide a value, Amazon
GameLift uses the default value 4.0.2.

• operating-system – The game server build's runtime environment. You must specify an
OS value. You can't update this later.

• build-version – The version details for the build files. This information can be useful
because each new version of your game server requires a new build resource.

• storage-location

• Bucket – The name of the S3 bucket that contains your build. For example,
"my_build_files".

• Key – The name of the .zip file that contains your build files. For example,
"my_game_build_7.0.1, 7.0.2".

• RoleARN – The ARN assigned to the IAM role that you created. For example,
"arn:aws:iam::111122223333:role/GameLiftAccess". For an example policy, see Access
a game build file in Amazon S3.

• region – Create the build in the AWS Region where you plan to deploy fleets. If you're
deploying your game in multiple Regions, create a build in each Region.

Note

We recommend checking your current default Region using the configure get
command. To change your default Region, use the configure set command.

Example

Upload a build 257

https://docs.aws.amazon.com/cli/latest/reference/configure/get.html
https://docs.aws.amazon.com/cli/latest/reference/configure/set.html

Amazon GameLift Developer Guide

aws gamelift create-build \
 --operating-system WINDOWS_2016 \
 --storage-location
 "Bucket"="my_game_build_files","Key"="mygame_build_101.zip","RoleArn"="arn:aws:iam::111122223333:role/
gamelift" \
 --name "My Game Nightly Build" \
 --build-version "build 101" \
 --region us-west-2

3. To view the new build, use the describe-build command.

Update your build files

You can update the metadata for a build resource using the Amazon GameLift console or the
update-build AWS CLI command.

After you've created a Amazon GameLift build, you can't update the build files associated with
it. For each new set of files, create a new Amazon GameLift build. Using the upload-build
command, Amazon GameLift automatically creates a new build record for each request. If you
provide build files using the create-build command, upload a new build .zip file with a different
name to Amazon S3 and create a build by referencing the new file name.

Try these tips for deploying updated builds:

• Use queues and swap out fleets as needed. When setting up your game client with Amazon
GameLift, specify a queue instead of a fleet. With queues, you can add the new fleets with
the new build to your queue and remove the old fleets. For more information, see Setting up
Amazon GameLift queues for game session placement.

• Use aliases to transfer players to a new game build. When integrating your game client with
Amazon GameLift, specify a fleet alias instead of a fleet ID. For more information, see Add an
alias to a Amazon GameLift fleet.

• Set up automated build updates. For sample scripts and information about incorporating
Amazon GameLift deployments into your build system, see Automating Deployments to Amazon
GameLift on the AWS Game Tech Blog.

Add a build install script

Create an install script for the operating system (OS) of your game build:

Upload a build 258

https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-build.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-build.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/upload-build.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-build.html
https://aws.amazon.com/blogs/gametech/automating-deployments-to-amazon-gamelift/
https://aws.amazon.com/blogs/gametech/automating-deployments-to-amazon-gamelift/

Amazon GameLift Developer Guide

• Windows: Create a batch file named install.bat.

• Linux: Create a shell script file named install.sh.

When creating an install script, keep in mind the following:

• The script can't take any user input.

• Amazon GameLift installs the build and recreates the file directories in your build package on a
hosting server in the following locations:

• Windows fleets: C:\game

• Linux fleets: /local/game

• During the installation process for Linux fleets, the run-as user has limited access to the instance
file structure. This user has full rights to the directory where your build files are installed. If
your install script performs actions that require administrator permissions, then specify admin
access using sudo. The run-as user for Windows fleets has administrator permissions by default.
Permission failures related to the install script generate an event message that indicates a
problem with the script.

• On Linux, Amazon GameLift supports common shell interpreter languages such as bash. Add
a shebang (such as #!/bin/bash) to the top of your install script. To verify support for your
preferred shell commands, remotely access an active Linux instance and open a shell prompt. For
more information, see Remotely connect to Amazon GameLift fleet instances.

• The install script can't rely on a VPC peering connection. A VPC peering connection isn't available
until after Amazon GameLift installs the build on fleet instances.

Example Windows install bash file

This example install.bat file installs Visual C++ runtime components required for the game
server and writes the results to a log file. The script includes the component file in the build
package at the root.

vcredist_x64.exe /install /quiet /norestart /log c:\game\vcredist_2013_x64.log

Example Linux install shell script

This example install.sh file uses bash in the install script and writes results to a log file.

#!/bin/bash

Upload a build 259

Amazon GameLift Developer Guide

echo 'Hello World' > install.log

This example install.sh file shows how you can use the Amazon CloudWatch agent to collect
system-level and custom metrics, and handle log rotation. Because Amazon GameLift runs in a
service VPC, you must grant Amazon GameLift permissions to assume an AWS Identity and Access
Management (IAM) role on your behalf. To allow Amazon GameLift to assume a role, create a role
that includes the AWS managed policy CloudWatchAgentAdminPolicy, and use that role when
you create a fleet.

sudo yum install -y amazon-cloudwatch-agent
sudo yum install -y https://dl.fedoraproject.org/pub/epel/epel-release-
latest-7.noarch.rpm
sudo yum install -y collectd
cat <<'EOF' > /tmp/config.json
{
 "agent": {
 "metrics_collection_interval": 60,
 "run_as_user": "root",
 "credentials": {
 "role_arn": "arn:aws:iam::account#:role/rolename"
 }
 },
 "logs": {
 "logs_collected": {
 "files": {
 "collect_list": [
 {
 "file_path": "/tmp/log",
 "log_group_name": "gllog",
 "log_stream_name": "{instance_id}"
 }
]
 }
 }
 },
 "metrics": {
 "namespace": "GL_Metric",
 "append_dimensions": {
 "ImageId": "${aws:ImageId}",
 "InstanceId": "${aws:InstanceId}",
 "InstanceType": "${aws:InstanceType}"
 },

Upload a build 260

Amazon GameLift Developer Guide

 "metrics_collected": {
 // Configure metrics you want to collect.
 // For more information, see Manually create or edit the CloudWatch agent
 configuration file.
 }
 }
}
EOF
sudo mv /tmp/config.json /opt/aws/amazon-cloudwatch-agent/bin/config.json
sudo /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-agent-ctl -a fetch-config -
m ec2 -s -c file:/opt/aws/amazon-cloudwatch-agent/bin/config.json
sudo systemctl enable amazon-cloudwatch-agent.service

Upload a Realtime Servers script to Amazon GameLift

When you're ready to deploy Realtime Servers for your game, upload completed Realtime server
script files to Amazon GameLift. Do this by creating a Amazon GameLift script resource and
specifying the location of your script files. You can also update server script files that are already
deployed by uploading new files for an existing script resource.

When you create a new script resource, Amazon GameLift assigns it a unique script ID (for example,
script-1111aaaa-22bb-33cc-44dd-5555eeee66ff) and uploads a copy of the script files.
Upload time depends on the size of your script files and on your connection speed.

After you create the script resource, Amazon GameLift deploys the script with a new Realtime
Servers fleet. Amazon GameLift installs your server script onto each instance in the fleet, placing
the script files in /local/game.

To troubleshoot fleet activation problems related to the server script, see Debug Amazon GameLift
fleet issues.

Package script files

Your server script can include one or more files combined into a single .zip file for uploading.
The .zip file must contain all files that your script needs to run.

You can store your zipped script files in either a local file directory or in an Amazon Simple Storage
Service (Amazon S3) bucket.

Upload a script 261

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Agent-Configuration-File-Details.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Agent-Configuration-File-Details.html

Amazon GameLift Developer Guide

Upload script files from a local directory

If you have your script files stored locally, you can upload them to Amazon GameLift from there.
To create the script resource, use either the Amazon GameLift console or the AWS Command Line
Interface (AWS CLI).

Amazon GameLift console

To create a script resource

1. Open the Amazon GameLift console.

2. In the navigation pane, choose Hosting, Scripts.

3. On the Scripts page, choose Create script.

4. On the Create script page, under Script settings, do the following:

a. For Name, enter a script name.

b. (Optional) For Version, enter version information. Because you can update the content
of a script, version data can be helpful in tracking updates.

c. For Script source, choose Upload a .zip file.

d. For Script files, choose Choose file, browse for the .zip file that contains your script,
and then choose that file.

5. (Optional) Under Tags, add tags to the script by entering Key and Value pairs.

6. Choose Create.

Amazon GameLift assigns an ID to the new script and uploads the designated .zip file. You
can view the new script, including its status, on the Scripts page.

AWS CLI

Use the create-script AWS CLI command to define the new script and upload your server
script files.

To create a script resource

1. Place the .zip file into a directory where you can use the AWS CLI.

2. Open a command line window and switch to the directory where you placed the .zip file.

Upload a script 262

https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://console.aws.amazon.com/gamelift/
https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-script.html

Amazon GameLift Developer Guide

3. Enter the following create-script command and parameters. For the --zip-file parameter,
be sure to add the string fileb:// to the name of the .zip file. It identifies the file as
binary so that Amazon GameLift processes the compressed content.

aws gamelift create-script \
 --name user-defined name of script \
 --script-version user-defined version info \
 --zip-file fileb://name of zip file \
 --region region name

Example

aws gamelift create-script \
 --name "My_Realtime_Server_Script_1" \
 --script-version "1.0.0" \
 --zip-file fileb://myrealtime_script_1.0.0.zip \
 --region us-west-2

In response to your request, Amazon GameLift returns the new script object.

4. To view the new script, call describe-script.

Upload script files from Amazon S3

You can store your script files in an Amazon S3 bucket and upload them to Amazon GameLift
from there. When you create your script, you specify the S3 bucket location and Amazon GameLift
retrieves your script files from Amazon S3.

To create a script resource

1. Store your script files in an S3 bucket. Create a .zip file containing your server script files and
upload it to an S3 bucket in an AWS account that you control. Take note of the object URI—
you need this when creating a Amazon GameLift script.

Note

Amazon GameLift doesn't support uploading from S3 buckets with names that contain
a period (.).

Upload a script 263

https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-script.html

Amazon GameLift Developer Guide

2. Give Amazon GameLift access to your script files. To create an AWS Identity and Access
Management (IAM) role that allows Amazon GameLift to access the S3 bucket containing your
server script, follow the instructions in Set up an IAM service role for Amazon GameLift. After
you create the new role, take note of its name, which you need when creating a script.

3. Create a script. Use the Amazon GameLift console or the AWS CLI to create a new script
record. To make this request, you must have the IAM PassRole permission, as described in
IAM permission examples for Amazon GameLift.

Amazon GameLift console

1. In the Amazon GameLift console, in the navigation pane, choose Hosting, Scripts.

2. On the Scripts page, choose Create script.

3. On the Create script page, under Script settings, do the following:

a. For Name, enter a script name.

b. (Optional) For Version, enter version information. Because you can update the content
of a script, version data can be helpful in tracking updates.

c. For Script source, choose Amazon S3 URI.

d. Enter the S3 URI of the script object that you uploaded to Amazon S3, and then
choose the Object version. If you don't remember the Amazon S3 URI and object
version, choose Browse S3, and then search for the script object.

4. (Optional) Under Tags, add tags to the script by entering Key and Value pairs.

5. Choose Create.

Amazon GameLift assigns an ID to the new script and uploads the designated .zip file. You
can view the new script, including its status, on the Scripts page.

AWS CLI

Use the create-script AWS CLI command to define the new script and upload your server
script files.

1. Open a command line window and switch to a directory where you can use the AWS CLI.

2. Enter the following create-script command and parameters. The --storage-location
parameter specifies the Amazon S3 bucket location of your script files.

Upload a script 264

https://console.aws.amazon.com/gamelift
https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-script.html

Amazon GameLift Developer Guide

aws gamelift create-script \
 --name [user-defined name of script] \
 --script-version [user-defined version info] \
 --storage-location "Bucket"=S3 bucket name,"Key"=name of zip file in S3
 bucket,"RoleArn"=Access role ARN \
 --region region name

Example

aws gamelift create-script \
 --name "My_Realtime_Server_Script_1" \
 --script-version "1.0.0" \
 --storage-location "Bucket"="gamelift-
script","Key"="myrealtime_script_1.0.0.zip","RoleArn"="arn:aws:iam::123456789012:role/
S3Access" \
 --region us-west-2

In response to your request, Amazon GameLift returns the new script object.

3. To view the new script, call describe-script.

Update script files

You can update the metadata for a script resource using either the Amazon GameLift console or
the update-script AWS CLI command.

You can also update the script content for a script resource. Amazon GameLift deploys script
content to all fleet instances that use the updated script resource. When the updated script is
deployed, instances use it when starting new game sessions. Game sessions that are already
running at the time of the update don't use the updated script.

To update script files

• For script files stored locally, to upload the updated script .zip file, use either the Amazon
GameLift console or the update-script command.

• For script files stored in an Amazon S3 bucket, upload the updated script files to the S3 bucket.
Amazon GameLift periodically checks for updated script files and retrieves them directly from
the S3 bucket.

Upload a script 265

https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-script.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-script.html

Amazon GameLift Developer Guide

Setting up Amazon GameLift fleets

This section provides detailed information about designing, building, and maintaining fleets for use
with Amazon GameLift. You can use Amazon GameLift fleets to deploy custom game servers and
Realtime Servers.

A fleet represents your hosting resources as a set of Amazon Elastic Compute Cloud (Amazon
EC2) instances or physical hardware. A fleet's location determines where instances or hardware
are deployed to host game sessions for your players. The size of a fleet, and the number of game
sessions and players that it can support, depends on the number of instances or the amount of
hardware that you give it. You can adjust virtual instances manually or by using automatic scaling.

Many games in production use more than one fleet. You can use multiple fleets, for example,
to have more than one version of your game server running simultaneously, to provide backup
capacity for Spot Fleets, or to build in redundancy.

To learn how to create fleets designed for your game's needs, start with Amazon GameLift fleet
design guide. After your fleet is running, see Scaling Amazon GameLift hosting capacity, Add
an alias to a Amazon GameLift fleet, and Setting up Amazon GameLift queues for game session
placement.

Topics

• Amazon GameLift fleet design guide

• Create a new Amazon GameLift fleet

• Manage your Amazon GameLift fleets

• Add an alias to a Amazon GameLift fleet

• Debug Amazon GameLift fleet issues

• Remotely connect to Amazon GameLift fleet instances

Amazon GameLift fleet design guide

This design guide covers best practices for creating a fleet of hosting resources for use with
Amazon GameLift. Choose a combination of hosting resources and learn how to configure them to
suit your game.

Topics

Setting up fleets 266

Amazon GameLift Developer Guide

• Choosing Amazon GameLift compute resources

• Manage how Amazon GameLift launches game servers

• Use Spot Instances with Amazon GameLift

Choosing Amazon GameLift compute resources

To deploy your game servers and host game sessions for your players, Amazon GameLift uses
Amazon Elastic Compute Cloud (Amazon EC2) resources called instances, or your physical
hardware. When setting up a new fleet using instances, decide what type of instances you need and
how to run game server processes on them. When a managed EC2 fleet is active and ready to host
game sessions, you can add or remove instances as needed to accommodate player demand.

You can deploy your Amazon GameLift game servers on a combination of two compute types:

• Managed EC2 – Managed EC2 fleets use Amazon EC2 instances to host your game servers.
Amazon GameLift manages the instances and removes the burden of hardware and software
management from hosting your games.

• Amazon GameLift Anywhere – Amazon GameLift Anywhere fleets use your existing
infrastructure to host game servers while Amazon GameLift manages your matchmaking and
queues.

When you choose the compute resources for your fleet, consider the following factors:

• Available hardware

• Fleet location

• On-Demand Instances versus Spot Instances

• Operating systems

• Instance types

• Service quotas

Available hardware

Consider the existing infrastructure in your implementation. While you migrate games to Amazon
GameLift, you can continue to use your infrastructure. With Amazon GameLift Anywhere, you can
use your own infrastructure along with Amazon GameLift managed EC2 instances. You can also use
your existing infrastructure to host games closer to your players than supported Amazon GameLift

Fleet design guide 267

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Instances.html

Amazon GameLift Developer Guide

locations can allow. For more information about setting up Amazon GameLift Anywhere fleets, see
Create an Amazon GameLift Anywhere fleet.

Fleet location

Consider the geographic locations where you plan to deploy your game servers. Instance type
availability varies by AWS Region and Local Zone.

For multi-location fleets, instance availability and quotas depend on a combination of the fleet's
home Region and selected remote locations. For more information about fleet locations, see
Amazon GameLift hosting locations.

For Amazon GameLift Anywhere fleets, you determine the location of your physical hardware. For
more information about custom locations, see Amazon GameLift Anywhere.

On-Demand Instances versus Spot Instances

Amazon EC2 On-Demand Instances and Spot Instances offer the same hardware and performance,
but they differ in availability and cost.

On-Demand Instances

You can acquire an On-Demand Instance when you need it, and keep it for as long as you want. On-
Demand Instances have a fixed cost, meaning you pay for the amount of time that you use them,
and there are no long-term commitments.

Spot Instances

Spot Instances can offer a cost-efficient alternative to On-Demand Instances by utilizing unused
AWS computing capacity. Spot Instance prices fluctuate based on the supply and demand for each
instance type in each location. AWS can interrupt Spot Instances whenever it needs the capacity
back. Amazon GameLift uses queues and the FleetIQ algorithm to determine that AWS is going to
interrupt a Spot Instance, it puts the instance in a recycling state. Then, when there are no active
game sessions on the instance, Amazon GameLift tries to replace it.

For more information about how to use Spot Instances, see Use Spot Instances with Amazon
GameLift.

Operating systems

Amazon GameLift instances support game server builds that run on Microsoft Windows or Amazon
Linux. When you upload a game build to Amazon GameLift, specify the operating system for

Fleet design guide 268

Amazon GameLift Developer Guide

the game. When you create an Amazon EC2 fleet to deploy the game build, Amazon GameLift
automatically sets up instances with the build's operating system. For more information about
supported game server operating systems, see Development support with Amazon GameLift.

When using a Amazon GameLift Anywhere fleet, you can use any operating system that your
hardware supports. Amazon GameLift Anywhere fleets require you to deploy your game build to
the hardware while using Amazon GameLift to manage your resources in one place.

Instance types

An Amazon EC2 fleet's instance type determines the kind of hardware that the instances use.
Different instance types offer different combinations of computing power, memory, storage, and
networking capabilities.

When choosing from available instance types for your game, consider:

• The compute architecture of your game server: x64 or Arm (AWS Graviton).

Note

Graviton Arm instances require an Amazon GameLift server build on Linux OS. Server
SDK 5.1.1 or newer is required for C++ and C#. Server SDK 5.0 or newer is required for
Go. These instances provide no out-of-the-box support for Mono installation on Amazon
Linux 2023 (AL2023) or Amazon Linux 2 (AL2).

• The computing, memory, and storage requirements of your game server build.

• The number of server processes that you plan to run per instance.

By using a larger instance type, you may be able to run multiple server processes on each instance.
This can reduce the number of instances required to meet player demand.

For more information:

• About instance types, see Amazon EC2 Instance Types.

• About running multiple processes per instance, see Manage how Amazon GameLift launches
game servers.

Fleet design guide 269

https://aws.amazon.com/ec2/instance-types/

Amazon GameLift Developer Guide

Service quotas

To see the default service quotas for Amazon GameLift, and the current quotas for your AWS
account, do the following:

• For general service quota information for Amazon GameLift, see Amazon GameLift endpoints
and quotas in the AWS General Reference.

• For a list of available instance types per location for your account, open the Service quotas page
of the Amazon GameLift console. This page also displays your account's current usage for each
instance type in each location.

• For a list of your account's current quotas for instance types per Region, run the AWS Command
Line Interface (AWS CLI) command describe-ec2-instance-limits. This command returns
the number of active instances that you have in your default Region (or in another Region that
you specify).

As you prepare to launch you game, fill out a launch questionnaire in the Amazon GameLift
console. The Amazon GameLift team uses the launch questionnaire to determine the correct
quotas and limits for your game.

Manage how Amazon GameLift launches game servers

You can set up an managed EC2 fleet's runtime configuration to run multiple game server
processes per instance. This uses your hosting resources more efficiently.

How a fleet manages multiple processes

Amazon GameLift uses a fleet's runtime configuration to determine the type and number of
processes to run on each instance. A runtime configuration contains at least one server process
configuration that represents one game server executable. You can define additional server
process configurations to run other types of processes related to your game. Each server process
configuration contains the following information:

• The file name and path of an executable in your game build.

• (Optional) Parameters to pass to the process on launch.

• The number of processes to run concurrently.

When an instance in the fleet activates, it launches the set of server processes defined in the
runtime configuration. With multiple processes, Amazon GameLift staggers the launch of each

Fleet design guide 270

https://docs.aws.amazon.com/general/latest/gr/gamelift.html
https://docs.aws.amazon.com/general/latest/gr/gamelift.html
https://console.aws.amazon.com/gamelift/service-quotas
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/describe-ec2-instance-limits.html
https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

process. Server processes have a limited life span. As they end, Amazon GameLift launches
new processes to maintain the number and type of server processes defined in the runtime
configuration.

You can change the runtime configuration at any time by adding, changing, or removing
server process configurations. Each instance regularly checks for updates to the fleet's runtime
configuration to implement the changes. Here's how Amazon GameLift adopts runtime
configuration changes:

1. The instance sends a request to Amazon GameLift for the latest version of the runtime
configuration.

2. The instance compares its active processes to the latest runtime configuration, and then does
the following:

• If the updated runtime configuration removes a server process type, then active server
processes of this type continue to run until they end. The instance doesn't replace these server
processes.

• If the updated runtime configuration decreases the number of concurrent processes for a
server process type, then excess server processes of this type continue to run until they end.
The instance doesn't replace these excess server processes.

• If the updated runtime configuration adds a new server process type or increases the
concurrent processes for an existing type, then the instance starts new server processes, up to
the Amazon GameLift maximum. In this case, the instance launches new server processes as
existing processes end.

Optimize a fleet for multiple processes

To use multiple processes on a fleet, do the following:

• Create a build that contains the game server executables that you want to deploy to a fleet, and
then upload the build to Amazon GameLift. All game servers in a build must run on the same
platform and use the Amazon GameLift Server SDK.

• Create a runtime configuration with one or more server process configurations and multiple
concurrent processes.

• Integrate game clients with the AWS SDK version 2016-08-04 or later.

To optimize fleet performance, we recommend that you do the following:

Fleet design guide 271

Amazon GameLift Developer Guide

• Handle server process shutdown scenarios so that Amazon GameLift can recycle processes
efficiently. For example:

• Add a shutdown procedure to your game server code that calls the server API
ProcessEnding().

• Implement the callback function OnProcessTerminate() in your game server code to
handle termination requests from Amazon GameLift.

• Make sure that Amazon GameLift shuts down and relaunches unhealthy server processes.
Report the health status back to Amazon GameLift by implementing the OnHealthCheck()
callback function in your game server code. Amazon GameLift automatically shuts down server
processes that are reported unhealthy for three consecutive reports. If you don't implement
OnHealthCheck(), then Amazon GameLift assumes that a server process is healthy, unless the
process fails to respond to a communication.

Choose the number of processes per instance

When deciding on the number of concurrent processes to run on an instance, keep in mind the
following:

• Amazon GameLift limits each instance to a maximum number of concurrent processes. The sum
of all concurrent processes for a fleet's server process configurations can't exceed this quota.

• To maintain acceptable performance levels, the Amazon EC2 instance type might limit the
number of processes that can run concurrently. Test different configurations for your game to
find the right number of processes for your preferred instance type.

• Amazon GameLift doesn't run more concurrent processes than the total number configured.
This means that the transition from the previous runtime configuration to the new configuration
might happen gradually.

Use Spot Instances with Amazon GameLift

When setting up yourAmazon GameLift managed EC2 fleet, you can use Spot Instances, On-
Demand Instances, or a combination. Learn more about how Amazon GameLift uses Spot Instances
in On-Demand Instances versus Spot Instances. To use spot fleets, your game integration requires
the adjustments listed on this page.

Are you using FlexMatch for matchmaking? You can add Spot fleets to your existing game session
queues for matchmaking placements.

Fleet design guide 272

https://docs.aws.amazon.com/general/latest/gr/gamelift.html#limits_gamelift

Amazon GameLift Developer Guide

1. Design your game session queue for Spot instances.

Managing game session placement with a queue is best practice, and it's required when using
Spot Instances. To design your queue consider the following:

• Locations – To achieve the best player experience, choose locations geographically close to
your players.

• Instance types – Consider your game servers hardware requirements and availability of
instances in the locations you chose.

To try a queue that optimizes Spot availability and resiliency, see Tutorial: Set up a game
session queue for Spot Instances.

2. Create the fleets for your Spot-optimized queue.

Based on your queue design, create fleets to deploy your game servers to your desired
locations and instance types. See Create a Amazon GameLift managed fleet for help creating
and configuring new fleets.

3. Create your game session queue.

Add the fleet destinations, configure the game session placement process, and define
placement priorities. See Create a game session queue for help creating and configuring the
new queue.

4. Update your game client service to use the queue.

When your game client uses a queue to request resources, the queue avoids resources with a
high chance of interruption and selects the location that matches your defined priorities. For
help implementing game session placements in your game client, see Create game sessions.

5. Update your game server to handle a Spot interruption.

AWS can interrupt Spot Instances with a 2 minute notification, when it needs the capacity
back. Set up your game server to handle interruption to minimize player impact.

Before AWS reclaims a Spot Instance, it sends a termination notification. Amazon GameLift
passes the notification to all affected server processes by invoking the Amazon GameLift
Server SDK callback function onProcessTerminate(). Implement this callback to end the
game session or move the game session and players to a new instance. See Respond to a
server process shutdown notification for help implementing onProcessTerminate().

Fleet design guide 273

Amazon GameLift Developer Guide

Note

AWS makes every effort to provide the notification before it reclaims an instance, but
it's possible that AWS reclaims the Spot Instance before the warning arrives. Prepare
your game server to handle unexpected interruptions.

6. Review the performance of your Spot fleets and queues.

View Amazon GameLift metrics in the Amazon GameLift console or with Amazon CloudWatch
to review performance. For more information about Amazon GameLift metrics, see Monitor
Amazon GameLift with Amazon CloudWatch. Key metrics include:

• Interruption rate – Use the InstanceInterruptions and GameSessionInterruptions
metrics to track the number and frequency of Spot-related interruptions for instances and
game sessions. Game sessions that are reclaimed by AWS have a status of TERMINATED and
a status reason of INTERRUPTED.

• Queue effectiveness – Track placement success rates, average wait time, and queue depth to
confirm that Spot fleets don't impact your queue performance.

• Fleet usage – Monitor data on instances, game sessions and player sessions. Usage for your
On-Demand fleets can be an indicator that queues are avoiding placements into your Spot
fleets to avoid disruption.

Create a new Amazon GameLift fleet

Create a new fleet and deploy your custom game server build or Realtime Servers for hosting. You
can deploy any game build or script resource that you upload to Amazon GameLift.

Topics

• How Amazon GameLift fleet creation works

• Create a Amazon GameLift managed fleet

• Create an Amazon GameLift Anywhere fleet

How Amazon GameLift fleet creation works

When you create a new fleet, Amazon GameLift starts a workflow that creates a fleet with one
Amazon Elastic Compute Cloud (Amazon EC2) instance in each fleet location. As Amazon GameLift

Create a new fleet 274

Amazon GameLift Developer Guide

completes each step of the workflow, the fleet emits events and Amazon GameLift updates the
fleet's status. You can track all events using the Amazon GameLift console or by calling the Amazon
GameLift API operation DescribeFleetEvents. You can also track the status of individual locations
using DescribeFleetLocationAttributes.

EC2 fleet creation workflow:

• Amazon GameLift creates a fleet resource in the fleet's home Region and in each remote location
defined in the fleet.

• Amazon GameLift sets the desired capacity to one instance.

• Amazon GameLift sets the fleet and location status to New.

• Amazon GameLift begins writing events to the fleet event log.

• Amazon GameLift allocates requested computing resources for one new instance in each fleet
location.

• Amazon GameLift downloads the game server files to each instance and sets the fleet status to
Downloading.

• Amazon GameLift validates the downloaded game server files on each instance to verify that no
errors occurred during downloading. Amazon GameLift sets the fleet status to Validating.

• Amazon GameLift builds the game server on each instance and sets the fleet status to Building.

• Amazon GameLift begins launching server processes on each instance, following instructions in
the fleet's runtime configuration. If you configured the fleet to run multiple concurrent server
processes per instance, then Amazon GameLift staggers the process launches by a few seconds.
As each process comes online, it reports readiness back to Amazon GameLift. Amazon GameLift
sets the fleet status to Activating.

• Amazon GameLift sets the fleet statuses and the location statuses to Active as server processes
report readiness.

Amazon GameLift Anywhere fleet creation

• Amazon GameLift creates a fleet resource. For the fleet's home Region and each custom location
defined in the fleet, Amazon GameLift sets the fleet and location status to New.

• Amazon GameLift begins writing events to the fleet event log.

• After one server process in a fleet notifies Amazon GameLift that it's ready, Amazon GameLift
sets the fleet status and the location status to Active. As server processes in other fleet locations
report readiness, Amazon GameLift sets the status of each fleet location to Active.

Create a new fleet 275

https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetEvents.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetLocationAttributes.html

Amazon GameLift Developer Guide

For help with troubleshooting fleet creation issues, see Debug Amazon GameLift fleet issues.

Create a Amazon GameLift managed fleet

Use either the Amazon GameLift console or the AWS Command Line Interface (AWS CLI) to create a
managed fleet.

After you create a new managed EC2 fleet, the fleet's status passes through several stages as
Amazon GameLift deploys the fleet and installs and starts the game servers. The fleet is ready to
host game sessions, after it reaches ACTIVE status. For help with fleet creation issues, see Debug
Amazon GameLift fleet issues.

Console

To create a managed EC2 fleet

1. In the Amazon GameLift console, in the navigation pane, choose Fleets.

2. On the Fleets page, choose Create fleet.

3. Choose Managed EC2.

4. On the Fleet details page do the following:

a. For Name, enter a fleet name. We recommend including the fleet type (Spot or On-
demand) in your fleet names. This makes it much easier to identify fleet types when
viewing a list of fleets.

b. For Description, provide a short description of the fleet.

c. For Binary type, select Build or Script to define the game server type that Amazon
GameLift deploys to this fleet.

d. Select a Script or Build from the dropdown list of uploaded scripts or builds.

5. (Optional) Under Additional details for the following:

a. For Instance role, specify an IAM role that authorizes applications in your game
build to access other AWS resources in your account. For more information, see
Communicate with other AWS resources from your fleets. To create a fleet with
an instance role, your account must have the IAM PassRole permission. For more
information, see IAM permission examples for Amazon GameLift.

If you want to authorize applications that are not server executables, such as a
CloudWatch agent, enable the shared credentials option.

Create a new fleet 276

https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

You can't update these settings after fleet creation.

b. For Certification generation, choose to have Amazon GameLift Generate a TLS
certificate for the fleet. You can use a fleet TLS certificate to have your game
client authenticate a game server when connecting, and encrypt all client/server
communication. For each instance in a TLS-enabled fleet, Amazon GameLift
also creates a new DNS entry with the certificate. Use these resources to set up
authentication and encryption for your game.

c. For Metric group, Enter the name of a new or existing fleet metric group. You can
aggregate the metrics for multiple fleets by adding them to the same metric group.

You can't update the metric group after fleet creation.

6. Choose Next.

7. On the Select locations page, select one or more additional remote locations to deploy
instances to. The home Region is automatically selected based on the Region you are
accessing the console from. If you select additional locations, fleet instances are also
deployed in these locations.

Important

To use Regions that aren't enabled by default, enable them in your AWS account.

• Fleets with Regions that aren't enabled that you created before February 28,
2022 are unaffected.

• To create new multi-location fleets or to update existing multi-location fleets,
first enable any Regions that you choose to use.

For more information about Regions that aren't enabled by default and how to
enable them, see Managing AWS Regions in the AWS General Reference.

8. Choose Next.

9. On the Define instance details page, choose

a. On-demand or Spot instances for this fleet. For more information about fleet types,
see On-Demand Instances versus Spot Instances.

b. From the Filter architecture menu choose x64 or Arm.

Create a new fleet 277

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html

Amazon GameLift Developer Guide

Note

Graviton Arm instances require an Amazon GameLift server build on Linux OS.
Server SDK 5.1.1 or newer is required for C++ and C#. Server SDK 5.0 or newer
is required for Go. These instances provide no out-of-the-box support for Mono
installation on Amazon Linux 2023 (AL2023) or Amazon Linux 2 (AL2).

For information on Amazon EC2 Arm architectures, see AWS Graviton Processor and
Amazon EC2 instance types.

For information on the instance types supported by Amazon GameLift, see the
EC2InstanceType values under CreateFleet() request parameters.

10. Select an Amazon EC2 Instance type from the list. For more information about choosing an
instance type, see Instance types. After you create the fleet, you can't change the instance
type.

11. Choose Next.

12. On the Configure runtime page, under Runtime configuration do the following:

a. For Launch path, enter the path to the game executable in your build or script. On
Windows instances, game servers are built to the path C:\game. On Linux instances,
game servers are built to /local/game. Examples: C:\game\MyGame\server.exe,
/local/game/MyGame/server.exe, or MyRealtimeLaunchScript.js.

b. (Optional) For Launch parameters, enter information to pass to your game executable
as a set of command line parameters. Example: +sv_port 33435 +start_lobby.

c. For Concurrent processes, choose the number of server processes to run concurrently
on each instance in the fleet. Review the Amazon GameLift limits on number of
concurrent server processes.

Limits on concurrent server processes per instance apply to the total of concurrent
processes for all configurations. If you configure the fleet to exceed the limit, the fleet
can't activate.

13. Under Game session activation, provide limits for activating new game sessions on the
instances in this fleet:

Create a new fleet 278

https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateFleet.html#API_CreateFleet_RequestParameters
https://aws.amazon.com//ec2/faqs/#Is_Amazon_EC2_used_in_conjunction_with_Amazon_S3

Amazon GameLift Developer Guide

a. For Max concurrent game session activation, enter the number of game sessions on
an instance that activate at the same time. This limit is useful when launching multiple
new game sessions may have an impact on the performance of other game sessions
running on the instance.

b. For New activation timeout, enter how long to wait for a session to activate. If the
game session doesn't move to ACTIVE status before the timeout, Amazon GameLift
terminates the game session activation.

14. (Optional) Under EC2 port settings, do the following:

a. Choose Add port setting to define access permissions for inbound traffic connecting to
the server process deployed on the fleet.

b. For Type, choose Custom TCP or Custom UDP.

c. For Port range, Enter a range of port numbers that allow inbound connections. A port
range must use the format nnnnn[-nnnnn], with values between 1026 and 60000.
Example: 1500 or 1500-20000.

d. For IP address range, Enter a range of IP addresses. Use CIDR notation. Example:
0.0.0.0/0 (This example allows access to anyone trying to connect.)

15. (Optional) Under Game session resource settings do the following:

a. For Game scaling protection policy, Turn on or off scaling protection. Amazon
GameLift won't terminate instance with protection during a scale down event if they're
hosting an active game session.

b. For Resource creation limit, enter a maximum number of game sessions a player can
create during the policy period.

16. Choose Next.

17. (Optional) Add tags to the build by entering Key and Value pairs. Choose Next to continue
to fleet creation review.

18. Choose Create. Amazon GameLift assigns an ID to the new fleet and begins the fleet
activation process. You can track the new fleet's status on the Fleets page.

You can update the fleet's metadata and configuration at any time, regardless of fleet status.
For more information, see Manage your Amazon GameLift fleets. You can update fleet capacity
after the fleet has reached ACTIVE status. For more information, see Scaling Amazon GameLift
hosting capacity. You can also add or remove remote locations.

Create a new fleet 279

Amazon GameLift Developer Guide

AWS CLI

To create a fleet with the AWS CLI, open a command line window and use the create-fleet
command. For more information about the create-fleet command, see create-fleet in
the AWS CLI Command Reference.

The example create-fleet request shown below creates a new fleet with the following
characteristics:

• The fleet uses c5.large On-Demand Instances with the operating system that's appropriate for
the selected game build.

• It deploys the specified game server build, which must be in a Ready status to the following
locations:

• us-west-2 (home Region)

• sa-east-1 (remote location)

• TLS certificate generation is enabled.

• Each instance in the fleet will run ten identical processes of the game server concurrently,
enabling each instance to host up to ten game sessions simultaneously.

• On each instance, Amazon GameLift allows two new game sessions to activate at the same
time. It also terminates any activating game session if they aren't ready to host players within
300 seconds.

• All game sessions hosted on instances in this fleet have game session protection turned on.

• Individual players can create three new game sessions within a 15-minute period.

• Each game session hosted on this fleet has a connection point that falls within the specified
IP address and port ranges.

• Amazon GameLift adds metrics for this fleet to the EMEAfleets metric group, which (in this
example) combines metrics for all fleets in EMEA Regions.

aws gamelift create-fleet \
 --name SampleFleet123 \
 --description "The sample test fleet" \
 --ec2-instance-type c5.large \
 --region us-west-2 \
 --locations "Location=sa-east-1" \
 --fleet-type ON_DEMAND \

Create a new fleet 280

https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-fleet.html

Amazon GameLift Developer Guide

 --build-id build-92f061ed-27c9-4a02-b1f4-6f85b2385620 \
 --certificate-configuration "CertificateType=GENERATED" \
 --runtime-configuration "GameSessionActivationTimeoutSeconds=300,
 MaxConcurrentGameSessionActivations=2, ServerProcesses=[{LaunchPath=C:\game
\Bin64.dedicated\MultiplayerSampleProjectLauncher_Server.exe, Parameters=+sv_port
 33435 +start_lobby, ConcurrentExecutions=10}]" \
 --new-game-session-protection-policy "FullProtection" \
 --resource-creation-limit-policy "NewGameSessionsPerCreator=3,
 PolicyPeriodInMinutes=15" \
 --ec2-inbound-permissions
 "FromPort=33435,ToPort=33435,IpRange=0.0.0.0/0,Protocol=UDP"
 "FromPort=33235,ToPort=33235,IpRange=0.0.0.0/0,Protocol=UDP" \
 --metric-groups "EMEAfleets"

If the create-fleet request is successful, Amazon GameLift returns a set of fleet attributes that
includes the configuration settings you requested and a new fleet ID. Amazon GameLift then
initiates the fleet activation process and sets the fleet status and the location statuses to New.
You can track the fleet's status and view other fleet information using these CLI commands:

• describe-fleet-events

• describe-fleet-attributes

• describe-fleet-capacity

• describe-fleet-port-settings

• describe-fleet-utilization

• describe-runtime-configuration

• describe-fleet-location-attributes

• describe-fleet-location-capacity

• describe-fleet-location-utilization

You can change the fleet's capacity and other configuration settings as needed using these
commands:

• update-fleet-attributes

• update-fleet-capacity

• update-fleet-port-settings

• update-runtime-configuration

Create a new fleet 281

https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-events.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-attributes.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-capacity.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-port-settings.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-utilization.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-runtime-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-location-attributes.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-location-capacity.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-location-utilization.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-attributes.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-capacity.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-port-settings.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-runtime-configuration.html

Amazon GameLift Developer Guide

• create-fleet-locations

• delete-fleet-locations

Create an Amazon GameLift Anywhere fleet

Use Amazon GameLift to integrate hardware from your environment into your Amazon GameLift
game hosting. Amazon GameLift Anywhere registers your hardware with Amazon GameLift in an
Anywhere fleet. You can integrate Anywhere and managed EC2 fleets in matchmaker and game
session queues to manage matchmaking and game placement.

For more information about testing your game servers with Amazon GameLift Anywhere, see Set
up local testing with Amazon GameLift Anywhere.

To get started, Development support with Amazon GameLift version 5 or greater and review the
following concepts for using a Amazon GameLift Anywhere fleet.

Custom locations

Amazon GameLift Anywhere fleets use custom locations to represent the physical locations of
your infrastructure.

Device registration

For a Amazon GameLift Anywhere fleet to communicate with your compute resources, first
register your device. You can complete device registration from the Amazon GameLift AWS SDK
by using the RegisterCompute operation. This operation uses the IP address of the device to
associate it with a fleet location and communicate with Amazon GameLift.

Authentication tokens

When you initialize a game server on your compute, the Amazon GameLift Server SDK uses an
auth token to authenticate your game server to Amazon GameLift. You can re-use the same
auth token for all game servers on the same compute, up to the auth token expiration time. To
retrieve the auth token, call the get-compute-auth-token AWS Command Line Interface
(AWS CLI) command. Pass the token to each game server as needed.

Game sessions

Each game session on a compute uses the same authentication token created while registering
the compute to a fleet location.

Create a new fleet 282

https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-fleet-locations.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/delete-fleet-locations.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/get-compute-auth-token.html

Amazon GameLift Developer Guide

The following diagram shows a game session queue that uses FlexMatch matchmaking and
multiple fleets. The fleets include an EC2 fleet with C5 instances, an Anywhere fleet with a
development laptop, and an Anywhere fleet with a customer-hosted server rack.

Topics

• Create a custom location

• Create a fleet

• Register your compute

• Run a server process

• Create game sessions

• Migrate to managed EC2

Create a custom location

To get started hosting games on your compute resources, create a custom location describing
where your compute resides.

Create a new fleet 283

Amazon GameLift Developer Guide

Console

To create a custom location

1. Open the Amazon GameLift console.

2. In the navigation pane, under Hosting, choose Locations.

3. On the Locations page, choose Create location.

4. In the Create location dialog box, do the following:

a. Enter a Location name. This labels the location of your hardware that Amazon
GameLift uses to run your games in Anywhere fleets. Amazon GameLift appends the
name of your custom location with custom-.

b. (Optional) Add tags as key-value pairs to your custom location. Choose Add new tag
for each tag that you want to add.

c. Choose Create.

AWS CLI

Create a custom location using the create-location command. The location-name labels
the location of your hardware that Amazon GameLift uses to run your games in Anywhere
fleets. When creating your custom location, the location name must start with custom-.

aws gamelift create-location \
 --location-name custom-location-1

Output

{
 "Location": {
 "LocationName": "custom-location-1",
 "LocationArn": "arn:aws:gamelift:us-east-1:111122223333:location/custom-
location-1"
 }
}

Create a fleet

Use either the Amazon GameLift console or the AWS CLI to create an Anywhere fleet.

Create a new fleet 284

https://console.aws.amazon.com/gamelift/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/create-location.html
https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

After you create a new Anywhere fleet, the fleet's status moves from NEW to ACTIVE. When it
reaches ACTIVE status, the fleet is ready to host game sessions. For help with fleet creation issues,
see Debug Amazon GameLift fleet issues.

Console

To create an Anywhere fleet

1. Open the Amazon GameLift console.

2. In the navigation pane, under Hosting, choose Fleets.

3. On the Fleets page, choose Create fleet.

4. On the Compute type step, choose Anywhere, and then choose Next.

5. On the Fleet details step, define the details, and then choose Next.

6. On the Custom locations step, select the custom location that you created, and then
choose Next. Amazon GameLift automatically selects the home AWS Region as the Region
that you're creating the fleet in. You can use the home Region to access and use your
resources.

7. Complete the remaining fleet creation steps, and then choose Submit to create your
Anywhere fleet.

AWS CLI

Create an Anywhere fleet using the create-fleet command. Include your custom location
in locations. Amazon GameLift creates the fleet in your home Region and in the custom
locations that you provide. In the following example, replace FleetName and custom-
location-1 with your own information. The variable custom-location-1 is the name of the
location created in the Create a custom location step.

aws gamelift create-fleet \
--name FleetName \
--compute-type ANYWHERE \
--locations "Location=custom-location-1"

Example output

{
 "FleetAttributes": {
 "FleetId": "fleet-cebb4da2-52a8-4c27-9b85-587f945c6445",

Create a new fleet 285

https://console.aws.amazon.com/gamelift/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/create-fleet.html

Amazon GameLift Developer Guide

 "FleetArn": "arn:aws:gamelift:us-east-1:111122223333:fleet/fleet-
cebb4da2-52a8-4c27-9b85-587f945c6445",
 "Name": "HardwareAnywhere",
 "CreationTime": "2023-02-23T17:57:42.293000+00:00",
 "Status": "ACTIVE",
 "MetricGroups": [
 "default"
],
 "CertificateConfiguration": {
 "CertificateType": "DISABLED"
 },
 "ComputeType": "ANYWHERE"
 }
}

Register your compute

To register your compute resource in the fleet that you created, use the register-compute
command. Replace the fleet-id with the fleet-id returned in the previous step or fleet
ARN found in the details page of your fleet in the console. Replace the compute-name, and ip-
address with the IP address of your compute resource.

Note

We recommend calling both the register-compute and get-compute-auth-token
commands from a script or process manager separate from your game server.

aws gamelift register-compute \
 --compute-name HardwareAnywhere \
 --fleet-id arn:aws:gamelift:us-east-1:111122223333:fleet/fleet-
cebb4da2-52a8-4c27-9b85-587f945c6445 \
 --ip-address 10.1.2.3 \
 --location custom-location-1

Example output

{
 "Compute": {
 "FleetId": "fleet-cebb4da2-52a8-4c27-9b85-587f945c6445",

Create a new fleet 286

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/register-compute.html

Amazon GameLift Developer Guide

 "FleetArn": "arn:aws:gamelift:us-east-1:111122223333:fleet/fleet-
cebb4da2-52a8-4c27-9b85-587f945c6445",
 "ComputeName": "HardwareAnywhere",
 "ComputeArn": "arn:aws:gamelift:us-east-1:111122223333:compute/
HardwareAnywhere",
 "IpAddress": "10.1.2.3",
 "ComputeStatus": "Active",
 "Location": "custom-location-1",
 "CreationTime": "2023-02-23T18:09:26.727000+00:00",
 "GameLiftServiceSdkEndpoint": "wss://us-east-1.api.amazongamelift.com"
 }
}

Run a server process

1. Get the authentication token for your compute resource from the fleet that you created.

Your game server uses the authentication token to authenticate with Amazon GameLift. Each
authentication token has an expiration time. To continue using the compute resource to host
your game server, retrieve a new authentication token before the expiration.

Note

Amazon GameLift recommends calling both the register-compute and get-
compute-auth-token commands from a script or process manager separate from
your game server.

In the following example, replace the fleet-id with the ARN or fleet ID of the fleet created
in the previous steps. Replace the compute-name with the name of the compute you created
using the register-compute command in a previous step.

aws gamelift get-compute-auth-token \
 --fleet-id arn:aws:gamelift:us-east-1:111122223333:fleet/fleet-
cebb4da2-52a8-4c27-9b85-587f945c6445 \
 --compute-name HardwareAnywhere

Example output:

{

Create a new fleet 287

Amazon GameLift Developer Guide

 "FleetId": "fleet-cebb4da2-52a8-4c27-9b85-587f945c6445",
 "FleetArn": "arn:aws:gamelift:us-east-1:111122223333:fleet/fleet-
cebb4da2-52a8-4c27-9b85-587f945c6445",
 "ComputeName": "HardwareAnywhere",
 "ComputeArn": "arn:aws:gamelift:us-east-1:111122223333:compute/
HardwareAnywhere",
 "AuthToken": "0c728041-3e84-4aaa-b927-a0fb202684c0",
 "ExpirationTimestamp": "2023-02-23T18:47:54+00:00"
}

2. Run an instance of your game server executable.

To run your game server, initialize your game server by calling InitSDK() and passing it your
server parameters. For more information, see ServerParameters.

Server SDK input:

//Define the server parameters
ServerParameters serverParameters = new ServerParameters(
 webSocketUrl=wss://us-east-1.api.amazongamelift.com,
 processId=PID1234,
 hostId=HardwareAnywhere,
 fleetId=arn:aws:gamelift:us-east-1:111122223333:fleet/fleet-
cebb4da2-52a8-4c27-9b85-587f945c6445,
 authToken=0c728041-3e84-4aaa-b927-a0fb202684c0);

//InitSDK establishes a connection with GameLift's websocket server for
 communication.
var initSDKOutcome = GameLiftServerAPI.InitSDK(serverParameters);

3. After the server process is ready to host a game session, call ProcessReady() from your
game server to Amazon GameLift. For more information about process parameters, see
ProcessParameters

// Set parameters and call ProcessReady
var processParams = new ProcessParameters(
 this.OnStartGameSession,
 this.OnProcessTerminate,
 this.OnHealthCheck,
 this.OnUpdateGameSession,
 port=1024,
 new LogParameters(new List<string>() // Examples of log and error files
 written by the game server

Create a new fleet 288

Amazon GameLift Developer Guide

 {
 "C:\\game\\logs",
 "C:\\game\\error"
 })
);

var processReadyOutcome = GameLiftServerAPI.ProcessReady(processParams);

Create game sessions

1. Add logic to your game server so that your server process responds to the
onStartGameSession() message with ActivateGameSession(). This operation has no
parameters, but it sends an acknowledgement to Amazon GameLift that your server received
and accepted the create game session message.

void OnStartGameSession(GameSession gameSession)
{
 // game-specific tasks when starting a new game session, such as loading map

 // When ready to receive players
 var activateGameSessionOutcome = GameLiftServerAPI.ActivateGameSession();
}

2. From your game client backend service, start your game session using the start-
matchmaking, start-game-session-placement, or create-game-session command.

aws gamelift create-game-session \
 --fleet-id arn:aws:gamelift:us-east-1:682428703967:fleet/fleet-
cebb4da2-52a8-4c27-9b85-587f945c6445 \
 --name GameSession1 \
 --maximum-player-session-count 2 \
 --location custom-location-1

Example output:

GameSession {
 FleetId = arn:aws:gamelift:us-east-1:682428703967:fleet/fleet-
cebb4da2-52a8-4c27-9b85-587f945c6445,
 GameSessionId = 4444-4444,
 Name = GameSession1,

Create a new fleet 289

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/start-matchmaking.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/start-matchmaking.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/start-game-session-placement.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/create-game-session.html

Amazon GameLift Developer Guide

 Location = custom-location-1,
 IpAddress = 10.2.3.4,
 Port = 1024,
 ...
}

Amazon GameLift sends an onStartGameSession() message to your registered server
process. The message contains the GameSession object from the previous step with game
properties, game sessions data, matchmaker data, and more about the game session.

3. When the game session is complete, end the game server process.

Server SDK input:

var processEndingOutcome = GameLiftServerAPI.ProcessEnding();
if (processReadyOutcome.Success)
 Environment.Exit(0);
// otherwise, exit with error code
Environment.Exit(errorCode);

4. Start another game server process by calling ProcessReady(processParams).

Migrate to managed EC2

After you've developed your game server and you're ready to prepare for production, you can have
Amazon GameLift manage your hardware. To migrate to a managed EC2 fleet, upload your build
to Amazon GameLift and create a managed EC2 fleet. For more information about uploading your
build and setting up a fleet, see Upload a custom server build to Amazon GameLift and Create a
Amazon GameLift managed fleet.

Manage your Amazon GameLift fleets

Use the Amazon GameLift console or the AWS CLI to update your fleet settings, change remote
locations, or delete a fleet.

Update a fleet configuration

You can update mutable fleet attributes, port settings, and runtime configurations using the
Amazon GameLift console or the AWS CLI. To change scaling limits, see Auto-scale fleet capacity
with Amazon GameLift.

Manage your fleets 290

Amazon GameLift Developer Guide

Amazon GameLift console

1. In the Amazon GameLift console, in the navigation pane, choose Fleets.

2. Choose the fleet you want to update. A fleet must be in ACTIVE status before you can edit
it.

3. On the Fleet detail page, in any of the following sections, choose Edit.

• Fleet settings

• Change the fleet attributes such as Name and Description.

• Add or remove Metric groups, that Amazon CloudWatch uses to track aggregated
Amazon GameLift metrics for multiple fleets.

• Update Resource creation limit settings.

• Turn game session protection on or off.

• Runtime configuration – You can change any of the following settings of your runtime
configurations and add or remove runtime configurations.

• Change the Launch path of your game server.

• Add, remove, or change optional Launch parameters.

• Change the number of Concurrent processes that your game servers run.

• Game session activation – Change how you want server processes to run and host
game sessions by updating Max concurrent game session activations and New
activation timeout.

• EC2 port settings – Update the IP addresses and port ranges that allow inbound access
to the fleet.

4. Choose Confirm to save changes.

AWS CLI

Use the following AWS CLI commands to update a fleet:

• update-fleet-attributes

• update-fleet-port-settings

• update-runtime-configuration

Manage your fleets 291

https://console.aws.amazon.com/gamelift/
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-attributes.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-port-settings.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-runtime-configuration.html

Amazon GameLift Developer Guide

Update fleet locations

You can add or remove a fleet's remote locations using the Amazon GameLift console or the AWS
CLI. You can't change a fleet's home Region.

Amazon GameLift console

1. In the Amazon GameLift console, in the navigation pane, choose Fleets.

2. Choose the fleet you want to update. A fleet must be in ACTIVE status before you can edit
it.

3. On the Fleet detail page, choose the Locations tab to view the fleet's locations.

4. To add new remote locations, choose Add and select the locations you want to deploy
instances to. This list doesn't include instances where the fleet's instance type isn't
available.

5. With new locations selected, choose Add. Amazon GameLift adds the new locations to the
list, with status set to NEW. Amazon GameLift then begins provisioning an instance in each
added location and preparing it to host game sessions.

6. To remove existing remote locations from the fleet, use the check boxes to select one or
more listed locations.

7. With one or more fleets selected, choose Remove. The removed locations remain in the
list, with status set to DELETING. Amazon GameLift then begins the process of terminating
activity in the removed location. If there are active instances that are hosting game
sessions, Amazon GameLift uses the game server termination process to gracefully end
game sessions, terminate game servers, and shut down instances.

AWS CLI

Use the following AWS CLI commands to update fleet locations:

• create-fleet-locations

• delete-fleet-locations

Manage your fleets 292

https://console.aws.amazon.com/gamelift/
https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-fleet-locations.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/delete-fleet-locations.html

Amazon GameLift Developer Guide

Delete a fleet

You can delete a fleet when you no longer need it. Deleting a fleet permanently removes all data
associated with game sessions and player sessions, and collected metric data. As an alternative, you
can retain the fleet, disable auto-scaling, and manually scale the fleet to 0 instances.

Note

If the fleet has a VPC peering connection, first request authorization by calling
CreateVpcPeeringAuthorization. Amazon GameLift deletes the VPC peering connection
during fleet deletion.

You can use either the Amazon GameLift console or the AWS CLI tool to delete a fleet.

Amazon GameLift console

1. In the Amazon GameLift console, in the navigation pane, choose Fleets.

2. Choose the fleet you want to delete. You can only delete fleets in ACTIVE or ERROR status.

3. Choose Delete.

4. In the Delete fleet dialog box, confirm the deletion by entering delete.

5. Choose Delete.

AWS CLI

Use the following AWS CLI command to delete a fleet:

• delete-fleet

Add an alias to a Amazon GameLift fleet

An Amazon GameLift alias is used to abstract a fleet designation. Fleet designations tell Amazon
GameLift where to search for available resources when creating new game sessions for players. Use
aliases instead of specific fleet IDs to seamlessly switch player traffic from one fleet to another by
changing the alias's target location.

There are two types of routing strategies for aliases:

Add an alias to a fleet 293

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateVpcPeeringAuthorization.html
https://console.aws.amazon.com/gamelift/
https://docs.aws.amazon.com/cli/latest/reference/gamelift/delete-fleet.html

Amazon GameLift Developer Guide

• Simple – Routes player traffic to a specified fleet ID. You can update the fleet ID for an alias at
any time.

• Terminal – Passes a message back to the client. For example, you can direct players who are
using an out-of-date client to a location where they can get an upgrade.

Fleets have a finite lifespan, and there are several reasons to switch out fleets during the life of a
game. You can't update a fleet's game server build or change certain computing resource attributes
on an existing fleet. Instead, create new fleets with the changes and then switch players to the new
fleets. With aliases, switching fleets has minimal impact on your game and is invisible to players.

Aliases are useful in games that don't use queues. Switching fleets in a queue is a simple matter
of creating a new fleet, adding it to the queue, and removing the old fleet, none of which is visible
to players. In contrast, game clients that don't use queues must specify which fleet to use when
communicating with the Amazon GameLift service. Without aliases, a fleet switch requires updates
to your game code and possibly distribution of an updated game clients to players.

When updating the fleet-id an alias points to, there is a transition period of up to 2 minutes where
game sessions on the alias may end up on the old fleet.

Create a new alias

You can create an alias using either the Amazon GameLift console, as described here, or with the
AWS CLI command create-alias.

1. In the Amazon GameLift console, in the navigation pane, choose Aliases.

2. On the Aliases page, choose Create alias. We recommend including the fleet type in your alias
names. This makes it much easier to identify the fleet type when viewing a list of aliases.

3. On the Create alias page, under Alias details, do the following:

a. For Name, enter an alias name.

b. For description, enter a short description for identification.

c. Choose Simple or Terminal routing type.

4. (Optional) Under Tags, add tags to the alias by entering Key and Value pairs.

5. Choose Create.

Add an alias to a fleet 294

https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-alias.html
https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

Edit an alias

You can edit an alias using the Amazon GameLift console or with the AWS CLI command update-
alias.

1. In the Amazon GameLift console, in the navigation pane, choose Aliases.

2. On the Aliases page, choose the alias you want to edit.

3. On alias page choose Edit.

4. On the Edit alias page, you can edit the following:

• Alias name – Friendly name for your alias.

• Description – Short description for your alias.

• Type – Routing strategy for player traffic. Select Simple to change the associated fleet or
select Terminal to edit the termination message.

5. Choose Save changes.

Debug Amazon GameLift fleet issues

This topic provides guidance on fleet configuration issues for a Amazon GameLift managed hosting
solution. For additional troubleshooting, you can remotely access a fleet instance once the fleet is
active. See Remotely connect to Amazon GameLift fleet instances.

Fleet creation issues

When a fleet is created, the Amazon GameLift service initiates a workflow that deploys a new
instance in each of the fleet's locations and prepares it to run you game servers. For a detailed
description, see How Amazon GameLift fleet creation works. A fleet cannot host game sessions and
players until it reaches Active status. This section discusses the most common issues that prevent
fleets from becoming active.

Downloading and validating

During this phase, fleet creation may fail if there are issues with the extracted build files, the
installation script won't run, or if the executable(s) designated in the runtime configuration is not
included in the build files. Amazon GameLift provides logs related to each of these issues.

If the logs do not reveal an issue, it's possible that the problem is due to an internal service error.
In this case, try to create the fleet again. If the problem persists, consider re-uploading the game

Debug fleet issues 295

https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-alias.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-alias.html
https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

build (in case the files were corrupted). You can also contact Amazon GameLift support or post a
question on the forum.

Building

Issues that cause failure during the build phase are almost certainly due to problems with the game
build files and/or the installation script. Verify that your game build files, as uploaded to Amazon
GameLift, can be installed on a machine running the appropriate operating system. Be sure to use a
clean OS installation, not an existing development environment.

Activating

The most common fleet creation problems occur during the Activating phase. During this
phase, a number of elements are being tested, including the game server's viability, the runtime
configuration settings, and the game server's ability to interact with the Amazon GameLift service
using the Server SDK. Common issues that come up during fleet activation include:

Server processes fail to start.

First check that you've correctly set the launch path and optional launch parameters in the
fleet's runtime configuration. You can view the fleet's current runtime configuration using either
the Fleet detail page, Details)section or by calling the AWS CLI command describe-runtime-
configuration. If the runtime configuration looks correct, check for issues with your game build
files and/or installation script.

Server processes start but fleet fails to activate.

If server processes start and run successfully, but the fleet does not move to Active status,
a likely cause is that the server process is failing to notify Amazon GameLift that it is ready
to host game sessions. Check that your game server is correctly calling the Server API action
ProcessReady() (see Initialize the server process).

VPC peering connection request failed.

For fleets that are created with a VPC peering connection (see To set up VPC peering with a
new fleet), VPC peering is done during this Activating phases. If a VPC peering fails for any
reason, the new fleet will fail to move to Active status. You can track the success or failure of
the peering request by calling describe-vpc-peering-connections. Be sure to check that a valid
VPC peering authorization exists (describe-vpc-peering-authorizations, since authorizations are
only valid for 24 hours.

Debug fleet issues 296

https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-runtime-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-runtime-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-vpc-peering-connections.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-vpc-peering-authorizations.html

Amazon GameLift Developer Guide

Server process issues

Server processes start but fail quickly or report poor health.

Other than issues with your game build, this outcome can happen when trying to run too
many server processes simultaneously on the instance. The optimum number of concurrent
processes depends on both the instance type and your game server's resource requirements. Try
reducing the number of concurrent processes, which is set in the fleet's runtime configuration,
to see if performance improves. You can change a fleet's runtime configuration using either the
Amazon GameLift console (edit the fleet's capacity allocation settings) or by calling the AWS CLI
command update-runtime-configuration.

Fleet deletion issues

Fleet can't be terminated due to max instance count.

The error message indicates that the fleet being deleted still has active instances, which is not
allowed. You must first scale a fleet down to zero active instances. This is done by manually
setting the fleet's desired instance count to "0" and then waiting for the scale-down to take
effect. Be sure to turn off auto-scaling, which will counteract manual settings.

VPC actions are not authorized.

This issue only applies to fleets that you have specifically created VPC peering connections for
(see VPC peering for Amazon GameLift. This scenario occurs because the process of deleting a
fleet also includes deleting the fleet's VPC and any VPC peering connections. You must first get
an authorization by calling the Amazon GameLift service API CreateVpcPeeringAuthorization()
or use the AWS CLI command create-vpc-peering-authorization. Once you have the
authorization, you can delete the fleet.

Realtime Servers fleet issues

Zombie game sessions: They start and run a game, but they never end.

You might observe this issues as any of the following scenarios:

• Script updates are not picked up by the fleet's Realtime servers.

• The fleet quickly reaches maximum capacity and does not scale down when player activity
(such as new game session requests) decreases.

Debug fleet issues 297

https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-runtime-configuration.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateVpcPeeringAuthorization.html

Amazon GameLift Developer Guide

This is almost certainly a result of failing to successfully call processEnding in your Realtime
script. Although the fleet goes active and game sessions are started, there is no method for
stopping them. As a result, the Realtime server that is running the game session is never freed
up to start a new one, and new game sessions can only start when new Realtime servers are
spun up. In addition, updates to the Realtime script do not impact already- running game
sessions, only ones.

To prevent this from happening, scripts need to provide a mechanism to trigger a
processEnding call. As illustrated in the Realtime Servers script example, one way is to
program an idle session timeout where, if no player is connected for a certain amount of time,
the script will end the current game session.

However, if you do fall into this scenario, there are a couple workarounds to get your Realtime
servers unstuck. The trick is to trigger the Realtime server processes—or the underlying fleet
instances—to restart. In this event, GameLift automatically closes the game sessions for you.
Once Realtime servers are freed up, they can start new game sessions using the latest version of
the Realtime script.

There are a couple of methods to achieve this, depending on how pervasive the problem is:

• Scale the entire fleet down. This method is the simplest to do but has a widespread effect.
Scale the fleet down to zero instances, wait for the fleet to fully scale down, and then scale
it back up. This will wipe out all existing game sessions, and let you start fresh with the most
recently updated Realtime script.

• Remotely access the instance and restart the process. This is a good option if you have only a
few processes to fix. If you are already logged onto the instance, such as to tail logs or debug,
then this may be the quickest method. See Remotely connect to Amazon GameLift fleet
instances.

If you opt not to include way to call processEnding in your Realtime script, there are a couple of
tricky situations that might occur even when the fleet goes active and game sessions are started.
First, a running game session does not end. As a result, the server process that is running that
game session is never free to start a new game session. Second, the Realtime server does not pick
up any script updates.

Remotely connect to Amazon GameLift fleet instances

You can connect to any instance in your active Amazon GameLift managed EC2 fleets. Common
reasons to remotely access an instance include:

Remotely connect to fleet instances 298

Amazon GameLift Developer Guide

• Troubleshoot issues with your game server integration.

• Fine-tune your runtime configuration and other fleet-specific settings.

• Get real-time game server activity, such as log tracking.

• Run benchmarking tools using actual player traffic.

• Investigate specific issues with a game session or server process.

When connecting to an instance, consider these potential issues:

• You can connect to any instance in an active fleet. Generally, you can't connect to non-active
fleets, such as fleets that are in the process of activating or are in an error state. (These fleets
might have limited availability a short period of time.) For help with fleet activation issues, see
Debug Amazon GameLift fleet issues.

• Connecting to an active instance doesn't affect the instance's hosting activity. The instance
continues to start and stop server processes based on the runtime configuration. It activates and
runs game sessions. The instance might shut down in response to a scale down event or other
event.

• Any changes you make to files or settings on the instance might impact the instance's active
game sessions and connected players.

The following instructions describe how to remotely connect to an instance using the AWS
command line interface (CLI). You can also make programmatic calls using the AWS SDK, as
documented in the Amazon GameLift service API reference.

Gather instance data

To connect to an Amazon GameLift managed EC2 fleet instance, you need the following
information:

• The ID of the instance you want to connect to. You can use either the instance ID or ARN.

• The Amazon GameLift server SDK version being used on the instance. The server SDK is
integrated with the game build that is running on the instance.

The following instructions describe how complete these tasks using the AWS CLI. You must know
the fleet ID for the instance you want to connect to.

Remotely connect to fleet instances 299

https://docs.aws.amazon.com/gamelift/latest/apireference/

Amazon GameLift Developer Guide

1. Get the compute name. Get a list of all active computes in the fleet. Call list-compute with
a fleet ID or or ARN. For a single-location fleet, specify the fleet identifier only. For a multi-
location fleet, specify the fleet identifier and a location. With managed EC2 fleets, list-
compute returns a list of fleet instances, and the property ComputeName is the instance ID.
Find the compute you want to access.

Request

aws gamelift list-compute \
 --fleet-id "fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa" \
 --location ""sa-east-1"

Response

{
 "ComputeList": [
 {
 "FleetId": "fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa",
 "FleetArn": "arn:aws:gamelift:us-west-2::fleet/
fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa",
 "ComputeName": "i-0abc12d3e45fa6b78",
 "IpAddress": "00.00.000.00",
 "DnsName":
 "b08444ki909kvqu6zpw3is24x5pyz4b6m05i3jbxvpk9craztu0lqrbbrbnbkks.uwp57060n1k6dnlnw49b78hg1rw4rcz7.us-
west-2.amazongamelift.com",
 "ComputeStatus": "Active",
 "Location": "sa-east-1",
 "CreationTime": "2023-07-09T22:51:45.931000-07:00",
 "OperatingSystem": "AMAZON_LINUX_2023",
 "Type": "c4.large"
 }
]
}

2. Find the server SDK version. For this information you need to look up the build that is
deployed to the fleet. Server SDK version is a build property.

a. Call describe-fleet-attributes with a fleet ID or ARN. Get the fleet's build ID or ARN.

b. Call describe-build with the build ID or ARN to get the build's server SDK version.

For example:

Remotely connect to fleet instances 300

https://docs.aws.amazon.com/cli/latest/reference/gamelift/list-compute.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-attributes.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-build.html

Amazon GameLift Developer Guide

Request

aws gamelift describe-fleet-attributes /
 --fleet-ids "fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa"

Response

{
 "FleetAttributes": [
 {
 "FleetId": "fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa",
 "ComputeType": "EC2",
 "BuildId": "build-3333cccc-44dd-55ee-66ff-00001111aa22",
 . . .
 }
]
}

Request

aws gamelift describe-build /
 --build-id "build-3333cccc-44dd-55ee-66ff-00001111aa22"

Response

"Build": {
 "BuildId": "build-1111aaaa-22bb-33cc-44dd-5555eeee66ff",
 "Name": "My_Game_Server_Build_One",
 "OperatingSystem": "AMAZON_LINUX_2023",

 "ServerSdkVersion": "5.1.1",
 . . .
}

Remotely connect to fleet instances 301

Amazon GameLift Developer Guide

Connect to an instance (server SDK 5)

If the instance you want to connect to is running a game build with server SDK version 5.x, connect
to the instance using Amazon EC2 Systems Manager (SSM). You can access remote instances that
are running either Windows or Linux.

Before you start:

Complete the SSM setup steps and install the SSM plugin on your local machine. For more
information, see Setting up SSM and Install the Session Manager plugin for the AWS CLI in
the Amazon EC2 Systems Manager User Guide.

1. Request access credentials for the instance. Call get-compute-access with the fleet ID and
the compute name for the instance you want to connect to. Amazon GameLift returns a set of
temporary credentials for accessing the instance. For example:

Request

aws gamelift get-compute-access \
--compute-name i-11111111a222b333c \
--fleet-id fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa
--region us-west-2

Response

{
 "ComputeName": " i-11111111a222b333c ",
 "Credentials": {
 "AccessKeyId": " ASIAIOSFODNN7EXAMPLE ",
 "SecretAccessKey": " wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY ",
 "SessionToken": " AQoDYXdzEJr...<remainder of session token>"
 },
 "FleetArn": " arn:aws:gamelift:us-west-2::fleet/
fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa ",
 "FleetId": " fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa "
}

2. Export the access credentials (optional). You can export the credentials to environment
variables and use them to configure the AWS CLI for the default user. For more details, see

Remotely connect to fleet instances 302

https://docs.aws.amazon.com/ystems-manager/latest/userguide/session-manager-getting-started.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/get-compute-access.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html

Amazon GameLift Developer Guide

Environment variables to configure the AWS CLI in the AWS Command Line Interface User
Guide.

export AWS_ACCESS_KEY_ID=ASIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export AWS_SESSION_TOKEN=AQoDYXdzEJr...<remainder of session token>

3. Connect to the fleet instance. Start an SSM session with the instance you want to connect to.
Include the AWS Region or location of the instance. For more information, including how to
set up SSM and the SSM plugin, see Starting a session (AWS CLI) in the Amazon EC2 Systems
Manager User Guide.

The start-session request will automatically use the credentials that you acquired in Step 1.

aws ssm start-session \
--target i-11111111a222b333c \
--region us-west-2 \

Note

If you get an access denied error, you might have an AWS_PROFILE environment
variable set to an AWS profile, which causes AWS CLI to use the wronge credentials for
remote access. To resolve, temporarily unset your AWS_PROFILE environment variable.
Alternatively, you can create a custom AWS profile for your remote access credentials
and add the --profile command line parameter to your start-session request.

Connect to an instance (server SDK 4.x or earlier)

If the instance you want to connect to is running a game build with server SDK version 4 or earlier,
use the following instructions. You can connect to instances that are running either Windows or
Linux. Connect to a Windows instance using a remote desktop protocol (RDP) client. Connect to a
Linux instance using an SSH client.

1. Request access credentials for the instance. When you have an instance ID, use the command
get-instance-access to request access credentials. If successful, Amazon GameLift returns
the instance's operating system, IP address, and a set of credentials (user name and secret
key). The credentials format depends on the instance operating system. Use the following
instructions to retrieve credentials for either RDP or SSH.

Remotely connect to fleet instances 303

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-sessions-start.html#sessions-start-cli
https://docs.aws.amazon.com/cli/latest/reference/gamelift/get-instance-access.html

Amazon GameLift Developer Guide

• For Windows instances – To connect to a Windows instance, RDP requires a user name and
password. The get-instance-access request returns these values as simple strings, so
you can use the returned values as is. Example credentials:

"Credentials": {
 "Secret": "aA1bBB2cCCd3EEE",
 "UserName": "gl-user-remote"
}

• For Linux instances – To connect to a Linux instance, SSH requires a user name and private
key. Amazon GameLift issues RSA private keys and returns them as a single string, with the
newline character (\n) indicating line breaks. To make the private key usable, take these
steps: (1) convert the string to a .pem file, and (2) set permissions for the new file. Example
credentials returned:

"Credentials": {
 "Secret": "-----BEGIN RSA PRIVATE KEY-----
nEXAMPLEKEYKCAQEAy7WZhaDsrA1W3mRlQtvhwyORRX8gnxgDAfRt/gx42kWXsT4rXE/b5CpSgie/
\nvBoU7jLxx92pNHoFnByP+Dc21eyyz6CvjTmWA0JwfWiW5/akH7iO5dSrvC7dQkW2duV5QuUdE0QW
\nZ/aNxMniGQE6XAgfwlnXVBwrerrQo+ZWQeqiUwwMkuEbLeJFLhMCvYURpUMSC1oehm449ilx9X1F
\nG50TCFeOzfl8dqqCP6GzbPaIjiU19xX/azOR9V+tpUOzEL+wmXnZt3/nHPQ5xvD2OJH67km6SuPW
\noPzev/D8V+x4+bHthfSjR9Y7DvQFjfBVwHXigBdtZcU2/wei8D/HYwIDAQABAoIBAGZ1kaEvnrqu
\n/uler7vgIn5m7lN5LKw4hJLAIW6tUT/fzvtcHK0SkbQCQXuriHmQ2MQyJX/0kn2NfjLV/
ufGxbL1\nmb5qwMGUnEpJaZD6QSSs3kICLwWUYUiGfc0uiSbmJoap/
GTLU0W5Mfcv36PaBUNy5p53V6G7hXb2\nbahyWyJNfjLe4M86yd2YK3V2CmK+X/
BOsShnJ36+hjrXPPWmV3N9zEmCdJjA+K15DYmhm/
tJWSD9\n81oGk9TopEp7CkIfatEATyyZiVqoRq6k64iuM9JkA3OzdXzMQexXVJ1TLZVEH0E7bhlY9d8O1ozR
\noQs/FiZNAx2iijCWyv0lpjE73+kCgYEA9mZtyhkHkFDpwrSM1APaL8oNAbbjwEy7Z5Mqfql
+lIp1\nYkriL0DbLXlvRAH+yHPRit2hHOjtUNZh4Axv+cpg09qbUI3+43eEy24B7G/Uh
+GTfbjsXsOxQx/x\np9otyVwc7hsQ5TA5PZb
+mvkJ5OBEKzet9XcKwONBYELGhnEPe7cCgYEA06Vgov6YHleHui9kHuws
\nayav0elc5zkxjF9nfHFJRry21R1trw2Vdpn+9g481URrpzWVOEihvm+xTtmaZlSp//lkq75XDwnU
\nWA8gkn6O3QE3fq2yN98BURsAKdJfJ5RL1HvGQvTe10HLYYXpJnEkHv+Unl2ajLivWUt5pbBrKbUC
\ngYBjbO+OZk0sCcpZ29sbzjYjpIddErySIyRX5gV2uNQwAjLdp9PfN295yQ+BxMBXiIycWVQiw0bH
\noMo7yykABY7Ozd5wQewBQ4AdSlWSX4nGDtsiFxWiI5sKuAAeOCbTosy1s8w8fxoJ5Tz1sdoxNeGs
\nArq6Wv/G16zQuAE9zK9vvwKBgF+09VI/1wJBirsDGz9whVWfFPrTkJNvJZzYt69qezxlsjgFKshy
\nWBhd4xHZtmCqpBPlAymEjr/TOlbxyARmXMnIOWIAnNXMGB4KGSyl1mzSVAoQ+fqR+cJ3d0dyPl1j
\njjb0Ed/NY8frlNDxAVHE8BSkdsx2f6ELEyBKJSRr9snRAoGAMrTwYneXzvTskF/S5Fyu0iOegLDa
\nNWUH38v/nDCgEpIXD5Hn3qAEcju1IjmbwlvtW+nY2jVhv7UGd8MjwUTNGItdb6nsYqM2asrnF3qS
\nVRkAKKKYeGjkpUfVTrW0YFjXkfcrR/V+QFL5OndHAKJXjW7a4ejJLncTzmZSpYzwApc=\n-----END
 RSA PRIVATE KEY-----",

Remotely connect to fleet instances 304

Amazon GameLift Developer Guide

 "UserName": "gl-user-remote"
}

When using the AWS CLI, you can automatically generate a .pem file by including the --
query and --output parameters to your get-instance-access request.

To set permissions on the .pem file, run the following command:

$ chmod 400 MyPrivateKey.pem

2. Open a port for the remote connection. You can access instances in Amazon GameLift fleets
through any port authorized in the fleet configuration. You can view a fleet's port settings
using the command describe-fleet-port-settings.

As a best practice, we recommend opening ports for remote access only when you need them
and closing them when you're finished. You can't update port settings after creating a fleet but
before it's active. If you get stuck, re-create the fleet with the port settings open.

Use the command update-fleet-port-settings to add a port setting for the remote
connection (such as 22 for SSH or 3389 for RDP). For the IP range value, specify the IP
addresses for the devices you plan to use to connect (converted to CIDR format). Example:

$ AWS gamelift update-fleet-port-settings
 --fleet-id "fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa"
 --inbound-permission-authorizations
 "FromPort=22,ToPort=22,IpRange=54.186.139.221/32,Protocol=TCP"

The following example opens up port 3389 on a Windows fleet

$ AWS gamelift update-fleet-port-settings
--fleet-id "fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa"
 --inbound-permission-authorizations
 "FromPort=3389,ToPort=3389,IpRange=54.186.139.221/32,Protocol=TCP"

3. Open a remote connection client. Use Remote Desktop for Windows or SSH for Linux
instances. Connect to the instance using the IP address, port setting, and access credentials.

SSH example:

ssh -i MyPrivateKey.pem gl-user-remote@192.0.2.0

Remotely connect to fleet instances 305

https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-port-settings.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-port-settings.html

Amazon GameLift Developer Guide

View files on remote instances

When connected to an instance remotely, you have full user and administrative access. This means
you also have the ability to cause errors and failures in game hosting. If the instance is hosting
games with active players, you run the risk of crashing game sessions and dropping players, or
disrupting game shutdown processes and causing errors in saved game data and logs.

Look for these resources on a hosting instance:

• Game build files. These files are the game build that you uploaded to Amazon GameLift. They
include one or more game server executables, assets, and dependencies. Game build files are in a
root directory called game:

• On Windows: c:\game

• On Linux: /local/game

• Game log files. Find the log files that your game server generates in the game root directory at
whatever directory path you designated.

• Amazon GameLift hosting resources. The root directory Whitewater contains files used by
the Amazon GameLift service to manage game hosting activity. Don't modify these files for any
reason.

• Runtime configuration. Don't access runtime configuration for individual instances. To
make changes to a runtime configuration property, update the fleet's runtime configuration
(see the AWS SDK operation UpdateRuntimeConfiguration or the AWS CLI update-runtime-
configuration).

• Fleet data. A JSON file contains information about the fleet that the instance belongs to, for use
by server processes running on the instance. The JSON file is in the following location:

• On Windows: C:\GameMetadata\gamelift-metadata.json

• On Linux: /local/gamemetadata/gamelift-metadata.json

• TLS certificates. If the instance is on a fleet that has TLS certificate generation enabled, look for
certificate files, including the certificate, certificate chain, private key, and root certificate in the
following location:

• On Windows: c:\\GameMetadata\Certificates

• On Linux: /local/gamemetadata/certificates/

Remotely connect to fleet instances 306

https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateRuntimeConfiguration.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-runtime-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-runtime-configuration.html

Amazon GameLift Developer Guide

Scaling Amazon GameLift hosting capacity

Hosting capacity, measured in instances, represents the number of game sessions that Amazon
GameLift can host concurrently and the number of concurrent players that those game sessions
can accommodate. One of the most challenging tasks with game hosting is scaling capacity
to meet player demand without wasting money on resources that you don't need. For more
information, see Scaling fleet capacity.

Capacity is adjusted at the fleet location level. All fleets have at least one location: the fleet's home
AWS Region. When viewing or scaling capacity, the information is listed by location, including the
fleet's home Region and any additional remote locations.

You can manually set the number of instances to maintain, or you can set up auto scaling to
dynamically adjust capacity as player demand changes. We recommend that you start by turning
on the target-based auto scaling option. The goal of target-based auto scaling is to maintain
enough hosting resources to accommodate current players plus a little extra to handle unexpected
spikes in player demand. For most games, target-based auto scaling offers a highly effective scaling
solution.

The topics in this section provide detailed help with the following tasks:

• Set minimum and maximum limits for capacity scaling

• Manually set capacity levels

• Use target-based auto scaling

• Manage rule-based auto scaling (advanced feature)

• Temporarily disable auto scaling

You can do most fleet scaling activities using the Amazon GameLift console. You can also use an
AWS SDK or the AWS Command Line Interface (AWS CLI) with the Amazon GameLift service API.

To manage fleet capacity in the console

1. Open the Amazon GameLift console.

2. In the navigation pane, choose Hosting, Fleets.

3. On the Fleets page, choose the name of an active fleet to open the fleet's detail page.

4. Choose the Scaling tab. On this tab, you can:

Scaling hosting capacity 307

https://docs.aws.amazon.com/gamelift/latest/apireference/Welcome.html
https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

• View historical scaling metrics for the entire fleet.

• View and update capacity settings for each fleet location, including scaling limits and
current capacity settings.

• Update target-based auto scaling, view rule-based auto scaling policies applied to the entire
fleet, and suspend auto scaling activity for each location.

Topics

• Set Amazon GameLift capacity limits

• Manually set capacity for a Amazon GameLift fleet

• Auto-scale fleet capacity with Amazon GameLift

Set Amazon GameLift capacity limits

When scaling hosting capacity for a Amazon GameLift fleet location, either manually or by auto
scaling, consider the location's scaling limits. All fleet locations have a minimum and maximum
limit that define the allowed range for the location's capacity. By default, limits on fleet locations
have a minimum of 0 instances and a maximum of 1 instance. Before you can scale a fleet location,
adjust the limits.

If you're using auto scaling, the maximum limit allows Amazon GameLift to scale up a fleet location
to meet player demand but prevents runaway hosting costs, such as during a DDOS attack. Set up
an Amazon CloudWatch alarm to notify you when capacity approaches the maximum limit, so you
can evaluate the situation and manually adjust as needed. (You can also create a billing alarm to
monitor AWS costs.) The minimum limit is useful to maintain hosting availability, even when player
demand is low.

You can set capacity limits for a fleet's locations in the Amazon GameLift console or by using the
AWS Command Line Interface (AWS CLI).

To set capacity limits

Console

1. Open the Amazon GameLift console.

2. In the navigation pane, choose Hosting, Fleets.

Set hosting capacity limits 308

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

3. On the Fleets page, choose the name of an active fleet to open the fleet's detail page.

4. On the Scaling tab, under Scaling capacity, select a fleet location, and then choose Edit.

5. In the Edit scaling capacity dialog box, set instance counts for Min size, Desired instances,
and Max size.

6. Choose Confirm.

AWS CLI

1. Check current capacity settings. In a command line window, use the describe-fleet-
location-capacity command with the fleet ID and location that you want to change capacity
for. This command returns a FleetCapacity object that includes the location's current
capacity settings. Determine whether the new instance limits can accommodate the current
desired instances setting.

aws gamelift describe-fleet-location-capacity \
 --fleet-id <fleet identifier> \
 --location <location name>

2. Update limit settings. In a command line window, use the update-fleet-capacity command
with the following parameters. You can adjust both instance limits and desired instance
count with the same command.

--fleet-id <fleet identifier>
--location <location name>
--max-size <maximum capacity for scaling>
--min-size <minimum capacity for scaling>
--desired-instances <fleet capacity goal>

Example:

aws gamelift update-fleet-capacity \
 --fleet-id fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa \
 --location us-west-2 \
 --max-size 10 \
 --min-size 1 \
 --desired-instances 10

Set hosting capacity limits 309

https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-location-capacity.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-location-capacity.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_FleetCapacity.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-capacity.html

Amazon GameLift Developer Guide

If your request is successful, Amazon GameLift returns the fleet ID. If the new max-size or
min-size value conflicts with the current desired-instances setting, Amazon GameLift
returns an error.

Manually set capacity for a Amazon GameLift fleet

When you create a new fleet, Amazon GameLift automatically sets the desired instances to one
instance in each fleet location. Then, Amazon GameLift deploys one new instance in each location.
To change fleet capacity, you can add a target-based auto scaling policy, or you can manually
set the number of instances that you want for a location. For more information, see Scaling fleet
capacity.

Setting a fleet's capacity manually can be useful when you don't need auto scaling or when you
need to hold capacity at a specified level. Manually setting capacity works only if you aren't using
a target-based auto scaling policy. If you have a target-based auto scaling policy, it immediately
resets the desired capacity based on its own scaling rules.

You can manually set capacity in the Amazon GameLift console or by using the AWS Command
Line Interface (AWS CLI). The fleet's status must be active.

Suspend auto scaling

You can suspend all auto scaling activity for each fleet location. With auto scaling suspended, the
desired number of instances in the fleet location remains the same unless manually changed. When
you suspend auto scaling for a location, it affects the fleet's current policies and any policies that
you may define in the future.

To manually set fleet capacity

Console

1. Open the Amazon GameLift console.

2. In the navigation pane, choose Hosting, Fleets.

3. On the Fleets page, choose the name of an active fleet to open the fleet's detail page.

4. On the Scaling tab, under Suspended auto-scaling locations, select each location that you
want to suspend auto scaling for, and then choose Suspend.

5. Under Scaling capacity, select a location that you want to set manually, and then choose
Edit.

Manually set fleet capacity 310

https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

6. In the Edit scaling capacity dialog box, set your preferred value for Desired instances, and
then choose Confirm. This tells Amazon GameLift the number of instances to maintain in
an active state, ready to host game sessions.

Amazon GameLift responds to the changes by deploying additional instances or shutting down
unneeded ones. As Amazon GameLift completes this process, the number of active instances
in the location changes to match the updated desired instances value. This process may take a
little time.

AWS CLI

1. Check current capacity settings. In a command line window, use the describe-fleet-
location-capacity command with the fleet ID and location that you want to change capacity
for. This command returns a FleetCapacity object that includes the location's current
capacity settings. Determine whether the instance limits can accommodate the new desired
instances setting.

aws gamelift describe-fleet-location-capacity \
 --fleet-id <fleet identifier> \
 --location <location name>

2. Update desired capacity. Use the update-fleet-capacity command with the fleet ID,
location, and a new value for desired instances. If this value falls outside the current limit
range, you can adjust limit values in the same command.

--fleet-id <fleet identifier>
--location <location name>
--desired-instances <fleet capacity as an integer>
--max-size <maximum capacity> [Optional]
--min-size <minimum capacity> [Optional]

Example:

aws gamelift update-fleet-capacity \
 --fleet-id fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa \
 --location us-west-2 \
 --desired-instances 5 \
 --max-size 10 \
 --min-size 1

Manually set fleet capacity 311

https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-location-capacity.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-location-capacity.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_FleetCapacity.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-capacity.html

Amazon GameLift Developer Guide

If your request is successful, Amazon GameLift returns the fleet ID. If the new desired instances
setting is outside the minimum and maximum limits, Amazon GameLift returns an error.

Auto-scale fleet capacity with Amazon GameLift

Use auto-scaling in Amazon GameLift to dynamically scale your fleet capacity in response to game
server activity. As players arrive and start game sessions, auto scaling can add more instances; as
player demand wanes, auto scaling can terminate unneeded instances. Auto scaling is an effective
way to minimize your hosting resources and costs, while still providing a smooth, fast player
experience.

To use auto scaling, you create scaling policies that tell Amazon GameLift when to scale up or
down. There are two types of scaling policies: target-based and rule-based. The target-based
approach—target tracking—is a complete solution. We recommend it as the simplest and most
effective option. Rule-based scaling policies require you to define each aspect of the auto scaling
decision-making process, which is useful for addressing specific issues. This solution works best as a
supplement to target-based auto scaling.

You can manage target-based auto scaling using the Amazon GameLift console, the AWS
Command Line Interface (AWS CLI), or an AWS SDK. You can manage rule-based auto scaling using
the AWS CLI or an AWS SDK only, although you can view rule-based scaling policies in the console.

Topics

• Target-based auto scaling

• Auto scale with rule-based policies

Target-based auto scaling

Target-based auto scaling for Amazon GameLift adjusts capacity levels based on the fleet metric
PercentAvailableGameSessions. This metric represents the fleet's available buffer for sudden
increases in player demand.

The primary reason for maintaining a capacity buffer is player wait time. When game session slots
are ready and waiting, it takes seconds to get new players into game sessions. If no resources are
available, players must wait for existing game sessions to end or for new resources to become
available. It can take minutes to start up new instances and server processes.

Auto scale fleet capacity 312

Amazon GameLift Developer Guide

When setting up target-based auto scaling, specify the size of the buffer that you want the fleet
to maintain. Because PercentAvailableGameSessions measures the percentage of available
resources, the actual buffer size is a percentage of the total fleet capacity. Amazon GameLift adds
or removes instances to maintain the target buffer size. With a large buffer, you minimize wait
time, but you also pay for extra resources that you may not use. If your players are more tolerant of
wait times, you can lower costs by setting a small buffer.

To set target-based auto scaling

Console

1. Open the Amazon GameLift console.

2. In the navigation pane, choose Hosting, Fleets.

3. On the Fleets page, choose the name of an active fleet to open the fleet's detail page.

4. Choose the Scaling tab. This tab displays the fleet's historical scaling metrics and contains
controls for adjusting current scaling settings.

5. Under Scaling capacity, check that the Min size and Max size limits are appropriate for the
fleet. With auto scaling enabled, capacity adjusts between these two limits.

6. In Target-based auto-scaling policy, choose Edit.

7. In the Edit target-based auto-scaling policy dialog box, for Percent available game
sessions, set the percentage that you want to maintain, and then choose Confirm. After
you've confirmed the settings, Amazon GameLift adds a new target-based policy under
Target-based auto-scaling policy.

AWS CLI

1. Set capacity limits. Set the limit values using the update-fleet-capacity command. For
more information, see Set Amazon GameLift capacity limits.

2. Create a new policy. Open a command-line window and use the put-scaling-policy
command with your policy's parameter settings. To update an existing policy, specify the
policy's name and provide a complete version of the updated policy.

--fleet-id <unique fleet identifier>
--name "<unique policy name>"
--policy-type <target- or rule-based policy>
--metric-name <name of metric>
--target-configuration <buffer size>

Auto scale fleet capacity 313

https://console.aws.amazon.com/gamelift/
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-capacity.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/put-scaling-policy.html

Amazon GameLift Developer Guide

Example:

aws gamelift put-scaling-policy \
 --fleet-id "fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa" \
 --name "My_Target_Policy_1" \
 --policy-type "TargetBased" \
 --metric-name "PercentAvailableGameSessions" \
 --target-configuration "TargetValue=5"

Auto scale with rule-based policies

Rule-based scaling policies in Amazon GameLift provide fine-grained control when auto scaling
a fleet's capacity in response to player activity. For each policy, you can link scaling to one of
several fleet metrics, identify a trigger point, and customize the responding scale-up or scale-down
event. Rule-based policies are useful for supplementing target-based scaling to handle special
circumstances.

A rule-based policy states the following: "If a fleet metric meets or crosses a threshold value for a
certain length of time, then change the fleet's capacity by a specified amount." This topic describes
the syntax used to construct a policy statement and provides help with creating and managing
your rule-based policies.

Manage rule-based policies

Create, update, or delete rule-based policies using an AWS SDK or the AWS Command Line
Interface (AWS CLI) with the Amazon GameLift service API. You can view all active policies in the
Amazon GameLift console.

To temporarily stop all scaling policies for a fleet, use the AWS CLI command stop-fleet-actions.

To create or update a rule-based scaling policy (AWS CLI):

1. Set capacity limits. Set either or both limit values using the update-fleet-capacity command.
For more information, see Set Amazon GameLift capacity limits.

2. Create a new policy. Open a command line window and use the put-scaling-policy command
with your policy's parameter settings. To update an existing policy, specify the policy's name
and provide a complete version of the updated policy.

--fleet-id <unique fleet identifier>

Auto scale fleet capacity 314

https://docs.aws.amazon.com/gamelift/latest/apireference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/stop-fleet-actions.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-capacity.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/put-scaling-policy.html

Amazon GameLift Developer Guide

--name "<unique policy name>"
--policy-type <target- or rule-based policy>
--metric-name <name of metric>
--comparison-operator <comparison operator>
--threshold <threshold integer value>
--evaluation-periods <number of minutes>
--scaling-adjustment-type <adjustment type>
--scaling-adjustment <adjustment amount>

Example:

aws gamelift put-scaling-policy \
 --fleet-id fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa \
 --name "Scale up when AGS<50" \
 --policy-type RuleBased \
 --metric-name AvailableGameSessions \
 --comparison-operator LessThanThreshold \
 --threshold 50 \
 --evaluation-periods 10 \
 --scaling-adjustment-type ChangeInCapacity \
 --scaling-adjustment 1

To delete a rule-based scaling policy using the AWS CLI:

• Open a command line window and use the delete-scaling-policy command with the fleet ID
and policy name.

Example:

aws gamelift delete-scaling-policy \
 --fleet-id fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa \
 --name "Scale up when AGS<50"

Syntax for auto scaling rules

To construct a rule-based scaling policy statement, specify six variables:

If <metric name> remains <comparison operator> <threshold value> for <evaluation
period>, then change fleet capacity using <adjustment type> to/by <adjustment value>.

Auto scale fleet capacity 315

https://docs.aws.amazon.com/cli/latest/reference/gamelift/delete-scaling-policy.html

Amazon GameLift Developer Guide

For example, this policy statement starts a scale-up event whenever a fleet's extra capacity is less
than what's needed to handle 50 new game sessions:

If AvailableGameSessions remains at less than 50 for 10 minutes, then change fleet
capacity using ChangeInCapacity by 1 instances.

Metric name

To start a scaling event, link an auto scaling policy to one of the following fleet-specific metrics.
For complete metric descriptions, see Amazon GameLift metrics for fleets.

• Activating game sessions

• Active game sessions

• Available game sessions

• Percent available game sessions

• Active instances

• Available player sessions

• Current player sessions

• Idle instances

• Percent idle instances

If the fleet is in a game session queue, you can use the following metrics:

• Queue depth – The number of pending game session requests this fleet is the best available
hosting location for.

• Wait time – Fleet-specific wait time. The length of time that the oldest pending game session
request has been waiting to be fulfilled. A fleet's wait time is equal to the oldest current
request's time in queue.

Comparison operator

Tells Amazon GameLift how to compare the metric data to the threshold value. Valid
comparison operators include greater than (>), less than (<), greater than or equal (>=), and less
than or equal (<=).

Threshold value

When the specified metric value meets or crosses the threshold value, it starts a scaling event.
This value is always a positive integer.

Auto scale fleet capacity 316

Amazon GameLift Developer Guide

Evaluation period

The metric must meet or cross the threshold value for the full length of the evaluation period
before starting a scaling event. The evaluation period length is consecutive; if the metric
retreats from the threshold, the evaluation period starts over again.

Adjustment type and value

This set of variables works together to specify how Amazon GameLift should adjust the fleet's
capacity when a scaling event starts. Choose from three possible adjustment types:

• Change in capacity – Increase or decrease the current capacity by a specified number of
instances. Set the adjustment value to the number of instances to add or remove from the
fleet. Positive values add instances, while negative values remove instances. For example, a
value of "-10" scales down the fleet by 10 instances, regardless of the fleet's total size.

• Percent change in capacity – Increase or decrease the current capacity by a specified
percentage. Set the adjustment value to the percentage that you want to increase or decrease
the fleet capacity by. Positive values add instances, while negative values remove instances.
For example, for a fleet with 50 instances, a percentage change of "20" adds 10 instances to
the fleet.

• Exact capacity – Increase or decrease the current capacity to a specific value. Set the
adjustment value to the exact number of instances that you want to maintain in the fleet.

Tips for rule-based auto scaling

The following suggestions can help you get the most out of auto scaling with rule-based policies.

Use multiple policies

You can have multiple auto scaling policies for a fleet at the same time. The most common scenario
is to have a target-based policy manage most scaling needs and use rule-based policies to handle
edge cases. There are no limits on using multiple policies.

With multiple policies, each policy behaves independently. There is no way to control the sequence
of scaling events. For example, if you have multiple policies driving scaling up, it's possible that
player activity could start multiple scaling events simultaneously. Avoid policies that start each
other. For example, you could create an infinite loop if you create scale-up and scale-down policies
that set capacity beyond the threshold of each other.

Auto scale fleet capacity 317

Amazon GameLift Developer Guide

Set maximum and minimum capacity

Each fleet has a maximum and minimum capacity limit. This feature is important when using auto
scaling. Auto scaling never sets capacity to a value outside of this range. By default, newly created
fleets have a minimum of 0 and a maximum of 1. For your auto scaling policy to affect capacity as
intended, increase the maximum value.

Fleet capacity is also constrained by limits on the fleet's instance type and by service quotas in your
AWS account. You can't set a minimum and maximum outside these limits and account quotas.

Track metrics after a change in capacity

After changing capacity in response to an auto scaling policy, Amazon GameLift waits 10 minutes
before responding to triggers from the same policy. This wait gives Amazon GameLift time to add
the new instances, launch the game servers, connect players, and start collecting data from the
new instances. During this time, Amazon GameLift evaluates the policy against the metric and
tracks the policy's evaluation period, which restarts after a scaling event occurs. This means that a
scaling policy could start another scaling event immediately after the wait time is over.

There is no wait time between scaling events that different auto scaling policies start.

Setting up Amazon GameLift queues for game session
placement

A game session queue is the primary mechanism for processing new game session requests
and locating available game servers to host them. Queues offer significant benefits for game
developers and players. These include:

• Queues provide best possible placement. When processing game session placement requests, a
queue uses Amazon GameLift algorithms to prioritize queue locations based on a set of defined
preferences.

• Host games on lower-priced Spot fleets. Use queues to optimize use of AWS Spot fleets, which
offer significantly lower hosting costs. By default, queues always try to place new game sessions
in Spot fleets.

• Place new games faster during high demand. Queues use multiple possible locations for
placements. This means that there is always fallback capacity if the preferred placement location
is unavailable.

Setting up queues 318

Amazon GameLift Developer Guide

• Make game availability more resilient. Outages can happen. With a multi-location queue, a
slowdown or outage doesn't have to affect player access to your game.

• Use extra fleet capacity more efficiently. To handle unexpected surges in player demand,
queues provide quick access to extra hosting capacity. The fleet locations in a queue provide
back-up capacity for each other. Locations scale up or down based on player demand.

• Get metrics on game session placements and queue performance. Amazon GameLift emits
queue metrics, including statistics on placement successes and failures, the number of requests
in the queue, and average time that requests spend in the queue. You can view these metrics in
the Amazon GameLift console or in CloudWatch.

To get started with queues, see Design a game session queue.

Design a game session queue

This topic describes how to design a queue that delivers a player experience with minimal latency
and that efficiently uses hosting resources. For more information about game session queues and
how they work, see Setting up Amazon GameLift queues for game session placement.

These Amazon GameLift features require queues:

• Matchmaking with FlexMatch

• Use Spot Instances with Amazon GameLift

Define your queue's scope

Your game's player population might have groups of players who shouldn't play together. For
example, if you publish your game in two languages each language should have it's own game
servers.

To set up game session placement for your player population, create a separate queue for each
player segment. Scope each queue to place players into the correct game servers. Some common
ways to scope queues include:

• By geographic locations. When deploying your game servers in multiple geographic areas, you
might build queues for players in each location to reduce player latency.

• By build or script variations. If you have more than one variation of your game server, you
might be supporting player groups that can't play in the same game sessions. For example, game
server builds or scripts might support different languages or device types.

Design a queue 319

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-tasks.html

Amazon GameLift Developer Guide

• By event types. You might create a special queue to manage games for participants in
tournaments or other special events.

Create a player latency policy

If your placement requests include player latency data, the algorithm finds game sessions in
locations with the lowest average latency for all players. Placing game sessions based on average
player latency prevents Amazon GameLift from placing most players in games with high latency.
However, Amazon GameLift still places players with extreme latency. To accommodate these
players, create player latency policies.

A player latency policy prevents Amazon GameLift from placing a requested game session
anywhere that players in the request would experience latency over the maximum value. Player
latency policies can also prevent Amazon GameLift from matching game session requests with
higher latency players.

Tip

To manage latency specific rules, such as requiring similar latency across all players in a
group, you can use Amazon GameLift FlexMatch to create latency-based matchmaking
rules.

For example, consider this queue with a 5-minute timeout and the following player latency policies:

1. Spend 120 seconds searching for a location where all player latencies are less than 50
milliseconds.

2. Spend 120 seconds searching for a location where all player latencies are less than 100
milliseconds.

3. Spend the remaining queue time until timeout searching for a location where all player latencies
are less than 200 milliseconds.

Design a queue 320

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html

Amazon GameLift Developer Guide

Build a multi-location queue

We recommend a multi-location design for all queues. This design can improve placement speed
and hosting resiliency. A multi-location design is required to use player latency data to put players
into game sessions with minimal latency. If you're building multi-location queues that use Spot
Instance fleets, follow the instructions in Tutorial: Set up a game session queue for Spot Instances.

Design a queue 321

Amazon GameLift Developer Guide

One way to create a multi-location queue is to add a multi-location fleet to a queue. That way,
the queue can place game sessions in any of the fleet's locations. You can also add other fleets
with different configurations or home locations for redundancy. If you're using a multi-location
Spot Instance fleet, follow best practices and include an On-Demand Instance fleet with the same
locations.

The following example outlines the process of designing a basic multi-location queue. In this
example, we use two fleets: one Spot Instance fleet and one On-Demand Instance fleet. Each fleet
has the following AWS Regions for placement locations: us-east-1, us-east-2, ca-central-1,
and us-west-2.

To create a basic multi-location queue with multi-location fleets

1. Choose a location to create the queue in. You can minimize request latency by placing the
queue in a location near where you deployed the client service. In this example, we create the
queue in us-east-1.

2. Create a new queue and add your multi-location fleets as queue destinations. The destination
order determines how Amazon GameLift places game sessions. In this example, we list the
Spot Instance fleet first and the On-Demand Instance fleet second.

3. Define the queue's game session placement priority order. This order determines where the
queue searches first for an available game server. In this example, we use the default priority
order.

4. Define the location order. If you don't define the location order, Amazon GameLift uses the
locations in alphabetical order.

Design a queue 322

Amazon GameLift Developer Guide

Design a queue 323

Amazon GameLift Developer Guide

Prioritize game session placement

Amazon GameLift uses the FleetIQ algorithm to determine where to place a new game session
based on an ordered set of criteria. You can use the default priority order, or you can customize the
order.

Default priority order

Design a queue 324

Amazon GameLift Developer Guide

For placement requests that include player latency data, FleetIQ prioritizes the game session
placement criteria in the following default order:

1. Latency – Lowest average latency for all players in the request.

2. Cost – Lowest hosting cost, if latency is equal in multiple locations. Hosting cost is primarily
based on a combination of the instance type and location.

3. Destination – Destination order, if latency and cost are equal in multiple locations. FleetIQ
prioritizes destinations based on the order listed in the queue configuration.

4. Location – Location order, if latency, cost, and destination are equal in multiple locations.
FleetIQ prioritizes locations based on the order listed in the queue configuration.

Custom priority order

To customize a queue's priority order in the Amazon GameLift console, drag the priority value to
the position that you want it in. To customize a queue's priority order using the AWS Command
Line Interface (AWS CLI), use the create-game-session-queue command with the --priority-
configuration option. You can use this command to create a new queue or to update an existing
queue.

The FleetIQ algorithm appends any criteria not explicitly mentioned to the end of your list, based
on the default order. If you include the location criterion in your priority configuration, you must
also provide an ordered list of locations.

Design multiple queues as needed

Depending on your game and players, you might want to create more than one game session
queue. When your game client service requests a new game session, it specifies which game session
queue to use. To help you determine whether to use multiple queues, consider:

• Variations of your game server. You can create a separate queue for each variation of your game
server. All fleets in a queue must deploy compatible game servers. This is because players who
use the queue to join games must be able to play on any of the queue's game servers.

• Different player groups. You can customize how Amazon GameLift places game sessions based
on player group. For example, you might need queues customized for certain game modes that
require a special instance type or runtime configuration. Or, you might want a special queue to
manage placements for a tournament or other event.

• Game session queue metrics. You can set up queues based on how you want to collect game
session placement metrics. For more information, see Amazon GameLift metrics for queues.

Design a queue 325

https://console.aws.amazon.com/gamelift
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/create-game-session-queue.html

Amazon GameLift Developer Guide

Evaluate queue metrics

Use metrics to evaluate how well your queues are performing. You can view metrics related to
queues in the Amazon GameLift console or in Amazon CloudWatch. For a list and descriptions of
queue metrics, see Amazon GameLift metrics for queues.

Queue metrics can provide insight about the following:

• Overall queue performance – Queue metrics indicate how successfully a queue responds to
placement requests. These metrics can also help you identify when and why placements fail.
For queues with manually scaled fleets, the AverageWaitTime and QueueDepth metrics can
indicate when you should adjust capacity for a queue.

• FleetIQ algorithm performance – For placement requests using the FleetIQ algorithm, metrics
show how often the algorithm finds ideal game session placement. The placement may prioritize
using resources with the lowest player latency or resources with the lowest cost. There are also
error metrics that identify common reasons why Amazon GameLift can't find an ideal placement.
For more information about metrics, see Monitor Amazon GameLift with Amazon CloudWatch.

• Location specific placements – For multi-location queues, metrics show successful placements
by location. For queues that use the FleetIQ algorithm, this data provides useful insight into
where player activity occurs.

When evaluating metrics for FleetIQ algorithm performance, consider the following tips:

• To track the queue's rate of finding an ideal placement, use the PlacementsSucceeded metric
in combination with the FleetIQ metrics for lowest latency and lowest price.

• To boost a queue's rate of finding an ideal placement, review the following error metrics:

• If the FirstChoiceOutOfCapacity is high, adjust capacity scaling for the queue's fleets.

• If the FirstChoiceNotViable error metric is high, look at your Spot Instance fleets. Spot
Instance fleets are considered not viable when the interruption rate for a particular instance
type is too high. To resolve this issue, change the queue to use Spot Instance fleets with
different instance types. We recommend that you include Spot Instance fleets with different
instance types in each location.

Design a queue 326

https://console.aws.amazon.com/gamelift

Amazon GameLift Developer Guide

Best practices for Amazon GameLift game session queues

Here are some best practices that can help you build effective game session queues for game
session placement.

Best practices for queues with any fleet type

A queue contains a list of fleet destinations where new game sessions can be placed. Each fleet can
have instances deployed in multiple geographic locations. When choosing a placement, the queue
selects a combination of a fleet and a fleet location. You provide a set of priorities for the queue to
use when choosing a placement.

Consider the following guidelines and best practices:

• Add fleets in locations that cover your players. You can add fleets and aliases in any available
location. Location is important if you're making placements based on reported player latency.

• Use aliases for all fleets. Assign an alias to each fleet in a queue, and use the alias names when
setting destinations in your queue.

• Use the same or a similar game build or script for all fleets. The queue might put players into
game sessions on any fleet in the queue. Players must be able to play in any game session on any
fleet.

• Create fleets in at least two locations. By having game servers hosted in at least one other
location, you mitigate the impact of Regional outages on your players. You can keep your backup
fleets scaled down, and use auto scaling to increase capacity if usage increases.

• Prioritize your game session placement. A queue prioritizes placement choices based on several
elements, including destination list order.

• Create your queue in the same location as your client service. By putting your queue in a
location near your client service, you can minimize communication latency.

• Use fleets with multiple locations. Use the queue filter configuration to prevent the queue from
placing game sessions in specified locations. You can use at least two multi-location fleets with
different home locations to mitigate the impact of game placements during a Regional outage.

• Use the same TLS certificate setting for all fleets. Game clients that connect to game sessions
in your fleets must have compatible communication protocols.

Best practices 327

Amazon GameLift Developer Guide

Best practices for queues with Spot fleets

If your queue includes Spot fleets, set up a resilient queue. This takes advantage of cost savings
with Spot fleets while minimizing the effect of game session interruptions. For help with correctly
building fleets and game session queues for use with Spot fleets, see Tutorial: Set up a game
session queue for Spot Instances. For more information about Spot instances, see Use Spot
Instances with Amazon GameLift.

In addition to the general best practices in the previous section, consider these Spot-specific best
practices:

• Create at least one On-Demand fleet in each location. On-Demand fleets provide backup game
servers for your players. You can keep your backup fleets scaled down until they're needed, and
use auto scaling to increase On-Demand capacity when Spot fleets are unavailable.

• Select different instance types across multiple Spot fleets in a location. If one Spot Instance
type becomes temporarily unavailable, the interruption affects only one Spot fleet in the
location. Best practice is to choose widely available instance types, and use instance types in the
same family (for example, m5.large, m5.xlarge, m5.2xlarge). Use the Amazon GameLift console
to view historical pricing data for instance types.

Create a game session queue

Queues are used to place new game sessions with the best available hosting resources across
multiple fleets and regions. To learn more about building queues for your game, see Design a game
session queue.

In a game client, new game sessions are started with queues by using placement requests. Learn
more about game session placement in Create game sessions.

When updating the queue destination in a queue, there is a short transition period (up to 30
seconds) during which game sessions placed on the queue destinations may still end up on the old
fleet.

Console

1. In the Amazon GameLift console, in the navigation page, choose Queues.

2. On the Queues page, choose Create queue.

3. On the Create queue page, under Queue settings do the following:

Create a queue 328

https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

a. For Name, enter a queue name.

b. For Timeout, enter long you want Amazon GameLift to try to place a game session
before stopping. Amazon GameLift searches for available resources on any fleet until
the request times out.

c. (Optional) For Player latency policies, enter how long Amazon GameLift should look
for resources within the defined maximum latency. Add additional policies to gradual
relax the maximum latency. To add additional policies, choose Add policy.

4. Under Game session placement locations, select locations to include in the queue. By
default All locations are included. All fleets in the queue must have the same certificate
configuration. All fleets should be running game builds that are compatible with the game
clients using the queue.

5. Under Destination order, add one or more destinations to the queue.

a. Choose Add destination.

b. Select the Location that the destination is in.

c. Select the type for your destination.

d. From the resulting list of fleet or alias names, select the one you want to add.

e. If you have multiple destinations, set the default order by dragging the six dots
icon to the left of the destination. Amazon GameLift uses this order when searching
destinations for available resources to place a new game session.

6. For Game session placement priority, add and drag the Latency, Cost, Destination, and
Location values to define how Amazon GameLift prioritizes fleets in your queue. For more
information about prioritizing fleets, see Prioritize game session placement.

7. Add locations to your Location order and drag them to the priority that the queue should
use. If Location is the last priority for game session placement, Amazon GameLift uses it as
a tiebreaker.

8. (Optional) Under Event notification settings do the following:

a. Select or create an SNS topic to receive placement-related event notifications. For
more information about event notifications, see Set up event notification for game
session placement.

b. Add Custom event data to append to events created by this queue.

9. (Optional) Add Tags. For more information about tagging, see Tagging AWS resources.

10. Choose Create.

Create a queue 329

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html

Amazon GameLift Developer Guide

AWS CLI

Example Create a queue

The following example creates a game session queue with these configurations:

• A five minute timeout

• Two fleet destinations

• Filters to only allow locations in the us-east-1, us-east-2. us-west-2, and ca-
central-1

• Prioritizes destinations based on cost and then locations in the defined order.

aws gamelift create-game-session-queue \
 --name "sample-test-queue" \
 --timeout-in-seconds 300 \
 --destinations DestinationArn="arn:aws:gamelift:us-east-1:111122223333:fleet/
fleet-772266ba-8c82-4a6e-b620-a74a62a93ff8" DestinationArn="arn:aws:gamelift:us-
east-1:111122223333:fleet/fleet-33f28fb6-aa8b-4867-85b4-ceb217bf5994" \
 --filter-configuration "AllowedLocations=us-east-1, ca-central-1, us-east-2, us-
west-2" \
 --priority-configuration
 PriorityOrder="LOCATION","DESTINATION",LocationOrder="us-east-1","us-east-2","ca-
central-1","us-west-2" \
 --notification-target "arn:aws:sns:us-east-1:111122223333:gamelift-test.fifo"

Note

You can get fleet and alias ARN values by calling either describe-fleet-attributes or
describe-alias with the fleet or alias ID.

If the create-game-session-queue request is successful, Amazon GameLift returns a
GameSessionQueue object with the new queue configuration. You can now submit requests to
the queue using StartGameSessionPlacement.

Example Create a queue with player latency policies

The following example creates a game session queue with these configurations:

Create a queue 330

https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-attributes.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-alias.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSessionQueue.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartGameSessionPlacement.html

Amazon GameLift Developer Guide

• A ten minute timeout

• Three fleet destinations

• A set of player latency policies

aws gamelift create-game-session-queue \
 --name "matchmaker-queue" \
 --timeout-in-seconds 600 \
 --destinations DestinationArn=arn:aws:gamelift:us-east-1::alias/alias-a1234567-
b8c9-0d1e-2fa3-b45c6d7e8910 \
 DestinationArn=arn:aws:gamelift:us-west-2::alias/alias-b0234567-
c8d9-0e1f-2ab3-c45d6e7f8901 \
 DestinationArn=arn:aws:gamelift:us-west-2::fleet/fleet-f1234567-
b8c9-0d1e-2fa3-b45c6d7e8912 \
 --player-latency-policies
 "MaximumIndividualPlayerLatencyMilliseconds=50,PolicyDurationSeconds=120" \

 "MaximumIndividualPlayerLatencyMilliseconds=100,PolicyDurationSeconds=120" \
 "MaximumIndividualPlayerLatencyMilliseconds=150" \

If the create-game-session-queue request is successful, Amazon GameLift returns a
GameSessionQueue object with the new queue configuration.

Set up event notification for game session placement

You can use event notifications to monitor the status of individual placement requests. We
recommend setting up event notifications for all games with high-volume placement activity.

There are two options for setting up event notifications.

• Have Amazon GameLift publish event notifications to an Amazon Simple Notification Service
(Amazon SNS) topic using a queue.

• Use automatically published Amazon EventBridge events and its suite of tools for managing
events.

For a list of game session placement events emitted by Amazon GameLift, see Game session
placement events.

Set up event notification 331

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSessionQueue.html

Amazon GameLift Developer Guide

Set up an SNS topic

For Amazon GameLift to publish all events generated by a game session queue to a topic, set the
notification target field to a topic.

To set up an SNS topic for Amazon GameLift event notification

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/v3/home.

2. From the SNS Topics page, choose Create topic and follow the instructions to create your
topic.

3. Under Access policy, do the following:

a. Choose the Advanced method.

b. Add the following bolded section of the JSON object to the existing policy.

{
 "Version": "2008-10-17",
 "Id": "__default_policy_ID",
 "Statement": [
 {
 "Sid": "__default_statement_ID",
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "SNS:GetTopicAttributes",
 "SNS:SetTopicAttributes",
 "SNS:AddPermission",
 "SNS:RemovePermission",
 "SNS:DeleteTopic",
 "SNS:Subscribe",
 "SNS:ListSubscriptionsByTopic",
 "SNS:Publish"
],
 "Resource": "arn:aws:sns:your_region:your_account:your_topic_name",
 "Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "your_account"
 }

Set up event notification 332

https://console.aws.amazon.com/sns/v3/home
https://console.aws.amazon.com/sns/v3/home

Amazon GameLift Developer Guide

 }
 },
 {
 "Sid": "__console_pub_0",
 "Effect": "Allow",
 "Principal": {
 "Service": "gamelift.amazonaws.com"
 },
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:your_region:your_account:your_topic_name",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn":
 "arn:aws:gamelift:your_region:your_account:gamesessionqueue/your_queue_name"
 }
 }
 }
]
}

c. (Optional) Add additional access control to the topic by adding conditions to the resource
policy.

4. Choose Create topic.

5. After you've created your SNS topic, add it to queues during queue creation, or edit an existing
queue to add it.

Set up an SNS topic with server-side encryption

With server-side encryption (SSE), you can store sensitive data in encrypted topics. SSE protects
the contents of messages in Amazon SNS topics using keys that are managed in AWS Key
Management Service (AWS KMS). For more information about server-side encryption with Amazon
SNS, see Encryption at rest in the Amazon Simple Notification Service Developer Guide.

To set up an SNS topic with server-side encryption, review the following topics:

• Creating key in the AWS Key Management Service Developer Guide

• Enabling SSE for a topic in the Amazon Simple Notification Service Developer Guide

When creating your KMS key, use the following KMS key policy:

Set up event notification 333

https://docs.aws.amazon.com/sns/latest/dg/sns-server-side-encryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/sns/latest/dg/sns-enable-encryption-for-topic.html

Amazon GameLift Developer Guide

{
 "Effect": "Allow",
 "Principal": {
 "Service": "gamelift.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn":
 "arn:aws:gamelift:your_region:your_account:gamesessionqueue/your_queue_name"
 },
 "StringEquals": {
 "kms:EncryptionContext:aws:sns:topicArn":
 "arn:aws:sns:your_region:your_account:your_sns_topic_name"
 }
 }
}

Set up EventBridge

Amazon GameLift automatically posts all game session placement events to EventBridge. With
EventBridge you can set up rules to have events routed to targets for processing. For example, you
can set a rule to route the event PlacementFulfilled to an AWS Lambda function that handles
tasks that precede connecting to a game session. For more information about EventBridge, see
What is Amazon EventBridge? in the Amazon EventBridge User Guide.

The following are some examples of EventBridge rules to use with Amazon GameLift queues:

Matches events from all Amazon GameLift queues

{
 "source": [
 "aws.gamelift"
],
 "detail-type": [
 "GameLift Queue Placement Event"
]
}

Set up event notification 334

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html

Amazon GameLift Developer Guide

Matches events from a specific queue

{
 "source": [
 "aws.gamelift"
],
 "detail-type": [
 "GameLift Queue Placement Event"
],
 "resources": [
 "arn:aws:gamelift:your_region:your_account:gamesessionqueue/your_queue_name"
]
}

Tutorial: Set up a game session queue for Spot Instances

Introduction

This tutorial describes how to set up game session placement for games deployed on low-cost
Spot fleets. Spot fleets require additional steps to maintain continual game server availability
for your players.

Intended audience

This tutorial is for game developers who want to use Spot fleets to host custom game servers or
Realtime Servers.

What you'll learn

• Define the group of players who your game session queue serves.

• Build a fleet infrastructure to support the game session queue's scope.

• Assign an alias to each fleet to abstract the fleet ID.

• Create a queue, add fleets, and prioritize where Amazon GameLift places game sessions.

• Add player latency policies to help minimize latency issues.

Prerequisites

Before creating fleets and queues for game session placement, complete the following tasks:

• Review How Amazon GameLift works.

• Integrate you game server with Amazon GameLift.

• Upload your game server build or Realtime script to Amazon GameLift.

Tutorial: Queues for Spot Instances 335

https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-intro.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-build-intro.html

Amazon GameLift Developer Guide

• Plan your fleet configuration.

Step 1: Define the scope of your queue

In this tutorial, we design a queue for a game that has one game server build variation. At launch,
we're releasing the game in two locations: Asia Pacific (Seoul) and Asia Pacific (Singapore). Because
these locations are close to each other, latency isn't an issue for our players.

For this example, there's one player segment, which means we create one queue. In the future,
when we release the game in North America, we can create a second queue that's scoped for North
American players.

For more information, see Define your queue's scope.

Step 2: Create Spot fleet infrastructure

Create fleets in locations and with game server builds or scripts that fit the scope that you defined
in Step 1: Define the scope of your queue.

In this tutorial, we create a two location infrastructure with at least one Spot fleet and one On-
Demand fleet in each location. Every fleet deploys the same game server build. In addition, we
anticipate that player traffic will be heavier in the Seoul location, so we add more Spot fleets there.

The following diagram shows the example Spot fleet infrastructure, with 3 fleets in the ap-
northeast-2 (Seoul) location and 2 fleets in the ap-southeast-1 (Singapore) location. All instances
in both fleets are using the build MBG_prod_V1. The fleet in ap-northeast-2 contains the following
fleet configurations: fleet 1234_spot_1 with an instance type of c5.large, fleet 1234_spot_2 with
an instance type of c5.xlarge, and fleet 1234_ondemand with an instance type of c5.large. The
fleet in ap-southeast-1 contains the following fleet configurations: fleet 1234_spot_1 with an
instance type of c5.large and fleet 1234_ondemand with an instance type of c5.large.

Tutorial: Queues for Spot Instances 336

https://docs.aws.amazon.com/gamelift/latest/developerguide/fleets-design.html

Amazon GameLift Developer Guide

Step 3: Assign aliases for each fleet

Create a new alias for each fleet in your infrastructure. Aliases abstract fleet identities, making
periodic fleet replacement efficient. For more information about creating aliases, see Add an alias
to a Amazon GameLift fleet.

Our fleet infrastructure has five fleets, so we create five aliases using the routing strategy. We need
three aliases in the Asia Pacific (Seoul) location, and two aliases in the Asia Pacific (Singapore)
location.

The following diagram shows the Spot fleet infrastructure described in step two with aliases
added to each fleet. Fleet 1234_spot_1 has the alias MBG_spot_1, Fleet 1234_spot_2 has the alias
MBG_spot_2, and fleet 1234_ondemand has the alias MBG_ondemand.

Tutorial: Queues for Spot Instances 337

Amazon GameLift Developer Guide

For more information, see Build a multi-location queue.

Step 4: Create a queue with destinations

Create the game session queue and add your fleet destinations. For more information about
creating a queue, see Create a game session queue.

When creating your queue:

• Set the default timeout to 10 minutes. Later, you can test how the queue timeout affects your
players' wait times for getting into games.

• Skip the section on player latency policies for now. We'll cover this in the next step.

• Prioritize the fleets in your queue. When working with Spot fleets, we recommend either of the
following approaches:

• If your infrastructure uses a primary location with fleets in a second location for backup,
prioritize fleets first by location then by fleet type.

• If your infrastructure uses multiple locations equally, prioritize fleets by fleet type, placing
Spot fleets at the top of the queue.

Tutorial: Queues for Spot Instances 338

Amazon GameLift Developer Guide

For this tutorial, we create a new queue with the name MBG_spot_queue, and add the aliases of
all five of our fleets. We then prioritize placements first by location and second by fleet type.

Based on this configuration, this queue always attempts to place new game sessions into a Spot
fleet in Seoul. When those fleets are full, the queue uses available capacity on the Seoul On-
Demand fleet as a backup. If all three Seoul fleets are unavailable, Amazon GameLift places game
sessions on the Singapore fleets.

The following diagram shows a queue with a timeout of 300 seconds and prioritized destinations.
The destinations are in the following order: 1234_spot_1 in ap-northeast-2, 1234_spot_2
in ap-northeast-2, 1234_ondemand in ap-northeast-2, 1234_spot_1 in ap-southeast-1, and
1234_ondemand in ap-southeast-1.

Tutorial: Queues for Spot Instances 339

Amazon GameLift Developer Guide

Step 5: Add latency limits to the queue

Our game includes latency information in game session placement requests. We also have a player
party feature that creates a game session for a group of players. We can have players wait a little
longer to get into games with the ideal gameplay experience. Our game tests show the following
observations:

• Latency under 50 milliseconds is ideal.

Tutorial: Queues for Spot Instances 340

Amazon GameLift Developer Guide

• The game is unplayable at latencies over 250 milliseconds.

• Players become impatient at about one minute.

For our queue, with a 300-second timeout, we add policy statements limiting the allowable
latency. The policy statements gradually allow larger latency values up to 250-millisecond latency.

With this policy, our queue looks for placements with ideal latency (under 50 milliseconds) for the
first minute, and then relaxes the limit. The queue doesn't make placements where player latency is
250 milliseconds or higher.

The following diagram shows the queue from step four with player latency policies added. The
player latency policies state, enforce 50ms limit for 60s, enforce 125ms limit for 30s, and enforce
250ms limit until timeout.

Tutorial: Queues for Spot Instances 341

Amazon GameLift Developer Guide

Summary

Congratulations! Here are the things you accomplished:

• You have a game session queue scoped for a segment of your player population.

Tutorial: Queues for Spot Instances 342

Amazon GameLift Developer Guide

• Your queue uses Spot fleets effectively and is resilient when Spot interruptions happen.

• Your queue prioritizes the fleets for the top player experience.

• The queue has latency limits to protect players from bad gameplay experiences.

You can now use the queue to place game sessions for the players it serves. When making game
session placement requests for these players, reference this game session queue name in the
request. For more information about making game session placement requests, see Create game
sessions, or Integrating a game client for Realtime Servers.

Next steps:

• Design your own queue.

• Create a queue.

• Use a queue with your game client.

Manage resources using AWS CloudFormation

You can use AWS CloudFormation to manage your Amazon GameLift resources. In AWS
CloudFormation, you create a template that models each resource and then use the template to
create your resources. To update resources, you make the changes to your template and use AWS
CloudFormation to implement the updates. You can organize your resources into logical groups,
called stacks and stack sets.

Using AWS CloudFormation to maintain your Amazon GameLift hosting resources offers a more
efficient way to manage sets of AWS resources. You can use version control to track template
changes over time and coordinate updates made by multiple team members. You can also reuse
templates. For example, when deploying a game across multiple Regions, you might use the same
template to create identical resources in each Region. You can also use these templates to deploy
the same sets of resources in another partition.

For more information about AWS CloudFormation, see the AWS CloudFormation User Guide. To
view template information for Amazon GameLift resources, see the Amazon GameLift resource
type reference.

Manage resources with AWS CloudFormation 343

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_GameLift.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_GameLift.html

Amazon GameLift Developer Guide

Best practices

For detailed guidance on using AWS CloudFormation, see the AWS CloudFormation best practices
in the AWS CloudFormation User Guide. In addition, these best practices have special relevance with
Amazon GameLift.

• Consistently manage your resources through AWS CloudFormation. If you change your
resources outside of AWS CloudFormation your resources will get out of sync with your resource
templates.

• Use AWS CloudFormation stacks and stack sets to efficiently manage multiple resources.

• Use stacks to manage groups of connected resources. For example, a stack that contains a
build, a fleet that references the build, and an alias that references the fleet. If you update
your template to replace a build, AWS CloudFormation replaces the fleets connected to the
build. AWS CloudFormation then updates the existing aliases to point to the new fleets. For
more information, see Working with stacks in the AWS CloudFormation User Guide.

• Use AWS CloudFormation stack sets if you're deploying identical stacks across multiple
regions or AWS accounts. For more information, see Working with stack sets in the AWS
CloudFormation User Guide.

• If you are using Spot Instances, include an On-Demand Fleet as a back-up. We recommend
setting up your templates with two fleets in each region, one fleet with Spot Instances, and one
fleet with On-Demand Instances.

• Group your location-specific resources and global resources into separate stacks when you
are managing resources in multiple locations.

• Place your global resources close to the services that use it. Resources like queues and
matchmaking configurations tend to receive a high volume of requests from specific sources.
By placing your resources close to the source of those requests, you minimize the request travel
time and can improve overall performance.

• Place your matchmaking configuration in the same Region as the game session queue that it
uses.

• Create a separate alias for each fleet in the stack.

Best practices 344

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/what-is-cfnstacksets.html

Amazon GameLift Developer Guide

Using AWS CloudFormation stacks

We recommend the following structures to use when setting up AWS CloudFormation stacks for
Amazon GameLift resources. Your optimal stack structure varies depending on if you are deploying
your game in one location or multiple locations.

Stacks for a single location

To manage Amazon GameLift resources in a single location, we recommend a two-stack structure:

• Support stack – This stack contains resources that your Amazon GameLift resources depend on.
At a minimum, this stack should include the S3 bucket where you store your custom game server
or Realtime script files. The stack should also include an IAM role that gives Amazon GameLift
permission to retrieve your files from the S3 bucket when creating a Amazon GameLift build or
script resource. This stack might also contain other AWS resources that are used with your game,
such as DynamoDB tables, Amazon Redshift clusters, and Lambda functions.

• Amazon GameLift stack – This stack contains all of your Amazon GameLift resources, including
the build or script, a set of fleets, aliases, and game session queue. AWS CloudFormation
creates a build or script resource with files stored in the S3 bucket location and deploys the
build or script to one or more fleet resources. Each fleet should have a corresponding alias. The
game session queue references some or all of the fleet aliases. If you are using FlexMatch for
matchmaking, this stack also contains a matchmaking configuration and rule set.

The diagram below illustrates a two-stack structure for deploying resources in a single AWS Region.

Using AWS CloudFormation stacks 345

Amazon GameLift Developer Guide

Stacks for multiple regions

When deploying your game in more than one Region, keep in mind how resources can interact
across Regions. Some resources, such as Amazon GameLift fleets, can only reference other
resources in the same Region. Other resources, such as a Amazon GameLift queue, are Region

Using AWS CloudFormation stacks 346

Amazon GameLift Developer Guide

agnostic. To manage Amazon GameLift resources in multiple Regions, we recommend the
following structure.

• Regional support stacks – These stacks contain resources that your Amazon GameLift resources
depend on. This stack must include the S3 bucket where you store your custom game server
or Realtime script files. It might also contain other AWS resources for your game, such as
DynamoDB tables, Amazon Redshift clusters, and Lambda functions. Many of these resources
are Region specific, so you must create them in every Region. Amazon GameLift also needs an
IAM role that allows access to these support resources. Because an IAM role is Region agnostic,
you only need one role resource, placed in any Region and referenced in all of the other support
stacks.

• Regional Amazon GameLift stacks –This stack contains the Amazon GameLift resources that
must exist in each region where your game is being deployed, including the build or script, a set
of fleets, and aliases. AWS CloudFormation creates a build or script resource with files in an S3
bucket location, and deploys the build or script to one or more fleet resources. Each fleet should
have a corresponding alias. The game session queue references some or all of the fleet aliases.
You can maintain one template to describe this type of stack and use it to create identical sets of
resources in every Region.

• Global Amazon GameLift stack – This stack contains your game session queue and
matchmaking resources. These resources can be located in any Region and are usually placed
in the same Region. The queue can reference fleets or aliases that are located in any Region. To
place additional queues in different Regions, create additional global stacks.

The diagrams below illustrates a multistack structure for deploying resources in several AWS
Regions. The first diagram shows a structure for a single game session queue. The second diagram
shows a structure with multiple queues.

Using AWS CloudFormation stacks 347

Amazon GameLift Developer Guide

Using AWS CloudFormation stacks 348

Amazon GameLift Developer Guide

Updating builds

Amazon GameLift builds are immutable, as is the relationship between a build and a fleet. As a
result, when you update your hosting resources to use a new set of game build files, the following
need to happen:

• Create a new build using the new set of files (replacement).

• Create a new set of fleets to deploy the new game build (replacement).

• Redirect aliases to point to the new fleets (update with no interruption).

For more information, see Update behaviors of stack resources in the AWS CloudFormation User
Guide.

Updating builds 349

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-update-behaviors.html

Amazon GameLift Developer Guide

Deploy build updates automatically

When updating a stack containing related build, fleet and alias resources, the default AWS
CloudFormation behavior is to automatically perform these steps in sequence. You trigger this
update by first uploading the new build files to a new S3 location. Then you modify your AWS
CloudFormation build template to point to the new S3 location. When you update your stack with
the new S3 location, this triggers the following AWS CloudFormation sequence:

1. Retrieves the new files from S3, validates the files, and creates a new Amazon GameLift build.

2. Updates the build reference in the fleet template, which triggers new fleet creation.

3. After the new fleets are active, updates the fleet reference in the alias, which triggers the alias to
update to target the new fleets.

4. Deletes the old fleet.

5. Deletes the old build.

If your game session queue uses fleet aliases, player traffic is automatically switched to the new
fleets as soon as the aliases are updated. The old fleets are gradually drained of players as game
sessions end. Auto-scaling handles the task of adding and removing instances from each set of
fleets as player traffic fluctuates. Alternatively, you can specify an initial desired instance count to
quickly ramp up for the switch and enable auto-scaling later.

You can also have AWS CloudFormation retain resources instead of deleting them. For more
information, see RetainResources in the AWS CloudFormation API Reference.

Deploy build updates manually

If you want to have more control over when new fleets go live for players, you have some options.
You can choose to manage aliases manually using the Amazon GameLift console or the CLI.
Alternatively, instead of updating your build template to replace the build and fleets, you can
add a second set of build and fleet definitions to your template. When you update the template,
AWS CloudFormation creates a second build resource and corresponding fleets. Since the existing
resources are not replaced, they are not deleted, and the aliases remain pointing at original fleets.

The main advantage with this approach is that it gives you the flexibility. You can create separate
resources for the new version of your build, test the new resources, and control when the new
fleets go live to players. A potential drawback is that it requires twice as many resources in each
Region for a brief period of time.

Updating builds 350

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_DeleteStack.html

Amazon GameLift Developer Guide

The following diagram illustrates this process.

How rollbacks work

When executing a resource update, if any step is not completed successfully, AWS CloudFormation
automatically initiates a rollback. This process reverses each step in sequence, deleting the newly
created resources.

If you need to manually trigger a rollback, change the build template's S3 location key back to
the original location and update your stack. A new Amazon GameLift build and fleet are created,
and the alias switches over to the new fleet after the fleet is active. If you are managing aliases
separately, you need to switch them to point to the new fleets.

For more information about how to handle a rollback that fails or gets stuck, see Continue rolling
back an update in the AWS CloudFormation User Guide.

VPC peering for Amazon GameLift

This topic provides guidance on how to set up a VPC peering connection between your Amazon
GameLift-hosted game servers and your other non-Amazon GameLift resources. Use Amazon
Virtual Private Cloud (VPC) peering connections to enable your game servers to communicate
directly and privately with your other AWS resources, such as a web service or a repository. You can
establish VPC peering with any resources that run on AWS and are managed by an AWS account
that you have access to.

VPC peering 351

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-continueupdaterollback.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-continueupdaterollback.html

Amazon GameLift Developer Guide

Note

VPC peering is an advanced feature. To learn about preferred options for enabling your
game servers to communicate directly and privately with your other AWS resources, see
Communicate with other AWS resources from your fleets.

If you're already familiar with Amazon VPCs and VPC peering, understand that setting up peering
with Amazon GameLift game servers is somewhat different. You don't have access to the VPC
that contains your game servers—it is controlled by the Amazon GameLift service—so you can't
directly request VPC peering for it. Instead, you first pre-authorize the VPC with your non-Amazon
GameLift resources to accept a peering request from the Amazon GameLift service. Then you
trigger Amazon GameLift to request the VPC peering that you just authorized. Amazon GameLift
handles the tasks of creating the peering connection, setting up the route tables, and configuring
the connection.

To set up VPC peering for an existing fleet

1. Get AWS account ID(s) and credentials.

You need an ID and sign-in credentials for the following AWS accounts. You can find AWS
account IDs by signing into the AWS Management Console and viewing your account settings.
To get credentials, go to the IAM console.

• AWS account that you use to manage your Amazon GameLift game servers.

• AWS account that you use to manage your non-Amazon GameLift resources.

If you're using the same account for Amazon GameLift and non-Amazon GameLift resources,
you need ID and credentials for that account only.

2. Get identifiers for each VPC.

Get the following information for the two VPCs to be peered:

• VPC for your Amazon GameLift game servers – This is your Amazon GameLift fleet ID.
Your game servers are deployed in Amazon GameLift on a fleet of EC2 instances. A fleet is
automatically placed in its own VPC, which is managed by the Amazon GameLift service. You
don't have direct access to the VPC, so it is identified by the fleet ID.

To set up VPC peering for an existing fleet 352

https://console.aws.amazon.com/

Amazon GameLift Developer Guide

• VPC for your non-Amazon GameLift AWS resources – You can establish a VPC peering
with any resources that run on AWS and are managed by an AWS account that you have
access to. If you haven't already created a VPC for these resources, see Getting started with
Amazon VPC. Once you have created a VPC, you can find the VPC ID by signing into the AWS
Management Console for Amazon VPC and viewing your VPCs.

Note

When setting up a peering, both VPCs must exist in the same region. The VPC for your
Amazon GameLift fleet game servers is in the same region as the fleet.

3. Authorize a VPC peering.

In this step, you are pre-authorizing a future request from Amazon GameLift to peer the
VPC with your game servers with your VPC for non-Amazon GameLift resources. This action
updates the security group for your VPC.

To authorize the VPC peering, call the Amazon GameLift service API
CreateVpcPeeringAuthorization() or use the AWS CLI command create-vpc-peering-
authorization. Make this call using the account that manages your non-Amazon GameLift
resources. Identify the following information:

• Peer VPC ID – This is for the VPC with your non-Amazon GameLift resources.

• Amazon GameLift AWS account ID – This is the account that you use to manage your
Amazon GameLift fleet.

Once you've authorized a VPC peering, the authorization remains valid for 24 hours unless
revoked. You can manage your VPC peering authorizations using the following operations:

• DescribeVpcPeeringAuthorizations() (AWS CLI describe-vpc-peering-
authorizations).

• DeleteVpcPeeringAuthorization() (AWS CLI delete-vpc-peering-authorization).

4. Request a peering connection.

With a valid authorization, you can request that Amazon GameLift establish a peering
connection.

To set up VPC peering for an existing fleet 353

https://docs.aws.amazon.com/vpc/latest/userguide/getting-started-ipv4.html
https://docs.aws.amazon.com/vpc/latest/userguide/getting-started-ipv4.html
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateVpcPeeringAuthorization.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateVpcPeeringAuthorization.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeVpcPeeringAuthorizations.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteVpcPeeringAuthorization.html

Amazon GameLift Developer Guide

To request a VPC peering, call the Amazon GameLift service API CreateVpcPeeringConnection()
or use the AWS CLI command create-vpc-peering-connection. Make this call using the
account that manages your Amazon GameLift game servers. Use the following information to
identify the two VPCs that you want to peer:

• Peer VPC ID and AWS account ID – This is the VPC for your non-Amazon GameLift resources
and the account that you use to manage them. The VPC ID must match the ID on a valid
peering authorization.

• Fleet ID – This identifies the VPC for your Amazon GameLift game servers.

5. Track the peering connection status.

Requesting a VPC peering connection is an asynchronous operation. To track the status of a
peering request and handle success or failure cases, use one of the following options:

• Continuously poll with DescribeVpcPeeringConnections(). This operation retrieves
the VPC peering connection record, including the status of the request. If a peering
connection is successfully created, the connection record also contains a CIDR block of
private IP addresses that is assigned to the VPC.

• Handle fleet events associated with VPC peering connections with DescribeFleetEvents(),
including success and failure events.

Once the peering connection is established, you can manage it using the following operations:

• DescribeVpcPeeringConnections() (AWS CLI describe-vpc-peering-connections).

• DeleteVpcPeeringConnection() (AWS CLI delete-vpc-peering-connection).

To set up VPC peering with a new fleet

You can create a new Amazon GameLift fleet and request a VPC peering connection at the same
time.

1. Get AWS account ID(s) and credentials.

You need an ID and sign-in credentials for the following two AWS accounts. You can find AWS
account IDs by signing into the AWS Management Console and viewing your account settings.
To get credentials, go to the IAM console.

To set up VPC peering with a new fleet 354

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateVpcPeeringConnection.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetEvents.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeVpcPeeringConnections.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteVpcPeeringConnection.html
https://console.aws.amazon.com/

Amazon GameLift Developer Guide

• AWS account that you use to manage your Amazon GameLift game servers.

• AWS account that you use to manage your non-Amazon GameLift resources.

If you're using the same account for Amazon GameLift and non-Amazon GameLift resources,
you need ID and credentials for that account only.

2. Get the VPC ID for your non-Amazon GameLift AWS resources.

If you haven't already created a VPC for these resources, do so now (see Getting started with
Amazon VPC). Be sure that you create the new VPC in the same region where you plan to
create your new fleet. If your non-Amazon GameLift resources are managed under a different
AWS account or user/user group than the one you use with Amazon GameLift, you'll need to
use these account credentials when requesting authorization in the next step.

Once you have created a VPC, you can locate the VPC ID in Amazon VPC console by viewing
your VPCs.

3. Authorize a VPC peering with non-Amazon GameLift resources.

When Amazon GameLift creates the new fleet and a corresponding VPC, it also sends a request
to peer with the VPC for your non-Amazon GameLift resources. You need to pre-authorize that
request. This step updates the security group for your VPC.

Using the account credentials that manage your non-Amazon GameLift resources, call the
Amazon GameLift service API CreateVpcPeeringAuthorization() or use the AWS CLI command
create-vpc-peering-authorization. Identify the following information:

• Peer VPC ID – ID of the VPC with your non-Amazon GameLift resources.

• Amazon GameLift AWS account ID – ID of the account that you use to manage your Amazon
GameLift fleet.

Once you've authorized a VPC peering, the authorization remains valid for 24 hours unless
revoked. You can manage your VPC peering authorizations using the following operations:

• DescribeVpcPeeringAuthorizations() (AWS CLI describe-vpc-peering-
authorizations).

• DeleteVpcPeeringAuthorization() (AWS CLI delete-vpc-peering-authorization).

To set up VPC peering with a new fleet 355

https://docs.aws.amazon.com/vpc/latest/userguide/getting-started-ipv4.html
https://docs.aws.amazon.com/vpc/latest/userguide/getting-started-ipv4.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateVpcPeeringAuthorization.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeVpcPeeringAuthorizations.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteVpcPeeringAuthorization.html

Amazon GameLift Developer Guide

4. Follow the instructions for creating a new fleet using the AWS CLI. Include the following
additional parameters:

• peer-vpc-aws-account-id – ID for the account that you use to manage the VPC with your non-
Amazon GameLift resources.

• peer-vpc-id – ID of the VPC with your non-GameLift account.

A successful call to create-fleet with the VPC peering parameters generates both a new fleet and
a new VPC peering request. The fleet's status is set to New and the fleet activation process is
initiated. The peering connection request's status is set to initiating-request. You can track the
success or failure of the peering request by calling describe-vpc-peering-connections.

When requesting both a new fleet and a VPC peering connection, both actions either succeed or
fail. If a fleet fails during the creation process, the VPC peering connection will not be established.
Likewise, if a VPC peering connection fails for any reason, the new fleet will fail to move from
status Activating to Active.

Note

The new VPC peering connection is not completed until the fleet is ready to become active.
This means that the connection is not available and can't be used during the game server
build installation process.

The following example creates both a new fleet and a peering connection between a pre-
established VPC and the VPC for the new fleet. The pre-established VPC is uniquely identified by
the combination of your non-Amazon GameLift AWS account ID and the VPC ID.

$ AWS gamelift create-fleet
 --name "My_Fleet_1"
 --description "The sample test fleet"
 --ec2-instance-type "c5.large"
 --fleet-type "ON_DEMAND"
 --build-id "build-1111aaaa-22bb-33cc-44dd-5555eeee66ff"
 --runtime-configuration "GameSessionActivationTimeoutSeconds=300,
 MaxConcurrentGameSessionActivations=2,
 ServerProcesses=[{LaunchPath=C:\game\Bin64.dedicated
\MultiplayerSampleProjectLauncher_Server.exe,
 Parameters=+sv_port 33435 +start_lobby,

To set up VPC peering with a new fleet 356

https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-fleet.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-vpc-peering-connections.html

Amazon GameLift Developer Guide

 ConcurrentExecutions=10}]"
 --new-game-session-protection-policy "FullProtection"
 --resource-creation-limit-policy "NewGameSessionsPerCreator=3,
 PolicyPeriodInMinutes=15"
 --ec2-inbound-permissions
 "FromPort=33435,ToPort=33435,IpRange=0.0.0.0/0,Protocol=UDP"

 "FromPort=33235,ToPort=33235,IpRange=0.0.0.0/0,Protocol=UDP"
 --metric-groups "EMEAfleets"
 --peer-vpc-aws-account-id "111122223333"
 --peer-vpc-id "vpc-a11a11a"

Copyable version:

AWS gamelift create-fleet --name "My_Fleet_1" --description "The
 sample test fleet" --fleet-type "ON_DEMAND" --metric-groups
 "EMEAfleets" --build-id "build-1111aaaa-22bb-33cc-44dd-5555eeee66ff"
 --ec2-instance-type "c5.large" --runtime-configuration
 "GameSessionActivationTimeoutSeconds=300,MaxConcurrentGameSessionActivations=2,ServerProcesses=[{LaunchPath=C:
\game\Bin64.dedicated\MultiplayerSampleProjectLauncher_Server.exe,Parameters=
+sv_port 33435 +start_lobby,ConcurrentExecutions=10}]" --new-game-session-
protection-policy "FullProtection" --resource-creation-limit-policy
 "NewGameSessionsPerCreator=3,PolicyPeriodInMinutes=15" --ec2-inbound-
permissions "FromPort=33435,ToPort=33435,IpRange=0.0.0.0/0,Protocol=UDP"
 "FromPort=33235,ToPort=33235,IpRange=0.0.0.0/0,Protocol=UDP" --peer-vpc-aws-account-id
 "111122223333" --peer-vpc-id "vpc-a11a11a"

Troubleshooting VPC peering issues

If you're having trouble establishing a VPC peering connection for your Amazon GameLift game
servers, consider these common root causes:

• An authorization for the requested connection was not found:

• Check the status of a VPC authorization for the non-Amazon GameLift VPC. It might not exist
or it might have expired.

• Check the regions of the two VPCs you're trying to peer. If they're not in the same region, they
can't be peered.

• The CIDR blocks (see Invalid VPC peering connection configurations) of your two VPCs are
overlapping. The IPv4 CIDR blocks that are assigned to peered VPCs cannot overlap. The CIDR
block of the VPC for your Amazon GameLift fleet is automatically assigned and can't be changed,

Troubleshooting VPC peering issues 357

https://docs.aws.amazon.com/vpc/latest/peering/invalid-peering-configurations.html#overlapping-cidr

Amazon GameLift Developer Guide

so you'll need to change the CIDR block for of the VPC for your non-Amazon GameLift resources.
To resolve this issue:

• Look up this CIDR block for your Amazon GameLift fleet by calling
DescribeVpcPeeringConnections().

• Go to the Amazon VPC console, find the VPC for your non-Amazon GameLift resources, and
change the CIDR block so that they don't overlap.

• The new fleet did not activate (when requesting VPC peering with a new fleet). If the new fleet
failed to progress to Active status, there is no VPC to peer with, so the peering connection
cannot succeed.

Troubleshooting VPC peering issues 358

Amazon GameLift Developer Guide

Viewing your game data in the console

The managed Amazon GameLift service continually collects data for active games to help you
understand player behavior and performance. With the Amazon GameLift console, you can view,
manage, and analyze this information for your builds, fleets, game sessions, and player sessions.

Topics

• View your current Amazon GameLift status

• View your builds

• View your scripts

• View your fleets

• View fleet details

• View data on game and player sessions

• View your aliases

• View your queues

View your current Amazon GameLift status

The Amazon GameLift dashboard provides a view of the following:

• The number of builds in Ready, Initialized, and Failed statuses. Choose View builds for details
about builds in your current Region.

• The number of fleets in all statuses. Choose View fleets for details about fleets in your current
Region.

• Your current resources.

• New feature and service announcements.

To open the Amazon GameLift dashboard

• In the Amazon GameLift console, in the navigation pane, choose Dashboard.

From the dashboard, you can:

View your Amazon GameLift status 359

https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

• Prepare your game for launch by choosing Prepare for launch and filling out the corresponding
launch questionnaire.

• Request service quota increases in preparation for launches or in response to launches by
choosing View service quotas.

• View blog posts and detailed information about new features by choosing the link in the
Features spotlight.

View your Amazon GameLift status 360

Amazon GameLift Developer Guide

View your builds

On the Builds page of the Amazon GameLift console, you can view information about and manage
all the game server builds that you've uploaded to Amazon GameLift. In the navigation pane,
choose Hosting, Builds.

The Builds page shows the following information for each build:

Note

The Builds page shows builds in your current AWS Region only.

• Name – The name associated with the uploaded build.

• Status – The status of the build. Displays one of three status messages:

• Initialized – The upload hasn't started or is still in progress.

• Ready – The build is ready for fleet creation.

• Failed – The build timed out before Amazon GameLift received the binaries.

• Creation time – The date and time that you uploaded the build to Amazon GameLift.

• Build ID – The unique ID assigned to the build on upload.

• Version – The version label associated with the uploaded build.

• Operating system – The OS that the build runs on. The build OS determines which operating
system Amazon GameLift installs on a fleet's instances.

• Size – The size, in megabytes (MB), of the build file uploaded to Amazon GameLift.

• Fleets – The number of fleets deployed with the build.

From this page you can do any of the following:

• View build details. Choose a build's name to open its build details page.

• Create a new fleet from a build. Select a build, and then choose Create fleet.

• Filter and sort the build list. Use the controls at the top of the table.

• Delete a build. Select a build, and then choose Delete.

View your builds 361

https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

Build details

On the Builds page, choose a build's name to open its details page. The Overview section of the
details page displays the same build summary information as the Builds page. The Fleets section
shows a list of fleets created with the build, including the same summary information as the Fleets
page.

View your scripts

On the Scripts page of the Amazon GameLift console, you can view information about and manage
all the Realtime Servers scripts that you've uploaded to Amazon GameLift. In the navigation pane,
choose Hosting, Scripts.

The Scripts page shows the following information for each script:

Note

The Scripts page shows scripts in your current AWS Region only.

• Name – The name associated with the uploaded script.

• ID – The unique ID assigned to the script on upload.

• Version – The version label associated with the uploaded script.

• Size – The size, in megabytes (MB), of the script file uploaded to Amazon GameLift.

• Creation time – The date and time that you uploaded the script to Amazon GameLift.

• Fleets – The number of fleets deployed with the script.

From this page you can do any of the following:

• View script details. Choose a build's name to open its script details page.

• Create a new fleet from a script. Select a script, and then choose Create fleet.

• Filter and sort the script list. Use the controls at the top of the table.

• Delete a script. Select a script, and then choose Delete.

Build details 362

https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

Script details

On the Scripts page, choose a script's name to open its details page. The Overview section of the
details page displays the same script summary information as the Builds page. The Fleets section
shows a list of fleets created with the script, including the same summary information as the Fleets
page.

View your fleets

You can view information on all the fleets created to host your games on Amazon GameLift under
your AWS account. The list shows fleets created your current Region. From the Fleets page, you
can create a new fleet or view additional detail on a fleet. A fleet's detail page contains usage
information, metrics, game session data, and player session data. You can also edit a fleet record or
delete a fleet.

To view the Fleets page, choose Fleets from the navigation pane.

The Fleets page displays the following summary information by default. You can customize the
information shown by choosing the Settings (gear) button.

• Name – Friendly name given to the fleet.

• Status – The status of the fleet, which can be one of these states: New, Downloading, Building,
and Active.

• Creation time – The date and time the fleet was created.

• Compute type – The type of compute used to host your games. A fleet can be a Managed EC2
fleet or a Anywhere fleet.

• Instance type – The Amazon EC2 instance type, which determines the computing capacity of
fleet's instances.

• Active instances – The number of EC2 instances in use for the fleet.

• Desired instances – The number of EC2 instances to keep active.

• Game sessions – The number of active game sessions running in the fleet. The data is delayed by
five minutes.

View fleet details

Access a Fleet detail page from the dashboard or the Fleets page by choosing the fleet name.

Script details 363

Amazon GameLift Developer Guide

On the fleet details page you can take the following actions:

• Update a fleet's attributes, port settings, and runtime configuration.

• Add or remove fleet locations.

• Change fleet capacity settings.

• Set or change target-tracking auto-scaling.

• Delete a fleet.

Details

Fleet settings

• Fleet ID – Unique identifier assigned to the fleet.

• Name – The name of the fleet.

• ARN – The identifier assigned to this fleet. A fleet's ARN identifies it as an Amazon GameLift
resource and specifies the region and AWS account.

• Description – A short identifiable description of the fleet.

• Status – Current status of the fleet, which may be New, Downloading, Building, and Active.

• Creation time – The date and time when the fleet was created.

• Termination time – The date and time the fleet was terminated. This is blank if the fleet is still
active.

• Fleet type – Indicates whether the fleet uses on-demand or spot instances.

• EC2 type – Amazon EC2 instance type selected for the fleet when it was created.

• Instance role – An AWS IAM role that manages access to your other AWS resources, if one was
provided during fleet creation.

• TLS certificate – Whether the fleet is enabled or disabled to use a TLS certificate for
authenticating a game server and encrypting all client/server communication.

• Metric group – The group used to aggregate metrics for multiple fleets.

• Game scaling protection policy – Current setting for game session protection for the fleet.

• Maximum game sessions per player – The maximum number of sessions a player can create
during the Policy period.

• Policy period – How long to wait until resetting the number of sessions a player has created.

Details 364

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

Amazon GameLift Developer Guide

Build details

The Build details section displays the build hosted on the fleet. Select the build name to see the
full build detail page.

Runtime configuration

The Runtime configuration section displays the server processes to launch on each instance. It
includes the path for the game server executable and optional launch parameters.

Game session activation

The Game session activation section displays the number of server processes that launch at the
same time and how long to wait for the process to activate before terminating it.

EC2 port settings

The Ports section displays the fleet's connection permissions, including IP address and port setting
ranges.

Metrics

The Metrics tab displays a graphical representation of fleet metrics over time. For more
information about using metrics in Amazon GameLift, see Monitor Amazon GameLift with Amazon
CloudWatch.

Events

The Events tab provides a log of all events that have occurred on the fleet, including the event
code, message, and time stamp. See Event descriptions in the Amazon GameLift API Reference.

Scaling

The Scaling tab contains information about fleet capacity, including the current status and
capacity changes over time. It also provides tools to update capacity limits and manage auto-
scaling.

Scaling capacity

View current fleet capacity settings for each fleet location. For more information about changing
limits and capacity, see Scaling Amazon GameLift hosting capacity.

Metrics 365

https://docs.aws.amazon.com/gamelift/latest/apireference/API_Event.html

Amazon GameLift Developer Guide

• AWS Location – Name of a location where fleet instances are deployed.

• Status – Hosting status of the fleet location. Location status must be ACTIVE to be able to host
games.

• Min size – The smallest number of instances that must be deployed in the location.

• Desired instances – The target number of active instances to maintain the location. When active
instances and desired instances aren' the same, a scaling event is started to start or shut down
instances as needed until active instances equals desired instances.

• Max size – The most instances that can be deployed in the location.

• Available – The service limit on instances minus the number of instances in use. This value tells
you the maximum number of instances that you can add to the location.

Auto-scaling policies

This section covers information about auto-scaling policies that are applied to the fleet. You can
set up or update a target-based policy. The fleet's rule-based policies, which must be defined using
the AWS SDK or CLI, are displayed here. For more information about scaling, see Auto-scale fleet
capacity with Amazon GameLift.

Scaling history

View graphs of capacity changes over time.

Locations

The Locations tab lists all locations where fleet instances are deployed. Locations include the
fleet's home Region and any remote locations that have been added. You can add or remove
locations directly in this tab.

• Location – Name of a location where fleet instances are deployed.

• Status – Hosting status of the fleet location. Location status tracks the process of activating the
first instances in the location. Location status must be ACTIVE to be able to host games.

• Active instances – The number of instances with server processes running on the fleet location.

• Active servers – The number of game server processes able to host game sessions in the fleet
location.

• Game sessions – The number of game sessions active on instances in the fleet location.

Locations 366

Amazon GameLift Developer Guide

• Player sessions – The number of player sessions, which represent individual players, that are
participating in game sessions that are active in the fleet location.

Game sessions

The Game sessions tab lists past and present game sessions hosted on the fleet, including some
detail information. Choose a game session ID to access additional game session information,
including player sessions. For more information about player sessions, see View data on game and
player sessions.

View data on game and player sessions

You can view information about the games sessions and individual players. For more information
about game sessions and player sessions, see How players connect to games.

To view game session and player data

1. In the Amazon GameLift console, in the navigation pane, choose Fleets.

2. Choose the fleet from the Fleets list that hosted your game sessions.

3. Choose the Game sessions tab. This tab lists all game sessions hosted on the fleet along with
summary information.

4. Choose a game session to view additional information about the game session and a list of
players that connected to the game.

Details

Overview

This section displays a summary of your game session information.

• Status – Game session status.

• Activating – The instance is initiating a game session.

• Active – A game session is running and available to receive players, depending on the session's
player creation policy.

• Terminated – the game session has ended.

• ARN – The Amazon Resource Name of the game session.

Game sessions 367

https://console.aws.amazon.com/gamelift/
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

• Name – Name generated for the game session.

• Location – The location that Amazon GameLift hosted the game session in.

• Creation time – Date and time that Amazon GameLift created the stream session.

• Ending time – Date and time that the game session ended.

• DNS name – The host name of the game session.

• IP address – IP address specified for the game session.

• Port – Port number used to connect to the game session.

• Creator ID – A unique identifier of the player that initiated the game session.

• Player session creation policy – Indicates if the game session is accepting new players.

• Game scaling protection policy – The type of game session protection to set on all new
instances that Amazon GameLift starts in the fleet.

Game data

Well-formatted data to send to your game session on start.

Game properties

Key and value pair properties that influence your game session.

Matchmaking data

The FlexMatch matchmaker JSON. To review and edit the matchmaker choose View matchmaking
configuration. For more information about FlexMatch matchmaking, see Build a matchmaker.

Player sessions

The following player session data is collected for each game session:

• Player session ID – The identifier assigned to the player session.

• Player ID – A unique identifier for the player. Choose this ID to get additional player information.

• Status – The status of the player session. The following are possible statuses:

• Reserved – Player session has been reserved, but the players isn't connected.

• Active – Player session is connected to the game server.

• Completed – Player session has ended; player is no longer connected.

• Timed Out – Player failed to connect.

Player sessions 368

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/matchmaker-build.html

Amazon GameLift Developer Guide

• Creation time – The time the player connected to the game session.

• Ending time – The time the player disconnected from the game session.

• Player data – Information about the player provided during player session creation.

Player information

View additional information for a selected player, including a list of all games the player connected
to across all fleets in the current region. This information includes the status, start times, end
times, and total connected time for each player session. You can choose to view data for the
relevant game sessions and fleets.

View your aliases

The Alias page displays information about the fleet aliases you created in your current Region. To
view the aliases page, choose Aliases in the navigation pane.

You can do the following on the aliases page:

• Create a new alias. Choose Create alias.

• Filter and sort the aliases table. Use the controls at the top of the table.

• View alias details. Choose an alias name to open the alias detail page.

• Delete an alias. Choose an alias and then choose Delete.

Alias details

The alias details page displays information about the alias.

From this page you can:

• Edit an alias. Choose Edit.

• View the fleets you associated with the alias.

• Delete an alias. Choose Delete.

Alias detail information includes:

• ID – The unique number used to identify the alias.

Player information 369

Amazon GameLift Developer Guide

• Description – The description of the alias.

• ARN – The Amazon Resource Name of the alias.

• Creation – The date and time the alias was created.

• Last updated – The date and time that the alias was last updated.

• Routing type – The routing type for the alias, which can be one of these:

• Simple – Routes player traffic to a specified fleet ID. You can update the fleet ID for an alias at
any time.

• Terminal – Passes a message back to the client. For example, you can direct players who are
using an out-of-date client to a location where they can get an upgrade.

• Tags – Key and value pairs used to identify the alias.

View your queues

You can view information on all existing game session placement queues. The queues page shows
queues created in your current Region. From the Queues page, you can create a new queue, delete
existing queues, or open a details page for a selected queue. Each queue details page contains
the queue's configuration and metrics data. For more information about queues, see Setting up
Amazon GameLift queues for game session placement.

The queues page displays the following summary information for each queue:

• Queue name – The name assigned to the queue. Requests for new game sessions specify a
queue by this name.

• Queue timeout – Maximum length of time, in seconds, that a game session placement request
remains in the queue before timing out.

• Destinations in queue – Number of fleets listed in the queue configuration. Amazon GameLift
places new game sessions on any fleet in the queue.

View queue details

You can access detailed information on any queue, including the queue configuration and metrics.
To open a queue details page, go to the Queues page and choose a queue name.

The queue detail page displays a summary table and tabs containing additional information. On
this page you can do the following:

View your queues 370

Amazon GameLift Developer Guide

• Update the queue's configuration, list of destinations and player latency policies. Choose Edit.

• Delete a queue. After you delete a queue, all requests for new game sessions that reference that
queue name will fail. Choose Delete.

Note

To restore a deleted queue, create a new queue with the deleted queue's name.

Details

Overview

The Overview section displays the queue's Amazon Resource Name (ARN) and the Timeout.
You can use the ARN when referencing the queue in other actions or areas of Amazon GameLift.
The timeout is the maximum length of time, in seconds, that a game session placement request
remains in the queue before timing out.

Event notification

The Event notification section lists the SNS topic Amazon GameLift publishes event notifications
to and the Event data that is added to all events created by this queue.

Tags

The Tags table displays the keys and values used to tag the resource. For more information about
tagging, see Tagging AWS resources.

Metrics

The Metrics tab shows a graphical representation of queue metrics over time.

Queue metrics include a range of information describing placement activity across the queue,
including successful placements organized by Region. You can use Region data to understand
where you are hosting your games. Regional placement metrics can help to detect issues with the
overall queue design.

Queue metrics are also available in Amazon CloudWatch. For descriptions of available metrics, see
Amazon GameLift metrics for queues.

View queue details 371

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html

Amazon GameLift Developer Guide

Destinations

The Destinations tab shows all fleets or aliases listed for the queue.

When Amazon GameLift searches the destinations for available resources to host a new game
session, it searches the default order listed here. As long as there is capacity on the first destination
listed, Amazon GameLift places new game sessions there. You can have individual game session
placement requests override the default order by providing player latency data. This data tells
Amazon GameLift to search for an available destination with the lowest average player latency. For
more information about designing your queues, see Design a game session queue.

Session placement

Player latency policies

The Player latency policies section shows all policies that the queue uses. The tables lists the
policies in the order they're enforced.

Locations

The Locations section shows the locations that this queue can put a game session in.

Priority

The Priority section shows the order that the queue evaluates a game sessions details.

Location order

The Location order section shows the default order that the queue uses when placing game
sessions. The queue uses this order if you haven't defined other types of priority.

View queue details 372

Amazon GameLift Developer Guide

Monitoring Amazon GameLift

If you're using Amazon GameLift FleetIQ as a standalone feature with Amazon EC2, see Security in
Amazon EC2 in the Amazon EC2 User Guide.

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon GameLift and your other AWS solutions. There are three primary uses for metrics with
Amazon GameLift: to monitor system health and set up alarms, to track game server performance
and usage, and to manage capacity using manual or auto-scaling.

AWS provides the following monitoring tools to watch Amazon GameLift, report when something
is wrong, and take automatic actions when appropriate:

• Amazon GameLift Console

• Amazon CloudWatch -– You can monitor Amazon GameLift metrics in real time, as well as metrics
for other AWS resources and applications that you're running on AWS services. CloudWatch
offers a suite of monitoring features, including tools to create customized dashboards and the
ability to set alarms that notify or take action when a metric reaches a specified threshold.

• AWS CloudTrail – captures all API calls and related events made by or on behalf of your AWS
account for Amazon GameLift and other AWS services. Data is delivered as log files to an
Amazon S3 bucket that you specify. You can identify which users and accounts called AWS, the
source IP address from which the calls were made, and when the calls occurred.

• Game session logs – You can output custom server messages for your game sessions to log files
that are stored in Amazon S3.

Topics

• Monitor Amazon GameLift with Amazon CloudWatch

• Logging Amazon GameLift API calls with AWS CloudTrail

• Logging server messages in Amazon GameLift

Monitor Amazon GameLift with Amazon CloudWatch

You can monitor Amazon GameLift using Amazon CloudWatch, an AWS service that collects raw
data and processes it into readable, near real-time metrics. These statistics are kept for 15 months

Monitor with CloudWatch 373

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html

Amazon GameLift Developer Guide

to provide a historical perspective on how your game server hosting with Amazon GameLift is
performing. You can set alarms that watch for certain thresholds and send notifications or take
actions when those thresholds are met. For more information, see the Amazon CloudWatch User
Guide.

The following tables list the metrics and dimensions for Amazon GameLift. All metrics that are
available in CloudWatch are also available in the Amazon GameLift console, which provides the
data as a set of customizable graphs. To access CloudWatch metrics for your games, use the AWS
Management Console, the AWS CLI, or the CloudWatch API.

If a metric does not have a location, it uses the home location.

Dimensions for Amazon GameLift metrics

Amazon GameLift supports filtering metrics by the following dimensions.

Dimension Description

Location Filter metrics for a fleet deployment location. If a
metric does not have a location, it uses the home
location.

FleetId Filter metrics for a single fleet. This dimension can
be used with all fleet metrics for instances, server
processes, game sessions, and player sessions.

MetricGroup Filter metrics for a collection of fleets. Add a fleet to
a metric group by adding the metric group name to
the fleet's attributes (see UpdateFleetAttributes()).
This dimension can be used with all fleet metrics
for instances, server processes, game sessions, and
player sessions.

QueueName Filter metrics for a single queue. This dimension is
used with metrics for game session queues only.

ConfigurationName Filter metrics for a single matchmaking configura
tion. This dimension is used with metrics for
matchmaking configurations.

Metrics dimensions 374

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateFleetAttributes.html

Amazon GameLift Developer Guide

Dimension Description

ConfigurationName-RuleName Filter metrics for an intersect of a matchmaki
ng configuration and matchmaking rule. This
dimension is used with metrics for matchmaking
rules only.

InstanceType Filter metrics for an EC2 instance type designati
on, such as "c4.large". This dimension is used with
metrics for spot instances.

OperatingSystem Filter metrics for an instance's operating system
This dimension is used with metrics for spot
instances.

GameServerGroup Filter FleetIQ metrics for a game server group.

Amazon GameLift metrics for fleets

The AWS/GameLift namespace includes the following metrics related to activity across a fleet or a
group of fleets. Fleets are used with a managed Amazon GameLift solution. The Amazon GameLift
service sends metrics to CloudWatch every minute.

Instances

Metric Description

ActiveInstances Instances with ACTIVE status, which means they are
running active server processes. The count includes
idle instances and those that are hosting one or
more game sessions. This metric measures current
total instance capacity. This metric can be used with
automatic scaling.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum

Fleet metrics 375

Amazon GameLift Developer Guide

Metric Description

Dimensions: Location

DesiredInstances Target number of active instances that Amazon
GameLift is working to maintain in the fleet. With
automatic scaling, this value is determined based
on the scaling policies currently in force. Without
automatic scaling, this value is set manually. This
metric is not available when viewing data for fleet
metric groups.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum

Dimensions: Location

IdleInstances Active instances that are currently hosting zero (0)
game sessions. This metric measures capacity that is
available but unused. This metric can be used with
automatic scaling.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum

Dimensions: Location

Fleet metrics 376

Amazon GameLift Developer Guide

Metric Description

MaxInstances Maximum number of instances that are allowed for
the fleet. A fleet's instance maximum determine
s the capacity ceiling during manual or automatic
scaling up. This metric is not available when viewing
data for fleet metric groups.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum

Dimensions: Location

MinInstances Minimum number of instances allowed for the fleet.
A fleet's instance minimum determines the capacity
floor during manual or automatic scaling down. This
metric is not available when viewing data for fleet
metric groups.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum

Dimensions: Location

PercentIdleInstances Percentage of all active instances that are idle
(calculated as IdleInstances / ActiveIns
tances). This metric can be used for automatic
scaling.

Units: Percent

Relevant CloudWatch statistics: Average, Minimum,
Maximum

Dimensions: Location

Fleet metrics 377

Amazon GameLift Developer Guide

Metric Description

RecycledInstances Number of spot instances that have been recycled
and replaced. Amazon GameLift recycles spot
instances that are not currently hosting game
sessions and have a high probability of interruption.

Units: Count

Relevant CloudWatch statistics: Sum, Average,
Minimum, Maximum

Dimensions: Location

InstanceInterruptions Number of spot instances that have been interrupt
ed.

Units: Count

Relevant CloudWatch statistics: Sum, Average,
Minimum, Maximum

Dimensions: Location

CPUUtilization EC2 metric. For Amazon GameLift this metric
represents hardware performance across all active
instances in a fleet location. The percentage of
physical CPU time that Amazon EC2 uses to run
the instance, which includes time spent to run both
the user code and Amazon EC2 code. Tools in your
operating system can show a different percentag
e than CloudWatch due to factors such as legacy
device simulation, configuration of non-legacy
devices, interrupt-heavy workloads, live migration,
and live update.

Units: Percent

Fleet metrics 378

Amazon GameLift Developer Guide

Metric Description

NetworkIn EC2 metric. For Amazon GameLift this metric
represents hardware performance across all active
instances in a fleet location. The number of bytes
received on all network interfaces by the instance.
This metric identifies the volume of incoming
network traffic to an application on a single
instance.

Units: Bytes

NetworkOut EC2 metric. For Amazon GameLift this metric
represents hardware performance across all active
instances in a fleet location. The number of bytes
sent out on all network interfaces by the instance.
This metric identifies the volume of outgoing
network traffic to an application on a single
instance.

Units: Bytes

DiskReadBytes EC2 metric. For Amazon GameLift this metric
represents hardware performance across all active
instances in a fleet location. Bytes read from all
instance store volumes available to the instance.
This metric is used to determine the volume of the
data the application reads from the hard disk of the
instance. You can use it to determine the speed of
the application.

Units: Bytes

Fleet metrics 379

Amazon GameLift Developer Guide

Metric Description

DiskWriteBytes EC2 metric. For Amazon GameLift this metric
represents hardware performance across all active
instances in a fleet location. Bytes written to all
instance store volumes available to the instance.
This metric is used to determine the volume of the
data the application writes onto the hard disk of the
instance. You can use it to determine the speed of
the application.

Units: Bytes

DiskReadOps EC2 metric. For Amazon GameLift this metric
represents hardware performance across all active
instances in a fleet location. Completed read
operations from all instance store volumes available
to the instance in a specified period of time. To
calculate the average I/O operations per second
(IOPS) for the period, divide the total operations in
the period by the number of seconds in that period.

Units: Count

DiskWriteOps EC2 metric. For Amazon GameLift this metric
represents hardware performance across all active
instances in a fleet location. Completed write
operations to all instance store volumes available
to the instance in a specified period of time. To
calculate the average I/O operations per second
(IOPS) for the period, divide the total operations in
the period by the number of seconds in that period.

Units: Count

Fleet metrics 380

Amazon GameLift Developer Guide

Server processes

Metric Description

ActiveServerProcesses Server processes with ACTIVE status, which means
they are running and able to host game sessions.
The count includes idle server processes and
those that are hosting game sessions. This metric
measures current total server process capacity.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum

Dimensions: Location

HealthyServerProcesses Active server processes that are reporting healthy.
This metric is useful for tracking the overall health
of the fleet's game servers.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum

Dimensions: Location

PercentHealthyServerProcess
es

Percentage of all active server processes that
are reporting healthy (calculated as HealthySe
rverProcesses / ActiveServerProces
ses).

Units: Percent

Relevant CloudWatch statistics: Average, Minimum,
Maximum

Dimensions: Location

Fleet metrics 381

Amazon GameLift Developer Guide

Metric Description

ServerProcessAbnormalTermin
ations

Server processes that were shut down due to
abnormal circumstances since the last report. This
metric includes terminations that were initiated
by the Amazon GameLift service. This occurs when
a server process stops responding, consistently
reports failed health checks, or does not terminate
cleanly (by calling ProcessEnding()).

Units: Count

Relevant CloudWatch statistics: Sum, Average,
Minimum, Maximum

Dimensions: Location

ServerProcessActivations Server processes that successfully transitioned from
ACTIVATING to ACTIVE status since the last report.
Server processes cannot host game sessions until
they are active.

Units: Count

Relevant CloudWatch statistics: Sum, Average,
Minimum, Maximum

Dimensions: Location

Fleet metrics 382

https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk-cpp-ref-actions.html#integration-server-sdk-cpp-ref-processending

Amazon GameLift Developer Guide

Metric Description

ServerProcessTerminations Server processes that were shut down since the
last report. This includes all server processes that
transitioned to TERMINATED status for any reason,
including normal and abnormal process terminati
ons.

Units: Count

Relevant CloudWatch statistics: Sum, Average,
Minimum, Maximum

Dimensions: Location

Game sessions

Metric Description

ActivatingGameSessions Game sessions with ACTIVATING status, which
means they are in the process of starting up. Game
sessions cannot host players until they are active.
High numbers for a sustained period of time may
indicate that game sessions are not transitioning
from ACTIVATING to ACTIVE status. This metric can
be used with automatic scaling.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum

Dimensions: Location

ActiveGameSessions Game sessions with ACTIVE status, which means
they are able to host players, and are hosting zero
or more players. This metric measures the total

Fleet metrics 383

Amazon GameLift Developer Guide

Metric Description

number of game sessions currently being hosted.
This metric can be used with automatic scaling.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum

Dimensions: Location

AvailableGameSessions Active, healthy server processes that are not
currently being used to host a game session and can
start a new game session without a delay to spin up
new server processes or instances. This metric can
be used with automatic scaling.

Note

For fleets that limit concurrent game session
activations, use the metric Concurren
tActivatableGameSessions . That
metric more accurately represents the
number of new game sessions that can start
without any type of delay.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum

Dimensions: Location

Fleet metrics 384

Amazon GameLift Developer Guide

Metric Description

ConcurrentActivatableGameSe
ssions

Active, healthy server processes that are not
currently being used to host a game session and can
immediately start a new game session.

This metric differs from AvailableGameSessi
ons in the following way: it does not count server
processes that currently cannot activate a new
game session because of limits on game session
activations. (See the fleet RuntimeConfigurati
on optional setting MaxConcurrentGameS
essionActivations). For fleets that don't limit
game session activations, this metric is identical to
AvailableGameSessions .

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum

Dimensions: Location

PercentAvailableGameSessions Percentage of game session slots on all active
server processes (healthy or unhealthy) that are
not currently being used (calculated as Available
GameSessions / [ActiveGameSessions
+ AvailableGameSessions + unhealthy
server processes]). This metric can be used
with automatic scaling.

Units: Percent

Relevant CloudWatch statistics: Average

Dimensions: Location

Fleet metrics 385

https://docs.aws.amazon.com/gamelift/latest/apireference/API_RuntimeConfiguration.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_RuntimeConfiguration.html

Amazon GameLift Developer Guide

Metric Description

GameSessionInterruptions Number of game sessions on spot instances that
have been interrupted.

Units: Count

Relevant CloudWatch statistics: Sum, Average,
Minimum, Maximum

Dimensions: Location

Player sessions

Metric Description

CurrentPlayerSessions Player sessions with either ACTIVE status (player is
connected to an active game session) or RESERVED
status (player has been given a slot in a game
session but hasn't yet connected). This metric can
be used with automatic scaling.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum

PlayerSessionActivations Player sessions that transitioned from RESERVED
status to ACTIVE since the last report. This occurs
when a player successfully connects to an active
game session.

Units: Count

Relevant CloudWatch statistics: Sum, Average,
Minimum, Maximum

Fleet metrics 386

Amazon GameLift Developer Guide

Amazon GameLift metrics for queues

The Amazon GameLift namespace includes the following metrics related to activity across a
game session placement queue. Queues are used with a managed Amazon GameLift solution. The
Amazon GameLift service sends metrics to CloudWatch every minute.

Metric Description

AverageWaitTime Average amount of time that game session
placement requests in the queue with status
PENDING have been waiting to be fulfilled.

Units: Seconds

Relevant CloudWatch statistics: Average, Minimum,
Maximum, Sum

Dimensions: Location

FirstChoiceNotViable Game sessions that were successfully placed but
NOT in the first-choice fleet, because that fleet was
considered not viable (such as a spot fleet with a
high interruption rate). This metric is based on cost,
not latency. The first-choice fleet is either the first
fleet listed in the queue or—when a placement
request includes player latency data—it is the first
fleet chosen by FleetIQ prioritization. If there are no
viable spot fleets, any fleet in that region may be
selected.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum, Sum

FirstChoiceOutOfCapacity Game sessions that were successfully placed but
NOT in the first-choice fleet, because that fleet
had no available resources. The first-choice fleet is
either the first fleet listed in the queue or—when a

Queue metrics 387

https://docs.aws.amazon.com/gamelift/latest/developerguide/queues-design.html#queues-design-fleetiq

Amazon GameLift Developer Guide

Metric Description

placement request includes player latency data —
it is the first fleet chosen by your defined FleetIQ
prioritization.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum, Sum

LowestLatencyPlacement Game sessions that were successfully placed in
a region that offers the queue's lowest possible
latency for the players. This metric is emitted
only when player latency data is included in the
placement request.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum, Sum

LowestPricePlacement Game sessions that were successfully placed in a
fleet with the queue's lowest possible price for the
chosen region. This fleet can be either a spot fleet
or an on-demand instance if the queue has no spot
instances. This metric is emitted only when player
latency data is included in the placement request.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum, Sum

Queue metrics 388

Amazon GameLift Developer Guide

Metric Description

Placement <region name> Game sessions that are successfully placed in fleets
located in the specified region. This metric breaks
down the PlacementsSucceeded metric by
region.

Units: Count

Relevant CloudWatch statistics: Sum

PlacementsCanceled Game session placement requests that were
canceled before timing out since the last report.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum, Sum

PlacementsFailed Game session placement requests that failed for any
reason since the last report.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum, Sum

PlacementsStarted New game session placement requests that were
added to the queue since the last report.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum, Sum

Queue metrics 389

Amazon GameLift Developer Guide

Metric Description

PlacementsSucceeded Game session placement requests that resulted in a
new game session since the last report.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum, Sum

PlacementsTimedOut Game session placement requests that reached the
queue's timeout limit without being fulfilled since
the last report.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum, Sum

QueueDepth Number of game session placement requests in the
queue with status PENDING.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum, Sum

Dimensions: Location

Amazon GameLift metrics for matchmaking

The Amazon GameLift namespace includes metrics on FlexMatch activity for matchmaking
configurations and matchmaking rules. FlexMatch matchmaking is used with a managed Amazon
GameLift solution. The Amazon GameLift service sends metrics to CloudWatch every minute.

For more information on the sequence of matchmaking activity, see How Amazon GameLift
FlexMatch works.

FlexMatch metrics 390

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/gamelift-match.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/gamelift-match.html

Amazon GameLift Developer Guide

Matchmaking configurations

Metric Description

CurrentTickets Matchmaking requests currently being processed or
waiting to be processed.

Units: Count

Relevant CloudWatch statistics: Average, Minimum,
Maximum, Sum

MatchAcceptancesTimedOut For matchmaking configurations that require
acceptance, the potential matches that timed out
during acceptance since the last report.

Units: Count

Relevant CloudWatch statistics: Sum

MatchesAccepted For matchmaking configurations that require
acceptance, the potential matches that were
accepted since the last report.

Units: Count

Relevant CloudWatch statistics: Sum

MatchesCreated Potential matches that were created since the last
report.

Units: Count

Relevant CloudWatch statistics: Sum

MatchesPlaced Matches that were successfully placed into a game
session since the last report.

Units: Count

Relevant CloudWatch statistics: Sum

FlexMatch metrics 391

Amazon GameLift Developer Guide

Metric Description

MatchesRejected For matchmaking configurations that require
acceptance, the potential matches that were
rejected by at least one player since the last report.

Units: Count

Relevant CloudWatch statistics: Sum

PlayersStarted Players in matchmaking tickets that were added
since the last report.

Units: Count

Relevant CloudWatch statistics: Sum

TicketsFailed Matchmaking requests that resulted in failure since
the last report.

Units: Count

Relevant CloudWatch statistics: Sum

TicketsStarted New matchmaking requests that were created since
the last report.

Units: Count

Relevant CloudWatch statistics: Sum

TicketsTimedOut Matchmaking requests that reached the timeout
limit since the last report.

Units: Count

Relevant CloudWatch statistics: Sum

FlexMatch metrics 392

Amazon GameLift Developer Guide

Metric Description

TimeToMatch For matchmaking requests that were put into a
potential match before the last report, the amount
of time between ticket creation and potential match
creation.

Units: Seconds

Relevant CloudWatch statistics: Data Samples,
Average, Minimum, Maximum

TimeToTicketCancel For matchmaking requests that were canceled
before the last report, the amount of time between
ticket creation and cancellation.

Units: Seconds

Relevant CloudWatch statistics: Data Samples,
Average, Minimum, Maximum

TimeToTicketSuccess For matchmaking requests that succeeded before
the last report, the amount of time between ticket
creation and successful match placement.

Units: Seconds

Relevant CloudWatch statistics: Data Samples,
Average, Minimum, Maximum

Matchmaking rules

Metric Description

RuleEvaluationsPassed Rule evaluations during the matchmaking process
that passed since the last report. This metric is
limited to the top 50 rules.

Units: Count

FlexMatch metrics 393

Amazon GameLift Developer Guide

Metric Description

Relevant CloudWatch statistics: Sum

RuleEvaluationsFailed Rule evaluations during matchmaking that failed
since the last report. This metric is limited to the
top 50 rules.

Units: Count

Relevant CloudWatch statistics: Sum

Amazon GameLift metrics for FleetIQ

The Amazon GameLift namespace includes metrics for FleetIQ game server group and game
server activity as part of a FleetIQ standalone solution for game hosting. The Amazon GameLift
service sends metrics to CloudWatch every minute. Also see Monitoring your Auto Scaling groups
and instances using amazon CloudWatch in the Amazon EC2 Auto Scaling User Guide.

Metric Description

AvailableGameServers Game servers that are available to run a game
execution and are not currently occupied with
gameplay. This number includes game servers that
have been claimed but are still in AVAILABLE status.

Units: Count

Relevant CloudWatch statistics: Sum

Dimensions: GameServerGroup

UtilizedGameServers Game servers that are currently occupied with
gameplay. This number includes game servers that
are in UTILIZED status.

Units: Count

Relevant CloudWatch statistics: Sum

FleetIQ metrics 394

https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-instance-monitoring.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-instance-monitoring.html

Amazon GameLift Developer Guide

Metric Description

Dimensions: GameServerGroup

DrainingAvailableGameServers Game servers on instances scheduled for terminati
on that are currently not supporting gameplay.
These game servers are the lowest priority to be
claimed in response to a new claim request.

Units: Count

Relevant CloudWatch statistics: Sum

Dimensions: GameServerGroup

DrainingUtilizedGameServers Game servers on instances scheduled for terminati
on that are currently supporting gameplay.

Units: Count

Relevant CloudWatch statistics: Sum

Dimensions: GameServerGroup

PercentUtilizedGameServers Portion of game servers that are currently supportin
g game executions. This metric indicates the
amount of game server capacity that is currently
in use. It is useful for driving an Auto Scaling policy
that can dynamically add and remove instances to
match with player demand.

Units: Percent

Relevant CloudWatch statistics: Average, Minimum,
Maximum

Dimensions: GameServerGroup

FleetIQ metrics 395

Amazon GameLift Developer Guide

Metric Description

GameServerInterruptions Game servers on Spot Instances that were interrupt
ed due to limited Spot availability.

Units: Count

Relevant CloudWatch statistics: Sum

Dimensions: GameServerGroup, InstanceType

InstanceInterruptions Spot Instances that were interrupted due to limited
availability.

Units: Count

Relevant CloudWatch statistics: Sum

Dimensions: GameServerGroup, InstanceType

Logging Amazon GameLift API calls with AWS CloudTrail

Amazon GameLift is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in Amazon GameLift. CloudTrail captures all API calls
for Amazon GameLift as events. The calls captured include calls from the Amazon GameLift
console and code calls to the Amazon GameLift API operations. If you create a trail, you can enable
continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for Amazon
GameLift. If you don't configure a trail, you can still view the most recent events in the CloudTrail
console in Event history. Using the information collected by CloudTrail, you can determine the
request that was made to Amazon GameLift, the IP address from which the request was made, who
made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Amazon GameLift information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs
in Amazon GameLift, that activity is recorded in a CloudTrail event along with other AWS service

Logging API calls 396

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

Amazon GameLift Developer Guide

events in Event history. You can view, search, and download recent events in your AWS account.
For more information, see Viewing events with CloudTrail Event history.

For an ongoing record of events in your AWS account, including events for Amazon GameLift,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events
from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other AWS services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All Amazon GameLift actions are logged by CloudTrail and are documented in the Amazon
GameLift API Reference. For example, calls to CreateGameSession, CreatePlayerSession and
UpdateGameSession actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

Understanding Amazon GameLift log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

Understanding Amazon GameLift log file entries 397

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/gamelift/latest/apireference/
https://docs.aws.amazon.com/gamelift/latest/apireference/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon GameLift Developer Guide

The following example shows a CloudTrail log entry that demonstrates the CreateFleet and
DescribeFleetAttributes actions.

{
 "Records": [
 {
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::111122223333:user/myUserName",
 "accountId": "111122223333",
 "accessKeyId": AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-12-29T23:40:15Z",
 "eventSource": "gamelift.amazonaws.com",
 "eventName": "CreateFleet",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "[]",
 "requestParameters": {
 "buildId": "build-92b6e8af-37a2-4c10-93bd-4698ea23de8d",
 "eC2InboundPermissions": [
 {
 "ipRange": "10.24.34.0/23",
 "fromPort": 1935,
 "protocol": "TCP",
 "toPort": 1935
 }
],
 "logPaths": [
 "C:\\game\\serverErr.log",
 "C:\\game\\serverOut.log"
],
 "eC2InstanceType": "c5.large",
 "serverLaunchPath": "C:\\game\\MyServer.exe",
 "description": "Test fleet",
 "serverLaunchParameters": "-paramX=baz",
 "name": "My_Test_Server_Fleet"
 },
 "responseElements": {
 "fleetAttributes": {

Understanding Amazon GameLift log file entries 398

Amazon GameLift Developer Guide

 "fleetId": "fleet-0bb84136-4f69-4bb2-bfec-a9b9a7c3d52e",
 "serverLaunchPath": "C:\\game\\MyServer.exe",
 "status": "NEW",
 "logPaths": [
 "C:\\game\\serverErr.log",
 "C:\\game\\serverOut.log"
],
 "description": "Test fleet",
 "serverLaunchParameters": "-paramX=baz",
 "creationTime": "Dec 29, 2015 11:40:14 PM",
 "name": "My_Test_Server_Fleet",
 "buildId": "build-92b6e8af-37a2-4c10-93bd-4698ea23de8d"
 }
 },
 "requestID": "824a2a4b-ae85-11e5-a8d6-61d5cafb25f2",
 "eventID": "c8fbea01-fbf9-4c4e-a0fe-ad7dc205ce11",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 },
 {
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::111122223333:user/myUserName",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-12-29T23:40:15Z",
 "eventSource": "gamelift.amazonaws.com",
 "eventName": "DescribeFleetAttributes",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "[]",
 "requestParameters": {
 "fleetIds": [
 "fleet-0bb84136-4f69-4bb2-bfec-a9b9a7c3d52e"
]
 },
 "responseElements": null,
 "requestID": "82e7f0ec-ae85-11e5-a8d6-61d5cafb25f2",
 "eventID": "11daabcb-0094-49f2-8b3d-3a63c8bad86f",
 "eventType": "AwsApiCall",

Understanding Amazon GameLift log file entries 399

Amazon GameLift Developer Guide

 "recipientAccountId": "111122223333"
 },
]
}

Logging server messages in Amazon GameLift

You can capture custom server messages from your Amazon GameLift servers in log files. The way
you configure logging depends on whether you use custom servers or Realtime Servers (see the
appropriate subsections in this chapter).

Topics

• Logging server messages (custom servers)

• Logging server messages (Realtime Servers)

Logging server messages (custom servers)

You can capture custom server messages from your Amazon GameLift custom servers in log files.
To learn about logging for Realtime Servers, see Logging server messages (Realtime Servers).

Important

There is a limit on the size of a log file per game session (see Amazon GameLift endpoints
and quotas in the AWS General Reference). When a game session ends, Amazon GameLift
uploads the server logs to Amazon Simple Storage Service (Amazon S3). Amazon GameLift
will not upload logs that exceed the limit. Logs can grow very quickly and exceed the size
limit. You should monitor your logs and limit the log output to necessary messages only.

Configuring logging for custom servers

With Amazon GameLift custom servers, you write your own code to perform logging, which
you configure as part of your server process configuration. Amazon GameLift uses your logging
configuration to identify the files that it must upload to Amazon S3 at the end of each game
session.

The following instructions show how to configure logging using simplified code examples:

Logging server messages 400

https://docs.aws.amazon.com/general/latest/gr/gamelift.html
https://docs.aws.amazon.com/general/latest/gr/gamelift.html

Amazon GameLift Developer Guide

C++

To configure logging (C++)

1. Create a vector of strings that are directory paths to game server log files.

std::string serverLog("serverOut.log"); // Example server log file
std::vector<std::string> logPaths;
logPaths.push_back(serverLog);

2. Provide your vector as the LogParameters of your ProcessParameters object.

Aws::GameLift::Server::ProcessParameters processReadyParameter =
 Aws::GameLift::Server::ProcessParameters(
 std::bind(&Server::onStartGameSession, this, std::placeholders::_1),
 std::bind(&Server::onProcessTerminate, this),
 std::bind(&Server::OnHealthCheck, this),
 std::bind(&Server::OnUpdateGameSession, this),
 listenPort,
 Aws::GameLift::Server::LogParameters(logPaths));

3. Provide the ProcessParameters object when you call ProcessReady().

Aws::GameLift::GenericOutcome outcome =
 Aws::GameLift::Server::ProcessReady(processReadyParameter);

For a more complete example, see ProcessReady().

C#

To configure logging (C#)

1. Create a list of strings that are directory paths to game server log files.

List<string> logPaths = new List<string>();
logPaths.Add("C:\\game\\serverOut.txt"); // Example of a log file that the
 game server writes

2. Provide your list as the LogParameters of your ProcessParameters object.

var processReadyParameter = new ProcessParameters(
 this.OnGameSession,

Logging for custom servers 401

Amazon GameLift Developer Guide

 this.OnProcessTerminate,
 this.OnHealthCheck,
 this.OnGameSessionUpdate,
 port,
 new LogParameters(logPaths));

3. Provide the ProcessParameters object when you call ProcessReady().

var processReadyOutcome =
 GameLiftServerAPI.ProcessReady(processReadyParameter);

For a more complete example, see ProcessReady().

Writing to logs

Your log files exist after your server process has started. You can write to the logs using any
method to write to files. To capture all of your server's standard output and error output, remap
the output streams to log files, as in the following examples:

C++

std::freopen("serverOut.log", "w+", stdout);
std::freopen("serverErr.log", "w+", stderr);

C#

Console.SetOut(new StreamWriter("serverOut.txt"));
Console.SetError(new StreamWriter("serverErr.txt"));

Accessing server logs

When a game session ends, Amazon GameLift automatically stores the logs in an Amazon S3
bucket and retains them for 14 days. To get the location of the logs for a game session, you can use
the GetGameSessionLogUrl API operation. To download the logs, use the URL that the operation
returns.

Logging for custom servers 402

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetGameSessionLogUrl.html

Amazon GameLift Developer Guide

Logging server messages (Realtime Servers)

You can capture custom server messages from your Realtime Servers in log files. To learn about
logging for custom servers, see Logging server messages (custom servers).

There are different types of messages that you can ouptput to your log files (see Logging messages
in your server script). In addition to your custom messages, your Realtime Servers output system
messages using the same message types and write to the same log files. You can adjust the logging
level for your fleet to reduce the amount of logging messages that your servers generate (see
Adjusting the logging level).

Important

There is a limit on the size of a log file per game session (see Amazon GameLift endpoints
and quotas in the AWS General Reference). When a game session ends, Amazon GameLift
uploads the server logs to Amazon Simple Storage Service (Amazon S3). Amazon GameLift
will not upload logs that exceed the limit. Logs can grow very quickly and exceed the size
limit. You should monitor your logs and limit the log output to necessary messages only.

Logging messages in your server script

You can output custom messages in the script for your Realtime Servers. Use the following steps to
send server messages to a log file:

1. Create a varaible to hold the reference to the logger object.

var logger;

2. In the init() function, get the logger from the session object and assign it to your logger
variable.

function init(rtSession) {
 session = rtSession;
 logger = session.getLogger();
}

3. Call the appropriate function on the logger to output a message.

Debug messages

Logging for Realtime Servers 403

https://docs.aws.amazon.com/general/latest/gr/gamelift.html
https://docs.aws.amazon.com/general/latest/gr/gamelift.html

Amazon GameLift Developer Guide

logger.debug("This is my debug message...");

Informational messages

logger.info("This is my info message...");

Warning messages

logger.warn("This is my warn message...");

Error messages

logger.error("This is my error message...");

Fatal error messages

logger.fatal("This is my fatal error message...");

Customer experience fatal error messages

logger.cxfatal("This is my customer experience fatal error message...");

For an example of the logging statements in a script, see Realtime Servers script example.

The output in the log files indicates the type of message (DEBUG, INFO, WARN, ERROR, FATAL,
CXFATAL), as shown in the following lines from an example log:

09 Sep 2021 11:46:32,970 [INFO] (gamelift.js) 215: Calling GameLiftServerAPI.InitSDK...
09 Sep 2021 11:46:32,993 [INFO] (gamelift.js) 220: GameLiftServerAPI.InitSDK succeeded
09 Sep 2021 11:46:32,993 [INFO] (gamelift.js) 223: Waiting for Realtime server to
 start...
09 Sep 2021 11:46:33,15 [WARN] (index.js) 204: Connection is INSECURE. Messages will be
 sent/received as plaintext.

Logging for Realtime Servers 404

Amazon GameLift Developer Guide

Accessing server logs

When a game session ends, Amazon GameLift automatically stores the logs in Amazon S3 and
retains them for 14 days. You can use the GetGameSessionLogUrl API call to get the location of the
logs for a game session. Use URL returned by the API call to download the logs.

Adjusting the logging level

Logs can grow very quickly and exceed the size limit. You should monitor your logs and
limit the log output to necessary messages only. For Realtime Servers, you can adjust the
logging level by providing a parameter in your fleet's runtime configuration in the form
loggingLevel:LOGGING_LEVEL, where LOGGING_LEVEL is one of the following values:

1. debug

2. info (default)

3. warn

4. error

5. fatal

6. cxfatal

This list is ordered from least severe (debug) to most severe (cxfatal). You set a single
loggingLevel and the server will only log messages at that severity level or a higher severity
level. For example, setting loggingLevel:error will make all of the servers in your fleet only
write error, fatal, and cxfatal messages to the log.

You can set the logging level for your fleet when you create it or after it is running. Changing
your fleet's logging level after it is running will only affect logs for game sessions created after
the update. Logs for any existing game sessions won't be affected. If you don't set a logging level
when you create your fleet, your servers will set the logging level to info by default. Refer to the
following sections for instructions to set the logging level.

Setting the logging level when creating a Realtime Servers fleet (Console)

Follow the instructions at Create a Amazon GameLift managed fleet to create your fleet, with the
following addition:

• In the Server process allocation substep of the Process management step, provide the logging
level key-value pair (such as loggingLevel:error) as a value for Launch parameters. Use a

Logging for Realtime Servers 405

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetGameSessionLogUrl.html

Amazon GameLift Developer Guide

non-alphanumeric character (except comma) to separate the logging level from any additional
parameters (for example, loggingLevel:error +map Winter444).

Setting the logging level when creating a Realtime Servers fleet (AWS CLI)

Follow the instructions at Create a Amazon GameLift managed fleet to create your fleet, with the
following addition:

• In the argument to the --runtime-configuration parameter for create-fleet, provide
the logging level key-value pair (such as loggingLevel:error) as a value for Parameters.
Use a non-alphanumeric character (except comma) to separate the logging level from any
additional parameters. See the following example:

--runtime-configuration "GameSessionActivationTimeoutSeconds=60,
 MaxConcurrentGameSessionActivations=2,
 ServerProcesses=[{LaunchPath=/local/game/myRealtimeLaunchScript.js,
 Parameters=loggingLevel:error +map Winter444,
 ConcurrentExecutions=10}]"

Setting the logging level for a running Realtime Servers fleet (Console)

Follow the instructions at Update a fleet configuration to update your fleet using the Amazon
GameLift Console, with the following addition:

• On the Edit fleet page, under Server process allocation, provide the logging level key-value pair
(such as loggingLevel:error) as a value for Launch parameters. Use a non-alphanumeric
character (except comma) to separate the logging level from any additional parameters (for
example, loggingLevel:error +map Winter444).

Setting the logging level for a running Realtime Servers fleet (AWS CLI)

Follow the instructions at Update a fleet configuration to update your fleet using the AWS CLI, with
the following addition:

• In the argument to the --runtime-configuration parameter for update-runtime-
configuration, provide the logging level key-value pair (such as loggingLevel:error) as
a value for Parameters. Use a non-alphanumeric character (except comma) to separate the
logging level from any additional parameters. See the following example:

Logging for Realtime Servers 406

https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-fleet.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-runtime-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/update-runtime-configuration.html

Amazon GameLift Developer Guide

--runtime-configuration "GameSessionActivationTimeoutSeconds=60,
 MaxConcurrentGameSessionActivations=2,
 ServerProcesses=[{LaunchPath=/local/game/myRealtimeLaunchScript.js,
 Parameters=loggingLevel:error +map Winter444,
 ConcurrentExecutions=10}]"

Logging for Realtime Servers 407

Amazon GameLift Developer Guide

Security in Amazon GameLift

If you're using Amazon GameLift FleetIQ as a standalone feature with Amazon EC2, see Security in
Amazon EC2 in the Amazon EC2 User Guide.

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to Amazon GameLift,
see AWS services in scope by compliance program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company's
requirements, and applicable lAWS and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Amazon GameLift. The following topics show you how to configure Amazon GameLift to
meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your Amazon GameLift resources.

Topics

• Data protection in Amazon GameLift

• Identity and access management for Amazon GameLift

• Logging and monitoring with Amazon GameLift

• Compliance validation for Amazon GameLift

• Resilience in Amazon GameLift

• Infrastructure security in Amazon GameLift

• Configuration and vulnerability analysis in Amazon GameLift

408

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon GameLift Developer Guide

• Security best practices for Amazon GameLift

Data protection in Amazon GameLift

If you're using Amazon GameLift FleetIQ as a standalone feature with Amazon EC2, see Security in
Amazon EC2 in the Amazon EC2 User Guide.

The AWS shared responsibility model applies to data protection in Amazon GameLift. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Amazon GameLift or other AWS services using the console, API, AWS CLI, or
AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used
for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend
that you do not include credentials information in the URL to validate your request to that server.

Data protection 409

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Amazon GameLift Developer Guide

Amazon GameLift-specific data is handled as follows:

• Game server builds and scripts that you upload to Amazon GameLift are stored in Amazon S3.
There is no direct customer access to this data once it is uploaded. An authorized user can get
temporary access to upload files, but can't view or update the files in Amazon S3 directly. To
delete scripts and builds, use the Amazon GameLift console or the service API.

• Game session log data is stored in Amazon S3 for a limited period of time after the game
session is completed. Authorized users can access the log data by downloading it via a link in the
Amazon GameLift console or by calls to the service API.

• Metric and event data is stored in Amazon GameLift and can be accessed through the Amazon
GameLift console or by calls to the service API. Data can be retrieved on fleets, instances, game
session placements, matchmaking tickets, game sessions, and player sessions. Data can also be
accessed through Amazon CloudWatch and CloudWatch Events.

• Customer-supplied data is stored in Amazon GameLift . Authorized users can access it by calls
to the service API. Potentially sensitive data might include player data, player session and game
session data (including connection info), matchmaker data, and so on.

Note

If you provide custom player IDs in your requests, it is expected that these values are
anonymized UUIDs and contain no identifying player information.

For more information about data protection, see the AWS shared responsibility model and GDPR
blog post on the AWS Security Blog.

Encryption at rest

At-rest encryption of Amazon GameLift-specific data is handled as follows:

• Game server builds and scripts are stored in Amazon S3 buckets with server-side encryption.

• Customer-supplied data is stored in Amazon GameLift in an encrypted format.

Encryption in transit

Connections to the Amazon GameLift APIs are made over a secure (SSL) connection and
authenticated using AWS Signature Version 4 (when connecting through the AWS CLI or AWS SDK,

Encryption at rest 410

https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon GameLift Developer Guide

signing is handled automatically). Authentication is managed using the IAM-defined access policies
for the security credentials that are used to make the connection.

Direct communication between game clients and game servers is as follows:

• For custom game servers being hosted on Amazon GameLift resources, communication does not
involve the Amazon GameLift service. Encryption of this communication is the responsibility of
the customer. You can use TLS-enabled fleets to have your game clients authenticate the game
server on connection and to encrypt all communication between your game client and game
server.

• For Realtime Servers with TLS certificate generation enabled, traffic between game client and
Realtime servers using the Realtime Client SDK is encrypted in flight. TCP traffic is encrypted
using TLS 1.2, and UDP traffic is encrypted using DTLS 1.2.

Internetwork traffic privacy

You can remotely access your Amazon GameLift instances securely. For instances that use Linux,
SSH provides a secure communications channel for remote access. For instances that are running
Windows, use a remote desktop protocol (RDP) client. With Amazon GameLift FleetIQ, remote
access to your instances using AWS Systems Manager Session Manager and Run Command is
encrypted using TLS 1.2, and requests to create a connection are signed using SigV4. For help with
connecting to a managed Amazon GameLift instance, see Remotely connect to Amazon GameLift
fleet instances.

Identity and access management for Amazon GameLift

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Amazon GameLift resources. IAM is an AWS service that
you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon GameLift works with IAM

Internetwork traffic privacy 411

Amazon GameLift Developer Guide

• Identity-based policy examples for Amazon GameLift

• Troubleshooting Amazon GameLift identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Amazon GameLift.

Service user – If you use the Amazon GameLift service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more Amazon
GameLift features to do your work, you might need additional permissions. Understanding how
access is managed can help you request the right permissions from your administrator. If you
cannot access a feature in Amazon GameLift, see Troubleshooting Amazon GameLift identity and
access.

Service administrator – If you're in charge of Amazon GameLift resources at your company, you
probably have full access to Amazon GameLift. It's your job to determine which Amazon GameLift
features and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
Amazon GameLift, see How Amazon GameLift works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to Amazon GameLift. To view example Amazon GameLift
identity-based policies that you can use in IAM, see Identity-based policy examples for Amazon
GameLift.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Audience 412

Amazon GameLift Developer Guide

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For

Authenticating with identities 413

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html

Amazon GameLift Developer Guide

information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

Authenticating with identities 414

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

Amazon GameLift Developer Guide

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

Authenticating with identities 415

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

Amazon GameLift Developer Guide

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Managing access using policies 416

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline

Amazon GameLift Developer Guide

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If

Managing access using policies 417

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

Amazon GameLift Developer Guide

you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon GameLift works with IAM

Before you use IAM to manage access to Amazon GameLift, learn what IAM features are available
to use with Amazon GameLift.

IAM features you can use with Amazon GameLift

IAM feature Amazon GameLift support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

ABAC (tags in policies) Yes

How Amazon GameLift works with IAM 418

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon GameLift Developer Guide

IAM feature Amazon GameLift support

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how Amazon GameLift and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for Amazon GameLift

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Amazon GameLift

To view examples of Amazon GameLift identity-based policies, see Identity-based policy examples
for Amazon GameLift.

Resource-based policies within Amazon GameLift

Supports resource-based policies No

How Amazon GameLift works with IAM 419

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Amazon GameLift Developer Guide

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Amazon GameLift

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

For a list of Amazon GameLift actions, see Actions defined by Amazon GameLift in the Service
Authorization Reference.

Policy actions in Amazon GameLift use the following prefix before the action:

gamelift

How Amazon GameLift works with IAM 420

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazongamelift.html#amazongamelift-actions-as-permissions

Amazon GameLift Developer Guide

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "gamelift:action1",
 "gamelift:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "gamelift:Describe*"

To view examples of Amazon GameLift identity-based policies, see Identity-based policy examples
for Amazon GameLift.

Policy resources for Amazon GameLift

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

For a list of Amazon GameLift resource types and their ARNs, see Resources defined by Amazon
GameLift in the Service Authorization Reference. To learn with which actions you can specify the
ARN of each resource, see Actions defined by Amazon GameLift.

How Amazon GameLift works with IAM 421

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazongamelift.html#amazongamelift-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazongamelift.html#amazongamelift-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazongamelift.html#amazongamelift-actions-as-permissions

Amazon GameLift Developer Guide

Some Amazon GameLift resources have ARN values, which allows the resources to have their access
managed using IAM policies. The Amazon GameLift fleet resource has an ARN with the following
syntax:

arn:${Partition}:gamelift:${Region}:${Account}:fleet/${FleetId}

For more information about the format of ARNs, see Amazon Resource Names (ARNs) in the AWS
General Reference.

For example, to specify the fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa fleet in your
statement, use the following ARN:

"Resource": "arn:aws:gamelift:us-west-2:123456789012:fleet/
fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa"

To specify all fleets that belong to a specific account, use a wildcard (*):

"Resource": "arn:aws:gamelift:us-west-2:123456789012:fleet/*"

To view examples of Amazon GameLift identity-based policies, see Identity-based policy examples
for Amazon GameLift.

Policy condition keys for Amazon GameLift

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple

How Amazon GameLift works with IAM 422

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

Amazon GameLift Developer Guide

values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

For a list of Amazon GameLift condition keys, see Condition keys for Amazon GameLift in the
Service Authorization Reference. To learn with which actions and resources you can use a condition
key, see Actions defined by Amazon GameLift.

To view examples of Amazon GameLift identity-based policies, see Identity-based policy examples
for Amazon GameLift.

ACLs in Amazon GameLift

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Amazon GameLift

Supports ABAC (tags in policies) Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

How Amazon GameLift works with IAM 423

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazongamelift.html#amazongamelift-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazongamelift.html#amazongamelift-actions-as-permissions

Amazon GameLift Developer Guide

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

For an example identity-based policy that limits access to a resource based on the tags on that
resource, see View Amazon GameLift fleets based on tags.

Using temporary credentials with Amazon GameLift

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for Amazon GameLift

Supports forward access sessions (FAS) Yes

How Amazon GameLift works with IAM 424

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Amazon GameLift Developer Guide

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Amazon GameLift

Supports service roles Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Amazon GameLift functionality.
Edit service roles only when Amazon GameLift provides guidance to do so.

Allow your Amazon GameLift-hosted game servers to access other AWS resources, such as an AWS
Lambda function or an Amazon DynamoDB database. Because game servers are hosted on fleets
that Amazon GameLift manages, you need a service role that gives Amazon GameLift limited
access to your other AWS resources. For more information, see Communicate with other AWS
resources from your fleets.

Service-linked roles for Amazon GameLift

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

How Amazon GameLift works with IAM 425

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon GameLift Developer Guide

For details about creating or managing service-linked roles, see AWS services that work with IAM
in the IAM User Guide. Find a service in the table that includes a Yes in the Service-linked roles
column. Choose Yes to view the service-linked role documentation for that service.

Identity-based policy examples for Amazon GameLift

By default, users and roles don't have permission to create or modify Amazon GameLift resources.
They also can't perform tasks by using the AWS Management Console, AWS Command Line
Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the resources
that they need, an IAM administrator can create IAM policies. The administrator can then add the
IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Amazon GameLift, including the format
of the ARNs for each of the resource types, see Actions, resources, and condition keys for Amazon
GameLift in the Service Authorization Reference.

Topics

• Policy best practices

• Using the Amazon GameLift console

• Allow users to view their own permissions

• Allow player access for game sessions

• Allow access to one Amazon GameLift queue

• View Amazon GameLift fleets based on tags

• Access a game build file in Amazon S3

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon GameLift
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We

Identity-based policy examples 426

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazongamelift.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazongamelift.html

Amazon GameLift Developer Guide

recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Amazon GameLift console

To access the Amazon GameLift console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the Amazon GameLift resources in your
AWS account. If you create an identity-based policy that is more restrictive than the minimum
required permissions, the console won't function as intended for entities (users or roles) with that
policy.

Identity-based policy examples 427

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon GameLift Developer Guide

To ensure that those entities can still use the Amazon GameLift console, add permissions to users
and groups with the syntax in the following examples and in Administrator permission examples.
For more information, see Manage user permissions for Amazon GameLift.

Users that work with Amazon GameLift through AWS CLI or AWS API operations don't require
minimum console permissions. Instead, you can limit access to only the operations the user needs
to perform. For example, a player user, acting on behalf of game clients, requires access to request
game sessions, place players into games, and other tasks.

For information about the permissions required to use all Amazon GameLift console features, see
permissions syntax for administrators in Administrator permission examples.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",

Identity-based policy examples 428

Amazon GameLift Developer Guide

 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Allow player access for game sessions

To place players into game sessions, game clients and backend services need permissions. For
policy examples for these scenarios, see Player user permission examples.

Allow access to one Amazon GameLift queue

The following example provides a user with access to a specific Amazon GameLift queues.

This policy grants the user permissions to add, update, and delete queue
destinations with the following actions: gamelift:UpdateGameSessionQueue,
gamelift:DeleteGameSessionQueue, and gamelift:DescribeGameSessionQueues.
As shown, this policy uses the Resource element to limit access to a single queue:
gamesessionqueue/examplequeue123.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"ViewSpecificQueueInfo",
 "Effect":"Allow",
 "Action":[
 "gamelift:DescribeGameSessionQueues"
],
 "Resource":"arn:aws:gamelift:::gamesessionqueue/examplequeue123"
 },
 {
 "Sid":"ManageSpecificQueue",
 "Effect":"Allow",
 "Action":[
 "gamelift:UpdateGameSessionQueue",
 "gamelift:DeleteGameSessionQueue"
],

Identity-based policy examples 429

Amazon GameLift Developer Guide

 "Resource":"arn:aws:gamelift:::gamesessionqueue/examplequeue123"
 }
]
}

View Amazon GameLift fleets based on tags

You can use conditions in your identity-based policy to control access to Amazon GameLift
resources based on tags. This example shows how you can create a policy that allows viewing
a fleet if the Owner tag matches the user's user name. This policy also grants the permissions
necessary to complete this operation in the console.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListFleetsInConsole",
 "Effect": "Allow",
 "Action": "gamelift:ListFleets",
 "Resource": "*"
 },
 {
 "Sid": "ViewFleetIfOwner",
 "Effect": "Allow",
 "Action": "gamelift:DescribeFleetAttributes",
 "Resource": "arn:aws:gamelift:*:*:fleet/*",
 "Condition": {
 "StringEquals": {"gamelift:ResourceTag/Owner": "${aws:username}"}
 }
 }
]
}

Access a game build file in Amazon S3

After you integrate your game server with Amazon GameLift, upload the build files to Amazon S3.
For Amazon GameLift to access the build files, use the following policy.

{
 "Version": "2012-10-17",
 "Statement": [

Identity-based policy examples 430

Amazon GameLift Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": "arn:aws:s3:::bucket-name/object-name"
 }
]
}

For more information about uploading Amazon GameLift game files, see Upload a custom server
build to Amazon GameLift.

Troubleshooting Amazon GameLift identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon GameLift and AWS Identity and Access Management (IAM).

Topics

• I am not authorized to perform an action in Amazon GameLift

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Amazon GameLift resources

I am not authorized to perform an action in Amazon GameLift

If the AWS Management Console tells you that you're not authorized to perform an action, contact
your AWS account administrator for assistance. Your administrator is the person that provided you
with your sign-in credentials.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a queue but doesn't have gamelift:DescribeGameSessionQueues
permissions:

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 gamelift:DescribeGameSessionQueues on resource: examplequeue123

Troubleshooting 431

Amazon GameLift Developer Guide

In this case, Mateo asks his administrator to update his policies to allow him read access for the
examplequeue123 resource using the gamelift:DescribeGameSessionQueues action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Amazon GameLift.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Amazon GameLift. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Amazon GameLift
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Amazon GameLift supports these features, see How Amazon GameLift works
with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

Troubleshooting 432

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html

Amazon GameLift Developer Guide

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Logging and monitoring with Amazon GameLift

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon GameLift and your AWS solutions. You should collect monitoring data from all of the parts
of your AWS solution so that you can more easily debug a multi-point failure if one occurs.

AWS and Amazon GameLift provide several tools for monitoring your game hosting resources and
responding to potential incidents.

Amazon CloudWatch Alarms

Using Amazon CloudWatch alarms, you watch a single metric over a time period that you specify.
If the metric exceeds a given threshold, a notification is sent to an Amazon SNS topic or AWS Auto
Scaling policy. CloudWatch alarms are triggered when their state changes and is maintained for a
specified number of periods, not by being in a particular state. For more information, see Monitor
Amazon GameLift with Amazon CloudWatch.

AWS CloudTrail Logs

CloudTrail provides a record of actions taken by a user, role, or an AWS service in Amazon GameLift.
Using the information collected by CloudTrail, you can determine the request that was made to
Amazon GameLift, the IP address from which the request was made, who made the request, when
it was made, and additional details. For more information, see Logging Amazon GameLift API calls
with AWS CloudTrail.

Compliance validation for Amazon GameLift

Amazon GameLift is not in scope of any AWS compliance programs.

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

Logging and monitoring with Amazon GameLift 433

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/

Amazon GameLift Developer Guide

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

Compliance validation 434

https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html

Amazon GameLift Developer Guide

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in Amazon GameLift

If you're using Amazon GameLift FleetIQ as a standalone feature with Amazon EC2, see Security in
Amazon EC2 in the Amazon EC2 User Guide.

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS global infrastructure.

In addition to the AWS global infrastructure, Amazon GameLift offers the following features to
help support your data resiliency needs:

• Multi-region queues – Amazon GameLift game session queues are used to place new game
sessions with available hosting resources. Queues that span multiple Regions are able to redirect
game session placements in the event of a regional outage. For more information and best
practices on creating game session queues, see Design a game session queue.

• Automatic capacity scaling – Maintain the health and availability of your hosting resources by
using Amazon GameLift scaling tools. These tools provide a range of options that let you adjust
fleet capacity to fit the needs of your game and players. For more information on scaling, see
Scaling Amazon GameLift hosting capacity.

• Distribution across instances – Amazon GameLift distributes incoming traffic across multiple
instances, depending on fleet size. As a best practice, games in production should have multiple
instances to maintain availability in case an instance becomes unhealthy or unresponsive.

• Amazon S3 storage – Game server builds and scripts that are uploaded to Amazon GameLift
are stored in Amazon S3 using the Standard storage class, which uses multiple data center
replications to increase resilience. Game session logs are also stored in Amazon S3 using the
Standard storage class.

Resilience 435

https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html
https://aws.amazon.com/about-aws/global-infrastructure/

Amazon GameLift Developer Guide

Infrastructure security in Amazon GameLift

If you're using Amazon GameLift FleetIQ as a standalone feature with Amazon EC2, see Security in
Amazon EC2 in the Amazon EC2 User Guide.

As a managed service, Amazon GameLift is protected by the AWS global network security
procedures that are described in the Amazon Web Services: Overview of security processes
whitepaper.

You use AWS published API calls to access Amazon GameLift through the network. Clients must
support Transport Layer Security (TLS) 1.2 or later. We recommend TLS 1.3 or later. Clients must
also support cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman
(DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7
and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

The Amazon GameLift service places all fleets into Amazon virtual private clouds (VPCs) so that
each fleet exists in a logically isolated area in the AWS Cloud. You can use Amazon GameLift
policies to control access from specific VPC endpoints or specific VPCs. Effectively, this isolates
network access to a given Amazon GameLift resource from only the specific VPC within the AWS
network. When you create a fleet, you specify a range of port numbers and IP addresses. These
ranges limit how inbound traffic can access hosted game servers on a fleet VPC. Use standard
security best practices when choosing fleet access settings.

Configuration and vulnerability analysis in Amazon GameLift

If you're using Amazon GameLift FleetIQ as a standalone feature with Amazon EC2, see Security in
Amazon EC2 in the Amazon EC2 User Guide.

Configuration and IT controls are a shared responsibility between AWS and you, our customer.
For more information, see the AWS shared responsibility model. AWS handles basic security tasks
like guest operating system (OS) and database patching, firewall configuration, and disaster
recovery. These procedures have been reviewed and certified by the appropriate third parties. For
more details, see the following resource: Amazon Web Services: Overview of security processes
(whitepaper).

Infrastructure security 436

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf

Amazon GameLift Developer Guide

The following security best practices also address configuration and vulnerability analysis in
Amazon GameLift:

• Customers are responsible for the management of software that is deployed to Amazon
GameLift instances for game hosting. Specifically:

• Customer-provided game server application software should be maintained, including
updates and security patches. To update game server software, upload a new build to Amazon
GameLift, create a new fleet for it, and redirect traffic to the new fleet.

• The base Amazon Machine Image (AMI), which includes the operating system, is updated only
when a new fleet is created. To patch, update, and secure the operating system and other
applications that are part of the AMI, recycle fleets on a regular basis, regardless of game
server updates.

• Customers should consider regularly updating their games with the latest SDK versions,
including the AWS SDK, the Amazon GameLift Server SDK, and the Amazon GameLift Client SDK
for Realtime Servers.

Security best practices for Amazon GameLift

If you're using Amazon GameLift FleetIQ as a standalone feature with Amazon EC2, see Security in
Amazon EC2 in the Amazon EC2 User Guide.

Amazon GameLift provides a number of security features to consider as you develop and
implement your own security policies. The following best practices are general guidelines and don't
represent a complete security solution. Because these best practices might not be appropriate or
sufficient for your environment, treat them as helpful considerations rather than prescriptions.

Don't open ports to the Internet

We strongly recommend against opening ports to the Internet because doing so poses a security
risk. For example, if you use UpdateFleetPortSettings to open a remote desktop port like this:

{
 "FleetId": "<fleet identifier>",
 "InboundPermissionAuthorizations": [
 {
 "FromPort": 3389,
 "IpRange": "0.0.0.0/0",
 "Protocol": "RDP",

Security best practices 437

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateFleetPortSettings.html

Amazon GameLift Developer Guide

 "ToPort": 3389
 }
]
}

then you are allowing anyone on the Internet to access the instance.

Instead, open the port with a specific IP address or range of addresses. For example, like this:

{
 "FleetId": "<fleet identifier>",
 "InboundPermissionAuthorizations": [
 {
 "FromPort": 3389,
 "IpRange": "54.186.139.221/32",
 "Protocol": "TCP",
 "ToPort": 3389
 }
]
}

Learn more

For more information about how you can make your use of Amazon GameLift more secure, see the
AWS Well-Architected Tool Security pillar..

Learn more 438

https://wa.aws.amazon.com/wat.pillar.security.en.html

Amazon GameLift Developer Guide

Amazon GameLift reference guides

This section contains reference documentation for using Amazon GameLift.

Topics

• Amazon GameLift service API reference (AWS SDK)

• Amazon GameLift server SDK reference

• Game session placement events

• Amazon GameLift Realtime Servers reference

Amazon GameLift service API reference (AWS SDK)

This topic provides a task-based list of API operations for use with Amazon GameLift managed
hosting solutions, including hosting for custom game servers and Realtime Servers. These
operations are packaged into the AWS SDK in the aws.gamelift namespace.Download the AWS
SDK or view the Amazon GameLift API reference documentation.

The API includes two sets of operations for managed game hosting:

• Set up and manage Amazon GameLift hosting resources

• Start game sessions and join players

The Amazon GameLift Service API also contains operations for use with other Amazon GameLift
tools and solutions. For a list of FleetIQ APIs, see FleetIQ API actions. For a list of FlexMatch APIs
for matchmaking, see FlexMatch API actions.

Set up and manage Amazon GameLift hosting resources

Call these operations to configure hosting resources for your game servers, scale capacity to meet
player demand, access performance and utilization metrics, and more. These API operations are
used with game servers that are hosted on Amazon GameLift, including Realtime Servers. You can
use the Amazon GameLift console for most resource management tasks, or you can make calls to
the service using the AWS Command Line Interface (AWS CLI) tool or the AWS SDK.

Service API reference (AWS SDK) 439

https://aws.amazon.com/developer/tools/#SDKs
https://aws.amazon.com/developer/tools/#SDKs
https://docs.aws.amazon.com/gamelift/latest/apireference/Welcome.html
https://docs.aws.amazon.com/gamelift/latest/fleetiqguide/reference-awssdk-fleetiq.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/reference-awssdk-flex.html
https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

Prepare game servers for deployment

Upload and configure your game's game server code in preparation for deployment and launching
on hosting resources.

Manage custom game server builds

• upload-build – Upload build files from a local path and create a new Amazon GameLift build
resource. This operation, available only as an AWS CLI command, is the most common method
for uploading game server builds.

• CreateBuild – Create a new build using files stored in an Amazon S3 bucket.

• ListBuilds – Get a list of all builds uploaded to a Amazon GameLift region.

• DescribeBuild – Retrieve information associated with a build.

• UpdateBuild – Change build metadata, including build name and version.

• DeleteBuild – Remove a build from Amazon GameLift.

Manage Realtime Servers configuration scripts

• CreateScript – Upload JavaScript files and create a new Amazon GameLift script resource.

• ListScripts – Get a list of all Realtime scripts uploaded to a Amazon GameLift region.

• DescribeScript – Retrieve information associated with a Realtime script.

• UpdateScript – Change script metadata and upload revised script content.

• DeleteScript – Remove a Realtime script from Amazon GameLift.

Set up computing resources for hosting

Configure hosting resources and deploy them with your game server build or Realtime
configuration script.

Create and manage fleets

• CreateFleet – Configure and deploy a new Amazon GameLift fleet of computing resources to run
your game servers. Once deployed, game servers are automatically launched as configured and
ready to host game sessions.

• ListFleets – Get a list of all fleets in a Amazon GameLift region.

• DeleteFleet – Terminate a fleet that is no longer running game servers or hosting players.

Set up and manage Amazon GameLift hosting resources 440

https://docs.aws.amazon.com/cli/latest/reference/gamelift/upload-build.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateBuild.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_ListBuilds.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeBuild.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateBuild.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteBuild.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateScript.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_ListScripts.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeScript.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateScript.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteScript.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateFleet.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_ListFleets.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteFleet.html

Amazon GameLift Developer Guide

• View / update fleet locations.

• CreateFleetLocations – Add remote locations to an existing fleet that supports multiple
locations

• DescribeFleetLocationAttributes – Get a list of all remote locations for a fleet and view the
current status of each location.

• DeleteFleetLocations – Remove remote locations from a fleet that supports multiple locations.

• View / update fleet configurations.

• DescribeFleetAttributes / UpdateFleetAttributes – View or change a fleet's metadata and
settings for game session protection and resource creation limits.

• DescribeFleetPortSettings / UpdateFleetPortSettings – View or change the inbound
permissions (IP address and port setting ranges) allowed for a fleet.

• DescribeRuntimeConfiguration / UpdateRuntimeConfiguration – View or change what server
processes (and how many) to run on each instance in a fleet.

Manage fleet capacity

• DescribeEC2InstanceLimits – Retrieve maximum number of instances allowed for the current
AWS account and the current usage level.

• DescribeFleetCapacity – Retrieve the current capacity settings for a fleet's home Region.

• DescribeFleetLocationCapacity – Retrieve the current capacity settings for each location a multi-
location fleet.

• UpdateFleetCapacity – Manually adjust capacity settings for a fleet.

• Set up auto-scaling:

• PutScalingPolicy – Turn on target-based auto-scaling or create a custom auto-scaling policy, or
update an existing policy.

• DescribeScalingPolicies – Retrieve an existing auto-scaling policy.

• DeleteScalingPolicy – Delete an auto-scaling policy and stop it from affecting a fleet's capacity.

• StartFleetActions – Restart a fleet's auto-scaling policies.

• StopFleetActions – Suspend a fleet's auto-scaling policies.

Monitor fleet activity.

Set up and manage Amazon GameLift hosting resources 441

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateFleetLocations.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetLocationAttributes.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteFleetLocations.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetAttributes.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateFleetAttributes.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetPortSettings.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateFleetPortSettings.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeRuntimeConfiguration.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateRuntimeConfiguration.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeEC2InstanceLimits.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetCapacity.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetLocationCapacity.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateFleetCapacity.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_PutScalingPolicy.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeScalingPolicies.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteScalingPolicy.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartFleetActions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StopFleetActions.html

Amazon GameLift Developer Guide

• DescribeFleetUtilization – Retrieve statistics on the number of server processes, game sessions,
and players that are currently active on a fleet.

• DescribeFleetLocationUtilization – Retrieve utilization statistics for each location in a multi-
location fleet.

• DescribeFleetEvents – View logged events for a fleet during a specified time span.

• DescribeGameSessions – Retrieve game session metadata, including a game's running time and
current player count.

Set up queues for optimal game session placement

Set up multi-fleet, multi-region queues to place game sessions with the best available hosting
resources for cost, latency, and resiliency.

• CreateGameSessionQueue – Create a queue for use when processing requests for game session
placements.

• DescribeGameSessionQueues – Retrieve game session queues defined in a Amazon GameLift
region.

• UpdateGameSessionQueue – Change the configuration of a game session queue.

• DeleteGameSessionQueue – Remove a game session queue from the region.

Manage aliases

Use aliases to represent your fleets or create a terminal alternative destination. Aliases are useful
when transitioning game activity from one fleet to another, such as during game server build
updates.

• CreateAlias – Define a new alias and optionally assign it to a fleet.

• ListAliases – Get all fleet aliases defined in a Amazon GameLift region.

• DescribeAlias – Retrieve information on an existing alias.

• UpdateAlias – Change settings for an alias, such as redirecting it from one fleet to another.

• DeleteAlias – Remove an alias from the region.

• ResolveAlias – Get the fleet ID that a specified alias points to.

Set up and manage Amazon GameLift hosting resources 442

https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetUtilization.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetLocationUtilization.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetEvents.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSessionQueue.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionQueues.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateGameSessionQueue.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteGameSessionQueue.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateAlias.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_ListAliases.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeAlias.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateAlias.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteAlias.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_ResolveAlias.html

Amazon GameLift Developer Guide

Access hosting instances

View information on individual instances in a fleet, or request remote access to a specified fleet
instance for troubleshooting.

• DescribeInstances – Get information on each instance in a fleet, including instance ID, IP address,
location, and status.

• GetInstanceAccess – Request access credentials needed to remotely connect to a specified
instance in a fleet.

Set up VPC peering

Create and manage VPC peering connections between your Amazon GameLift hosting resources
and other AWS resources.

• CreateVpcPeeringAuthorization – Authorize a peering connection to one of your VPCs.

• DescribeVpcPeeringAuthorizations – Retrieve valid peering connection authorizations.

• DeleteVpcPeeringAuthorization – Delete a peering connection authorization.

• CreateVpcPeeringConnection – Establish a peering connection between the VPC for a Amazon
GameLift fleet and one of your VPCs.

• DescribeVpcPeeringConnections – Retrieve information on active or pending VPC peering
connections with a Amazon GameLift fleet.

• DeleteVpcPeeringConnection – Delete a VPC peering connection with a Amazon GameLift fleet.

Start game sessions and join players

Call these operations from your game client service to start new game sessions, get information
on existing game sessions, and join players to game sessions. These operations are for use with
custom game servers that are hosted on Amazon GameLift. If you're using Realtime Servers,
manage game sessions using the Realtime Servers client API (C#) reference.

• Start new game sessions for one or more players.

• StartGameSessionPlacement – Ask Amazon GameLift to find the best available hosting
resources and start a new game session. This is the preferred method for creating new game
sessions. It relies on game session queues to track hosting availability across multiple regions,

Start game sessions and join players 443

https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeInstances.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetInstanceAccess.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateVpcPeeringAuthorization.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeVpcPeeringAuthorizations.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteVpcPeeringAuthorization.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateVpcPeeringConnection.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeVpcPeeringConnections.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteVpcPeeringConnection.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartGameSessionPlacement.html

Amazon GameLift Developer Guide

and uses FleetIQ algorithms to prioritize placements based on player latency, hosting cost,
location, etc.

• DescribeGameSessionPlacement – Get details and status on a placement request.

• StopGameSessionPlacement – Cancel a placement request.

• CreateGameSession – Start a new, empty game session on a specific fleet location. This
operation gives you greater control over where to start the game session, instead of using
FleetIQ to evaluate placement options. You must add players to the new game session in a
separate step.

• Get players into existing game sessions. Find running game sessions with available player slots
and reserve them for new players.

• CreatePlayerSession – Reserve an open slot for a player to join a game session.

• CreatePlayerSessions – Reserve open slots for multiple players to join a game session.

• Work with game session and player session data. Manage information on game sessions and
player sessions.

• SearchGameSessions – Request a list of active game sessions based on a set of search criteria.

• DescribeGameSessions – Retrieve metadata for specific game sessions, including length of
time active and current player count.

• DescribeGameSessionDetails – Retrieve metadata, including the game session protection
setting, for one or more game sessions.

• DescribePlayerSessions – Get details on player activity, including status, playing time, and
player data.

• UpdateGameSession – Change game session settings, such as maximum player count and join
policy.

• GetGameSessionLogUrl – Get the location of saved logs for a game session.

Amazon GameLift server SDK reference

This section provides reference documentation for the Amazon GameLift server SDK. The server
SDK provides core functionality that your game servers need to communicate with the Amazon
GameLift service. For example, your game server receives prompts from the service to start and
stop game sessions and it provides regular game session status updates to the service. Integrate
your game servers with the server SDK before you deploy them for hosting.

Server SDK reference 444

https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StopGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_SearchGameSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionDetails.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribePlayerSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetGameSessionLogUrl.html

Amazon GameLift Developer Guide

The latest major version of the Amazon GameLift server SDK is 5.x. The following hosting features
require updates to version 5.x:

• Managed hosting with Amazon GameLift containers

• Hosting with Amazon GameLift Anywhere

Topics

• Migrate to Amazon GameLift server SDK 5.x

• Amazon GameLift server SDK reference for C++

• Amazon GameLift server SDK reference for C#

• Amazon GameLift server SDK reference for Go

• Amazon GameLift server SDK reference for Unreal Engine

Migrate to Amazon GameLift server SDK 5.x

Your hosted game servers use the Amazon GameLift server SDK to communicate with the Amazon
GameLift service to start and manage game sessions for players. The latest version, Amazon
GameLift server SDK 5, offers a number of improvements and support for new Amazon GameLift
features. If your game server build currently uses Amazon GameLift server SDK 4 or earlier, follow
the guidance in this topic to update your games.

About Amazon GameLift server SDK 5

Amazon GameLift server SDK version 5.0.0 and above includes these updates:

• Expanded languages – Libraries are available in the following languages: C++, C#, Go. You can
build the C++ libraries for use with Unreal Engine.

• Game engine plugin support – The Amazon GameLift standalone plugins for Unreal Engine and
Unity require Amazon GameLift server SDK 5 libraries. These plugins offer guided workflows for
integrating, testing, and deploying your games to Amazon GameLift for hosting. See Amazon
GameLift plugin for Unity guide for server SDK 5.x and Integrating games with the Amazon
GameLift plugin for Unreal Engine documentation.

• Amazon GameLift Anywhere support – With Anywhere fleets you can set up your own hosting
resources to use Amazon GameLift features (including matchmaking). Add the Amazon GameLift
Agent to automate game session life cycle management. Use Anywhere fleets for production
hosting with on- premises hardware, or set up test environments for fast iterative game

Migrate to server SDK 5.x 445

Amazon GameLift Developer Guide

development. See Amazon GameLift Anywhere hardware hosting and the Amazon GameLift
Agent.

• Updated testing tools – The Amazon GameLift Anywhere feature lets you set up local or cloud-
based test environments for your games. Set up testing with or without the Amazon GameLift
Agent. These tools replace Amazon GameLift Local. See Set up local testing with Amazon
GameLift Anywhere.

• Consolidated .NET solution for C# – The C# server SDK 5.1+ supports .NET Framework 4.6.2
(upgraded from 4.6.1) and .NET 6.0 in a single solution. .NET Standard 2.1 is available with the
Unity-built libraries.

• New Compute resource – This new resource combines different types of hosting resources.
It includes cloud-based hosting resources (managed EC2 or container fleets) and customer-
controlled hosting resources (Anywhere fleets). It includes the following updates:

• New API calls for the Compute resource include: ListCompute(), DescribeCompute(), and
GetComputeAccess(). These actions return hosting resource information for any type of
Amazon GameLift fleet. In general, for fleets with game servers that use server SDK 5.x, use
the compute-specific actions to replace instance-specific actions. In addition, these actions
are for use in Anywhere fleets without the Amazon GameLift Agent: RegisterCompute(),
DeregisterCompute(), and GetComputeAuthToken().

• New metric ActiveCompute with CloudWatch dimensions FleetId, Location, and
ComputeType. This metric replaces the previous metric ActiveInstances.

• Amazon EC2 Systems Manager (SSM)for remote access – For added security, use SSM instead of
SSH when connecting to instances in Amazon GameLift managed fleets. See Remotely connect
to Amazon GameLift fleet instances.

Update your game code

To update a game project to use server SDK version 5.x, make the following changes:

1. Get the latest Amazon GameLift Server SDK package for your development environment
[Download site]. Follow the install instructions in the Readme file for your downloaded
package and version. See these instructions for using the server SDKs with your game project.

• For development environments using C++, C#, or Go

• For Unreal Engine projects (C++ server SDK for Unreal libraries only)

• For Unity projects (C# server SDK for Unity libraries only)

Migrate to server SDK 5.x 446

https://github.com/aws/amazon-gamelift-agent
https://github.com/aws/amazon-gamelift-agent
https://docs.aws.amazon.com/gamelift/latest/apireference/API_ListCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAccess.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeregisterCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAuthToken.html
https://aws.amazon.com/gamelift/getting-started-sdks/

Amazon GameLift Developer Guide

• For use with the Amazon GameLift plugin for Unreal Engine

• For use with the Amazon GameLift plugin for Unity

2. Update your server code as follows:

• Change the server code callback function onCreateGameSession() to
onStartGameSession().

• Update the InitSDK() inputs as appropriate:

• If you plan to deploy the game server build to either an Amazon GameLift managed EC2
fleet or an Anywhere fleet with the Amazon GameLift Agent:

Call InitSDK() with no parameters (C++) (C#) (Unreal) (Go). This call sets up the compute
environment and a WebSocket connection to the Amazon GameLift service.

• If you plan to deploy the game server build to an Anywhere fleet without the Amazon
GameLift Agent:

Call InitSDK() with server parameters (C++) (C#) (Unreal) (Go). A game server process
uses these parameters to establish a connection with the Amazon GameLift service.

3. If your game server build or other hosted applications communicate with other AWS resources
while running, you'll need to change how the application gets access to those resources.
Replace the use of AssumeRoleCredentials with the new Amazon GameLift server SDK
action GetFleetRoleCredentials() (for game servers) or use shared credentials (for other
applications). For more on how to implement this change, see Communicate with other AWS
resources from your fleets.

4. If your project called the server SDK action GetInstanceCertificate() to retrieve a TLS
certificate, modify your code to use the new GetComputeCertificate() (C++) (C#) (Unreal)
(Go) instead.

5. When uploading your game build to Amazon GameLift (such as with upload-build or
CreateBuild()), set the ServerSdkVersion parameter to the 5.x version you're using (this
parameter currently defaults to 4.0.2). This parameter must match the actual server SDK
libraries in the game server build. If you specify the wrong version for an uploaded game
server build, any fleets you create with that build will fail. See Upload a custom server build to
Amazon GameLift.

The following example illustrates how to specify the server SDK version:

aws gamelift upload-build \

Migrate to server SDK 5.x 447

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/upload-build.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateBuild.html

Amazon GameLift Developer Guide

 --operating-system AMAZON_LINUX_2023 \
 --server-sdk-version "5.0.0" \
 --build-root "~/mygame" \
 --name "My Game Nightly Build" \
 --build-version "build 255" \
 --region us-west-2

6. If you use scripts to remotely connect to managed fleets, update the scripts to use the new
process, as described in Remotely connect to Amazon GameLift fleet instances.

Amazon GameLift server SDK reference for C++

You can use this Amazon GameLift C++ server SDK reference to help you prepare your multiplayer
game for use with Amazon GameLift. For details about the integration process, see Add Amazon
GameLift to your game server.

Topics

• Amazon GameLift server SDK 5.x reference for C++

• Amazon GameLift C++ server SDK 3.x reference

Amazon GameLift server SDK 5.x reference for C++

This Amazon GameLift C++ Server SDK 5.x reference can help you prepare your multiplayer
game for use with Amazon GameLift. For details about the integration process, see Add Amazon
GameLift to your game server.

Note

This topic describes the Amazon GameLift C++ API that you can use when you build with
the C++ Standard Library (std). Specifically, this documentation applies to code that you
compile with the -DDGAMELIFT_USE_STD=1 option.

Topics

• Amazon GameLift server SDK (C++) 5.x reference: Actions

• Amazon GameLift server SDK (C++) reference: Data types

Server SDK reference for C++ 448

Amazon GameLift Developer Guide

Amazon GameLift server SDK (C++) 5.x reference: Actions

You can use this Amazon GameLift C++ server SDK reference to help you prepare your multiplayer
game for use with Amazon GameLift. For details about the integration process, see Add Amazon
GameLift to your game server.

Note

This topic describes the Amazon GameLift C++ API that you can use when you build with
the C++ Standard Library (std). Specifically, this documentation applies to code that you
compile with the -DDGAMELIFT_USE_STD=1 option.

Actions

• GetSdkVersion()

• InitSDK()

• InitSDK()

• ProcessReady()

• ProcessReadyAsync()

• ProcessEnding()

• ActivateGameSession()

• UpdatePlayerSessionCreationPolicy()

• GetGameSessionId()

• GetTerminationTime()

• AcceptPlayerSession()

• RemovePlayerSession()

• DescribePlayerSessions()

• StartMatchBackfill()

• StopMatchBackfill()

• GetComputeCertificate()

• GetFleetRoleCredentials()

• Destroy()

Server SDK reference for C++ 449

Amazon GameLift Developer Guide

GetSdkVersion()

Returns the current version number of the SDK built into the server process.

Syntax

Aws::GameLift::AwsStringOutcome Server::GetSdkVersion();

Return value

If successful, returns the current SDK version as an the section called “AwsStringOutcome” object.
The returned object includes the version number (example 5.0.0). If not successful, returns an
error message.

Example

Aws::GameLift::AwsStringOutcome SdkVersionOutcome =
 Aws::GameLift::Server::GetSdkVersion();

InitSDK()

Initializes the Amazon GameLift SDK. Call this method on launch before any other initialization
steps related to Amazon GameLift. This action reads server parameters from the host environment
to set up communication between the game server process and the Amazon GameLift service.

If the game server build will be deployed without the Amazon GameLift Agent to a Amazon
GameLift Anywhere fleet or container fleet, call InitSDK() and specify a set of server parameters.

Syntax

Server::InitSDKOutcome Server::initSdkOutcome = InitSDK();

Return value

Returns an the section called “InitSDKOutcome” object that indicates whether the server process is
ready to call ProcessReady().

Example

//Call InitSDK to establish a local connection with the GameLift agent to enable
 further communication.

Server SDK reference for C++ 450

Amazon GameLift Developer Guide

Aws::GameLift::Server::InitSDKOutcome initSdkOutcome =
 Aws::GameLift::Server::InitSDK();

InitSDK()

Initializes the Amazon GameLift SDK. Call this method on launch before any other initialization
steps related to Amazon GameLift. This action requires a set of server parameters to set up
communication between the game server process and the Amazon GameLift service.

If the game server build will be deployed to an Amazon GameLift managed EC2 fleet or to an
Amazon GameLift Anywhere fleet or container fleet with the Amazon GameLift Agent, call
InitSDK() without server parameters.

Syntax

Server::InitSDKOutcome Server::initSdkOutcome = InitSDK(serverParameters);

Parameters

ServerParameters

To initialize a game server on an Amazon GameLift Anywhere fleet, construct a
ServerParameters object with the following information:

• The URL of the WebSocket used to connect to your game server.

• The ID of the process used to host your game server.

• The ID of the compute hosting your game server processes.

• The ID of the Amazon GameLift fleet containing your Amazon GameLift Anywhere compute.

• The authorization token generated by the Amazon GameLift operation.

Return value

Returns an the section called “InitSDKOutcome” object that indicates whether the server process is
ready to call ProcessReady().

Note

If calls to InitSDK() are failing for game builds deployed to Anywhere fleets, check the
ServerSdkVersion parameter used when creating the build resource. You must explicitly

Server SDK reference for C++ 451

Amazon GameLift Developer Guide

set this value to the server SDK version in use. The default value for this parameter is 4.x,
which is not compatible. To resolve this issue, create a new build and deploy it to a new
fleet.

Example

Amazon GameLift Anywhere example

//Define the server parameters
std::string websocketUrl = "wss://us-west-1.api.amazongamelift.com";
std::string processId = "PID1234";
std::string fleetId = "arn:aws:gamelift:us-west-1:111122223333:fleet/
fleet-9999ffff-88ee-77dd-66cc-5555bbbb44aa";
std::string hostId = "HardwareAnywhere";
std::string authToken = "1111aaaa-22bb-33cc-44dd-5555eeee66ff";
Aws::GameLift::Server::Model::ServerParameters serverParameters =
 Aws::GameLift::Server::Model::ServerParameters(webSocketUrl, authToken, fleetId,
 hostId, processId);

//Call InitSDK to establish a local connection with the GameLift agent to enable
 further communication.
Aws::GameLift::Server::InitSDKOutcome initSdkOutcome =
 Aws::GameLift::Server::InitSDK(serverParameters);

ProcessReady()

Notifies Amazon GameLift that the server process is ready to host game sessions. Call this method
after invoking InitSDK(). This method should be called only once per process.

Syntax

GenericOutcome ProcessReady(const Aws::GameLift::Server::ProcessParameters
&processParameters);

Parameters

processParameters

A ProcessParameters object communicating the following information about the server process:

• Names of callback methods implemented in the game server code that the Amazon GameLift
service invokes to communicate with the server process.

Server SDK reference for C++ 452

Amazon GameLift Developer Guide

• Port number that the server process is listening on.

• Path to any game session-specific files that you want Amazon GameLift to capture and store.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example illustrates both the ProcessReady() call and delegate function implementations.

// Set parameters and call ProcessReady
std::string serverLog("serverOut.log"); // Example of a log file written by the
 game server
std::vector<std::string> logPaths;
logPaths.push_back(serverLog);
int listenPort = 9339;

Aws::GameLift::Server::ProcessParameters processReadyParameter =
 Aws::GameLift::Server::ProcessParameters(
 std::bind(&Server::onStartGameSession, this, std::placeholders::_1),
 std::bind(&Server::onProcessTerminate, this),
 std::bind(&Server::OnHealthCheck, this),
 std::bind(&Server::OnUpdateGameSession, this),
 listenPort,
 Aws::GameLift::Server::LogParameters(logPaths)
);

Aws::GameLift::GenericOutcome outcome =
 Aws::GameLift::Server::ProcessReady(processReadyParameter);

// Implement callback functions
void Server::onStartGameSession(Aws::GameLift::Model::GameSession myGameSession)
{
 // game-specific tasks when starting a new game session, such as loading map
 GenericOutcome outcome =
 Aws::GameLift::Server::ActivateGameSession (maxPlayers);
}

void Server::onProcessTerminate()
{
 // game-specific tasks required to gracefully shut down a game session,
 // such as notifying players, preserving game state data, and other cleanup

Server SDK reference for C++ 453

Amazon GameLift Developer Guide

 GenericOutcome outcome = Aws::GameLift::Server::ProcessEnding();
}

bool Server::onHealthCheck()
{
 bool health;
 // complete health evaluation within 60 seconds and set health
 return health;
}

ProcessReadyAsync()

Notifies the Amazon GameLift service that the server process is ready to host game sessions. This
method should be called after the server process is ready to host a game session. The parameters
specify the callback function names for Amazon GameLift to call in certain circumstances. Game
server code must implement these functions.

This call is asynchronous. To make a synchronous call, use ProcessReady(). See Initialize the server
process for more details.

Syntax

GenericOutcomeCallable ProcessReadyAsync(
 const Aws::GameLift::Server::ProcessParameters &processParameters);

Parameters

processParameters

A ProcessParameters object communicating the following information about the server process:

• Names of callback methods implemented in the game server code that the Amazon GameLift
service invokes to communicate with the server process.

• Port number that the server process is listening on.

• Path to any game session-specific files that you want Amazon GameLift to capture and store.

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

Server SDK reference for C++ 454

Amazon GameLift Developer Guide

Example

// Set parameters and call ProcessReady
std::string serverLog("serverOut.log"); // This is an example of a log file
 written by the game server
std::vector<std::string> logPaths;
logPaths.push_back(serverLog);
int listenPort = 9339;

Aws::GameLift::Server::ProcessParameters processReadyParameter =
 Aws::GameLift::Server::ProcessParameters(std::bind(&Server::onStartGameSession, this,
 std::placeholders::_1),
 std::bind(&Server::onProcessTerminate, this), std::bind(&Server::OnHealthCheck,
 this),
 std::bind(&Server::OnUpdateGameSession, this), listenPort,
 Aws::GameLift::Server::LogParameters(logPaths));

Aws::GameLift::GenericOutcomeCallable outcome =
 Aws::GameLift::Server::ProcessReadyAsync(processReadyParameter);

// Implement callback functions
void onStartGameSession(Aws::GameLift::Model::GameSession myGameSession)
{
 // game-specific tasks when starting a new game session, such as loading map
 GenericOutcome outcome = Aws::GameLift::Server::ActivateGameSession (maxPlayers);
}

void onProcessTerminate()
{
 // game-specific tasks required to gracefully shut down a game session,
 // such as notifying players, preserving game state data, and other cleanup
 GenericOutcome outcome = Aws::GameLift::Server::ProcessEnding();
}

bool onHealthCheck()
{
 // perform health evaluation and complete within 60 seconds
 return health;
}

Server SDK reference for C++ 455

Amazon GameLift Developer Guide

ProcessEnding()

Notifies Amazon GameLift that the server process is terminating. Call this method after all other
cleanup tasks (including shutting down the active game session) and before terminating the
process. Depending on the result of ProcessEnding(), the process exits with success (0) or error
(-1) and generates a fleet event. If the process terminates with an error, the fleet event generated is
SERVER_PROCESS_TERMINATED_UNHEALTHY.

Syntax

Aws::GameLift::GenericOutcome processEndingOutcome =
 Aws::GameLift::Server::ProcessEnding();

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example calls ProcessEnding() and Destroy() before terminating the server process with
a success or error exit code.

Aws::GameLift::GenericOutcome processEndingOutcome =
 Aws::GameLift::Server::ProcessEnding();
Aws::GameLift::Server::Destroy();

// Exit the process with success or failure
if (processEndingOutcome.IsSuccess()) {
 exit(0);
}
else {
 cout << "ProcessEnding() failed. Error: " <<
 processEndingOutcome.GetError().GetErrorMessage();
 exit(-1);
}

ActivateGameSession()

Notifies Amazon GameLift that the server process has activated a game session and is now ready
to receive player connections. This action should be called as part of the onStartGameSession()
callback function, after all game session initialization.

Server SDK reference for C++ 456

Amazon GameLift Developer Guide

Syntax

Aws::GameLift::GenericOutcome activateGameSessionOutcome =
 Aws::GameLift::Server::ActivateGameSession();

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example shows ActivateGameSession() called as part of the onStartGameSession()
delegate function.

void onStartGameSession(Aws::GameLift::Model::GameSession myGameSession)
{
 // game-specific tasks when starting a new game session, such as loading map
 GenericOutcome outcome = Aws::GameLift::Server::ActivateGameSession();
}

UpdatePlayerSessionCreationPolicy()

Updates the current game session's ability to accept new player sessions. A game session can be set
to either accept or deny all new player sessions.

Syntax

GenericOutcome
 UpdatePlayerSessionCreationPolicy(Aws::GameLift::Model::PlayerSessionCreationPolicy
 newPlayerSessionPolicy);

Parameters

playerCreationSessionPolicy

Type: PlayerSessionCreationPolicy enum value.

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

Server SDK reference for C++ 457

Amazon GameLift Developer Guide

Example

This example sets the current game session's join policy to accept all players.

Aws::GameLift::GenericOutcome outcome =

 Aws::GameLift::Server::UpdatePlayerSessionCreationPolicy(Aws::GameLift::Model::PlayerSessionCreationPolicy::ACCEPT_ALL);

GetGameSessionId()

Retrieves the ID of the game session hosted by the active server process.

For idle processes that aren't activated with a game session, the call returns a the section called
“GameLiftError”.

Syntax

AwsStringOutcome GetGameSessionId()

Parameters

This action has no parameters.

Return value

If successful, returns the game session ID as an the section called “AwsStringOutcome” object. If
not successful, returns an error message.

For idle processes that aren't activated with a game session, the call returns Success=True and
GameSessionId="".

Example

Aws::GameLift::AwsStringOutcome sessionIdOutcome =
 Aws::GameLift::Server::GetGameSessionId();

GetTerminationTime()

Returns the time that a server process is scheduled to be shut down, if a termination time is
available. A server process takes action after receiving an onProcessTerminate() callback from
Amazon GameLift. Amazon GameLift calls onProcessTerminate() for the following reasons:

Server SDK reference for C++ 458

Amazon GameLift Developer Guide

• When the server process has reported poor health or has not responded to Amazon GameLift.

• When terminating the instance during a scale-down event.

• When an instance is terminated due to a spot-instance interruption.

Syntax

AwsDateTimeOutcome GetTerminationTime()

Return value

If successful, returns the termination time as an AwsDateTimeOutcome object. The value is the
termination time, expressed in elapsed ticks since 0001 00:00:00. For example, the date time
value 2020-09-13 12:26:40 -000Z is equal to 637355968000000000 ticks. If no termination
time is available, returns an error message.

If the process hasn't received a ProcessParameters.OnProcessTerminate() callback, an error
message is returned. For more information about shutting down a server process, see Respond to a
server process shutdown notification.

Example

Aws::GameLift::AwsLongOutcome TermTimeOutcome =
 Aws::GameLift::Server::GetTerminationTime();

AcceptPlayerSession()

Notifies Amazon GameLift that a player with the specified player session ID has connected to the
server process and needs validation. Amazon GameLift verifies that the player session ID is valid.
After the player session is validated, Amazon GameLift changes the status of the player slot from
RESERVED to ACTIVE.

Syntax

GenericOutcome AcceptPlayerSession(String playerSessionId)

Parameters

playerSessionId

Unique ID issued by Amazon GameLift when a new player session is created.

Server SDK reference for C++ 459

Amazon GameLift Developer Guide

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example handles a connection request that includes validating and rejecting non-valid player
session IDs.

void ReceiveConnectingPlayerSessionID (Connection& connection, const std::string&
 playerSessionId)
{
 Aws::GameLift::GenericOutcome connectOutcome =
 Aws::GameLift::Server::AcceptPlayerSession(playerSessionId);
 if(connectOutcome.IsSuccess())
 {
 connectionToSessionMap.emplace(connection, playerSessionId);
 connection.Accept();
 }
 else
 {
 connection.Reject(connectOutcome.GetError().GetMessage();
 }
}

RemovePlayerSession()

Notifies Amazon GameLift that a player has disconnected from the server process. In response,
Amazon GameLift changes the player slot to available.

Syntax

GenericOutcome RemovePlayerSession(String playerSessionId)

Parameters

playerSessionId

Unique ID issued by Amazon GameLift when a new player session is created.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Server SDK reference for C++ 460

Amazon GameLift Developer Guide

Example

Aws::GameLift::GenericOutcome disconnectOutcome =
 Aws::GameLift::Server::RemovePlayerSession(playerSessionId);

DescribePlayerSessions()

Retrieves player session data which includes settings, session metadata, and player data. Use this
method to get information about the following:

• A single player session

• All player sessions in a game session

• All player sessions associated with a single player ID

Syntax

DescribePlayerSessionsOutcome DescribePlayerSessions(DescribePlayerSessionsRequest
 describePlayerSessionsRequest)

Parameters

DescribePlayerSessionsRequest

A the section called “DescribePlayerSessionsRequest” object that describes which player
sessions to retrieve.

Return value

If successful, returns a the section called “DescribePlayerSessionsOutcome” object containing a set
of player session objects that fit the request parameters.

Example

This example requests all player sessions actively connected to a specified game session. By
omitting NextToken and setting the Limit value to 10, Amazon GameLift returns the first 10 player
session records matching the request.

// Set request parameters
Aws::GameLift::Server::Model::DescribePlayerSessionsRequest request;

Server SDK reference for C++ 461

Amazon GameLift Developer Guide

request.SetPlayerSessionStatusFilter(Aws::GameLift::Server::Model::PlayerSessionStatusMapper::GetNameForPlayerSessionStatus(Aws::GameLift::Server::Model::PlayerSessionStatus::Active));
request.SetLimit(10);
request.SetGameSessionId("the game session ID"); // can use GetGameSessionId()

// Call DescribePlayerSessions
Aws::GameLift::DescribePlayerSessionsOutcome playerSessionsOutcome =
 Aws::GameLift::Server::DescribePlayerSessions(request);

StartMatchBackfill()

Sends a request to find new players for open slots in a game session created with FlexMatch. For
more information, see FlexMatch backfill feature.

This action is asynchronous. If new players are matched, Amazon GameLift delivers updated
matchmaker data using the callback function OnUpdateGameSession().

A server process can have only one active match backfill request at a time. To send a new request,
first call StopMatchBackfill() to cancel the original request.

Syntax

StartMatchBackfillOutcome StartMatchBackfill (StartMatchBackfillRequest
 startBackfillRequest);

Parameters

StartMatchBackfillRequest

A StartMatchBackfillRequest object that communicates the following information:

• A ticket ID to assign to the backfill request. This information is optional; if no ID is provided,
Amazon GameLift will generate one.

• The matchmaker to send the request to. The full configuration ARN is required. This value is
in the game session's matchmaker data.

• The ID of the game session to backfill.

• The available matchmaking data for the game session's current players.

Return value

Returns a the section called “StartMatchBackfillOutcome” object with the match backfill ticket ID,
or failure with an error message.

Server SDK reference for C++ 462

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html

Amazon GameLift Developer Guide

Example

// Build a backfill request
std::vector<Player> players;
Aws::GameLift::Server::Model::StartMatchBackfillRequest startBackfillRequest;
startBackfillRequest.SetTicketId("1111aaaa-22bb-33cc-44dd-5555eeee66ff"); // optional,
 autogenerated if not provided
startBackfillRequest.SetMatchmakingConfigurationArn("arn:aws:gamelift:us-
west-2:111122223333:matchmakingconfiguration/MyMatchmakerConfig"); //from the game
 session matchmaker data
startBackfillRequest.SetGameSessionArn("the game session ARN"); // can use
 GetGameSessionId()
startBackfillRequest.SetPlayers(players); // from the
 game session matchmaker data

// Send backfill request
Aws::GameLift::StartMatchBackfillOutcome backfillOutcome =
 Aws::GameLift::Server::StartMatchBackfill(startBackfillRequest);

// Implement callback function for backfill
void Server::OnUpdateGameSession(Aws::GameLift::Server::Model::GameSession gameSession,
 Aws::GameLift::Server::Model::UpdateReason updateReason, std::string backfillTicketId)
{
 // handle status messages
 // perform game-specific tasks to prep for newly matched players
}

StopMatchBackfill()

Cancels an active match backfill request. For more information, see FlexMatch backfill feature.

Syntax

GenericOutcome StopMatchBackfill (StopMatchBackfillRequest stopBackfillRequest);

Parameters

StopMatchBackfillRequest

A StopMatchBackfillRequest object identifying the matchmaking ticket to cancel:

• The ticket ID assigned to the backfill request.

• The matchmaker the backfill request was sent to.

Server SDK reference for C++ 463

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html

Amazon GameLift Developer Guide

• The game session associated with the backfill request.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

// Set backfill stop request parameters

Aws::GameLift::Server::Model::StopMatchBackfillRequest stopBackfillRequest;
stopBackfillRequest.SetTicketId("1111aaaa-22bb-33cc-44dd-5555eeee66ff");
stopBackfillRequest.SetGameSessionArn("the game session ARN"); // can use
 GetGameSessionId()
stopBackfillRequest.SetMatchmakingConfigurationArn("arn:aws:gamelift:us-
west-2:111122223333:matchmakingconfiguration/MyMatchmakerConfig");
// from the game session matchmaker data

Aws::GameLift::GenericOutcome stopBackfillOutcome =
 Aws::GameLift::Server::StopMatchBackfill(stopBackfillRequest);

GetComputeCertificate()

Retrieves the path to the TLS certificate used to encrypt the network connection between your
Amazon GameLift Anywhere compute resource and Amazon GameLift. You can use the certificate
path when you register your compute device to a Amazon GameLift Anywhere fleet. For more
information see, RegisterCompute.

Syntax

GetComputeCertificateOutcome Server::GetComputeCertificate()

Return value

Returns a the section called “GetComputeCertificateOutcome”.

Example

Aws::GameLift::GetComputeCertificateOutcome certificate =
 Aws::GameLift::Server::GetComputeCertificate();

Server SDK reference for C++ 464

https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html

Amazon GameLift Developer Guide

GetFleetRoleCredentials()

Retrieves IAM role credentials that authorize Amazon GameLift to interact with other AWS services.
For more information, see Communicate with other AWS resources from your fleets.

Syntax

GetFleetRoleCredentialsOutcome GetFleetRoleCredentials(GetFleetRoleCredentialsRequest
 request);

Parameters

GetFleetRoleCredentialsRequest

Return value

Returns a the section called “GetFleetRoleCredentialsOutcome” object.

Example

// form the fleet credentials request
Aws::GameLift::Server::Model::GetFleetRoleCredentialsRequest
 getFleetRoleCredentialsRequest;
getFleetRoleCredentialsRequest.SetRoleArn("arn:aws:iam::123456789012:role/service-role/
exampleGameLiftAction");

Aws::GameLift::GetFleetRoleCredentialsOutcome credentials =
 Aws::GameLift::Server::GetFleetRoleCredentials(getFleetRoleCredentialsRequest);

This example shows the use of the optional RoleSessionName value to assign a name to the
credentials session for auditing purposes. If you don't provide a role session name, the default
value "[fleet-id]-[host-id]" is used.

// form the fleet credentials request
Aws::GameLift::Server::Model::GetFleetRoleCredentialsRequest
 getFleetRoleCredentialsRequest;
getFleetRoleCredentialsRequest.SetRoleArn("arn:aws:iam::123456789012:role/service-role/
exampleGameLiftAction");
getFleetRoleCredentialsRequest.SetRoleSessionName("MyFleetRoleSession");

Aws::GameLift::GetFleetRoleCredentialsOutcome credentials =
 Aws::GameLift::Server::GetFleetRoleCredentials(getFleetRoleCredentialsRequest);

Server SDK reference for C++ 465

Amazon GameLift Developer Guide

Destroy()

Frees the Amazon GameLift game server SDK from memory. As a best practice, call this method
after ProcessEnding() and before terminating the process. If you're using an Anywhere fleet
and you're not terminating server processes after every game session, call Destroy() and then
InitSDK() to reinitialize before notifying Amazon GameLift that the process is ready to host a
game session with ProcessReady().

Syntax

GenericOutcome Aws::GameLift::Server::Destroy();

Parameters

There are no parameters.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

Aws::GameLift::GenericOutcome processEndingOutcome =
 Aws::GameLift::Server::ProcessEnding();
Aws::GameLift::Server::Destroy();

// Exit the process with success or failure
if (processEndingOutcome.IsSuccess()) {
 exit(0);
}
else {
 cout << "ProcessEnding() failed. Error: " <<
 processEndingOutcome.GetError().GetErrorMessage();
 exit(-1);
}

Amazon GameLift server SDK (C++) reference: Data types

You can use this Amazon GameLift C++ server SDK reference to help you prepare your multiplayer
game for use with Amazon GameLift. For details about the integration process, see Add Amazon
GameLift to your game server.

Server SDK reference for C++ 466

Amazon GameLift Developer Guide

Note

This topic describes the Amazon GameLift C++ API that you can use when you build with
the C++ Standard Library (std). Specifically, this documentation applies to code that you
compile with the -DDGAMELIFT_USE_STD=1 option.

Data types

• LogParameters

• ProcessParameters

• UpdateGameSession

• GameSession

• ServerParameters

• StartMatchBackfillRequest

• Player

• DescribePlayerSessionsRequest

• StopMatchBackfillRequest

• AttributeValue

• GetFleetRoleCredentialsRequest

• AwsLongOutcome

• AwsStringOutcome

• DescribePlayerSessionsOutcome

• DescribePlayerSessionsResult

• GenericOutcome

• GenericOutcomeCallable

• PlayerSession

• StartMatchBackfillOutcome

• StartMatchBackfillResult

• GetComputeCertificateOutcome

• GetComputeCertificateResult

• GetFleetRoleCredentialsOutcome

Server SDK reference for C++ 467

Amazon GameLift Developer Guide

• GetFleetRoleCredentialsResult

• InitSDKOutcome

• GameLiftError

• Enums

LogParameters

An object identifying files generated during a game session that you want Amazon GameLift to
upload and store after the game session ends. The game server provides LogParameters to
Amazon GameLift as part of a ProcessParameters object in a ProcessReady() call.

Properties Description

LogPaths The list of directory paths to game server log
files you want Amazon GameLift to store for
future access. The server process generates
these files during each game session. You
define file paths and names in your game
server and store them in the root game build
directory.

The log paths must be absolute. For example,
if your game build stores game session logs in
a path like MyGame\sessionLogs\ , then
the path would be c:\game\MyGame\ses
sionLogs on a Windows instance.

Type: std:vector<std::string>

Required: No

ProcessParameters

This data type contains the set of parameters sent to Amazon GameLift in a ProcessReady().

Properties Description

Server SDK reference for C++ 468

Amazon GameLift Developer Guide

LogParameters An object with directory paths to files that
are generated during a game session. Amazon
GameLift copies and stores the files for future
access.

Type: Aws::GameLift::Ser
ver:: LogParameters

Required: No

OnHealthCheck The callback function that Amazon GameLift
invokes to request a health status report from
the server process. Amazon GameLift calls
this function every 60 seconds and waits 60
seconds for a response. The server process
returns TRUE if healthy, FALSE if not healthy.
If no response is returned, Amazon GameLift
records the server process as not healthy.

Type: std::function<bool()>
onHealthCheck

Required: No

OnProcessTerminate The callback function that Amazon GameLift
invokes to force the server process to shut
down. After calling this function, Amazon
GameLift waits 5 minutes for the server
process to shut down and respond with a
ProcessEnding() call before it shuts down the
server process.

Type: std::function<void()>
onProcessTerminate

Required: Yes

Server SDK reference for C++ 469

Amazon GameLift Developer Guide

OnRefreshConnection The name of the callback function that
Amazon GameLift invokes to refresh the
connection with the game server.

Type: void OnRefreshConnectio
nDelegate()

Required: Yes

OnStartGameSession The callback function that Amazon GameLift
invokes to activate a new game session.
Amazon GameLift calls this function in
response to a client request CreateGam
eSession. The callback function passes a
GameSession object, as defined in the Amazon
GameLift API Reference.

Type: const std::function<void
(Aws::GameLift::Model::Game
Session)> onStartGameSession

Required: Yes

Server SDK reference for C++ 470

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

OnUpdateGameSession The callback function that Amazon GameLift
invokes to pass an updated game session
object to the server process. Amazon
GameLift calls this function when a match
backfill request has been processed to
provide updated matchmaker data. It passes
a GameSession object, a status update
(updateReason), and the match backfill
ticket ID.

Type: std::function<void(Aws::Gam
eLift::Server::Model::Updat
eGameSession)> onUpdateG
ameSession

Required: No

Port The port number the server process listens on
for new player connections. The value must
fall into the port range configured for any
fleet deploying this game server build. This
port number is included in game session and
player session objects, which game sessions
use when connecting to a server process.

Type: Integer

Required: Yes

UpdateGameSession

This data type updates to a game session object, which includes the reason that the game session
was updated and the related backfill ticket ID if backfill is used to fill player sessions in the game
session.

Server SDK reference for C++ 471

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

Properties Description

GameSession A GameSession object defined by the Amazon
GameLift API. The GameSession object
contains properties describing a game session.

Type: Aws::GameLift::Server::Game
Session

Required: Yes

UpdateReason The reason that the game session is being
updated.

Type: Aws::GameLift::Server::Upda
teReason

Required: Yes

BackfillTicketId The ID of the backfill ticket attempting to
update the game session.

Type: std::string

Required: No

GameSession

This data type provides details of a game session.

Properties Description

GameSessionId A unique identifier for the game session. A
game session ARN has the following format:
arn:aws:gamelift:<region>::
gamesession/<fleet ID>/<custom
ID string or idempotency token> .

Type: std::string

Server SDK reference for C++ 472

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

Properties Description

Required: No

Name A descriptive label of the game session.

Type: std::string

Required: No

FleetId A unique identifier for the fleet that the game
session is running on.

Type: std::string

Required: No

MaximumPlayerSessionCount The maximum number of player connections
to the game session.

Type: int

Required: No

Port The port number for the game session. To
connect to a Amazon GameLift game server,
an app needs both the IP address and port
number.

Type: in

Required: No

IpAddress The IP address of the game session. To
connect to a Amazon GameLift game server,
an app needs both the IP address and port
number.

Type: std::string

Required: No

Server SDK reference for C++ 473

Amazon GameLift Developer Guide

Properties Description

GameSessionData A set of custom game session properties,
formatted as a single string value.

Type: std::string

Required: No

MatchmakerData Information about the matchmaking process
that was used to create the game session, in
JSON syntax, formatted as a string. In addition
to the matchmaking configuration used, it
contains data on all players assigned to the
match, including player attributes and team
assignments.

Type: std::string

Required: No

GameProperties A set of custom properties for a game session,
formatted as key:value pairs. These properties
are passed with a request to start a new game
session.

Type: std :: vector < GameProperty
>

Required: No

Server SDK reference for C++ 474

Amazon GameLift Developer Guide

Properties Description

DnsName The DNS identifier assigned to the instance
that's running the game session. Values have
the following format:

• TLS-enabled fleets: <unique identifie
r>.<region identifier>.amazon
gamelift.com .

• Non-TLS-enabled fleets: ec2-<unique
identifier>.compute.amazona
ws.com .

When connecting to a game session that's
running on a TLS-enabled fleet, you must use
the DNS name, not the IP address.

Type: std::string

Required: No

ServerParameters

Information that a game server process uses to establish a connection with the Amazon GameLift
service. Include these parameters when calling InitSDK() only if the game server build will be
deployed to an Anywhere fleet or a container fleet without the Amazon GameLift Agent. For all
other deployment scenarios, call InitSDK() without parameters.

Properties Description

webSocketUrl The GameLiftServerSdkEndpoint
Amazon GameLift returns when you
RegisterCompute for a Amazon GameLift
Anywhere compute resource.

Type: std::string

Server SDK reference for C++ 475

https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html

Amazon GameLift Developer Guide

Properties Description

Required: Yes

processId A unique identifier registered to the server
process hosting your game.

Type: std::string

Required: Yes

hostId The HostID is the ComputeName used
when you registered your compute. For more
information see, RegisterCompute.

Type: std::string

Required: Yes

fleetId The unique identifier of the fleet that the
compute is registered to. For more informati
on see, RegisterCompute.

Type: std::string

Required: Yes

authToken The authentication token generated by
Amazon GameLift that authenticates your
server to Amazon GameLift. For more
information see, GetComputeAuthToken.

Type: std::string

Required: Yes

StartMatchBackfillRequest

Information used to create a matchmaking backfill request. The game server communicates this
information to Amazon GameLift in a StartMatchBackfill() call.

Server SDK reference for C++ 476

https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAuthToken.html

Amazon GameLift Developer Guide

Properties Description

GameSessionArn A unique game session identifier. The API
operation GetGameSessionId returns the
identifier in ARN format.

Type: std::string

Required: Yes

MatchmakingConfigurationArn A unique identifier, in the form of an ARN,
for the matchmaker to use for this request.
The matchmaker ARN for the original game
session is in the game session object in the
matchmaker data property. Learn more about
matchmaker data in Work with matchmaker
data.

Type: std::string

Required: Yes

Players A set of data representing all players who are
in the game session. The matchmaker uses this
information to search for new players who are
good matches for the current players.

Type: std::vector<Player>

Required: Yes

TicketId A unique identifier for a matchmaking or
match backfill request ticket. If you don't
provide a value, Amazon GameLift generates
one. Use this identifier to track the match
backfill ticket status or cancel the request if
needed.

Type: std::string

Server SDK reference for C++ 477

https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk5-cpp-actions.html#integration-server-sdk5-cpp-getgamesessionid
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-server.html#match-server-data.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-server.html#match-server-data.html

Amazon GameLift Developer Guide

Properties Description

Required: No

Player

This data type represents a player in matchmaking. When starting a matchmaking request, a player
has a player ID, attributes, and possibly latency data. Amazon GameLift adds team information
after a match is made.

Properties Description

LatencyInMS A set of values expressed in milliseconds that
indicate the amount of latency that a player
experiences when connected to a location.

If this property is used, the player is only
matched for locations listed. If a matchmake
r has a rule that evaluates player latency,
players must report latency to be matched.

Type: Dictionary<string,int>

Required: No

PlayerAttributes A collection of key:value pairs containing
player information for use in matchmaking.
Player attribute keys must match the PlayerAtt
ributes used in a matchmaking rule set.

For more information about player attributes,
see AttributeValue.

Type: std::map<std::string,Attrib
uteValue>

Required: No

PlayerId A unique identifier for a player.

Server SDK reference for C++ 478

https://docs.aws.amazon.com/gamelift/latest/apireference/API_AttributeValue.html

Amazon GameLift Developer Guide

Properties Description

Type: std::string

Required: No

Team The name of the team that the player is
assigned to in a match. You define team name
in the matchmaking rule set.

Type: std::string

Required: No

DescribePlayerSessionsRequest

An object that specifies which player sessions to retrieve. The server process provides this
information with a DescribePlayerSessions() call to Amazon GameLift.

Properties Description

GameSessionId A unique game session identifier. Use this
parameter to request all player sessions for
the specified game session.

Game session ID format is arn:aws:g
amelift:<region>::gamesession/
fleet-<fleet ID>/<ID string> . The
GameSessionID is a custom ID string or a

Type: std::string

Required: No

PlayerSessionId The unique identifier for a player session. Use
this parameter to request a single specific
player session.

Type: std::string

Server SDK reference for C++ 479

Amazon GameLift Developer Guide

Properties Description

Required: No

PlayerId The unique identifier for a player. Use this
parameter to request all player sessions for a
specific player. See Generate player IDs.

Type: std::string

Required: No

PlayerSessionStatusFilter The player session status to filter results on.
Possible player session statuses include:

• RESERVED – The player session request was
received, but the player hasn't connected to
the server process or been validated.

• ACTIVE – The player was validated by the
server process and is connected.

• COMPLETED – The player connection
dropped.

• TIMEDOUT – A player session request was
received, but the player didn't connect or
wasn't validated within the time-out limit
(60 seconds).

Type: std::string

Required: No

Server SDK reference for C++ 480

Amazon GameLift Developer Guide

Properties Description

NextToken The token indicating the start of the next page
of results. To specify the start of the result set,
don't provide a value. If you provide a player
session ID, this parameter is ignored.

Type: std::string

Required: No

Limit The maximum number of results to return. If
you provide a player session ID, this parameter
is ignored.

Type: int

Required: No

StopMatchBackfillRequest

Information used to cancel a matchmaking backfill request. The game server communicates this
information to Amazon GameLift service in a StopMatchBackfill() call.

Properties Description

GameSessionArn A unique game session identifier of the
request being canceled.

Type: char[]

Required: No

MatchmakingConfigurationArn A unique identifier of the matchmaker this
request was sent to.

Type: char[]

Required: No

Server SDK reference for C++ 481

Amazon GameLift Developer Guide

Properties Description

TicketId A unique identifier of the backfill request
ticket to be canceled.

Type: char[]

Required: No

AttributeValue

Use these values in Player attribute key-value pairs. This object lets you specify an attribute value
using any of the valid data types: string, number, string array, or data map. Each AttributeValue
object must use exactly one of the available properties: S, N, SL, or SDM.

Properties Description

AttrType Specifies the type of attribute value. Possible
attribute value types include:

• NONE

• STRING

• DOUBLE

• STRING_LIST

• STRING_DOUBLE_MAP

Required: No

S Represents a string attribute value.

Type: std::string

Required: No

N Represents a numeric attribute value.

Type: double

Server SDK reference for C++ 482

Amazon GameLift Developer Guide

Properties Description

Required: No

SL Represents an array of string attribute values.

Type: std::vector<std::string>

Required: No

SDM Represents a dictionary of string keys and
double values.

Type: std::map<std::string,
double>

Required: No

GetFleetRoleCredentialsRequest

This data type gives the game server limited access to your other AWS resources. For more
information see, Set up an IAM service role for Amazon GameLift.

Properties Description

RoleArn The Amazon Resource Name (ARN) of the
service role that extends limited access to your
AWS resources.

Type: std::string

Required: No

RoleSessionName The role session name that you can use to
uniquely identify an AWS Security Token
Service AssumeRole session. This name
is exposed in audit logs such as those in
CloudTrail.

Type: std::string

Server SDK reference for C++ 483

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

Amazon GameLift Developer Guide

Properties Description

Required: No

AwsLongOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Result The result of the action.

Type: long

Required: No

ResultWithOwnership The result of the action, cast as an rvalue, so
that the calling code can take ownership of
the object.

Type: long&&

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

AwsStringOutcome

This data type results from an action and produces an object with the following properties:

Server SDK reference for C++ 484

Amazon GameLift Developer Guide

Properties Description

Result The result of the action.

Type: std::string

Required: No

ResultWithOwnership The result of the action, cast as an rvalue, so
that the calling code can take ownership of
the object.

Type: long&&

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

DescribePlayerSessionsOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Result The result of the action.

Type: the section called “DescribePlayerSes
sionsResult”

Server SDK reference for C++ 485

Amazon GameLift Developer Guide

Properties Description

Required: No

ResultWithOwnership The result of the action, cast as an rvalue, so
that the calling code can take ownership of
the object.

Type: Aws::GameLift::Server::Mode
l::DescribePlayerSessionsRe
sult&&

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

DescribePlayerSessionsResult

A collection of objects containing properties for each player session that matches the request.

Properties Description

NextToken A token that indicates the start of the next
sequential page of results. Use the token
that is returned with a previous call to this
operation. To start at the beginning of the
result set, do not specify a value. If a player
session ID is specified, this parameter is
ignored.

Server SDK reference for C++ 486

Amazon GameLift Developer Guide

Properties Description

Type: std::string

Required: Yes

PlayerSessions Type: IList<the section called
“PlayerSession” >

Required:

ResultWithOwnership The result of the action, cast as an rvalue, so
that the calling code can take ownership of
the object.

Type: std::string&&

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

GenericOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Success Whether the action was successful or not.

Type: bool

Server SDK reference for C++ 487

Amazon GameLift Developer Guide

Properties Description

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

GenericOutcomeCallable

This data type is an asynchronous generic outcome. It has the following properties:

Properties Description

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

PlayerSession

This data type represents a player session that Amazon GameLift passes to the game server. For
more information, see PlayerSession.

Properties Description

CreationTime Type: long

Server SDK reference for C++ 488

https://docs.aws.amazon.com/gamelift/latest/apireference/API_PlayerSession.html

Amazon GameLift Developer Guide

Properties Description

Required: No

FleetId Type: std::string

Required: No

GameSessionId Type: std::string

Required: No

IpAddress Type: std::string

Required: No

PlayerData Type: std::string

Required: No

PlayerId Type: std::string

Required: No

PlayerSessionId Type: std::string

Required: No

Port Type: int

Required: No

Server SDK reference for C++ 489

Amazon GameLift Developer Guide

Properties Description

Status Player session status to filter results on. When
a PlayerSessionId or PlayerId is provided, then
the PlayerSessionStatusFilter has no effect on
the response.

Type: A PlayerSessionStatus enum.
Possible values include the following:

• ACTIVE

• COMPLETED

• NOT_SET

• RESERVED

• TIMEDOUT

Required: No

TerminationTime Type: long

Required: No

DnsName Type: std::string

Required: No

StartMatchBackfillOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Result The result of the action.

Type: the section called “StartMatchBackfil
lResult”

Server SDK reference for C++ 490

Amazon GameLift Developer Guide

Properties Description

Required: No

ResultWithOwnership The result of the action, cast as an rvalue, so
that the calling code can take ownership of
the object.

Type: StartMatchBackfillResult&&

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

StartMatchBackfillResult

This data type results from an action and produces an object with the following properties:

Properties Description

TicketId A unique identifier for a matchmaking ticket.
If no ticket ID is specified here, Amazon
GameLift will generate one in the form of a
UUID. Use this identifier to track the match
backfill ticket status and retrieve match
results.

Type: std::string

Server SDK reference for C++ 491

Amazon GameLift Developer Guide

Properties Description

Required: No

GetComputeCertificateOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Result The result of the action.

Type: the section called “GetComputeCertifi
cateResult”

Required: No

ResultWithOwnership The result of the action, cast as an rvalue, so
that the calling code can take ownership of
the object.

Type: Aws::GameLift::Server::Mode
l::GetComputeCertificateRes
ult&&

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

Server SDK reference for C++ 492

Amazon GameLift Developer Guide

GetComputeCertificateResult

The path to the TLS certificate on your compute and the compute's host name.

Properties Description

CertificatePath The path to the TLS certificate on your
compute resource. When using an Amazon
GameLift managed fleet, this path contains:

• certificate.pem : The end-user
certificate. The full certificate chain is the
combination of certificateChain.p
em appended to this certificate.

• certificateChain.pem : The certificate
chain that contains the root certificate and
intermediate certificates.

• rootCertificate.pem : The root
certificate.

• privateKey.pem : The private key for the
end-user certificate.

Type: std::string

Required: No

ComputeName The name of your compute resource.

Type: std::string

Required: No

GetFleetRoleCredentialsOutcome

This data type results from an action and produces an object with the following properties:

Server SDK reference for C++ 493

Amazon GameLift Developer Guide

Properties Description

Result The result of the action.

Type: the section called “GetFleetRoleCrede
ntialsResult”

Required: No

ResultWithOwnership The result of the action, cast as an rvalue, so
that the calling code can take ownership of
the object.

Type: Aws::GameLift::Server::Mode
l::GetFleetRoleCredentialsR
esult

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

GetFleetRoleCredentialsResult

Properties Description

AccessKeyId The access key ID to authenticate and provide
access to your AWS resources.

Server SDK reference for C++ 494

Amazon GameLift Developer Guide

Properties Description

Type: string

Required: No

AssumedRoleId The ID of the user that the service role
belongs to.

Type: string

Required: No

AssumedRoleUserArn The Amazon Resource Name (ARN) of the user
that the service role belongs to.

Type: string

Required: No

Expiration The amount of time until your session
credentials expire.

Type: DateTime

Required: No

SecretAccessKey The secret access key ID for authentication.

Type: string

Required: No

SessionToken A token to identify the current active session
interacting with your AWS resources.

Type: string

Required: No

Server SDK reference for C++ 495

Amazon GameLift Developer Guide

Properties Description

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

InitSDKOutcome

Note

InitSDKOutcome is returned only when you build the SDK with the std flag. If you build
with the nostd flag, then the section called “GenericOutcome” is returned instead.

Properties Description

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

Server SDK reference for C++ 496

Amazon GameLift Developer Guide

GameLiftError

Properties Description

ErrorType The type of error.

Type: A GameLiftErrorType enum.

Required: No

ErrorName The name of the error.

Type: std::string

Required: No

ErrorMessage The error message.

Type: std::string

Required: No

Enums

Enums defined for the Amazon GameLift server SDK (C++) are defined as follows:

GameLiftErrorType

String value indicating the error type. Valid values include:

• BAD_REQUEST_EXCEPTION

• GAMESESSION_ID_NOT_SET – The game session ID has not been set.

• INTERNAL_SERVICE_EXCEPTION

• LOCAL_CONNECTION_FAILED – The local connection to Amazon GameLift failed.

• NETWORK_NOT_INITIALIZED – The network has not been initialized.

• SERVICE_CALL_FAILED – A call to an AWS service has failed.

• WEBSOCKET_CONNECT_FAILURE

• WEBSOCKET_CONNECT_FAILURE_FORBIDDEN

• WEBSOCKET_CONNECT_FAILURE_INVALID_URL

Server SDK reference for C++ 497

Amazon GameLift Developer Guide

• WEBSOCKET_CONNECT_FAILURE_TIMEOUT

• ALREADY_INITIALIZED – The Amazon GameLift Server or Client has already been initialized
with Initialize().

• FLEET_MISMATCH – The target fleet does not match the fleet of a gameSession or
playerSession.

• GAMELIFT_CLIENT_NOT_INITIALIZED – The Amazon GameLift client has not been initialized.

• GAMELIFT_SERVER_NOT_INITIALIZED – The Amazon GameLift server has not been
initialized.

• GAME_SESSION_ENDED_FAILED – The Amazon GameLift Server SDK could not contact the
service to report the game session ended.

• GAME_SESSION_NOT_READY – The Amazon GameLift Server Game Session was not
activated.

• GAME_SESSION_READY_FAILED – The Amazon GameLift Server SDK could not contact the
service to report the game session is ready.

• INITIALIZATION_MISMATCH – A client method was called after Server::Initialize(), or vice
versa.

• NOT_INITIALIZED – The Amazon GameLift Server or Client has not been initialized with
Initialize().

• NO_TARGET_ALIASID_SET – A target aliasId has not been set.

• NO_TARGET_FLEET_SET – A target fleet has not been set.

• PROCESS_ENDING_FAILED – The Amazon GameLift Server SDK could not contact the service
to report the process is ending.

• PROCESS_NOT_ACTIVE – The server process is not yet active, not bound to a GameSession,
and cannot accept or process PlayerSessions.

• PROCESS_NOT_READY – The server process is not yet ready to be activated.

• PROCESS_READY_FAILED – The Amazon GameLift Server SDK could not contact the service
to report the process is ready.

• SDK_VERSION_DETECTION_FAILED – SDK version detection failed.

• STX_CALL_FAILED – A call to the XStx server backend component has failed.

• STX_INITIALIZATION_FAILED – The XStx server backend component has failed to initialize.

• UNEXPECTED_PLAYER_SESSION – An unregistered player session was encountered by the
server.

Server SDK reference for C++ 498

Amazon GameLift Developer Guide

• WEBSOCKET_CONNECT_FAILURE

• WEBSOCKET_CONNECT_FAILURE_FORBIDDEN

• WEBSOCKET_CONNECT_FAILURE_INVALID_URL

• WEBSOCKET_CONNECT_FAILURE_TIMEOUT

• WEBSOCKET_RETRIABLE_SEND_MESSAGE_FAILURE – Retriable failure to send a message to
the GameLift Service WebSocket.

• WEBSOCKET_SEND_MESSAGE_FAILURE – Failure to send a message to the GameLift Service
WebSocket.

• MATCH_BACKFILL_REQUEST_VALIDATION – Validation of the request failed.

• PLAYER_SESSION_REQUEST_VALIDATION – Validation of the request failed.

PlayerSessionCreationPolicy

String value indicating whether the game session accepts new players. Valid values include:

• ACCEPT_ALL – Accept all new player sessions.

• DENY_ALL – Deny all new player sessions.

• NOT_SET – The game session is not set to accept or deny new player sessions.

Amazon GameLift C++ server SDK 3.x reference

You can use this Amazon GameLift C++ server SDK 3.x reference to help you prepare your
multiplayer game for use with Amazon GameLift. For details about the integration process, see Add
Amazon GameLift to your game server.

Topics

• Amazon GameLift server SDK (C++) reference: Actions

• Amazon GameLift server SDK (C++) reference: Data types

Amazon GameLift server SDK (C++) reference: Actions

You can use this Amazon GameLift C++ server SDK reference to help you prepare your multiplayer
game for use with Amazon GameLift. For details about the integration process, see Add Amazon
GameLift to your game server.

Actions

• AcceptPlayerSession()

Server SDK reference for C++ 499

Amazon GameLift Developer Guide

• ActivateGameSession()

• DescribePlayerSessions()

• GetGameSessionId()

• GetInstanceCertificate()

• GetSdkVersion()

• GetTerminationTime()

• InitSDK()

• ProcessEnding()

• ProcessReady()

• ProcessReadyAsync()

• RemovePlayerSession()

• StartMatchBackfill()

• StopMatchBackfill()

• TerminateGameSession()

• UpdatePlayerSessionCreationPolicy()

• Destroy()

AcceptPlayerSession()

Notifies the Amazon GameLift service that a player with the specified player session ID has
connected to the server process and needs validation. Amazon GameLift verifies that the player
session ID is valid—that is, that the player ID has reserved a player slot in the game session. Once
validated, Amazon GameLift changes the status of the player slot from RESERVED to ACTIVE.

Syntax

GenericOutcome AcceptPlayerSession(const std::string& playerSessionId);

Parameters

playerSessionId

Unique ID issued by the Amazon GameLift service in response to a call to the AWS SDK Amazon
GameLift API action CreatePlayerSession. The game client references this ID when connecting
to the server process.

Server SDK reference for C++ 500

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSession.html

Amazon GameLift Developer Guide

Type: std::string

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example illustrates a function for handling a connection request, including validating and
rejecting invalid player session IDs.

void ReceiveConnectingPlayerSessionID (Connection& connection, const std::string&
 playerSessionId){
 Aws::GameLift::GenericOutcome connectOutcome =
 Aws::GameLift::Server::AcceptPlayerSession(playerSessionId);
 if(connectOutcome.IsSuccess())
 {
 connectionToSessionMap.emplace(connection, playerSessionId);
 connection.Accept();
 }
 else
 {
 connection.Reject(connectOutcome.GetError().GetMessage();
 }
}

ActivateGameSession()

Notifies the Amazon GameLift service that the server process has started a game session
and is now ready to receive player connections. This action should be called as part of the
onStartGameSession() callback function, after all game session initialization has been
completed.

Syntax

GenericOutcome ActivateGameSession();

Parameters

This action has no parameters.

Server SDK reference for C++ 501

Amazon GameLift Developer Guide

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example shows ActivateGameSession() being called as part of the
onStartGameSession() callback function.

void onStartGameSession(Aws::GameLift::Model::GameSession myGameSession)
{
 // game-specific tasks when starting a new game session, such as loading map
 GenericOutcome outcome = Aws::GameLift::Server::ActivateGameSession();
}

DescribePlayerSessions()

Retrieves player session data, including settings, session metadata, and player data. Use this action
to get information for a single player session, for all player sessions in a game session, or for all
player sessions associated with a single player ID.

Syntax

DescribePlayerSessionsOutcome DescribePlayerSessions (
 const Aws::GameLift::Server::Model::DescribePlayerSessionsRequest
 &describePlayerSessionsRequest);

Parameters

describePlayerSessionsRequest

A DescribePlayerSessionsRequest object describing which player sessions to retrieve.

Required: Yes

Return value

If successful, returns a DescribePlayerSessionsOutcome object containing a set of player
session objects that fit the request parameters. Player session objects have a structure identical to
the AWS SDK Amazon GameLift API PlayerSession data type.

Server SDK reference for C++ 502

https://docs.aws.amazon.com/gamelift/latest/apireference/API_PlayerSession.html

Amazon GameLift Developer Guide

Example

This example illustrates a request for all player sessions actively connected to a specified game
session. By omitting NextToken and setting the Limit value to 10, Amazon GameLift returns the
first 10 player sessions records matching the request.

// Set request parameters
Aws::GameLift::Server::Model::DescribePlayerSessionsRequest request;
request.SetPlayerSessionStatusFilter(Aws::GameLift::Server::Model::PlayerSessionStatusMapper::GetNameForPlayerSessionStatus(Aws::GameLift::Server::Model::PlayerSessionStatus::Active));
request.SetLimit(10);
request.SetGameSessionId("the game session ID"); // can use GetGameSessionId()

// Call DescribePlayerSessions
Aws::GameLift::DescribePlayerSessionsOutcome playerSessionsOutcome =
 Aws::GameLift::Server::DescribePlayerSessions(request);

GetGameSessionId()

Retrieves a unique identifier for the game session currently being hosted by the
server process, if the server process is active. The identifier is returned in ARN format:
arn:aws:gamelift:<region>::gamesession/fleet-<fleet ID>/<ID string>.

For idle process that are not yet activated with a game session, the call returns Success=True and
GameSessionId="" (an empty string).

Syntax

AwsStringOutcome GetGameSessionId();

Parameters

This action has no parameters.

Return value

If successful, returns the game session ID as an AwsStringOutcome object. If not successful,
returns an error message.

Example

Aws::GameLift::AwsStringOutcome sessionIdOutcome =

Server SDK reference for C++ 503

Amazon GameLift Developer Guide

 Aws::GameLift::Server::GetGameSessionId();

GetInstanceCertificate()

Retrieves the file location of a pem-encoded TLS certificate that is associated with the fleet and
its instances. AWS Certificate Manager generates this certificate when you create a new fleet with
the certificate configuration set to GENERATED. Use this certificate to establish a secure connection
with a game client and to encrypt client/server communication.

Syntax

GetInstanceCertificateOutcome GetInstanceCertificate();

Parameters

This action has no parameters.

Return value

If successful, returns a GetInstanceCertificateOutcome object containing the location of the
fleet's TLS certificate file and certificate chain, which are stored on the instance. A root certificate
file, extracted from the certificate chain, is also stored on the instance. If not successful, returns an
error message.

For more information about the certificate and certificate chain data, see GetCertificate Response
Elements in the AWS Certificate Manager API Reference.

Example

Aws::GameLift::GetInstanceCertificateOutcome certificateOutcome =
 Aws::GameLift::Server::GetInstanceCertificate();

GetSdkVersion()

Returns the current version number of the SDK in use.

Syntax

AwsStringOutcome GetSdkVersion();

Server SDK reference for C++ 504

https://docs.aws.amazon.com/acm/latest/APIReference/API_GetCertificate.html#API_GetCertificate_ResponseElements
https://docs.aws.amazon.com/acm/latest/APIReference/API_GetCertificate.html#API_GetCertificate_ResponseElements

Amazon GameLift Developer Guide

Parameters

This action has no parameters.

Return value

If successful, returns the current SDK version as an AwsStringOutcome object. The returned string
includes the version number only (ex. "3.1.5"). If not successful, returns an error message.

Example

Aws::GameLift::AwsStringOutcome SdkVersionOutcome =
 Aws::GameLift::Server::GetSdkVersion();

GetTerminationTime()

Returns the time that a server process is scheduled to be shut down, if a termination time is
available. A server process takes this action after receiving an onProcessTerminate() callback
from the Amazon GameLift service. Amazon GameLift may call onProcessTerminate() for the
following reasons: (1) when the server process has reported poor health or has not responded to
Amazon GameLift, (2) when terminating the instance during a scale-down event, or (3) when an
instance is being terminated due to a Spot interruption.

If the process has received an onProcessTerminate() callback, the value returned is the
estimated termination time. If the process has not received an onProcessTerminate() callback,
an error message is returned. Learn more about shutting down a server process.

Syntax

AwsLongOutcome GetTerminationTime();

Parameters

This action has no parameters.

Return value

If successful, returns the termination time as an AwsLongOutcome object. The value is the
termination time, expressed in elapsed ticks since 0001 00:00:00. For example, the date time value

Server SDK reference for C++ 505

Amazon GameLift Developer Guide

2020-09-13 12:26:40 -000Z is equal to 637355968000000000 ticks. If no termination time is
available, returns an error message.

Example

Aws::GameLift::AwsLongOutcome TermTimeOutcome =
 Aws::GameLift::Server::GetTerminationTime();

InitSDK()

Initializes the Amazon GameLift SDK. This method should be called on launch, before any other
Amazon GameLift-related initialization occurs.

Syntax

InitSDKOutcome InitSDK();

Parameters

This action has no parameters.

Return value

If successful, returns an InitSdkOutcome object indicating that the server process is ready to call
ProcessReady().

Example

Aws::GameLift::Server::InitSDKOutcome initOutcome =
 Aws::GameLift::Server::InitSDK();

ProcessEnding()

Notifies the Amazon GameLift service that the server process is shutting down. This method should
be called after all other cleanup tasks, including shutting down all active game sessions. This
method should exit with an exit code of 0; a non-zero exit code results in an event message that
the process did not exit cleanly.

Once the method exits with a code of 0, you can terminate the process with a successful exit code.
You can also exit the process with an error code. If you exit with an error code, the fleet event will
indicated the process terminated abnormally (SERVER_PROCESS_TERMINATED_UNHEALTHY).

Server SDK reference for C++ 506

Amazon GameLift Developer Guide

Syntax

GenericOutcome ProcessEnding();

Parameters

This action has no parameters.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

Aws::GameLift::GenericOutcome outcome = Aws::GameLift::Server::ProcessEnding();
if (outcome.Success)
 exit(0); // exit with success
// otherwise, exit with error code
exit(errorCode);

ProcessReady()

Notifies the Amazon GameLift service that the server process is ready to host game sessions. Call
this method after successfully invoking InitSDK() and completing setup tasks that are required
before the server process can host a game session. This method should be called only once per
process.

This call is synchronous. To make an asynchronous call, use ProcessReadyAsync(). See Initialize the
server process for more details.

Syntax

GenericOutcome ProcessReady(
 const Aws::GameLift::Server::ProcessParameters &processParameters);

Parameters

processParameters

A ProcessParameters object communicating the following information about the server process:

Server SDK reference for C++ 507

Amazon GameLift Developer Guide

• Names of callback methods, implemented in the game server code, that the Amazon
GameLift service invokes to communicate with the server process.

• Port number that the server process is listening on.

• Path to any game session-specific files that you want Amazon GameLift to capture and store.

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example illustrates both the ProcessReady() call and callback function implementations.

// Set parameters and call ProcessReady
std::string serverLog("serverOut.log"); // Example of a log file written by the
 game server
std::vector<std::string> logPaths;
logPaths.push_back(serverLog);

int listenPort = 9339;

Aws::GameLift::Server::ProcessParameters processReadyParameter =
 Aws::GameLift::Server::ProcessParameters(
 std::bind(&Server::onStartGameSession, this, std::placeholders::_1),
 std::bind(&Server::onProcessTerminate, this),
 std::bind(&Server::OnHealthCheck, this),
 std::bind(&Server::OnUpdateGameSession, this),
 listenPort,
 Aws::GameLift::Server::LogParameters(logPaths));

Aws::GameLift::GenericOutcome outcome =
 Aws::GameLift::Server::ProcessReady(processReadyParameter);

// Implement callback functions
void Server::onStartGameSession(Aws::GameLift::Model::GameSession myGameSession)
{
 // game-specific tasks when starting a new game session, such as loading map
 GenericOutcome outcome =
 Aws::GameLift::Server::ActivateGameSession (maxPlayers);

Server SDK reference for C++ 508

Amazon GameLift Developer Guide

}

void Server::onProcessTerminate()
{
 // game-specific tasks required to gracefully shut down a game session,
 // such as notifying players, preserving game state data, and other cleanup
 GenericOutcome outcome = Aws::GameLift::Server::ProcessEnding();
}

bool Server::onHealthCheck()
{
 bool health;
 // complete health evaluation within 60 seconds and set health
 return health;
}

ProcessReadyAsync()

Notifies the Amazon GameLift service that the server process is ready to host game sessions. This
method should be called once the server process is ready to host a game session. The parameters
specify the names of callback functions for Amazon GameLift to call in certain circumstances.
Game server code must implement these functions.

This call is asynchronous. To make a synchronous call, use ProcessReady(). See Initialize the server
process for more details.

Syntax

GenericOutcomeCallable ProcessReadyAsync(
 const Aws::GameLift::Server::ProcessParameters &processParameters);

Parameters

processParameters

A ProcessParameters object communicating the following information about the server process:

• Names of callback methods, implemented in the game server code, that the Amazon
GameLift service invokes to communicate with the server process.

• Port number that the server process is listening on.

• Path to any game session-specific files that you want Amazon GameLift to capture and store.

Server SDK reference for C++ 509

Amazon GameLift Developer Guide

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

// Set parameters and call ProcessReady
std::string serverLog("serverOut.log"); // This is an example of a log file
 written by the game server
std::vector<std::string> logPaths;
logPaths.push_back(serverLog);

int listenPort = 9339;

Aws::GameLift::Server::ProcessParameters processReadyParameter =
 Aws::GameLift::Server::ProcessParameters(
 std::bind(&Server::onStartGameSession, this, std::placeholders::_1),
 std::bind(&Server::onProcessTerminate, this),
 std::bind(&Server::OnHealthCheck, this),
 std::bind(&Server::OnUpdateGameSession, this),
 listenPort,
 Aws::GameLift::Server::LogParameters(logPaths));

Aws::GameLift::GenericOutcomeCallable outcome =
 Aws::GameLift::Server::ProcessReadyAsync(processReadyParameter);

// Implement callback functions
void onStartGameSession(Aws::GameLift::Model::GameSession myGameSession)
{
 // game-specific tasks when starting a new game session, such as loading map
 GenericOutcome outcome = Aws::GameLift::Server::ActivateGameSession (maxPlayers);
}

void onProcessTerminate()
{
 // game-specific tasks required to gracefully shut down a game session,
 // such as notifying players, preserving game state data, and other cleanup
 GenericOutcome outcome = Aws::GameLift::Server::ProcessEnding();
}

bool onHealthCheck()

Server SDK reference for C++ 510

Amazon GameLift Developer Guide

{
 // perform health evaluation and complete within 60 seconds
 return health;
}

RemovePlayerSession()

Notifies the Amazon GameLift service that a player with the specified player session ID has
disconnected from the server process. In response, Amazon GameLift changes the player slot to
available, which allows it to be assigned to a new player.

Syntax

GenericOutcome RemovePlayerSession(
 const std::string& playerSessionId);

Parameters

playerSessionId

Unique ID issued by the Amazon GameLift service in response to a call to the AWS SDK Amazon
GameLift API action CreatePlayerSession. The game client references this ID when connecting
to the server process.

Type: std::string

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

Aws::GameLift::GenericOutcome disconnectOutcome =
 Aws::GameLift::Server::RemovePlayerSession(playerSessionId);

StartMatchBackfill()

Sends a request to find new players for open slots in a game session created with FlexMatch.
See also the AWS SDK action StartMatchBackfill(). With this action, match backfill requests can

Server SDK reference for C++ 511

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartMatchBackfill.html

Amazon GameLift Developer Guide

be initiated by a game server process that is hosting the game session. Learn more about the
FlexMatch backfill feature.

This action is asynchronous. If new players are successfully matched, the Amazon GameLift service
delivers updated matchmaker data by invoking the callback function OnUpdateGameSession().

A server process can have only one active match backfill request at a time. To send a new request,
first call StopMatchBackfill() to cancel the original request.

Syntax

StartMatchBackfillOutcome StartMatchBackfill (
 const Aws::GameLift::Server::Model::StartMatchBackfillRequest
 &startBackfillRequest);

Parameters

StartMatchBackfillRequest

A StartMatchBackfillRequest object that communicates the following information:

• A ticket ID to assign to the backfill request. This information is optional; if no ID is provided,
Amazon GameLift will autogenerate one.

• The matchmaker to send the request to. The full configuration ARN is required. This value can
be acquired from the game session's matchmaker data.

• The ID of the game session that is being backfilled.

• Available matchmaking data for the game session's current players.

Required: Yes

Return value

Returns a StartMatchBackfillOutcome object with the match backfill ticket or failure with an error
message. Ticket status can be tracked using the AWS SDK action DescribeMatchmaking().

Example

// Build a backfill request
std::vector<Player> players;
Aws::GameLift::Server::Model::StartMatchBackfillRequest startBackfillRequest;

Server SDK reference for C++ 512

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeMatchmaking.html

Amazon GameLift Developer Guide

startBackfillRequest.SetTicketId("a ticket ID");
 //optional, autogenerated if not provided
startBackfillRequest.SetMatchmakingConfigurationArn("the matchmaker configuration
 ARN"); //from the game session matchmaker data
startBackfillRequest.SetGameSessionArn("the game session ARN");
 // can use GetGameSessionId()
startBackfillRequest.SetPlayers(players);
 //from the game session matchmaker data

// Send backfill request
Aws::GameLift::StartMatchBackfillOutcome backfillOutcome =
 Aws::GameLift::Server::StartMatchBackfill(startBackfillRequest);

// Implement callback function for backfill
void Server::OnUpdateGameSession(Aws::GameLift::Server::Model::GameSession gameSession,
 Aws::GameLift::Server::Model::UpdateReason updateReason, std::string backfillTicketId)
{
 // handle status messages
 // perform game-specific tasks to prep for newly matched players
}

StopMatchBackfill()

Cancels an active match backfill request that was created with StartMatchBackfill(). See also the
AWS SDK action StopMatchmaking(). Learn more about the FlexMatch backfill feature.

Syntax

GenericOutcome StopMatchBackfill (
 const Aws::GameLift::Server::Model::StopMatchBackfillRequest &stopBackfillRequest);

Parameters

StopMatchBackfillRequest

A StopMatchBackfillRequest object identifying the matchmaking ticket to cancel:

• ticket ID assigned to the backfill request being canceled

• matchmaker the backfill request was sent to

• game session associated with the backfill request

Required: Yes

Server SDK reference for C++ 513

https://docs.aws.amazon.com/gamelift/latest/apireference/API_StopMatchmaking.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html

Amazon GameLift Developer Guide

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

// Set backfill stop request parameters

Aws::GameLift::Server::Model::StopMatchBackfillRequest stopBackfillRequest;
stopBackfillRequest.SetTicketId("the ticket ID");
stopBackfillRequest.SetGameSessionArn("the game session ARN");
 // can use GetGameSessionId()
stopBackfillRequest.SetMatchmakingConfigurationArn("the matchmaker configuration ARN");
 // from the game session matchmaker data

Aws::GameLift::GenericOutcome stopBackfillOutcome =
 Aws::GameLift::Server::StopMatchBackfillRequest(stopBackfillRequest);

TerminateGameSession()

This method is deprecated with version 4.0.1. Instead, the server process should call
ProcessEnding() after a game session has ended.

Notifies the Amazon GameLift service that the server process has ended the current game session.
This action is called when the server process will remain active and ready to host a new game
session. It should be called only after your game session termination procedure is complete,
because it signals to Amazon GameLift that the server process is immediately available to host a
new game session.

This action is not called if the server process will be shut down after the game session stops.
Instead, call ProcessEnding() to signal that both the game session and the server process are
ending.

Syntax

GenericOutcome TerminateGameSession();

Parameters

This action has no parameters.

Server SDK reference for C++ 514

Amazon GameLift Developer Guide

Return value

Returns a generic outcome consisting of success or failure with an error message.

UpdatePlayerSessionCreationPolicy()

Updates the current game session's ability to accept new player sessions. A game session
can be set to either accept or deny all new player sessions. See also the AWS SDK action
UpdateGameSession().

Syntax

GenericOutcome UpdatePlayerSessionCreationPolicy(
 Aws::GameLift::Model::PlayerSessionCreationPolicy newPlayerSessionPolicy);

Parameters

newPlayerSessionPolicy

String value indicating whether the game session accepts new players.

Type: Aws::GameLift::Model::PlayerSessionCreationPolicy enum. Valid values include:

• ACCEPT_ALL – Accept all new player sessions.

• DENY_ALL – Deny all new player sessions.

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example sets the current game session's join policy to accept all players.

Aws::GameLift::GenericOutcome outcome =
 Aws::GameLift::Server::UpdatePlayerSessionCreationPolicy(Aws::GameLift::Model::PlayerSessionCreationPolicy::ACCEPT_ALL);

Destroy()

Cleans up memory allocated by initSDK() during game server initialization. Use this method after
you end a game server process to avoid wasting server memory.

Server SDK reference for C++ 515

https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateGameSession.html

Amazon GameLift Developer Guide

Syntax

GenericOutcome Aws::GameLift::Server::Destroy();

Parameters

There are no parameters.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example cleans up the memory allocated by initSDK after a game server process has ended.

if (Aws::GameLift::Server::ProcessEnding().IsSuccess()) {
 Aws::GameLift::Server::Destroy();
 exit(0);
}

Amazon GameLift server SDK (C++) reference: Data types

You can use this Amazon GameLift C++ server SDK reference to help you prepare your multiplayer
game for use with Amazon GameLift. For details about the integration process, see Add Amazon
GameLift to your game server.

This API is defined in GameLiftServerAPI.h, LogParameters.h, and ProcessParameters.h.

• Actions

• Data types

DescribePlayerSessionsRequest

This data type is used to specify which player session(s) to retrieve. You can use it as follows:

• Provide a PlayerSessionId to request a specific player session.

• Provide a GameSessionId to request all player sessions in the specified game session.

• Provide a PlayerId to request all player sessions for the specified player.

Server SDK reference for C++ 516

Amazon GameLift Developer Guide

For large collections of player sessions, use the pagination parameters to retrieve results in
sequential blocks.

Contents

GameSessionId

Unique game session identifier. Use this parameter to request all player
sessions for the specified game session. Game session ID format is as follows:
arn:aws:gamelift:<region>::gamesession/fleet-<fleet ID>/<ID string>. The
value of <ID string> is either a custom ID string or (if one was specified when the game session
was created) a generated string.

Type: String

Required: No

Limit

Maximum number of results to return. Use this parameter with NextToken to get results as a set
of sequential pages. If a player session ID is specified, this parameter is ignored.

Type: Integer

Required: No

NextToken

Token indicating the start of the next sequential page of results. Use the token that is returned
with a previous call to this action. To specify the start of the result set, do not specify a value. If
a player session ID is specified, this parameter is ignored.

Type: String

Required: No

PlayerId

Unique identifier for a player. Player IDs are defined by the developer. See Generate player IDs.

Type: String

Required: No

Server SDK reference for C++ 517

Amazon GameLift Developer Guide

PlayerSessionId

Unique identifier for a player session.

Type: String

Required: No

PlayerSessionStatusFilter

Player session status to filter results on. Possible player session statuses include the following:

• RESERVED – The player session request has been received, but the player has not yet
connected to the server process and/or been validated.

• ACTIVE – The player has been validated by the server process and is currently connected.

• COMPLETED – The player connection has been dropped.

• TIMEDOUT – A player session request was received, but the player did not connect and/or was
not validated within the time-out limit (60 seconds).

Type: String

Required: No

LogParameters

This data type is used to identify which files generated during a game session that you want
Amazon GameLift to upload and store once the game session ends. This information is
communicated to the Amazon GameLift service in a ProcessReady() call.

Contents

logPaths

Directory paths to game server log files that you want Amazon GameLift to store for future
access. These files are generated during each game session. File paths and names are defined in
your game server and stored in the root game build directory. The log paths must be absolute.
For example, if your game build stores game session logs in a path like MyGame\sessionlogs
\, then the log path would be c:\game\MyGame\sessionLogs (on a Windows instance) or /
local/game/MyGame/sessionLogs (on a Linux instance).

Type: std:vector<std::string>

Required: No

Server SDK reference for C++ 518

Amazon GameLift Developer Guide

ProcessParameters

This data type contains the set of parameters sent to the Amazon GameLift service in a
ProcessReady() call.

Contents

port

Port number the server process listens on for new player connections. The value must fall into
the port range configured for any fleet deploying this game server build. This port number is
included in game session and player session objects, which game sessions use when connecting
to a server process.

Type: Integer

Required: Yes

logParameters

Object with a list of directory paths to game session log files.

Type: Aws::GameLift::Server::LogParameters

Required: No

onStartGameSession

Name of callback function that the Amazon GameLift service invokes to activate a new
game session. Amazon GameLift calls this function in response to the client request
CreateGameSession. The callback function passes a GameSession object (defined in the Amazon
GameLift Service API Reference).

Type: const std::function<void(Aws::GameLift::Model::GameSession)>
onStartGameSession

Required: Yes

onProcessTerminate

Name of callback function that the Amazon GameLift service invokes to force the server process
to shut down. After calling this function, Amazon GameLift waits five minutes for the server
process to shut down and respond with a ProcessEnding() call. If no response is receive, it shuts
down the server process.

Server SDK reference for C++ 519

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

Type: std::function<void()> onProcessTerminate

Required: No

onHealthCheck

Name of callback function that the Amazon GameLift service invokes to request a health status
report from the server process. Amazon GameLift calls this function every 60 seconds. After
calling this function Amazon GameLift waits 60 seconds for a response, and if none is received.
records the server process as unhealthy.

Type: std::function<bool()> onHealthCheck

Required: No

onUpdateGameSession

Name of callback function that the Amazon GameLift service invokes to pass an updated
game session object to the server process. Amazon GameLift calls this function when a match
backfill request has been processed in order to provide updated matchmaker data. It passes a
GameSession object, a status update (updateReason), and the match backfill ticket ID.

Type: std::function<void(Aws::GameLift::Server::Model::UpdateGameSession)>
onUpdateGameSession

Required: No

StartMatchBackfillRequest

This data type is used to send a matchmaking backfill request. The information is communicated to
the Amazon GameLift service in a StartMatchBackfill() call.

Contents

GameSessionArn

Unique game session identifier. The API action GetGameSessionId() returns the identifier in ARN
format.

Type: String

Required: Yes

Server SDK reference for C++ 520

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

MatchmakingConfigurationArn

Unique identifier, in the form of an ARN, for the matchmaker to use for this request. To find
the matchmaker that was used to create the original game session, look in the game session
object, in the matchmaker data property. Learn more about matchmaker data in Word with
matchmaker data.

Type: String

Required: Yes

Players

A set of data representing all players who are currently in the game session. The matchmaker
uses this information to search for new players who are good matches for the current players.
See the Amazon GameLift API Reference Guide for a description of the Player object format.
To find player attributes, IDs, and team assignments, look in the game session object, in the
matchmaker data property. If latency is used by the matchmaker, gather updated latency for
the current region and include it in each player's data.

Type: std:vector<player>

Required: Yes

TicketId

Unique identifier for a matchmaking or match backfill request ticket. If no value is provided
here, Amazon GameLift will generate one in the form of a UUID. Use this identifier to track the
match backfill ticket status or cancel the request if needed.

Type: String

Required: No

StopMatchBackfillRequest

This data type is used to cancel a matchmaking backfill request. The information is communicated
to the Amazon GameLift service in a StopMatchBackfill() call.

Contents

GameSessionArn

Unique game session identifier associated with the request being canceled.

Server SDK reference for C++ 521

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-server.html#match-server-data
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-server.html#match-server-data
https://docs.aws.amazon.com/gamelift/latest/apireference/API_Player.html

Amazon GameLift Developer Guide

Type: String

Required: Yes

MatchmakingConfigurationArn

Unique identifier of the matchmaker this request was sent to.

Type: String

Required: Yes

TicketId

Unique identifier of the backfill request ticket to be canceled.

Type: String

Required: Yes

Amazon GameLift server SDK reference for C#

You can use this Amazon GameLift C# server SDK reference to help you prepare your multiplayer
game for use with Amazon GameLift. For details about the integration process, see Add Amazon
GameLift to your game server.

Topics

• Amazon GameLift server SDK 5.x reference for C# and Unity

• Amazon GameLift server SDK 4.x reference for C#

Amazon GameLift server SDK 5.x reference for C# and Unity

You can use this Amazon GameLift C# server SDK 5.x reference to help you prepare your
multiplayer game for use with Amazon GameLift. For details about the integration process, see Add
Amazon GameLift to your game server and for information on using the C# server SDK plugin for
Unity, see Integrate Amazon GameLift into a Unity project. The Amazon GameLift server SDK 5.x
for C# supports .NET 4.6 and .NET 6.

Topics

Server SDK reference for C# 522

Amazon GameLift Developer Guide

• Amazon GameLift server SDK reference for C# and Unity: Actions

• Amazon GameLift server SDK reference for C# and Unity: Data types

Amazon GameLift server SDK reference for C# and Unity: Actions

This Amazon GameLift C# server SDK reference helps you prepare your multiplayer game for use
with Amazon GameLift. For details about the integration process, see Add Amazon GameLift to
your game server and for information on using the C# server SDK plugin for Unity, see Integrate
Amazon GameLift into a Unity project.

Actions

• GetSdkVersion()

• InitSDK()

• InitSDK()

• ProcessReady()

• ProcessEnding()

• ActivateGameSession()

• UpdatePlayerSessionCreationPolicy()

• GetGameSessionId()

• GetTerminationTime()

• AcceptPlayerSession()

• RemovePlayerSession()

• DescribePlayerSessions()

• StartMatchBackfill()

• StopMatchBackfill()

• GetComputeCertificate()

• GetFleetRoleCredentials()

• Destroy()

GetSdkVersion()

Returns the current version number of the SDK built into the server process.

Server SDK reference for C# 523

Amazon GameLift Developer Guide

Syntax

AwsStringOutcome GetSdkVersion();

Return value

If successful, returns the current SDK version as an the section called “AwsStringOutcome” object.
The returned string includes the version number (example 5.0.0). If not successful, returns an
error message.

Example

var getSdkVersionOutcome = GameLiftServerAPI.GetSdkVersion();

InitSDK()

Initializes the Amazon GameLift SDK for a managed EC2 fleet. Call this method on launch, before
any other initialization related to Amazon GameLift occurs. This method reads server parameters
from the host environment to set up communication between the server and the Amazon GameLift
service.

Syntax

GenericOutcome InitSDK();

Return value

If successful, returns an InitSdkOutcome object to indicate that the server process is ready to call
ProcessReady().

Example

//Call InitSDK to establish a local connection with the GameLift agent to enable
 further communication.
GenericOutcome initSDKOutcome = GameLiftServerAPI.InitSDK();

InitSDK()

Initializes the Amazon GameLift SDK for an Anywhere fleet. Call this method on launch, before
any other initialization related to Amazon GameLift occurs. This method requires explicit server
parameters to set up communication between the server and the Amazon GameLift service.

Server SDK reference for C# 524

Amazon GameLift Developer Guide

Syntax

GenericOutcome InitSDK(ServerParameters serverParameters);

Parameters

ServerParameters

To initialize a game server on an Amazon GameLift Anywhere fleet, construct a
ServerParameters object with the following information:

• The URL of the WebSocket used to connect to your game server.

• The ID of the process used to host your game server.

• The ID of the compute hosting your game server processes.

• The ID of the Amazon GameLift fleet containing your Amazon GameLift Anywhere compute.

• The authorization token generated by the Amazon GameLift operation.

Return value

If successful, returns an InitSdkOutcome object to indicate that the server process is ready to call
ProcessReady().

Note

If calls to InitSDK() are failing for game builds deployed to Anywhere fleets, check the
ServerSdkVersion parameter used when creating the build resource. You must explicitly
set this value to the server SDK version in use. The default value for this parameter is 4.x,
which is not compatible. To resolve this issue, create a new build and deploy it to a new
fleet.

Example

//Define the server parameters
string websocketUrl = "wss://us-west-1.api.amazongamelift.com";
string processId = "PID1234";
string fleetId = "aarn:aws:gamelift:us-west-1:111122223333:fleet/
fleet-9999ffff-88ee-77dd-66cc-5555bbbb44aa";

Server SDK reference for C# 525

Amazon GameLift Developer Guide

string hostId = "HardwareAnywhere";
string authToken = "1111aaaa-22bb-33cc-44dd-5555eeee66ff";
ServerParameters serverParameters =
 new ServerParameters(webSocketUrl, processId, hostId, fleetId, authToken);

//Call InitSDK to establish a local connection with the GameLift agent to enable
 further communication.
GenericOutcome initSDKOutcome = GameLiftServerAPI.InitSDK(serverParameters);

ProcessReady()

Notifies Amazon GameLift that the server process is ready to host game sessions. Call this method
after invoking InitSDK(). This method should be called only once per process.

Syntax

GenericOutcome ProcessReady(ProcessParameters processParameters)

Parameters

ProcessParameters

A ProcessParameters object holds information about the server process.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example illustrates both the method and delegate function implementations.

// Set parameters and call ProcessReady
ProcessParameters processParams = new ProcessParameters(
 this.OnStartGameSession,
 this.OnProcessTerminate,
 this.OnHealthCheck,
 this.OnUpdateGameSession,
 port,
 new LogParameters(new List<string>()
 // Examples of log and error files written by the game server

Server SDK reference for C# 526

Amazon GameLift Developer Guide

 {
 "C:\\game\\logs",
 "C:\\game\\error"
 })
);
GenericOutcome processReadyOutcome = GameLiftServerAPI.ProcessReady(processParams);

ProcessEnding()

Notifies Amazon GameLift that the server process is terminating. Call this method after all other
cleanup tasks (including shutting down the active game session) and before terminating the
process. Depending on the result of ProcessEnding(), the process exits with success (0) or error
(-1) and generates a fleet event. If the process terminates with an error, the fleet event generated is
SERVER_PROCESS_TERMINATED_UNHEALTHY.

Syntax

GenericOutcome ProcessEnding()

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example calls ProcessEnding() and Destroy() before terminating the server process with
a success or error exit code.

GenericOutcome processEndingOutcome = GameLiftServerAPI.ProcessEnding();
GameLiftServerAPI.Destroy();

if (processEndingOutcome.Success)
 {
 Environment.Exit(0);
 }
else
 {
 Console.WriteLine("ProcessEnding() failed. Error: " +
 processEndingOutcome.Error.ToString());
 Environment.Exit(-1);
 }

Server SDK reference for C# 527

Amazon GameLift Developer Guide

ActivateGameSession()

Notifies Amazon GameLift that the server process has activated a game session and is now ready
to receive player connections. This action should be called as part of the onStartGameSession()
callback function, after all game session initialization.

Syntax

GenericOutcome ActivateGameSession()

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example shows ActivateGameSession() being called as part of the
onStartGameSession() delegate function.

void OnStartGameSession(GameSession gameSession)
{
 // game-specific tasks when starting a new game session, such as loading map
 // When ready to receive players
 GenericOutcome activateGameSessionOutcome = GameLiftServerAPI.ActivateGameSession();
}

UpdatePlayerSessionCreationPolicy()

Updates the current game session's ability to accept new player sessions. A game session can be set
to either accept or deny all new player sessions.

Syntax

GenericOutcome UpdatePlayerSessionCreationPolicy(PlayerSessionCreationPolicy
 playerSessionPolicy)

Parameters

playerSessionPolicy

String value that indicates whether the game session accepts new players.

Server SDK reference for C# 528

Amazon GameLift Developer Guide

Valid values include:

• ACCEPT_ALL – Accept all new player sessions.

• DENY_ALL – Deny all new player sessions.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example sets the current game session's join policy to accept all players.

GenericOutcome updatePlayerSessionPolicyOutcome =

 GameLiftServerAPI.UpdatePlayerSessionCreationPolicy(PlayerSessionCreationPolicy.ACCEPT_ALL);

GetGameSessionId()

Retrieves the ID of the game session hosted by the active server process.

For idle processes that aren't activated with a game session, the call returns a the section called
“GameLiftError”.

Syntax

AwsStringOutcome GetGameSessionId()

Return value

If successful, returns the game session ID as an the section called “AwsStringOutcome” object. If
not successful, returns an error message."

Example

AwsStringOutcome getGameSessionIdOutcome = GameLiftServerAPI.GetGameSessionId();

GetTerminationTime()

Returns the time that a server process is scheduled to be shut down, if a termination time is
available. A server process takes this action after receiving an onProcessTerminate() callback

Server SDK reference for C# 529

Amazon GameLift Developer Guide

from Amazon GameLift. Amazon GameLift calls onProcessTerminate() for the following
reasons:

• When the server process has reported poor health or has not responded to Amazon GameLift.

• When terminating the instance during a scale-down event.

• When an instance is terminated due to a spot-instance interruption.

Syntax

AwsDateTimeOutcome GetTerminationTime()

Return value

If successful, returns the termination time as an the section called “AwsDateTimeOutcome” object.
The value is the termination time, expressed in elapsed ticks since 0001 00:00:00. For example,
the date time value 2020-09-13 12:26:40 -000Z is equal to 637355968000000000 ticks. If no
termination time is available, returns an error message.

Example

AwsDateTimeOutcome getTerminationTimeOutcome = GameLiftServerAPI.GetTerminationTime();

AcceptPlayerSession()

Notifies Amazon GameLift that a player with the specified player session ID has connected to the
server process and needs validation. Amazon GameLift verifies that the player session ID is valid.
After the player session is validated, Amazon GameLift changes the status of the player slot from
RESERVED to ACTIVE.

Syntax

GenericOutcome AcceptPlayerSession(String playerSessionId)

Parameters

playerSessionId

Unique ID issued by GameLift when a new player session is created.

Server SDK reference for C# 530

Amazon GameLift Developer Guide

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example illustrates a function for handling a connection request, including validating and
rejecting invalid player session IDs.

void ReceiveConnectingPlayerSessionID (Connection connection, String playerSessionId)
{
 GenericOutcome acceptPlayerSessionOutcome =
 GameLiftServerAPI.AcceptPlayerSession(playerSessionId);
 if(acceptPlayerSessionOutcome.Success)
 {
 connectionToSessionMap.emplace(connection, playerSessionId);
 connection.Accept();
 }
 else
 {
 connection.Reject(acceptPlayerSessionOutcome.Error.ErrorMessage);
 }
}

RemovePlayerSession()

Notifies Amazon GameLift that a player has disconnected from the server process. In response,
Amazon GameLift changes the player slot to available.

Syntax

GenericOutcome RemovePlayerSession(String playerSessionId)

Parameters

playerSessionId

Unique ID issued by Amazon GameLift when a new player session is created.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Server SDK reference for C# 531

Amazon GameLift Developer Guide

Example

GenericOutcome removePlayerSessionOutcome =
 GameLiftServerAPI.RemovePlayerSession(playerSessionId);

DescribePlayerSessions()

Retrieves player session data which includes settings, session metadata, and player data. Use this
action to get information for a single player session, for all player sessions in a game session, or for
all player sessions associated with a single player ID.

Syntax

DescribePlayerSessionsOutcome DescribePlayerSessions(DescribePlayerSessionsRequest
 describePlayerSessionsRequest)

Parameters

DescribePlayerSessionsRequest

A the section called “DescribePlayerSessionsRequest” object that describes which player
sessions to retrieve.

Return value

If successful, returns a the section called “DescribePlayerSessionsOutcome” object that contains a
set of player session objects that fit the request parameters.

Example

This example illustrates a request for all player sessions actively connected to a specified game
session. By omitting NextToken and setting the Limit value to 10, Amazon GameLift will return the
first 10 player session records matching the request.

// Set request parameters
DescribePlayerSessionsRequest describePlayerSessionsRequest = new
 DescribePlayerSessionsRequest()
{
 GameSessionId = GameLiftServerAPI.GetGameSessionId().Result, //gets the ID for the
 current game session

Server SDK reference for C# 532

Amazon GameLift Developer Guide

 Limit = 10,
 PlayerSessionStatusFilter =
 PlayerSessionStatusMapper.GetNameForPlayerSessionStatus(PlayerSessionStatus.ACTIVE)
};
// Call DescribePlayerSessions
DescribePlayerSessionsOutcome describePlayerSessionsOutcome =
 GameLiftServerAPI.DescribePlayerSessions(describePlayerSessionsRequest);

StartMatchBackfill()

Sends a request to find new players for open slots in a game session created with FlexMatch. For
more information, see FlexMatch backfill feature.

This action is asynchronous. If new players are matched, Amazon GameLift delivers updated
matchmaker data using the callback function OnUpdateGameSession().

A server process can have only one active match backfill request at a time. To send a new request,
first call StopMatchBackfill() to cancel the original request.

Syntax

StartMatchBackfillOutcome StartMatchBackfill (StartMatchBackfillRequest
 startBackfillRequest);

Parameters

StartMatchBackfillRequest

A StartMatchBackfillRequest object holds information about the backfill request.

Return value

Returns a the section called “StartMatchBackfillOutcome” object with the match backfill ticket ID,
or failure with an error message.

Example

// Build a backfill request
StartMatchBackfillRequest startBackfillRequest = new StartMatchBackfillRequest()
{

Server SDK reference for C# 533

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html

Amazon GameLift Developer Guide

 TicketId = "1111aaaa-22bb-33cc-44dd-5555eeee66ff", //optional
 MatchmakingConfigurationArn = "arn:aws:gamelift:us-
west-2:111122223333:matchmakingconfiguration/MyMatchmakerConfig",
 GameSessionId = GameLiftServerAPI.GetGameSessionId().Result, // gets ID for
 current game session
 MatchmakerData matchmakerData =
 MatchmakerData.FromJson(gameSession.MatchmakerData), // gets matchmaker data for
 current players
 // get matchmakerData.Players
 // remove data for players who are no longer connected
 Players = ListOfPlayersRemainingInTheGame
};

// Send backfill request
StartMatchBackfillOutcome startBackfillOutcome =
 GameLiftServerAPI.StartMatchBackfill(startBackfillRequest);

// Implement callback function for backfill
void OnUpdateGameSession(GameSession myGameSession)
{
 // game-specific tasks to prepare for the newly matched players and update matchmaker
 data as needed
}

StopMatchBackfill()

Cancels an active match backfill request. For more information, see FlexMatch backfill feature.

Syntax

GenericOutcome StopMatchBackfill (StopMatchBackfillRequest stopBackfillRequest);

Parameters

StopMatchBackfillRequest

A StopMatchBackfillRequest object that provides details about the matchmaking ticket
you are stopping.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Server SDK reference for C# 534

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html

Amazon GameLift Developer Guide

Example

// Set backfill stop request parameters
StopMatchBackfillRequest stopBackfillRequest = new StopMatchBackfillRequest(){
 TicketId = "1111aaaa-22bb-33cc-44dd-5555eeee66ff", //optional, if not provided one is
 autogenerated
 MatchmakingConfigurationArn = "arn:aws:gamelift:us-
west-2:111122223333:matchmakingconfiguration/MyMatchmakerConfig",
 GameSessionId = GameLiftServerAPI.GetGameSessionId().Result //gets the ID for the
 current game session
};
GenericOutcome stopBackfillOutcome =
 GameLiftServerAPI.StopMatchBackfillRequest(stopBackfillRequest);

GetComputeCertificate()

Retrieves the path to the TLS certificate used to encrypt the network connection between
the game server and your game client. You can use the certificate path when you register
your compute device to a Amazon GameLift Anywhere fleet. For more information see,
RegisterCompute.

Syntax

GetComputeCertificateOutcome GetComputeCertificate();

Return value

Returns a GetComputeCertificateResponse object that contains the following:

• CertificatePath: The path to the TLS certificate on your compute resource. When using an
Amazon GameLift managed fleet, this path contains:

• certificate.pem: The end-user certificate. The full certificate chain is the combination of
certificateChain.pem appended to this certificate.

• certificateChain.pem: The certificate chain that contains the root certificate and
intermediate certificates.

• rootCertificate.pem: The root certificate.

• privateKey.pem: The private key for the end-user certificate.

• ComputeName: The name of your compute resource.

Server SDK reference for C# 535

https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html

Amazon GameLift Developer Guide

Example

GetComputeCertificateOutcome getComputeCertificateOutcome =
 GameLiftServerAPI.GetComputeCertificate();

GetFleetRoleCredentials()

Retrieves IAM role credentials that authorize Amazon GameLift to interact with other AWS services.
For more information, see Communicate with other AWS resources from your fleets.

Syntax

GetFleetRoleCredentialsOutcome GetFleetRoleCredentials(GetFleetRoleCredentialsRequest
 request);

Parameters

GetFleetRoleCredentialsRequest

Role credentials that extend limited access to your AWS resources to the game server.

Return value

Returns a the section called “GetFleetRoleCredentialsOutcome” object.

Example

// form the fleet credentials request
GetFleetRoleCredentialsRequest getFleetRoleCredentialsRequest = new
 GetFleetRoleCredentialsRequest(){
 RoleArn = "arn:aws:iam::123456789012:role/service-role/exampleGameLiftAction"
};
GetFleetRoleCredentialsOutcome GetFleetRoleCredentialsOutcome credentials =
 GetFleetRoleCredentials(getFleetRoleCredentialsRequest);

Destroy()

Frees the Amazon GameLift game server SDK from memory. As a best practice, call this method
after ProcessEnding() and before terminating the process. If you're using an Anywhere fleet
and you're not terminating server processes after every game session, call Destroy() and then

Server SDK reference for C# 536

Amazon GameLift Developer Guide

InitSDK() to reinitialize before notifying Amazon GameLift that the process is ready to host a
game session with ProcessReady().

Syntax

GenericOutcome Destroy()

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

// Operations to end game sessions and the server process
GenericOutcome processEndingOutcome = GameLiftServerAPI.ProcessEnding();

// Shut down and destroy the instance of the GameLift Game Server SDK
GenericOutcome destroyOutcome = GameLiftServerAPI.Destroy();

// Exit the process with success or failure
if (processEndingOutcome.Success)
 {
 Environment.Exit(0);
 }
else
 {
 Console.WriteLine("ProcessEnding() failed. Error: " +
 processEndingOutcome.Error.ToString());
 Environment.Exit(-1);
 }

Amazon GameLift server SDK reference for C# and Unity: Data types

This Amazon GameLift C# Server SDK reference can help you prepare your multiplayer game for
use with Amazon GameLift. For details about the integration process, see Add Amazon GameLift
to your game server and for information on using the C# server SDK plugin for Unity, see Integrate
Amazon GameLift into a Unity project .

Data types

• LogParameters

• ProcessParameters

Server SDK reference for C# 537

Amazon GameLift Developer Guide

• UpdateGameSession

• GameSession

• ServerParameters

• StartMatchBackfillRequest

• Player

• DescribePlayerSessionsRequest

• StopMatchBackfillRequest

• GetFleetRoleCredentialsRequest

• AttributeValue

• AwsStringOutcome

• GenericOutcome

• DescribePlayerSessionsOutcome

• DescribePlayerSessionsResult

• PlayerSession

• StartMatchBackfillOutcome

• StartMatchBackfillResult

• GetComputeCertificateOutcome

• GetComputeCertificateResult

• GetFleetRoleCredentialsOutcome

• GetFleetRoleCredentialsResult

• AwsDateTimeOutcome

• GameLiftError

• Enums

LogParameters

Use this data type to identify which files generated during a game session that you want the game
server to upload to Amazon GameLift after the game session ends. The game server communicates
LogParameters to Amazon GameLift in a ProcessReady() call.

Properties Description

Server SDK reference for C# 538

Amazon GameLift Developer Guide

LogPaths The list of directory paths to game server log
files you want Amazon GameLift to store for
future access. The server process generates
these files during each game session. You
define file paths and names in your game
server and store them in the root game build
directory.

The log paths must be absolute. For example,
if your game build stores game session logs in
a path like MyGame\sessionLogs\ , then
the path would be c:\game\MyGame\ses
sionLogs on a Windows instance.

Type: List<String>

Required: No

ProcessParameters

This data type contains the set of parameters sent to Amazon GameLift in a ProcessReady() call.

Properties Description

LogParameters The object with a list of directory paths to
game session log files.

Type: Aws::GameLift::Ser
ver:: LogParameters

Required: Yes

OnHealthCheck The name of callback function that Amazon
GameLift invokes to request a health status
report from the server process. Amazon
GameLift calls this function every 60 seconds.
After calling this function Amazon GameLift
waits 60 seconds for a response, if none is

Server SDK reference for C# 539

Amazon GameLift Developer Guide

received, Amazon GameLift records the server
process as unhealthy.

Type: void OnHealthCheckDelegate()

Required: Yes

OnProcessTerminate The name of callback function that Amazon
GameLift invokes to force the server process
to shut down. After calling this function,
Amazon GameLift waits five minutes for the
server process to shut down and respond with
a ProcessEnding() call before it shuts down the
server process.

Type: void OnProcessTerminate
Delegate()

Required: Yes

OnStartGameSession The name of callback function that Amazon
GameLift invokes to activate a new game
session. Amazon GameLift calls this function
in response to the client request CreateGam
eSession. The callback function takes a
GameSession object defined in the Amazon
GameLift API Reference.

Type: void OnStartGameSession
Delegate(GameSession)

Required: Yes

Server SDK reference for C# 540

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

OnUpdateGameSession The name of callback function that Amazon
GameLift invokes to pass an updated game
session object to the server process. Amazon
GameLift calls this function when a match
backfill request has been processed to
provide updated matchmaker data. It passes
a GameSession object, a status update
(updateReason), and the match backfill
ticket ID.

Type: void OnUpdateGameSessionDelegate
(UpdateGameSession)

Required: No

Port The port number that the server process
listens on for new player connections. The
value must fall into the port range configure
d for any fleet deploying this game server
build. This port number is included in game
session and player session objects, which
game sessions use when connecting to a
server process.

Type: Integer

Required: Yes

UpdateGameSession

Updated information for a game session object, includes the reason that the game session was
updated. If the update is related to a match backfill action, this data type includes the backfill
ticket ID.

Server SDK reference for C# 541

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

Properties Description

GameSession A GameSession object defined by the Amazon
GameLift API. The GameSession object
contains properties describing a game session.

Type: GameSession GameSession()

Required: Yes

UpdateReason The reason that the game session is being
updated.

Type: UpdateReason UpdateReason()

Required: Yes

BackfillTicketId The ID of the backfill ticket attempting to
update the game session.

Type: String

Required: Yes

GameSession

Details of a game session.

Properties Description

GameSessionId A unique identifier for the game session. A
game session ARN has the following format:
arn:aws:gamelift:<region>::
gamesession/<fleet ID>/<custom
ID string or idempotency token> .

Type: String

Required: No

Server SDK reference for C# 542

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

Properties Description

Name A descriptive label of the game session.

Type: String

Required: No

FleetId A unique identifier for the fleet that the game
session is running on.

Type: String

Required: No

MaximumPlayerSessionCount The maximum number of player connections
to the game session.

Type: Integer

Required: No

Port The port number for the game session. To
connect to a Amazon GameLift game server,
an app needs both the IP address and port
number.

Type: Integer

Required: No

IpAddress The IP address of the game session. To
connect to a Amazon GameLift game server,
an app needs both the IP address and port
number.

Type: String

Required: No

Server SDK reference for C# 543

Amazon GameLift Developer Guide

Properties Description

GameSessionData A set of custom game session properties,
formatted as a single string value.

Type: String

Required: No

MatchmakerData The information about the matchmaking
process that was used to create the game
session, in JSON syntax, formatted as a string.
In addition the matchmaking configuration
used, it contains data on all players assigned
to the match, including player attributes and
team assignments.

Type: String

Required: No

GameProperties A set of custom properties for a game session,
formatted as key:value pairs. These properties
are passed with a request to start a new game
session.

Type: Dictionary<string, string>

Required: No

Server SDK reference for C# 544

Amazon GameLift Developer Guide

Properties Description

DnsName The DNS identifier assigned to the instance
that's running the game session. Values have
the following format:

• TLS-enabled fleets: <unique identifie
r>.<region identifier>.amazon
gamelift.com .

• Non-TLS-enabled fleets: ec2-<unique
identifier>.compute.amazona
ws.com .

When connecting to a game session that's
running on a TLS-enabled fleet, you must use
the DNS name, not the IP address.

Type: String

Required: No

ServerParameters

Information used to maintain the connection between an Amazon GameLift Anywhere server and
the Amazon GameLift service. This information is used when launching new server processes with
InitSDK(). For servers hosted on Amazon GameLift managed EC2 instances, use an empty object.

Properties Description

WebSocketUrl The GameLiftServerSdkEndpoint
returned when you RegisterCompute as
part of Amazon GameLift Anywhere.

Type: String

Required: Yes

Server SDK reference for C# 545

Amazon GameLift Developer Guide

Properties Description

ProcessId A unique identifier registered to the server
process hosting your game.

Type: String

Required: Yes

HostId A unique identifier for the host with the server
processes hosting your game. The hostId is the
ComputeName used when you registered your
compute. For more information see, RegisterC
ompute

Type: String

Required: Yes

FleetId The fleet ID of the fleet that the compute
is registered to. For more information see,
RegisterCompute.

Type: String

Required: Yes

AuthToken The authentication token generated by
Amazon GameLift that authenticates your
server to Amazon GameLift. For more
information see, GetComputeAuthToken.

Type: String

Required: Yes

StartMatchBackfillRequest

Information used to create a matchmaking backfill request. The game server communicates this
information to Amazon GameLift in a StartMatchBackfill() call.

Server SDK reference for C# 546

https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAuthToken.html

Amazon GameLift Developer Guide

Properties Description

GameSessionArn The unique game session identifier. The API
operation GetGameSessionId returns the
identifier in ARN format.

Type: String

Required: Yes

MatchmakingConfigurationArn The unique identifier, in the form of an ARN,
for the matchmaker to use for this request.
The matchmaker ARN for the original game
session is in the game session object in the
matchmaker data property. Learn more about
matchmaker data in Work with matchmaker
data.

Type: String

Required: Yes

Players A set of data that represents all players
who are currently in the game session. The
matchmaker uses this information to search
for new players who are good matches for the
current players.

Type: List<Player>

Required: Yes

TicketId The unique identifier for a matchmaking or
match backfill request ticket. If you don't
provide a value, Amazon GameLift generates
one. Use this identifier to track the match
backfill ticket status or cancel the request if
needed.

Server SDK reference for C# 547

https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk5-csharp-actions.html#integration-server-sdk5-csharp-getgamesessionid
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-server.html#match-server-data.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-server.html#match-server-data.html

Amazon GameLift Developer Guide

Properties Description

Type: String

Required: No

Player

Represents a player in matchmaking. When a matchmaking request starts, a player has a player ID,
attributes, and possibly latency data. Amazon GameLift adds team information after a match is
made.

Properties Description

LatencyInMS A set of values expressed in milliseconds, that
indicate the amount of latency that a player
experiences when connected to a location.

If this property is used, the player is only
matched for locations listed. If a matchmake
r has a rule that evaluates player latency,
players must report latency to be matched.

Type: Dictionary<string, int>

Required: No

PlayerAttributes A collection of key:value pairs that contain
player information for use in matchmaking.
Player attribute keys must match the PlayerAtt
ributes used in a matchmaking rule set.

For more information about player attributes,
see AttributeValue.

Type: Dictionary<string, Attribute
Value

Required: No

Server SDK reference for C# 548

https://docs.aws.amazon.com/gamelift/latest/apireference/API_AttributeValue.html

Amazon GameLift Developer Guide

Properties Description

PlayerId A unique identifier for a player.

Type: String

Required: No

Team The name of the team that the player is
assigned to in a match. You define team name
in the matchmaking rule set.

Type: String

Required: No

DescribePlayerSessionsRequest

This data type is used to specify which player session(s) to retrieve. It can be used in several ways:
(1) provide a PlayerSessionId to request a specific player session; (2) provide a GameSessionId to
request all player sessions in the specified game session; or (3) provide a PlayerId to request all
player sessions for the specified player. For large collections of player sessions, use the pagination
parameters to retrieve results as sequential pages.

Properties Description

GameSessionId The unique game session identifier. Use this
parameter to request all player sessions for
the specified game session. Game session ID
format is as follows: arn:aws:gamelift:<
region>::gamesession/fleet-
<fleet ID>/<ID string> . The value of
<ID string> is either a custom ID string (if one
was specified when the game session was
created) a generated string.

Type: String

Server SDK reference for C# 549

Amazon GameLift Developer Guide

Properties Description

Required: No

PlayerSessionId The unique identifier for a player session.

Type: String

Required: No

PlayerId The unique identifier for a player. See
Generate player IDs.

Type: String

Required: No

PlayerSessionStatusFilter The player session status to filter results on.
Possible player session statuses include the
following:

• RESERVED – The player session request
has been received, but the player has not
yet connected to the server process and/or
been validated.

• ACTIVE – The player has been validated
by the server process and is currently
connected.

• COMPLETED – The player connection has
been dropped.

• TIMEDOUT – A player session request was
received, but the player did not connect
and/or was not validated within the time-
out limit (60 seconds).

Type: String

Required: No

Server SDK reference for C# 550

Amazon GameLift Developer Guide

Properties Description

NextToken The token indicating the start of the next page
of results. To specify the start of the result set,
don't provide a value. If you provide a player
session ID, this parameter is ignored.

Type: String

Required: No

Limit The maximum number of results to return. If
you provide a player session ID, this parameter
is ignored.

Type: int

Required: No

StopMatchBackfillRequest

Information used to cancel a matchmaking backfill request. The game server communicates this
information to Amazon GameLift service in a StopMatchBackfill() call.

Properties Description

GameSessionArn The unique game session identifier of the
request being canceled.

Type: string

Required: Yes

MatchmakingConfigurationArn The unique identifier of the matchmaker this
request was sent to.

Type: string

Required: Yes

Server SDK reference for C# 551

Amazon GameLift Developer Guide

Properties Description

TicketId The unique identifier of the backfill request
ticket to be canceled.

Type: string

Required: Yes

GetFleetRoleCredentialsRequest

This data type gives the game server limited access to your other AWS resources. For more
information see, Set up an IAM service role for Amazon GameLift.

Properties Description

RoleArn The Amazon Resource Name (ARN) of the
service role that extends limited access to your
AWS resources.

Type: string

Required: Yes

RoleSessionName The name of the session that describes the use
of the role credentials.

Type: string

Required: No

AttributeValue

Use these values in Player attribute key-value pairs. This object lets you specify an attribute value
using any of the valid data types: string, number, string array, or data map. Each AttributeValue
object can use only one of the available properties.

Server SDK reference for C# 552

Amazon GameLift Developer Guide

Properties Description

attrType Specifies the type of attribute value.

Type: An AttrType enum value.

Required: No

S Represents a string attribute value.

Type: string

Required: Yes

N Represents a numeric attribute value.

Type: double

Required: Yes

SL Represents an array of string attribute values.

Type: string[]

Required: Yes

SDM Represents a dictionary of string keys and
double values.

Type: Dictionary<string, double>

Required: Yes

AwsStringOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Result The result of the action.

Server SDK reference for C# 553

Amazon GameLift Developer Guide

Properties Description

Type: string

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

GenericOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

Server SDK reference for C# 554

Amazon GameLift Developer Guide

DescribePlayerSessionsOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Result The result of the action.

Type: the section called “DescribePlayerSes
sionsResult”

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

DescribePlayerSessionsResult

Properties Description

NextToken The token indicating the start of the next page
of results. To specify the start of the result set,
don't provide a value. If you provide a player
session ID, this parameter is ignored.

Type: string

Required: Yes

Server SDK reference for C# 555

Amazon GameLift Developer Guide

Properties Description

PlayerSessions A collection of objects containing propertie
s for each player session that matches the
request.

Type: IList<the section called
“PlayerSession” >

Required:

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

PlayerSession

Properties Description

CreationTime Type: long

Required: Yes

FleetId Type: string

Required: Yes

GameSessionId Type: string

Required: Yes

Server SDK reference for C# 556

Amazon GameLift Developer Guide

Properties Description

IpAddress Type: string

Required: Yes

PlayerData Type: string

Required: Yes

PlayerId Type: string

Required: Yes

PlayerSessionId Type: string

Required: Yes

Port Type: int

Required: Yes

Status Type: A PlayerSessionStatus enum.

Required: Yes

TerminationTime Type: long

Required: Yes

DnsName Type: string

Required: Yes

StartMatchBackfillOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Result The result of the action.

Server SDK reference for C# 557

Amazon GameLift Developer Guide

Properties Description

Type: the section called “StartMatchBackfil
lResult”

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

StartMatchBackfillResult

Properties Description

TicketId Type: string

Required: Yes

GetComputeCertificateOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Result The result of the action.

Type: the section called “GetComputeCertifi
cateResult”

Server SDK reference for C# 558

Amazon GameLift Developer Guide

Properties Description

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

GetComputeCertificateResult

The path to the TLS certificate on your compute and the compute's host name.

Properties Description

CertificatePath Type: string

Required: Yes

ComputeName Type: string

Required: Yes

GetFleetRoleCredentialsOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Result The result of the action.

Server SDK reference for C# 559

Amazon GameLift Developer Guide

Properties Description

Type: the section called “GetFleetRoleCrede
ntialsResult”

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

GetFleetRoleCredentialsResult

Properties Description

AccessKeyId The access key ID to authenticate and provide
access to your AWS resources.

Type: string

Required: No

AssumedRoleId The ID of the user that the service role
belongs to.

Type: string

Required: No

AssumedRoleUserArn The Amazon Resource Name (ARN) of the user
that the service role belongs to.

Server SDK reference for C# 560

Amazon GameLift Developer Guide

Properties Description

Type: string

Required: No

Expiration The amount of time until your session
credentials expire.

Type: DateTime

Required: No

SecretAccessKey The secret access key ID for authentication.

Type: string

Required: No

SessionToken A token to identify the current active session
interacting with your AWS resources.

Type: string

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

AwsDateTimeOutcome

This data type results from an action and produces an object with the following properties:

Server SDK reference for C# 561

Amazon GameLift Developer Guide

Properties Description

Result The result of the action.

Type: DateTime

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

GameLiftError

Properties Description

ErrorType The type of error.

Type: A GameLiftErrorType enum.

Required: No

ErrorName The name of the error.

Type: string

Required: No

ErrorMessage The error message.

Type: string

Server SDK reference for C# 562

Amazon GameLift Developer Guide

Properties Description

Required: No

Enums

Enums defined for the Amazon GameLift server SDK (C#) are defined as follows:

AttrType

• NONE

• STRING

• DOUBLE

• STRING_LIST

• STRING_DOUBLE_MAP

GameLiftErrorType

String value indicating the error type. Valid values include:

• SERVICE_CALL_FAILED – A call to an AWS service has failed.

• LOCAL_CONNECTION_FAILED – The local connection to Amazon GameLift failed.

• NETWORK_NOT_INITIALIZED – The network has not been initialized.

• GAMESESSION_ID_NOT_SET – The game session ID has not been set.

• BAD_REQUEST_EXCEPTION

• INTERNAL_SERVICE_EXCEPTION

• ALREADY_INITIALIZED – The Amazon GameLift Server or Client has already been initialized
with Initialize().

• FLEET_MISMATCH – The target fleet does not match the fleet of a gameSession or
playerSession.

• GAMELIFT_CLIENT_NOT_INITIALIZED – The Amazon GameLift client has not been initialized.

• GAMELIFT_SERVER_NOT_INITIALIZED – The Amazon GameLift server has not been
initialized.

• GAME_SESSION_ENDED_FAILED – The Amazon GameLift Server SDK could not contact the
service to report the game session ended.

• GAME_SESSION_NOT_READY – The Amazon GameLift Server Game Session was not
activated.

Server SDK reference for C# 563

Amazon GameLift Developer Guide

• GAME_SESSION_READY_FAILED – The Amazon GameLift Server SDK could not contact the
service to report the game session is ready.

• INITIALIZATION_MISMATCH – A client method was called after Server::Initialize(), or vice
versa.

• NOT_INITIALIZED – The Amazon GameLift Server or Client has not been initialized with
Initialize().

• NO_TARGET_ALIASID_SET – A target aliasId has not been set.

• NO_TARGET_FLEET_SET – A target fleet has not been set.

• PROCESS_ENDING_FAILED – The Amazon GameLift Server SDK could not contact the service
to report the process is ending.

• PROCESS_NOT_ACTIVE – The server process is not yet active, not bound to a GameSession,
and cannot accept or process PlayerSessions.

• PROCESS_NOT_READY – The server process is not yet ready to be activated.

• PROCESS_READY_FAILED – The Amazon GameLift Server SDK could not contact the service
to report the process is ready.

• SDK_VERSION_DETECTION_FAILED – SDK version detection failed.

• STX_CALL_FAILED – A call to the XStx server backend component has failed.

• STX_INITIALIZATION_FAILED – The XStx server backend component has failed to initialize.

• UNEXPECTED_PLAYER_SESSION – An unregistered player session was encountered by the
server.

• WEBSOCKET_CONNECT_FAILURE

• WEBSOCKET_CONNECT_FAILURE_FORBIDDEN

• WEBSOCKET_CONNECT_FAILURE_INVALID_URL

• WEBSOCKET_CONNECT_FAILURE_TIMEOUT

• WEBSOCKET_RETRIABLE_SEND_MESSAGE_FAILURE – Retriable failure to send a message to
the GameLift Service WebSocket.

• WEBSOCKET_SEND_MESSAGE_FAILURE – Failure to send a message to the GameLift Service
WebSocket.

• MATCH_BACKFILL_REQUEST_VALIDATION – Validation of the request failed.

• PLAYER_SESSION_REQUEST_VALIDATION – Validation of the request failed.

PlayerSessionCreationPolicy

String value indicating whether the game session accepts new players. Valid values include:

Server SDK reference for C# 564

Amazon GameLift Developer Guide

• ACCEPT_ALL – Accept all new player sessions.

• DENY_ALL – Deny all new player sessions.

• NOT_SET – The game session is not set to accept or deny new player sessions.

PlayerSessionStatus

• ACTIVE

• COMPLETED

• NOT_SET

• RESERVED

• TIMEDOUT

Amazon GameLift server SDK 4.x reference for C#

This Amazon GameLift C# Server SDK 4.x reference can help you prepare your multiplayer game
for use with Amazon GameLift. For details on the integration process, see Add Amazon GameLift to
your game server.

Topics

• Amazon GameLift server SDK (C#) reference: Actions

• Amazon GameLift server SDK (C#) reference: Data types

Amazon GameLift server SDK (C#) reference: Actions

You can use this Amazon GameLift C# server SDK reference to help you prepare your multiplayer
game for use with Amazon GameLift. For details about the integration process, see Add Amazon
GameLift to your game server.

• Actions

• Data Types

AcceptPlayerSession()

Notifies the Amazon GameLift service that a player with the specified player session ID has
connected to the server process and needs validation. Amazon GameLift verifies that the player
session ID is valid—that is, that the player ID has reserved a player slot in the game session. Once
validated, Amazon GameLift changes the status of the player slot from RESERVED to ACTIVE.

Server SDK reference for C# 565

Amazon GameLift Developer Guide

Syntax

GenericOutcome AcceptPlayerSession(String playerSessionId)

Parameters

playerSessionId

Unique ID issued by Amazon GameLift when a new player session is created. A player
session ID is specified in a PlayerSession object, which is returned in response to a
client call to the GameLift API actions StartGameSessionPlacement, CreateGameSession,
DescribeGameSessionPlacement, or DescribePlayerSessions.

Type: String

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example illustrates a function for handling a connection request, including validating and
rejecting invalid player session IDs.

void ReceiveConnectingPlayerSessionID (Connection connection, String playerSessionId){
 var acceptPlayerSessionOutcome =
 GameLiftServerAPI.AcceptPlayerSession(playerSessionId);
 if(acceptPlayerSessionOutcome.Success)
 {
 connectionToSessionMap.emplace(connection, playerSessionId);
 connection.Accept();
 }
 else
 {
 connection.Reject(acceptPlayerSessionOutcome.Error.ErrorMessage); }
}

Server SDK reference for C# 566

https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribePlayerSessions.html

Amazon GameLift Developer Guide

ActivateGameSession()

Notifies the Amazon GameLift service that the server process has activated a game session
and is now ready to receive player connections. This action should be called as part of the
onStartGameSession() callback function, after all game session initialization has been
completed.

Syntax

GenericOutcome ActivateGameSession()

Parameters

This action has no parameters.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example shows ActivateGameSession() being called as part of the
onStartGameSession() delegate function.

void OnStartGameSession(GameSession gameSession)
{
 // game-specific tasks when starting a new game session, such as loading map

 // When ready to receive players
 var activateGameSessionOutcome = GameLiftServerAPI.ActivateGameSession();
}

DescribePlayerSessions()

Retrieves player session data, including settings, session metadata, and player data. Use this action
to get information for a single player session, for all player sessions in a game session, or for all
player sessions associated with a single player ID.

Syntax

DescribePlayerSessionsOutcome DescribePlayerSessions(DescribePlayerSessionsRequest
 describePlayerSessionsRequest)

Server SDK reference for C# 567

Amazon GameLift Developer Guide

Parameters

describePlayerSessionsRequest

A DescribePlayerSessionsRequest object describing which player sessions to retrieve.

Required: Yes

Return value

If successful, returns a DescribePlayerSessionsOutcome object containing a set of player
session objects that fit the request parameters. Player session objects have a structure identical to
the AWS SDK Amazon GameLift API PlayerSession data type.

Example

This example illustrates a request for all player sessions actively connected to a specified game
session. By omitting NextToken and setting the Limit value to 10, Amazon GameLift will return the
first 10 player sessions records matching the request.

// Set request parameters
var describePlayerSessionsRequest = new
 Aws.GameLift.Server.Model.DescribePlayerSessionsRequest()
{
 GameSessionId = GameLiftServerAPI.GetGameSessionId().Result, //gets the ID for
 the current game session
 Limit = 10,
 PlayerSessionStatusFilter =
 PlayerSessionStatusMapper.GetNameForPlayerSessionStatus(PlayerSessionStatus.ACTIVE)
};
// Call DescribePlayerSessions
Aws::GameLift::DescribePlayerSessionsOutcome playerSessionsOutcome =
 Aws::GameLift::Server::Model::DescribePlayerSessions(describePlayerSessionRequest);

GetGameSessionId()

Retrieves the ID of the game session currently being hosted by the server process, if the server
process is active.

For idle process that are not yet activated with a game session, the call returns Success=True and
GameSessionId="" (an empty string).

Server SDK reference for C# 568

https://docs.aws.amazon.com/gamelift/latest/apireference/API_PlayerSession.html

Amazon GameLift Developer Guide

Syntax

AwsStringOutcome GetGameSessionId()

Parameters

This action has no parameters.

Return value

If successful, returns the game session ID as an AwsStringOutcome object. If not successful,
returns an error message.

Example

var getGameSessionIdOutcome = GameLiftServerAPI.GetGameSessionId();

GetInstanceCertificate()

Retrieves the file location of a pem-encoded TLS certificate that is associated with the fleet and
its instances. AWS Certificate Manager generates this certificate when you create a new fleet with
the certificate configuration set to GENERATED. Use this certificate to establish a secure connection
with a game client and to encrypt client/server communication.

Syntax

GetInstanceCertificateOutcome GetInstanceCertificate();

Parameters

This action has no parameters.

Return value

If successful, returns a GetInstanceCertificateOutcome object containing the location of the
fleet's TLS certificate file and certificate chain, which are stored on the instance. A root certificate
file, extracted from the certificate chain, is also stored on the instance. If not successful, returns an
error message.

For more information about the certificate and certificate chain data, see GetCertificate Response
Elements in the AWS Certificate Manager API Reference.

Server SDK reference for C# 569

https://docs.aws.amazon.com/acm/latest/APIReference/API_GetCertificate.html#API_GetCertificate_ResponseElements
https://docs.aws.amazon.com/acm/latest/APIReference/API_GetCertificate.html#API_GetCertificate_ResponseElements

Amazon GameLift Developer Guide

Example

var getInstanceCertificateOutcome = GameLiftServerAPI.GetInstanceCertificate();

GetSdkVersion()

Returns the current version number of the SDK built into the server process.

Syntax

AwsStringOutcome GetSdkVersion()

Parameters

This action has no parameters.

Return value

If successful, returns the current SDK version as an AwsStringOutcome object. The returned string
includes the version number only (ex. "3.1.5"). If not successful, returns an error message.

Example

var getSdkVersionOutcome = GameLiftServerAPI.GetSdkVersion();

GetTerminationTime()

Returns the time that a server process is scheduled to be shut down, if a termination time is
available. A server process takes this action after receiving an onProcessTerminate() callback
from the Amazon GameLift service. Amazon GameLift may call onProcessTerminate() for
the following reasons: (1) for poor health (the server process has reported port health or has not
responded to Amazon GameLift, (2) when terminating the instance during a scale-down event, or
(3) when an instance is being terminated due to a spot-instance interruption.

If the process has received an onProcessTerminate() callback, the value returned is the
estimated termination time. If the process has not received an onProcessTerminate() callback,
an error message is returned. Learn more about shutting down a server process.

Syntax

AwsDateTimeOutcome GetTerminationTime()

Server SDK reference for C# 570

Amazon GameLift Developer Guide

Parameters

This action has no parameters.

Return value

If successful, returns the termination time as an AwsDateTimeOutcome object. The value is the
termination time, expressed in elapsed ticks since 0001 00:00:00. For example, the date time value
2020-09-13 12:26:40 -000Z is equal to 637355968000000000 ticks. If no termination time is
available, returns an error message.

Example

var getTerminationTimeOutcome = GameLiftServerAPI.GetTerminationTime();

InitSDK()

Initializes the Amazon GameLift SDK. This method should be called on launch, before any other
Amazon GameLift-related initialization occurs.

Syntax

InitSDKOutcome InitSDK()

Parameters

This action has no parameters.

Return value

If successful, returns an InitSdkOutcome object indicating that the server process is ready to call
ProcessReady().

Example

var initSDKOutcome = GameLiftServerAPI.InitSDK();

ProcessEnding()

Notifies the Amazon GameLift service that the server process is shutting down. This method should
be called after all other cleanup tasks, including shutting down all active game sessions. This

Server SDK reference for C# 571

Amazon GameLift Developer Guide

method should exit with an exit code of 0; a non-zero exit code results in an event message that
the process did not exit cleanly.

Once the method exits with a code of 0, you can terminate the process with a successful exit code.
You can also exit the process with an error code. If you exit with an error code, the fleet event will
indicated the process terminated abnormally (SERVER_PROCESS_TERMINATED_UNHEALTHY).

Syntax

GenericOutcome ProcessEnding()

Parameters

This action has no parameters.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

var processEndingOutcome = GameLiftServerAPI.ProcessEnding();
if (processReadyOutcome.Success)
 Environment.Exit(0);
// otherwise, exit with error code
Environment.Exit(errorCode);

ProcessReady()

Notifies the Amazon GameLift service that the server process is ready to host game sessions. Call
this method after successfully invoking InitSDK() and completing setup tasks that are required
before the server process can host a game session. This method should be called only once per
process.

Syntax

GenericOutcome ProcessReady(ProcessParameters processParameters)

Server SDK reference for C# 572

Amazon GameLift Developer Guide

Parameters

processParameters

A ProcessParameters object communicating the following information about the server process:

• Names of callback methods, implemented in the game server code, that the Amazon
GameLift service invokes to communicate with the server process.

• Port number that the server process is listening on.

• Path to any game session-specific files that you want Amazon GameLift to capture and store.

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example illustrates both the ProcessReady() call and delegate function implementations.

// Set parameters and call ProcessReady
var processParams = new ProcessParameters(
 this.OnGameSession,
 this.OnProcessTerminate,
 this.OnHealthCheck,
 this.OnGameSessionUpdate,
 port,
 new LogParameters(new List<string>() // Examples of log and error files
 written by the game server
 {
 "C:\\game\\logs",
 "C:\\game\\error"
 })
);

var processReadyOutcome = GameLiftServerAPI.ProcessReady(processParams);

// Implement callback functions
void OnGameSession(GameSession gameSession)
{
 // game-specific tasks when starting a new game session, such as loading map

Server SDK reference for C# 573

Amazon GameLift Developer Guide

 // When ready to receive players
 var activateGameSessionOutcome = GameLiftServerAPI.ActivateGameSession();
}

void OnProcessTerminate()
{
 // game-specific tasks required to gracefully shut down a game session,
 // such as notifying players, preserving game state data, and other cleanup
 var ProcessEndingOutcome = GameLiftServerAPI.ProcessEnding();
}

bool OnHealthCheck()
{
 bool isHealthy;
 // complete health evaluation within 60 seconds and set health
 return isHealthy;
}

RemovePlayerSession()

Notifies the Amazon GameLift service that a player with the specified player session ID has
disconnected from the server process. In response, Amazon GameLift changes the player slot to
available, which allows it to be assigned to a new player.

Syntax

GenericOutcome RemovePlayerSession(String playerSessionId)

Parameters

playerSessionId

Unique ID issued by Amazon GameLift when a new player session is created. A player
session ID is specified in a PlayerSession object, which is returned in response to a
client call to the GameLift API actions StartGameSessionPlacement, CreateGameSession,
DescribeGameSessionPlacement, or DescribePlayerSessions.

Type: String

Required: Yes

Server SDK reference for C# 574

https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribePlayerSessions.html

Amazon GameLift Developer Guide

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

Aws::GameLift::GenericOutcome disconnectOutcome =
 Aws::GameLift::Server::RemovePlayerSession(playerSessionId);

StartMatchBackfill()

Sends a request to find new players for open slots in a game session created with FlexMatch.
See also the AWS SDK action StartMatchBackfill(). With this action, match backfill requests can
be initiated by a game server process that is hosting the game session. Learn more about the
FlexMatch backfill feature.

This action is asynchronous. If new players are successfully matched, the Amazon GameLift service
delivers updated matchmaker data using the callback function OnUpdateGameSession().

A server process can have only one active match backfill request at a time. To send a new request,
first call StopMatchBackfill() to cancel the original request.

Syntax

StartMatchBackfillOutcome StartMatchBackfill (StartMatchBackfillRequest
 startBackfillRequest);

Parameters

StartMatchBackfillRequest

A StartMatchBackfillRequest object that communicates the following information:

• A ticket ID to assign to the backfill request. This information is optional; if no ID is provided,
Amazon GameLift will autogenerate one.

• The matchmaker to send the request to. The full configuration ARN is required. This value can
be acquired from the game session's matchmaker data.

• The ID of the game session that is being backfilled.

• Available matchmaking data for the game session's current players.

Required: Yes

Server SDK reference for C# 575

https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartMatchBackfill.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html

Amazon GameLift Developer Guide

Return value

Returns a StartMatchBackfillOutcome object with the match backfill ticket ID or failure with an
error message.

Example

// Build a backfill request
var startBackfillRequest = new AWS.GameLift.Server.Model.StartMatchBackfillRequest()
{
 TicketId = "a ticket ID", //optional
 MatchmakingConfigurationArn = "the matchmaker configuration ARN",
 GameSessionId = GameLiftServerAPI.GetGameSessionId().Result, // gets ID for
 current game session
 //get player data for all currently connected players
 MatchmakerData matchmakerData =
 MatchmakerData.FromJson(gameSession.MatchmakerData); // gets matchmaker
 data for current players
 // get matchmakerData.Players
 // remove data for players who are no longer connected
 Players = ListOfPlayersRemainingInTheGame
};

// Send backfill request
var startBackfillOutcome = GameLiftServerAPI.StartMatchBackfill(startBackfillRequest);

// Implement callback function for backfill
void OnUpdateGameSession(GameSession myGameSession)
{
 // game-specific tasks to prepare for the newly matched players and update
 matchmaker data as needed
}

StopMatchBackfill()

Cancels an active match backfill request that was created with StartMatchBackfill(). See also the
AWS SDK action StopMatchmaking(). Learn more about the FlexMatch backfill feature.

Syntax

GenericOutcome StopMatchBackfill (StopMatchBackfillRequest stopBackfillRequest);

Server SDK reference for C# 576

https://docs.aws.amazon.com/gamelift/latest/apireference/API_StopMatchmaking.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html

Amazon GameLift Developer Guide

Parameters

StopMatchBackfillRequest

A StopMatchBackfillRequest object identifying the matchmaking ticket to cancel:

• ticket ID assigned to the backfill request being canceled

• matchmaker the backfill request was sent to

• game session associated with the backfill request

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

// Set backfill stop request parameters

var stopBackfillRequest = new AWS.GameLift.Server.Model.StopMatchBackfillRequest()
{
 TicketId = "a ticket ID", //optional, if not provided one is autogenerated
 MatchmakingConfigurationArn = "the matchmaker configuration ARN", //from the game
 session matchmaker data
 GameSessionId = GameLiftServerAPI.GetGameSessionId().Result //gets the ID for
 the current game session
};

var stopBackfillOutcome =
 GameLiftServerAPI.StopMatchBackfillRequest(stopBackfillRequest);

TerminateGameSession()

This method is deprecated with version 4.0.1. Instead, the server process should call
ProcessEnding() after a game session has ended.

Notifies the Amazon GameLift service that the server process has ended the current game session.
This action is called when the server process will remain active and ready to host a new game
session. It should be called only after your game session termination procedure is complete,

Server SDK reference for C# 577

Amazon GameLift Developer Guide

because it signals to Amazon GameLift that the server process is immediately available to host a
new game session.

This action is not called if the server process will be shut down after the game session stops.
Instead, call ProcessEnding() to signal that both the game session and the server process are
ending.

Syntax

GenericOutcome TerminateGameSession()

Parameters

This action has no parameters.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example illustrates a server process at the end of a game session.

// game-specific tasks required to gracefully shut down a game session,
// such as notifying players, preserving game state data, and other cleanup

var terminateGameSessionOutcome = GameLiftServerAPI.TerminateGameSession();
var processReadyOutcome = GameLiftServerAPI.ProcessReady(processParams);

UpdatePlayerSessionCreationPolicy()

Updates the current game session's ability to accept new player sessions. A game session can be set
to either accept or deny all new player sessions. (See also the UpdateGameSession() action in the
Amazon GameLift Service API Reference).

Syntax

GenericOutcome UpdatePlayerSessionCreationPolicy(PlayerSessionCreationPolicy
 playerSessionPolicy)

Server SDK reference for C# 578

https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateGameSession.html

Amazon GameLift Developer Guide

Parameters

newPlayerSessionPolicy

String value indicating whether the game session accepts new players.

Type: PlayerSessionCreationPolicy enum. Valid values include:

• ACCEPT_ALL – Accept all new player sessions.

• DENY_ALL – Deny all new player sessions.

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example sets the current game session's join policy to accept all players.

var updatePlayerSessionCreationPolicyOutcomex =

 GameLiftServerAPI.UpdatePlayerSessionCreationPolicy(PlayerSessionCreationPolicy.ACCEPT_ALL);

Amazon GameLift server SDK (C#) reference: Data types

You can use this Amazon GameLift C# server SDK reference to help you prepare your multiplayer
game for use with Amazon GameLift. For details about the integration process, see Add Amazon
GameLift to your game server.

• Actions

• Data types

LogParameters

This data type is used to identify which files generated during a game session that you want
Amazon GameLift to upload and store once the game session ends. This information is
communicated to the Amazon GameLift service in a ProcessReady() call.

Server SDK reference for C# 579

https://sdk.amazonaws.com/cpp/api/LATEST/namespace_aws_1_1_game_lift_1_1_model.html#afa8a7527defe9e7ca0caebc239182c43

Amazon GameLift Developer Guide

Contents

logPaths

List of directory paths to game server log files you want Amazon GameLift to store for future
access. These files are generated by a server process during each game session; file paths and
names are defined in your game server and stored in the root game build directory. The log
paths must be absolute. For example, if your game build stores game session logs in a path like
MyGame\sessionlogs\, then the log path would be c:\game\MyGame\sessionLogs (on a
Windows instance) or /local/game/MyGame/sessionLogs (on a Linux instance).

Type: List<String>

Required: No

DescribePlayerSessionsRequest

This data type is used to specify which player session(s) to retrieve. It can be used in several ways:
(1) provide a PlayerSessionId to request a specific player session; (2) provide a GameSessionId to
request all player sessions in the specified game session; or (3) provide a PlayerId to request all
player sessions for the specified player. For large collections of player sessions, use the pagination
parameters to retrieve results as sequential pages.

Contents

GameSessionId

Unique game session identifier. Use this parameter to request all player
sessions for the specified game session. Game session ID format is as follows:
arn:aws:gamelift:<region>::gamesession/fleet-<fleet ID>/<ID string>. The
value of <ID string> is either a custom ID string (if one was specified when the game session was
created) a generated string.

Type: String

Required: No

Limit

Maximum number of results to return. Use this parameter with NextToken to get results as a set
of sequential pages. If a player session ID is specified, this parameter is ignored.

Server SDK reference for C# 580

Amazon GameLift Developer Guide

Type: Integer

Required: No

NextToken

Token indicating the start of the next sequential page of results. Use the token that is returned
with a previous call to this action. To specify the start of the result set, do not specify a value. If
a player session ID is specified, this parameter is ignored.

Type: String

Required: No

PlayerId

Unique identifier for a player. Player IDs are defined by the developer. See Generate player IDs.

Type: String

Required: No

PlayerSessionId

Unique identifier for a player session.

Type: String

Required: No

PlayerSessionStatusFilter

Player session status to filter results on. Possible player session statuses include the following:

• RESERVED – The player session request has been received, but the player has not yet
connected to the server process and/or been validated.

• ACTIVE – The player has been validated by the server process and is currently connected.

• COMPLETED – The player connection has been dropped.

• TIMEDOUT – A player session request was received, but the player did not connect and/or was
not validated within the time-out limit (60 seconds).

Type: String

Required: No

Server SDK reference for C# 581

Amazon GameLift Developer Guide

ProcessParameters

This data type contains the set of parameters sent to the Amazon GameLift service in a
ProcessReady() call.

Contents

port

Port number the server process will listen on for new player connections. The value must
fall into the port range configured for any fleet deploying this game server build. This port
number is included in game session and player session objects, which game sessions use when
connecting to a server process.

Type: Integer

Required: Yes

logParameters

Object with a list of directory paths to game session log files.

Type: Aws::GameLift::Server::LogParameters

Required: Yes

onStartGameSession

Name of callback function that the Amazon GameLift service invokes to activate a new
game session. Amazon GameLift calls this function in response to the client request
CreateGameSession. The callback function takes a GameSession object (defined in the Amazon
GameLift Service API Reference).

Type: void OnStartGameSessionDelegate(GameSession gameSession)

Required: Yes

onProcessTerminate

Name of callback function that the Amazon GameLift service invokes to force the server process
to shut down. After calling this function, Amazon GameLift waits five minutes for the server
process to shut down and respond with a ProcessEnding() call before it shuts down the server
process.

Server SDK reference for C# 582

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

Type: void OnProcessTerminateDelegate()

Required: Yes

onHealthCheck

Name of callback function that the Amazon GameLift service invokes to request a health status
report from the server process. Amazon GameLift calls this function every 60 seconds. After
calling this function Amazon GameLift waits 60 seconds for a response, and if none is received.
records the server process as unhealthy.

Type: bool OnHealthCheckDelegate()

Required: Yes

onUpdateGameSession

Name of callback function that the Amazon GameLift service invokes to pass an updated
game session object to the server process. Amazon GameLift calls this function when a match
backfill request has been processed in order to provide updated matchmaker data. It passes a
GameSession object, a status update (updateReason), and the match backfill ticket ID.

Type: void OnUpdateGameSessionDelegate (UpdateGameSession
updateGameSession)

Required: No

StartMatchBackfillRequest

This data type is used to send a matchmaking backfill request. The information is communicated to
the Amazon GameLift service in a StartMatchBackfill() call.

Contents

GameSessionArn

Unique game session identifier. The SDK method GetGameSessionId() returns the identifier in
ARN format.

Type: String

Required: Yes

Server SDK reference for C# 583

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

MatchmakingConfigurationArn

Unique identifier, in the form of an ARN, for the matchmaker to use for this request. To find
the matchmaker that was used to create the original game session, look in the game session
object, in the matchmaker data property. Learn more about matchmaker data in Work with
matchmaker data.

Type: String

Required: Yes

Players

A set of data representing all players who are currently in the game session. The matchmaker
uses this information to search for new players who are good matches for the current players.
See the Amazon GameLift API Reference Guide for a description of the Player object format.
To find player attributes, IDs, and team assignments, look in the game session object, in the
matchmaker data property. If latency is used by the matchmaker, gather updated latency for
the current region and include it in each player's data.

Type: Player[]

Required: Yes

TicketId

Unique identifier for a matchmaking or match backfill request ticket. If no value is provided
here, Amazon GameLift will generate one in the form of a UUID. Use this identifier to track the
match backfill ticket status or cancel the request if needed.

Type: String

Required: No

StopMatchBackfillRequest

This data type is used to cancel a matchmaking backfill request. The information is communicated
to the Amazon GameLift service in a StopMatchBackfill() call.

Contents

GameSessionArn

Unique game session identifier associated with the request being canceled.

Server SDK reference for C# 584

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-server.html#match-server-data.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-server.html#match-server-data.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_Player.html

Amazon GameLift Developer Guide

Type: String

Required: Yes

MatchmakingConfigurationArn

Unique identifier of the matchmaker this request was sent to.

Type: String

Required: Yes

TicketId

Unique identifier of the backfill request ticket to be canceled.

Type: String

Required: Yes

Amazon GameLift server SDK reference for Go

You can use this Amazon GameLift Go server SDK reference to help you prepare your multiplayer
game for use with Amazon GameLift. For details about the integration process, see Add Amazon
GameLift to your game server.

Topics

• Amazon GameLift server SDK (Go) reference: Actions

• Amazon GameLift server SDK (Go) reference: Data types

Amazon GameLift server SDK (Go) reference: Actions

You can use this Amazon GameLift Go server SDK reference to help you prepare your multiplayer
game for use with Amazon GameLift. For details about the integration process, see Add Amazon
GameLift to your game server.

GameLiftServerAPI.go defines the Go server SDK actions.

Actions

• GetSdkVersion()

Server SDK reference for Go 585

Amazon GameLift Developer Guide

• InitSDK()

• ProcessReady()

• ProcessEnding()

• ActivateGameSession()

• UpdatePlayerSessionCreationPolicy()

• GetGameSessionId()

• GetTerminationTime()

• AcceptPlayerSession()

• RemovePlayerSession()

• DescribePlayerSessions()

• StartMatchBackfill()

• StopMatchBackfill()

• GetComputeCertificate()

• GetFleetRoleCredentials()

• Destroy()

GetSdkVersion()

Returns the current version number of the SDK built into the server process.

Syntax

func GetSdkVersion() (string, error)

Return value

If successful, returns the current SDK version as a string. The returned string includes
the version number (example 5.0.0). If not successful, returns an error message such as
common.SdkVersionDetectionFailed.

Example

version, err := server.GetSdkVersion()

Server SDK reference for Go 586

Amazon GameLift Developer Guide

InitSDK()

Initializes the Amazon GameLift SDK. Call this method on launch before any other initialization
related to Amazon GameLift occurs. This method sets up communication between the server and
the Amazon GameLift service.

Syntax

func InitSDK(params ServerParameters) error

Parameters

ServerParameters

To initialize a game server on an Amazon GameLift Anywhere fleet, construct a
ServerParameters object with the following information:

• The URL of the WebSocket used to connect to your game server.

• The ID of the process used to host your game server.

• The ID of the compute hosting your game server processes.

• The ID of the Amazon GameLift fleet containing your Amazon GameLift Anywhere compute.

• The authorization token generated by the Amazon GameLift operation.

To initialize a game server on an Amazon GameLift managed EC2 fleet, construct a
ServerParameters object with no parameters. With this call, the Amazon GameLift agent
sets up the compute environment and automatically connects to the Amazon GameLift service
for you.

Return value

If successful, returns nil error to indicate that the server process is ready to call ProcessReady().

Note

If calls to InitSDK() are failing for game builds deployed to Anywhere fleets, check the
ServerSdkVersion parameter used when creating the build resource. You must explicitly
set this value to the server SDK version in use. The default value for this parameter is 4.x,
which is not compatible. To resolve this issue, create a new build and deploy it to a new
fleet.

Server SDK reference for Go 587

Amazon GameLift Developer Guide

Example

Amazon GameLift Anywhere example

//Define the server parameters
serverParameters := ServerParameters {
 WebSocketURL: "wss://us-west-1.api.amazongamelift.com",
 ProcessID: "PID1234",
 HostID: "HardwareAnywhere",
 FleetID: "aarn:aws:gamelift:us-west-1:111122223333:fleet/
fleet-9999ffff-88ee-77dd-66cc-5555bbbb44aa",
 AuthToken: "1111aaaa-22bb-33cc-44dd-5555eeee66ff"
}

//Call InitSDK to establish a local connection with the GameLift agent to enable
 further communication.
err := server.InitSDK(serverParameters)

Amazon GameLift managed EC2 example

//Define the server parameters
serverParameters := ServerParameters {}

//Call InitSDK to establish a local connection with the GameLift agent to enable
 further communication.
err := server.InitSDK(serverParameters)

ProcessReady()

Notifies Amazon GameLift that the server process is ready to host game sessions. Call this method
after invoking InitSDK(). This method should be called only one time per process.

Syntax

func ProcessReady(param ProcessParameters) error

Parameters

ProcessParameters

A ProcessParameters object communicates the following information about the server process:

Server SDK reference for Go 588

Amazon GameLift Developer Guide

• The names of the callback methods implemented in the game server code that the Amazon
GameLift service invokes to communicate with the server process.

• The port number that the server process is listening on.

• The LogParameters data type containing the path to any game session-specific files that you
want Amazon GameLift to capture and store.

Return value

Returns an error with an error message if the method fails. Returns nil if the method is successful.

Example

This example illustrates both the ProcessReady() call and delegate function implementations.

// Define the process parameters
processParams := ProcessParameters {
 OnStartGameSession: gameProcess.OnStartGameSession,
 OnUpdateGameSession: gameProcess.OnGameSessionUpdate,
 OnProcessTerminate: gameProcess.OnProcessTerminate,
 OnHealthCheck: gameProcess.OnHealthCheck,
 Port: port,
 LogParameters: LogParameters { // logging and error example
 []string {"C:\\game\\logs", "C:\\game\\error"}
 }
}

err := server.ProcessReady(processParams)

ProcessEnding()

Notifies Amazon GameLift that the server process is terminating. Call this method after all other
cleanup tasks (including shutting down the active game session) and before terminating the
process. Depending on the result of ProcessEnding(), the process exits with success (0) or error
(-1) and generates a fleet event. If the process terminates with an error, the fleet event generated is
SERVER_PROCESS_TERMINATED_UNHEALTHY.

Syntax

func ProcessEnding() error

Server SDK reference for Go 589

Amazon GameLift Developer Guide

Return value

Returns a 0 error code or a defined error code.

Example

// operations to end game sessions and the server process
defer func() {
 err := server.ProcessEnding()
 server.Destroy()
 if err != nil {
 fmt.Println("ProcessEnding() failed. Error: ", err)
 os.Exit(-1)
 } else {
 os.Exit(0)
 }
}

ActivateGameSession()

Notifies Amazon GameLift that the server process has activated a game session and is now ready to
receive player connections. This action is called as part of the onStartGameSession() callback
function, after all game session initialization.

Syntax

func ActivateGameSession() error

Return value

Returns an error with an error message if the method fails.

Example

This example shows ActivateGameSession() called as part of the onStartGameSession()
delegate function.

func OnStartGameSession(GameSession gameSession) {
 // game-specific tasks when starting a new game session, such as loading map
 // Activate when ready to receive players
 err := server.ActivateGameSession();
}

Server SDK reference for Go 590

Amazon GameLift Developer Guide

UpdatePlayerSessionCreationPolicy()

Updates the current game session's ability to accept new player sessions. A game session can be set
to either accept or deny all new player sessions.

Syntax

func UpdatePlayerSessionCreationPolicy(policy model.PlayerSessionCreationPolicy) error

Parameters

playerSessionCreationPolicy

String value that indicates whether the game session accepts new players.

Valid values include:

• model.AcceptAll – Accept all new player sessions.

• model.DenyAll – Deny all new player sessions.

Return value

Returns an error with an error message if failure occurs.

Example

This example sets the current game session's join policy to accept all players.

err := server.UpdatePlayerSessionCreationPolicy(model.AcceptAll)

GetGameSessionId()

Retrieves the ID of the game session hosted by the active server process.

Syntax

func GetGameSessionID() (string, error)

Parameters

This action has no parameters.

Server SDK reference for Go 591

Amazon GameLift Developer Guide

Return value

If successful, returns the game session ID and nil error. For idle processes that aren't yet activated
with a game session, the call returns an empty string and nil error.

Example

gameSessionID, err := server.GetGameSessionID()

GetTerminationTime()

Returns the time that a server process is scheduled to be shut down if a termination time is
available. A server process takes this action after receiving an onProcessTerminate() callback
from Amazon GameLift. Amazon GameLift calls onProcessTerminate() for the following
reasons:

• When the server process has reported poor health or hasn't responded to Amazon GameLift.

• When terminating the instance during a scale-down event.

• When an instance is terminated due to a spot-instance interruption.

Syntax

func GetTerminationTime() (int64, error)

Return value

If successful, returns the timestamp in epoch seconds that the server process is scheduled to shut
down and a nil error termination. The value is the termination time, expressed in elapsed ticks
from 0001 00:00:00. For example, the date time value 2020-09-13 12:26:40 -000Z is equal
to 637355968000000000 ticks. If no termination time is available, returns an error message.

Example

terminationTime, err := server.GetTerminationTime()

AcceptPlayerSession()

Notifies Amazon GameLift that a player with the specified player session ID has connected to the
server process and needs validation. Amazon GameLift verifies that the player session ID is valid.

Server SDK reference for Go 592

Amazon GameLift Developer Guide

After the player session is validated, Amazon GameLift changes the status of the player slot from
RESERVED to ACTIVE.

Syntax

func AcceptPlayerSession(playerSessionID string) error

Parameters

playerSessionId

Unique ID issued by Amazon GameLift when a new player session is created.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example handles a connection request that includes validating and rejecting non-valid player
session IDs.

func ReceiveConnectingPlayerSessionID(conn Connection, playerSessionID string) {
 err := server.AcceptPlayerSession(playerSessionID)
 if err != nil {
 connection.Accept()
 } else {
 connection.Reject(err.Error())
 }
}

RemovePlayerSession()

Notifies Amazon GameLift that a player has disconnected from the server process. In response,
Amazon GameLift changes the player slot to available.

Syntax

func RemovePlayerSession(playerSessionID string) error

Server SDK reference for Go 593

Amazon GameLift Developer Guide

Parameters

playerSessionId

Unique ID issued by Amazon GameLift when a new player session is created.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

err := server.RemovePlayerSession(playerSessionID)

DescribePlayerSessions()

Retrieves player session data which includes settings, session metadata, and player data. Use this
method to get information about the following:

• A single player session

• All player sessions in a game session

• All player sessions associated with a single player ID

Syntax

func DescribePlayerSessions(req request.DescribePlayerSessionsRequest)
 (result.DescribePlayerSessionsResult, error) {
 return srv.describePlayerSessions(&req)
}

Parameters

DescribePlayerSessionsRequest

A DescribePlayerSessionsRequest object describes which player sessions to retrieve.

Return value

If successful, returns a DescribePlayerSessionsResult object that contains a set of player
session objects that fit the request parameters.

Server SDK reference for Go 594

Amazon GameLift Developer Guide

Example

This example requests all player sessions actively connected to a specified game session. By
omitting NextToken and setting the Limit value to 10, Amazon GameLift returns the first 10 player
session records matching the request.

// create request
describePlayerSessionsRequest := request.NewDescribePlayerSessions()
describePlayerSessionsRequest.GameSessionID, _ = server.GetGameSessionID() // get ID
 for the current game session
describePlayerSessionsRequest.Limit = 10 // return the
 first 10 player sessions
describePlayerSessionsRequest.PlayerSessionStatusFilter = "ACTIVE" // Get all
 player sessions actively connected to the game session

describePlayerSessionsResult, err :=
 server.DescribePlayerSessions(describePlayerSessionsRequest)

StartMatchBackfill()

Sends a request to find new players for open slots in a game session created with FlexMatch. For
more information, see FlexMatch backfill feature.

This action is asynchronous. If new players are matched, Amazon GameLift delivers updated
matchmaker data using the callback function OnUpdateGameSession().

A server process can have only one active match backfill request at a time. To send a new request,
first call StopMatchBackfill() to cancel the original request.

Syntax

func StartMatchBackfill(req request.StartMatchBackfillRequest)
 (result.StartMatchBackfillResult, error)

Parameters

StartMatchBackfillRequest

A StartMatchBackfillRequest object communicates the following information:

• A ticket ID to assign to the backfill request. This information is optional; if no ID is provided,
Amazon GameLift generates one.

Server SDK reference for Go 595

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html

Amazon GameLift Developer Guide

• The matchmaker to send the request to. The full configuration ARN is required. This value is
in the game session's matchmaker data.

• The ID of the game session to backfill.

• The available matchmaking data for the game session's current players.

Return value

Returns a StartMatchBackfillResult object with the match backfill ticket ID, or failure with an
error message.

Example

// form the request
startBackfillRequest := request.NewStartMatchBackfill()
startBackfillRequest.RequestID = "1111aaaa-22bb-33cc-44dd-5555eeee66ff" //
 optional
startBackfillRequest.MatchmakingConfigurationArn = "arn:aws:gamelift:us-
west-2:111122223333:matchmakingconfiguration/MyMatchmakerConfig"
var matchMaker model.MatchmakerData
if err := matchMaker.UnmarshalJSON([]byte(gameSession.MatchmakerData)); err != nil {

 return
}
startBackfillRequest.Players = matchMaker.Players
res, err := server.StartMatchBackfill(startBackfillRequest)

// Implement callback function for backfill
func OnUpdateGameSession(myGameSession model.GameSession) {
 // game-specific tasks to prepare for the newly matched players and update
 matchmaker data as needed
}

StopMatchBackfill()

Cancels an active match backfill request. For more information, see FlexMatch backfill feature.

Syntax

func StopMatchBackfill(req request.StopMatchBackfillRequest) error

Server SDK reference for Go 596

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html

Amazon GameLift Developer Guide

Parameters

StopMatchBackfillRequest

A StopMatchBackfillRequest object that identifies the matchmaking ticket to cancel:

• The ticket ID assigned to the backfill request.

• The matchmaker the backfill request was sent to.

• The game session associated with the backfill request.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

stopBackfillRequest := request.NewStopMatchBackfill() // Use this function to create
 request
stopBackfillRequest.TicketID = "1111aaaa-22bb-33cc-44dd-5555eeee66ff"
stopBackfillRequest.MatchmakingConfigurationArn = "arn:aws:gamelift:us-
west-2:111122223333:matchmakingconfiguration/MyMatchmakerConfig"

//error
err := server.StopMatchBackfill(stopBackfillRequest)

GetComputeCertificate()

Retrieves the path to the TLS certificate used to encrypt the network connection between
the game server and your game client. You can use the certificate path when you register
your compute device to a Amazon GameLift Anywhere fleet. For more information, see
RegisterCompute.

Syntax

func GetComputeCertificate() (result.GetComputeCertificateResult, error)

Return value

Returns a GetComputeCertificateResult object that contains the following:

Server SDK reference for Go 597

https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html

Amazon GameLift Developer Guide

• CertificatePath: The path to the TLS certificate on your compute resource. When using an
Amazon GameLift managed fleet, this path contains:

• certificate.pem: The end-user certificate. The full certificate chain is the combination of
certificateChain.pem appended to this certificate.

• certificateChain.pem: The certificate chain that contains the root certificate and
intermediate certificates.

• rootCertificate.pem: The root certificate.

• privateKey.pem: The private key for the end-user certificate.

• ComputeName: The name of your compute resource.

Example

tlsCertificate, err := server.GetFleetRoleCredentials(getFleetRoleCredentialsRequest)

GetFleetRoleCredentials()

Retrieves the service role credentials that you create to extend permissions to your other AWS
services to Amazon GameLift. These credentials allow your game server to use your AWS resources.
For more information, see Set up an IAM service role for Amazon GameLift.

Syntax

func GetFleetRoleCredentials(
 req request.GetFleetRoleCredentialsRequest,
) (result.GetFleetRoleCredentialsResult, error) {
 return srv.getFleetRoleCredentials(&req)
}

Parameters

GetFleetRoleCredentialsRequest

Role credentials that extend limited access to your AWS resources to the game server.

Return value

Returns a GetFleetRoleCredentialsResult object that contains the following:

Server SDK reference for Go 598

Amazon GameLift Developer Guide

• AssumedRoleUserArn - The Amazon Resource Name (ARN) of the user that the service role
belongs to.

• AssumedRoleId - The ID of the user that the service role belongs to.

• AccessKeyId - The access key ID to authenticate and provide access to your AWS resources.

• SecretAccessKey - The secret access key ID for authentication.

• SessionToken - A token to identify the current active session interacting with your AWS
resources.

• Expiration - The amount of time until your session credentials expire.

Example

// form the customer credentials request
getFleetRoleCredentialsRequest := request.NewGetFleetRoleCredentials()
getFleetRoleCredentialsRequest.RoleArn = "arn:aws:iam::123456789012:role/service-role/
exampleGameLiftAction"

credentials, err := server.GetFleetRoleCredentials(getFleetRoleCredentialsRequest)

Destroy()

Frees the Amazon GameLift game server SDK from memory. As a best practice, call this method
after ProcessEnding() and before terminating the process. If you're using an Anywhere fleet
and you're not terminating server processes after every game session, call Destroy() and then
InitSDK() to reinitialize before notifying Amazon GameLift that the process is ready to host a
game session with ProcessReady().

Syntax

func Destroy() error {
 return srv.destroy()
}

Return value

Returns an error with an error message if the method fails.

Example

// operations to end game sessions and the server process

Server SDK reference for Go 599

Amazon GameLift Developer Guide

defer func() {
 err := server.ProcessEnding()
 server.Destroy()
 if err != nil {
 fmt.Println("ProcessEnding() failed. Error: ", err)
 os.Exit(-1)
 } else {
 os.Exit(0)
 }
}

Amazon GameLift server SDK (Go) reference: Data types

You can use this Amazon GameLift Go server SDK reference to help you prepare your multiplayer
game for use with Amazon GameLift. For details about the integration process, see Add Amazon
GameLift to your game server.

Data types

• LogParameters

• ProcessParameters

• UpdateGameSession

• GameSession

• ServerParameters

• StartMatchBackfillRequest

• Player

• DescribePlayerSessionsRequest

• StopMatchBackfillRequest

• GetFleetRoleCredentialsRequest

LogParameters

An object identifying files generated during a game session that you want Amazon GameLift to
upload and store after the game session ends. The game server provides LogParameters to
Amazon GameLift as part of a ProcessParameters object in a ProcessReady() call.

Properties Description

Server SDK reference for Go 600

Amazon GameLift Developer Guide

LogPaths The list of directory paths to game server log files that you want Amazon
GameLift to store for future access. The server process generates these files
during each game session. You define file paths and names in your game
server and store them in the root game build directory.

The log paths must be absolute. For example, if your game build stores
game session logs in a path such as MyGame\sessionLogs\ , then the
path would be c:\game\MyGame\sessionLogs on a Windows instance.

Type: []string

Required: No

ProcessParameters

An object describing the communication between a server process and Amazon GameLift. The
server process provides this information to Amazon GameLift with a call to ProcessReady().

Properties Description

LogParame
ters

An object with directory paths to files that are generated during a game
session. Amazon GameLift copies and stores the files for future access.

Type: LogParameters

Required: No

OnHealthC
heck

The callback function that Amazon GameLift invokes to request a health
status report from the server process. Amazon GameLift calls this function
every 60 seconds and waits 60 seconds for a response. The server process
returns TRUE if healthy, FALSE if not healthy. If no response is returned,
Amazon GameLift records the server process as not healthy.

Type: OnHealthCheck func() bool

Required: No

OnProcess
Terminate

The callback function that Amazon GameLift invokes to force the server
process to shut down. After calling this function, Amazon GameLift waits 5

Server SDK reference for Go 601

Amazon GameLift Developer Guide

minutes for the server process to shut down and respond with a ProcessEn
ding() call before it shuts down the server process.

Type: OnProcessTerminate func()

Required: Yes

OnStartGa
meSession

The callback function that Amazon GameLift invokes to pass an updated
game session object to the server process. Amazon GameLift calls this
function when a match backfill request has been processed to provide
updated matchmaker data. It passes a GameSession object, a status update
(updateReason), and the match backfill ticket ID.

Type: OnStartGameSession func (model.GameSession)

Required: Yes

OnUpdateG
ameSession

The callback function that Amazon GameLift invokes to pass updated
game session information to the server process. Amazon GameLift calls
this function after processing a match backfill request to provide updated
matchmaker data.

Type: OnUpdateGameSession func (model.UpdateGameS
ession)

Required: No

Port The port number that the server process listens on for new player connectio
ns. The value must fall into the port range configured for any fleet
deploying this game server build. This port number is included in game
session and player session objects, which game sessions use when connectin
g to a server process.

Type: int

Required: Yes

Server SDK reference for Go 602

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

UpdateGameSession

The updates to a game session object, which includes the reason that the game session was
updated, and the related backfill ticket ID if backfill is being used to fill player sessions in the game
session.

Properties Description

GameSession A GameSession object defined by the Amazon GameLift API. The
GameSession object contains properties describing a game session.

Type: GameSession GameSession()

Required: Yes

UpdateReason The reason that the game session is being updated.

Type: UpdateReason UpdateReason()

Required: Yes

BackfillTicketId The ID of the backfill ticket attempting to update the game session.

Type: String

Required: No

GameSession

The details of a game session.

Properties Description

GameSessionId A unique identifier for the game session. A game session Amazon
Resource Name (ARN) has the following format: arn:aws:gamelift:<
region>::gamesession/<fleet ID>/<custom ID string or
idempotency token> .

Type: String

Server SDK reference for Go 603

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

Properties Description

Required: No

Name A descriptive label of the game session.

Type: String

Required: No

FleetId A unique identifier for the fleet that the game session is running on.

Type: String

Required: No

MaximumPl
ayerSessi
onCount

The maximum number of player connections to the game session.

Type: Integer

Required: No

Port The port number for the game session. To connect to a Amazon GameLift
game server, an app needs both the IP address and port number.

Type: Integer

Required: No

IpAddress The IP address of the game session. To connect to a Amazon GameLift game
server, an app needs both the IP address and port number.

Type: String

Required: No

GameSessi
onData

A set of custom game session properties, formatted as a single string value.

Type: String

Required: No

Server SDK reference for Go 604

Amazon GameLift Developer Guide

Properties Description

Matchmake
rData

The information about the matchmaking process that was used to create
the game session, in JSON syntax, formatted as a string. In addition to the
matchmaking configuration used, it contains data on all players assigned to
the match, including player attributes and team assignments.

Type: String

Required: No

GameProperties A set of custom properties for a game session, formatted as key:value pairs.
These properties are passed with a request to start a new game session.

Type: map[string] string

Required: No

DnsName The DNS identifier assigned to the instance that's running the game session.
Values have the following format:

• TLS-enabled fleets: <unique identifier>.<region identifie
r>.amazongamelift.com .

• Non-TLS-enabled fleets: ec2-<unique identifier>.comput
e.amazonaws.com .

When connecting to a game session that's running on a TLS-enabled fleet,
you must use the DNS name, not the IP address.

Type: String

Required: No

ServerParameters

Information used to maintain the connection between an Amazon GameLift Anywhere server and
the Amazon GameLift service. This information is used when launching new server processes with
InitSDK(). For servers hosted on Amazon GameLift managed EC2 instances, use an empty object.

Server SDK reference for Go 605

Amazon GameLift Developer Guide

Properties Description

WebSocket
URL

The GameLiftServerSdkEndpoint Amazon GameLift returns when
you RegisterCompute for an Amazon GameLift Anywhere compute
resource.

Type: string

Required: Yes

ProcessID A unique identifier registered to the server process hosting your game.

Type: string

Required: Yes

HostID The unique identifier of the compute resource that's hosting the new server
process.

The HostID is the ComputeName used when you registered your compute.
For more information, see RegisterCompute.

Type: string

Required: Yes

FleetID The unique identifier of the fleet that the compute is registered to. For more
information, see RegisterCompute.

Type: string

Required: Yes

AuthToken The authentication token generated by Amazon GameLift that authentic
ates your server to Amazon GameLift. For more information, see GetComput
eAuthToken.

Type: string

Required: Yes

Server SDK reference for Go 606

https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAuthToken.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAuthToken.html

Amazon GameLift Developer Guide

StartMatchBackfillRequest

Information used to create a matchmaking backfill request. The game server communicates this
information to Amazon GameLift in a StartMatchBackfill() call.

Properties Description

GameSessionArn The unique game session identifier. The API operation GetGameSe
ssionId returns the identifier in ARN format.

Type: String

Required: Yes

Matchmaki
ngConfigu
rationArn

The unique identifier (in the form of an ARN) for the matchmaker to use for
this request. The matchmaker ARN for the original game session is in the
game session object in the matchmaker data property. For more information
about matchmaker data, see Work with matchmaker data.

Type: String

Required: Yes

Players A set of data that represents all players who are currently in the game
session. The matchmaker uses this information to search for new players
who are good matches for the current players.

Type: []model.Player

Required: Yes

TicketId The unique identifier for a matchmaking or match backfill request ticket.
If you don't provide a value, Amazon GameLift generates one. Use this
identifier to track the match backfill ticket status or cancel the request if
needed.

Type: String

Required: No

Server SDK reference for Go 607

https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk-go-actions.html#integration-server-sdk-go-getgamesessionid
https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk-go-actions.html#integration-server-sdk-go-getgamesessionid
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-server.html#match-server-data.html

Amazon GameLift Developer Guide

Player

The object that represents a player in matchmaking. When a matchmaking request starts, a player
has a player ID, attributes, and possibly latency data. Amazon GameLift adds team information
after a match is made.

Properties Description

LatencyInMS A set of values expressed in milliseconds that indicate the amount of latency
that a player experiences when connected to a location.

If this property is used, the player is only matched for locations listed. If a
matchmaker has a rule that evaluates player latency, players must report
latency to be matched.

Type: map[string] int

Required: No

PlayerAttributes A collection of key:value pairs that contain player information for use in
matchmaking. Player attribute keys must match the PlayerAttributes used in
a matchmaking rule set.

For more information about player attributes, see AttributeValue.

Type: map[string] AttributeValue

Required: No

PlayerId A unique identifier for a player.

Type: String

Required: No

Team The name of the team that the player is assigned to in a match. You define
the team name in the matchmaking rule set.

Type: String

Required: No

Server SDK reference for Go 608

https://docs.aws.amazon.com/gamelift/latest/apireference/API_AttributeValue.html

Amazon GameLift Developer Guide

DescribePlayerSessionsRequest

An object that specifies which player sessions to retrieve. The server process provides this
information with a DescribePlayerSessions() call to Amazon GameLift.

Properties Description

GameSessi
onID

A unique game session identifier. Use this parameter to request all player
sessions for the specified game session.

Game session ID format is arn:aws:gamelift:<region>::
gamesession/fleet-<fleet ID>/<ID string> . The GameSessi
onID is a custom ID string or a generated string.

Type: String

Required: No

PlayerSes
sionID

The unique identifier for a player session. Use this parameter to request a
single specific player session.

Type: String

Required: No

PlayerID The unique identifier for a player. Use this parameter to request all player
sessions for a specific player. See Generate player IDs.

Type: String

Required: No

PlayerSes
sionStatu
sFilter

The player session status to filter results on. Possible player session statuses
include:

• RESERVED – The player session request was received, but the player hasn't
connected to the server process or been validated.

• ACTIVE – The player was validated by the server process and is connected.

• COMPLETED – The player connection dropped.

Server SDK reference for Go 609

Amazon GameLift Developer Guide

Properties Description

• TIMEDOUT – A player session request was received, but the player didn't
connect or wasn't validated within the time-out limit (60 seconds).

Type: String

Required: No

NextToken The token indicating the start of the next page of results. To specify the
start of the result set, don't provide a value. If you provide a player session
ID, this parameter is ignored.

Type: String

Required: No

Limit The maximum number of results to return. If you provide a player session ID,
this parameter is ignored.

Type: int

Required: No

StopMatchBackfillRequest

Information used to cancel a matchmaking backfill request. The game server communicates this
information to Amazon GameLift service in a StopMatchBackfill() call.

Properties Description

GameSessionArn The unique game session identifier of the request being canceled.

Type: string

Required: No

Matchmaki
ngConfigu
rationArn

The unique identifier of the matchmaker this request was sent to.

Type: string

Server SDK reference for Go 610

Amazon GameLift Developer Guide

Properties Description

Required: No

TicketId The unique identifier of the backfill request ticket to be canceled.

Type: string

Required: No

GetFleetRoleCredentialsRequest

The role credentials that extend limited access to your AWS resources to the game server. For more
information see, Set up an IAM service role for Amazon GameLift.

Properties Description

RoleArn The ARN of the service role that extends limited access to your AWS
resources.

Type: string

Required: Yes

RoleSessi
onName

The name of the session that describes the use of the role credentials.

Type: string

Required: Yes

Amazon GameLift server SDK reference for Unreal Engine

This Amazon GameLift Server SDK reference can help you prepare your Unreal Engine game
projects for use with Amazon GameLift. For details on the integration process, see Add Amazon
GameLift to your game server.

This API is defined in GameLiftServerSDK.h and GameLiftServerSDKModels.h.

To set up the Unreal Engine plugin and see code examples Integrate Amazon GameLift into an
Unreal Engine project.

Server SDK reference for Unreal Engine 611

Amazon GameLift Developer Guide

Topics

• Amazon GameLift Unreal Engine server SDK 5.x reference

• Amazon GameLift Unreal Engine server SDK 3.x reference

Amazon GameLift Unreal Engine server SDK 5.x reference

You can use this Amazon GameLift Unreal Engine server SDK 5.x reference to help you prepare your
multiplayer game for use with Amazon GameLift. For details about the integration process, see Add
Amazon GameLift to your game server, and for information on using the Unreal SDK server plugin,
see Integrate Amazon GameLift into an Unreal Engine project.

Topics

• Amazon GameLift server SDK (Unreal) 5.x reference: Actions

• Amazon GameLift server SDK (Unreal) reference: Data types

Amazon GameLift server SDK (Unreal) 5.x reference: Actions

You can use this Amazon GameLift Unreal server SDK reference to help you prepare your
multiplayer game for use with Amazon GameLift. For details about the integration process, see Add
Amazon GameLift to your game server and for information on using the Unreal SDK server plugin,
see Integrate Amazon GameLift into an Unreal Engine project.

Actions

• GetSdkVersion()

• InitSDK()

• InitSDK()

• ProcessReady()

• ProcessEnding()

• ActivateGameSession()

• UpdatePlayerSessionCreationPolicy()

• GetGameSessionId()

• GetTerminationTime()

• AcceptPlayerSession()

Server SDK reference for Unreal Engine 612

Amazon GameLift Developer Guide

• RemovePlayerSession()

• DescribePlayerSessions()

• StartMatchBackfill()

• StopMatchBackfill()

• GetComputeCertificate()

• GetFleetRoleCredentials()

Note

This topic describes the Amazon GameLift C++ API that you can use when you build for the
Unreal Engine. Specifically, this documentation applies to code that you compile with the -
DBUILD_FOR_UNREAL=1 option.

GetSdkVersion()

Returns the current version number of the SDK built into the server process.

Syntax

FGameLiftStringOutcome GetSdkVersion();

Return value

If successful, returns the current SDK version as an the section called “FGameLiftStringOutcome”
object. The returned object includes the version number (example 5.0.0). If not successful, returns
an error message.

Example

Aws::GameLift::AwsStringOutcome SdkVersionOutcome =
 Aws::GameLift::Server::GetSdkVersion();

InitSDK()

Initializes the Amazon GameLift SDK for a managed EC2 fleet. Call this method on launch, before
any other initialization related to Amazon GameLift occurs. This method reads server parameters

Server SDK reference for Unreal Engine 613

Amazon GameLift Developer Guide

from the host environment to set up communication between the server and the Amazon GameLift
service.

Syntax

FGameLiftGenericOutcome InitSDK()

Return value

If successful, returns an InitSdkOutcome object indicating that the server process is ready to call
ProcessReady().

Example

//Call InitSDK to establish a local connection with the GameLift agent to enable
 further communication.
FGameLiftGenericOutcome initSdkOutcome = gameLiftSdkModule->InitSDK();

InitSDK()

Initializes the Amazon GameLift SDK for an Anywhere fleet. Call this method on launch, before
any other initialization related to Amazon GameLift occurs. This method requires explicit server
parameters to set up communication between the server and the Amazon GameLift service.

Syntax

FGameLiftGenericOutcome InitSDK(serverParameters)

Parameters

FServerParameters

To initialize a game server on an Amazon GameLift Anywhere fleet, construct a
ServerParameters object with the following information:

• The URL of the WebSocket used to connect to your game server.

• The ID of the process used to host your game server.

• The ID of the compute hosting your game server processes.

• The ID of the Amazon GameLift fleet containing your Amazon GameLift Anywhere compute.

Server SDK reference for Unreal Engine 614

Amazon GameLift Developer Guide

• The authorization token generated by the Amazon GameLift operation.

Return value

If successful, returns an InitSdkOutcome object indicating that the server process is ready to call
ProcessReady().

Note

If calls to InitSDK() are failing for game builds deployed to Anywhere fleets, check the
ServerSdkVersion parameter used when creating the build resource. You must explicitly
set this value to the server SDK version in use. The default value for this parameter is 4.x,
which is not compatible. To resolve this issue, create a new build and deploy it to a new
fleet.

Example

//Define the server parameters
FServerParameters serverParameters;
parameters.m_authToken = "1111aaaa-22bb-33cc-44dd-5555eeee66ff";
parameters.m_fleetId = "arn:aws:gamelift:us-west-1:111122223333:fleet/
fleet-9999ffff-88ee-77dd-66cc-5555bbbb44aa";
parameters.m_hostId = "HardwareAnywhere";
parameters.m_processId = "PID1234";
parameters.m_webSocketUrl = "wss://us-west-1.api.amazongamelift.com";

//Call InitSDK to establish a local connection with the GameLift agent to enable
 further communication.
FGameLiftGenericOutcome initSdkOutcome = gameLiftSdkModule->InitSDK(serverParameters);

ProcessReady()

Notifies Amazon GameLift that the server process is ready to host game sessions. Call this method
after invoking InitSDK(). This method should be called only once per process.

Syntax

GenericOutcome ProcessReady(const Aws::GameLift::Server::ProcessParameters
&processParameters);

Server SDK reference for Unreal Engine 615

Amazon GameLift Developer Guide

Parameters

processParameters

An FProcessParameters object communicating the following information about the server
process:

• Names of callback methods implemented in the game server code that the Amazon GameLift
service invokes to communicate with the server process.

• Port number that the server process is listening on.

• Path to any game session-specific files that you want Amazon GameLift to capture and store.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example illustrates both the ProcessReady() call and delegate function implementations.

//Calling ProcessReady tells GameLift this game server is ready to receive incoming
 game sessions!
UE_LOG(GameServerLog, Log, TEXT("Calling Process Ready"));
FGameLiftGenericOutcome processReadyOutcome = gameLiftSdkModule-
>ProcessReady(*params);

ProcessEnding()

Notifies Amazon GameLift that the server process is terminating. Call this method after all other
cleanup tasks (including shutting down the active game session) and before terminating the
process. Depending on the result of ProcessEnding(), the process exits with success (0) or error
(-1) and generates a fleet event. If the process terminates with an error, the fleet event generated is
SERVER_PROCESS_TERMINATED_UNHEALTHY).

Syntax

FGameLiftGenericOutcome ProcessEnding()

Return value

Returns a generic outcome consisting of success or failure with an error message.

Server SDK reference for Unreal Engine 616

Amazon GameLift Developer Guide

Example

//OnProcessTerminate callback. GameLift will invoke this callback before shutting down
 an instance hosting this game server.
//It gives this game server a chance to save its state, communicate with services,
 etc., before being shut down.
//In this case, we simply tell GameLift we are indeed going to shutdown.
params->OnTerminate.BindLambda([=]() {
 UE_LOG(GameServerLog, Log, TEXT("Game Server Process is terminating"));
 gameLiftSdkModule->ProcessEnding();
});

ActivateGameSession()

Notifies Amazon GameLift that the server process has activated a game session and is now ready
to receive player connections. This action should be called as part of the onStartGameSession()
callback function, after all game session initialization.

Syntax

FGameLiftGenericOutcome ActivateGameSession()

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example shows ActivateGameSession() called as part of the onStartGameSession()
delegate function.

//When a game session is created, GameLift sends an activation request to the game
 server and passes along the game session object containing game properties and other
 settings.
//Here is where a game server should take action based on the game session object.
//Once the game server is ready to receive incoming player connections, it should
 invoke GameLiftServerAPI.ActivateGameSession()
auto onGameSession = [=](Aws::GameLift::Server::Model::GameSession gameSession)
{
 FString gameSessionId = FString(gameSession.GetGameSessionId());
 UE_LOG(GameServerLog, Log, TEXT("GameSession Initializing: %s"), *gameSessionId);
 gameLiftSdkModule->ActivateGameSession();

Server SDK reference for Unreal Engine 617

Amazon GameLift Developer Guide

};

UpdatePlayerSessionCreationPolicy()

Updates the current game session's ability to accept new player sessions. A game session can be set
to either accept or deny all new player sessions.

Syntax

FGameLiftGenericOutcome UpdatePlayerSessionCreationPolicy(EPlayerSessionCreationPolicy
 policy)

Parameters

playerCreationSessionPolicy

String value indicating whether the game session accepts new players.

Valid values include:

• ACCEPT_ALL – Accept all new player sessions.

• DENY_ALL – Deny all new player sessions.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example sets the current game session's join policy to accept all players.

FGameLiftGenericOutcome outcome = gameLiftSdkModule-
>UpdatePlayerSessionCreationPolicy(Aws::GameLift::Model::EPlayerSessionCreationPolicy::ACCEPT_ALL);

GetGameSessionId()

Retrieves the ID of the game session hosted by the active server process.

For idle processes that aren't activated with a game session, the call returns a the section called
“FGameLiftError”.

Server SDK reference for Unreal Engine 618

Amazon GameLift Developer Guide

Syntax

FGameLiftStringOutcome GetGameSessionId()

Parameters

This action has no parameters.

Return value

If successful, returns the game session ID as an the section called “FGameLiftStringOutcome”
object. If not successful, returns an error message."

For idle processes that aren't activated with a game session, the call returns Success=True and
GameSessionId="".

Example

//When a game session is created, GameLift sends an activation request to the game
 server and passes along the game session object containing game properties and other
 settings.
//Here is where a game server should take action based on the game session object.
//Once the game server is ready to receive incoming player connections, it should
 invoke GameLiftServerAPI.ActivateGameSession()
auto onGameSession = [=](Aws::GameLift::Server::Model::GameSession gameSession)
{
 FString gameSessionId = FString(gameSession.GetGameSessionId());
 UE_LOG(GameServerLog, Log, TEXT("GameSession Initializing: %s"), *gameSessionId);
 gameLiftSdkModule->ActivateGameSession();
};

GetTerminationTime()

Returns the time that a server process is scheduled to be shut down, if a termination time is
available. A server process takes action after receiving an onProcessTerminate() callback from
Amazon GameLift. Amazon GameLift calls onProcessTerminate() for the following reasons:

• When the server process has reported poor health or has not responded to Amazon GameLift.

• When terminating the instance during a scale-down event.

• When an instance is terminated due to a spot-instance interruption.

Server SDK reference for Unreal Engine 619

Amazon GameLift Developer Guide

Syntax

AwsDateTimeOutcome GetTerminationTime()

Return value

If successful, returns the termination time as an AwsDateTimeOutcome object. The value is the
termination time, expressed in elapsed ticks since 0001 00:00:00. For example, the date time
value 2020-09-13 12:26:40 -000Z is equal to 637355968000000000 ticks. If no termination
time is available, returns an error message.

If the process hasn't received a ProcessParameters.OnProcessTerminate() callback,
an error message is returned. For more information about shutting down a server process, see
Respond to a server process shutdown notification.

Example

AwsDateTimeOutcome TermTimeOutcome = gameLiftSdkModule->GetTerminationTime();

AcceptPlayerSession()

Notifies Amazon GameLift that a player with the specified player session ID has connected to the
server process and needs validation. Amazon GameLift verifies that the player session ID is valid.
After the player session is validated, Amazon GameLift changes the status of the player slot from
RESERVED to ACTIVE.

Syntax

FGameLiftGenericOutcome AcceptPlayerSession(const FString& playerSessionId)

Parameters

playerSessionId

Unique ID issued by Amazon GameLift when a new player session is created.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Server SDK reference for Unreal Engine 620

Amazon GameLift Developer Guide

Example

This example handles a connection request that includes validating and rejecting non-valid player
session IDs.

bool GameLiftManager::AcceptPlayerSession(const FString& playerSessionId, const
 FString& playerId)
{
 #if WITH_GAMELIFT
 UE_LOG(GameServerLog, Log, TEXT("Accepting GameLift PlayerSession: %s . PlayerId:
 %s"), *playerSessionId, *playerId);
 FString gsId = GetCurrentGameSessionId();
 if (gsId.IsEmpty()) {
 UE_LOG(GameServerLog, Log, TEXT("No GameLift GameSessionId. Returning early!"));
 return false;
 }

 if (!gameLiftSdkModule->AcceptPlayerSession(playerSessionId).IsSuccess()) {
 UE_LOG(GameServerLog, Log, TEXT("PlayerSession not Accepted."));
 return false;
 }

 // Add PlayerSession from internal data structures keeping track of connected players
 connectedPlayerSessionIds.Add(playerSessionId);
 idToPlayerSessionMap.Add(playerSessionId, PlayerSession{ playerId,
 playerSessionId });
 return true;
 #else
 return false;
 #endif
}

RemovePlayerSession()

Notifies Amazon GameLift that a player has disconnected from the server process. In response,
Amazon GameLift changes the player slot to available.

Syntax

FGameLiftGenericOutcome RemovePlayerSession(const FString& playerSessionId)

Server SDK reference for Unreal Engine 621

Amazon GameLift Developer Guide

Parameters

playerSessionId

Unique ID issued by Amazon GameLift when a new player session is created.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

bool GameLiftManager::RemovePlayerSession(const FString& playerSessionId)
{
 #if WITH_GAMELIFT
 UE_LOG(GameServerLog, Log, TEXT("Removing GameLift PlayerSession: %s"),
 *playerSessionId);

 if (!gameLiftSdkModule->RemovePlayerSession(playerSessionId).IsSuccess()) {
 UE_LOG(GameServerLog, Log, TEXT("PlayerSession Removal Failed"));
 return false;
 }

 // Remove PlayerSession from internal data structures that are keeping track of
 connected players
 connectedPlayerSessionIds.Remove(playerSessionId);
 idToPlayerSessionMap.Remove(playerSessionId);

 // end the session if there are no more players connected
 if (connectedPlayerSessionIds.Num() == 0) {
 EndSession();
 }

 return true;
 #else
 return false;
 #endif
}

DescribePlayerSessions()

Retrieves player session data which includes settings, session metadata, and player data. Use this
method to get information about the following:

Server SDK reference for Unreal Engine 622

Amazon GameLift Developer Guide

• A single player session

• All player sessions in a game session

• All player sessions associated with a single player ID

Syntax

FGameLiftDescribePlayerSessionsOutcome DescribePlayerSessions(const
 FGameLiftDescribePlayerSessionsRequest &describePlayerSessionsRequest)

Parameters

FGameLiftDescribePlayerSessionsRequest

A the section called “FGameLiftDescribePlayerSessionsRequest” object that describes which
player sessions to retrieve.

Return value

If successful, returns a the section called “FGameLiftDescribePlayerSessionsOutcome” object
containing a set of player session objects that fit the request parameters.

Example

This example requests all player sessions actively connected to a specified game session. By
omitting NextToken and setting the Limit value to 10, Amazon GameLift returns the first 10 player
session records matching the request.

void GameLiftManager::DescribePlayerSessions()
{
 #if WITH_GAMELIFT
 FString localPlayerSessions;
 for (auto& psId : connectedPlayerSessionIds)
 {
 PlayerSession ps = idToPlayerSessionMap[psId];
 localPlayerSessions += FString::Printf(TEXT("%s : %s ; "), *(ps.playerSessionId),
 *(ps.playerId));
 }
 UE_LOG(GameServerLog, Log, TEXT("LocalPlayerSessions: %s"), *localPlayerSessions);

Server SDK reference for Unreal Engine 623

Amazon GameLift Developer Guide

 UE_LOG(GameServerLog, Log, TEXT("Describing PlayerSessions in this GameSession"));
 FGameLiftDescribePlayerSessionsRequest request;
 request.m_gameSessionId = GetCurrentGameSessionId();

 FGameLiftDescribePlayerSessionsOutcome outcome = gameLiftSdkModule-
>DescribePlayerSessions(request);
 LogDescribePlayerSessionsOutcome(outcome);
 #endif
}

StartMatchBackfill()

Sends a request to find new players for open slots in a game session created with FlexMatch. For
more information, see FlexMatch backfill feature.

This action is asynchronous. If new players are matched, Amazon GameLift delivers updated
matchmaker data using the callback function OnUpdateGameSession().

A server process can have only one active match backfill request at a time. To send a new request,
first call StopMatchBackfill() to cancel the original request.

Syntax

FGameLiftStringOutcome StartMatchBackfill (FStartMatchBackfillRequest
 &startBackfillRequest);

Parameters

FStartMatchBackfillRequest

A StartMatchBackfillRequest object that communicates the following information:

• A ticket ID to assign to the backfill request. This information is optional; if no ID is provided,
Amazon GameLift will generate one.

• The matchmaker to send the request to. The full configuration ARN is required. This value is
in the game session's matchmaker data.

• The ID of the game session to backfill.

• The available matchmaking data for the game session's current players.

Server SDK reference for Unreal Engine 624

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html

Amazon GameLift Developer Guide

Return value

Returns a StartMatchBackfillOutcome object with the match backfill ticket ID, or failure with
an error message.

Example

FGameLiftStringOutcome FGameLiftServerSDKModule::StartMatchBackfill(const
 FStartMatchBackfillRequest& request)
{
 #if WITH_GAMELIFT
 Aws::GameLift::Server::Model::StartMatchBackfillRequest sdkRequest;
 sdkRequest.SetTicketId(TCHAR_TO_UTF8(*request.m_ticketId));
 sdkRequest.SetGameSessionArn(TCHAR_TO_UTF8(*request.m_gameSessionArn));

 sdkRequest.SetMatchmakingConfigurationArn(TCHAR_TO_UTF8(*request.m_matchmakingConfigurationArn));
 for (auto player : request.m_players) {
 Aws::GameLift::Server::Model::Player sdkPlayer;
 sdkPlayer.SetPlayerId(TCHAR_TO_UTF8(*player.m_playerId));
 sdkPlayer.SetTeam(TCHAR_TO_UTF8(*player.m_team));
 for (auto entry : player.m_latencyInMs) {
 sdkPlayer.WithLatencyMs(TCHAR_TO_UTF8(*entry.Key), entry.Value);
 }

 std::map<std::string, Aws::GameLift::Server::Model::AttributeValue>
 sdkAttributeMap;
 for (auto attributeEntry : player.m_playerAttributes) {
 FAttributeValue value = attributeEntry.Value;
 Aws::GameLift::Server::Model::AttributeValue attribute;
 switch (value.m_type) {
 case FAttributeType::STRING:
 attribute =
 Aws::GameLift::Server::Model::AttributeValue(TCHAR_TO_UTF8(*value.m_S));
 break;
 case FAttributeType::DOUBLE:
 attribute = Aws::GameLift::Server::Model::AttributeValue(value.m_N);
 break;
 case FAttributeType::STRING_LIST:
 attribute =
 Aws::GameLift::Server::Model::AttributeValue::ConstructStringList();
 for (auto sl : value.m_SL) {
 attribute.AddString(TCHAR_TO_UTF8(*sl));
 };
 break;

Server SDK reference for Unreal Engine 625

Amazon GameLift Developer Guide

 case FAttributeType::STRING_DOUBLE_MAP:
 attribute =
 Aws::GameLift::Server::Model::AttributeValue::ConstructStringDoubleMap();
 for (auto sdm : value.m_SDM) {
 attribute.AddStringAndDouble(TCHAR_TO_UTF8(*sdm.Key), sdm.Value);
 };
 break;
 }
 sdkPlayer.WithPlayerAttribute((TCHAR_TO_UTF8(*attributeEntry.Key)), attribute);
 }
 sdkRequest.AddPlayer(sdkPlayer);
 }
 auto outcome = Aws::GameLift::Server::StartMatchBackfill(sdkRequest);
 if (outcome.IsSuccess()) {
 return FGameLiftStringOutcome(outcome.GetResult().GetTicketId());
 }
 else {
 return FGameLiftStringOutcome(FGameLiftError(outcome.GetError()));
 }
 #else
 return FGameLiftStringOutcome("");
 #endif
}

StopMatchBackfill()

Cancels an active match backfill request. For more information, see FlexMatch backfill feature.

Syntax

FGameLiftGenericOutcome StopMatchBackfill (FStopMatchBackfillRequest
 &stopBackfillRequest);

Parameters

FStopMatchBackfillRequest

A StopMatchBackfillRequest object identifying the matchmaking ticket to cancel:

• The ticket ID assigned to the backfill request.

• The matchmaker the backfill request was sent to.

• The game session associated with the backfill request.

Server SDK reference for Unreal Engine 626

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html

Amazon GameLift Developer Guide

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

FGameLiftGenericOutcome FGameLiftServerSDKModule::StopMatchBackfill(const
 FStopMatchBackfillRequest& request)
{
 #if WITH_GAMELIFT
 Aws::GameLift::Server::Model::StopMatchBackfillRequest sdkRequest;
 sdkRequest.SetTicketId(TCHAR_TO_UTF8(*request.m_ticketId));
 sdkRequest.SetGameSessionArn(TCHAR_TO_UTF8(*request.m_gameSessionArn));

 sdkRequest.SetMatchmakingConfigurationArn(TCHAR_TO_UTF8(*request.m_matchmakingConfigurationArn));
 auto outcome = Aws::GameLift::Server::StopMatchBackfill(sdkRequest);
 if (outcome.IsSuccess()) {
 return FGameLiftGenericOutcome(nullptr);
 }
 else {
 return FGameLiftGenericOutcome(FGameLiftError(outcome.GetError()));
 }
 #else
 return FGameLiftGenericOutcome(nullptr);
 #endif
}

GetComputeCertificate()

Retrieves the path to the TLS certificate used to encrypt the network connection between your
Amazon GameLift Anywhere compute resource and Amazon GameLift. You can use the certificate
path when you register your compute device to a Amazon GameLift Anywhere fleet. For more
information see, RegisterCompute.

Syntax

FGameLiftGetComputeCertificateOutcome FGameLiftServerSDKModule::GetComputeCertificate()

Return value

Returns a GetComputeCertificateResponse object containing the following:

• CertificatePath: The path to the TLS certificate on your compute resource.

Server SDK reference for Unreal Engine 627

https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html

Amazon GameLift Developer Guide

• HostName: The host name of your compute resource.

Example

FGameLiftGetComputeCertificateOutcome FGameLiftServerSDKModule::GetComputeCertificate()
{
 #if WITH_GAMELIFT
 auto outcome = Aws::GameLift::Server::GetComputeCertificate();
 if (outcome.IsSuccess()) {
 auto& outres = outcome.GetResult();
 FGameLiftGetComputeCertificateResult result;
 result.m_certificate_path = UTF8_TO_TCHAR(outres.GetCertificatePath());
 result.m_computeName = UTF8_TO_TCHAR(outres.GetComputeName());
 return FGameLiftGetComputeCertificateOutcome(result);
 }
 else {
 return FGameLiftGetComputeCertificateOutcome(FGameLiftError(outcome.GetError()));
 }
 #else
 return FGameLiftGetComputeCertificateOutcome(FGameLiftGetComputeCertificateResult());
 #endif
}

GetFleetRoleCredentials()

Retrieves IAM role credentials that authorize Amazon GameLift to interact with other AWS services.
For more information, see Communicate with other AWS resources from your fleets.

Syntax

FGameLiftGetFleetRoleCredentialsOutcome
 FGameLiftServerSDKModule::GetFleetRoleCredentials(const
 FGameLiftGetFleetRoleCredentialsRequest &request)

Parameters

FGameLiftGetFleetRoleCredentialsRequest

Return value

Returns a the section called “FGameLiftGetFleetRoleCredentialsOutcome” object.

Server SDK reference for Unreal Engine 628

Amazon GameLift Developer Guide

Example

FGameLiftGetFleetRoleCredentialsOutcome
 FGameLiftServerSDKModule::GetFleetRoleCredentials(const
 FGameLiftGetFleetRoleCredentialsRequest &request)
{
 #if WITH_GAMELIFT
 Aws::GameLift::Server::Model::GetFleetRoleCredentialsRequest sdkRequest;
 sdkRequest.SetRoleArn(TCHAR_TO_UTF8(*request.m_roleArn));
 sdkRequest.SetRoleSessionName(TCHAR_TO_UTF8(*request.m_roleSessionName));

 auto outcome = Aws::GameLift::Server::GetFleetRoleCredentials(sdkRequest);

 if (outcome.IsSuccess()) {
 auto& outres = outcome.GetResult();
 FGameLiftGetFleetRoleCredentialsResult result;
 result.m_assumedUserRoleArn = UTF8_TO_TCHAR(outres.GetAssumedUserRoleArn());
 result.m_assumedRoleId = UTF8_TO_TCHAR(outres.GetAssumedRoleId());
 result.m_accessKeyId = UTF8_TO_TCHAR(outres.GetAccessKeyId());
 result.m_secretAccessKey = UTF8_TO_TCHAR(outres.GetSecretAccessKey());
 result.m_sessionToken = UTF8_TO_TCHAR(outres.GetSessionToken());
 result.m_expiration = FDateTime::FromUnixTimestamp(outres.GetExpiration());
 return FGameLiftGetFleetRoleCredentialsOutcome(result);
 }
 else {
 return FGameLiftGetFleetRoleCredentialsOutcome(FGameLiftError(outcome.GetError()));
 }
 #else
 return
 FGameLiftGetFleetRoleCredentialsOutcome(FGameLiftGetFleetRoleCredentialsResult());
 #endif
}

Amazon GameLift server SDK (Unreal) reference: Data types

You can use this Amazon GameLift Unreal server SDK reference to help you prepare your
multiplayer game for use with Amazon GameLift. For details about the integration process, see Add
Amazon GameLift to your game server and for information on using the Unreal SDK server plugin,
see Integrate Amazon GameLift into an Unreal Engine project.

Data types

• FProcessParameters

Server SDK reference for Unreal Engine 629

Amazon GameLift Developer Guide

• UpdateGameSession

• GameSession

• FServerParameters

• FStartMatchBackfillRequest

• FPlayer

• FGameLiftDescribePlayerSessionsRequest

• FStopMatchBackfillRequest

• FAttributeValue

• FGameLiftGetFleetRoleCredentialsRequest

• FGameLiftLongOutcome

• FGameLiftStringOutcome

• FGameLiftDescribePlayerSessionsOutcome

• FGameLiftDescribePlayerSessionsResult

• FGenericOutcome

• FGameLiftPlayerSession

• FGameLiftGetComputeCertificateOutcome

• FGameLiftGetComputeCertificateResult

• FGameLiftGetFleetRoleCredentialsOutcome

• FGetFleetRoleCredentialsResult

• FGameLiftError

• Enums

Note

This topic describes the Amazon GameLift C++ API that you can use when you build for the
Unreal Engine. Specifically, this documentation applies to code that you compile with the -
DBUILD_FOR_UNREAL=1 option.

FProcessParameters

This data type contains the set of parameters sent to Amazon GameLift in a ProcessReady().

Server SDK reference for Unreal Engine 630

Amazon GameLift Developer Guide

Properties Description

LogParameters An object with directory paths to files that
are generated during a game session. Amazon
GameLift copies and stores the files for future
access.

Type: TArray<FString>

Required: No

OnHealthCheck The callback function that Amazon GameLift
invokes to request a health status report from
the server process. Amazon GameLift calls
this function every 60 seconds and waits 60
seconds for a response. The server process
returns TRUE if healthy, FALSE if not healthy.
If no response is returned, Amazon GameLift
records the server process as not healthy.

This property is a delegate function defined
as DECLARE_DELEGATE_RetVal(bool,
FOnHealthCheck) ;

Type: FOnHealthCheck

Required: No

OnProcessTerminate The callback function that Amazon GameLift
invokes to force the server process to shut
down. After calling this function, Amazon
GameLift waits 5 minutes for the server
process to shut down and respond with a
ProcessEnding() call before it shuts down the
server process.

Type: FSimpleDelegate

Required: Yes

Server SDK reference for Unreal Engine 631

Amazon GameLift Developer Guide

OnStartGameSession The callback function that Amazon GameLift
invokes to activate a new game session.
Amazon GameLift calls this function in
response to a client request CreateGam
eSession. The callback function passes a
GameSession object, as defined in the Amazon
GameLift API Reference.

This property is a delegate function defined
as DECLARE_DELEGATE_OneParam(F
OnStartGameSession, Aws::Game
Lift::Server::Model::GameSe
ssion);

Type: FOnStartGameSession

Required: Yes

OnUpdateGameSession The callback function that Amazon GameLift
invokes to pass an updated game session
object to the server process. Amazon
GameLift calls this function when a match
backfill request has been processed to
provide updated matchmaker data. It passes
a GameSession object, a status update
(updateReason), and the match backfill
ticket ID.

This property is a delegate function defined
as DECLARE_DELEGATE_OneParam(F
OnUpdateGameSession, Aws::Game
Lift::Server::Model::Update
GameSession);

Type: FOnUpdateGameSession

Required: No

Server SDK reference for Unreal Engine 632

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

Port The port number the server process listens on
for new player connections. The value must
fall into the port range configured for any
fleet deploying this game server build. This
port number is included in game session and
player session objects, which game sessions
use when connecting to a server process.

Type: int

Required: Yes

UpdateGameSession

This data type updates to a game session object, which includes the reason that the game session
was updated and the related backfill ticket ID if backfill is used to fill player sessions in the game
session.

Properties Description

GameSession A GameSession object defined by the Amazon
GameLift API. The GameSession object
contains properties describing a game session.

Type: Aws::GameLift::Server::Game
Session

Required: No

UpdateReason The reason that the game session is being
updated.

Type: enum class UpdateReason

• MATCHMAKING_DATA_UPDATED

• BACKFILL_FAILED

• BACKFILL_TIMED_OUT

• BACKFILL_CANCELLED

Server SDK reference for Unreal Engine 633

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

Properties Description

Required: No

BackfillTicketId The ID of the backfill ticket attempting to
update the game session.

Type: char[]

Required: No

GameSession

This data type provides details of a game session.

Properties Description

GameSessionId A unique identifier for the game session. A
game session ARN has the following format:
arn:aws:gamelift:<region>::
gamesession/<fleet ID>/<custom
ID string or idempotency token> .

Type: char[]

Required: No

Name A descriptive label of the game session.

Type: char[]

Required: No

FleetId A unique identifier for the fleet that the game
session is running on.

Type: char[]

Required: No

Server SDK reference for Unreal Engine 634

Amazon GameLift Developer Guide

Properties Description

MaximumPlayerSessionCount The maximum number of player connections
to the game session.

Type: int

Required: No

Port The port number for the game session. To
connect to a Amazon GameLift game server,
an app needs both the IP address and port
number.

Type: int

Required: No

IpAddress The IP address of the game session. To
connect to a Amazon GameLift game server,
an app needs both the IP address and port
number.

Type: char[]

Required: No

GameSessionData A set of custom game session properties,
formatted as a single string value.

Type: char[]

Required: No

Server SDK reference for Unreal Engine 635

Amazon GameLift Developer Guide

Properties Description

MatchmakerData Information about the matchmaking process
that was used to create the game session, in
JSON syntax, formatted as a string. In addition
to the matchmaking configuration used, it
contains data on all players assigned to the
match, including player attributes and team
assignments.

Type: char[]

Required: No

GameProperties A set of custom properties for a game session,
formatted as key:value pairs. These properties
are passed with a request to start a new game
session.

Type: GameProperty[]

Required: No

Server SDK reference for Unreal Engine 636

Amazon GameLift Developer Guide

Properties Description

DnsName The DNS identifier assigned to the instance
that's running the game session. Values have
the following format:

• TLS-enabled fleets: <unique identifie
r>.<region identifier>.amazon
gamelift.com .

• Non-TLS-enabled fleets: ec2-<unique
identifier>.compute.amazona
ws.com .

When connecting to a game session that's
running on a TLS-enabled fleet, you must use
the DNS name, not the IP address.

Type: char[]

Required: No

FServerParameters

Information used to maintain the connection between an Amazon GameLift Anywhere server and
the Amazon GameLift service. This information is used when launching new server processes with
InitSDK(). For servers hosted on Amazon GameLift managed EC2 instances, use an empty object.

Properties Description

webSocketUrl The GameLiftServerSdkEndpoint
Amazon GameLift returns when you
RegisterCompute for a Amazon GameLift
Anywhere compute resource.

Type: char[]

Required: Yes

Server SDK reference for Unreal Engine 637

https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html

Amazon GameLift Developer Guide

Properties Description

processId A unique identifier registered to the server
process hosting your game.

Type: char[]

Required: Yes

hostId The HostID is the ComputeName used
when you registered your compute. For more
information see, RegisterCompute.

Type: char[]

Required: Yes

fleetId The unique identifier of the fleet that the
compute is registered to. For more informati
on see, RegisterCompute.

Type: char[]

Required: Yes

authToken The authentication token generated by
Amazon GameLift that authenticates your
server to Amazon GameLift. For more
information see, GetComputeAuthToken.

Type: char[]

Required: Yes

FStartMatchBackfillRequest

Information used to create a matchmaking backfill request. The game server communicates this
information to Amazon GameLift in a StartMatchBackfill() call.

Server SDK reference for Unreal Engine 638

https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAuthToken.html

Amazon GameLift Developer Guide

Properties Description

GameSessionArn A unique game session identifier. The API
operation GetGameSessionId returns the
identifier in ARN format.

Type: char[]

Required: Yes

MatchmakingConfigurationArn A unique identifier, in the form of an ARN,
for the matchmaker to use for this request.
The matchmaker ARN for the original game
session is in the game session object in the
matchmaker data property. Learn more about
matchmaker data in Work with matchmaker
data.

Type: char[]

Required: Yes

Players A set of data representing all players who are
in the game session. The matchmaker uses this
information to search for new players who are
good matches for the current players.

Type: TArray<FPlayer>

Required: Yes

TicketId A unique identifier for a matchmaking or
match backfill request ticket. If you don't
provide a value, Amazon GameLift generates
one. Use this identifier to track the match
backfill ticket status or cancel the request if
needed.

Type: char[]

Server SDK reference for Unreal Engine 639

https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk5-unreal-actions.html#integration-server-sdk5-unreal-getgamesessionid
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-server.html#match-server-data.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-server.html#match-server-data.html

Amazon GameLift Developer Guide

Properties Description

Required: No

FPlayer

This data type represents a player in matchmaking. When starting a matchmaking request, a player
has a player ID, attributes, and possibly latency data. Amazon GameLift adds team information
after a match is made.

Properties Description

LatencyInMS A set of values expressed in milliseconds that
indicate the amount of latency that a player
experiences when connected to a location.

If this property is used, the player is only
matched for locations listed. If a matchmake
r has a rule that evaluates player latency,
players must report latency to be matched.

Type: TMap>FString, int32<

Required: No

PlayerAttributes A collection of key:value pairs containing
player information for use in matchmaking.
Player attribute keys must match the PlayerAtt
ributes used in a matchmaking rule set.

For more information about player attributes,
see AttributeValue.

Type: TMap>FString, FAttribut
eValue<

Required: No

PlayerId A unique identifier for a player.

Server SDK reference for Unreal Engine 640

https://docs.aws.amazon.com/gamelift/latest/apireference/API_AttributeValue.html

Amazon GameLift Developer Guide

Properties Description

Type: std::string

Required: No

Team The name of the team that the player is
assigned to in a match. You define team name
in the matchmaking rule set.

Type: FString

Required: No

FGameLiftDescribePlayerSessionsRequest

An object that specifies which player sessions to retrieve. The server process provides this
information with a DescribePlayerSessions() call to Amazon GameLift.

Properties Description

GameSessionId A unique game session identifier. Use this
parameter to request all player sessions for
the specified game session.

Game session ID format is FString. The
GameSessionID is a custom ID string or a

Type: std::string

Required: No

PlayerSessionId The unique identifier for a player session. Use
this parameter to request a single specific
player session.

Type: FString

Required: No

Server SDK reference for Unreal Engine 641

Amazon GameLift Developer Guide

Properties Description

PlayerId The unique identifier for a player. Use this
parameter to request all player sessions for a
specific player. See Generate player IDs.

Type: FString

Required: No

PlayerSessionStatusFilter The player session status to filter results on.
Possible player session statuses include:

• RESERVED – The player session request was
received, but the player hasn't connected to
the server process or been validated.

• ACTIVE – The player was validated by the
server process and is connected.

• COMPLETED – The player connection
dropped.

• TIMEDOUT – A player session request was
received, but the player didn't connect or
wasn't validated within the time-out limit
(60 seconds).

Type: FString

Required: No

NextToken The token indicating the start of the next page
of results. To specify the start of the result set,
don't provide a value. If you provide a player
session ID, this parameter is ignored.

Type: FString

Required: No

Server SDK reference for Unreal Engine 642

Amazon GameLift Developer Guide

Properties Description

Limit The maximum number of results to return. If
you provide a player session ID, this parameter
is ignored.

Type: int

Required: No

FStopMatchBackfillRequest

Information used to cancel a matchmaking backfill request. The game server communicates this
information to Amazon GameLift service in a StopMatchBackfill() call.

Properties Description

GameSessionArn A unique game session identifier of the
request being canceled.

Type: FString

Required: Yes

MatchmakingConfigurationArn A unique identifier of the matchmaker this
request was sent to.

Type: FString

Required: Yes

TicketId A unique identifier of the backfill request
ticket to be canceled.

Type: FString

Required: Yes

Server SDK reference for Unreal Engine 643

Amazon GameLift Developer Guide

FAttributeValue

Use these values in FPlayer attribute key-value pairs. This object lets you specify an attribute value
using any of the valid data types: string, number, string array, or data map. Each AttributeValue
object can use only one of the available properties.

Properties Description

attrType Specifies the type of attribute value.

Type: An FAttributeType enum value.

Required: No

S Represents a string attribute value.

Type: FString

Required: No

N Represents a numeric attribute value.

Type: double

Required: No

SL Represents an array of string attribute values.

Type: TArray<FString>

Required: No

SDM Represents a dictionary of string keys and
double values.

Type: TMap<FString, double>

Required: No

Server SDK reference for Unreal Engine 644

Amazon GameLift Developer Guide

FGameLiftGetFleetRoleCredentialsRequest

This data type provides role credentials that extend limited access to your AWS resources to the
game server. For more information see, Set up an IAM service role for Amazon GameLift.

Properties Description

RoleArn The Amazon Resource Name (ARN) of the
service role that extends limited access to your
AWS resources.

Type: FString

Required: No

RoleSessionName The name of the session describing the use of
the role credentials.

Type: FString

Required: No

FGameLiftLongOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Result The result of the action.

Type: long

Required: No

ResultWithOwnership The result of the action, cast as an rvalue, so
that the calling code can take ownership of
the object.

Type: long&&

Server SDK reference for Unreal Engine 645

Amazon GameLift Developer Guide

Properties Description

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “FGameLiftError”

Required: No

FGameLiftStringOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Result The result of the action.

Type: FString

Required: No

ResultWithOwnership The result of the action, cast as an rvalue, so
that the calling code can take ownership of
the object.

Type: FString&&

Required: No

Success Whether the action was successful or not.

Type: bool

Server SDK reference for Unreal Engine 646

Amazon GameLift Developer Guide

Properties Description

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “FGameLiftError”

Required: No

FGameLiftDescribePlayerSessionsOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Result The result of the action.

Type: the section called “FGameLiftDescribe
PlayerSessionsResult”

Required: No

ResultWithOwnership The result of the action, cast as an rvalue, so
that the calling code can take ownership of
the object.

Type: FGameLiftDescribePlayerSess
ionsResult&&

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Server SDK reference for Unreal Engine 647

Amazon GameLift Developer Guide

Properties Description

Type: the section called “FGameLiftError”

Required: No

FGameLiftDescribePlayerSessionsResult

Properties Description

PlayerSessions
Type: TArray<FGameLiftPlayerSessi
on>

Required: Yes

NextToken The token indicating the start of the next page
of results. To specify the start of the result set,
don't provide a value. If you provide a player
session ID, this parameter is ignored.

Type: FString

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “FGameLiftError”

Required: No

Server SDK reference for Unreal Engine 648

Amazon GameLift Developer Guide

FGenericOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “FGameLiftError”

Required: No

FGameLiftPlayerSession

Properties Description

CreationTime Type: long

Required: Yes

FleetId Type: FString

Required: Yes

GameSessionId Type: FString

Required: Yes

IpAddress Type: FString

Required: Yes

PlayerData Type: FString

Server SDK reference for Unreal Engine 649

Amazon GameLift Developer Guide

Properties Description

Required: Yes

PlayerId Type: FString

Required: Yes

PlayerSessionId Type: FString

Required: Yes

Port Type: int

Required: Yes

Status Type: A PlayerSessionStatus enum.

Required: Yes

TerminationTime Type: long

Required: Yes

DnsName Type: FString

Required: Yes

FGameLiftGetComputeCertificateOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Result The result of the action.

Type: the section called “FGameLiftGetCompu
teCertificateResult”

Required: No

Server SDK reference for Unreal Engine 650

Amazon GameLift Developer Guide

Properties Description

ResultWithOwnership The result of the action, cast as an rvalue, so
that the calling code can take ownership of
the object.

Type: FGameLiftGetComputeCertific
ateResult&&

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “FGameLiftError”

Required: No

FGameLiftGetComputeCertificateResult

The path to the TLS certificate on your compute and the compute's host name.

Properties Description

CertificatePath Type: FString

Required: Yes

ComputeName Type: FString

Required: Yes

Server SDK reference for Unreal Engine 651

Amazon GameLift Developer Guide

FGameLiftGetFleetRoleCredentialsOutcome

This data type results from an action and produces an object with the following properties:

Properties Description

Result The result of the action.

Type: the section called “FGetFleetRoleCred
entialsResult”

Required: No

ResultWithOwnership The result of the action, cast as an rvalue, so
that the calling code can take ownership of
the object.

Type: FGameLiftGetFleetRoleCreden
tialsResult&&

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “FGameLiftError”

Required: No

Server SDK reference for Unreal Engine 652

Amazon GameLift Developer Guide

FGetFleetRoleCredentialsResult

Properties Description

AccessKeyId The access key ID to authenticate and provide
access to your AWS resources.

Type: FString

Required: No

AssumedRoleId The ID of the user that the service role
belongs to.

Type: FString

Required: No

AssumedRoleUserArn The Amazon Resource Name (ARN) of the user
that the service role belongs to.

Type: FString

Required: No

Expiration The amount of time until your session
credentials expire.

Type: FDateTime

Required: No

SecretAccessKey The secret access key ID for authentication.

Type: FString

Required: No

SessionToken A token to identify the current active session
interacting with your AWS resources.

Type: FString

Server SDK reference for Unreal Engine 653

Amazon GameLift Developer Guide

Properties Description

Required: No

Success Whether the action was successful or not.

Type: bool

Required: Yes

Error The error that occurred if the action was
unsuccessful.

Type: the section called “GameLiftError”

Required: No

FGameLiftError

Properties Description

ErrorType The type of error.

Type: A GameLiftErrorType enum.

Required: No

ErrorName The name of the error.

Type: std::string

Required: No

ErrorMessage The error message.

Type: std::string

Required: No

Server SDK reference for Unreal Engine 654

Amazon GameLift Developer Guide

Enums

Enums defined for the Amazon GameLift server SDK (Unreal) are defined as follows:

FAttributeType

• NONE

• STRING

• DOUBLE

• STRING_LIST

• STRING_DOUBLE_MAP

GameLiftErrorType

String value indicating the error type. Valid values include:

• SERVICE_CALL_FAILED – A call to an AWS service has failed.

• LOCAL_CONNECTION_FAILED – The local connection to Amazon GameLift failed.

• NETWORK_NOT_INITIALIZED – The network has not been initialized.

• GAMESESSION_ID_NOT_SET – The game session ID has not been set.

• BAD_REQUEST_EXCEPTION

• INTERNAL_SERVICE_EXCEPTION

• ALREADY_INITIALIZED – The Amazon GameLift Server or Client has already been initialized
with Initialize().

• FLEET_MISMATCH – The target fleet does not match the fleet of a gameSession or
playerSession.

• GAMELIFT_CLIENT_NOT_INITIALIZED – The Amazon GameLift client has not been initialized.

• GAMELIFT_SERVER_NOT_INITIALIZED – The Amazon GameLift server has not been
initialized.

• GAME_SESSION_ENDED_FAILED – The Amazon GameLift Server SDK could not contact the
service to report the game session ended.

• GAME_SESSION_NOT_READY – The Amazon GameLift Server Game Session was not
activated.

• GAME_SESSION_READY_FAILED – The Amazon GameLift Server SDK could not contact the
service to report the game session is ready.

• INITIALIZATION_MISMATCH – A client method was called after Server::Initialize(), or vice
versa.

Server SDK reference for Unreal Engine 655

Amazon GameLift Developer Guide

• NOT_INITIALIZED – The Amazon GameLift Server or Client has not been initialized with
Initialize().

• NO_TARGET_ALIASID_SET – A target aliasId has not been set.

• NO_TARGET_FLEET_SET – A target fleet has not been set.

• PROCESS_ENDING_FAILED – The Amazon GameLift Server SDK could not contact the service
to report the process is ending.

• PROCESS_NOT_ACTIVE – The server process is not yet active, not bound to a GameSession,
and cannot accept or process PlayerSessions.

• PROCESS_NOT_READY – The server process is not yet ready to be activated.

• PROCESS_READY_FAILED – The Amazon GameLift Server SDK could not contact the service
to report the process is ready.

• SDK_VERSION_DETECTION_FAILED – SDK version detection failed.

• STX_CALL_FAILED – A call to the XStx server backend component has failed.

• STX_INITIALIZATION_FAILED – The XStx server backend component has failed to initialize.

• UNEXPECTED_PLAYER_SESSION – An unregistered player session was encountered by the
server.

• WEBSOCKET_CONNECT_FAILURE

• WEBSOCKET_CONNECT_FAILURE_FORBIDDEN

• WEBSOCKET_CONNECT_FAILURE_INVALID_URL

• WEBSOCKET_CONNECT_FAILURE_TIMEOUT

• WEBSOCKET_RETRIABLE_SEND_MESSAGE_FAILURE – Retriable failure to send a message to
the GameLift Service WebSocket.

• WEBSOCKET_SEND_MESSAGE_FAILURE – Failure to send a message to the GameLift Service
WebSocket.

• MATCH_BACKFILL_REQUEST_VALIDATION – Validation of the request failed.

• PLAYER_SESSION_REQUEST_VALIDATION – Validation of the request failed.

EPlayerSessionCreationPolicy

String value indicating whether the game session accepts new players. Valid values include:

• ACCEPT_ALL – Accept all new player sessions.

• DENY_ALL – Deny all new player sessions.

Server SDK reference for Unreal Engine 656

Amazon GameLift Developer Guide

• NOT_SET – The game session is not set to accept or deny new player sessions.

EPlayerSessionStatus

• ACTIVE

• COMPLETED

• NOT_SET

• RESERVED

• TIMEDOUT

Amazon GameLift Unreal Engine server SDK 3.x reference

You can use this Amazon GameLift Unreal Engine server SDK 3.x reference to help you prepare your
multiplayer game for use with Amazon GameLift. For details about the integration process, see Add
Amazon GameLift to your game server.

Topics

• Amazon GameLift server SDK reference for Unreal Engine: Actions

• Amazon GameLift server SDK reference for Unreal Engine: Data types

Amazon GameLift server SDK reference for Unreal Engine: Actions

This Amazon GameLift Server SDK reference can help you prepare your Unreal Engine game
projects for use with Amazon GameLift. For details on the integration process, see Add Amazon
GameLift to your game server.

This API is defined in GameLiftServerSDK.h and GameLiftServerSDKModels.h.

To set up the Unreal Engine plugin and see code examples Integrate Amazon GameLift into an
Unreal Engine project.

• Actions

• Data types

AcceptPlayerSession()

Notifies the Amazon GameLift service that a player with the specified player session ID has
connected to the server process and needs validation. Amazon GameLift verifies that the player

Server SDK reference for Unreal Engine 657

Amazon GameLift Developer Guide

session ID is valid—that is, that the player ID has reserved a player slot in the game session. Once
validated, Amazon GameLift changes the status of the player slot from RESERVED to ACTIVE.

Syntax

FGameLiftGenericOutcome AcceptPlayerSession(const FString& playerSessionId)

Parameters

playerSessionId

Unique ID issued by the Amazon GameLift service in response to a call to the AWS SDK Amazon
GameLift API action CreatePlayerSession. The game client references this ID when connecting
to the server process.

Type: FString

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

ActivateGameSession()

Notifies the Amazon GameLift service that the server process has activated a game session
and is now ready to receive player connections. This action should be called as part of the
onStartGameSession() callback function, after all game session initialization has been
completed.

Syntax

FGameLiftGenericOutcome ActivateGameSession()

Parameters

This action has no parameters.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Server SDK reference for Unreal Engine 658

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSession.html

Amazon GameLift Developer Guide

DescribePlayerSessions()

Retrieves player session data, including settings, session metadata, and player data. Use this action
to get information for a single player session, for all player sessions in a game session, or for all
player sessions associated with a single player ID.

Syntax

FGameLiftDescribePlayerSessionsOutcome DescribePlayerSessions(const
 FGameLiftDescribePlayerSessionsRequest &describePlayerSessionsRequest)

Parameters

describePlayerSessionsRequest

A FDescribePlayerSessionsRequest object describing which player sessions to retrieve.

Required: Yes

Return value

If successful, returns a FDescribePlayerSessionsRequest object containing a set of player session
objects that fit the request parameters. Player session objects have a structure identical to the AWS
SDK Amazon GameLift API PlayerSession data type.

GetGameSessionId()

Retrieves the ID of the game session currently being hosted by the server process, if the server
process is active.

Syntax

FGameLiftStringOutcome GetGameSessionId()

Parameters

This action has no parameters.

Return value

If successful, returns the game session ID as an FGameLiftStringOutcome object. If not
successful, returns an error message.

Server SDK reference for Unreal Engine 659

https://docs.aws.amazon.com/gamelift/latest/apireference/API_PlayerSession.html

Amazon GameLift Developer Guide

GetInstanceCertificate()

Retrieves the file location of a pem-encoded TLS certificate that is associated with the fleet and
its instances. AWS Certificate Manager generates this certificate when you create a new fleet with
the certificate configuration set to GENERATED. Use this certificate to establish a secure connection
with a game client and to encrypt client/server communication.

Syntax

FGameLiftGetInstanceCertificateOutcome GetInstanceCertificate()

Parameters

This action has no parameters.

Return value

If successful, returns a GetInstanceCertificateOutcome object containing the location of the
fleet's TLS certificate file and certificate chain, which are stored on the instance. A root certificate
file, extracted from the certificate chain, is also stored on the instance. If not successful, returns an
error message.

For more information about the certificate and certificate chain data, see GetCertificate Response
Elements in the AWS Certificate Manager API Reference.

GetSdkVersion()

Returns the current version number of the SDK built into the server process.

Syntax

FGameLiftStringOutcome GetSdkVersion();

Parameters

This action has no parameters.

Return value

If successful, returns the current SDK version as an FGameLiftStringOutcome object. The
returned string includes the version number only (ex. "3.1.5"). If not successful, returns an error
message.

Server SDK reference for Unreal Engine 660

https://docs.aws.amazon.com/acm/latest/APIReference/API_GetCertificate.html#API_GetCertificate_ResponseElements
https://docs.aws.amazon.com/acm/latest/APIReference/API_GetCertificate.html#API_GetCertificate_ResponseElements

Amazon GameLift Developer Guide

Example

Aws::GameLift::AwsStringOutcome SdkVersionOutcome =
 Aws::GameLift::Server::GetSdkVersion();

InitSDK()

Initializes the Amazon GameLift SDK. This method should be called on launch, before any other
Amazon GameLift-related initialization occurs.

Syntax

FGameLiftGenericOutcome InitSDK()

Parameters

This action has no parameters.

Return value

Returns a generic outcome consisting of success or failure with an error message.

ProcessEnding()

Notifies the Amazon GameLift service that the server process is shutting down. This method should
be called after all other cleanup tasks, including shutting down all active game sessions. This
method should exit with an exit code of 0; a non-zero exit code results in an event message that
the process did not exit cleanly.

Syntax

FGameLiftGenericOutcome ProcessEnding()

Parameters

This action has no parameters.

Return value

Returns a generic outcome consisting of success or failure with an error message.

Server SDK reference for Unreal Engine 661

Amazon GameLift Developer Guide

ProcessReady()

Notifies the Amazon GameLift service that the server process is ready to host game sessions. Call
this method after successfully invoking InitSDK() and completing setup tasks that are required
before the server process can host a game session. This method should be called only once per
process.

Syntax

FGameLiftGenericOutcome ProcessReady(FProcessParameters &processParameters)

Parameters

FProcessParameters

A FProcessParameters object communicating the following information about the server
process:

• Names of callback methods, implemented in the game server code, that the Amazon
GameLift service invokes to communicate with the server process.

• Port number that the server process is listening on.

• Path to any game session-specific files that you want Amazon GameLift to capture and store.

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

Example

See the sample code in Using the Unreal Engine Plugin.

RemovePlayerSession()

Notifies the Amazon GameLift service that a player with the specified player session ID has
disconnected from the server process. In response, Amazon GameLift changes the player slot to
available, which allows it to be assigned to a new player.

Syntax

FGameLiftGenericOutcome RemovePlayerSession(const FString& playerSessionId)

Server SDK reference for Unreal Engine 662

Amazon GameLift Developer Guide

Parameters

playerSessionId

Unique ID issued by the Amazon GameLift service in response to a call to the AWS SDK Amazon
GameLift API action CreatePlayerSession. The game client references this ID when connecting
to the server process.

Type: FString

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

StartMatchBackfill()

Sends a request to find new players for open slots in a game session created with FlexMatch.
See also the AWS SDK action StartMatchBackfill(). With this action, match backfill requests can
be initiated by a game server process that is hosting the game session. Learn more about the
FlexMatch backfill feature.

This action is asynchronous. If new players are successfully matched, the Amazon GameLift service
delivers updated matchmaker data using the callback function OnUpdateGameSession().

A server process can have only one active match backfill request at a time. To send a new request,
first call StopMatchBackfill() to cancel the original request.

Syntax

FGameLiftStringOutcome StartMatchBackfill (FStartMatchBackfillRequest
 &startBackfillRequest);

Parameters

FStartMatchBackfillRequest

A FStartMatchBackfillRequest object that communicates the following information:

• A ticket ID to assign to the backfill request. This information is optional; if no ID is provided,
Amazon GameLift will autogenerate one.

Server SDK reference for Unreal Engine 663

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartMatchBackfill.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html

Amazon GameLift Developer Guide

• The matchmaker to send the request to. The full configuration ARN is required. This value can
be acquired from the game session's matchmaker data.

• The ID of the game session that is being backfilled.

• Available matchmaking data for the game session's current players.

Required: Yes

Return value

If successful, returns the match backfill ticket as a FGameLiftStringOutcome object. If not
successful, returns an error message. Ticket status can be tracked using the AWS SDK action
DescribeMatchmaking().

StopMatchBackfill()

Cancels an active match backfill request that was created with StartMatchBackfill(). See also the
AWS SDK action StopMatchmaking(). Learn more about the FlexMatch backfill feature.

Syntax

FGameLiftGenericOutcome StopMatchBackfill (FStopMatchBackfillRequest
 &stopBackfillRequest);

Parameters

StopMatchBackfillRequest

A FStopMatchBackfillRequest object identifying the matchmaking ticket to cancel:

• ticket ID assigned to the backfill request being canceled

• matchmaker the backfill request was sent to

• game session associated with the backfill request

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

Server SDK reference for Unreal Engine 664

https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeMatchmaking.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StopMatchmaking.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html

Amazon GameLift Developer Guide

TerminateGameSession()

This method is deprecated with version 4.0.1. Instead, the server process should call
ProcessEnding() after a game session has ended.

Notifies the Amazon GameLift service that the server process has ended the current game session.
This action is called when the server process will remain active and ready to host a new game
session. It should be called only after your game session termination procedure is complete,
because it signals to Amazon GameLift that the server process is immediately available to host a
new game session.

This action is not called if the server process will be shut down after the game session stops.
Instead, call ProcessEnding() to signal that both the game session and the server process are
ending.

Syntax

FGameLiftGenericOutcome TerminateGameSession()

Parameters

This action has no parameters.

Return value

Returns a generic outcome consisting of success or failure with an error message.

UpdatePlayerSessionCreationPolicy()

Updates the current game session's ability to accept new player sessions. A game session can be set
to either accept or deny all new player sessions. (See also the UpdateGameSession() action in
the Amazon GameLift Service API Reference).

Syntax

FGameLiftGenericOutcome UpdatePlayerSessionCreationPolicy(EPlayerSessionCreationPolicy
 policy)

Parameters

Policy

Value indicating whether the game session accepts new players.

Server SDK reference for Unreal Engine 665

https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateGameSession.html

Amazon GameLift Developer Guide

Type: EPlayerSessionCreationPolicy enum. Valid values include:

• ACCEPT_ALL – Accept all new player sessions.

• DENY_ALL – Deny all new player sessions.

Required: Yes

Return value

Returns a generic outcome consisting of success or failure with an error message.

Amazon GameLift server SDK reference for Unreal Engine: Data types

This Amazon GameLift Server SDK reference can help you prepare your Unreal Engine game
projects for use with Amazon GameLift. For details on the integration process, see Add Amazon
GameLift to your game server.

This API is defined in GameLiftServerSDK.h and GameLiftServerSDKModels.h.

To set up the Unreal Engine plugin and see code examples Integrate Amazon GameLift into an
Unreal Engine project.

• Actions

• Data types

FDescribePlayerSessionsRequest

This data type is used to specify which player session(s) to retrieve. You can use it as follows:

• Provide a PlayerSessionId to request a specific player session.

• Provide a GameSessionId to request all player sessions in the specified game session.

• Provide a PlayerId to request all player sessions for the specified player.

For large collections of player sessions, use the pagination parameters to retrieve results in
sequential blocks.

Server SDK reference for Unreal Engine 666

Amazon GameLift Developer Guide

Contents

GameSessionId

Unique game session identifier. Use this parameter to request all player
sessions for the specified game session. Game session ID format is as follows:
arn:aws:gamelift:<region>::gamesession/fleet-<fleet ID>/<ID string>. The
value of <ID string> is either a custom ID string or (if one was specified when the game session
was created) a generated string.

Type: String

Required: No

Limit

Maximum number of results to return. Use this parameter with NextToken to get results as a set
of sequential pages. If a player session ID is specified, this parameter is ignored.

Type: Integer

Required: No

NextToken

Token indicating the start of the next sequential page of results. Use the token that is returned
with a previous call to this action. To specify the start of the result set, do not specify a value. If
a player session ID is specified, this parameter is ignored.

Type: String

Required: No

PlayerId

Unique identifier for a player. Player IDs are defined by the developer. See Generate player IDs.

Type: String

Required: No

PlayerSessionId

Unique identifier for a player session.

Server SDK reference for Unreal Engine 667

Amazon GameLift Developer Guide

Type: String

Required: No

PlayerSessionStatusFilter

Player session status to filter results on. Possible player session statuses include the following:

• RESERVED – The player session request has been received, but the player has not yet
connected to the server process and/or been validated.

• ACTIVE – The player has been validated by the server process and is currently connected.

• COMPLETED – The player connection has been dropped.

• TIMEDOUT – A player session request was received, but the player did not connect and/or was
not validated within the time-out limit (60 seconds).

Type: String

Required: No

FProcessParameters

This data type contains the set of parameters sent to the Amazon GameLift service in a
ProcessReady() call.

Contents

port

Port number the server process will listen on for new player connections. The value must
fall into the port range configured for any fleet deploying this game server build. This port
number is included in game session and player session objects, which game sessions use when
connecting to a server process.

Type: Integer

Required: Yes

logParameters

Object with a list of directory paths to game session log files.

Server SDK reference for Unreal Engine 668

Amazon GameLift Developer Guide

Type: TArray<FString>

Required: No

onStartGameSession

Name of callback function that the Amazon GameLift service invokes to activate a new
game session. Amazon GameLift calls this function in response to the client request
CreateGameSession. The callback function takes a GameSession object (defined in the Amazon
GameLift Service API Reference).

Type: FOnStartGameSession

Required: Yes

onProcessTerminate

Name of callback function that the Amazon GameLift service invokes to force the server process
to shut down. After calling this function, Amazon GameLift waits five minutes for the server
process to shut down and respond with a ProcessEnding() call before it shuts down the server
process.

Type: FSimpleDelegate

Required: No

onHealthCheck

Name of callback function that the Amazon GameLift service invokes to request a health status
report from the server process. Amazon GameLift calls this function every 60 seconds. After
calling this function Amazon GameLift waits 60 seconds for a response, and if none is received.
records the server process as unhealthy.

Type: FOnHealthCheck

Required: No

onUpdateGameSession

Name of callback function that the Amazon GameLift service invokes to pass an updated
game session object to the server process. Amazon GameLift calls this function when a match
backfill request has been processed in order to provide updated matchmaker data. It passes a
GameSession object, a status update (updateReason), and the match backfill ticket ID.

Server SDK reference for Unreal Engine 669

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide

Type: FOnUpdateGameSession

Required: No

FStartMatchBackfillRequest

This data type is used to send a matchmaking backfill request. The information is communicated to
the Amazon GameLift service in a StartMatchBackfill() call.

Contents

GameSessionArn

Unique game session identifier. The API action GetGameSessionId() returns the identifier in ARN
format.

Type: FString

Required: Yes

MatchmakingConfigurationArn

Unique identifier, in the form of an ARN, for the matchmaker to use for this request. To find
the matchmaker that was used to create the original game session, look in the game session
object, in the matchmaker data property. Learn more about matchmaker data in Work with
matchmaker data.

Type: FString

Required: Yes

Players

A set of data representing all players who are currently in the game session. The matchmaker
uses this information to search for new players who are good matches for the current players.
See the Amazon GameLift API Reference Guide for a description of the Player object format.
To find player attributes, IDs, and team assignments, look in the game session object, in the
matchmaker data property. If latency is used by the matchmaker, gather updated latency for
the current region and include it in each player's data.

Type: TArray<FPlayer>

Server SDK reference for Unreal Engine 670

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-server.html#match-server-data
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-server.html#match-server-data
https://docs.aws.amazon.com/gamelift/latest/apireference/API_Player.html

Amazon GameLift Developer Guide

Required: Yes

TicketId

Unique identifier for a matchmaking or match backfill request ticket. If no value is provided
here, Amazon GameLift will generate one in the form of a UUID. Use this identifier to track the
match backfill ticket status or cancel the request if needed.

Type: FString

Required: No

FStopMatchBackfillRequest

This data type is used to cancel a matchmaking backfill request. The information is communicated
to the Amazon GameLift service in a StopMatchBackfill() call.

Contents

GameSessionArn

Unique game session identifier associated with the request being canceled.

Type: FString

Required: Yes

MatchmakingConfigurationArn

Unique identifier of the matchmaker this request was sent to.

Type: FString

Required: Yes

TicketId

Unique identifier of the backfill request ticket to be canceled.

Type: FString

Required: Yes

Server SDK reference for Unreal Engine 671

Amazon GameLift Developer Guide

Game session placement events

Amazon GameLift emits events for each game session placement request as it is processed. You can
publish these events to an Amazon SNS topic, as described in Set up event notification for game
session placement. These events are also emitted to Amazon CloudWatch Events in near real time
and on a best-effort basis.

This topic describes the structure of game session placement events and provides an example for
each event type. For more information on the status of game session placement requests, see
GameSessionPlacement in the Amazon GameLift API Reference.

Placement event syntax

Events are represented as JSON objects. Event structure conforms to the CloudWatch Events
pattern, with similar top-level fields and service-specific details.

Top-level fields include the following (see event pattern for more detail):

version

This field is always set to 0 (zero).

id

Unique tracking identifier for the event.

detail-type

Value is always GameLift Queue Placement Event.

source

Value is always aws.gamelift.

account

The AWS account that is being used to manage Amazon GameLift.

time

Event timestamp.

region

The AWS Region where the placement request is being processed. This is the Region where the
game session queue in use resides.

Game session placement events 672

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSessionPlacement.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html

Amazon GameLift Developer Guide

resources

ARN value of the game session queue that is processing the placement request.

PlacementFulfilled

The placement request has been successfully fulfilled. A new game session has been started
and new player sessions have been created for each player listed in the game session placement
request. Player connection information is available.

Detail syntax:

placementId

A unique identifier assigned to the game session placement request.

port

The port number for the new game session.

gameSessionArn

The ARN identifier for the new game session.

ipAddress

The IP address of the game session.

dnsName

The DNS identifier assigned to the instance that is running the new game session. The value
format is different depending on whether the instance running the game session is TLS-
enabled. When connecting to a game session on a TLS-enabled fleet, players must use the DNS
name, not the IP address.

TLS-enabled fleets: <unique identifier>.<region
identifier>.amazongamelift.com.

Non-TLS-enabled fleets: ec2-<unique identifier>.compute.amazonaws.com.

startTime

Time stamp indicating when this request was placed in the queue.

PlacementFulfilled 673

Amazon GameLift Developer Guide

endTime

Time stamp indicating when this request was fulfilled.

gameSessionRegion

AWS Region of the fleet that is hosting the game session. This corresponds to the region token
in the GameSessionArn.

placedPlayerSessions

The collection of player sessions that have been created for each player in the game session
placement request.

Example

{
 "version": "0",
 "id": "1111aaaa-bb22-cc33-dd44-5555eeee66ff",
 "detail-type": "GameLift Queue Placement Event",
 "source": "aws.gamelift",
 "account": "123456789012",
 "time": "2021-03-01T15:50:52Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:gamelift:us-west-2:123456789012:gamesessionqueue/MegaFrogRace-NA"
],
 "detail": {
 "type": "PlacementFulfilled",
 "placementId": "9999ffff-88ee-77dd-66cc-5555bb44aa",
 "port": "6262",
 "gameSessionArn": "arn:aws:gamelift:us-west-2::gamesession/
fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa/4444dddd-55ee-66ff-77aa-8888bbbb99cc",
 "ipAddress": "98.987.98.987",
 "dnsName": "ec2-12-345-67-890.us-west-2.compute.amazonaws.com",
 "startTime": "2021-03-01T15:50:49.741Z",
 "endTime": "2021-03-01T15:50:52.084Z",
 "gameSessionRegion": "us-west-2",
 "placedPlayerSessions": [
 {
 "playerId": "player-1"
 "playerSessionId": "psess-1232131232324124123123"
 }

PlacementFulfilled 674

Amazon GameLift Developer Guide

]
 }
}

PlacementCancelled

The placement request was canceled with a call to the GameLift service
StopGameSessionPlacement.

Detail:

placementId

A unique identifier assigned to the game session placement request.

startTime

Time stamp indicating when this request was placed in the queue.

endTime

Time stamp indicating when this request was cancelled.

Example

{
 "version": "0",
 "id": "1111aaaa-bb22-cc33-dd44-5555eeee66ff",
 "detail-type": "GameLift Queue Placement Event",
 "source": "aws.gamelift",
 "account": "123456789012",
 "time": "2021-03-01T15:50:52Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:gamelift:us-west-2:123456789012:gamesessionqueue/MegaFrogRace-NA"
],
 "detail": {

 "type": "PlacementCancelled",
 "placementId": "9999ffff-88ee-77dd-66cc-5555bb44aa",
 "startTime": "2021-03-01T15:50:49.741Z",
 "endTime": "2021-03-01T15:50:52.084Z"

PlacementCancelled 675

https://docs.aws.amazon.com/gamelift/latest/apireference/API_StopGameSessionPlacement.html

Amazon GameLift Developer Guide

 }
}

PlacementTimedOut

Game session placement did not successfully complete before the queue's time limit expired. The
placement request can be resubmitted as needed.

Detail:

placementId

A unique identifier assigned to the game session placement request.

startTime

Time stamp indicating when this request was placed in the queue.

endTime

Time stamp indicating when this request was cancelled.

Example

{
 "version": "0",
 "id": "1111aaaa-bb22-cc33-dd44-5555eeee66ff",
 "detail-type": "GameLift Queue Placement Event",
 "source": "aws.gamelift",
 "account": "123456789012",
 "time": "2021-03-01T15:50:52Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:gamelift:us-west-2:123456789012:gamesessionqueue/MegaFrogRace-NA"
],
 "detail": {

 "type": "PlacementTimedOut",
 "placementId": "9999ffff-88ee-77dd-66cc-5555bb44aa",
 "startTime": "2021-03-01T15:50:49.741Z",
 "endTime": "2021-03-01T15:50:52.084Z"
 }

PlacementTimedOut 676

Amazon GameLift Developer Guide

}

PlacementFailed

Amazon GameLift was not able to fulfill the game session request. This is generally caused by an
unexpected internal error. The placement request can be resubmitted as needed.

Detail:

placementId

A unique identifier assigned to the game session placement request.

startTime

Time stamp indicating when this request was placed in the queue.

endTime

Time stamp indicating when this request failed.

Example

{
 "version": "0",
 "id": "39c978f3-ba46-3f7c-e787-55bfcca1bd31",
 "detail-type": "GameLift Queue Placement Event",
 "source": "aws.gamelift",
 "account": "252386620677",
 "time": "2021-03-01T15:50:52Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:gamelift:us-west-2:252386620677:gamesessionqueue/MegaFrogRace-NA"
],
 "detail": {

 "type": "PlacementFailed",
 "placementId": "e4a1119a-39af-45cf-a990-ef150fe0d453",
 "startTime": "2021-03-01T15:50:49.741Z",
 "endTime": "2021-03-01T15:50:52.084Z"
 }
}

PlacementFailed 677

Amazon GameLift Developer Guide

Amazon GameLift Realtime Servers reference

This section contains reference documentation for the Amazon GameLift Realtime Servers SDK. It
includes the Realtime Client API as well as guidance for configuring your Realtime Servers script.

Topics

• Realtime Servers client API (C#) reference

• Amazon GameLift Realtime Servers script reference

Realtime Servers client API (C#) reference

Use the Realtime Client API to prepare your multiplayer game clients for use with Amazon
GameLift Realtime Servers. For more on the integration process, see Prepare your Realtime server.
The Client API contains a set of synchronous API calls and asynchronous callbacks that enable a
game client to connect to a Realtime server and exchange messages and data with other game
clients via the server.

This API is defined in the following libraries:

Client.cs

• Synchronous Actions

• Asynchronous Callbacks

• Data Types

To set up the Realtime client API

1. Download the Amazon GameLift Realtime client SDK.

2. Build the C# SDK libraries. Locate the solution file
GameLiftRealtimeClientSdkNet45.sln. See the README.md file for the C# Server SDK
for minimum requirements and additional build options. In an IDE, load the solution file. To
generate the SDK libraries, restore the NuGet packages and build the solution.

3. Add the Realtime Client libraries to your game client project.

Realtime Servers reference 678

https://aws.amazon.com/gamelift/getting-started

Amazon GameLift Developer Guide

Realtime Servers client API (C#) reference: Actions

This C# Realtime Client API reference can help you prepare your multiplayer game for use with
Realtime Servers deployed on Amazon GameLift fleets. For details on the integration process, see
Prepare your Realtime server.

• Synchronous Actions

• Asynchronous Callbacks

• Data Types

Client()

Initializes a new client to communicate with the Realtime server and identifies the type of
connection to use.

Syntax

public Client(ClientConfiguration configuration)

Parameters

clientConfiguration

Configuration details specifying the client/server connection type. You can opt to call Client()
without this parameter; however, this approach results in an unsecured connection by default.

Type: ClientConfiguration

Required: No

Return value

Returns an instance of the Realtime client for use with communicating with the Realtime server.

Connect()

Requests a connection to a server process that is hosting a game session.

Realtime client API (C#) reference 679

Amazon GameLift Developer Guide

Syntax

public ConnectionStatus Connect(string endpoint, int remoteTcpPort, int listenPort,
 ConnectionToken token)

Parameters

endpoint

DNS name or IP address of the game session to connect to. The endpoint is specified
in a GameSession object, which is returned in response to a client call to the AWS SDK
Amazon GameLift API actions StartGameSessionPlacement, CreateGameSession, or
DescribeGameSessions.

Note

If the Realtime server is running on a fleet with a TLS certificate, you must use the DNS
name.

Type: String

Required: Yes

remoteTcpPort

Port number for the TCP connection assigned to the game session. This information is specified
in a GameSession object, which is returned in response to a StartGameSessionPlacement
CreateGameSession, or DescribeGameSession request.

Type: Integer

Valid Values: 1900 to 2000.

Required: Yes

listenPort

Port number that the game client is listening on for messages sent using the UDP channel.

Type: Integer

Realtime client API (C#) reference 680

https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_SearchGameSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSession.html

Amazon GameLift Developer Guide

Valid Values: 33400 to 33500.

Required: Yes

token

Optional information that identifies the requesting game client to the server process.

Type: ConnectionToken

Required: Yes

Return value

Returns a ConnectionStatus enum value indicating the client's connection status.

Disconnect()

When connected to a game session, disconnects the game client from the game session.

Syntax

public void Disconnect()

Parameters

This action has no parameters.

Return value

This method does not return anything.

NewMessage()

Creates a new message object with a specified operation code. Once a message object is returned,
complete the message content by specifying a target, updating the delivery method, and adding a
data payload as needed. Once completed, send the message using SendMessage().

Syntax

public RTMessage NewMessage(int opCode)

Realtime client API (C#) reference 681

Amazon GameLift Developer Guide

Parameters

opCode

Developer-defined operation code that identifies a game event or action, such as a player move
or a server notification.

Type: Integer

Required: Yes

Return value

Returns an RTMessage object containing the specified operation code and default delivery method.
The delivery intent parameter is set to FAST by default.

SendMessage()

Sends a message to a player or group using the delivery method specified.

Syntax

public void SendMessage(RTMessage message)

Parameters

message

Message object that specifies the target recipient, delivery method, and message content.

Type: RTMessage

Required: Yes

Return value

This method does not return anything.

JoinGroup()

Adds the player to the membership of a specified group. Groups can contain any of the players that
are connected to the game. Once joined, the player receives all future messages sent to the group
and can send messages to the entire group.

Realtime client API (C#) reference 682

Amazon GameLift Developer Guide

Syntax

public void JoinGroup(int targetGroup)

Parameters

targetGroup

Unique ID that identifies the group to add the player to. Group IDs are developer-defined.

Type: Integer

Required: Yes

Return value

This method does not return anything. Because this request is sent using the reliable (TCP) delivery
method, a failed request triggers the callback OnError().

LeaveGroup()

Removes the player from the membership of a specified group. Once no longer in the group, the
player does not receive messages sent to the group and cannot send messages to the entire group.

Syntax

public void LeaveGroup(int targetGroup)

Parameters

targetGroup

Unique ID identifying the group to remove the player from. Group IDs are developer-defined.

Type: Integer

Required: Yes

Return value

This method does not return anything. Because this request is sent using the reliable (TCP) delivery
method, a failed request triggers the callback OnError().

Realtime client API (C#) reference 683

Amazon GameLift Developer Guide

RequestGroupMembership()

Requests that a list of players in the specified group be sent to the game client. Any player can
request this information, regardless of whether they are a member of the group or not. In response
to this request, the membership list is sent to the client via an OnGroupMembershipUpdated()
callback.

Syntax

public void RequestGroupMembership(int targetGroup)

Parameters

targetGroup

Unique ID identifying the group to get membership information for. Group IDs are developer-
defined.

Type: Integer

Required: Yes

Return value

This method does not return anything.

Realtime Servers client API (C#) reference: Asynchronous callbacks

Use this C# Realtime Client API reference to help you prepare your multiplayer game for use with
Realtime Servers deployed on Amazon GameLift fleets. For details on the integration process, see
Prepare your Realtime server.

• Synchronous Actions

• Asynchronous Callbacks

• Data Types

A game client needs to implement these callback methods to respond to events. The Realtime
server invokes these callbacks to send game-related information to the game client. Callbacks for

Realtime client API (C#) reference 684

Amazon GameLift Developer Guide

the same events can also be implemented with custom game logic in the Realtime server script.
See Script callbacks for Realtime Servers.

Callback methods are defined in ClientEvents.cs.

OnOpen()

Invoked when the server process accepts the game client's connection request and opens a
connection.

Syntax

public void OnOpen()

Parameters

This method takes no parameters.

Return value

This method does not return anything.

OnClose()

Invoked when the server process terminates the connection with the game client, such as after a
game session ends.

Syntax

public void OnClose()

Parameters

This method takes no parameters.

Return value

This method does not return anything.

OnError()

Invoked when a failure occurs for a Realtime Client API request. This callback can be customized to
handle a variety of connection errors.

Realtime client API (C#) reference 685

Amazon GameLift Developer Guide

Syntax

private void OnError(byte[] args)

Parameters

This method takes no parameters.

Return value

This method does not return anything.

OnDataReceived()

Invoked when the game client receives a message from the Realtime server. This is the primary
method by which messages and notifications are received by a game client.

Syntax

public void OnDataReceived(DataReceivedEventArgs dataReceivedEventArgs)

Parameters

dataReceivedEventArgs

Information related to message activity.

Type: DataReceivedEventArgs

Required: Yes

Return value

This method does not return anything.

OnGroupMembershipUpdated()

Invoked when the membership for a group that the player belongs to has been updated. This
callback is also invoked when a client calls RequestGroupMembership.

Syntax

public void OnGroupMembershipUpdated(GroupMembershipEventArgs groupMembershipEventArgs)

Realtime client API (C#) reference 686

Amazon GameLift Developer Guide

Parameters

groupMembershipEventArgs

Information related to group membership activity.

Type: GroupMembershipEventArgs

Required: Yes

Return value

This method does not return anything.

Realtime Servers client API (C#) reference: Data types

This C# Realtime Client API reference can help you prepare your multiplayer game for use with
Realtime Servers deployed on Amazon GameLift fleets. For details on the integration process, see
Prepare your Realtime server.

• Synchronous Actions

• Asynchronous Callbacks

• Data Types

ClientConfiguration

Information about how the game client connects to a Realtime server.

Contents

ConnectionType

Type of client/server connection to use, either secured or unsecured. If you don't specify a
connection type, the default is unsecured.

Note

When connecting to a Realtime server on a secured fleet with a TLS certificate, you
must use the value RT_OVER_WSS_DTLS_TLS12.

Realtime client API (C#) reference 687

Amazon GameLift Developer Guide

Type: A ConnectionType enum value.

Required: No

ConnectionToken

Information about the game client and/or player that is requesting a connection with a Realtime
server.

Contents

playerSessionId

Unique ID issued by Amazon GameLift when a new player session is created. A player
session ID is specified in a PlayerSession object, which is returned in response to a
client call to the GameLift API actions StartGameSessionPlacement, CreateGameSession,
DescribeGameSessionPlacement, or DescribePlayerSessions.

Type: String

Required: Yes

payload

Developer-defined information to be communicated to the Realtime server on connection. This
includes any arbitrary data that might be used for a custom sign-in mechanism. For examples, a
payload may provide authentication information to be processed by the Realtime server script
before allowing a client to connect.

Type: byte array

Required: No

RTMessage

Content and delivery information for a message. A message must specify either a target player or a
target group.

Realtime client API (C#) reference 688

https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribePlayerSessions.html

Amazon GameLift Developer Guide

Contents

opCode

Developer-defined operation code that identifies a game event or action, such as a player move
or a server notification. A message's Op code provides context for the data payload that is being
provided. Messages that are created using NewMessage() already have the operation code set,
but it can be changed at any time.

Type: Integer

Required: Yes

targetPlayer

Unique ID identifying the player who is the intended recipient of the message being sent. The
target may be the server itself (using the server ID) or another player (using a player ID).

Type: Integer

Required: No

targetGroup

Unique ID identifying the group that is the intended recipient of the message being sent. Group
IDs are developer defined.

Type: Integer

Required: No

deliveryIntent

Indicates whether to send the message using the reliable TCP connection or using the fast UDP
channel. Messages created using NewMessage().

Type: DeliveryIntent enum

Valid values: FAST | RELIABLE

Required: Yes

payload

Message content. This information is structured as needed to be processed by the game
client based on the accompanying operation code. It may contain game state data or other

Realtime client API (C#) reference 689

Amazon GameLift Developer Guide

information that needs to be communicated between game clients or between a game client
and the Realtime server.

Type: Byte array

Required: No

DataReceivedEventArgs

Data provided with an OnDataReceived() callback.

Contents

sender

Unique ID identifying the entity (player ID or server ID) who originated the message.

Type: Integer

Required: Yes

opCode

Developer-defined operation code that identifies a game event or action, such as a player move
or a server notification. A message's Op code provides context for the data payload that is being
provided.

Type: Integer

Required: Yes

data

Message content. This information is structured as needed to be processed by the game
client based on the accompanying operation code. It may contain game state data or other
information that needs to be communicated between game clients or between a game client
and the Realtime server.

Type: Byte array

Required: No

Realtime client API (C#) reference 690

Amazon GameLift Developer Guide

GroupMembershipEventArgs

Data provided with an OnGroupMembershipUpdated() callback.

Contents

sender

Unique ID identifying the player who requested a group membership update.

Type: Integer

Required: Yes

opCode

Developer-defined operation code that identifies a game event or action.

Type: Integer

Required: Yes

groupId

Unique ID identifying the group that is the intended recipient of the message being sent. Group
IDs are developer defined.

Type: Integer

Required: Yes

playerId

List of player IDs who are current members of the specified group.

Type: Integer array

Required: Yes

Enums

Enums defined for the Realtime Client SDK are defined as follows:

Realtime client API (C#) reference 691

Amazon GameLift Developer Guide

ConnectionStatus

• CONNECTED – Game client is connected to the Realtime server with a TCP connection only.
All messages regardless of delivery intent are sent via TCP.

• CONNECTED_SEND_FAST – Game client is connected to the Realtime server with a TCP and
a UDP connection. However, the ability to receive messages via UDP is not yet verified; as a
result, all messages sent to the game client use TCP.

• CONNECTED_SEND_AND_RECEIVE_FAST – Game client is connected to the Realtime server
with a TCP and a UDP connection. The game client can send and receive messages using
either TCP or UDP.

• CONNECTING Game client has sent a connection request and the Realtime server is
processing it.

• DISCONNECTED_CLIENT_CALL – Game client was disconnected from the Realtime server in
response to a Disconnect()request from the game client.

• DISCONNECTED – Game client was disconnected from the Realtime server for a reason other
than a client disconnect call.

ConnectionType

• RT_OVER_WSS_DTLS_TLS12 – Secure connection type.

For use with Realtime servers that are running on a GameLift fleet with a TLS certificate
generated. When using a secure connection, TCP traffic is encrypted using TLS 1.2, and UDP
traffic is encrypted using DTLS 1.2.

• RT_OVER_WS_UDP_UNSECURED – Non-secure connection type.

• RT_OVER_WEBSOCKET – Non-secure connection type. This value is no longer preferred.

DeliveryIntent

• FAST – Delivered using a UDP channel.

• RELIABLE – Delivered using a TCP connection.

Amazon GameLift Realtime Servers script reference

Use these resources to build out custom logic in your Realtime scripts.

Topics

• Script callbacks for Realtime Servers

• Realtime Servers interface

Realtime Servers script reference 692

Amazon GameLift Developer Guide

Script callbacks for Realtime Servers

You can provide custom logic to respond to events by implementing these callbacks in your
Realtime script.

Init

Initializes the Realtime server and receives a Realtime server interface.

Syntax

init(rtsession)

onMessage

Invoked when a received message is sent to the server.

Syntax

onMessage(gameMessage)

onHealthCheck

Invoked to set the status of the game session health. By default, health status is healthy (or true.
This callback can be implemented to perform custom health checks and return a status.

Syntax

onHealthCheck()

onStartGameSession

Invoked when a new game session starts, with a game session object passed in.

Syntax

onStartGameSession(session)

onProcessTerminate

Invoked when the server process is being terminated by the Amazon GameLift service. This can act
as a trigger to exit cleanly from the game session. There is no need to call processEnding().

Realtime Servers script reference 693

Amazon GameLift Developer Guide

Syntax

onProcessTerminate()

onPlayerConnect

Invoked when a player requests a connection and has passed initial validation.

Syntax

onPlayerConnect(connectMessage)

onPlayerAccepted

Invoked when a player connection is accepted.

Syntax

onPlayerAccepted(player)

onPlayerDisconnect

Invoked when a player disconnects from the game session, either by sending a disconnect request
or by other means.

Syntax

onPlayerDisconnect(peerId)

onProcessStarted

Invoked when a server process is started. This callback allows the script to perform any custom
tasks needed to prepare to host a game session.

Syntax

onProcessStarted(args)

onSendToPlayer

Invoked when a message is received on the server from one player to be delivered to another
player. This process runs before the message is delivered.

Realtime Servers script reference 694

Amazon GameLift Developer Guide

Syntax

onSendToPlayer(gameMessage)

onSendToGroup

Invoked when a message is received on the server from one player to be delivered to a group. This
process runs before the message is delivered.

Syntax

onSendToGroup(gameMessage))

onPlayerJoinGroup

Invoked when a player sends a request to join a group.

Syntax

onPlayerJoinGroup(groupId, peerId)

onPlayerLeaveGroup

Invoked when a player sends a request to leave a group.

Syntax

onPlayerLeaveGroup(groupId, peerId)

Realtime Servers interface

When a Realtime script initializes, an interface to the Realtime server is returned. This topic
describes the properties and methods available through the interface. Learn more about writing
Realtime scripts and view a detailed script example in Creating a Realtime script.

The Realtime interface provides access to the following objects:

• session

• player

Realtime Servers script reference 695

Amazon GameLift Developer Guide

• gameMessage

• configuration

Realtime Session object

Use these methods to access server-related information and perform server-related actions.

getPlayers()

Retrieves a list of peer IDs for players that are currently connected to the game session. Returns an
array of player objects.

Syntax

rtSession.getPlayers()

broadcastGroupMembershipUpdate()

Triggers delivery of an updated group membership list to player group. Specify which membership
to broadcast (groupIdToBroadcast) and the group to receive the update (targetGroupId). Group IDs
must be a positive integer or "-1" to indicate all groups. See Realtime Servers script example for an
example of user-defined group IDs.

Syntax

rtSession.broadcastGroupMembershipUpdate(groupIdToBroadcast, targetGroupId)

getServerId()

Retrieves the server's unique peer ID identifier, which is used to route messages to the server.

Syntax

rtSession.getServerId()

getAllPlayersGroupId()

Retrieves the group ID for the default group that contains all players currently connected to the
game session.

Realtime Servers script reference 696

Amazon GameLift Developer Guide

Syntax

rtSession.getAllPlayersGroupId()

processEnding()

Triggers the Realtime server to terminate the game server. This function must be called from the
Realtime script to exit cleanly from a game session.

Syntax

rtSession.processEnding()

getGameSessionId()

Retrieves the unique ID of the game session currently running.

Syntax

rtSession.getGameSessionId()

getLogger()

Retrieves the interface for logging. Use this to log statements that will be captured in your game
session logs. The logger supports use of "info", "warn", and "error" statements. For example:
logger.info("<string>").

Syntax

rtSession.getLogger()

sendMessage()

Sends a message, created using newTextGameMessage or newBinaryGameMessage, from
the Realtime server to a player recipient using the UDP channel. Identify the recipient using the
player's peer ID.

Syntax

rtSession.sendMessage(gameMessage, targetPlayer)

Realtime Servers script reference 697

Amazon GameLift Developer Guide

sendGroupMessage()

Sends a message, created using newTextGameMessage or newBinaryGameMessage, from
the Realtime server to all players in a player group using the UDP channel. Group IDs must be a
positive integer or "-1" to indicate all groups. See Realtime Servers script example for an example
of user-defined group IDs.

Syntax

rtSession.sendGroupMessage(gameMessage, targetGroup)

sendReliableMessage()

Sends a message, created using newTextGameMessage or newBinaryGameMessage, from the
Realtime server to a player recipient using the TCP channel. Identify the recipient using the player's
peer ID.

Syntax

rtSession.sendReliableMessage(gameMessage, targetPlayer)

sendReliableGroupMessage()

Sends a message, created using newTextGameMessage or newBinaryGameMessage, from the
Realtime server to all players in a player group using the TCP channel. Group IDs which must be a
positive integer or "-1" to indicate all groups. See Realtime Servers script example for an example
of user-defined group IDs.

Syntax

rtSession.sendReliableGroupMessage(gameMessage, targetGroup)

newTextGameMessage()

Creates a new message containing text, to be sent from the server to player recipients using the
SendMessage functions. Message format is similar to the format used in the Realtime Client SDK
(see RTMessage). Returns a gameMessage object.

Syntax

rtSession.newTextGameMessage(opcode, sender, payload)

Realtime Servers script reference 698

Amazon GameLift Developer Guide

newBinaryGameMessage()

Creates a new message containing binary data, to be sent from the server to player recipients using
the SendMessage functions. Message format is similar to the format used in the Realtime Client
SDK (see RTMessage). Returns a gameMessage object.

Syntax

rtSession.newBinaryGameMessage(opcode, sender, binaryPayload)

Player object

Access player-related information.

player.peerId

Unique ID that is assigned to a game client when it connects to the Realtime server and joined the
game session.

player.playerSessionId

Player session ID that was referenced by the game client when it connected to the Realtime server
and joined the game session.

Game message object

Use these methods to access messages that are received by the Realtime server. Messages received
from game clients have the RTMessage structure.

getPayloadAsText()

Gets the game message payload as text.

Syntax

gameMessage.getPayloadAsText()

gameMessage.opcode

Operation code contained in a message.

Realtime Servers script reference 699

Amazon GameLift Developer Guide

gameMessage.payload

Payload contained in a message. May be text or binary.

gameMessage.sender

Peer ID of the game client that sent a message.

gameMessage.reliable

Boolean indicating whether the message was sent via TCP (true) or UDP (false).

Configuration object

The configuration object can be used to override default configurations.

configuration.maxPlayers

The maximum number of client / server connections that can be accepted by RealTimeServers.

The default is 32.

configuration.pingIntervalTime

Time interval in milliseconds that server will attempt to send a ping to all connected clients to
verify connections are healthy.

The default is 3000ms.

Realtime Servers script reference 700

Amazon GameLift Developer Guide

Generating Amazon GameLift pricing estimates

With AWS Pricing Calculator, you can create a pricing estimate for Amazon GameLift. You don't
need an AWS account or in-depth knowledge of AWS to use the calculator.

AWS Pricing Calculator calculator guides you through the decisions that affect service costs to give
you an idea of how much Amazon GameLift might cost for your game project. If you're not yet
sure how you plan to use Amazon GameLift, then use the default values to generate an estimate.
When planning for production usage, the calculator can help you test out potential scenarios and
generate more accurate estimates.

You can use AWS Pricing Calculator to generate estimates for the following Amazon GameLift
hosting options:

• Estimate Amazon GameLift hosting

• Estimate Amazon GameLift standalone FlexMatch

Estimate Amazon GameLift hosting

This option provides a cost estimate for hosting your games on Amazon GameLift managed
servers, including the costs for server instance usage and data transfer. FlexMatch matchmaking is
included in the cost for Amazon GameLift managed hosting.

If you are hosting or plan to host game servers in more than one AWS Region or on more than one
instance type, create an estimate for each Region and instance type.

Amazon GameLift instances

This section helps you estimate the type and number of compute resources that you need to host
game sessions for your players. Amazon GameLift uses Amazon Elastic Compute Cloud (Amazon
EC2) instances to manage game servers. In Amazon GameLift, you deploy a fleet of instances with
a specific instance type and operating system. If you have or plan to have multiple fleets, create an
estimate for each fleet.

To get started, open the Configure Amazon GameLift page of AWS Pricing Calculator. Add a
Description, choose a Region, and then choose Estimate Amazon GameLift hosting (Instance +
Data Transfer Out). Under Amazon GameLift instances, complete the following fields:

Estimate Amazon GameLift hosting 701

https://calculator.aws/#/createCalculator/GameLift
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://calculator.aws/#/createCalculator/GameLift

Amazon GameLift Developer Guide

• Peak concurrent players (peak CCU)

This is the maximum number of players who can connect to your game servers at the same time.
This field indicates how much hosting capacity Amazon GameLift needs to meet peak player
demand. Enter the daily peak number of players that you expect to host using instances in your
chosen AWS Region.

For example, if you want to let 1,000 players connect to your game at any one time, keep the
default value of 1000.

• Average CCU per hour as a percentage of peak daily CCU

This is the average number of concurrent players per hour over a 24-hour period. We use this
value to estimate the amount of sustained hosting capacity that Amazon GameLift needs to
maintain for your players. If you're not sure what percentage value to use, keep the default value
of 50 percent. For games with stable player demand, we recommend entering a value of 70
percent.

For example, if your game has an average hourly CCU of 6,000 and a peak CCU of 10,000, then
enter the value of 60 percent.

• Game sessions per instance

This is the number of game sessions that each of your game server instances can host
concurrently. Factors that can affect this number include the resource requirements of your
game server, the number of players to host in each game session, and player performance
expectations. If you know the number of concurrent game sessions for your game, then enter
that value. Alternatively, keep the default value of 20.

• Players per game session

This is the average number of players who connect to a game session, as defined in your game
design. If you have game modes with different number of players, estimate an average number
of players per game session across your entire game. The default value is 8.

• Instance idle buffer %

This is the percentage of unused hosting capacity to maintain in reserve to handle sudden spikes
in player demand. Buffer size is a percentage of the total number of instances in a fleet. The
default value is 10 percent.

Amazon GameLift instances 702

Amazon GameLift Developer Guide

For example, with a 20 percent idle buffer, a fleet supporting players with 100 active instances
maintains 20 idle instances.

• Spot instance %

Amazon GameLift fleets can use a combination of On-Demand Instances and Spot Instances.
While On-Demand Instances offer more reliable availability, Spot Instances offer a highly cost-
efficient alternative. We recommend using a combination to optimize both cost savings and
availability. For information about how Amazon GameLift uses Spot Instances, see On-Demand
Instances versus Spot Instances.

For this field, enter the percentage of Spot Instances to maintain in a fleet. We recommend a
Spot Instance percentage between 50 and 85 percent. The default value is 50 percent.

For example, if you deploy a fleet with 100 instances and specify 40 percent, Amazon GameLift
works to maintain 60 On-Demand Instances and 40 Spot Instances.

• Instance type

Amazon GameLift fleets can use a range of Amazon EC2 instance types that vary in computing
power, memory, storage, and networking capabilities. When you configure a Amazon GameLift
fleet, choose an instance type that best fits your game's needs. For information about selecting
an instance type with Amazon GameLift, see Choosing Amazon GameLift compute resources.

If you know the instance type that you're using or plan to use in your Amazon GameLift fleet,
choose that type. If you're not sure what type to choose, consider choosing c5.large. This is a
high-availability type with average size and capabilities.

• Operating system

This field specifies the operating system that your game servers run on—either Linux or
Windows. The default value is Linux.

Data transfer out (DTO)

This section helps you estimate the cost for traffic between your game clients and the game
servers. Data transfer fees apply to outbound traffic only. Inbound data transfer has no cost.

On the Configure Amazon GameLift page of AWS Pricing Calculator, expand Data transfer out
(DTO), and then complete the following fields:

Data transfer out (DTO) 703

https://calculator.aws/#/createCalculator/GameLift

Amazon GameLift Developer Guide

• DTO estimate type

You can choose to estimate DTO in either of the following two ways, depending on how you
track data transfer for your game.

• Per month (in GB) – If you track monthly traffic for your game servers, choose this type.

• Per player – If you track data transfer by player, choose this type. This is the default type.

In the following field, you estimate per-player DTO based on the number of player hours that
you calculated in the previous section.

• DTO per month (in GB)

If you chose the Per month (in GB) DTO estimate type, then enter your estimated monthly DTO
usage in GB from each instance, per Region.

• DTO per player

If you chose the Per player DTO estimate type, then enter your game's estimated DTO usage per
player in KB/sec. The default value is 4.

When you're done configuring your Amazon GameLift pricing estimate, choose Add to my
estimate. For more information about creating and managing estimates in AWS Pricing Calculator,
see Create an estimate, configure a service, and add more services in the AWS Pricing Calculator
User Guide.

Estimate Amazon GameLift standalone FlexMatch

This option provides a cost estimate for using FlexMatch matchmaking as a standalone service
while hosting your games with another game server solution. This includes Amazon GameLift self-
managed hosting with FleetIQ and on-premises hosting, peer-to-peer, or cloud compute primitive
data types. Standalone FlexMatch costs are based on the computing power used.

If you have or plan to have more than one matchmaker in different AWS Regions, create an
estimate for each Region.

Estimate Amazon GameLift standalone FlexMatch 704

https://docs.aws.amazon.com/pricing-calculator/latest/userguide/create-estimate.html

Amazon GameLift Developer Guide

Note

Amazon GameLift FlexMatch is available in the following Regions: US East (N.Virginia),
US West (Oregon), Asia Pacific (Seoul), Asia Pacific (Sydney), Asia Pacific (Tokyo), Europe
(Frankfurt), Europe (Ireland).

To get started, open the Configure Amazon GameLift page of AWS Pricing Calculator. Add
a Description, choose a Region, and then choose Estimate Amazon GameLift Standalone
FlexMatch. Under Amazon GameLift FlexMatch, complete the following fields:

• Peak concurrent players (peak CCU)

This is the maximum number of players who can connect to your game servers at the same time
and request matchmaking. Enter the daily peak number of players that you expect to match into
game sessions in your chosen Region.

For example, if you want to match as many as 1,000 players at a time, keep the default value of
1000.

• Average CCU per hour as a percentage of peak daily CCU

This is the average number of concurrent players per hour over a 24-hour period. This value
helps estimate the volume of your matchmaking requests. If you're not sure what percentage
value to use, keep the default value of 50 percent. For games with stable player demand, we
recommend entering a value of 70 percent.

For example, if your game has an average hourly CCU of 6,000 and a peak CCU of 10,000, then
enter the value of 60 percent.

• Number of players per match

This is the average number of players who match to a game session, as defined in your game
design. If you have game modes with different numbers of players, estimate an average number
of players per game session across your entire game. The default value is 8.

• Game duration (in minutes)

This is the average length of time that players remain in a game session from start to finish. This
value helps determine how often players might require a new match. Enter an average game
duration in minutes for your players. The default value is 1.

Estimate Amazon GameLift standalone FlexMatch 705

https://calculator.aws/#/createCalculator/GameLift

Amazon GameLift Developer Guide

• Matchmaking rule complexity

Matchmaking rule complexity refers to the number and type of rules that you use to match
players. The level of complexity of your rule set helps determine the amount of computing
power required for each match.

• Lower complexity – Choose this option if your matchmaking rule set includes few rules, uses
simpler rule types (such as comparison rules), and has rules that form successful matches with
fewer attempts.

• Higher complexity – Choose this option if your matchmaking rule set includes multiple rules,
uses more complex rule types (such as distance or latency rules), and has restrictive rules that
result in more failures and require more matching attempts.

For more information about rule complexity and pricing, see Amazon GameLift FlexMatch on the
Amazon GameLift Pricing page.

When you're done configuring your Amazon GameLift FlexMatch pricing estimate, choose Add
to my estimate. For more information about creating and managing estimates in AWS Pricing
Calculator, see Create an estimate, configure a service, and add more services in the AWS Pricing
Calculator User Guide.

Estimate Amazon GameLift standalone FlexMatch 706

https://aws.amazon.com/gamelift/pricing/#Amazon_GameLift_FlexMatch
https://docs.aws.amazon.com/pricing-calculator/latest/userguide/create-estimate.html

Amazon GameLift Developer Guide

Quotas and supported Regions

For AWS Amazon GameLift service quotas, see Amazon GameLift quotas.

For information about requesting quota increases for AWS resources, see AWS service lquotas.

For a list of the AWS Regions supporting Amazon GameLift, see Amazon GameLift Regions.

707

https://docs.aws.amazon.com/general/latest/gr/gamelift.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/gamelift.html

Amazon GameLift Developer Guide

Amazon GameLift release notes

The Amazon GameLift release notes provide details about new features, updates, and fixes related
to the service.

SDK versions

The following tables list all Amazon GameLift releases with SDK version information. There is no
requirement to use comparable SDKs for your game server and client integrations. However, earlier
versions of one SDK may not fully support the latest features in another.

For more information about Amazon GameLift SDKs, see Development support with Amazon
GameLift.

To get the latest Amazon GameLift SDKs, see the Amazon GameLift SDKs download site.

Current version

Service
release
AWS
SDK
Server
SDK

Realtime
client
SDK

 C#C#
plugin
for
Unity

C
+
+

C
+
+
plugin
for
Unreal

Go

2024-02-1
3
1.11.225
or
later

5.1.25.1.25.1.25.1.15.1.01.2.0

SDK versions 708

https://aws.amazon.com/gamelift/getting-started/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.11.225

Amazon GameLift Developer Guide

Previous versions

Service
release

AWS SDK Server SDK Realtime
client
SDK

 C#C# plugin
for Unity

C++ C++ plugin
for Unreal

Go

2023-12-14 1.11.225 or
later

5.1.15.1.0 5.1.1 5.1.0 5.0.0 1.2.0

2023-11-02 1.11.193 or
later

5.1.15.1.0 5.1.1 5.1.0 5.0.0 1.2.0

2023-09-28 1.11.144 or
later

5.1.15.1.0 5.1.1 5.1.0 5.0.0 1.2.0

2023-08-17 1.11.144 or
later

5.1.15.1.0 5.1.1 5.1.0 5.0.0 1.2.0

2023-07-27 1.11.111 or
later

5.1.0
(.NET
4
&
6
now
combined)

5.1.0 5.1.0 5.0.2 5.0.0 1.2.0

2023-06-29 1.11.111 or
later

5.0.0 .NET
4, .NET
6

 5.0.4 5.0.2 5.0.0 1.2.0

2023-06-15 1.11.87 or
later

5.0.0 .NET
4, .NET
6

 5.0.4 5.0.2 5.0.0 1.2.0

SDK versions 709

https://github.com/aws/aws-sdk-cpp/releases/tag/1.11.225
https://github.com/aws/aws-sdk-cpp/releases/tag/1.11.193
https://github.com/aws/aws-sdk-cpp/releases/tag/1.11.144
https://github.com/aws/aws-sdk-cpp/releases/tag/1.11.144
https://github.com/aws/aws-sdk-cpp/releases/tag/1.11.111
https://github.com/aws/aws-sdk-cpp/releases/tag/1.11.111
https://github.com/aws/aws-sdk-cpp/releases/tag/1.11.87

Amazon GameLift Developer Guide

Service
release

AWS SDK Server SDK Realtime
client
SDK

 C#C# plugin
for Unity

C++ C++ plugin
for Unreal

Go

2023-05-25 1.11.87 or
later

5.0.0 .NET
4, .NET
6

 5.0.3 5.0.2 5.0.0 1.2.0

2023-04-20 1.11.63 or
later

5.0.0 .NET
4, .NET
6

 5.0.3 5.0.2 5.0.0 1.2.0

2023-04-13 1.10.21 or
later

5.0.0 .NET
4, .NET
6

 5.0.0 5.0.0 5.0.0 1.2.0

2023-02-09 1.10.21 or
later

5.0.0 .NET
4, .NET
6

 5.0.0 3.4.0 5.0.0 1.2.0

2023-01-31 1.10.21 or
later

 5.0.0 5.0.0 3.4.0 5.0.0 1.2.0

2022-12-01 1.10.21 or
later

5.0.0 5.0.0 3.4.0 1.2.0

2022-08-25 1.9.333 or
later

4.0.2 3.4.2 3.4.0 1.2.0

2021-10-28 1.9.133 or
later

4.0.2 3.4.2 3.4.0 1.2.0

2021-06-03 1.8.168 or
later

4.0.2 3.4.2 3.4.0 1.2.0

SDK versions 710

https://github.com/aws/aws-sdk-cpp/releases/tag/1.11.87
https://github.com/aws/aws-sdk-cpp/releases/tag/1.11.63
https://github.com/aws/aws-sdk-cpp/releases/tag/1.10.21
https://github.com/aws/aws-sdk-cpp/releases/tag/1.10.21
https://github.com/aws/aws-sdk-cpp/releases/tag/1.10.21
https://github.com/aws/aws-sdk-cpp/releases/tag/1.10.21
https://github.com/aws/aws-sdk-cpp/releases/tag/1.9.333
https://github.com/aws/aws-sdk-cpp/releases/tag/1.9.133
https://github.com/aws/aws-sdk-cpp/releases/tag/1.8.168

Amazon GameLift Developer Guide

Service
release

AWS SDK Server SDK Realtime
client
SDK

 C#C# plugin
for Unity

C++ C++ plugin
for Unreal

Go

2021-03-23 1.8.168 or
later

4.0.2 3.4.1 3.3.3 1.1.0

2021-03-16 1.8.163 or
later

4.0.2 3.4.1 3.3.3 1.1.0

2021-02-09 1.8.139 or
later

4.0.2 3.4.1 3.3.3 1.1.0

2020-12-22 1.8.95 or
later

4.0.2 3.4.1 3.3.3 1.1.0

2020-11-24 1.8.95 or
later

4.0.2 3.4.1 3.3.2 1.1.0

2020-11-11 1.8.36 or
later

4.0.2 3.4.1 3.3.2 1.1.0

2020-09-17 1.8.36 or
later

4.0.1 3.4.1 3.3.2 1.1.0

2020-08-27 1.7.310 or
later

4.0.0 3.4.0 3.3.1 1.1.0

2020-04-16 1.7.310 or
later

4.0.0 3.4.0 3.3.1 1.1.0

2020-04-02 1.7.310 or
later

3.4.0 3.4.0 1.1.0

2019-12-19 1.7.249 or
later

3.4.0 3.4.0 1.1.0

SDK versions 711

https://github.com/aws/aws-sdk-cpp/releases/tag/1.8.168
https://github.com/aws/aws-sdk-cpp/releases/tag/1.8.163
https://github.com/aws/aws-sdk-cpp/releases/tag/1.8.139
https://github.com/aws/aws-sdk-cpp/releases/tag/1.8.95
https://github.com/aws/aws-sdk-cpp/releases/tag/1.8.95
https://github.com/aws/aws-sdk-cpp/releases/tag/1.8.36
https://github.com/aws/aws-sdk-cpp/releases/tag/1.8.36
https://github.com/aws/aws-sdk-cpp/releases/tag/1.7.310
https://github.com/aws/aws-sdk-cpp/releases/tag/1.7.310
https://github.com/aws/aws-sdk-cpp/releases/tag/1.7.310
https://github.com/aws/aws-sdk-cpp/releases/tag/1.7.249

Amazon GameLift Developer Guide

Service
release

AWS SDK Server SDK Realtime
client
SDK

 C#C# plugin
for Unity

C++ C++ plugin
for Unreal

Go

2019-11-14 1.7.210 or
later

3.4.0 3.4.0 1.1.0

2019-10-24 1.7.210 or
later

3.4.0 3.4.0 1.1.0

2019-09-03 1.7.175 or
later

3.4.0 3.4.0 1.1.0

2019-07-09 1.7.140 or
later

3.3.0 3.3.0 1.0.0

2019-04-25 1.7.91 or
later

3.3.0 3.3.0 1.0.0

2019-03-07 1.7.65 or
later

3.3.0 3.3.0

2019-02-07 1.7.45 or
later

3.3.0 3.3.0

2018-12-14 1.6.20 or
later

3.3.0 3.3.0

2018-09-27 1.6.20 or
later

3.2.1 3.2.1

2018-06-14 1.4.47 or
later

3.2.1 3.2.1

2018-05-10 1.4.47 or
later

3.2.1 3.2.1

SDK versions 712

https://github.com/aws/aws-sdk-cpp/releases/tag/1.7.210
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2019-10-24/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.7.210
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2019-09-03/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.7.175
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2019-07-09/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.7.140
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2019-04-25/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.7.91
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2019-03-07/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.7.65
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2019-02-07/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.7.45
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2018-12-14/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.6.20
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2018-09-27/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.6.20
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2018-06-14/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.4.47
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2018-05-10/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.4.47

Amazon GameLift Developer Guide

Service
release

AWS SDK Server SDK Realtime
client
SDK

 C#C# plugin
for Unity

C++ C++ plugin
for Unreal

Go

2018-02-15 1.3.58 or
later

3.2.1 3.2.1

2018-02-08 1.3.52 or
later

3.2.0 3.2.0

2017-09-01 1.1.43 or
later

3.1.7 3.1.7

2017-08-16 1.1.31 or
later

3.1.7 3.1.7

2017-05-16 1.0.122 or
later

3.1.5 3.1.5

2017-04-11 1.0.103 or
later

3.1.5 3.1.5

2017-02-21 1.0.72 or
later

3.1.5 3.1.5

2016-11-18 1.0.31 or
later

 3.1.0

2016-10-13 1.0.17 or
later

 3.1.0

2016-09-01 0.14.9 or
later

 3.1.0

2016-08-04 0.12.16 or
later

 3.0.7

SDK versions 713

https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2018-02-15/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.3.58
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2018-02-08/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.3.52
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2017-08-31/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.1.43
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2017-08-16/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.1.31
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2017-05-16/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.0.122
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2017-04-11/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.0.103
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2017-02-21/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.0.72
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2016-11-18/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.0.31
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2016-10-13/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.0.17
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2016-09-01/
https://github.com/aws/aws-sdk-cpp/releases/tag/0.14.9
https://aws.amazon.com/releasenotes/release-amazon-gamelift-on-2016-08-04/
https://github.com/aws/aws-sdk-cpp/releases/tag/0.12.16

Amazon GameLift Developer Guide

Release notes

The following release notes are in chronological order, with the latest updates listed first. Amazon
GameLift was first released in 2016. For release notes dated earlier than those listed here, see the
release date links in SDK versions.

April 24, 2024: Amazon GameLift launches container fleets

Amazon GameLift is now offering a preview of container fleets, which give you improved
portability, scalability, fault tolerance, and agility.

In container fleets, Amazon EC2 instances host one or more of your containers. These containers
include your game server along with whatever it requires, including dependencies and
configurations. Examples of dependencies include SDKs and software packages. After you upload
your container to your private Amazon Elastic Container Registry, Amazon GameLift populates your
fleet with the container.

To function in a container fleet, your game server must run in Linux and be integrated with Server
SDK 5.x. In a container fleet, you have fine-tuned control of hosting resources so that you can
optimize consumption of resources such as CPU units and memory. You can also host multiple
game servers in a container to reduce the use of resources.

In a container fleet you get many of the same benefits that other types of fleets have such as On-
Demand instance types, scaling (automatic and manual), queues, and matchmaking. You also get
the same metrics as other fleet types along with some new ones for containers. Container fleets
give you global reach to players in these locations regions:

• ap-northeast-1

• ap-northeast-2

• ap-southeast-2

• eu-central-1

• eu-west-1

• us-east-1

• us-west-2

To reach even more regions and local zones, create multi-location containers fleets.

Release notes 714

Amazon GameLift Developer Guide

Learn more:

• Managing hosting with Amazon GameLift containers, Amazon GameLift Developer Guide

• CreateContainerGroupDefinition, Amazon GameLift API Reference

February 13, 2024: Amazon GameLift launches improvements to SDKs, and
simplifies installation of the Amazon GameLift plugin for Unreal Engine

Updated SDK versions:

• Go Server SDK, version 5.1.0

• C# Server SDK, version 5.1.2

• C++ Server SDK, version 5.1.2

We made the following improvements:

• Improved the reliability of the SDK by adding automatic reconnection in the event of network
interruption.

• [Go] You can now call InitSDK() with or without server parameters. Game servers that run on
Amazon GameLift managed EC2 fleets read the server parameters directly from environment
variables. Game servers on Amazon GameLift Anywhere fleets must call InitSDK() with server
parameters.

Updated plugin versions:

• Amazon GameLift plugin for Unreal Engine, version 1.1.0

• Amazon GameLift plugin for Unity, version 2.1.0

• C++ Server SDK Plugin for Unreal, version 5.1.1

• C# Server SDK Plugin for Unity, version 5.1.2

We made the following improvements:

• [Amazon GameLift plugin for Unreal Engine] Updated the installation instructions and simplified
the packaging. This plugin now includes the latest version of the C++ Server SDK for Unreal.

• Upgraded the plugins to support the latest version of the GameLift Server SDK.

Release notes 715

https://docs.aws.amazon.com/gamelift/latest/developerguide/containers-intro.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateContainerGroupDefinition.html

Amazon GameLift Developer Guide

Learn more:

• Integrating games with the Amazon GameLift plugin for Unreal Engine, Amazon GameLift
Developer Guide

• Amazon GameLift plugin and SDK downloads

December 14, 2023: Amazon GameLift adds ability to update the game properties
of active game sessions

You've already been able to set game properties when creating game sessions, and to search game
sessions for specified properties. Now you can also add and update these properties in an active
game session.

For example, your players vote on a map that they want to play on. Your game client
calls UpdateGameSession to modify a GameProperty value to {"Key": "map",
"Value":"jungle"}. Your game then implements the new map for the players in the game
session.

Game administrators can also retrieve useful data from game properties by using the
SearchGameSessions operation. For example, administrators can list game sessions that have a
Status value of ACTIVE and this game property: {"Key": "map", "Value":"desert"}.

Learn more:

• the section called “Add Amazon GameLift to a game client”, Amazon GameLift Developer Guide

• GameProperty, Amazon GameLift API Reference

• UpdateGameSession, Amazon GameLift API Reference

• SearchGameSessions, Amazon GameLift API Reference

November 21, 2023: Amazon GameLift launches support for Infrastructure as
Code tools like Terraform and Pulumi powered by AWS Cloud Control API

You can now manage your entire Amazon GameLift resource stack using Infrastructure as
Code (IaC) tools. These tools include AWS CloudFormation, and also third-party tools such as
Terraform and Pulumi. With this added support, you can now focus on building your game, and
leverage DevOps strategies to take care of resource management, CI/CD, and deployment to your
customers.

Release notes 716

https://docs.aws.amazon.com/gamelift/latest/developerguide/unreal-plugin.html
https://aws.amazon.com/gamelift/getting-started/#Amazon_GameLift_Plugins_for_Game_Engines
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameProperty.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_SearchGameSessions.html

Amazon GameLift Developer Guide

You can also now provision and configure all Amazon GameLift resources types by using the AWS
Cloud Control API. You can continue to work with resources using the Amazon GameLift APIs or the
AWS CloudFormation templates for Amazon GameLift.

For details about the Amazon GameLift resources available through IaC, see the Amazon GameLift
resource type reference Amazon GameLift resource type reference.

In addition, you can now automatically scale your fleets using AWS CloudFormation templates or
the AWS Cloud Control API by using the new Fleet property: ScalingPolicies.

The Cloud Control API gives developers a standard set of APIs to create, read, update, delete,
and list resources (CRUDL) across hundreds of AWS services and multiple third-party tools like
Terraform and Pulumi.

Learn more:

• AWS CloudFormation

• AWS Cloud Control API

• AWS CC Terraform Provider

• Pulumi

November 16, 2023: Amazon GameLift updates standalone plugin for Unity

Updated SDK versions: Amazon GameLift plugin for Unity, version 2.0.0

The Amazon GameLift plugin for Unity provides tools and workflows that streamline the steps
to getting your Unity game up and running for cloud hosting with Amazon GameLift. Amazon
GameLift is a fully managed service that lets game developers manage and scale dedicated game
servers for session-based multiplayer games.

With this version, the plugin for Unity is updated to use the latest Amazon GameLift features,
including server SDK version 5.x and support for local testing with Amazon GameLift Anywhere.
The plugin is compatible with Unity versions Unity 2021.3 LTS and 2022.3 LTS.

Key plugin features include:

• Guided UI workflows in the Unity editor for the following scenarios:

• Test your game integration with Amazon GameLift using your local workstation as a host. This
workflow helps you set up an Amazon GameLift Anywhere fleet for your local machine, launch

Release notes 717

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_GameLift.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_GameLift.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-gamelift-fleet.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html
https://registry.terraform.io/providers/hashicorp/awscc/latest
https://www.pulumi.com/

Amazon GameLift Developer Guide

instances of your game server and client, request a game session through Amazon GameLift,
and join the game.

• Deploy cloud hosting solution for your integrated game server with Amazon GameLift
managed EC2 and supporting AWS resources. This workflow helps you configure your game for
cloud hosting, and provides three deployment scenarios:

• Deploy the game server to a single fleet.

• Deploy the game server to a set of low-cost Spot fleets in multiple AWS Regions.

• Deploy the game server with a FlexMatch matchmaker.

• Ability to set up user profiles that link to an AWS account user and set a default AWS Region. You
can maintain multiple profiles to work in different AWS accounts, account users, and regions.

• Special conveniences that help streamline the Amazon GameLift integration and deployment
processes, including:

• Each hosting solution includes supporting AWS resources, including an Amazon Cognito user
pool that provides unique player IDs and player validation. The solutions also include an
Amazon S3 bucket for storage, Amazon SNS event notification, AWS Lambda functions, and
other resources.

• For the Anywhere workflow, the plugin automates the required server parameter settings.

• For the Amazon EC2 workflow, each deployment solution provides a built-in client backend
service using Lambda functions. The backend service sits between the game client and the
Amazon GameLift service and manages all direct calls to the Amazon GameLift service.

• Content for integration testing, including assets and code for a simple sample multiplayer game
to illustrate game server and game client integration.

• Plugin documentation with detailed integration guidance and sample code.

All deployment scenarios, including for Anywhere and Amazon EC2 fleets, use AWS
CloudFormation templates to describe and deploy the AWS resources for your game's solution.
These templates are included in the Amazon GameLift plugin download. You can use them as is or
customize them for your game.

Learn more:

• Amazon GameLift plugin for Unity guide for server SDK 5.x, Amazon GameLift Developer Guide

• Download the plugin from GitHub

• About Amazon GameLift hosting

Release notes 718

https://github.com/aws/amazon-gamelift-plugin-unity
https://aws.amazon.com/gamelift/

Amazon GameLift Developer Guide

• Amazon GameLift forum

November 2, 2023: Amazon GameLift adds support for shared credentials

Updated SDK versions: AWS SDK 1.11.193

The new Amazon GameLift shared credentials feature allows applications that are deployed
on managed EC2 fleets to interact with other AWS resources. This update affects applications
that you bundle and deploy along with game server binaries integrated with server SDK version
5.x or later. (Game server executables can already request credentials using the server SDK 5.x
GetFleetRoleCredentials() action.)

For example, if you want to deploy your game server build with an Amazon CloudWatch agent
to collect EC2 instance metrics and other data, the agent needs permission to interact with your
CloudWatch resources. To do this, you must first set up an AWS Identity and Access Management
IAM) role with permissions to use the CloudWatch resources, and then configure a fleet with the
IAM role and shared credentials enabled. When Amazon GameLift deploys your game server
build to each EC2 instance, it generates a shared credentials file and stores it on the instance.
All applications on the instance can use the shared credentials. Amazon GameLift automatically
refreshes the temporary credentials throughout the life of the instance.

You can enable shared credentials when you create a managed EC2 fleet using the following
methods:

• In the Amazon GameLift console fleet creation workflow.

• When calling the Amazon GameLift service API operation CreateFleet using the new
parameter InstanceRoleCredentialsProvider.

• When calling the AWS CLI operation aws gamelift create-fleet with the parameter
instance-role-credentials-provider.

Learn more:

• Communicate with other AWS resources from your fleets, Amazon GameLift Developer Guide

• CreateFleet, InstanceRoleCredentialsProvider, Amazon GameLift API Reference

• Set up an IAM service role, Amazon GameLift Developer Guide

Release notes 719

https://forums.awsgametech.com/c/amazon-gamelift/
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-resources.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateFleet.html#gamelift-CreateFleet-request-InstanceRoleCredentialsProvider
https://docs.aws.amazon.com/gamelift/latest/developerguide/setting-up-role.html

Amazon GameLift Developer Guide

September 28, 2023: Amazon GameLift releases new standalone plugin for Unreal
Engine

Updated SDK versions: Amazon GameLift plugin for Unreal Engine version 1.0.0

The Amazon GameLift plugin for Unreal Engine provides tools and workflows that streamline
your steps to getting a game up and running with Amazon GameLift for cloud hosting. Amazon
GameLift is a fully managed service that lets game developers manage and scale dedicated game
servers for session-based multiplayer games. The plugin supports UE versions 5.0, 5.1, and 5.2. Key
features include:

• Guided UI workflows in the Unreal editor]step through the following paths:

• Test your game integration with Amazon GameLift using your local workstation as a host. This
workflow helps you set up an Amazon GameLift Anywhere fleet for your local machine, launch
instances of your game server and client, request a game session through Amazon GameLift,
and get connection information for the new game session.

• Deploy an Amazon EC2 cloud hosting solution for your integrated game server. This workflow
helps you configure your game for cloud hosting, and provides three different deployment
scenarios: deploy to a single fleet, deploy to a set of spot fleets in multiple regions, or deploy
to a set of fleets with a FlexMatch matchmaker. The solution for each deployment scenario
includes Amazon GameLift resources and supporting AWS resources.

• Ability to set up user profiles that link to an AWS account user and define a default AWS Region.
You can maintain multiple profiles to work in different AWS accounts, account users, and regions.

• Special conveniences that help streamline the Amazon GameLift integration and deployment
processes, including:

• Each hosting solution includes supporting AWS resources, including a basic Amazon Cognito
user pool that provides unique player IDs, an Amazon S3 bucket for storage, Amazon SNS
event notification, and AWS Lambda functions.

• For the Anywhere workflow, the plugin automates the required server parameter settings
using command line arguments.

• For the Amazon EC2 workflow, each deployment solution provides a built-in client backend
service using Lambda functions. The backend service receives requests from game clients and
passes them on to the Amazon GameLift service.

• Content for integration testing, including a starter game map and two testing maps with basic
blueprints and UI elements.

• Plugin documentation with detailed integration guidance and sample code.

Release notes 720

Amazon GameLift Developer Guide

All deployment scenarios, including for Anywhere and Amazon EC2 fleets, use AWS
CloudFormation templates to describe the solutions. The plugin uses these templates when
deploying Amazon GameLift resources for your game. These templates are included in the Amazon
GameLift plugin download and are editable. You can use them as is or modify them for your game.

Learn more:

• Integrating games with the Amazon GameLift plugin for Unreal Engine, Amazon GameLift
Developer Guide

• Download the plugin from GitHub

• About Amazon GameLift hosting

• Amazon GameLift forum

August 17, 2023: Amazon GameLift offers game server hosting with AWS Graviton
processors

Updated SDK versions: AWS SDK 1.11.144

With Amazon GameLift you can now host your games in the cloud using EC2 instances with AWS
Graviton processors. Designed by AWS with Arm64-based processors, Graviton instances deliver
the best price performance for cloud workloads using EC2, with up to 40% improvement over
comparable x86-based instances. The latest Graviton3 processors offer up to 25% better compute
performance over earlier versions.

With Amazon GameLift, you can now select from these new instances in the AWS Graviton family:

• Graviton2-based instances: c6g, c6gn, r6g, m6g, g5g

• Graviton3-based instances: c7g, r7g, m7g

Learn more:

• AWS Graviton Processor: Learn about the benefits and practical uses of Graviton-based EC2
instances.

• Getting started with Graviton: Get an overview of the Graviton-based instances and insights on
how applications run on them depending on their operating system, languages, and run times.

Release notes 721

https://github.com/aws/amazon-gamelift-plugin-unreal
https://aws.amazon.com/gamelift/
https://forums.awsgametech.com/c/amazon-gamelift/
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/graviton/getting-started/

Amazon GameLift Developer Guide

Note

Graviton Arm instances require an Amazon GameLift server build on Linux OS. Server SDK
5.1.1 or newer is required for C++ and C#. Server SDK 5.0 or newer is required for Go. These
instances provide no out-of-the-box support for Mono installation on Amazon Linux 2023
(AL2023) or Amazon Linux 2 (AL2).

July 27, 2023: Amazon GameLift releases server SDK 5.1.0 with added support for
Unity development

Updated SDK versions: Server SDK for C++, C#/Unity, Unreal 5.1.0

The newest release of the Amazon GameLift server SDK delivers updates for C++, C#, and the
Unreal plugin, and a new plugin for use with the Unity game engine. Game developers integrate
the Amazon GameLift server SDK into game servers that they deploy for hosting on Amazon
GameLift.

The latest server SDK version contains the following updates, which include a number of customer
requests:

• Download language-specific SDK packages – The updated Amazon GameLift download site
contains SDK packages for each language. You can download current or previous versions.

• New C# server SDK plugin for Unity – The new server SDK package for Unity contains built
C# libraries that you can install using the package manager in Unity Editor (see the new Unity
integration guide). These libraries include the required dependencies through UnityNuGet. You
can use this plugin with Unity 2020.3 LTS, 2021.3 LTS and 2022.3 LTS for Windows and Mac OS.
It supports Unity's .NET Framework and .NET Standard profiles, with .NET Standard 2.1 and .NET
4.x.

• Consolidated .NET solution for C# – The server SDK for C# now supports .NET Framework 4.6.2
(upgraded from 4.6.1) and .NET 6.0 in a single solution. .NET Standard 2.1 is available with the
Unity-built libraries.

• Server SDK 5.1.0 updates

• [C++, C#, Unreal] You can now call InitSDK() with or without server parameters. Game
servers that run on Amazon GameLift managed EC2 fleets read the server parameters directly
from environment variables. Game servers on Amazon GameLift Anywhere fleets must call
InitSDK() with server parameters.

Release notes 722

https://aws.amazon.com/gamelift/getting-started/#Amazon_GameLift_Server_SDKs

Amazon GameLift Developer Guide

• [C++, C#, Unreal] Server SDK calls have improved error messaging.

• [C++ SDK] To improve Server SDK build times, the build flag -DRUN_CLANG_FORMAT is
disabled by default . You can enable it with -DRUN_CLANG_FORMAT=1.

• [C++ SDK] When building the libraries without the standard libraries (-
DGAMELIFT_USE_STD=0), InitSDK() no longer uses std:: data types.

• Expanded server SDK 5.x documentation

• Updated server SDK reference guides for C++, C#/Unity, and Unreal including expanded
coverage of all data types.

• Amazon GameLift server SDK 5.x reference for C# and Unity

• Amazon GameLift server SDK 5.x reference for C++

• Amazon GameLift Unreal Engine server SDK 5.x reference

• New versions of the server SDK 5 integration guides for Unity and Unreal plugins

• Integrate Amazon GameLift into a Unity project

• Integrate Amazon GameLift into an Unreal Engine project

• Additional documentation updates

• Revised documentation for Amazon GameLift service API operations GetComputeAccess and
GetInstanceAccess to clarify remote access procedures based on the Amazon GameLift server
SDK version in use.

• Revised descriptions for GameSessionPlacement to document how game session information
is transient when a placement is in "pending" status.

July 13, 2023: Amazon GameLift adds fleet hardware metrics

You can now track hardware performance metrics for your Amazon GameLift managed EC2 fleets.
Metrics include EC2 instance metrics for CPU utilization, network traffic volume, and disk read/
write activity. For Amazon GameLift, these metrics describe all active instances in a fleet location.
You can view these fleet hardware metrics using an Amazon CloudWatch dashboard in the AWS
Management Console. You can also view them in the Amazon GameLift console in fleet details.

Learn more:

• Monitor Amazon GameLift with Amazon CloudWatch (Metrics for fleets), Amazon GameLift
Developer Guide

Release notes 723

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAccess.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetInstanceAccess.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSessionPlacement.html

Amazon GameLift Developer Guide

June 29, 2023: Amazon GameLift launches support for Amazon Linux 2023

Updated SDK versions: AWS SDK 1.11.111

Amazon GameLift customers can now use the Amazon Linux 2023 operating system to host their
game servers. AL2023 offers several improvements over AL2 including security. This operating
system is available in all AWS Regions with the exception of the China Regions.

Customers can use the newer Linux operating systems and continue to receive critical security
updates when support ends for Amazon Linux (AL1) in December 2023. Support for Amazon Linux
2 continues through June 30, 2025.

Learn more:

• Amazon GameLift Linux Server FAQ

• Comparing Amazon Linux 2 and Amazon Linux 2023

• Amazon GameLift API Reference links:

• AWS SDK action CreateBuild

• CLI command upload-build

• CLI command create-build

May 25, 2023: Amazon GameLift FleetIQ adds filter to exclude game session
placements on draining instances

Updated SDK versions: AWS SDK 1.11.87

If you use Amazon GameLift FleetIQ for game hosting, you can now prevent game session
placements on instances that are currently draining. Draining instances are flagged for shutdown,
but they can still be selected to host new game sessions if no other hosting resources are available.
With this new feature, you can exclude the use of draining instances entirely.

Use this feature when calling ClaimGameServer to find available game servers. Add the new
FilterOption parameter and set allowed instance statuses to ACTIVE only. In response, Amazon
GameLift FleetIQ looks only at active instances when searching for and claiming an available game
server.

Learn more:

• ClaimGameServer in the Amazon GameLift API Reference

Release notes 724

https://aws.amazon.com/gamelift/faq/al1/
https://docs.aws.amazon.com/linux/al2023/ug/compare-with-al2.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateBuild.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/upload-build.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-build.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_ClaimGameServer.html

Amazon GameLift Developer Guide

• How FleetIQ works in the Amazon GameLift FleetIQ Developer Guide

May 16, 2023: Amazon GameLift supports cost allocation tagging for fleets

Amazon GameLift customers can now use AWS Billing cost allocation tags to organize their
game hosting costs. You can assign cost allocation tags to individual Amazon GameLift EC2 fleet
resources to track how your fleets are contributing to the overall hosting costs.

Learn more:

• Manage your game hosting costs

• Using AWS cost allocation tags, AWS Billing User Guide

April 20, 2023: Amazon GameLift launches support for Windows Server 2016

Updated SDK versions: AWS SDK 1.11.63

Amazon GameLift customers can now use the Windows Server 2016 operating system to host their
game servers. This operating system is available in all AWS Regions. Customers can use the newer
Windows operating system and continue to receive critical security updates as Microsoft ends its
support for Windows Server 2012 in October 2023.

Starting today, new customers who require a Windows runtime environment must specify Windows
Server 2016 when creating new game server builds for hosting. Existing customers can continue
to create new builds and fleets with Windows Server 2012 but must complete migration with
Windows Server 2016 before the Microsoft end of support date on October 10, 2023.

This update includes the following service changes:

• When creating a game server build using Amazon GameLift SDK or CLI commands, you must
now explicitly set the operating system. There is no longer a default value. To deploy your game
server on Windows Server 2016, use the value WINDOWS_2016.

• When creating a game server build using the Amazon GameLift console, you must select an
operating system from the available values. If you're an existing customer with active Windows
Server 2012 fleets, you can choose either WINDOWS_2012 or WINDOWS_2016.

Learn more:

• Amazon GameLift API Reference links:

Release notes 725

https://docs.aws.amazon.com/gamelift/latest/fleetiqguide/gsg-howitworks.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon GameLift Developer Guide

• CLI command upload-build

• CLI command create-build

• AWS SDK action CreateBuild

• Amazon GameLift FAQ for Windows 2012

April 13, 2023: Amazon GameLift launches server SDK 5.x for Unreal

Updated SDK versions: Server SDK 5.0.0 for Unreal

The latest version of the Amazon GameLift lightweight plugin for Unreal Engine is now based on
the Amazon GameLift server SDK 5.x. To start integrating your Unreal Engine environment with
Amazon GameLift see the following links.

Learn more:

• Integrate Amazon GameLift into an Unreal Engine project

• Add Amazon GameLift to your game server

• Amazon GameLift server SDK 5.x reference for C++

March 14, 2023: Amazon GameLift launches a new console experience

The new Amazon GameLift console includes these improvements:

• Improved navigation – The new navigation pane facilitates navigation between Amazon
GameLift resources.

• Amazon GameLift landing page – The new landing page provides links to helpful
documentation, displays a high-level overview of Amazon GameLift, and provides support
through links to documentation, frequently asked questions, and AWS re:Post.

• Improved Amazon CloudWatch metrics – Amazon GameLift metrics are now available in both
the Amazon GameLift console and your CloudWatch dashboards. This update also includes new
metrics for performance, utilization, and player sessions.

Learn more:

• Viewing your game data in the console

• Managing Amazon GameLift hosting resources

Release notes 726

https://docs.aws.amazon.com/cli/latest/reference/gamelift/upload-build.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-build.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateBuild.html
https://aws.amazon.com/gamelift/faq/win2012/

Amazon GameLift Developer Guide

• Building a FlexMatch matchmaker

February 14, 2023: Amazon GameLift now supports server side encryption for
Amazon SNS topics

Server Side Encryption ((SSE)) for SNS topics encrypts your sensitive data at rest. SSE uses AWS
Key Management Service (AWS KMS) keys to protect the contents of your SNS topics.

Learn more:

• Set up event notification for game session placement

• FlexMatch matchmaking events

• Encryption at rest

February 9, 2023: Amazon GameLift server SDK supports .NET 6 with C#10

Updated SDK versions: Server SDK 5.0.0 for .NET 6. No SDK updates are required.

If you use the Unity Real-Time Development Platform, continue to use the Amazon GameLift
server SDK 5.0.0 with .NET 4.6. Unity doesn't support .NET 6.

Learn more:

• Download the latest version of the Amazon GameLift server SDK at Amazon GameLift getting
started

• Amazon GameLift server SDK 5.x reference for C# and Unity

January 31, 2023: Amazon GameLift server SDK supports the Go language

Updated SDK versions: Server SDK 5.0.0 for Go

Learn more:

• Download the latest version of the Amazon GameLift server SDK at Amazon GameLift getting
started

• Amazon GameLift server SDK reference for Go

Release notes 727

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/matchmaker-build.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-notification.html
https://docs.aws.amazon.com/sns/latest/dg/sns-server-side-encryption.html
https://aws.amazon.com/gamelift/getting-started
https://aws.amazon.com/gamelift/getting-started
https://aws.amazon.com/gamelift/getting-started
https://aws.amazon.com/gamelift/getting-started

Amazon GameLift Developer Guide

December 1, 2022: Amazon GameLift launches Amazon GameLift Anywhere and
Amazon GameLift Server SDK 5.0

Updated SDK versions: AWS SDK 1.10.21, Server SDK 5.0.0 for C++ and C#

Amazon GameLift Anywhere uses your game server resources to host Amazon GameLift game
servers. You can use Amazon GameLift Anywhere to integrate your own compute resources with
Amazon GameLift managed EC2 compute to distribute your game servers across multiple compute
types. You can also use Amazon GameLift Anywhere to iteratively test your game servers without
uploading the build to Amazon GameLift for every iteration.

Highlights:

• New Amazon GameLift Anywhere fleet and compute types

• Amazon GameLift Anywhere compute resource registration

• Improved testing iteration cycle

Amazon GameLift Server SDK 5.0.0 introduces improvements to the existing server SDK and a
new resource type, compute. Server SDK 5.0.0 supports Amazon GameLift Anywhere and the use
of your own compute resources for game server hosting.

Learn more:

• Amazon GameLift server SDK reference

• Fleet location

• Choosing Amazon GameLift compute resources

• Create an Amazon GameLift Anywhere fleet

August 25, 2022: Amazon GameLift launches support for Local Zones

Updated SDK versions: AWS SDK 1.9.333

Amazon GameLift is now available in eight Local Zones in the United States, so you can deploy
your fleets closer to players. You can use all managed Amazon GameLift features with Local Zones
by adding the Local Zones to your fleets.

Release notes 728

Amazon GameLift Developer Guide

Local Zones extend AWS resources and services to the edge of the cloud, near large population,
industry, and information technology (IT) centers. This means that you can deploy applications that
require single-digit millisecond latency closer to end users or to on-premises data centers.

Learn more:

• Local Zones

• Fleet location

• Create a Amazon GameLift managed fleet

June 28, 2022: Amazon GameLift launches a new opt-in console experience

The new Amazon GameLift console includes these improvements:

• Improved navigation – The new navigation pane facilitates navigation between Amazon
GameLift resources.

• Amazon GameLift landing page – The new landing page provides links to helpful
documentation, displays a high-level overview of Amazon GameLift, and provides support
through links to documentation, frequently asked questions, and AWS re:Post.

• Improved Amazon CloudWatch metrics – Amazon GameLift metrics are now available in both
the Amazon GameLift console and your CloudWatch dashboards. This update also includes new
metrics for performance, utilization, and player sessions.

Learn more:

• Viewing your game data in the console

• Managing Amazon GameLift hosting resources

• Building a FlexMatch matchmaker

February 15, 2022: FlexMatch adds compound rule and additional improvements

FlexMatch users now have access to the following features:

• Compound rule – Added support for compound matchmaking rules for matches of 40 or fewer
players. You can now use logical statements to create a compound rule to form a match. Without
a compound rule in your rule set, to form a match, all the rules in the rule set must be true. With

Release notes 729

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/matchmaker-build.html

Amazon GameLift Developer Guide

compound rules, you can choose which rules to apply using the following logical operators: and,
or, not, and xor.

• Flexible team selection – Updated matchmaking property expressions to support selecting a
subset of all available teams.

• Longer string lists – Increased the maximum number of strings from 10 to 100 in a list of strings
of player attribute values.

Learn more:

• Amazon GameLift FlexMatch developer guide:

• FlexMatch rule types

• FlexMatch property expressions

• AttributeValue: SL

October 28, 2021: Amazon GameLift adds support for multi-Region fleets in the
Asia Pacific (Osaka) Region; Amazon GameLift FleetIQ adds support for AWS
Graviton2 processors

Updated SDK versions: AWS SDK 1.9.133

Amazon GameLift is now available in the Asia Pacific (Osaka) Region. Game developers can now
deploy instances in Osaka using GameLift multi-Region fleet.

You can now use Graviton2-hosted game servers, based on the Arm-based processor architecture,
to achieve increased performance at a lower cost when compared to the equivalent Intel-based
compute options.

Highlights:

• Amazon GameLift is now available in the Asia Pacific (Osaka) Region.

• Amazon GameLift FleetIQ game server groups can now be configured to manage the Graviton2
instance families c6g, m6g, and r6g.

Learn more:

• Amazon GameLift multi-Region fleet

Release notes 730

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-rules-reference-ruletype.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-rules-reference-property-expression.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_AttributeValue.html#gamelift-Type-AttributeValue-SL
https://github.com/aws/aws-sdk-cpp/releases/tag/1.9.133
https://aws.amazon.com/blogs/gametech/amazon-gamelift-is-now-easier-to-manage-fleets-across-regions

Amazon GameLift Developer Guide

• CreateGameServerGroup

• AWS graviton processor

September 20, 2021: Amazon GameLift releases plugin for Unity

The Amazon GameLift plugin for Unity version 1.0.0 contains libraries and native UI that makes it
easier to access Amazon GameLift resources and integrate Amazon GameLift into your Unity game.
You can use the Amazon GameLift plugin for Unity to access Amazon GameLift APIs and deploy
AWS CloudFormation templates for common gaming scenarios. The plugin also includes a sample
game that works with the sample scenarios. You can use Amazon GameLift Local to see messages
passed between the game client and the game server to learn how a typical game interacts with
Amazon GameLift.

The plugin for Unity supports Unity 2019.4 LTS and 2020.3 LTS.

Highlights:

• Build, run, and modify a sample game with different scenarios, or create your own.

• Deploy sample AWS CloudFormation scenarios for typical game scenarios including auth only,
single-Region fleet, multi-Region fleets with queue and custom matchmaker, Spot Fleets with
queue and custom matchmaker, and FlexMatch.

Learn more:

• Integrating games with the Amazon GameLift plugin for Unity

June 30, 2021: FlexMatch adds batchDistance rule

You can use the batchDistance rule type to specify a string or numeric attribute, bringing a host of
benefits to each segment.

Highlights:

• For large matches (>40 players), instead of evenly balancing players by skill only, you can now
get that same balance based on skill, modes, and maps. Ensure that everyone in the match is in
a skill band, band multiple numeric attributes such as league or play style, and group according
to string attributes such as map or game mode. You can also create expansions over time. For

Release notes 731

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameServerGroup.html
https://aws.amazon.com/ec2/graviton/
https://docs.aws.amazon.com/gamelift/latest/developerguide/unity-plugin.html

Amazon GameLift Developer Guide

example, you can create an expansion to allow a greater skill level range to enter the match the
longer the player is waiting.

For matches under 40 players, you can use a new simplified rules expression.

June 3, 2021: Amazon GameLift realtime client SDK and server SDK updates

Updated SDK versions: Realtime Client SDK 1.2.0, Server SDK 3.4.0 for Unreal

With this latest SDK update, you can now integrate IL2CPP into your mobile applications that use
the RTS Client SDK and follow best practices with frameworks. You can also now build the Amazon
GameLift Server SDK for Unreal Version 4.26. This update contains components that integrate with
your Windows or Linux game server, including C++ and C# versions of the Amazon GameLift Server
SDK, Amazon GameLift Local, and an Unreal Engine plugin.

Highlights:

• Added support for IL2CPP in the RTS Client SDK and for building the native libraries as
frameworks, so you can build RTS clients for the latest mobile devices.

• You can use DescribePlayerSessions() to get information for a single player session, for all player
sessions in a game session, or for all player sessions associated with a single player ID.

• You can use GetInstanceCertificate() to retrieve the file location of a PEM-encoded TLS certificate
that is associated with the fleet and its instances.

• Created Server SDK support for Unreal version 4.26.

• The existing C# SDK, version 4.0.2, has been verified compatible with Unity 2020.3. No SDK
updates were required.

Learn more:

• Amazon GameLift Developer Guide:

• DescribePlayerSessions()

• GetInstanceCertificate()

March 23, 2021: Amazon GameLift adds notifications to game session placement

Updated SDK versions: AWS SDK 1.8.168

Release notes 732

https://docs.aws.amazon.com/gamelift/latest/developerguide/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.8.168

Amazon GameLift Developer Guide

You can now use events to monitor game session placement activity for a game session queue.
Create an Amazon Simple Notification Service (Amazon SNS) topic to publish event notifications, or
set up event tracking using CloudWatch Events.

Highlights:

• For each queue, you can set a custom text string to be included in all event messaging.

• When using an Amazon SNS topic, you can set additional access conditions that limit publishing
to specific queues.

Learn more:

• Amazon GameLift Developer Guide:

• Set up event notification for game session placement (new)

• Game session placement events (new)

• API reference (AWS SDK)

• New game session queue parameters NotificationTarget and CustomEventData:
GameSessionQueue, CreateGameSessionQueue, UpdateGameSessionQueue

• Amazon GameLift forum

March 16, 2021: Amazon GameLift adds multi-region fleets, six new regions

Updated SDK versions: AWS SDK 1.8.163

Amazon GameLift managed hosting is now available in 21 AWS Regions. The new Regions are Cape
Town (af-south-1), Bahrain (me-south-1), Hong Kong (ap-east-1), Milan (eu-south-1), Paris
(eu-west-3), and Stockholm (eu-north-1).

With the new Amazon GameLift multi-location fleets feature, you can now set up a single fleet to
host your game servers in any or all of 20 Amazon GameLift-supported Regions (Beijing Region
excepted). This feature aims to significantly reduce the work required to set up and maintain
Amazon GameLift hosting resources globally. Multi-location fleets can be created in the following
AWS Regions: us-east-1 (N. Virginia), us-west-2 (Oregon), eu-central-1 (Frankfurt), eu-
west-1 (Ireland), ap-southeast-2 (Sydney), ap-northeast-1 (Tokyo), and ap-northeast-2
(Seoul). In all other Regions, you can continue to set up single-location fleets as needed. All fleets
that were created before this release are single-location fleets. Using multi-location fleets does not

Release notes 733

https://docs.aws.amazon.com/gamelift/latest/developerguide/;reference-awssdk.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSessionQueue.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSessionQueue.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateGameSessionQueue.html
https://forums.awsgametech.com/c/amazon-gamelift/7
https://github.com/aws/aws-sdk-cpp/releases/tag/1.8.163

Amazon GameLift Developer Guide

affect your hosting costs. Amazon GameLift pricing is based on the type, location, and volume of
instances that you use. (For more information, see Amazon GameLift pricing.) AWS CloudFormation
support for multi-location fleets will be available soon.

Note

Multi-location fleets are not available in the China Regions. Amazon GameLift resources
that reside in China Regions cannot interact with or be used by resources in other Amazon
GameLift Regions.

Highlights:

• With a multi-location fleet, explicitly add a list of remote locations. Amazon GameLift deploys
instances of the same type and configuration, including the build and runtime configuration, to
the fleet's home Region and all added locations.

• Adjust capacity settings and scaling for each location independently. Auto-scaling policies apply
to an entire fleet, but you can turn them on or off by location.

• Start new game sessions at specific fleet locations. When using game session queues or
matchmaking to place game sessions, you can now prioritize where new game sessions start by
location, hosting cost, and player latency.

• Get hosting metrics in the Amazon GameLift console, aggregated for all locations in a fleet or
broken out by each fleet location.

Learn more:

• Amazon game tech blog

• API reference (AWS SDK)

• New fleet location operations: CreateFleetLocations, DescribeFleetLocationAttributes,
DescribeFleetLocationCapacity, DescribeFleetLocationUtilization, DeleteFleetLocations

• Updated fleet operations, with new multi-location support: CreateFleet, UpdateFleetCapacity,
DescribeEC2InstanceLimits, DescribeInstances, StopFleetActions, StartFleetActions

• Updated game session placement operations, with new priority and filtering capability:
CreateGameSessionQueue, DescribeGameSessionQueues, UpdateGameSessionQueue

• Updated game session creation operations, with new location support: CreateGameSession,
DescribeGameSessions, DescribeGameSessionDetails, SearchGameSessions

Release notes 734

https://aws.amazon.com/gamelift/pricing/
https://aws.amazon.com/blogs/gametech/
https://docs.aws.amazon.com/gamelift/latest/developerguide/;reference-awssdk.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateFleetLocations.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetLocationAttributes.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetLocationCapacity.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetLocationUtilization.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteFleetLocations.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateFleet.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateFleetCapacity.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeEC2InstanceLimits.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeInstances.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StopFleetActions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartFleetActions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSessionQueue.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionQueues.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateGameSessionQueue.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionDetails.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_SearchGameSessions.html

Amazon GameLift Developer Guide

• Amazon GameLift Developer Guide:

• Amazon GameLift hosting locations (updated)

• Amazon GameLift fleet design guide (new)

Scaling Amazon GameLift hosting capacity (updated)

• Design a game session queue (new)

• View fleet details (updated)

• Amazon GameLift forum

February 9, 2021: Amazon GameLift extends support for AMD instances,
standalone FlexMatch

Updated SDK versions: AWS SDK 1.8.139

This release includes the following updates:

• Amazon GameLift FleetIQ game server groups can now be configured to manage the AMD
instance families C5a, M5a, and R5a. The supported Amazon EC2 instance types, as listed for the
GameServerGroup InstanceDefinition, now include the following:

• c5a.large, c5a.xlarge, c5a.2xlarge, c5a.4xlarge, c5a.8xlarge, c5a.12xlarge, c5a.16xlarge,
c5a.24xlarge

• m5a.large, m5a.xlarge, m5a.2xlarge, m5a.4xlarge, m5a.8xlarge, m5a.12xlarge, m5a.16xlarge,
m5a.24xlarge

• r5a.large, r5a.xlarge, r5a.2xlarge, r5a.4xlarge, r5a.8xlarge, r5a.12xlarge, r5a.16xlarge,
r5a.24xlarge

Note: AMD instances for FleetIQ are currently not available for use in the China (Beijing) AWS
Region. See Feature availability and implementation differences in China.

• Amazon GameLift managed game hosting now supports AMD instances in the China (Beijing)
Region, operated by Sinnet. The new AMD instance families include M5a and R5a. Supported EC2
instance types, as listed for fleet InstanceType, now include the following:

• m5a.large, m5a.xlarge, m5a.2xlarge, m5a.4xlarge, m5a.8xlarge, m5a.12xlarge, m5a.16xlarge,
m5a.24xlarge

• r5a.large, r5a.xlarge, r5a.2xlarge, r5a.4xlarge, r5a.8xlarge, r5a.12xlarge, r5a.16xlarge,
r5a.24xlarge

Release notes 735

https://docs.aws.amazon.com/gamelift/latest/developerguide/;
https://forums.awsgametech.com/c/amazon-gamelift/7
https://github.com/aws/aws-sdk-cpp/releases/tag/1.8.139
https://docs.aws.amazon.com/gamelift/latest/apireference/API_InstanceDefinition.html
https://docs.amazonaws.cn/en_us/aws/latest/userguide/gamelift.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_FleetAttributes.html

Amazon GameLift Developer Guide

• Amazon GameLift FlexMatch can now be used as a standalone matchmaking solution in the
China (Beijing) Region, operated by Sinnet. Customers can create a FlexMatch matchmaker in
the Beijing Region and configure the FlexMatchMode parameter to STANDALONE. For more
information about FlexMatch, either with Amazon GameLift managed hosting or with a non-
Amazon GameLift hosting solution, in the Amazon GameLift FlexMatch Developer Guide.

• When setting up event notifications for Amazon GameLift FlexMatch, you can now designate an
Amazon SNS FIFO topic as the notification target. For more information, see:

• MatchmakingConfiguration NotificationTarget, Amazon GameLift API Reference

• Set up FlexMatch event notification , Amazon GameLift FlexMatch Developer Guide

• Introducing Amazon SNS FIFO – First-in-first-out Pub/Sub messaging, AWS News Blog

December 22, 2020: Amazon GameLift server SDK supports Unreal Engine 4.25
and Unity 2020

Updated SDK versions: Amazon GameLift Server SDK 4.0.2, Unreal plugin version 3.3.3

The latest version of the Amazon GameLift Server SDK contains the following components:

• The updated Unreal plugin has been updated for compatibility with Unreal Engine 4.25. The API
was not changed.

• The existing C# SDK, version 4.0.2, has been verified compatible with Unity 2020. No SDK
updates were required.

Download the latest version of the Amazon GameLift Server SDK at Amazon GameLift getting
started.

November 24, 2020: Amazon GameLift FlexMatch now available for games hosted
anywhere

Updated SDK versions: AWS SDK 1.8.95

Amazon GameLift FlexMatch is a customizable matchmaking service for multiplayer games. Initially
designed for users of Amazon GameLift managed hosting, FlexMatch can now be integrated into
games that use other hosting systems, including peer-to-peer, proprietary on-premises computing,
and cloud compute primitive types. Games that use Amazon GameLift FleetIQ for game hosting on
Amazon EC2 can now implement matchmaking with FlexMatch.

Release notes 736

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateMatchmakingConfiguration.html#gamelift-CreateMatchmakingConfiguration-request-FlexMatchMode
https://docs.amazonaws.cn/en_us/gamelift/latest/flexmatchguide/match-intro.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_MatchmakingConfiguration.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-notification.html
https://aws.amazon.com/blogs/aws/introducing-amazon-sns-fifo-first-in-first-out-pub-sub-messaging/
https://aws.amazon.com/gamelift/getting-started
https://aws.amazon.com/gamelift/getting-started
https://github.com/aws/aws-sdk-cpp/releases/tag/1.8.95

Amazon GameLift Developer Guide

FlexMatch provides a robust matchmaking algorithm and rules language that gives you wide
latitude to customize the matchmaking process so that players are matched together based on
key player characteristics and reported latency. In addition, FlexMatch offers a matchmaking
request workflow that supports features such as player parties, player acceptance, and match
backfill. When you use FlexMatch with Amazon GameLift managed hosting or Realtime Servers, the
matchmaker automatically uses Amazon GameLift to find hosting resources and start a new game
session for newly formed matches. When using FlexMatch as a standalone service, the matchmaker
delivers match results back to your game, which can then start a new game session using your
hosting solution.

API operations for FlexMatch are part of the Amazon GameLift service API, which is included in the
AWS SDK and the AWS Command Line Interface (AWS CLI). This release includes these updates to
support standalone matchmaking:

• The API resource MatchmakingConfiguration has the following changes:

• New property, FlexMatchMode indicates whether the matchmaker is being used with Amazon
GameLift managed hosting or as standalone matchmaking.

• Property GameSessionQueueArns is not required when FlexMatchMode is set to
standalone.

• These properties are not used with standalone matchmaking: AdditionalPlayerCount,
BackfillMode, GameProperties, GameSessionData.

• The automatic backfill feature is not available with standalone matchmaking.

November 24, 2020: AMD instances now available on Amazon GameLift

Updated SDK versions: AWS SDK 1.8.95

The list of Amazon EC2 instance types supported by Amazon GameLift now includes three
new instance families: C5a, M5a, and R5a. These families consist of AMD compute-optimized
instances that are powered by AMD EPYC processors running at frequencies up to 3.3. GHz. The
AMD instances are x86 compatible; games that are currently running on Amazon GameLift can
be deployed to AMD instance types without alteration. The new instances are available in the
following AWS Regions: US East (N. Virginia and Ohio), US West (Oregon and N. California), Central
Canada (Montreal), South America (Sao Paulo), EU Central (Frankfurt), EU West (London and
Ireland), Asia Pacific South (Mumbai), Asia Pacific Northeast (Seoul and Tokyo), and Asia Pacific
Southeast (Singapore and Sydney).

Release notes 737

https://github.com/aws/aws-sdk-cpp/releases/tag/1.8.95

Amazon GameLift Developer Guide

The new AMD instances include:

• c5a.large, c5a.xlarge, c5a.2xlarge, c5a.4xlarge, c5a.8xlarge, c5a.12xlarge, c5a.16xlarge,
c5a.24xlarge

• m5a.large, m5a.xlarge, m5a.2xlarge, m5a.4xlarge, m5a.8xlarge, m5a.12xlarge, m5a.16xlarge,
m5a.24xlarge

• r5a.large, r5a.xlarge, r5a.2xlarge, r5a.4xlarge, r5a.8xlarge, r5a.12xlarge, r5a.16xlarge,
r5a.24xlarge

Learn more:

• Amazon game tech blog

• Amazon GameLift instance pricing

• Amazon EC2 instances featuring AMD EPYC processors

• Amazon GameLift forum

November 11, 2020: Version update to Amazon GameLift server SDK

Updated SDK versions: Amazon GameLift Server SDK 4.0.2

The new Server SDK version 4.0.2 fixes a known issue with the API operation
StartMatchBackfill(). This operation now returns a correct response to a match backfill
request.

The issue did not affect the match backfill process, and there is no change to how this feature
works. The issue may have impacted log messaging and error handling for match backfill requests.

Download the latest version of the Amazon GameLift Server SDK at Amazon GameLift getting
started.

November 5, 2020: New FlexMatch algorithm customizations

FlexMatch users can now adjust the following default behaviors for the matchmaking process.
These customizations are set in a matchmaking rule set. There are no changes to the Amazon
GameLift SDKs.

Release notes 738

https://aws.amazon.com/blogs/gametech/
https://aws.amazon.com/gamelift/pricing
https://aws.amazon.com/ec2/amd/
https://forums.awsgametech.com/c/amazon-gamelift/7
https://aws.amazon.com/gamelift/getting-started
https://aws.amazon.com/gamelift/getting-started

Amazon GameLift Developer Guide

• Prioritize backfill tickets: You can choose to raise or lower how match backfill tickets are
prioritized when searching for acceptable matches. Prioritizing backfill tickets is useful when the
auto-backfill feature is enabled. Use the algorithm property backfillPriority.

• Pre-sort to optimize match consistency and efficiency: Configure your matchmaker to pre-sort
the ticket pool before batching tickets for evaluation. By pre-sorting tickets based on key player
attributes, your resulting matches tend to have players who are more similar in those attributes.
You can also boost efficiency in the evaluation process by pre-sorting on the same attributes that
are used in match rules. Use the algorithm property sortByAttributes with the strategy
property set to "sorted".

• Adjust how expansion wait times are triggered: Choose between triggering expansions based on
the age of the newest (default) or oldest ticket in an incomplete match. Triggering on the oldest
ticket tends to complete matches faster, while triggering on the newest ticket leads to higher
match quality. Use the algorithm property expansionAgeSelection.

September 17, 2020: Amazon GameLift updates server SDK

Updated SDK versions: Amazon GameLift Server SDK 4.0.1

The new Server SDK contains the following updates:

• C# API version 4.0.1

• The API operation TerminateGameSession() is no longer supported. Replace with a call to
ProcessEnding() to end both a game session and the server process.

• A known issue with the operation GetInstanceCertificate() is fixed.

• The operation GetTerminationTime() now returns a value of data type AwsDateTimeOutcome.

• C++ API version 3.4.1

• The operation TerminateGameSession() is no longer supported. Replace it with a call to
ProcessEnding() to end both a game session and the server process.

• Unreal Engine plugin version 3.3.2

• The operation TerminateGameSession() is no longer supported. Replace it with a call to
ProcessEnding() to end both a game session and the server process.

• The callback operation OnUpdateGameSession is added to FProcessParameters to support
match backfill.

Release notes 739

Amazon GameLift Developer Guide

Download the latest version of the Amazon GameLift Server SDK at Amazon GameLift getting
started.

August 27, 2020: Amazon GameLift FleetIQ for game hosting with Amazon EC2
(general availability)

Updated SDK versions: AWS SDK 1.8.36

The Amazon GameLift FleetIQ solution for low-cost, cloud-based game hosting on Amazon EC2
is now generally available. Amazon GameLift FleetIQ gives developers the ability to host game
servers directly on Amazon EC2 Spot Instances by optimizing their viability for game hosting.
Game developers can use Amazon GameLift FleetIQ with new games or to supplement capacity
for existing games. This solution supports the use of containers or other AWS services such as AWS
Shield and Amazon Elastic Container Service (Amazon ECS).

This general availability release includes the following updates to the Amazon GameLift FleetIQ
solution:

• New API operation DescribeGameServerInstances returns information, including status, on
all active instances for a Amazon GameLift FleetIQ game server group.

• New balancing strategy, ON_DEMAND_ONLY, configures a game server group to use On-Demand
Instances only. You can update a game server group's balancing strategy at any time, making it
possible to switch between using Spot Instances and On-Demand Instances as needed.

• The following preview elements have been dropped for general availability:

• Use of custom sort keys for game server resources. Game servers can be sorted based on
registration timestamp.

• Tagging for game server resources.

April 16, 2020: Amazon GameLift updates server SDK for Unity and Unreal Engine

Updated SDK versions: Amazon GameLift Server SDK 4.0.0, Amazon GameLift Local 1.0.5

The latest version of the Amazon GameLift Server SDK contains the following updated
components:

• C# SDK version 4.0.0 updated for Unity 2019.

• Unreal plugin version 3.3.1 updated for Unreal Engine versions 4.22, 4.23, and 4.24.

Release notes 740

https://aws.amazon.com/gamelift/getting-started
https://aws.amazon.com/gamelift/getting-started
https://github.com/aws/aws-sdk-cpp/releases/tag/1.8.36

Amazon GameLift Developer Guide

• Amazon GameLift Local version 1.0.5 updated to test integrations that use the C# server SDK
version 4.0.0.

Download the latest version of the Amazon GameLift Server SDK at Amazon GameLift getting
started.

April 2, 2020: Amazon GameLift FleetIQ available for game hosting on EC2
(public preview)

Updated SDK versions: AWS SDK 1.7.310

The Amazon GameLift FleetIQ feature optimizes the viability of low-cost Spot Instances for use
with game hosting. This feature is now extended for customers who want to manage their hosting
resources directly rather than through the managed Amazon GameLift service. This solution
supports the use of containers or other AWS services such as AWS Shield and Amazon Elastic
Container Service (Amazon ECS).

Learn more:

GameTech blog post on Amazon GameLift FleetIQ

December 19, 2019: Improved AWS resource management for Amazon GameLift
resources

Updated SDK versions: AWS SDK 1.7.249

You can now take advantage of AWS resource management tools with Amazon GameLift resources.
In particular, all key Amazon GameLift resources—builds, scripts, fleets, game session queues,
matchmaking configurations, and matchmaking rule sets—are now assigned Amazon Resource
Name (ARN) values. A resource ARN provides a consistent identifier that is unique across all AWS
Regions. They can be used to create resource-specific AWS Identity and Access Management
(IAM) permissions policies. Resources are now assigned an ARN and also the pre-existing resource
identifier, which is not Region-specific.

In addition, Amazon GameLift resources now support tagging. You can use tags to organize
resources, create IAM permissions policies to manage access to groups of resources, customize
AWS cost breakdowns, etc. When managing tags for Amazon GameLift resources, use the Amazon
GameLift API actions TagResource(), UntagResource(), and ListTagsForResource().

Learn more:

Release notes 741

https://aws.amazon.com/gamelift/getting-started
https://aws.amazon.com/gamelift/getting-started
https://github.com/aws/aws-sdk-cpp/releases/tag/1.7.310
https://aws.amazon.com/blogs/gametech/gamelift-in-2020-major-update-now-available-in-preview/
https://github.com/aws/aws-sdk-cpp/releases/tag/1.7.249

Amazon GameLift Developer Guide

• TagResource in the Amazon GameLift API Reference

• Tagging AWS resources in the AWS General Reference

• Amazon resource names in the AWS General Reference

November 14, 2019: New AWS CloudFormation templates, updates in China
(Beijing) Region

Updated SDK versions: AWS SDK 1.7.210

AWS CloudFormation templates for Amazon GameLift

Amazon GameLift resources can now be created and managed through AWS CloudFormation.
The existing AWS CloudFormation build and fleet templates have been updated to align with
the current resources, and new templates are now available for scripts, queues, matchmaking
configurations, and matchmaking rule sets. AWS CloudFormation templates greatly simplify the
task of managing groups of related AWS resources, particularly when deploying games across
multiple Regions.

Learn more:

• Amazon GameLift resource type reference in the AWS CloudFormation User Guide

• Manage resources using AWS CloudFormation in the Amazon GameLift Developer Guide

Release notes 742

https://docs.aws.amazon.com/gamelift/latest/apireference/API_TagResource.html
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://github.com/aws/aws-sdk-cpp/releases/tag/1.7.210
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_GameLift.html

Amazon GameLift Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

743

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon GameLift
	Table of Contents
	What is Amazon GameLift?
	Uses of Amazon GameLift
	Get started with Amazon GameLift solutions
	Amazon GameLift hosting for custom servers
	Amazon GameLift hosting with Realtime Servers
	Amazon GameLift FleetIQ for hosting on Amazon EC2
	Amazon GameLift FlexMatch for matchmaking
	Amazon GameLift Anywhere hardware hosting

	Accessing Amazon GameLift
	Pricing for Amazon GameLift
	How Amazon GameLift works
	Key components
	Hosting game servers
	Running game sessions
	Scaling fleet capacity
	Monitoring Amazon GameLift
	Using other AWS resources

	How players connect to games
	Game architecture with managed Amazon GameLift

	Setting up
	Set up an AWS account
	Sign up for an AWS account
	Create a user with administrative access
	Manage user permissions for Amazon GameLift
	Set up programmatic access for users
	Set up programmatic access for your game
	IAM permission examples for Amazon GameLift
	Administrator permission examples
	Player user permission examples

	Set up an IAM service role for Amazon GameLift
	Create a custom IAM role
	Permission policy syntax

	Development support with Amazon GameLift
	For game servers
	For game client services
	For Realtime Servers

	Manage your game hosting costs
	Create billing alerts to monitor usage
	Track costs per Amazon GameLift fleet
	Set unused fleet capacity to zero

	Amazon GameLift hosting locations
	Amazon GameLift hosting
	Local Zones
	Available Local Zones

	Amazon GameLift Anywhere
	Amazon GameLift FlexMatch
	Amazon GameLift in China

	Getting started with Amazon GameLift
	Custom game server example
	Realtime Servers example game

	Amazon GameLift managed hosting roadmap
	Choose a hosting option
	Prepare your game for Amazon GameLift
	Prepare your custom game server
	Prepare your Realtime server

	Test your integration with Amazon GameLift
	Plan and deploy your Amazon GameLift resources
	Automatically deploy your Amazon GameLift resources

	Design your game client service
	Authenticating your players
	Standalone game session servers with a serverless backend
	Standalone game session servers with a WebSocket-based backend

	Set up metrics and logging for Amazon GameLift
	Game launch checklists
	Onboarding
	Testing
	Launch
	Post-launch

	Preparing games for Amazon GameLift
	Integrate games with custom game servers
	Amazon GameLift and game client server interactions
	Initialize a game server
	Create a game session
	Add a player to a game
	Remove a player
	Shut down the game session

	Integrate your game server with Amazon GameLift
	Add Amazon GameLift to your game server
	Initialize the server process
	(Optional) Report server process health
	(Optional) Get a TLS certificate
	Start a game session
	(Optional) Validate a new player
	(Optional) Report a player session ending
	End a game session
	Respond to a server process shutdown notification

	Communicate with other AWS resources from your fleets
	Access AWS resources with an IAM role
	Create the IAM role
	Modify applications to acquire credentials
	Call GetFleetRoleCredentials() (server SDK 5.x)
	Use shared credentials (server SDK 5.x)
	Use AssumeRole() (server SDK 4)

	Associate a fleet with the IAM role

	Access AWS resources with VPC peering

	Integrate your game client with Amazon GameLift
	Add Amazon GameLift to your game client
	Set up Amazon GameLift on a backend service
	Get game sessions
	Create game sessions
	Join a player to a game session
	Use game session properties
	Learn more

	Generate player IDs

	Game engines and Amazon GameLift
	O3DE
	Unreal Engine
	Unity
	Other engines
	Add Amazon GameLift to an O3DE game client and server
	Amazon GameLift Gem setup

	Integrate Amazon GameLift into an Unreal Engine project
	Prerequisites
	Build Unreal Engine from source
	Configure your Unreal project for the plugin
	Add Amazon GameLift server code to your Unreal project
	Next steps

	Integrate Amazon GameLift into a Unity project
	Prerequisites
	Set up UnityNuGet

	Install the plugin
	Set up an Amazon GameLift Anywhere fleet for testing
	Add Amazon GameLift server code to your Unity project
	Additional resources

	Integrating games with the Amazon GameLift plugin for Unity
	Amazon GameLift plugin for Unity guide for server SDK 5.x
	About the plugin
	Plugin workflow
	Plugin for Unity: Install and set up plugin components
	Before you start
	Add the plugin to your game project
	Step 1: Add UnityNuGet to your game project
	Step 2: Add the plugin and C# server SDK packages
	Step 3: Import the sample game (optional)

	Plugin for Unity: Set up an AWS user profile
	Plugin for Unity: Set up local testing with Amazon GameLift Anywhere
	Set your profile
	Integrate your game with Amazon GameLift
	Integrate your server code
	Integrate your client code

	Connect to an Anywhere fleet
	Register a compute
	Launch game

	Plugin for Unity: Deploy your game to managed EC2 fleets
	Set your profile
	Integrate your game with Amazon GameLift
	Integrate your server code
	Integrate your client code

	Select deployment scenario
	Set game parameters
	Deploy scenario
	Launch game client

	Amazon GameLift plugin for Unity guide for server SDK 4.x
	Integrate Amazon GameLift with a Unity game server project
	Prerequisites
	Set up a new server process
	Start a game session
	End a game session
	Create server build and upload to Amazon GameLift

	Integrate Amazon GameLift with a Unity game client project
	Prerequisites
	Initialize a game client
	Create game session on a specific fleet
	Add players to game sessions
	Remove a player from a game session

	Install and set up the plugin
	Test your game locally
	Configure local testing
	Run your local game

	Deploy a scenario
	Scenarios
	Update AWS credentials
	Update account bootstrap
	Deploy a game scenario
	Deleting resources created by the scenario

	Integrate games with Amazon GameLift in Unity
	Import and run a sample game
	Prerequisites
	Build and run the sample game server
	Build and run the sample game client
	Test the sample game locally
	Sample game server logs
	Sample Amazon GameLift Local logs

	Shut down server process

	Integrating games with the Amazon GameLift plugin for Unreal Engine
	About the plugin
	Plugin workflow
	Plugin for Unreal: Install and set up plugin components
	Before you start
	Add the plugin to your game project

	Plugin for Unreal: Set up an AWS user profile
	Plugin for Unreal: Set up local testing with Amazon GameLift Anywhere
	Step 1: Set your profile
	Step 2: Set up your game code
	Integrate your server game mode
	Integrate your client game map
	Build your game components

	Step 3: Connect to an Anywhere fleet
	Step 4: Register your workstation
	Step 5: Generate auth token
	Step 6: Launch game

	Plugin for Unreal: Deploy your game to managed EC2 fleets
	Step 1: Set your profile
	Step 2: Set up your game code
	Step 3: Select deployment scenario
	Step 4: Set game parameters
	Step 5: Deploy scenario
	Step 6: Launch client

	Set up for iterative development with Amazon GameLift Anywhere
	Build a cloud-based test environment
	Set up iterative testing with Amazon EC2
	Transition your game to Amazon GameLift managed fleets

	Set up local testing with Amazon GameLift Anywhere
	Set up a local Anywhere fleet
	Update and install your game server
	Test game session activity
	Iterate on your game server
	Transition your game to Amazon GameLift managed fleets

	Work with the Amazon GameLift Agent and Amazon GameLift Anywhere
	About the Agent

	Test your integration using Amazon GameLift Local
	Set up Amazon GameLift local
	Test a game server
	Test a game server and client
	Variations with local

	Adding FlexMatch matchmaking
	Get fleet data for a Amazon GameLift instance
	Integrating games with Amazon GameLift Realtime Servers
	What are Realtime servers?
	How Realtime Servers manages game sessions
	How Realtime clients and servers interact
	Customizing a Realtime server
	Deploying and updating Realtime Servers
	Integrating a game client for Realtime Servers
	Find or create game sessions and player sessions
	Connect to games on Realtime Servers
	Game client examples
	Basic realtime client (C#)

	Creating a Realtime script
	Manage game session life-cycle (required)
	Add server-side game logic (optional)
	Realtime Servers script example
	

	Managing hosting with Amazon GameLift containers
	Key features
	Using container fleets during public preview
	How containers work in Amazon GameLift
	Container fleet components
	Common architectures
	Core concepts
	Container group packing
	Game servers and the Amazon GameLift Agent
	Scaling fleet capacity
	Game client/server connections

	Development roadmap for Amazon GameLift containers
	Integrate your game with Amazon GameLift
	Integration tools
	Build your game server for Linux
	Test your integration locally

	Prepare a container image with your game server software
	Set up your working directory
	Build your container image
	Dockerfile template for your game server
	Dockerfile for the SimpleServer sample

	Push your container image to Amazon ECR

	Design an Amazon GameLift container fleet
	Architect your fleet container structure
	Set resource limits
	Designate essential containers
	Configure network connections
	Set up health checks for containers
	Set container dependencies
	Configure a container fleet

	Create container group definitions for an Amazon GameLift container fleet
	Before you start
	Clone a container group definition
	Create a replica container group definition
	Create a container definition JSON file
	Example: Essential replica container definition

	Create a Amazon GameLift container fleet
	Manage your Amazon GameLift container fleets
	View resources
	Update resources
	Delete resources

	Scaling Amazon GameLift container fleets

	Managing Amazon GameLift hosting resources
	Uploading builds and scripts to Amazon GameLift
	Upload a custom server build to Amazon GameLift
	Package your game build files
	Create a Amazon GameLift build
	Create a build from a file directory
	Create a build with files in Amazon S3

	Update your build files
	Add a build install script

	Upload a Realtime Servers script to Amazon GameLift
	Package script files
	Upload script files from a local directory
	Upload script files from Amazon S3
	Update script files

	Setting up Amazon GameLift fleets
	Amazon GameLift fleet design guide
	Choosing Amazon GameLift compute resources
	Available hardware
	Fleet location
	On-Demand Instances versus Spot Instances
	Operating systems
	Instance types
	Service quotas

	Manage how Amazon GameLift launches game servers
	How a fleet manages multiple processes
	Optimize a fleet for multiple processes
	Choose the number of processes per instance

	Use Spot Instances with Amazon GameLift

	Create a new Amazon GameLift fleet
	How Amazon GameLift fleet creation works
	Create a Amazon GameLift managed fleet
	Create an Amazon GameLift Anywhere fleet
	Create a custom location
	Create a fleet
	Register your compute
	Run a server process
	Create game sessions
	Migrate to managed EC2

	Manage your Amazon GameLift fleets
	Update a fleet configuration
	Update fleet locations
	Delete a fleet

	Add an alias to a Amazon GameLift fleet
	Create a new alias
	Edit an alias

	Debug Amazon GameLift fleet issues
	Fleet creation issues
	Server process issues
	Fleet deletion issues
	Realtime Servers fleet issues

	Remotely connect to Amazon GameLift fleet instances
	Gather instance data
	Connect to an instance (server SDK 5)
	Connect to an instance (server SDK 4.x or earlier)
	View files on remote instances

	Scaling Amazon GameLift hosting capacity
	To manage fleet capacity in the console
	Set Amazon GameLift capacity limits
	To set capacity limits

	Manually set capacity for a Amazon GameLift fleet
	Suspend auto scaling
	To manually set fleet capacity

	Auto-scale fleet capacity with Amazon GameLift
	Target-based auto scaling
	To set target-based auto scaling

	Auto scale with rule-based policies
	Manage rule-based policies
	Syntax for auto scaling rules
	Tips for rule-based auto scaling
	Use multiple policies
	Set maximum and minimum capacity
	Track metrics after a change in capacity

	Setting up Amazon GameLift queues for game session placement
	Design a game session queue
	Define your queue's scope
	Create a player latency policy
	Build a multi-location queue
	Prioritize game session placement
	Design multiple queues as needed
	Evaluate queue metrics

	Best practices for Amazon GameLift game session queues
	Best practices for queues with any fleet type
	Best practices for queues with Spot fleets

	Create a game session queue
	Set up event notification for game session placement
	Set up an SNS topic
	Set up an SNS topic with server-side encryption
	Set up EventBridge

	Tutorial: Set up a game session queue for Spot Instances
	Step 1: Define the scope of your queue
	Step 2: Create Spot fleet infrastructure
	Step 3: Assign aliases for each fleet
	Step 4: Create a queue with destinations
	Step 5: Add latency limits to the queue
	Summary

	Manage resources using AWS CloudFormation
	Best practices
	Using AWS CloudFormation stacks
	Stacks for a single location
	Stacks for multiple regions

	Updating builds
	Deploy build updates automatically
	Deploy build updates manually
	How rollbacks work

	VPC peering for Amazon GameLift
	To set up VPC peering for an existing fleet
	To set up VPC peering with a new fleet
	Troubleshooting VPC peering issues

	Viewing your game data in the console
	View your current Amazon GameLift status
	View your builds
	Build details

	View your scripts
	Script details

	View your fleets
	View fleet details
	Details
	Metrics
	Events
	Scaling
	Locations
	Game sessions

	View data on game and player sessions
	Details
	Player sessions
	Player information

	View your aliases
	Alias details

	View your queues
	View queue details
	Details
	Metrics
	Destinations
	Session placement

	Monitoring Amazon GameLift
	Monitor Amazon GameLift with Amazon CloudWatch
	Dimensions for Amazon GameLift metrics
	Amazon GameLift metrics for fleets
	Instances
	Server processes
	Game sessions
	Player sessions

	Amazon GameLift metrics for queues
	Amazon GameLift metrics for matchmaking
	Matchmaking configurations
	Matchmaking rules

	Amazon GameLift metrics for FleetIQ

	Logging Amazon GameLift API calls with AWS CloudTrail
	Amazon GameLift information in CloudTrail
	Understanding Amazon GameLift log file entries

	Logging server messages in Amazon GameLift
	Logging server messages (custom servers)
	Configuring logging for custom servers
	Writing to logs
	Accessing server logs

	Logging server messages (Realtime Servers)
	Logging messages in your server script
	Accessing server logs
	Adjusting the logging level

	Security in Amazon GameLift
	Data protection in Amazon GameLift
	Encryption at rest
	Encryption in transit
	Internetwork traffic privacy

	Identity and access management for Amazon GameLift
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon GameLift works with IAM
	Identity-based policies for Amazon GameLift
	Identity-based policy examples for Amazon GameLift

	Resource-based policies within Amazon GameLift
	Policy actions for Amazon GameLift
	Policy resources for Amazon GameLift
	Policy condition keys for Amazon GameLift
	ACLs in Amazon GameLift
	ABAC with Amazon GameLift
	Using temporary credentials with Amazon GameLift
	Cross-service principal permissions for Amazon GameLift
	Service roles for Amazon GameLift
	Service-linked roles for Amazon GameLift

	Identity-based policy examples for Amazon GameLift
	Policy best practices
	Using the Amazon GameLift console
	Allow users to view their own permissions
	Allow player access for game sessions
	Allow access to one Amazon GameLift queue
	View Amazon GameLift fleets based on tags
	Access a game build file in Amazon S3

	Troubleshooting Amazon GameLift identity and access
	I am not authorized to perform an action in Amazon GameLift
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amazon GameLift resources

	Logging and monitoring with Amazon GameLift
	Compliance validation for Amazon GameLift
	Resilience in Amazon GameLift
	Infrastructure security in Amazon GameLift
	Configuration and vulnerability analysis in Amazon GameLift
	Security best practices for Amazon GameLift
	Don't open ports to the Internet
	Learn more

	Amazon GameLift reference guides
	Amazon GameLift service API reference (AWS SDK)
	Set up and manage Amazon GameLift hosting resources
	Prepare game servers for deployment
	Set up computing resources for hosting
	Set up queues for optimal game session placement
	Manage aliases
	Access hosting instances
	Set up VPC peering

	Start game sessions and join players

	Amazon GameLift server SDK reference
	Migrate to Amazon GameLift server SDK 5.x
	About Amazon GameLift server SDK 5
	Update your game code

	Amazon GameLift server SDK reference for C++
	Amazon GameLift server SDK 5.x reference for C++
	Amazon GameLift server SDK (C++) 5.x reference: Actions
	GetSdkVersion()
	Syntax
	Return value
	Example

	InitSDK()
	Syntax
	Return value
	Example

	InitSDK()
	Syntax
	Parameters
	Return value
	Example

	ProcessReady()
	Syntax
	Parameters
	Return value
	Example

	ProcessReadyAsync()
	Syntax
	Parameters
	Return value
	Example

	ProcessEnding()
	Syntax
	Return value
	Example

	ActivateGameSession()
	Syntax
	Return value
	Example

	UpdatePlayerSessionCreationPolicy()
	Syntax
	Parameters
	Return value
	Example

	GetGameSessionId()
	Syntax
	Parameters
	Return value
	Example

	GetTerminationTime()
	Syntax
	Return value
	Example

	AcceptPlayerSession()
	Syntax
	Parameters
	Return value
	Example

	RemovePlayerSession()
	Syntax
	Parameters
	Return value
	Example

	DescribePlayerSessions()
	Syntax
	Parameters
	Return value
	Example

	StartMatchBackfill()
	Syntax
	Parameters
	Return value
	Example

	StopMatchBackfill()
	Syntax
	Parameters
	Return value
	Example

	GetComputeCertificate()
	Syntax
	Return value
	Example

	GetFleetRoleCredentials()
	Syntax
	Parameters
	Return value
	Example

	Destroy()
	Syntax
	Parameters
	Return value
	Example

	Amazon GameLift server SDK (C++) reference: Data types
	LogParameters
	ProcessParameters
	UpdateGameSession
	GameSession
	ServerParameters
	StartMatchBackfillRequest
	Player
	DescribePlayerSessionsRequest
	StopMatchBackfillRequest
	AttributeValue
	GetFleetRoleCredentialsRequest
	AwsLongOutcome
	AwsStringOutcome
	DescribePlayerSessionsOutcome
	DescribePlayerSessionsResult
	GenericOutcome
	GenericOutcomeCallable
	PlayerSession
	StartMatchBackfillOutcome
	StartMatchBackfillResult
	GetComputeCertificateOutcome
	GetComputeCertificateResult
	GetFleetRoleCredentialsOutcome
	GetFleetRoleCredentialsResult
	InitSDKOutcome
	GameLiftError
	Enums

	Amazon GameLift C++ server SDK 3.x reference
	Amazon GameLift server SDK (C++) reference: Actions
	AcceptPlayerSession()
	Syntax
	Parameters
	Return value
	Example

	ActivateGameSession()
	Syntax
	Parameters
	Return value
	Example

	DescribePlayerSessions()
	Syntax
	Parameters
	Return value
	Example

	GetGameSessionId()
	Syntax
	Parameters
	Return value
	Example

	GetInstanceCertificate()
	Syntax
	Parameters
	Return value
	Example

	GetSdkVersion()
	Syntax
	Parameters
	Return value
	Example

	GetTerminationTime()
	Syntax
	Parameters
	Return value
	Example

	InitSDK()
	Syntax
	Parameters
	Return value
	Example

	ProcessEnding()
	Syntax
	Parameters
	Return value
	Example

	ProcessReady()
	Syntax
	Parameters
	Return value
	Example

	ProcessReadyAsync()
	Syntax
	Parameters
	Return value
	Example

	RemovePlayerSession()
	Syntax
	Parameters
	Return value
	Example

	StartMatchBackfill()
	Syntax
	Parameters
	Return value
	Example

	StopMatchBackfill()
	Syntax
	Parameters
	Return value
	Example

	TerminateGameSession()
	Syntax
	Parameters
	Return value

	UpdatePlayerSessionCreationPolicy()
	Syntax
	Parameters
	Return value
	Example

	Destroy()
	Syntax
	Parameters
	Return value
	Example

	Amazon GameLift server SDK (C++) reference: Data types
	DescribePlayerSessionsRequest
	Contents

	LogParameters
	Contents

	ProcessParameters
	Contents

	StartMatchBackfillRequest
	Contents

	StopMatchBackfillRequest
	Contents

	Amazon GameLift server SDK reference for C#
	Amazon GameLift server SDK 5.x reference for C# and Unity
	Amazon GameLift server SDK reference for C# and Unity: Actions
	GetSdkVersion()
	Syntax
	Return value
	Example

	InitSDK()
	Syntax
	Return value
	Example

	InitSDK()
	Syntax
	Parameters
	Return value
	Example

	ProcessReady()
	Syntax
	Parameters
	Return value
	Example

	ProcessEnding()
	Syntax
	Return value
	Example

	ActivateGameSession()
	Syntax
	Return value
	Example

	UpdatePlayerSessionCreationPolicy()
	Syntax
	Parameters
	Return value
	Example

	GetGameSessionId()
	Syntax
	Return value
	Example

	GetTerminationTime()
	Syntax
	Return value
	Example

	AcceptPlayerSession()
	Syntax
	Parameters
	Return value
	Example

	RemovePlayerSession()
	Syntax
	Parameters
	Return value
	Example

	DescribePlayerSessions()
	Syntax
	Parameters
	Return value
	Example

	StartMatchBackfill()
	Syntax
	Parameters
	Return value
	Example

	StopMatchBackfill()
	Syntax
	Parameters
	Return value
	Example

	GetComputeCertificate()
	Syntax
	Return value
	Example

	GetFleetRoleCredentials()
	Syntax
	Parameters
	Return value
	Example

	Destroy()
	Syntax
	Return value
	Example

	Amazon GameLift server SDK reference for C# and Unity: Data types
	LogParameters
	ProcessParameters
	UpdateGameSession
	GameSession
	ServerParameters
	StartMatchBackfillRequest
	Player
	DescribePlayerSessionsRequest
	StopMatchBackfillRequest
	GetFleetRoleCredentialsRequest
	AttributeValue
	AwsStringOutcome
	GenericOutcome
	DescribePlayerSessionsOutcome
	DescribePlayerSessionsResult
	PlayerSession
	StartMatchBackfillOutcome
	StartMatchBackfillResult
	GetComputeCertificateOutcome
	GetComputeCertificateResult
	GetFleetRoleCredentialsOutcome
	GetFleetRoleCredentialsResult
	AwsDateTimeOutcome
	GameLiftError
	Enums

	Amazon GameLift server SDK 4.x reference for C#
	Amazon GameLift server SDK (C#) reference: Actions
	AcceptPlayerSession()
	Syntax
	Parameters
	Return value
	Example

	ActivateGameSession()
	Syntax
	Parameters
	Return value
	Example

	DescribePlayerSessions()
	Syntax
	Parameters
	Return value
	Example

	GetGameSessionId()
	Syntax
	Parameters
	Return value
	Example

	GetInstanceCertificate()
	Syntax
	Parameters
	Return value
	Example

	GetSdkVersion()
	Syntax
	Parameters
	Return value
	Example

	GetTerminationTime()
	Syntax
	Parameters
	Return value
	Example

	InitSDK()
	Syntax
	Parameters
	Return value
	Example

	ProcessEnding()
	Syntax
	Parameters
	Return value
	Example

	ProcessReady()
	Syntax
	Parameters
	Return value
	Example

	RemovePlayerSession()
	Syntax
	Parameters
	Return value
	Example

	StartMatchBackfill()
	Syntax
	Parameters
	Return value
	Example

	StopMatchBackfill()
	Syntax
	Parameters
	Return value
	Example

	TerminateGameSession()
	Syntax
	Parameters
	Return value
	Example

	UpdatePlayerSessionCreationPolicy()
	Syntax
	Parameters
	Return value
	Example

	Amazon GameLift server SDK (C#) reference: Data types
	LogParameters
	Contents

	DescribePlayerSessionsRequest
	Contents

	ProcessParameters
	Contents
	StartMatchBackfillRequest
	Contents

	StopMatchBackfillRequest
	Contents

	Amazon GameLift server SDK reference for Go
	Amazon GameLift server SDK (Go) reference: Actions
	GetSdkVersion()
	Syntax
	Return value
	Example

	InitSDK()
	Syntax
	Parameters
	Return value
	Example

	ProcessReady()
	Syntax
	Parameters
	Return value
	Example

	ProcessEnding()
	Syntax
	Return value
	Example

	ActivateGameSession()
	Syntax
	Return value
	Example

	UpdatePlayerSessionCreationPolicy()
	Syntax
	Parameters
	Return value
	Example

	GetGameSessionId()
	Syntax
	Parameters
	Return value
	Example

	GetTerminationTime()
	Syntax
	Return value
	Example

	AcceptPlayerSession()
	Syntax
	Parameters
	Return value
	Example

	RemovePlayerSession()
	Syntax
	Parameters
	Return value
	Example

	DescribePlayerSessions()
	Syntax
	Parameters
	Return value
	Example

	StartMatchBackfill()
	Syntax
	Parameters
	Return value
	Example

	StopMatchBackfill()
	Syntax
	Parameters
	Return value
	Example

	GetComputeCertificate()
	Syntax
	Return value
	Example

	GetFleetRoleCredentials()
	Syntax
	Parameters
	Return value
	Example

	Destroy()
	Syntax
	Return value
	Example

	Amazon GameLift server SDK (Go) reference: Data types
	LogParameters
	ProcessParameters
	UpdateGameSession
	GameSession
	ServerParameters
	StartMatchBackfillRequest
	Player
	DescribePlayerSessionsRequest
	StopMatchBackfillRequest
	GetFleetRoleCredentialsRequest

	Amazon GameLift server SDK reference for Unreal Engine
	Amazon GameLift Unreal Engine server SDK 5.x reference
	Amazon GameLift server SDK (Unreal) 5.x reference: Actions
	GetSdkVersion()
	Syntax
	Return value
	Example

	InitSDK()
	Syntax
	Return value
	Example

	InitSDK()
	Syntax
	Parameters
	Return value
	Example

	ProcessReady()
	Syntax
	Parameters
	Return value
	Example

	ProcessEnding()
	Syntax
	Return value
	Example

	ActivateGameSession()
	Syntax
	Return value
	Example

	UpdatePlayerSessionCreationPolicy()
	Syntax
	Parameters
	Return value
	Example

	GetGameSessionId()
	Syntax
	Parameters
	Return value
	Example

	GetTerminationTime()
	Syntax
	Return value
	Example

	AcceptPlayerSession()
	Syntax
	Parameters
	Return value
	Example

	RemovePlayerSession()
	Syntax
	Parameters
	Return value
	Example

	DescribePlayerSessions()
	Syntax
	Parameters
	Return value
	Example

	StartMatchBackfill()
	Syntax
	Parameters
	Return value
	Example

	StopMatchBackfill()
	Syntax
	Parameters
	Return value
	Example

	GetComputeCertificate()
	Syntax
	Return value
	Example

	GetFleetRoleCredentials()
	Syntax
	Parameters
	Return value
	Example

	Amazon GameLift server SDK (Unreal) reference: Data types
	FProcessParameters
	UpdateGameSession
	GameSession
	FServerParameters
	FStartMatchBackfillRequest
	FPlayer
	FGameLiftDescribePlayerSessionsRequest
	FStopMatchBackfillRequest
	FAttributeValue
	FGameLiftGetFleetRoleCredentialsRequest
	FGameLiftLongOutcome
	FGameLiftStringOutcome
	FGameLiftDescribePlayerSessionsOutcome
	FGameLiftDescribePlayerSessionsResult
	FGenericOutcome
	FGameLiftPlayerSession
	FGameLiftGetComputeCertificateOutcome
	FGameLiftGetComputeCertificateResult
	FGameLiftGetFleetRoleCredentialsOutcome
	FGetFleetRoleCredentialsResult
	FGameLiftError
	Enums

	Amazon GameLift Unreal Engine server SDK 3.x reference
	Amazon GameLift server SDK reference for Unreal Engine: Actions
	AcceptPlayerSession()
	Syntax
	Parameters
	Return value

	ActivateGameSession()
	Syntax
	Parameters
	Return value

	DescribePlayerSessions()
	Syntax
	Parameters
	Return value

	GetGameSessionId()
	Syntax
	Parameters
	Return value

	GetInstanceCertificate()
	Syntax
	Parameters
	Return value

	GetSdkVersion()
	Syntax
	Parameters
	Return value
	Example

	InitSDK()
	Syntax
	Parameters
	Return value

	ProcessEnding()
	Syntax
	Parameters
	Return value

	ProcessReady()
	Syntax
	Parameters
	Return value
	Example

	RemovePlayerSession()
	Syntax
	Parameters
	Return value

	StartMatchBackfill()
	Syntax
	Parameters
	Return value

	StopMatchBackfill()
	Syntax
	Parameters
	Return value
	

	TerminateGameSession()
	Syntax
	Parameters
	Return value

	UpdatePlayerSessionCreationPolicy()
	Syntax
	Parameters
	Return value

	Amazon GameLift server SDK reference for Unreal Engine: Data types
	FDescribePlayerSessionsRequest
	Contents

	FProcessParameters
	Contents

	FStartMatchBackfillRequest
	Contents

	FStopMatchBackfillRequest
	Contents

	Game session placement events
	Placement event syntax
	PlacementFulfilled
	Example

	PlacementCancelled
	Example

	PlacementTimedOut
	Example

	PlacementFailed
	Example

	Amazon GameLift Realtime Servers reference
	Realtime Servers client API (C#) reference
	Realtime Servers client API (C#) reference: Actions
	Client()
	Syntax
	Parameters
	Return value

	Connect()
	Syntax
	Parameters
	Return value

	Disconnect()
	Syntax
	Parameters
	Return value

	NewMessage()
	Syntax
	Parameters
	Return value

	SendMessage()
	Syntax
	Parameters
	Return value

	JoinGroup()
	Syntax
	Parameters
	Return value

	LeaveGroup()
	Syntax
	Parameters
	Return value

	RequestGroupMembership()
	Syntax
	Parameters
	Return value

	Realtime Servers client API (C#) reference: Asynchronous callbacks
	OnOpen()
	Syntax
	Parameters
	Return value

	OnClose()
	Syntax
	Parameters
	Return value

	OnError()
	Syntax
	Parameters
	Return value

	OnDataReceived()
	Syntax
	Parameters
	Return value

	OnGroupMembershipUpdated()
	Syntax
	Parameters
	Return value

	Realtime Servers client API (C#) reference: Data types
	ClientConfiguration
	Contents

	ConnectionToken
	Contents

	RTMessage
	Contents

	DataReceivedEventArgs
	Contents

	GroupMembershipEventArgs
	Contents

	Enums

	Amazon GameLift Realtime Servers script reference
	Script callbacks for Realtime Servers
	Init
	Syntax

	onMessage
	Syntax

	onHealthCheck
	Syntax

	onStartGameSession
	Syntax

	onProcessTerminate
	Syntax

	onPlayerConnect
	Syntax

	onPlayerAccepted
	Syntax

	onPlayerDisconnect
	Syntax

	onProcessStarted
	Syntax

	onSendToPlayer
	Syntax

	onSendToGroup
	Syntax

	onPlayerJoinGroup
	Syntax

	onPlayerLeaveGroup
	Syntax

	Realtime Servers interface
	getPlayers()
	Syntax

	broadcastGroupMembershipUpdate()
	Syntax

	getServerId()
	Syntax

	getAllPlayersGroupId()
	Syntax

	processEnding()
	Syntax

	getGameSessionId()
	Syntax

	getLogger()
	Syntax

	sendMessage()
	Syntax

	sendGroupMessage()
	Syntax

	sendReliableMessage()
	Syntax

	sendReliableGroupMessage()
	Syntax

	newTextGameMessage()
	Syntax

	newBinaryGameMessage()
	Syntax

	Player object
	player.peerId
	player.playerSessionId

	getPayloadAsText()
	Syntax

	gameMessage.opcode
	gameMessage.payload
	gameMessage.sender
	gameMessage.reliable
	Configuration object
	configuration.maxPlayers
	configuration.pingIntervalTime

	Generating Amazon GameLift pricing estimates
	Estimate Amazon GameLift hosting
	Amazon GameLift instances
	Data transfer out (DTO)

	Estimate Amazon GameLift standalone FlexMatch

	Quotas and supported Regions
	Amazon GameLift release notes
	SDK versions
	Previous versions

	Release notes
	April 24, 2024: Amazon GameLift launches container fleets
	February 13, 2024: Amazon GameLift launches improvements to SDKs, and simplifies installation of the Amazon GameLift plugin for Unreal Engine
	December 14, 2023: Amazon GameLift adds ability to update the game properties of active game sessions
	November 21, 2023: Amazon GameLift launches support for Infrastructure as Code tools like Terraform and Pulumi powered by AWS Cloud Control API
	November 16, 2023: Amazon GameLift updates standalone plugin for Unity
	November 2, 2023: Amazon GameLift adds support for shared credentials
	September 28, 2023: Amazon GameLift releases new standalone plugin for Unreal Engine
	August 17, 2023: Amazon GameLift offers game server hosting with AWS Graviton processors
	July 27, 2023: Amazon GameLift releases server SDK 5.1.0 with added support for Unity development
	July 13, 2023: Amazon GameLift adds fleet hardware metrics
	June 29, 2023: Amazon GameLift launches support for Amazon Linux 2023
	May 25, 2023: Amazon GameLift FleetIQ adds filter to exclude game session placements on draining instances
	May 16, 2023: Amazon GameLift supports cost allocation tagging for fleets
	April 20, 2023: Amazon GameLift launches support for Windows Server 2016
	April 13, 2023: Amazon GameLift launches server SDK 5.x for Unreal
	March 14, 2023: Amazon GameLift launches a new console experience
	February 14, 2023: Amazon GameLift now supports server side encryption for Amazon SNS topics
	February 9, 2023: Amazon GameLift server SDK supports .NET 6 with C#10
	January 31, 2023: Amazon GameLift server SDK supports the Go language
	December 1, 2022: Amazon GameLift launches Amazon GameLift Anywhere and Amazon GameLift Server SDK 5.0
	August 25, 2022: Amazon GameLift launches support for Local Zones
	June 28, 2022: Amazon GameLift launches a new opt-in console experience
	February 15, 2022: FlexMatch adds compound rule and additional improvements
	October 28, 2021: Amazon GameLift adds support for multi-Region fleets in the Asia Pacific (Osaka) Region; Amazon GameLift FleetIQ adds support for AWS Graviton2 processors
	September 20, 2021: Amazon GameLift releases plugin for Unity
	June 30, 2021: FlexMatch adds batchDistance rule
	June 3, 2021: Amazon GameLift realtime client SDK and server SDK updates
	March 23, 2021: Amazon GameLift adds notifications to game session placement
	March 16, 2021: Amazon GameLift adds multi-region fleets, six new regions
	February 9, 2021: Amazon GameLift extends support for AMD instances, standalone FlexMatch
	December 22, 2020: Amazon GameLift server SDK supports Unreal Engine 4.25 and Unity 2020
	November 24, 2020: Amazon GameLift FlexMatch now available for games hosted anywhere
	November 24, 2020: AMD instances now available on Amazon GameLift
	November 11, 2020: Version update to Amazon GameLift server SDK
	November 5, 2020: New FlexMatch algorithm customizations
	September 17, 2020: Amazon GameLift updates server SDK
	August 27, 2020: Amazon GameLift FleetIQ for game hosting with Amazon EC2 (general availability)
	April 16, 2020: Amazon GameLift updates server SDK for Unity and Unreal Engine
	April 2, 2020: Amazon GameLift FleetIQ available for game hosting on EC2 (public preview)
	December 19, 2019: Improved AWS resource management for Amazon GameLift resources
	November 14, 2019: New AWS CloudFormation templates, updates in China (Beijing) Region

	AWS Glossary

