
User Guide

AWS Glue

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Glue User Guide

AWS Glue: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Glue User Guide

Table of Contents

What is AWS Glue? .. 1
AWS Glue features ... 2
Learning about innovations in AWS Glue .. 3
Getting started with AWS Glue ... 3
Accessing AWS Glue ... 4
Related services ... 4

How it works .. 5
Serverless ETL jobs run in isolation ... 6
Concepts ... 7

AWS Glue terminology ... 8
Components .. 11

AWS Glue console ... 12
AWS Glue Data Catalog ... 12
AWS Glue crawlers and classifiers ... 13
AWS Glue ETL operations ... 13
Streaming ETL in AWS Glue ... 13
The AWS Glue jobs system ... 14
Visual ETL components ... 14

AWS Glue for Spark and AWS Glue for Ray ... 20
What is AWS Glue for Ray? .. 21

Converting semi-structured schemas to relational schemas ... 22
AWS Glue types .. 24

AWS Glue Data Catalog Types ... 24
Types in AWS Glue with Spark scripts .. 24
AWS Glue Crawler Types ... 25

Getting started .. 26
Overview of using AWS Glue ... 26
Setting up IAM permissions ... 28

Next steps ... 33
IAM permissions for using the visual ETL .. 33
Getting started with notebooks in AWS Glue Studio .. 44

Setting up usage profiles ... 47
Managing usage profiles ... 48
Usage profiles and jobs ... 60

iii

AWS Glue User Guide

Getting started with the AWS Glue Data Catalog ... 60
Overview ... 61
Step 1: Create a database ... 61
Step 2. Create a table .. 63
Next steps ... 64

Setting up network access to data stores ... 67
Setting up a VPC to connect to PyPI for AWS Glue .. 68
Setting up DNS in your VPC .. 70

Setting up encryption ... 71
Setting up networking for development .. 75

Setting up your network for a development endpoint ... 75
Setting up Amazon EC2 for a notebook server .. 77

Data discovery and cataloging ... 79
Populating the Data Catalog ... 81

Using an AWS Glue crawler .. 82
Defining metadata manually ... 180
Integrating with other AWS services .. 198
Data Catalog settings .. 200

Populating and managing transactional tables .. 203
Creating Iceberg tables ... 203
Optimizing Iceberg tables ... 207

Managing the Data Catalog ... 219
Updating the schema and adding new partitions ... 220
Optimizing query performance using column statistics ... 227
Encrypting your Data Catalog ... 239
Securing your Data Catalog using Lake Formation ... 240

Accessing the Data Catalog ... 240
Data Catalog best practices ... 241
AWS Glue Schema Registry ... 242

Schemas .. 243
Registries .. 245
Schema versioning and compatibility .. 246
Open source Serde libraries ... 251
Quotas of the Schema Registry .. 251
How it works ... 252
Getting started .. 254

iv

AWS Glue User Guide

Integrating with AWS Glue Schema Registry ... 276
Migrating to AWS Glue Schema Registry .. 302

Connecting to data .. 304
AWS Glue connection properties .. 305

Required connection properties .. 306
JDBC connection properties ... 307
MongoDB and MongoDB Atlas connection properties ... 312
Salesforce connection properties .. 312
Snowflake connection ... 313
Vertica connection .. 314
SAP HANA connection ... 315
Azure SQL connection ... 316
Teradata Vantage connection .. 316
OpenSearch Service connection .. 317
Azure Cosmos connection ... 318
SSL connection properties .. 319
Kafka connection properties for authentication .. 321
Google BigQuery connection ... 322
Vertica connection .. 314

Storing connection credentials in AWS Secrets Manager .. 323
Adding an AWS Glue connection ... 324

Connecting to Redshift .. 324
Connecting to Azure Cosmos DB ... 329
Connecting to Azure SQL .. 332
Connecting to BigQuery .. 335
Connecting to MongoDB ... 339
Connecting to OpenSearch Service ... 343
Connecting to Salesforce ... 346
Connecting to SAP HANA .. 358
Connecting to Snowflake .. 362
Connecting to Teradata ... 366
Connecting to Vertica .. 369
Using connectors and connections ... 373
Connecting to data sources .. 401
Adding a JDBC connection using your own JDBC drivers .. 409

Testing an AWS Glue connection ... 413

v

AWS Glue User Guide

Configuring AWS calls to go through your VPC .. 414
Connecting to a JDBC data store in a VPC .. 415

Accessing VPC Data Using elastic network interfaces .. 416
Elastic network interface properties .. 417

Using a MongoDB or MongoDB Atlas connection .. 417
Crawling an Amazon S3 data store using a VPC endpoint ... 418

Prerequisites .. 418
Creating the connection to Amazon S3 ... 419
Testing the connection to Amazon S3 ... 422
Creating a crawler for an Amazon S3 data store .. 423
Creating a crawler for Amazon S3 backed Data Catalog tables ... 426
Running a crawler .. 427
Troubleshooting .. 427

Troubleshooting connection issues .. 427
Tutorial: Using the AWS Glue Connector for Elasticsearch .. 428

Prerequisites .. 429
Step 1: (Optional) Create an AWS secret for your OpenSearch cluster information 429
Step 2: Subscribe to the connector .. 430
Step 3: Activate the connector in AWS Glue Studio and create a connection 431
Step 4: Configure an IAM role for your ETL job ... 432
Step 5: Create a job that uses the OpenSearch connection .. 432
Step 6: Run the job .. 434

Building AWS Glue jobs with interactive sessions ... 435
Overview of AWS Glue interactive sessions ... 435

Limitations .. 436
Getting started with AWS Glue interactive sessions .. 436

Prerequisites for setting up interactive sessions locally ... 436
Installing Jupyter and AWS Glue interactive sessions Jupyter kernels 436
Running Jupyter .. 437
Configuring session credentials and region ... 437
Upgrading from the interactive sessions preview ... 439
Using interactive sessions with SageMaker Studio .. 439
Using interactive sessions with Microsoft Visual Studio Code ... 439

Configuring AWS Glue interactive sessions for Jupyter and AWS Glue Studio notebooks 443
Introduction to Jupyter Magics .. 443
Magics supported by AWS Glue interactive sessions for Jupyter ... 443

vi

AWS Glue User Guide

Naming sessions ... 460
Specifying an IAM role for interactive sessions ... 460
Configuring sessions with named profiles ... 461

AWS Glue for Ray interactive sessions (preview) .. 462
Ray interactive sessions in the AWS Glue Studio Console ... 462
Ray interactive sessions using the Jupyter Kernel ... 463
Ray interactive session timeout defaults ... 464
Magics supported by AWS Glue Ray interactive sessions ... 464

Interactive sessions with IAM .. 465
IAM principals used with interactive sessions .. 466
Setting up a client principal ... 466
Setting up a runtime role ... 466
Make your session private with TagOnCreate ... 468
IAM policy considerations ... 473

Converting a script or notebook into an AWS Glue job ... 473
AWS Glue interactive sessions for streaming .. 474

Switching streaming session type ... 474
Sampling input stream for interactive development ... 474
Running streaming applications in interactive sessions .. 475

Developing and testing locally ... 476
Developing using AWS Glue Studio .. 477
Developing using interactive sessions .. 478
Developing using a Docker image .. 478
Developing using the AWS Glue ETL library ... 489

Dev endpoints ... 497
Migrating from dev endpoints to interactive sessions .. 498
Developing scripts using development endpoints ... 500
Managing notebooks ... 528

Building visual ETL jobs with AWS Glue Studio .. 530
Signing in to the console ... 530
Next steps for creating a job in AWS Glue Studio .. 530
Visual ETL with AWS Glue Studio .. 531

Starting jobs in AWS Glue Studio ... 531
Job editor features ... 533
Editing AWS Glue managed data transform nodes ... 540
Custom visual transforms .. 603

vii

AWS Glue User Guide

Using Data Lake frameworks with AWS Glue Studio ... 620
Configuring data target nodes .. 631
Editing or uploading a job script .. 636
Changing the parent nodes for a node in the job diagram ... 640
Deleting nodes from the job diagram ... 641
Adding source and target parameters to the AWS Glue Data Catalog node 645
Using Git version control systems in AWS Glue .. 647

Authoring code with AWS Glue Studio notebooks ... 655
Overview of using notebooks .. 656
Creating an ETL job using notebooks in AWS Glue Studio .. 657
Notebook editor components .. 658
Saving your notebook and job script ... 659
Managing notebook sessions ... 660
Using CodeWhisperer with AWS Glue Studio notebooks .. 661

View job runs .. 662
Accessing the job monitoring dashboard .. 662
Overview of the job monitoring dashboard ... 662
Job runs view .. 662
Viewing the job run logs .. 666
Viewing the details of a job run ... 667
Viewing Amazon CloudWatch metrics for a Spark job run .. 670
Viewing Amazon CloudWatch metrics for a Ray job run .. 670

Detect and process sensitive data .. 672
Choosing how you want the data to be scanned ... 673
Choosing the PII entities to detect ... 674
Specifying the level of detection sensitivity ... 678
Choosing what to do with identified PII data ... 678
Adding fine-grained action overrides ... 679

Managing jobs .. 680
Start a job run .. 681
Schedule job runs ... 681
Manage job schedules ... 683
Stop job runs ... 683
View your jobs ... 684
View information for recent job runs .. 684
View the job script ... 685

viii

AWS Glue User Guide

Modify the job properties ... 686
Save the job ... 688
Clone a job ... 691
Delete jobs ... 691

Working with jobs ... 693
AWS Glue versions ... 693

AWS Glue versions ... 693
Running Spark ETL jobs with reduced startup times .. 707
Migrating AWS Glue for Spark jobs to AWS Glue version 3.0 ... 712
Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 ... 720
Migrating from AWS Glue for Ray (preview) to AWS Glue for Ray ... 735
AWS Glue version support policy .. 735

Working with Spark jobs .. 737
Job parameters ... 738
Spark and PySpark jobs .. 747
Streaming ETL jobs .. 879
Record matching with FindMatches ... 893
Migrate Spark programs ... 927

Working with Ray jobs .. 934
Getting started with AWS Glue for Ray ... 934
Supported Ray runtime environments ... 936
Accounting for workers in Ray jobs .. 936
Ray job parameters .. 937
Ray job metrics ... 940

Configuring Python shell job properties .. 941
Limitations .. 942
Defining job properties for Python shell jobs .. 942
Supported libraries for Python shell jobs ... 944
Providing your own Python library .. 946
Use AWS CloudFormation with Python shell jobs in AWS Glue .. 949

Monitoring ... 950
AWS tags .. 951
Automating with CloudWatch Events .. 956
AWS Glue resource monitoring ... 958
Logging using CloudTrail .. 961

Job run statuses ... 964

ix

AWS Glue User Guide

AWS Glue Streaming ... 968
Use cases for streaming ... 968
What are the benefits of using AWS Glue Streaming? .. 969
When to use AWS Glue Streaming? ... 970
Supported data sources ... 971
Supported data targets .. 971
Tutorial: Build your first streaming workload using AWS Glue Studio .. 971

Prerequisites .. 972
Consume streaming data from Amazon Kinesis .. 972

Tutorial: Build your first streaming workload using AWS Glue Studio notebooks 983
Prerequisites .. 984
Consume streaming data from Amazon Kinesis .. 984

Streaming concepts ... 991
Anatomy of a AWS Glue streaming job .. 991
Kafka connections .. 995
Kinesis connections .. 1001
Streaming options .. 1008

AWS Glue streaming autoscaling ... 1009
Enabling Auto Scaling in AWS Glue Studio .. 1009
Enabling Auto Scaling with the AWS CLI or SDK .. 1010
How it works ... 1011

Maintenance windows .. 1013
Setting up a maintenance window ... 1013
Maintenance window behavior .. 1014
Job monitoring ... 1015
Data loss handling ... 1017

Advanced AWS Glue streaming concepts .. 1018
Time considerations when processing streams .. 1018
Windowing ... 1019
Handling late data and watermarks .. 1024

Monitoring AWS Glue streaming jobs ... 1026
Visualizing metrics ... 1027
Metrics deep dive ... 1028
How to get the best performance .. 1033

AWS Glue Data Quality ... 1035
Benefits and key features .. 1035

x

AWS Glue User Guide

How it works .. 1036
Data quality for the AWS Glue Data Catalog ... 1036
Data quality for AWS Glue ETL jobs .. 1036
Comparing AWS Glue Data Quality entry points .. 1037

Considerations .. 1039
Terminology .. 1039
Limits .. 1040
Release notes for AWS Glue Data Quality ... 1040

General availability: new features .. 1040
Nov 27, 2023 (Preview) .. 1041
Mar 12, 2024 .. 1041
June 26, 2024 ... 1041

Anomaly detection in AWS Glue Data Quality .. 1041
How it works ... 1042
Using analyzers to inspect your data ... 1043
Using the DetectAnomaly Rule ... 1043
Benefits and use cases of Anomaly Detection ... 1043

IAM permissions for AWS Glue Data Quality ... 1045
IAM permissions .. 1045
IAM setup required for scheduling evaluation runs .. 1047
Example IAM policies ... 1048

Getting started with AWS Glue Data Quality for the Data Catalog .. 1051
Prerequisites .. 1052
Step-by-step example ... 1052
Generating rule recommendations ... 1053
Monitoring rule recommendations ... 1054
Editing recommended rulesets .. 1054
Creating a new ruleset .. 1056
Running a ruleset to evaluate data quality .. 1057
Viewing the data quality score and results .. 1058
Related topics ... 1059

Evaluating data quality with AWS Glue Studio ... 1059
Benefits ... 1060
Evaluating data quality for ETL jobs in AWS Glue Studio ... 1060
Data Quality rule builder .. 1065
Configuring Anomaly detection and generating insights ... 1070

xi

AWS Glue User Guide

Data Quality for ETL jobs in AWS Glue Studio notebooks ... 1074
Prerequisites .. 1075
Creating an ETL job in AWS Glue Studio .. 1075

Data Quality Definition Language (DQDL) reference ... 1080
Syntax ... 1081
Rule type reference ... 1094

Using APIs to measure and manage data quality .. 1136
Prerequisites .. 1137
Working with AWS Glue Data Quality recommendations .. 1137
Working with AWS Glue Data Quality rulesets .. 1140
Working with AWS Glue Data Quality runs .. 1143
Working with AWS Glue Data Quality results .. 1147

Setting up alerts, deployments, and scheduling .. 1148
Setting up alerts and notifications in Amazon EventBridge integration 1149
Set up alerts and notifications in CloudWatch integration ... 1156
Querying data quality results .. 1158
Deploying data quality rules ... 1162
Scheduling data quality rules .. 1162

Troubleshooting AWS Glue Data Quality errors .. 1162
Error: missing module ... 1163
Error: insufficient permissions ... 1163
Error: rulesets not unique .. 1163
Error: tables with special characters .. 1164
Error: overflow with a large ruleset ... 1164
Error: rule status is failed ... 1164
AnalysisException: Unable to verify existence of default database 1164
Provided key map not suitable for given data frames ... 1165
java.lang.RuntimeException : Failed to fetch data. ... 1165
LAUNCH ERROR: Error downloading from S3 for bucket .. 1165
InvalidInputException (status: 400): DataQuality rules cannot be parsed 1166
Error: Eventbridge is not triggering Glue DQ jobs based on the schedule I setup 1166
CustomSQL errors .. 1167
Dynamic Rules ... 1167
Exception in User Class: org.apache.spark.sql.AnalysisException:
org.apache.hadoop.hive.ql.metadata.HiveException ... 1169

xii

AWS Glue User Guide

UNCLASSIFIED_ERROR; IllegalArgumentException: Parsing Error: No rules or analyzers
provided., no viable alternative at input ... 1170

Amazon Q data integration in AWS Glue .. 1171
What is Amazon Q? .. 1171
Amazon Q data integration in AWS Glue ... 1171
Working with Amazon Q data integration ... 1172
Best practices ... 1174
Service improvement .. 1174
Considerations .. 1175
Setting up Amazon Q data integration .. 1175

Configuring IAM permissions ... 1175
Supported code generation .. 1177
Example interactions .. 1178

Amazon Q chat interactions .. 1178
AWS Glue Studio notebook interactions ... 1180

Orchestration ... 1184
Starting jobs and crawlers using triggers .. 1184

AWS Glue triggers .. 1184
Adding triggers ... 1187
Activating and deactivating triggers .. 1191

Performing complex ETL activities using blueprints and workflows .. 1192
Overview of workflows ... 1192
Creating and building out a workflow manually ... 1196
Starting a workflow with an EventBridge event ... 1200
Viewing the EventBridge events that started a workflow ... 1208
Running and monitoring a workflow ... 1209
Stopping a workflow run ... 1211
Repairing and resuming a workflow run ... 1212
Getting and setting workflow run properties .. 1218
Querying workflows using the AWS Glue API .. 1219
Blueprint and workflow restrictions ... 1224
Troubleshooting blueprint errors .. 1225
Permissions for blueprint personas and roles .. 1230

Developing blueprints .. 1234
Overview of blueprints ... 1235
Developing blueprints ... 1238

xiii

AWS Glue User Guide

Registering a blueprint ... 1263
Viewing blueprints ... 1265
Updating a blueprint ... 1267
Creating a workflow from a blueprint ... 1269
Viewing blueprint runs .. 1270

AWS CloudFormation for AWS Glue ... 1272
Sample database ... 1274
Sample database, table, partitions .. 1275
Sample grok classifier .. 1279
Sample JSON classifier ... 1280
Sample XML classifier ... 1281
Sample Amazon S3 crawler .. 1282
Sample connection .. 1284
Sample JDBC crawler .. 1286
Sample job for Amazon S3 to Amazon S3 .. 1288
Sample job for JDBC to Amazon S3 ... 1290
Sample On-Demand trigger .. 1292
Sample scheduled trigger .. 1293
Sample conditional trigger .. 1294
Sample machine learning transform ... 1295
Sample data quality ruleset .. 1296
Sample data quality ruleset with EventBridge scheduler ... 1298
Sample development endpoint .. 1300

AWS Glue programming guide ... 1302
Providing your own custom scripts ... 1302
AWS Glue for Spark .. 1303

Tutorial: Writing a Spark script ... 1303
ETL in PySpark .. 1316
ETL in Scala ... 1543
Features and optimizations .. 1627

AWS Glue for Ray .. 1871
Tutorial: Writing a Ray script ... 1871
Using Ray Core and Ray Data in AWS Glue for Ray .. 1877
Providing files and Python libraries ... 1879
Connecting to data .. 1884

Working with AWS SDKs ... 1886

xiv

AWS Glue User Guide

AWS Glue API .. 1888
Security .. 1910

 — data types — .. 1910
DataCatalogEncryptionSettings .. 1911
EncryptionAtRest .. 1911
ConnectionPasswordEncryption .. 1912
EncryptionConfiguration ... 1913
S3Encryption ... 1913
CloudWatchEncryption .. 1913
JobBookmarksEncryption ... 1914
SecurityConfiguration .. 1914
GluePolicy .. 1914
 — operations — .. 1915
GetDataCatalogEncryptionSettings (get_data_catalog_encryption_settings) 1915
PutDataCatalogEncryptionSettings (put_data_catalog_encryption_settings) 1916
PutResourcePolicy (put_resource_policy) .. 1917
GetResourcePolicy (get_resource_policy) .. 1918
DeleteResourcePolicy (delete_resource_policy) ... 1919
CreateSecurityConfiguration (create_security_configuration) ... 1920
DeleteSecurityConfiguration (delete_security_configuration) .. 1921
GetSecurityConfiguration (get_security_configuration) ... 1922
GetSecurityConfigurations (get_security_configurations) .. 1922
GetResourcePolicies (get_resource_policies) ... 1923

Catalog ... 1924
Databases ... 1924
Tables .. 1934
Partitions .. 1973
Connections ... 1999
User-defined Functions ... 2017
Importing an Athena catalog .. 2024

Table optimizer .. 2026
 — data types — .. 2026
TableOptimizer .. 2027
TableOptimizerConfiguration ... 2027
TableOptimizerRun .. 2027
RunMetrics ... 2028

xv

AWS Glue User Guide

BatchGetTableOptimizerEntry ... 2029
BatchTableOptimizer ... 2029
BatchGetTableOptimizerError .. 2030
 — operations — .. 2030
GetTableOptimizer (get_table_optimizer) ... 2031
BatchGetTableOptimizer (batch_get_table_optimizer) .. 2032
ListTableOptimizerRuns (list_table_optimizer_runs) ... 2032
CreateTableOptimizer (create_table_optimizer) .. 2034
DeleteTableOptimizer (delete_table_optimizer) .. 2035
UpdateTableOptimizer (update_table_optimizer) ... 2036

Crawlers and classifiers .. 2037
Classifiers ... 2037
Crawlers .. 2051
Column statistics .. 2079
Scheduler ... 2086

Autogenerating ETL Scripts ... 2089
 — data types — .. 2089
CodeGenNode ... 2089
CodeGenNodeArg ... 2090
CodeGenEdge .. 2090
Location .. 2091
CatalogEntry .. 2091
MappingEntry .. 2092
 — operations — .. 2092
CreateScript (create_script) .. 2093
GetDataflowGraph (get_dataflow_graph) ... 2093
GetMapping (get_mapping) ... 2094
GetPlan (get_plan) ... 2095

Visual job API ... 2096
 — data types — .. 2096
CodeGenConfigurationNode .. 2100
JDBCConnectorOptions ... 2106
StreamingDataPreviewOptions .. 2108
AthenaConnectorSource ... 2108
JDBCConnectorSource ... 2109
SparkConnectorSource .. 2110

xvi

AWS Glue User Guide

CatalogSource ... 2110
MySQLCatalogSource .. 2111
PostgreSQLCatalogSource .. 2111
OracleSQLCatalogSource .. 2112
MicrosoftSQLServerCatalogSource ... 2112
CatalogKinesisSource ... 2112
DirectKinesisSource .. 2113
KinesisStreamingSourceOptions .. 2114
CatalogKafkaSource ... 2116
DirectKafkaSource .. 2117
KafkaStreamingSourceOptions .. 2118
RedshiftSource .. 2120
AmazonRedshiftSource ... 2121
AmazonRedshiftNodeData ... 2121
AmazonRedshiftAdvancedOption ... 2123
Option ... 2124
S3CatalogSource ... 2124
S3SourceAdditionalOptions ... 2125
S3CsvSource .. 2125
DirectJDBCSource ... 2127
S3DirectSourceAdditionalOptions ... 2128
S3JsonSource .. 2128
S3ParquetSource .. 2130
S3DeltaSource ... 2131
S3CatalogDeltaSource ... 2132
CatalogDeltaSource .. 2133
S3HudiSource .. 2133
S3CatalogHudiSource .. 2134
CatalogHudiSource ... 2135
DynamoDBCatalogSource ... 2135
RelationalCatalogSource ... 2136
JDBCConnectorTarget .. 2136
SparkConnectorTarget ... 2137
BasicCatalogTarget ... 2138
MySQLCatalogTarget ... 2139
PostgreSQLCatalogTarget ... 2139

xvii

AWS Glue User Guide

OracleSQLCatalogTarget ... 2140
MicrosoftSQLServerCatalogTarget .. 2140
RedshiftTarget ... 2141
AmazonRedshiftTarget .. 2141
UpsertRedshiftTargetOptions .. 2142
S3CatalogTarget ... 2142
S3GlueParquetTarget ... 2143
CatalogSchemaChangePolicy ... 2144
S3DirectTarget .. 2144
S3HudiCatalogTarget ... 2145
S3HudiDirectTarget .. 2145
S3DeltaCatalogTarget .. 2146
S3DeltaDirectTarget ... 2147
DirectSchemaChangePolicy .. 2148
ApplyMapping ... 2149
Mapping .. 2149
SelectFields .. 2150
DropFields .. 2151
RenameField .. 2151
Spigot .. 2152
Join .. 2152
JoinColumn .. 2153
SplitFields ... 2153
SelectFromCollection ... 2154
FillMissingValues ... 2154
Filter .. 2155
FilterExpression ... 2155
FilterValue .. 2155
CustomCode .. 2156
SparkSQL .. 2156
SqlAlias ... 2157
DropNullFields ... 2158
NullCheckBoxList .. 2158
NullValueField ... 2159
Datatype ... 2159
Merge .. 2159

xviii

AWS Glue User Guide

Union ... 2160
PIIDetection ... 2160
Aggregate ... 2161
DropDuplicates .. 2162
GovernedCatalogTarget .. 2162
GovernedCatalogSource .. 2163
AggregateOperation .. 2164
GlueSchema ... 2164
GlueStudioSchemaColumn ... 2164
GlueStudioColumn ... 2165
DynamicTransform ... 2166
TransformConfigParameter .. 2166
EvaluateDataQuality .. 2167
DQResultsPublishingOptions ... 2168
DQStopJobOnFailureOptions ... 2168
EvaluateDataQualityMultiFrame ... 2169
Recipe .. 2170
RecipeReference .. 2170
SnowflakeNodeData .. 2170
SnowflakeSource .. 2173
SnowflakeTarget ... 2173
ConnectorDataSource .. 2173
ConnectorDataTarget ... 2174

Jobs ... 2175
Jobs ... 2176
Job runs .. 2201
Triggers ... 2219

Interactive sessions ... 2233
 — data types — .. 2233
Session .. 2233
SessionCommand ... 2235
Statement .. 2236
StatementOutput ... 2237
StatementOutputData ... 2237
ConnectionsList ... 2237
 — operations — .. 2238

xix

AWS Glue User Guide

CreateSession (create_session) .. 2238
StopSession (stop_session) ... 2242
DeleteSession (delete_session) .. 2242
GetSession (get_session) ... 2243
ListSessions (list_sessions) .. 2244
RunStatement (run_statement) ... 2245
CancelStatement (cancel_statement) ... 2246
GetStatement (get_statement) .. 2247
ListStatements (list_statements) ... 2248

DevEndpoints .. 2249
 — data types — .. 2249
DevEndpoint .. 2249
DevEndpointCustomLibraries ... 2253
 — operations — .. 2254
CreateDevEndpoint (create_dev_endpoint) .. 2254
UpdateDevEndpoint (update_dev_endpoint) ... 2260
DeleteDevEndpoint (delete_dev_endpoint) .. 2261
GetDevEndpoint (get_dev_endpoint) ... 2262
GetDevEndpoints (get_dev_endpoints) ... 2263
BatchGetDevEndpoints (batch_get_dev_endpoints) ... 2264
ListDevEndpoints (list_dev_endpoints) .. 2265

Schema registry ... 2266
 — data types — .. 2266
RegistryId ... 2266
RegistryListItem .. 2267
MetadataInfo ... 2267
OtherMetadataValueListItem ... 2268
SchemaListItem .. 2268
SchemaVersionListItem ... 2269
MetadataKeyValuePair ... 2270
SchemaVersionErrorItem .. 2270
ErrorDetails .. 2270
SchemaVersionNumber ... 2271
SchemaId .. 2271
 — operations — .. 2272
CreateRegistry (create_registry) .. 2272

xx

AWS Glue User Guide

CreateSchema (create_schema) ... 2274
GetSchema (get_schema) ... 2278
ListSchemaVersions (list_schema_versions) .. 2280
GetSchemaVersion (get_schema_version) ... 2281
GetSchemaVersionsDiff (get_schema_versions_diff) .. 2282
ListRegistries (list_registries) .. 2284
ListSchemas (list_schemas) .. 2284
RegisterSchemaVersion (register_schema_version) ... 2286
UpdateSchema (update_schema) .. 2287
CheckSchemaVersionValidity (check_schema_version_validity) ... 2289
UpdateRegistry (update_registry) ... 2289
GetSchemaByDefinition (get_schema_by_definition) ... 2290
GetRegistry (get_registry) ... 2292
PutSchemaVersionMetadata (put_schema_version_metadata) .. 2293
QuerySchemaVersionMetadata (query_schema_version_metadata) 2295
RemoveSchemaVersionMetadata (remove_schema_version_metadata) 2296
DeleteRegistry (delete_registry) .. 2298
DeleteSchema (delete_schema) .. 2299
DeleteSchemaVersions (delete_schema_versions) ... 2300

Workflows .. 2301
 — data types — .. 2301
JobNodeDetails ... 2301
CrawlerNodeDetails .. 2302
TriggerNodeDetails ... 2302
Crawl ... 2302
Node .. 2303
Edge .. 2304
Workflow .. 2304
WorkflowGraph ... 2305
WorkflowRun ... 2306
WorkflowRunStatistics ... 2307
StartingEventBatchCondition .. 2308
Blueprint ... 2308
BlueprintDetails .. 2309
LastActiveDefinition ... 2310
BlueprintRun .. 2310

xxi

AWS Glue User Guide

 — operations — .. 2312
CreateWorkflow (create_workflow) .. 2313
UpdateWorkflow (update_workflow) ... 2314
DeleteWorkflow (delete_workflow) .. 2315
GetWorkflow (get_workflow) ... 2316
ListWorkflows (list_workflows) .. 2316
BatchGetWorkflows (batch_get_workflows) ... 2317
GetWorkflowRun (get_workflow_run) .. 2318
GetWorkflowRuns (get_workflow_runs) .. 2319
GetWorkflowRunProperties (get_workflow_run_properties) .. 2320
PutWorkflowRunProperties (put_workflow_run_properties) .. 2321
CreateBlueprint (create_blueprint) ... 2322
UpdateBlueprint (update_blueprint) .. 2323
DeleteBlueprint (delete_blueprint) ... 2324
ListBlueprints (list_blueprints) ... 2325
BatchGetBlueprints (batch_get_blueprints) .. 2325
StartBlueprintRun (start_blueprint_run) ... 2326
GetBlueprintRun (get_blueprint_run) ... 2327
GetBlueprintRuns (get_blueprint_runs) ... 2328
StartWorkflowRun (start_workflow_run) .. 2329
StopWorkflowRun (stop_workflow_run) ... 2330
ResumeWorkflowRun (resume_workflow_run) .. 2331

Usage profiles ... 2332
 — data types — .. 2332
ProfileConfiguration ... 2332
ConfigurationObject .. 2333
UsageProfileDefinition .. 2333
 — operations — .. 2334
CreateUsageProfile (create_usage_profile) ... 2334
GetUsageProfile (get_usage_profile) .. 2335
UpdateUsageProfile (update_usage_profile) .. 2336
DeleteUsageProfile (delete_usage_profile) ... 2337
ListUsageProfiles (list_usage_profiles) ... 2338

Machine learning ... 2338
 — data types — .. 2339
TransformParameters .. 2339

xxii

AWS Glue User Guide

EvaluationMetrics ... 2340
MLTransform .. 2340
FindMatchesParameters .. 2343
FindMatchesMetrics ... 2344
ConfusionMatrix .. 2346
GlueTable ... 2346
TaskRun .. 2347
TransformFilterCriteria .. 2348
TransformSortCriteria .. 2349
TaskRunFilterCriteria .. 2350
TaskRunSortCriteria ... 2350
TaskRunProperties .. 2351
FindMatchesTaskRunProperties ... 2351
ImportLabelsTaskRunProperties .. 2352
ExportLabelsTaskRunProperties .. 2352
LabelingSetGenerationTaskRunProperties .. 2352
SchemaColumn ... 2353
TransformEncryption ... 2353
MLUserDataEncryption .. 2353
ColumnImportance .. 2354
 — operations — .. 2354
CreateMLTransform (create_ml_transform) .. 2355
UpdateMLTransform (update_ml_transform) ... 2358
DeleteMLTransform (delete_ml_transform) .. 2361
GetMLTransform (get_ml_transform) ... 2361
GetMLTransforms (get_ml_transforms) ... 2364
ListMLTransforms (list_ml_transforms) .. 2365
StartMLEvaluationTaskRun (start_ml_evaluation_task_run) ... 2367
StartMLLabelingSetGenerationTaskRun (start_ml_labeling_set_generation_task_run) 2368
GetMLTaskRun (get_ml_task_run) ... 2369
GetMLTaskRuns (get_ml_task_runs) ... 2370
CancelMLTaskRun (cancel_ml_task_run) .. 2372
StartExportLabelsTaskRun (start_export_labels_task_run) ... 2373
StartImportLabelsTaskRun (start_import_labels_task_run) .. 2374

Data Quality ... 2375
 — data types — .. 2375

xxiii

AWS Glue User Guide

DataSource ... 2376
DataQualityRulesetListDetails ... 2376
DataQualityTargetTable .. 2377
DataQualityRulesetEvaluationRunDescription ... 2377
DataQualityRulesetEvaluationRunFilter ... 2378
DataQualityEvaluationRunAdditionalRunOptions ... 2378
DataQualityRuleRecommendationRunDescription .. 2379
DataQualityRuleRecommendationRunFilter ... 2379
DataQualityResult .. 2380
DataQualityAnalyzerResult ... 2381
DataQualityObservation ... 2382
MetricBasedObservation ... 2382
DataQualityMetricValues .. 2383
DataQualityRuleResult .. 2383
DataQualityResultDescription .. 2384
DataQualityResultFilterCriteria .. 2385
DataQualityRulesetFilterCriteria .. 2385
 — operations — .. 2386
StartDataQualityRulesetEvaluationRun (start_data_quality_ruleset_evaluation_run) 2387
CancelDataQualityRulesetEvaluationRun (cancel_data_quality_ruleset_evaluation_run) . 2388
GetDataQualityRulesetEvaluationRun (get_data_quality_ruleset_evaluation_run) 2389
ListDataQualityRulesetEvaluationRuns (list_data_quality_ruleset_evaluation_runs) 2391
StartDataQualityRuleRecommendationRun
(start_data_quality_rule_recommendation_run) .. 2392
CancelDataQualityRuleRecommendationRun
(cancel_data_quality_rule_recommendation_run) ... 2393
GetDataQualityRuleRecommendationRun
(get_data_quality_rule_recommendation_run) .. 2394
ListDataQualityRuleRecommendationRuns
(list_data_quality_rule_recommendation_runs) ... 2396
GetDataQualityResult (get_data_quality_result) ... 2397
BatchGetDataQualityResult (batch_get_data_quality_result) ... 2399
ListDataQualityResults (list_data_quality_results) .. 2399
CreateDataQualityRuleset (create_data_quality_ruleset) ... 2400
DeleteDataQualityRuleset (delete_data_quality_ruleset) .. 2402
GetDataQualityRuleset (get_data_quality_ruleset) ... 2402

xxiv

AWS Glue User Guide

ListDataQualityRulesets (list_data_quality_rulesets) .. 2403
UpdateDataQualityRuleset (update_data_quality_ruleset) ... 2405

Sensitive Data ... 2406
 — data types — .. 2406
CustomEntityType .. 2406
 — operations — .. 2407
CreateCustomEntityType (create_custom_entity_type) ... 2407
DeleteCustomEntityType (delete_custom_entity_type) ... 2408
GetCustomEntityType (get_custom_entity_type) .. 2409
BatchGetCustomEntityTypes (batch_get_custom_entity_types) .. 2410
ListCustomEntityTypes (list_custom_entity_types) ... 2411

Tagging APIs ... 2412
 — data types — .. 2412
Tag ... 2412
 — operations — .. 2412
TagResource (tag_resource) .. 2412
UntagResource (untag_resource) .. 2413
GetTags (get_tags) ... 2414

Common data types ... 2415
Tag ... 2415
DecimalNumber .. 2415
ErrorDetail .. 2416
PropertyPredicate ... 2416
ResourceUri .. 2416
ColumnStatistics ... 2417
ColumnStatisticsError .. 2417
ColumnError .. 2418
ColumnStatisticsData ... 2418
BooleanColumnStatisticsData .. 2419
DateColumnStatisticsData .. 2419
DecimalColumnStatisticsData .. 2420
DoubleColumnStatisticsData .. 2420
LongColumnStatisticsData ... 2421
StringColumnStatisticsData .. 2421
BinaryColumnStatisticsData ... 2422
String patterns .. 2422

xxv

AWS Glue User Guide

Exceptions ... 2424
AccessDeniedException ... 2424
AlreadyExistsException .. 2425
ConcurrentModificationException ... 2425
ConcurrentRunsExceededException .. 2425
CrawlerNotRunningException .. 2425
CrawlerRunningException ... 2426
CrawlerStoppingException ... 2426
EntityNotFoundException ... 2426
FederationSourceException .. 2426
FederationSourceRetryableException ... 2427
GlueEncryptionException .. 2427
IdempotentParameterMismatchException .. 2427
IllegalWorkflowStateException .. 2428
InternalServiceException ... 2428
InvalidExecutionEngineException .. 2428
InvalidInputException .. 2428
InvalidStateException .. 2429
InvalidTaskStatusTransitionException .. 2429
JobDefinitionErrorException .. 2429
JobRunInTerminalStateException ... 2429
JobRunInvalidStateTransitionException ... 2430
JobRunNotInTerminalStateException ... 2430
LateRunnerException ... 2431
NoScheduleException .. 2431
OperationTimeoutException .. 2431
ResourceNotReadyException .. 2431
ResourceNumberLimitExceededException ... 2432
SchedulerNotRunningException .. 2432
SchedulerRunningException ... 2432
SchedulerTransitioningException .. 2432
UnrecognizedRunnerException .. 2433
ValidationException ... 2433
VersionMismatchException ... 2433

AWS Glue API code examples ... 2434
Actions ... 2442

xxvi

AWS Glue User Guide

CreateCrawler .. 2442
CreateJob .. 2455
DeleteCrawler .. 2466
DeleteDatabase .. 2472
DeleteJob .. 2478
DeleteTable ... 2484
GetCrawler ... 2488
GetDatabase ... 2497
GetDatabases ... 2506
GetJob ... 2509
GetJobRun .. 2511
GetJobRuns ... 2518
GetTables .. 2527
ListJobs .. 2538
StartCrawler ... 2545
StartJobRun ... 2554

Scenarios .. 2564
Get started with crawlers and jobs .. 2564

Security .. 2676
Data protection .. 2676

Encryption at rest .. 2677
Encryption in transit .. 2694
FIPS compliance .. 2695
Key management ... 2695
AWS Glue dependency on other AWS services .. 2695
Development endpoints .. 2696

Identity and access management .. 2697
Audience ... 2698
Authenticating with identities ... 2698
Managing access using policies ... 2702
How AWS Glue works with IAM .. 2704
Configuring IAM permissions for AWS Glue ... 2712
AWS Glue access control policy examples .. 2744
AWS managed policies .. 2769
Resource ARNs .. 2777
Granting cross-account access ... 2784

xxvii

AWS Glue User Guide

Troubleshooting .. 2791
Logging and monitoring .. 2793
Compliance validation .. 2794
Resilience ... 2795
Infrastructure security .. 2795

VPC endpoints (AWS PrivateLink) ... 2796
Shared Amazon VPCs .. 2798

Troubleshooting AWS Glue ... 2799
Gathering AWS Glue troubleshooting information .. 2799
Troubleshooting Spark errors ... 2800

Error: Resource unavailable .. 2801
Error: Could not find S3 endpoint or NAT gateway for subnetId in VPC 2801
Error: Inbound rule in security group required .. 2801
Error: Outbound rule in security group required ... 2802
Error: Job run failed because the role passed should be given assume role permissions for
the AWS Glue service .. 2802
Error: DescribeVpcEndpoints action is unauthorized. unable to validate VPC ID vpc-id 2802
Error: DescribeRouteTables action is unauthorized. unable to validate subnet id: Subnet-id
in VPC id: vpc-id ... 2802
Error: Failed to call ec2:DescribeSubnets .. 2802
Error: Failed to call ec2:DescribeSecurityGroups ... 2803
Error: Could not find subnet for AZ ... 2803
Error: Job run exception when writing to a JDBC target ... 2803
Error: Amazon S3: The operation is not valid for the object's storage class 2804
Error: Amazon S3 timeout ... 2804
Error: Amazon S3 access denied ... 2804
Error: Amazon S3 access key ID does not exist ... 2804
Error: Job run fails when accessing Amazon S3 with an s3a:// URI 2805
Error: Amazon S3 service token expired ... 2807
Error: No private DNS for network interface found .. 2807
Error: Development endpoint provisioning failed ... 2807
Error: Notebook server CREATE_FAILED .. 2807
Error: Local notebook fails to start .. 2808
Error: Running crawler failed ... 2808
Error: Partitions were not updated .. 2808
Error: Job bookmark update failed due to version mismatch ... 2809

xxviii

AWS Glue User Guide

Error: A job is reprocessing data when job bookmarks are enabled 2809
Error: Failover behavior between VPCs in AWS Glue .. 2810
Troubleshoot crawler errors when the crawler is using Lake Formation credentials 2811

Troubleshooting Ray errors ... 2813
Inspecting Ray job logs ... 2814
Troubleshooting Ray job errors ... 2814

AWS Glue machine learning exceptions ... 2816
CancelMLTaskRunActivity .. 2816
CreateMLTaskRunActivity .. 2817
DeleteMLTransformActivity .. 2818
GetMLTaskRunActivity ... 2818
GetMLTaskRunsActivity ... 2818
GetMLTransformActivity .. 2819
GetMLTransformsActivity .. 2819
GetSaveLocationForTransformArtifactActivity ... 2819
GetTaskRunArtifactActivity ... 2820
PublishMLTransformModelActivity ... 2820
PullLatestMLTransformModelActivity ... 2821
PutJobMetadataForMLTransformActivity .. 2821
StartExportLabelsTaskRunActivity .. 2822
StartImportLabelsTaskRunActivity .. 2822
StartMLEvaluationTaskRunActivity ... 2823
StartMLLabelingSetGenerationTaskRunActivity ... 2824
UpdateMLTransformActivity ... 2824

AWS Glue quotas ... 2825
Improving AWS Glue performance ... 2826

Tuning strategies for your job type ... 2826
Improving Spark performance .. 2826
Optimizing reads with pushdown .. 2827

Predicate pushdown on files stored on Amazon S3 ... 2827
Pushdown when working with JDBC sources ... 2828
Notes and limitations for pushdown in AWS Glue .. 2831

Using auto scaling for AWS Glue ... 2831
Requirements .. 2832
Enabling Auto Scaling in AWS Glue Studio .. 1009
Enabling Auto Scaling with the AWS CLI or SDK .. 1010

xxix

AWS Glue User Guide

Monitoring Auto Scaling with Amazon CloudWatch metrics .. 2834
Monitoring Auto Scaling with Spark UI ... 2835
Monitoring Auto Scaling job run DPU usage ... 2835
Limitations ... 2836

Workload partitioning with bounded execution ... 2836
Enabling workload partitioning .. 2836
Setting up an AWS Glue trigger to automatically run the job .. 2838

Known issues ... 2839
Preventing cross-job data access ... 2839

Documentation history ... 2842
Earlier updates ... 2892

AWS Glossary ... 2893

xxx

AWS Glue User Guide

What is AWS Glue?

AWS Glue is a serverless data integration service that makes it easy for analytics users to discover,
prepare, move, and integrate data from multiple sources. You can use it for analytics, machine
learning, and application development. It also includes additional productivity and data ops tooling
for authoring, running jobs, and implementing business workflows.

With AWS Glue, you can discover and connect to more than 70 diverse data sources and manage
your data in a centralized data catalog. You can visually create, run, and monitor extract, transform,
and load (ETL) pipelines to load data into your data lakes. Also, you can immediately search and
query cataloged data using Amazon Athena, Amazon EMR, and Amazon Redshift Spectrum.

AWS Glue consolidates major data integration capabilities into a single service. These include data
discovery, modern ETL, cleansing, transforming, and centralized cataloging. It's also serverless,
which means there's no infrastructure to manage. With flexible support for all workloads like ETL,
ELT, and streaming in one service, AWS Glue supports users across various workloads and types of
users.

Also, AWS Glue makes it easy to integrate data across your architecture. It integrates with AWS
analytics services and Amazon S3 data lakes. AWS Glue has integration interfaces and job-
authoring tools that are easy to use for all users, from developers to business users, with tailored
solutions for varied technical skill sets.

With the ability to scale on demand, AWS Glue helps you focus on high-value activities that
maximize the value of your data. It scales for any data size, and supports all data types and schema
variances. To increase agility and optimize costs, AWS Glue provides built-in high availability and
pay-as-you-go billing.

For pricing information, see AWS Glue pricing.

AWS Glue Studio

AWS Glue Studio is a graphical interface that makes it easy to create, run, and monitor data
integration jobs in AWS Glue. You can visually compose data transformation workflows and
seamlessly run them on the Apache Spark–based serverless ETL engine in AWS Glue.

With AWS Glue Studio, you can create and manage jobs that gather, transform, and clean data. You
can also use AWS Glue Studio to troubleshoot and edit job scripts.

1

https://aws.amazon.com/glue/pricing

AWS Glue User Guide

Topics

• AWS Glue features

• Learning about innovations in AWS Glue

• Getting started with AWS Glue

• Accessing AWS Glue

• Related services

AWS Glue features

AWS Glue features fall into three major categories:

• Discover and organize data

• Transform, prepare, and clean data for analysis

• Build and monitor data pipelines

Discover and organize data

• Unify and search across multiple data stores – Store, index, and search across multiple data
sources and sinks by cataloging all your data in AWS.

• Automatically discover data – Use AWS Glue crawlers to automatically infer schema
information and integrate it into your AWS Glue Data Catalog.

• Manage schemas and permissions – Validate and control access to your databases and tables.

• Connect to a wide variety of data sources – Tap into multiple data sources, both on premises
and on AWS, using AWS Glue connections to build your data lake.

Transform, prepare, and clean data for analysis

• Visually transform data with a job canvas interface – Define your ETL process in the visual job
editor and automatically generate the code to extract, transform, and load your data.

• Build complex ETL pipelines with simple job scheduling – Invoke AWS Glue jobs on a schedule,
on demand, or based on an event.

• Clean and transform streaming data in transit – Enable continuous data consumption, and
clean and transform it in transit. This makes it available for analysis in seconds in your target
data store.

AWS Glue features 2

AWS Glue User Guide

• Deduplicate and cleanse data with built-in machine learning – Clean and prepare your data for
analysis without becoming a machine learning expert by using the FindMatches feature. This
feature deduplicates and finds records that are imperfect matches for each other.

• Built-in job notebooks – AWS Glue job notebooks provide serverless notebooks with minimal
setup in AWS Glue so you can get started quickly.

• Edit, debug, and test ETL code – With AWS Glue interactive sessions, you can interactively
explore and prepare data. You can explore, experiment on, and process data interactively using
the IDE or notebook of your choice.

• Define, detect, and remediate sensitive data – AWS Glue sensitive data detection lets you
define, identify, and process sensitive data in your data pipeline and in your data lake.

Build and monitor data pipelines

• Automatically scale based on workload – Dynamically scale resources up and down based on
workload. This assigns workers to jobs only when needed.

• Automate jobs with event-based triggers – Start crawlers or AWS Glue jobs with event-based
triggers, and design a chain of dependent jobs and crawlers.

• Run and monitor jobs – Run AWS Glue jobs with your choice of engine, Spark or Ray. Monitor
them with automated monitoring tools, AWS Glue job run insights, and AWS CloudTrail. Improve
your monitoring of Spark-backed jobs with the Apache Spark UI.

• Define workflows for ETL and integration activities – Define workflows for ETL and integration
activities for multiple crawlers, jobs, and triggers.

Learning about innovations in AWS Glue

Learn about the latest innovations in AWS Glue and hear how customers use AWS Glue to enable
self-service data preparation across their organization.

Learn about how customers scale AWS Glue beyond the traditional setup and how they configure
AWS Glue for job monitoring and performance.

Getting started with AWS Glue

We recommend that you start with the following sections:

• Overview of using AWS Glue

Learning about innovations in AWS Glue 3

https://docs.aws.amazon.com/glue/latest/dg/start-console-overview.html

AWS Glue User Guide

• AWS Glue concepts

• Setting up IAM permissions for AWS Glue

• Getting started with the AWS Glue Data Catalog

• Authoring jobs in AWS Glue

• Getting started with AWS Glue interactive sessions

• Orchestration in AWS Glue

Accessing AWS Glue

You can create, view, and manage your AWS Glue jobs using the following interfaces:

• AWS Glue console – Provides a web interface for you to create, view, and manage your AWS Glue
jobs. To access the console, see AWS Glue.

• AWS Glue Studio – Provides a graphical interface for you to create and edit your AWS Glue jobs
visually. For more information, see What is AWS Glue Studio.

• AWS Glue section of the AWS CLI Reference – Provides AWS CLI commands that you can use
with AWS Glue. For more information, see AWS CLI Reference for AWS Glue.

• AWS Glue API – Provides a complete API reference for developers. For more information, see
AWS Glue API.

Related services

Users of AWS Glue also use:

• AWS Lake Formation – A service that is an authorization layer that provides fine-grained access
control to resources in the AWS Glue Data Catalog.

• AWS Glue DataBrew – A visual data preparation tool that you can use to clean and normalize
data without writing any code.

Accessing AWS Glue 4

https://docs.aws.amazon.com/glue/latest/dg/components-key-concepts.html
https://docs.aws.amazon.com/glue/latest/dg/set-up-iam.html
https://docs.aws.amazon.com/glue/latest/dg/start-data-catalog.html
https://docs.aws.amazon.com/glue/latest/dg/author-job-glue.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions.html
https://docs.aws.amazon.com/glue/latest/dg/etl-jobs.html
https://console.aws.amazon.com/glue
https://docs.aws.amazon.com/glue/latest/ug/what-is-glue-studio.html
https://docs.aws.amazon.com/cli/latest/reference/glue/index.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api.html
https://docs.aws.amazon.com/lake-formation/latest/dg/what-is-lake-formation.html
https://docs.aws.amazon.com/databrew/latest/dg/what-is.html

AWS Glue User Guide

AWS Glue: How it works

AWS Glue uses other AWS services to orchestrate your ETL (extract, transform, and load) jobs to
build data warehouses and data lakes and generate output streams. AWS Glue calls API operations
to transform your data, create runtime logs, store your job logic, and create notifications to
help you monitor your job runs. The AWS Glue console connects these services into a managed
application, so you can focus on creating and monitoring your ETL work. The console performs
administrative and job development operations on your behalf. You supply credentials and other
properties to AWS Glue to access your data sources and write to your data targets.

AWS Glue takes care of provisioning and managing the resources that are required to run your
workload. You don't need to create the infrastructure for an ETL tool because AWS Glue does it for
you. When resources are required, to reduce startup time, AWS Glue uses an instance from its warm
pool of instances to run your workload.

With AWS Glue, you create jobs using table definitions in your Data Catalog. Jobs consist of scripts
that contain the programming logic that performs the transformation. You use triggers to initiate
jobs either on a schedule or as a result of a specified event. You determine where your target data
resides and which source data populates your target. With your input, AWS Glue generates the
code that's required to transform your data from source to target. You can also provide scripts in
the AWS Glue console or API to process your data.

Data sources and destinations

AWS Glue for Spark allows you to read and write data from multiple systems and databases
including:

• Amazon S3

• Amazon DynamoDB

• Amazon Redshift

• Amazon Relational Database Service (Amazon RDS)

• Third-party JDBC-accessible databases

• MongoDB and Amazon DocumentDB (with MongoDB compatibility)

• Other marketplace connectors and Apache Spark plugins

Data streams

5

AWS Glue User Guide

AWS Glue for Spark can stream data from the following systems:

• Amazon Kinesis Data Streams

• Apache Kafka

AWS Glue is available in several AWS Regions. For more information, see AWS Regions and
Endpoints in the Amazon Web Services General Reference.

Topics

• Serverless ETL jobs run in isolation

• AWS Glue concepts

• AWS Glue components

• AWS Glue for Spark and AWS Glue for Ray

• Converting semi-structured schemas to relational schemas with AWS Glue

• AWS Glue type systems

Serverless ETL jobs run in isolation

AWS Glue runs your ETL jobs in a serverless environment with your choice of engine, Spark or Ray.
AWS Glue runs these jobs on virtual resources that it provisions and manages in its own service
account.

AWS Glue is designed to do the following:

• Segregate customer data.

• Protect customer data in transit and at rest.

• Access customer data only as needed in response to customer requests, using temporary, scoped-
down credentials, or with a customer's consent to IAM roles in their account.

During provisioning of an ETL job, you provide input data sources and output data targets in your
virtual private cloud (VPC). In addition, you provide the IAM role, VPC ID, subnet ID, and security
group that are needed to access data sources and targets. For each tuple (customer account ID, IAM
role, subnet ID, and security group), AWS Glue creates a new environment that is isolated at the
network and management level from all other environments inside the AWS Glue service account.

Serverless ETL jobs run in isolation 6

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Glue User Guide

AWS Glue creates elastic network interfaces in your subnet using private IP addresses. Jobs use
these elastic network interfaces to access your data sources and data targets. Traffic in, out,
and within the job run environment is governed by your VPC and networking policies with one
exception: Calls made to AWS Glue libraries can proxy traffic to AWS Glue API operations through
the AWS Glue VPC. All AWS Glue API calls are logged; thus, data owners can audit API access by
enabling AWS CloudTrail, which delivers audit logs to your account.

AWS Glue managed environments that run your ETL jobs are protected with the same security
practices followed by other AWS services. For an overview of the practices and shared security
responsibilities, see the Introduction to AWS Security Processes whitepaper.

AWS Glue concepts

The following diagram shows the architecture of an AWS Glue environment.

Concepts 7

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/whitepapers/latest/introduction-aws-security/welcome.html

AWS Glue User Guide

You define jobs in AWS Glue to accomplish the work that's required to extract, transform, and load
(ETL) data from a data source to a data target. You typically perform the following actions:

• For data store sources, you define a crawler to populate your AWS Glue Data Catalog with
metadata table definitions. You point your crawler at a data store, and the crawler creates table
definitions in the Data Catalog. For streaming sources, you manually define Data Catalog tables
and specify data stream properties.

In addition to table definitions, the AWS Glue Data Catalog contains other metadata that is
required to define ETL jobs. You use this metadata when you define a job to transform your data.

• AWS Glue can generate a script to transform your data. Or, you can provide the script in the AWS
Glue console or API.

• You can run your job on demand, or you can set it up to start when a specified trigger occurs. The
trigger can be a time-based schedule or an event.

When your job runs, a script extracts data from your data source, transforms the data, and loads
it to your data target. The script runs in an Apache Spark environment in AWS Glue.

Important

Tables and databases in AWS Glue are objects in the AWS Glue Data Catalog. They contain
metadata; they don't contain data from a data store.

Text-based data, such as CSVs, must be encoded in UTF-8 for AWS Glue to process it
successfully. For more information, see UTF-8 in Wikipedia.

AWS Glue terminology

AWS Glue relies on the interaction of several components to create and manage your extract,
transform, and load (ETL) workflow.

AWS Glue terminology 8

https://en.wikipedia.org/wiki/UTF-8

AWS Glue User Guide

AWS Glue Data Catalog

The persistent metadata store in AWS Glue. It contains table definitions, job definitions, and other
control information to manage your AWS Glue environment. Each AWS account has one AWS Glue
Data Catalog per region.

Classifier

Determines the schema of your data. AWS Glue provides classifiers for common file types, such
as CSV, JSON, AVRO, XML, and others. It also provides classifiers for common relational database
management systems using a JDBC connection. You can write your own classifier by using a grok
pattern or by specifying a row tag in an XML document.

Connection

A Data Catalog object that contains the properties that are required to connect to a particular data
store.

Crawler

A program that connects to a data store (source or target), progresses through a prioritized list of
classifiers to determine the schema for your data, and then creates metadata tables in the AWS
Glue Data Catalog.

Database

A set of associated Data Catalog table definitions organized into a logical group.

Data store, data source, data target

A data store is a repository for persistently storing your data. Examples include Amazon S3
buckets and relational databases. A data source is a data store that is used as input to a process or
transform. A data target is a data store that a process or transform writes to.

Development endpoint

An environment that you can use to develop and test your AWS Glue ETL scripts.

Dynamic Frame

A distributed table that supports nested data such as structures and arrays. Each record is self-
describing, designed for schema flexibility with semi-structured data. Each record contains both

AWS Glue terminology 9

AWS Glue User Guide

data and the schema that describes that data. You can use both dynamic frames and Apache
Spark DataFrames in your ETL scripts, and convert between them. Dynamic frames provide a set of
advanced transformations for data cleaning and ETL.

Job

The business logic that is required to perform ETL work. It is composed of a transformation script,
data sources, and data targets. Job runs are initiated by triggers that can be scheduled or triggered
by events.

Job performance dashboard

AWS Glue provides a comprehensive run dashboard for your ETL jobs. The dashboard displays
information about job runs from a specific time frame.

Notebook interface

An enhanced notebook experience with one-click setup for easy job authoring and data
exploration. The notebook and connections are configured automatically for you. You can use the
notebook interface based on Jupyter Notebook to interactively develop, debug, and deploy scripts
and workflows using AWS Glue serverless Apache Spark ETL infrastructure. You can also perform
ad-hoc queries, data analysis, and visualization (for example, tables and graphs) in the notebook
environment.

Script

Code that extracts data from sources, transforms it, and loads it into targets. AWS Glue generates
PySpark or Scala scripts.

Table

The metadata definition that represents your data. Whether your data is in an Amazon Simple
Storage Service (Amazon S3) file, an Amazon Relational Database Service (Amazon RDS) table, or
another set of data, a table defines the schema of your data. A table in the AWS Glue Data Catalog
consists of the names of columns, data type definitions, partition information, and other metadata
about a base dataset. The schema of your data is represented in your AWS Glue table definition.
The actual data remains in its original data store, whether it be in a file or a relational database
table. AWS Glue catalogs your files and relational database tables in the AWS Glue Data Catalog.
They are used as sources and targets when you create an ETL job.

AWS Glue terminology 10

AWS Glue User Guide

Transform

The code logic that is used to manipulate your data into a different format.

Trigger

Initiates an ETL job. Triggers can be defined based on a scheduled time or an event.

Visual job editor

The visual job editor is a graphical interface that makes it easy to create, run, and monitor extract,
transform, and load (ETL) jobs in AWS Glue. You can visually compose data transformation
workflows, seamlessly run them on AWS Glue's Apache Spark-based serverless ETL engine, and
inspect the schema and data results in each step of the job.

Worker

With AWS Glue, you only pay for the time your ETL job takes to run. There are no resources to
manage, no upfront costs, and you are not charged for startup or shutdown time. You are charged
an hourly rate based on the number of Data Processing Units (or DPUs) used to run your ETL
job. A single Data Processing Unit (DPU) is also referred to as a worker. AWS Glue comes with
three worker types to help you select the configuration that meets your job latency and cost
requirements. Workers come in Standard, G.1X, G.2X, and G.025X configurations.

AWS Glue components

AWS Glue provides a console and API operations to set up and manage your extract, transform, and
load (ETL) workload. You can use API operations through several language-specific SDKs and the
AWS Command Line Interface (AWS CLI). For information about using the AWS CLI, see AWS CLI
Command Reference.

AWS Glue uses the AWS Glue Data Catalog to store metadata about data sources, transforms,
and targets. The Data Catalog is a drop-in replacement for the Apache Hive Metastore. The AWS
Glue Jobs system provides a managed infrastructure for defining, scheduling, and running ETL
operations on your data. For more information about the AWS Glue API, see AWS Glue API.

Components 11

https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/cli/latest/reference/

AWS Glue User Guide

AWS Glue console

You use the AWS Glue console to define and orchestrate your ETL workflow. The console calls
several API operations in the AWS Glue Data Catalog and AWS Glue Jobs system to perform the
following tasks:

• Define AWS Glue objects such as jobs, tables, crawlers, and connections.

• Schedule when crawlers run.

• Define events or schedules for job triggers.

• Search and filter lists of AWS Glue objects.

• Edit transformation scripts.

AWS Glue Data Catalog

The AWS Glue Data Catalog is your persistent technical metadata store in the AWS Cloud.

Each AWS account has one AWS Glue Data Catalog per AWS Region. Each Data Catalog is a highly
scalable collection of tables organized into databases. A table is metadata representation of a
collection of structured or semi-structured data stored in sources such as Amazon RDS, Apache
Hadoop Distributed File System, Amazon OpenSearch Service, and others. The AWS Glue Data
Catalog provides a uniform repository where disparate systems can store and find metadata to
keep track of data in data silos. You can then use the metadata to query and transform that data in
a consistent manner across a wide variety of applications.

You use the Data Catalog together with AWS Identity and Access Management policies and Lake
Formation to control access to the tables and databases. By doing this, you can allow different
groups in your enterprise to safely publish data to the wider organization while protecting sensitive
information in a highly granular fashion.

The Data Catalog, along with CloudTrail and Lake Formation, also provides you with comprehensive
audit and governance capabilities, with schema change tracking and data access controls. This
helps ensure that data is not inappropriately modified or inadvertently shared.

For information about securing and auditing the AWS Glue Data Catalog, see:

• AWS Lake Formation – For more information, see What Is AWS Lake Formation? in the AWS Lake
Formation Developer Guide.

• CloudTrail – For more information, see What Is CloudTrail? in the AWS CloudTrail User Guide.

AWS Glue console 12

https://docs.aws.amazon.com/lake-formation/latest/dg/what-is-lake-formation.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

AWS Glue User Guide

The following are other AWS services and open-source projects that use the AWS Glue Data
Catalog:

• Amazon Athena – For more information, see Understanding Tables, Databases, and the Data
Catalog in the Amazon Athena User Guide.

• Amazon Redshift Spectrum – For more information, see Using Amazon Redshift Spectrum to
Query External Data in the Amazon Redshift Database Developer Guide.

• Amazon EMR – For more information, see Use Resource-Based Policies for Amazon EMR Access
to AWS Glue Data Catalog in the Amazon EMR Management Guide.

• AWS Glue Data Catalog client for Apache Hive metastore – For more information about this
GitHub project, see AWS Glue Data Catalog Client for Apache Hive Metastore.

AWS Glue crawlers and classifiers

AWS Glue also lets you set up crawlers that can scan data in all kinds of repositories, classify it,
extract schema information from it, and store the metadata automatically in the AWS Glue Data
Catalog. The AWS Glue Data Catalog can then be used to guide ETL operations.

For information about how to set up crawlers and classifiers, see Using crawlers to populate the
Data Catalog . For information about how to program crawlers and classifiers using the AWS Glue
API, see Crawlers and classifiers API.

AWS Glue ETL operations

Using the metadata in the Data Catalog, AWS Glue can automatically generate Scala or PySpark
(the Python API for Apache Spark) scripts with AWS Glue extensions that you can use and modify
to perform various ETL operations. For example, you can extract, clean, and transform raw data,
and then store the result in a different repository, where it can be queried and analyzed. Such a
script might convert a CSV file into a relational form and save it in Amazon Redshift.

For more information about how to use AWS Glue ETL capabilities, see Programming Spark scripts.

Streaming ETL in AWS Glue

AWS Glue enables you to perform ETL operations on streaming data using continuously-running
jobs. AWS Glue streaming ETL is built on the Apache Spark Structured Streaming engine, and can

AWS Glue crawlers and classifiers 13

https://docs.aws.amazon.com/athena/latest/ug/understanding-tables-databases-and-the-data-catalog.html
https://docs.aws.amazon.com/athena/latest/ug/understanding-tables-databases-and-the-data-catalog.html
https://docs.aws.amazon.com/redshift/latest/dg/c-using-spectrum.html
https://docs.aws.amazon.com/redshift/latest/dg/c-using-spectrum.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-iam-roles-glue.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-iam-roles-glue.html
https://github.com/awslabs/aws-glue-data-catalog-client-for-apache-hive-metastore

AWS Glue User Guide

ingest streams from Amazon Kinesis Data Streams, Apache Kafka, and Amazon Managed Streaming
for Apache Kafka (Amazon MSK). Streaming ETL can clean and transform streaming data and load
it into Amazon S3 or JDBC data stores. Use Streaming ETL in AWS Glue to process event data like
IoT streams, clickstreams, and network logs.

If you know the schema of the streaming data source, you can specify it in a Data Catalog table.
If not, you can enable schema detection in the streaming ETL job. The job then automatically
determines the schema from the incoming data.

The streaming ETL job can use both AWS Glue built-in transforms and transforms that are native
to Apache Spark Structured Streaming. For more information, see Operations on streaming
DataFrames/Datasets on the Apache Spark website.

For more information, see the section called “Streaming ETL jobs”.

The AWS Glue jobs system

The AWS Glue Jobs system provides managed infrastructure to orchestrate your ETL workflow. You
can create jobs in AWS Glue that automate the scripts you use to extract, transform, and transfer
data to different locations. Jobs can be scheduled and chained, or they can be triggered by events
such as the arrival of new data.

For more information about using the AWS Glue Jobs system, see Monitoring AWS Glue. For
information about programming using the AWS Glue Jobs system API, see Jobs API.

Visual ETL components

AWS Glue allows you to create ETL jobs through a visual canvas that you can manipulate.

The AWS Glue jobs system 14

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#operations-on-streaming-dataframesdatasets
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#operations-on-streaming-dataframesdatasets

AWS Glue User Guide

ETL job menu

Menu options at the top of the canvas allow you to access the various views and configuration
details about your job.

• Visual – The Visual job editor canvas. This is where you can add nodes to create a job.

• Script – The script representation of your ETL job. AWS Glue generates the script based on the
visual representation of your job. You can also edit your script or download it.

Note

If you choose to edit the script, the job authoring experience is permanently converted to
a script-only mode. Afterwards, you cannot use the visual editor to edit the job anymore.

Visual ETL components 15

AWS Glue User Guide

You should add all the job sources, transforms, and targets, and make all the changes you
require with the visual editor before choosing to edit the script.

• Job details – The Job details tab allows you to configure your job by setting job properties. There
are basic properties, such as name and description of your job, IAM role, job type, AWS Glue
version, language, worker type, number of workers, job bookmark, flex execution, number of
retires, and job timeout, and there are advanced properties, such as connections, libraries, job
parameters, and tags.

• Runs – After your job runs, this tab can be accessed to view your past job runs.

• Data quality – Data quality evaluates and monitors the quality of your data assets. You can learn
more about how to use data quality on this tab and add a data quality transform to your job.

• Schedules – Jobs that you've scheduled appear in this tab. If there are no schedules attached to
this job, then this tab is not accessible.

• Version control – You can use Git with your job by configuring your job to a Git repository.

Visual ETL panels

When you work in the canvas, several panels are available to help you configure your nodes, or
help you to preview your data and view the output schema.

• Properties – The Properties panel appears when you choose a node on your canvas.

• Data preview – The Data preview panel provides a preview of the data output so that you can
make decisions before you run your job and examine your output.

• Output schema – The Output schema tab allows you to view and edit the schema of your
transform nodes.

Resizing panels

You can resize the Properties panel on the right-hand side of the screen and the bottom panel
which contains the Data preview and Output schema tabs by clicking on the edge of the panel and
dragging it left and right or up and down.

• Properties panel – Resize the properties panel by clicking and dragging the edge of the canvas
on the right side of the screen and drag it left to expand its width. By default, the panel is
collapsed and when a node is selected, the properties panel opens up to its default size.

Visual ETL components 16

AWS Glue User Guide

• Data preview and Output schema panel – Resize the bottom panel by clicking and dragging
the bottom edge of the canvas at the bottom of the screen and drag it up to expand its height.
By default, the panel is collapsed and when a node is selected, the bottom panel opens up to its
default size.

Job canvas

You can add, remove, and move/reorder nodes directly on the Visual ETL canvas. Think of it as your
workspace to create a fully functional ETL job that starts with a data source and can end with a
data target.

When you work with nodes on the canvas, you have a toolbar that can help you zoom in and out,
remove nodes, make or edit connections between nodes, change the job flow orientation, and
undo or redo an action.

The floating toolbar is anchored to the upper right-hand size of the canvas and contains several
images that perform actions:

• Layout icon – The first icon in the toolbar is the layout icon. By default, the direction of visual
jobs is top to bottom.It rearranges the direction of your visual job by arranging the nodes
horizontally from left to right. Clicking the layout icon again changes the direction back to top to
bottom.

Visual ETL components 17

AWS Glue User Guide

• Recenter icon – The recenter icon changes the canvas view by centering it. You can use this with
large jobs to get back to the center position.

• Zoom in icon – The zoom in icon enlarges the size of the nodes on the canvas.

• Zoom out icon – The zoom out icon decreases the size of the nodes on the canvas.

• Trash icon – The trash icon removes a node from the visual job. You must select a node first.

• Undo icon – The undo icon reverses the last action taken on the visual job.

• Redo icon – The redo icon repeats the last action taken on the visual job.

Using the mini-map

Resource panel

The resource panel contains all of the data sources, transform actions, and connections available
to you. Open the resource panel on the canvas by clicking the "+" icon. This will open the resource
panel.

To close the resource panel, click the X in the upper-right hand corner of the resource panel. This
will hide the panel until you're ready to open it again.

Visual ETL components 18

AWS Glue User Guide

Visual ETL components 19

AWS Glue User Guide

Popular transforms & data

At the top of the panel is a collection of Popular transforms & data. These nodes are commonly
used in AWS Glue. Choose one to add it to the canvas. You can also hide the Popular transforms &
data by clicking the triangle next to the Popular transforms & data heading.

Beneath the Popular transforms & data section, you can search for transforms and data source
nodes. Results appear as you type. The more letters you add to your search query, the list of results
will get smaller. Search results are populated from the node name and/or description. Choose the
node to add it to your canvas.

Transforms and Data

There are two tabs that organize the nodes into Transforms and Data.

Transforms – When you choose the Transforms tab, all of the available transforms can be selected.
Choose a transform to add it to the canvas. You can also choose Add Transform at the bottom of
the Transforms list which will open a new page to the documentation for creating Custom visual
transforms. Following the steps will allow you to create transforms of your own. Your transforms
will then appear in the list of available transforms.

Data – The data tab contains all of the nodes for Sources and Targets. You can hide the Sources
and Targets by clicking the triangle next to the Sources or Targets heading. You can unhide the
Sources and Targets by clicking the triangle again. Choose a source or target node to add it to the
canvas. You can also choose Manage Connections to add a new connection. This will open the
Connectors page in the console.

AWS Glue for Spark and AWS Glue for Ray

In AWS Glue on Apache Spark (AWS Glue ETL), you can use PySpark to write Python code to handle
data at scale. Spark is a familiar solution for this problem, but data engineers with Python-focused
backgrounds can find the transition unintuitive. The Spark DataFrame model is not seamlessly
"Pythonic", which reflects the Scala language and Java runtime it is built upon.

In AWS Glue, you can use Python shell jobs to run native Python data integrations. These jobs run
on a single Amazon EC2 instance and are limited by the capacity of that instance. This restricts the
throughput of the data you can process, and becomes expensive to maintain when dealing with big
data.

AWS Glue for Spark and AWS Glue for Ray 20

https://docs.aws.amazon.com/glue/latest/ug/custom-visual-transform.html
https://docs.aws.amazon.com/glue/latest/ug/custom-visual-transform.html

AWS Glue User Guide

AWS Glue for Ray allows you to scale up Python workloads without substantial investment into
learning Spark. You can take advantage of certain scenarios where Ray performs better. By offering
you a choice, you can use the strengths of both Spark and Ray.

AWS Glue ETL and AWS Glue for Ray are different underneath, so they support different features.
Please check the documentation to determine supported features.

What is AWS Glue for Ray?

Ray is an open-source distributed computation framework that you can use to scale up workloads,
with a focus on Python. For more information about Ray, see the Ray website. AWS Glue Ray jobs
and interactive sessions allow you to use Ray within AWS Glue.

You can use AWS Glue for Ray to write Python scripts for computations that will run in parallel
across multiple machines. In Ray jobs and interactive sessions, you can use familiar Python libraries,
like pandas, to make your workflows easy to write and run. For more information about Ray
datasets, see Ray Datasets in the Ray documentation. For more information about pandas, see the
Pandas website.

When you use AWS Glue for Ray, you can run your pandas workflows against big data at enterprise
scale—with only a few lines of code. You can create a Ray job from the AWS Glue console or the
AWS SDK. You can also open an AWS Glue interactive session to run your code on a serverless Ray
environment. Visual jobs in AWS Glue Studio are not yet supported.

AWS Glue for Ray jobs allow you to run a script on a schedule or in response to an event from
Amazon EventBridge. Jobs store log information and monitoring statistics in CloudWatch that
enable you to understand the health and reliability of your script. For more information about the
AWS Glue job system, see the section called “Working with Ray jobs”.

AWS Glue for Ray interactive sessions (preview) allow you to run snippets of code one after another
against the same provisioned resources. You can use this to efficiently prototype and develop
scripts, or build your own interactive applications. You can use AWS Glue interactive sessions
from AWS Glue Studio Notebooks in the AWS Management Console. For more information, see
Using Notebooks with AWS Glue Studio and AWS Glue. You can also use them through a Jupyter
kernel, which allows you to run interactive sessions from existing code editing tools that support
Jupyter Notebooks, such as VSCode. For more information, see the section called “AWS Glue for
Ray interactive sessions (preview)”.

Ray automates the work of scaling Python code by distributing the processing across a cluster
of machines that it reconfigures in real time, based on the load. This can lead to improved

What is AWS Glue for Ray? 21

https://www.ray.io/
https://docs.ray.io/en/latest/data/dataset.html
https://pandas.pydata.org/
https://docs.aws.amazon.com/glue/latest/ug/notebooks-chapter.html

AWS Glue User Guide

performance per dollar for certain workloads. With Ray jobs, we have built auto scaling natively
into the AWS Glue job model, so you can fully take advantage of this feature. Ray jobs run on AWS
Graviton, leading to higher overall price performance.

In addition to cost savings, you can use native auto scaling to run Ray workloads without investing
time into cluster maintenance, tuning, and administration. You can use familiar open-source
libraries out of the box, such as pandas, and the AWS SDK for Pandas. These improve iteration
speed while you're developing on AWS Glue for Ray. When you use AWS Glue for Ray, you will be
able to rapidly develop and run cost-effective data integration workloads.

Converting semi-structured schemas to relational schemas with
AWS Glue

It's common to want to convert semi-structured data into relational tables. Conceptually, you are
flattening a hierarchical schema to a relational schema. AWS Glue can perform this conversion for
you on-the-fly.

Semi-structured data typically contains mark-up to identify entities within the data. It can have
nested data structures with no fixed schema. For more information about semi-structured data, see
Semi-structured data in Wikipedia.

Relational data is represented by tables that consist of rows and columns. Relationships between
tables can be represented by a primary key (PK) to foreign key (FK) relationship. For more
information, see Relational database in Wikipedia.

AWS Glue uses crawlers to infer schemas for semi-structured data. It then transforms the data to
a relational schema using an ETL (extract, transform, and load) job. For example, you might want
to parse JSON data from Amazon Simple Storage Service (Amazon S3) source files to Amazon
Relational Database Service (Amazon RDS) tables. Understanding how AWS Glue handles the
differences between schemas can help you understand the transformation process.

This diagram shows how AWS Glue transforms a semi-structured schema to a relational schema.

Converting semi-structured schemas to relational schemas 22

https://en.wikipedia.org/wiki/Semi-structured_data
https://en.wikipedia.org/wiki/Relational_database

AWS Glue User Guide

The diagram illustrates the following:

• Single value A converts directly to a relational column.

• The pair of values, B1 and B2, convert to two relational columns.

• Structure C, with children X and Y, converts to two relational columns.

• Array D[] converts to a relational column with a foreign key (FK) that points to another
relational table. Along with a primary key (PK), the second relational table has columns that
contain the offset and value of the items in the array.

Converting semi-structured schemas to relational schemas 23

AWS Glue User Guide

AWS Glue type systems

AWS Glue uses multiple type systems to provide a versatile interface over data systems that
store data in very different ways. This document disambiguates AWS Glue type systems and data
standards.

AWS Glue Data Catalog Types

The Data Catalog is a registry of tables and fields stored in various data systems, a metastore.
When AWS Glue components, such as AWS Glue crawlers and AWS Glue with Spark jobs, write to
the Data Catalog, they do so with an internal type system for tracking the types of fields. These
values are shown in the Data type column of the table schema in the AWS Glue Console. This type
system is based on Apache Hive's type system. For more information about the Apache Hive type
system, see Types in the Apache Hive wiki. For more information about specific types and support,
examples are provided in the AWS Glue Console, as part of the Schema Builder.

Validation, compatibility and other uses

The Data Catalog does not validate types written to type fields. When AWS Glue components read
and write to the Data Catalog, they will be compatible with each other. AWS Glue components
also aim to preserve a high degree of compatibility with the Hive types. However, AWS Glue
components do not guarantee compatibility with all Hive types. This allows for interoperability
with tools like Athena DDL when working with tables in the Data Catalog.

Since the Data Catalog does not validate types, other services may use the Data Catalog to track
types using systems that strictly conform to the Hive type system, or any other system.

Types in AWS Glue with Spark scripts

When a AWS Glue with Spark script interprets or transforms a dataset, we provide DynamicFrame,
an in-memory representation of your dataset as it is used in your script. The goal of a
DynamicFrame is similar to that of the Spark DataFrame– it models your dataset so that Spark
can schedule and execute transforms on your data. We guarantee that the type representation of
DynamicFrame is intercompatible with DataFrame by providing the toDF and fromDF methods.

If type information can be inferred or provided to a DataFrame, it can be inferred or provided to
a DynamicFrame, unless otherwise documented. When we provide optimized readers or writers
for specific data formats, if Spark can read or write your data, our provided readers and writers will

AWS Glue types 24

https://cwiki.apache.org/confluence/display/hive/languagemanual+types

AWS Glue User Guide

be able to, subject to documented limitations. For more information about readers and writers, see
the section called “Data format options”.

The Choice Type

DynamicFrames provide a mechanism for modeling fields in a dataset whose value may have
inconsistent types on disk across rows. For instance, a field may hold a number stored as a string
in certain rows, and an integer in others. This mechanism is an in-memory type called Choice. We
provide transforms such as the ResolveChoice method, to resolve Choice columns to a concrete
type. AWS Glue ETL will not write the Choice type to the Data Catalog in the normal course of
operation; Choice types only exist in the context of DynamicFrame memory models of datasets. For
an example of Choice type usage, see the section called “Data preparation sample”.

AWS Glue Crawler Types

Crawlers aim to produce a consistent, usable schema for your dataset, then store it in Data Catalog
for use in other AWS Glue components and Athena. Crawlers deal with types as described in
the previous section on the Data Catalog, the section called “AWS Glue Data Catalog Types”. To
produce a usable type in "Choice" type scenarios, where a column contains values of two or more
types, Crawlers will create a struct type that models the potential types.

AWS Glue Crawler Types 25

AWS Glue User Guide

Getting started with AWS Glue

The following sections provide information on setting up AWS Glue. Not all of the setting up
sections are required to start using AWS Glue. You can use the instructions as needed to set up IAM
permissions, encryption, and DNS (if you're using a VPC environment to access data stores or if
you're using interactive sessions).

Topics

• Overview of using AWS Glue

• Setting up IAM permissions for AWS Glue

• Setting up AWS Glue usage profiles

• Getting started with the AWS Glue Data Catalog

• Setting up network access to data stores

• Setting up encryption in AWS Glue

• Setting up networking for development for AWS Glue

Overview of using AWS Glue

With AWS Glue, you store metadata in the AWS Glue Data Catalog. You use this metadata to
orchestrate ETL jobs that transform data sources and load your data warehouse or data lake.
The following steps describe the general workflow and some of the choices that you make when
working with AWS Glue.

Note

You can use the following steps, or you can create a workflow that automatically performs
steps 1 through 3. For more information, see the section called “Performing complex ETL
activities using blueprints and workflows”.

1. Populate the AWS Glue Data Catalog with table definitions.

In the console, for persistent data stores, you can add a crawler to populate the AWS Glue Data
Catalog. You can start the Add crawler wizard from the list of tables or the list of crawlers. You
choose one or more data stores for your crawler to access. You can also create a schedule to

Overview of using AWS Glue 26

AWS Glue User Guide

determine the frequency of running your crawler. For data streams, you can manually create the
table definition, and define stream properties.

Optionally, you can provide a custom classifier that infers the schema of your data. You can
create custom classifiers using a grok pattern. However, AWS Glue provides built-in classifiers
that are automatically used by crawlers if a custom classifier does not recognize your data. When
you define a crawler, you don't have to select a classifier. For more information about classifiers
in AWS Glue, see Adding classifiers to a crawler in AWS Glue.

Crawling some types of data stores requires a connection that provides authentication and
location information. If needed, you can create a connection that provides this required
information in the AWS Glue console.

The crawler reads your data store and creates data definitions and named tables in the AWS
Glue Data Catalog. These tables are organized into a database of your choosing. You can
also populate the Data Catalog with manually created tables. With this method, you provide
the schema and other metadata to create table definitions in the Data Catalog. Because this
method can be a bit tedious and error prone, it's often better to have a crawler create the table
definitions.

For more information about populating the AWS Glue Data Catalog with table definitions, see
Creating tables.

2. Define a job that describes the transformation of data from source to target.

Generally, to create a job, you have to make the following choices:

• Choose a table from the AWS Glue Data Catalog to be the source of the job. Your job uses this
table definition to access your data source and interpret the format of your data.

• Choose a table or location from the AWS Glue Data Catalog to be the target of the job. Your
job uses this information to access your data store.

• Tell AWS Glue to generate a script to transform your source to target. AWS Glue generates
the code to call built-in transforms to convert data from its source schema to target schema
format. These transforms perform operations such as copy data, rename columns, and filter
data to transform data as necessary. You can modify this script in the AWS Glue console.

For more information about defining jobs in AWS Glue, see Building visual ETL jobs with AWS
Glue Studio.

3. Run your job to transform your data.

Overview of using AWS Glue 27

AWS Glue User Guide

You can run your job on demand, or start it based on a one of these trigger types:

• A trigger that is based on a cron schedule.

• A trigger that is event-based; for example, the successful completion of another job can start
an AWS Glue job.

• A trigger that starts a job on demand.

For more information about triggers in AWS Glue, see Starting jobs and crawlers using triggers.

4. Monitor your scheduled crawlers and triggered jobs.

Use the AWS Glue console to view the following:

• Job run details and errors.

• Crawler run details and errors.

• Any notifications about AWS Glue activities

For more information about monitoring your crawlers and jobs in AWS Glue, see Monitoring
AWS Glue.

Setting up IAM permissions for AWS Glue

The instructions in this topic help you quickly set up AWS Identity and Access Management (IAM)
permissions for AWS Glue. You will complete the following tasks:

• Grant your IAM identities access to AWS Glue resources.

• Create a service role for running jobs, accessing data, and running AWS Glue Data Quality tasks.

For detailed instructions that you can use to customize IAM permissions for AWS Glue, see
Configuring IAM permissions for AWS Glue.

To set up IAM permissions for AWS Glue in the AWS Management Console

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. Choose Getting started.

3. Under Prepare your account for AWS Glue, choose Set up IAM permissions.

Setting up IAM permissions 28

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

4. Choose the IAM identities (roles or users) that you want to give AWS Glue permissions to. AWS
Glue attaches the AWSGlueConsoleFullAccess managed policy to these identities. You
can skip this step if you want to set these permissions manually or only want to set a default
service role.

5. Choose Next.

6. Choose the level of Amazon S3 access that your roles and users need. The options that you
choose in this step are applied to all of the identities that you selected.

a. Under Choose S3 locations, choose the Amazon S3 locations that you want to grant
access to.

b. Next, select whether your identities should have Read only (recommended) or Read and
write access to the locations that you previously selected. AWS Glue adds permissions
policies to your identities based on the combination of locations and read or write
permissions you select.

The following table displays the permissions that AWS Glue attaches for Amazon S3
access.

If you choose ... AWS Glue attaches ...

No change No permissions. AWS Glue won't make
any changes to your identity's permissio
ns.

Grant access to specific Amazon S3
locations (read only)

An inline policy embedded in your
selected IAM identities. For more
information, see Inline policies in the
IAM User Guide.

AWS Glue names the policy using the
following convention: AWSGlueCo
nsole <Role/User> InlinePol
icy-read-specific-
access- <UUID>. For example:
AWSGlueConsoleRoleInlinePol
icy-read-specific-access-12
3456780123 .

Setting up IAM permissions 29

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSGlueConsoleFullAccess
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#inline-policies

AWS Glue User Guide

If you choose ... AWS Glue attaches ...

The following is an example of an inline
policy that AWS Glue attaches to grant
read-only access to a specified Amazon
S3 location.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": [
 "arn:aws:
s3:::DOC-EXAMPLE-BUCKET/*"
]
 }
]
}

Setting up IAM permissions 30

AWS Glue User Guide

If you choose ... AWS Glue attaches ...

Grant access to specific Amazon S3
locations (read and write)

An inline policy embedded in your
selected IAM identities. For more
information, see Inline policies in the
IAM User Guide.

AWS Glue names the policy using the
following convention: AWSGlueCo
nsole <Role/User> InlinePol
icy-read -and-write-specifi
c-access- <UUID>. For example:
AWSGlueConsoleRoleInlinePol
icy-read-and-write-specific
-access-123456780123 .

The following is an example of an
inline policy that AWS Glue attaches to
grant read and write access to specified
Amazon S3 locations.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*",
 "s3:*Object*"
],
 "Resource": [
 "arn:aws:
s3:::DOC-EXAMPLE-BUCKET1/*",
 "arn:aws:
s3:::DOC-EXAMPLE-BUCKET2/*"
]
 }
]

Setting up IAM permissions 31

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#inline-policies

AWS Glue User Guide

If you choose ... AWS Glue attaches ...

}

Grant full access to Amazon S3 (read
only)

The AmazonS3ReadOnlyAccess
managed IAM policy. To learn more,
see AWS managed policy: AmazonS3R
eadOnlyAccess.

Grant full access to Amazon S3 (read and
write)

The AmazonS3FullAccess managed
IAM policy. To learn more, see AWS
managed policy: AmazonS3FullAccess.

7. Choose Next.

8. Choose a default AWS Glue service role for your account. A service role is an IAM role that AWS
Glue uses to access resources in other AWS services on your behalf. For more information, see
Service roles for AWS Glue.

• When you choose the standard AWS Glue service role, AWS Glue creates a new IAM role
in your AWS account named AWSGlueServiceRole with the following managed policies
attached. If your account already has an IAM role named AWSGlueServiceRole, AWS Glue
attaches these policies to the existing role.

• AWSGlueServiceRole

• AmazonS3FullAccess

• When you choose an existing IAM role, AWS Glue sets the role as the default, but doesn't
add any permissions to it. Ensure that you've configured the role to use as a service role for
AWS Glue. For more information, see Step 1: Create an IAM policy for the AWS Glue service
and Step 2: Create an IAM role for AWS Glue.

9. Choose Next.

10. Finally, review the permissions you've selected and then choose Apply changes. When you
apply the changes, AWS Glue adds IAM permissions to the identities that you selected. You can
view or modify the new permissions in the IAM console at https://console.aws.amazon.com/
iam/.

Setting up IAM permissions 32

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-amazons3readonlyaccess
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-amazons3readonlyaccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonS3FullAccess
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-amazons3readonlyaccess
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-amazons3readonlyaccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSGlueServiceRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonS3FullAccess
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Glue User Guide

You've now completed the minimum IAM permissions setup for AWS Glue. In a production
environment, we recommend that you familiarize yourself with Security in AWS Glue and Identity
and access management for AWS Glue to help you secure AWS resources for your use case.

Next steps

Now that you have IAM permissions set up, you can explore the following topics to get started
using AWS Glue:

• Getting Started with AWS Glue in AWS Skill Builder

• Getting started with the AWS Glue Data Catalog

Setting up for AWS Glue Studio

Complete the tasks in this section when you're using AWS Glue for the visual ETL for the first time:

Topics

• Review IAM permissions needed for the AWS Glue Studio user

• Review IAM permissions needed for ETL jobs

• Set up IAM permissions for AWS Glue Studio

• Configure a VPC for your ETL job

Review IAM permissions needed for the AWS Glue Studio user

To use AWS Glue Studio, the user must have access to various AWS resources. The user must be
able to view and select Amazon S3 buckets, IAM policies and roles, and AWS Glue Data Catalog
objects.

AWS Glue service permissions

AWS Glue Studio uses the actions and resources of the AWS Glue service. Your user needs
permissions on these actions and resources to effectively use AWS Glue Studio. You can grant the
AWS Glue Studio user the AWSGlueConsoleFullAccess managed policy, or create a custom
policy with a smaller set of permissions.

Next steps 33

https://explore.skillbuilder.aws/learn/course/external/view/elearning/8171/getting-started-with-aws-glue

AWS Glue User Guide

Important

Per security best practices, it is recommended to restrict access by tightening policies to
further restrict access to Amazon S3 bucket and Amazon CloudWatch log groups. For an
example Amazon S3 policy, see Writing IAM Policies: How to Grant Access to an Amazon S3
Bucket.

Creating Custom IAM Policies for AWS Glue Studio

You can create a custom policy with a smaller set of permissions for AWS Glue Studio. The policy
can grant permissions for a subset of objects or actions. Use the following information when
creating a custom policy.

To use the AWS Glue Studio APIs, include glue:UseGlueStudio in the action policy in your IAM
permissions. Using glue:UseGlueStudio will allow you to access all AWS Glue Studio actions
even as more actions are added to the API over time.

Directed acyclic graph (DAG) Actions

• CreateDag

• UpdateDag

• GetDag

• DeleteDag

Job Actions

• SaveJob

• GetJob

• CreateJob

• DeleteJob

• GetJobs

• UpdateJob

Job run Actions

IAM permissions for using the visual ETL 34

https://aws.amazon.com/blogs/security/writing-iam-policies-how-to-grant-access-to-an-amazon-s3-bucket/
https://aws.amazon.com/blogs/security/writing-iam-policies-how-to-grant-access-to-an-amazon-s3-bucket/

AWS Glue User Guide

• StartJobRun

• GetJobRuns

• BatchStopJobRun

• GetJobRun

• QueryJobRuns

• QueryJobs

• QueryJobRunsAggregated

Schema Actions

• GetSchema

• GetInferredSchema

Database Actions

• GetDatabases

Plan Actions

• GetPlan

Table Actions

• SearchTables

• GetTables

• GetTable

Connection Actions

• CreateConnection

• DeleteConnection

• UpdateConnection

• GetConnections

• GetConnection

IAM permissions for using the visual ETL 35

AWS Glue User Guide

Mapping Actions

• GetMapping

S3 Proxy Actions

• ListBuckets

• ListObjectsV2

• GetBucketLocation

Security Configuration Actions

• GetSecurityConfigurations

Script Actions

• CreateScript (different from API of same name in AWS Glue)

Accessing AWS Glue Studio APIs

To access AWS Glue Studio, add glue:UseGlueStudio in the actions policy list in the IAM
permissions.

In the example below, glue:UseGlueStudio is included in the action policy, but the
AWS Glue Studio APIs are not individually identified. That is because when you include
glue:UseGlueStudio, you are automatically granted access to the internal APIs without having
to specify the individual AWS Glue Studio APIs in the IAM permissions.

In the example, the additional listed action policies (for example, glue:SearchTables) are not
AWS Glue Studio APIs, so they will need to be included in the IAM permissions as required. You may
also want to include Amazon S3 Proxy actions to specify the level of Amazon S3 access to grant.
The example policy below provides access to open AWS Glue Studio, create a visual job, and save/
run it if the IAM role selected has sufficient access.

{
 "Version": "2012-10-17",
 "Statement": [
 {

IAM permissions for using the visual ETL 36

AWS Glue User Guide

 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "glue:UseGlueStudio",
 "iam:ListRoles",
 "iam:ListUsers",
 "iam:ListGroups",
 "iam:ListRolePolicies",
 "iam:GetRole",
 "iam:GetRolePolicy",
 "glue:SearchTables",
 "glue:GetConnections",
 "glue:GetJobs",
 "glue:GetTables",
 "glue:BatchStopJobRun",
 "glue:GetSecurityConfigurations",
 "glue:DeleteJob",
 "glue:GetDatabases",
 "glue:CreateConnection",
 "glue:GetSchema",
 "glue:GetTable",
 "glue:GetMapping",
 "glue:CreateJob",
 "glue:DeleteConnection",
 "glue:CreateScript",
 "glue:UpdateConnection",
 "glue:GetConnection",
 "glue:StartJobRun",
 "glue:GetJobRun",
 "glue:UpdateJob",
 "glue:GetPlan",
 "glue:GetJobRuns",
 "glue:GetTags",
 "glue:GetJob",
 "glue:QueryJobRuns",
 "glue:QueryJobs",
 "glue:QueryJobRunsAggregated"
],
 "Resource": "*"
 },
 {
 "Action": [
 "iam:PassRole"
],

IAM permissions for using the visual ETL 37

AWS Glue User Guide

 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/AWSGlueServiceRole*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "glue.amazonaws.com"
]
 }
 }
 }
]
}

Notebook and data preview permissions

Data previews and notebooks allow you to see a sample of your data at any stage of your job
(reading, transforming, writing), without having to run the job. You specify an AWS Identity and
Access Management (IAM) role for AWS Glue Studio to use when accessing the data. IAM roles are
intended to be assumable and do not have standard long-term credentials such as a password or
access keys associated with it. Instead, when AWS Glue Studio assumes the role, IAM provides it
with temporary security credentials.

To ensure data previews and notebook commands work correctly, use a role that has a name that
starts with the string AWSGlueServiceRole. If you choose to use a different name for your role,
then you must add the iam:passrole permission and configure a policy for the role in IAM. For
more information, see Create an IAM policy for roles not named "AWSGlueServiceRole*".

Warning

If a role grants the iam:passrole permission for a notebook, and you implement role
chaining, a user could unintentionally gain access to the notebook. There is currently no
auditing implemented which would allow you to monitor which users have been granted
access to the notebook.

If you would like to deny an IAM identity the ability to create data preview sessions, consult the
following example the section called “Deny an identity the ability to create data preview sessions”.

IAM permissions for using the visual ETL 38

AWS Glue User Guide

Amazon CloudWatch permissions

You can monitor your AWS Glue Studio jobs using Amazon CloudWatch, which collects and
processes raw data from AWS Glue into readable, near-real-time metrics. By default, AWS Glue
metrics data is sent to CloudWatch automatically. For more information, see What Is Amazon
CloudWatch? in the Amazon CloudWatch User Guide, and AWS Glue Metrics in the AWS Glue
Developer Guide.

To access CloudWatch dashboards, the user accessing AWS Glue Studio needs one of the following:

• The AdministratorAccess policy

• The CloudWatchFullAccess policy

• A custom policy that includes one or more of these specific permissions:

• cloudwatch:GetDashboard and cloudwatch:ListDashboards to view dashboards

• cloudwatch:PutDashboard to create or modify dashboards

• cloudwatch:DeleteDashboards to delete dashboards

For more information for changing permissions for an IAM user using policies, see Changing
Permissions for an IAM User in the IAM User Guide.

Review IAM permissions needed for ETL jobs

When you create a job using AWS Glue Studio, the job assumes the permissions of the IAM role
that you specify when you create it. This IAM role must have permission to extract data from your
data source, write data to your target, and access AWS Glue resources.

The name of the role that you create for the job must start with the string AWSGlueServiceRole
for it to be used correctly by AWS Glue Studio. For example, you might name your role
AWSGlueServiceRole-FlightDataJob.

Data source and data target permissions

An AWS Glue Studio job must have access to Amazon S3 for any sources, targets, scripts, and
temporary directories that you use in your job. You can create a policy to provide fine-grained
access to specific Amazon S3 resources.

• Data sources require s3:ListBucket and s3:GetObject permissions.

• Data targets require s3:ListBucket, s3:PutObject, and s3:DeleteObject permissions.

IAM permissions for using the visual ETL 39

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
https://docs.aws.amazon.com/glue/latest/dg/monitoring-awsglue-with-cloudwatch-metrics.html#awsglue-metrics
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html

AWS Glue User Guide

If you choose Amazon Redshift as your data source, you can provide a role for cluster permissions.
Jobs that run against a Amazon Redshift cluster issue commands that access Amazon S3 for
temporary storage using temporary credentials. If your job runs for more than an hour, these
credentials will expire causing the job to fail. To avoid this problem, you can assign a role to the
Amazon Redshift cluster itself that grants the necessary permissions to jobs using temporary
credentials. For more information, see Moving Data to and from Amazon Redshift in the AWS Glue
Developer Guide.

If the job uses data sources or targets other than Amazon S3, then you must attach the necessary
permissions to the IAM role used by the job to access these data sources and targets. For more
information, see Setting Up Your Environment to Access Data Stores in the AWS Glue Developer
Guide.

If you're using connectors and connections for your data store, you need additional permissions, as
described in the section called “Permissions required for using connectors”.

Permissions required for deleting jobs

In AWS Glue Studio you can select multiple jobs in the console to delete. To perform this action,
you must have the glue:BatchDeleteJob permission. This is different from the AWS Glue
console, which requires the glue:DeleteJob permission for deleting jobs.

AWS Key Management Service permissions

If you plan to access Amazon S3 sources and targets that use server-side encryption with AWS
Key Management Service (AWS KMS), then attach a policy to the AWS Glue Studio role used
by the job that enables the job to decrypt the data. The job role needs the kms:ReEncrypt,
kms:GenerateDataKey, and kms:DescribeKey permissions. Additionally, the job role needs the
kms:Decrypt permission to upload or download an Amazon S3 object that is encrypted with an
AWS KMS customer master key (CMK).

There are additional charges for using AWS KMS CMKs. For more information, see AWS Key
Management Service Concepts - Customer Master Keys (CMKs) and AWS Key Management Service
Pricing in the AWS Key Management Service Developer Guide.

Permissions required for using connectors

If you're using an AWS Glue Custom Connector and connection to access a data store, the role used
to run the AWS Glue ETL job needs additional permissions attached:

IAM permissions for using the visual ETL 40

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-redshift.html
https://docs.aws.amazon.com/glue/latest/dg/start-connecting.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/kms/pricing
https://aws.amazon.com/kms/pricing

AWS Glue User Guide

• The AWS managed policy AmazonEC2ContainerRegistryReadOnly for accessing connectors
purchased from AWS Marketplace.

• The glue:GetJob and glue:GetJobs permissions.

• AWS Secrets Manager permissions for accessing secrets that are used with connections. Refer to
Example: Permission to retrieve secret values for example IAM policies.

If your AWS Glue ETL job runs within a VPC running Amazon VPC, then the VPC must be configured
as described in the section called “Configure a VPC for your ETL job”.

Set up IAM permissions for AWS Glue Studio

You can create the roles and assign policies to users and job roles by using the AWS administrator
user.

You can use the AWSGlueConsoleFullAccess AWS managed policy to provide the necessary
permissions for using the AWS Glue Studio console.

To create your own policy, follow the steps documented in Create an IAM Policy for the AWS Glue
Service in the AWS Glue Developer Guide. Include the IAM permissions described previously in
Review IAM permissions needed for the AWS Glue Studio user.

Topics

• Attach policies to the AWS Glue Studio user

• Create an IAM policy for roles not named "AWSGlueServiceRole*"

Attach policies to the AWS Glue Studio user

Any AWS user that signs in to the AWS Glue Studio console must have permissions to access
specific resources. You provide those permissions by using assigning IAM policies to the user.

To attach the AWSGlueConsoleFullAccess managed policy to a user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, select the check box next to the AWSGlueConsoleFullAccess. You can use
the Filter menu and the search box to filter the list of policies.

IAM permissions for using the visual ETL 41

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_read
https://docs.aws.amazon.com/glue/latest/dg/create-service-policy.html
https://docs.aws.amazon.com/glue/latest/dg/create-service-policy.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Glue User Guide

4. Choose Policy actions, and then choose Attach.

5. Choose the user to attach the policy to. You can use the Filter menu and the search box to
filter the list of principal entities. After choosing the user to attach the policy to, choose
Attach policy.

6. Repeat the previous steps to attach additional policies to the user, as needed.

Create an IAM policy for roles not named "AWSGlueServiceRole*"

To configure an IAM policy for roles used by AWS Glue Studio

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Add a new IAM policy. You can add to an existing policy or create a new IAM inline policy. To
create an IAM policy:

1. Choose Policies, and then choose Create Policy. If a Get Started button appears, choose it,
and then choose Create Policy.

2. Next to Create Your Own Policy, choose Select.

3. For Policy Name, type any value that is easy for you to refer to later. Optionally, type
descriptive text in Description.

4. For Policy Document, type a policy statement with the following format, and then choose
Create Policy:

3. Copy and paste the following blocks into the policy under the "Statement" array, replacing my-
interactive-session-role-prefix with the prefix for all common roles to associate with
permissions for AWS Glue.

{
 "Action": [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/my-interactive-session-role-prefix*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "glue.amazonaws.com "
]
 }

IAM permissions for using the visual ETL 42

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Glue User Guide

 }
}

Here is the full example with the Version and Statement arrays included in the policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/my-interactive-session-role-prefix*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "glue.amazonaws.com "
]
 }
 }
 }
]
}

4. To enable the policy for a user, choose Users.

5. Choose the user to whom you want to attach the policy.

Configure a VPC for your ETL job

You can use Amazon Virtual Private Cloud (Amazon VPC) to define a virtual network in your own
logically isolated area within the AWS Cloud, known as a virtual private cloud (VPC). You can launch
your AWS resources, such as instances, into your VPC. Your VPC closely resembles a traditional
network that you might operate in your own data center, with the benefits of using the scalable
infrastructure of AWS. You can configure your VPC; you can select its IP address range, create
subnets, and configure route tables, network gateways, and security settings. You can connect
instances in your VPC to the internet. You can connect your VPC to your own corporate data center,
making the AWS Cloud an extension of your data center. To protect the resources in each subnet,
you can use multiple layers of security, including security groups and network access control lists.
For more information, see the Amazon VPC User Guide.

IAM permissions for using the visual ETL 43

https://docs.aws.amazon.com/vpc/latest/userguide/

AWS Glue User Guide

You can configure your AWS Glue ETL jobs to run within a VPC when using connectors. You must
configure your VPC for the following, as needed:

• Public network access for data stores not in AWS. All data stores that are accessed by the job
must be available from the VPC subnet.

• If your job needs to access both VPC resources and the public internet, the VPC needs to have a
network address translation (NAT) gateway inside the VPC.

For more information, see Setting Up Your Environment to Access Data Stores in the AWS Glue
Developer Guide.

Getting started with notebooks in AWS Glue Studio

When you start a notebook through AWS Glue Studio, all the configuration steps are done for you
so that you can explore your data and start developing your job script after only a few seconds.

The following sections describe how to create a role and grant the appropriate permissions to use
notebooks in AWS Glue Studio for ETL jobs.

Topics

• Granting permissions for the IAM role

Granting permissions for the IAM role

Setting up AWS Glue Studio is a pre-requisite to using notebooks.

To use notebooks in AWS Glue, your role requires the following:

• A trust relationship with AWS Glue for the sts:AssumeRole action and, if you want tagging
then sts:TagSession.

• An IAM policy containing all the API operations for notebooks, AWS Glue, and interactive
sessions.

• An IAM policy for a pass role since the role needs to be able to pass itself from the notebook to
interactive sessions.

Getting started with notebooks in AWS Glue Studio 44

https://docs.aws.amazon.com/glue/latest/dg/start-connecting.html

AWS Glue User Guide

For example, when you create a new role, you can add a standard AWS managed policy like
AWSGlueConsoleFullAccessRole to the role, and then add a new policy for the notebook
operations and another for the IAM PassRole policy.

Actions needed for a trust relationship with AWS Glue

When starting a notebook session, you must add the sts:AssumeRole to the trust relationship
of the role that is passed to the notebook. If your session includes tags, you must also pass the
sts:TagSession action. Without these actions, the notebook session cannot start.

For example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "glue.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Policies containing the API operations for notebooks

The following sample policy describes the required AWS IAM permissions for notebooks. If you are
creating a new role, create a policy that contains the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:StartNotebook",
 "glue:TerminateNotebook",
 "glue:GlueNotebookRefreshCredentials",
 "glue:DeregisterDataPreview",

Getting started with notebooks in AWS Glue Studio 45

AWS Glue User Guide

 "glue:GetNotebookInstanceStatus",
 "glue:GlueNotebookAuthorize"
],
 "Resource": "*"
 }
]
}

You can use the following IAM policies to allow access to specific resources:

• AwsGlueSessionUserRestrictedNotebookServiceRole: Provides full access to all AWS Glue resources
except for sessions. Allows users to create and use only the notebook sessions that are associated
with the user. This policy also includes other permissions needed by AWS Glue to manage AWS
Glue resources in other AWS services.

• AwsGlueSessionUserRestrictedNotebookPolicy: Provides permissions that allows users to create
and use only the notebook sessions that are associated with the user. This policy also includes
permissions to explicitly allow users to pass a restricted AWS Glue session role.

IAM policy to pass a role

When you create a notebook with a role, that role is then passed to interactive sessions so that the
same role can be used in both places. As such, the iam:PassRole permission needs to be part of
the role's policy.

Create a new policy for your role using the following example. Replace the account number with
your own and the role name.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::090000000210:role/<role_name>"
 }
]
}

Getting started with notebooks in AWS Glue Studio 46

AWS Glue User Guide

Setting up AWS Glue usage profiles

One of the main advantages of using a cloud platform is its flexibility. However, with this ease of
creating compute resources comes a risk of spiraling cloud costs when left unmanaged and without
guardrails. As a result, admins need to balance avoiding high infrastructure costs while at the same
time allowing users to work without unnecessary friction.

With AWS Glue usage profiles, admins can create different profiles for various classes of users
within the account, such as developers, testers, and product teams. Each profile is a unique set of
parameters that can be assigned to different types of users. For example, developers may need
more workers and can have a higher number of maximum workers while product teams may need
fewer workers and a lower timeout or idle timeout value.

Example of jobs and job runs behavior

Suppose that a job is created by user A with profile A. The job is saved with certain parameter
values. User B with profile B will try to run the job.

When user A authored the job, if he didn’t set a specific number of workers, the default set in user
A's profile was applied and was saved with the job's definitions.

When user B runs the job, it run with whatever values were saved for it. If user B's own profile is
more restrictive and not allowed to run with that many workers, the job run will fail.

Usage profile as a resource

An AWS Glue usage profile is a resource identified by an Amazon Resource Name (ARN). All the
default IAM (Identity and Access Management) controls apply, including action-based and resource-
based authorization. Admins should update the IAM policy of users who create AWS Glue resources,
granting them access to use the profiles.

Setting up usage profiles 47

AWS Glue User Guide

Topics

• Creating and managing usage profiles

• Usage profiles and jobs

Creating and managing usage profiles

Creating an AWS Glue usage profile

Admins should create usage profiles and then assign them to the various users. When creating a
usage profile, you specify default values as well as a range of allowed values for various job and
session parameters. You must configure at least one parameter for jobs or interactive sessions. You
can customize the default value to be used when a parameter value is not provided for the job,
and/or set up a range limit or a set of allowed values for validation if a user provides a parameter
value when using this profile.

Defaults are a best practice set by the admin to assist job authors. When a user creates a new job
and doesn't set a timeout value, the usage profile's default timeout will apply. If the author doesn’t
have a profile, then the AWS Glue service defaults would apply and be saved in the job's definition.
At runtime, AWS Glue enforces the limits set in the profile (min, max, allowed workers).

Once a parameter is configured, all other parameters are optional. Parameters that can be
customized for jobs or interactive sessions are:

Managing usage profiles 48

AWS Glue User Guide

• Number of workers – restrict the number of workers to avoid excessive use of compute
resources. You can set a default, minimum, and maximum value. The minimum is 1.

• Worker type – restrict the relevant worker types for your workloads. You can set a default type
and allow worker types for a user profile.

• Timeout – define the maximum time a job or interactive session can run and consume resources
before it is terminated. Set up timeout values to avoid long-running jobs.

You can set a default, minimum, and maximum value in minutes. The minimum is 1 (minute).
While the AWS Glue default time out is 2880 minutes, you can set any default value in the usage
profile.

It is a best practice to set a value for 'default'. This value will be used for the job or session
creation if no value was set by the user.

• Idle timeout – define the number of minutes an interactive session is inactive before timing out
after a cell has been run. Define idle timeout for interactive sessions to terminate after the work
completed. Idle timeout range should be within the limit of timeout.

You can set a default, minimum, and maximum value in minutes. The minimum is 1 (minute).
While the AWS Glue default time out is 2880 minutes, you can set any default value in the usage
profile.

It is a best practice to set a value for 'default'. This value will be used for the session creation if
no value was set by the user.

To create an AWS Glue usage profile as an admin (console)

1. In the left navigation menu, choose Cost management.

2. Choose Create usage profile.

3. Enter the Usage profile name for the usage profile.

4. Enter an optional description that will help others recognize the purpose of the usage profile.

5. Define at least one parameter in the profile. Any field in the form is a parameter. For example,
the session idle timeout minimum.

6. Define any optional tags that apply to the usage profile.

7. Choose Save.

Managing usage profiles 49

AWS Glue User Guide

To create a usage profile (AWS CLI)

1. Enter the following command.

aws glue create-usage-profile --name profile-name --configuration file://
config.json --tags list-of-tags

Managing usage profiles 50

AWS Glue User Guide

where the config.json can define parameter values for interactive sessions
(SessionConfiguration) and jobs (JobConfiguration):

//config.json (There is a separate blob for session/job configuration
{
 "SessionConfiguration": {
 "timeout": {
 "DefaultValue": "2880",
 "MinValue": "100",
 "MaxValue": "4000"
 },
 "idleTimeout": {
 "DefaultValue": "30",
 "MinValue": "10",
 "MaxValue": "4000"
 },
 "workerType": {
 "DefaultValue": "G.2X",
 "AllowedValues": [
 "G.2X",
 "G.4X",
 "G.8X"
]
 },
 "numberOfWorkers": {
 "DefaultValue": "10",
 "MinValue": "1",
 "MaxValue": "10"
 }
 },
 "JobConfiguration": {
 "timeout": {
 "DefaultValue": "2880",
 "MinValue": "100",
 "MaxValue": "4000"
 },
 "workerType": {
 "DefaultValue": "G.2X",
 "AllowedValues": [
 "G.2X",
 "G.4X",
 "G.8X"

Managing usage profiles 51

AWS Glue User Guide

]
 },
 "numberOfWorkers": {
 "DefaultValue": "10",
 "MinValue": "1",
 "MaxValue": "10"
 }
 }
}

2. Enter the following command to see the usage profile created:

aws glue get-usage-profile --name profile-name

The response:

{
 "ProfileName": "foo",
 "Configuration": {
 "SessionConfiguration": {
 "numberOfWorkers": {
 "DefaultValue": "10",
 "MinValue": "1",
 "MaxValue": "10"
 },
 "workerType": {
 "DefaultValue": "G.2X",
 "AllowedValues": [
 "G.2X",
 "G.4X",
 "G.8X"
]
 },
 "timeout": {
 "DefaultValue": "2880",
 "MinValue": "100",
 "MaxValue": "4000"
 },
 "idleTimeout": {
 "DefaultValue": "30",
 "MinValue": "10",
 "MaxValue": "4000"
 }

Managing usage profiles 52

AWS Glue User Guide

 },
 "JobConfiguration": {
 "numberOfWorkers": {
 "DefaultValue": "10",
 "MinValue": "1",
 "MaxValue": "10"
 },
 "workerType": {
 "DefaultValue": "G.2X",
 "AllowedValues": [
 "G.2X",
 "G.4X",
 "G.8X"
]
 },
 "timeout": {
 "DefaultValue": "2880",
 "MinValue": "100",
 "MaxValue": "4000"
 }
 }
 },
 "CreatedOn": "2024-01-19T23:15:24.542000+00:00"
}

Additional CLI commands used to manage usage profiles:

• aws glue list-usage-profiles

• aws glue update-usage-profile --name profile-name --configuration file://config.json

• aws glue delete-usage-profile --name profile-name

Editing a usage profile

Admins can edit usage profiles that they have created, to change the profile parameter values for
jobs and interactive sessions.

To edit a usage profile:

To edit an AWS Glue usage profile as an admin (console)

1. In the left navigation menu, choose Cost management.

Managing usage profiles 53

AWS Glue User Guide

2. Choose a usage profile that you have permissions to edit and choose Edit.

3. Make changes as needed to the profile. By default, the parameters that already have values are
expanded.

4. Choose Save Edits.

Managing usage profiles 54

AWS Glue User Guide

Managing usage profiles 55

AWS Glue User Guide

To edit a usage profile (AWS CLI)

• Enter the following command. The same --configuration file syntax is used as shown
above in the create command.

aws glue update-usage-profile --name profile-name --configuration file://
config.json

where the config.json defines parameter values for interactive sessions
(SessionConfiguration) and jobs (JobConfiguration):

Assigning a usage profile

The Utilization status column in the Usage profiles page shows whether a usage profile is
assigned to users. Hovering over the status shows the assigned IAM entities.

The admin can assign an AWS Glue usage profile to users/roles who create AWS Glue resources.
Assigning a profile is a combination of two actions:

• Updating the IAM user/role tag with the glue:UsageProfile key, then

• Updating the IAM policy of the user/role.

For users who use AWS Glue Studio to create jobs/interactive sessions, the admin tags the
following roles:

• For restrictions on jobs, the admin tags the logged in console role

• For restrictions on interactive sessions, the admin tags the role the user provides when they
create the notebook

The following is example policy that admin needs to update on the IAM users/roles who create
AWS Glue resources:

{
 "Effect": "Allow",
 "Action": [
 "glue:GetUsageProfile"
],
 "Resource": [

Managing usage profiles 56

AWS Glue User Guide

 "arn:aws:glue:us-east-1:123456789012:usageProfile/foo"
]
}

AWS Glue validates job, job run, and session requests based on the values specified in the AWS
Glue usage profile and raises an exception if the request is disallowed. For synchronous APIs, an
error will be thrown to the user. For asynchronous paths, a failed job run is created with the error
message that the input parameter is outside of the allowed range for the assigned profile of the
user/role.

To assign a usage profile to a user/role:

1. Open the (Identity and Access Management) IAM console.

2. In the left navigation, choose Users or Roles.

3. Choose a user or role.

4. Choose the Tags tab.

5. Choose Add new tag

6. Add a tag with the Key of glue:UsageProfile and the Value of the name of your usage
profile.

7. Choose Save changes

Viewing your assigned usage profile

Users can view their assigned usage profiles and use them when making API calls to create AWS
Glue job and session resources, or starting a job.

Managing usage profiles 57

AWS Glue User Guide

Profile permissions are provided in IAM policies. As long as the caller policy has the
glue:UsageProfile permission, a user can see the profile. Otherwise, you will get an access
denied error.

To view an assigned usage profile:

1. In the left navigation menu, choose Cost management.

2. Choose a usage profile that you have permissions to view.

Managing usage profiles 58

AWS Glue User Guide

Managing usage profiles 59

AWS Glue User Guide

Usage profiles and jobs

Authoring jobs with usage profiles

While authoring jobs, the limits and defaults set in your usage profile will apply. Your profile will be
assigned to the job upon save.

Running jobs with usage profiles

When you start a job run, AWS Glue enforces the limits set in your caller's profile. If there is no
direct caller, Glue will then apply the limits from the profile assigned to the job by its author.

Note

When a job is ran on a schedule (by AWS Glue workflows or AWS Glue triggers), the profile
assigned to the job the author will apply.
When a job is ran by an external service (Step Functions, MWAA) or a StartJobRun API,
the caller's profile limit will be enforced.

For AWS Glue workflows or AWS Glue triggers: pre-existing jobs need to be updated to save the
new profile name so that profile's limits (min, max, and allowed workers) will be enforced at
runtime for scheduled runs.

Viewing a usage profile assigned for jobs

To view the profile assigned to your jobs (that will be used at runtime with scheduled AWS Glue
workflows or AWS Glue triggers), you may look at the job Details tab. You may also look at the
profile used in past runs in the job runs details tab.

Updating or deleting a usage profile attached to a job

The profile assigned to a job is changed upon update. If the author isn't assigned a usage profile,
any profile previously attached to the job will be removed from it.

Getting started with the AWS Glue Data Catalog

The AWS Glue Data Catalog is your persistent technical metadata store. It is a managed service that
you can use to store, annotate, and share metadata in the AWS Cloud. For more information, see
AWS Glue Data Catalog.

Usage profiles and jobs 60

https://docs.aws.amazon.com/glue/latest/dg/components-overview.html#data-catalog-intro

AWS Glue User Guide

The AWS Glue console and some user interfaces were recently updated.

Overview

You can use this tutorial to create your first AWS Glue Data Catalog, which uses an Amazon S3
bucket as your data source.

In this tutorial, you'll do the following using the AWS Glue console:

1. Create a database

2. Create a table

3. Use an Amazon S3 bucket as a data source

After completing these steps, you will have successfully used an Amazon S3 bucket as the data
source to populate the AWS Glue Data Catalog.

Step 1: Create a database

To get started, sign in to the AWS Management Console and open the AWS Glue console.

To create a database using the AWS Glue console:

1. In the AWS Glue console, choose Databases under Data catalog from the left-hand menu.

2. Choose Add database.

3. In the Create a database page, enter a name for the database. In the Location - optional
section, set the URI location for use by clients of the Data Catalog. If you don't know this, you
can continue with creating the database.

4. (Optional). Enter a description for the database.

5. Choose Create database.

Congratulations, you've just set up your first database using the AWS Glue console. Your new
database will appear in the list of available databases. You can edit the database by choosing the
database's name from the Databases dashboard.

Next steps

Other ways to create a database:

Overview 61

https://console.aws.amazon.com/glue

AWS Glue User Guide

You just created a database using the AWS Glue console, but there are other ways to create a
database:

• You can use crawlers to create a database and tables for you automatically. To set up a database
using crawlers, see Working with Crawlers in the AWS Glue Console.

• You can use AWS CloudFormation templates. See Creating AWS Glue Resources Using AWS Glue
Data Catalog Templates.

• You can also create a database using the AWS Glue Database API operations.

To create a database using the create operation, structure the request by including the
DatabaseInput (required) parameters.

For example:

The following are examples of how you can use the CLI, Boto3, or DDL to define a table based
on the same flights_data.csv file from the S3 bucket that you used in the tutorial.

CLI

aws glue create-database --database-input "{\"Name\":\"clidb\"}"

Boto3

glueClient = boto3.client('glue')

response = glueClient.create_database(
 DatabaseInput={
 'Name': 'boto3db'
 }
)

For more information about the Database API data types, structure, and operations, see Database
API.

Next Steps

In the next section, you'll create a table and add that table to your database.

Step 1: Create a database 62

https://docs.aws.amazon.com/glue/latest/dg/console-crawlers.html
https://docs.aws.amazon.com/glue/latest/dg/populate-with-cloudformation-templates.html
https://docs.aws.amazon.com/glue/latest/dg/populate-with-cloudformation-templates.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-databases.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-databases.html

AWS Glue User Guide

You can also explore the settings and permissions for your Data Catalog. See Working with Data
Catalog Settings in the AWS Glue Console.

Step 2. Create a table

In this step, you create a table using the AWS Glue console.

1. In the AWS Glue console, choose Tables in the left-hand menu.

2. Choose Add table.

3. Set your table's properties by entering a name for your table in Table details.

4. In the Databases section, choose the database that you created in Step 1 from the drop-down
menu.

5. In Add a data store section, S3 will be selected by default as the type of source.

6. For Data is located in , choose Specified path in another account.

7. Copy and paste the path for the Include path input field:

s3://crawler-public-us-west-2/flight/2016/csv/

8. In the section Data format, for Classification, choose CSV. and for Delimiter, choose comma
(,). Choose Next.

9. You are asked to define a schema. A schema defines the structure and format of a data record.
Choose Add column. (For more information, see See Schema registries).

10. Specify the column properties:

a. Enter a column name.

b. For Column type, 'string' is already selected by default.

c. For Column number, '1' is already selected by default.

d. Choose Add.

11. You are asked to add partition indexes. This is optional. To skip this step, choose Next.

12. A summary of the table properties is displayed. If everything looks as expected, choose Create.
Otherwise, choose Back and make edits as needed.

Congratulations, you've successfully created a table manually and associated it to a database. Your
newly created table will appear in the Tables dashboard. From the dashboard, you can modify and
manage all your tables.

Step 2. Create a table 63

https://docs.aws.amazon.com/glue/latest/dg/console-data-catalog-settings.html
https://docs.aws.amazon.com/glue/latest/dg/console-data-catalog-settings.html
https://docs.aws.amazon.com/glue/latest/dg/schema-registry.html#schema-registry-schemas.html

AWS Glue User Guide

For more information, see Working with Tables in the AWS Glue Console.

Next steps

Next steps

Now that the Data Catalog is populated, you can begin authoring jobs in AWS Glue. See Building
visual ETL jobs with AWS Glue Studio.

In addition to using the console, there are other ways to define tables in the Data Catalog
including:

• Creating and running a crawler

• Adding classifiers to a crawler in AWS Glue

• Using the AWS Glue Table API

• Using the AWS Glue Data Catalog template

• Migrating an Apache Hive metastore

• Using the AWS CLI, Boto3, or data definition language (DDL)

The following are examples of how you can use the CLI, Boto3, or DDL to define a table based
on the same flights_data.csv file from the S3 bucket that you used in the tutorial.

See the documentation on how to structure an AWS CLI command. The CLI example contains
the JSON syntax for the 'aws glue create-table --table-input' value.

CLI

{
 "Name": "flights_data_cli",
 "StorageDescriptor": {
 "Columns": [
 {
 "Name": "year",
 "Type": "bigint"
 },
 {
 "Name": "quarter",
 "Type": "bigint"
 }
],
 "Location": "s3://crawler-public-us-west-2/flight/2016/csv",

Next steps 64

https://docs.aws.amazon.com/glue/latest/dg/console-tables.html
https://docs.aws.amazon.com/glue/latest/dg/author-job-glue.html
https://docs.aws.amazon.com/glue/latest/dg/author-job-glue.html
https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/add-classifier.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-tables.html
https://docs.aws.amazon.com/glue/latest/dg/populate-with-cloudformation-templates.html
https://github.com/aws-samples/aws-glue-samples/tree/master/utilities/Hive_metastore_migration
https://docs.aws.amazon.com/cli/latest/reference/glue/create-table.html

AWS Glue User Guide

 "InputFormat": "org.apache.hadoop.mapred.TextInputFormat",
 "OutputFormat":
 "org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat",
 "Compressed": false,
 "NumberOfBuckets": -1,
 "SerdeInfo": {
 "SerializationLibrary":
 "org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe",
 "Parameters": {
 "field.delim": ",",
 "serialization.format": ","
 }
 }
 },
 "PartitionKeys": [
 {
 "Name": "mon",
 "Type": "string"
 }
],
 "TableType": "EXTERNAL_TABLE",
 "Parameters": {
 "EXTERNAL": "TRUE",
 "classification": "csv",
 "columnsOrdered": "true",
 "compressionType": "none",
 "delimiter": ",",
 "skip.header.line.count": "1",
 "typeOfData": "file"
 }
 }

Boto3

import boto3

glue_client = boto3.client("glue")

response = glue_client.create_table(
 DatabaseName='sampledb',
 TableInput={
 'Name': 'flights_data_manual',

Next steps 65

AWS Glue User Guide

 'StorageDescriptor': {
 'Columns': [{
 'Name': 'year',
 'Type': 'bigint'
 }, {
 'Name': 'quarter',
 'Type': 'bigint'
 }],
 'Location': 's3://crawler-public-us-west-2/flight/2016/csv',
 'InputFormat': 'org.apache.hadoop.mapred.TextInputFormat',
 'OutputFormat':
 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat',
 'Compressed': False,
 'NumberOfBuckets': -1,
 'SerdeInfo': {
 'SerializationLibrary':
 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe',
 'Parameters': {
 'field.delim': ',',
 'serialization.format': ','
 }
 },
 },
 'PartitionKeys': [{
 'Name': 'mon',
 'Type': 'string'
 }],
 'TableType': 'EXTERNAL_TABLE',
 'Parameters': {
 'EXTERNAL': 'TRUE',
 'classification': 'csv',
 'columnsOrdered': 'true',
 'compressionType': 'none',
 'delimiter': ',',
 'skip.header.line.count': '1',
 'typeOfData': 'file'
 }
 }
)

Next steps 66

AWS Glue User Guide

DDL

CREATE EXTERNAL TABLE `sampledb`.`flights_data` (
 `year` bigint,
 `quarter` bigint)
PARTITIONED BY (
 `mon` string)
ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
STORED AS INPUTFORMAT
 'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
 's3://crawler-public-us-west-2/flight/2016/csv/'
TBLPROPERTIES (
 'classification'='csv',
 'columnsOrdered'='true',
 'compressionType'='none',
 'delimiter'=',',
 'skip.header.line.count'='1',
 'typeOfData'='file')

Setting up network access to data stores

To run your extract, transform, and load (ETL) jobs, AWS Glue must be able to access your data
stores. If a job doesn't need to run in your virtual private cloud (VPC) subnet—for example,
transforming data from Amazon S3 to Amazon S3—no additional configuration is needed.

If a job needs to run in your VPC subnet—for example, transforming data from a JDBC data store
in a private subnet—AWS Glue sets up elastic network interfaces that enable your jobs to connect
securely to other resources within your VPC. Each elastic network interface is assigned a private
IP address from the IP address range within the subnet you specified. No public IP addresses are
assigned. Security groups specified in the AWS Glue connection are applied on each of the elastic
network interfaces. For more information, see Setting up Amazon VPC for JDBC connections to
Amazon RDS data stores from AWS Glue.

All JDBC data stores that are accessed by the job must be available from the VPC subnet. To access
Amazon S3 from within your VPC, a VPC endpoint is required. If your job needs to access both VPC

Setting up network access to data stores 67

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html

AWS Glue User Guide

resources and the public internet, the VPC needs to have a Network Address Translation (NAT)
gateway inside the VPC.

A job or development endpoint can only access one VPC (and subnet) at a time. If you need to
access data stores in different VPCs, you have the following options:

• Use VPC peering to access the data stores. For more about VPC peering, see VPC Peering Basics

• Use an Amazon S3 bucket as an intermediary storage location. Split the work into two jobs, with
the Amazon S3 output of job 1 as the input to job 2.

For details on how to connect to a Amazon Redshift data store using Amazon VPC, see the section
called “Configure Redshift”.

For details on how to connnect to Amazon RDS data stores using Amazon VPC, see the section
called “Setting up Amazon VPC to connect to Amazon RDS data stores”.

Once necessary rules are set in Amazon VPC, you create a connection in AWS Glue with the
necessary properties to connect to your data stores. For more information about the connection,
see Connecting to data.

Note

Make sure you set up your DNS environment for AWS Glue. For more information, see
Setting up DNS in your VPC.

Topics

• Setting up a VPC to connect to PyPI for AWS Glue

• Setting up DNS in your VPC

Setting up a VPC to connect to PyPI for AWS Glue

The Python Package Index (PyPI) is a repository of software for the Python programming language.
This topic addresses the details needed to support the use of pip installed packages (as specified by
the session creator using the --additional-python-modules flag).

Setting up a VPC to connect to PyPI for AWS Glue 68

https://docs.aws.amazon.com/vpc/latest/peering/vpc-peering-basics.html

AWS Glue User Guide

Using AWS Glue interactive sessions with a connector results in the use of VPC network via the
subnet specified for the connector. Consequently AWS services and other network destinations are
not available unless you set up a special configuration.

The resolutions to this issue include:

• Use of an internet gateway which is reachable by your session.

• Set up and use of an S3 bucket with a PyPI/simple repo containing the transitive closure of a
package set's dependencies.

• Use of a CodeArtifact repository which is mirroring PyPI and attached to your VPC.

Setting up an internet gateway

The technical aspects are detailed in NAT gateway use cases but note these requirements for using
--additional-python-modules. Specifically, --additional-python-modules requires
access to pypi.org which is determined by the configuration of your VPC. Note the following
requirements:

1. The requirement of installing additional python modules via pip install for a user's session. If the
session uses a connector, your configuration may be affected.

2. When a connector is being used with --additional-python-modules, when the session is
started the subnet associated with the connector's PhysicalConnectionRequirements has
to provide a network path for reaching pypi.org.

3. You must determine whether or not your configuration is correct.

Setting up an Amazon S3 bucket to host a targeted PyPI/simple repo

This example sets up a PyPI mirror in Amazon S3 for a set of packages and their dependencies.

To set up the PyPI mirror for a set of packages:

pip download all the dependencies
pip download -d s3pypi --only-binary :all: plotly gglplot
pip download -d s3pypi --platform manylinux_2_17_x86_64 --only-binary :all: psycopg2-
binary
create and upload the pypi/simple index and wheel files to the s3 bucket
s3pypi -b test-domain-name --put-root-index -v s3pypi/*

Setting up a VPC to connect to PyPI for AWS Glue 69

https://docs.aws.amazon.com/vpc/latest/userguide/nat-gateway-scenarios.html

AWS Glue User Guide

If you already have an existing artifact repository, it will have an index URL for pip's use that you
can provide in place of the example URL for the Amazon S3 bucket as above.

To use the custom index-url, with some example packages:

%%configure
{
 "--additional-python-modules": "psycopg2_binary==2.9.5",
 "python-modules-installer-option": "--no-cache-dir --verbose --index-url https://
test-domain-name.s3.amazonaws.com/ --trusted-host test-domain-name.s3.amazonaws.com"
}

Setting up a CodeArtifact mirror of pypi attached to your VPC

To set up a mirror:

1. Create a repository in the same region as the subnet used by the connector.

Select Public upstream repositories and choose pypi-store.

2. Provide access to the repository from the VPC for the subnet.

3. Specify the correct --index-url using the python-modules-installer-option.

%%configure
{
 "--additional-python-modules": "psycopg2_binary==2.9.5",
 "python-modules-installer-option": "--no-cache-dir --verbose --index-url https://
test-domain-name.s3.amazonaws.com/ --trusted-host test-domain-name.s3.amazonaws.com"
}

For more information, see Use CodeArtifact from a VPC.

Setting up DNS in your VPC

Domain Name System (DNS) is a standard by which names used on the internet are resolved to
their corresponding IP addresses. A DNS hostname uniquely names a computer and consists of
a host name and a domain name. DNS servers resolve DNS hostnames to their corresponding IP
addresses.

To set up DNS in your VPC, ensure that DNS hostnames and DNS resolution are both enabled
in your VPC. The VPC network attributes enableDnsHostnames and enableDnsSupport

Setting up DNS in your VPC 70

https://docs.aws.amazon.com/codeartifact/latest/ug/use-codeartifact-from-vpc.html

AWS Glue User Guide

must be set to true. To view and modify these attributes, go to the VPC console at https://
console.aws.amazon.com/vpc/.

For more information, see Using DNS with your VPC. Also, you can use the AWS CLI and call the
modify-vpc-attribute command to configure the VPC network attributes.

Note

If you are using Route 53, confirm that your configuration does not override DNS network
attributes.

Setting up encryption in AWS Glue

The following example workflow highlights the options to configure when you use encryption with
AWS Glue. The example demonstrates the use of specific AWS Key Management Service (AWS KMS)
keys, but you might choose other settings based on your particular needs. This workflow highlights
only the options that pertain to encryption when setting up AWS Glue.

1. If the user of the AWS Glue console doesn't use a permissions policy that allows all AWS Glue
API operations (for example, "glue:*"), confirm that the following actions are allowed:

• "glue:GetDataCatalogEncryptionSettings"

• "glue:PutDataCatalogEncryptionSettings"

• "glue:CreateSecurityConfiguration"

• "glue:GetSecurityConfiguration"

• "glue:GetSecurityConfigurations"

• "glue:DeleteSecurityConfiguration"

2. Any client that accesses or writes to an encrypted catalog—that is, any console user, crawler, job,
or development endpoint—needs the following permissions.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt",
 "kms:Encrypt"

Setting up encryption 71

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/modify-vpc-attribute.html

AWS Glue User Guide

],
 "Resource": "<key-arns-used-for-data-catalog>"
 }
}

3. Any user or role that accesses an encrypted connection password needs the following
permissions.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": "<key-arns-used-for-password-encryption>"
 }
}

4. The role of any extract, transform, and load (ETL) job that writes encrypted data to Amazon S3
needs the following permissions.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:Encrypt",
 "kms:GenerateDataKey"
],
 "Resource": "<key-arns-used-for-s3>"
 }
}

5. Any ETL job or crawler that writes encrypted Amazon CloudWatch Logs requires the following
permissions in the key and IAM policies.

In the key policy (not the IAM policy):

{
 "Effect": "Allow",
 "Principal": {

Setting up encryption 72

AWS Glue User Guide

 "Service": "logs.region.amazonaws.com"
 },
 "Action": [
 "kms:Encrypt*",
 "kms:Decrypt*",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:Describe*"
],
 "Resource": "<arn of key used for ETL/crawler cloudwatch encryption>"
 }

For more information about key policies, see Using Key Policies in AWS KMS in the AWS Key
Management Service Developer Guide.

In the IAM policy attach the logs:AssociateKmsKey permission:

{
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.region.amazonaws.com"
 },
 "Action": [
 "logs:AssociateKmsKey"
],
 "Resource": "<arn of key used for ETL/crawler cloudwatch encryption>"
 }

6. Any ETL job that uses an encrypted job bookmark needs the following permissions.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:Encrypt"
],
 "Resource": "<key-arns-used-for-job-bookmark-encryption>"
 }
}

7. On the AWS Glue console, choose Settings in the navigation pane.

Setting up encryption 73

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

AWS Glue User Guide

a. On the Data catalog settings page, encrypt your Data Catalog by selecting Metadata
encryption. This option encrypts all the objects in the Data Catalog with the AWS KMS key
that you choose.

b. For AWS KMS key, choose aws/glue. You can also choose a AWS KMS key that you created.

Important

AWS Glue supports only symmetric customer master keys (CMKs). The AWS KMS key
list displays only symmetric keys. However, if you select Choose a AWS KMS key ARN,
the console lets you enter an ARN for any key type. Ensure that you enter only ARNs for
symmetric keys.

When encryption is enabled, the client that is accessing the Data Catalog must have AWS KMS
permissions.

8. In the navigation pane, choose Security configurations. A security configuration is a set of
security properties that can be used to configure AWS Glue processes. Then choose Add security
configuration. In the configuration, choose any of the following options:

a. Select S3 encryption. For Encryption mode, choose SSE-KMS. For the AWS KMS key, choose
aws/s3 (ensure that the user has permission to use this key). This enables data written by the
job to Amazon S3 to use the AWS managed AWS Glue AWS KMS key.

b. Select CloudWatch logs encryption, and choose a CMK. (Ensure that the user has permission
to use this key). For more information, see Encrypt Log Data in CloudWatch Logs Using AWS
KMS in the AWS Key Management Service Developer Guide.

Important

AWS Glue supports only symmetric customer master keys (CMKs). The AWS KMS key
list displays only symmetric keys. However, if you select Choose a AWS KMS key ARN,
the console lets you enter an ARN for any key type. Ensure that you enter only ARNs
for symmetric keys.

c. Choose Advanced properties, and select Job bookmark encryption. For the AWS KMS
key, choose aws/glue (ensure that the user has permission to use this key). This enables
encryption of job bookmarks written to Amazon S3 with the AWS Glue AWS KMS key.

9. In the navigation pane, choose Connections.

Setting up encryption 74

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html

AWS Glue User Guide

a. Choose Add connection to create a connection to the Java Database Connectivity (JDBC) data
store that is the target of your ETL job.

b. To enforce that Secure Sockets Layer (SSL) encryption is used, select Require SSL connection,
and test your connection.

10.In the navigation pane, choose Jobs.

a. Choose Add job to create a job that transforms data.

b. In the job definition, choose the security configuration that you created.

11.On the AWS Glue console, run your job on demand. Verify that any Amazon S3 data written by
the job, the CloudWatch Logs written by the job, and the job bookmarks are all encrypted.

Setting up networking for development for AWS Glue

To run your extract, transform, and load (ETL) scripts with AWS Glue, you can develop and test
your scripts using a development endpoint. Development endpoints are not supported for use with
AWS Glue version 2.0 jobs. For versions 2.0 and later, the preferred development method is using
Jupyter Notebook with one of the AWS Glue kernels. For more information, see the section called
“Getting started with AWS Glue interactive sessions”.

Setting up your network for a development endpoint

When you set up a development endpoint, you specify a virtual private cloud (VPC), subnet, and
security groups.

Note

Make sure you set up your DNS environment for AWS Glue. For more information, see
Setting up DNS in your VPC.

To enable AWS Glue to access required resources, add a row in your subnet route table to associate
a prefix list for Amazon S3 to the VPC endpoint. A prefix list ID is required for creating an outbound
security group rule that allows traffic from a VPC to access an AWS service through a VPC endpoint.
To ease connecting to a notebook server that is associated with this development endpoint,
from your local machine, add a row to the route table to add an internet gateway ID. For more
information, see VPC Endpoints. Update the subnet routes table to be similar to the following
table:

Setting up networking for development 75

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html

AWS Glue User Guide

Destination Target

10.0.0.0/16 local

pl-id for Amazon S3 vpce-id

0.0.0.0/0 igw-xxxx

To enable AWS Glue to communicate between its components, specify a security group with a self-
referencing inbound rule for all TCP ports. By creating a self-referencing rule, you can restrict the
source to the same security group in the VPC, and it's not open to all networks. The default security
group for your VPC might already have a self-referencing inbound rule for ALL Traffic.

To set up a security group

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the left navigation pane, choose Security Groups.

3. Either choose an existing security group from the list, or Create Security Group to use with the
development endpoint.

4. In the security group pane, navigate to the Inbound tab.

5. Add a self-referencing rule to allow AWS Glue components to communicate. Specifically, add
or confirm that there is a rule of Type All TCP, Protocol is TCP, Port Range includes all ports,
and whose Source is the same security group name as the Group ID.

The inbound rule looks similar to this:

Type Protocol Port range Source

All TCP TCP 0–65535 security-group

The following shows an example of a self-referencing inbound rule:

Setting up your network for a development endpoint 76

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

AWS Glue User Guide

6. Add a rule to for outbound traffic also. Either open outbound traffic to all ports, or create a
self-referencing rule of Type All TCP, Protocol is TCP, Port Range includes all ports, and
whose Source is the same security group name as the Group ID.

The outbound rule looks similar to one of these rules:

Type Protocol Port range Destination

All TCP TCP 0–65535 security-group

All Traffic ALL ALL 0.0.0.0/0

Setting up Amazon EC2 for a notebook server

With a development endpoint, you can create a notebook server to test your ETL scripts with
Jupyter notebooks. To enable communication to your notebook, specify a security group with
inbound rules for both HTTPS (port 443) and SSH (port 22). Ensure that the rule's source is either
0.0.0.0/0 or the IP address of the machine that is connecting to the notebook.

To set up a security group

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the left navigation pane, choose Security Groups.

3. Either choose an existing security group from the list, or Create Security Group to use with
your notebook server. The security group that is associated with your development endpoint is
also used to create your notebook server.

4. In the security group pane, navigate to the Inbound tab.

5. Add inbound rules similar to this:

Type Protocol Port range Source

SSH TCP 22 0.0.0.0/0

HTTPS TCP 443 0.0.0.0/0

Setting up Amazon EC2 for a notebook server 77

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

AWS Glue User Guide

The following shows an example of the inbound rules for the security group:

Setting up Amazon EC2 for a notebook server 78

AWS Glue User Guide

Data discovery and cataloging in AWS Glue

The AWS Glue Data Catalog is a centralized repository that stores metadata about your
organization's data sets. It acts as an index to the location, schema, and runtime metrics of your
data sources. The metadata is stored in metadata tables, where each table represents a single data
store.

You can populate the Data Catalog using a crawler, which automatically scans your data sources
and extracts metadata. A crawler can connect to data sources that are internal (AWS-based) and
external to AWS.

For more information about the supported data sources, see Which data stores can I crawl?

You can also create tables in the Data Catalog manually by defining the table structure, schema,
and partitioning structure according to your specific requirements.

For more information about creating metadata tables manually, see Defining metadata manually.

You can use the information in the Data Catalog to create and monitor your ETL jobs. The Data
Catalog integrates with other AWS analytics services, providing a unified view of data sources
making it easier to manage and analyze data.

• Amazon Athena – Store and query table metadata in the Data Catalog for the Amazon S3 data
using SQL.

• AWS Lake Formation – Centrally define and manage fine-grained data access policies and audit
data access.

• Amazon EMR – Access data sources defined in the Data Catalog for big data processing.

• Amazon SageMaker – Quickly and confidently build, train, and deploy machine learning models.

Key features of the Data Catalog

The following are the key aspects of the Data Catalog.

Metadata repository

The Data Catalog acts as a central metadata repository, storing information about the location,
schema, and properties of your data sources. This metadata is organized into databases and
tables, similar to a traditional relational database catalog.

79

AWS Glue User Guide

Automatic data discoverability

AWS Glue crawlers can automatically discover and catalog new or updated data sources,
reducing the overhead of manual metadata management and ensuring that your Data Catalog
remains up-to-date. By cataloging your data sources, the Data Catalog makes it easier for users
and applications to discover and understand the available data assets within your organization,
promoting data reuse and collaboration.

The Data Catalog supports a wide range of data sources, including Amazon S3, Amazon RDS,
Amazon Redshift, Apache Hive, and more. It can automatically infer and store metadata from
these sources using AWS Glue crawlers.

For more information see, Using crawlers to populate the Data Catalog .

Schema management

The Data Catalog automatically captures and manages the schema of your data sources,
including schema inference, evolution, and versioning. You can update your schema and
partitions in the Data Catalog using AWS Glue ETL jobs.

Table optimization

For better read performance by AWS analytics services such as Amazon Athena and Amazon
EMR, and AWS Glue ETL jobs, the Data Catalog provides managed compaction (a process that
compacts small Amazon S3 objects into larger objects) for Iceberg tables in the Data Catalog.
You can use AWS Glue console, AWS Lake Formation console, AWS CLI, or AWS API to enable or
disable compaction for individual Iceberg tables that are in the Data Catalog.

For more information, see Optimizing Iceberg tables.

Column statistics

You can compute column-level statistics for Data Catalog tables in data formats such as
Parquet, ORC, JSON, ION, CSV, and XML without setting up additional data pipelines. Column
statistics help you to understand data profiles by getting insights about values within a column.
The Data Catalog supports generating statistics for column values such as minimum value,
maximum value, total null values, total distinct values, average length of values, and total
occurrences of true values.

For more information, see Optimizing query performance using column statistics.

80

AWS Glue User Guide

Data lineage

The Data Catalog maintains a record of the transformations and operations performed on your
data, providing data lineage information. This lineage information is valuable for auditing,
compliance, and understanding the data's provenance.

Integration with other AWS services

The Data Catalog seamlessly integrates with other AWS services, such as AWS Lake Formation,
Amazon Athena, Amazon Redshift Spectrum, and Amazon EMR. This integration allows you to
query and analyze data across various data stores using a single, consistent metadata layer.

Security and access control

AWS Glue integrates with AWS Lake Formation to support fine-grained access control for Data
Catalog resources, allowing you to manage permissions and secure access to your data assets
based on your organization's policies and requirements. AWS Glue integrates with AWS Key
Management Service (AWS KMS) to encrypt metadata that's stored in the Data Catalog.

Topics

• Populating the AWS Glue Data Catalog

• Populating and managing transactional tables

• Managing the Data Catalog

• Accessing the Data Catalog

• AWS Glue Data Catalog best practices

• AWS Glue Schema Registry

Populating the AWS Glue Data Catalog

You can populate the AWS Glue Data Catalog using the following methods:

• AWS Glue crawler – An AWS Glue crawler can automatically discover and catalog data sources
like databases, data lakes, and streaming data. The crawlers are the most common and
recommended method to populate the Data Catalog as they can automatically discover and infer
metadata for a wide variety of data sources.

• Manually adding metadata – You can manually define databases, tables, and connection details
and add them to the Data Catalog using the AWS Glue console, Lake Formation console, AWS

Populating the Data Catalog 81

AWS Glue User Guide

CLI, or AWS Glue APIs. Manual entry is useful when you want to catalog data sources that cannot
be crawled.

• Integrating with other AWS services – You can populate the Data Catalog with metadata from
services like AWS Lake Formation and Amazon Athena. These services can discover and register
data sources in the Data Catalog.

• Populating from an existing metadata repository – If you have an existing metadata store like
Apache Hive Metastore, you can use AWS Glue to import that metadata into the Data Catalog.
For more information, see Migration between the Hive Metastore and the AWS Glue Data
Catalog on GitHub.

Topics

• Using crawlers to populate the Data Catalog

• Defining metadata manually

• Integrating with other AWS services

• Data Catalog settings

Using crawlers to populate the Data Catalog

You can use an AWS Glue crawler to populate the AWS Glue Data Catalog with databases and
tables. This is the primary method used by most AWS Glue users. A crawler can crawl multiple data
stores in a single run. Upon completion, the crawler creates or updates one or more tables in your
Data Catalog. Extract, transform, and load (ETL) jobs that you define in AWS Glue use these Data
Catalog tables as sources and targets. The ETL job reads from and writes to the data stores that are
specified in the source and target Data Catalog tables.

Workflow

The following workflow diagram shows how AWS Glue crawlers interact with data stores and other
elements to populate the Data Catalog.

Using an AWS Glue crawler 82

https://github.com/aws-samples/aws-glue-samples/tree/master/utilities/Hive_metastore_migration
https://github.com/aws-samples/aws-glue-samples/tree/master/utilities/Hive_metastore_migration

AWS Glue User Guide

The following is the general workflow for how a crawler populates the AWS Glue Data Catalog:

1. A crawler runs any custom classifiers that you choose to infer the format and schema of your
data. You provide the code for custom classifiers, and they run in the order that you specify.

The first custom classifier to successfully recognize the structure of your data is used to create a
schema. Custom classifiers lower in the list are skipped.

2. If no custom classifier matches your data's schema, built-in classifiers try to recognize your data's
schema. An example of a built-in classifier is one that recognizes JSON.

3. The crawler connects to the data store. Some data stores require connection properties for
crawler access.

4. The inferred schema is created for your data.

Using an AWS Glue crawler 83

AWS Glue User Guide

5. The crawler writes metadata to the Data Catalog. A table definition contains metadata about the
data in your data store. The table is written to a database, which is a container of tables in the
Data Catalog. Attributes of a table include classification, which is a label created by the classifier
that inferred the table schema.

Topics

• How crawlers work

• Which data stores can I crawl?

• How does a crawler determine when to create partitions?

• Crawler prerequisites

• Configuring a crawler

• Adding classifiers to a crawler in AWS Glue

• Scheduling an AWS Glue crawler

• Viewing crawler results and details

• Customizing crawler behavior

• Tutorial: Adding an AWS Glue crawler

How crawlers work

When a crawler runs, it takes the following actions to interrogate a data store:

• Classifies data to determine the format, schema, and associated properties of the raw data –
You can configure the results of classification by creating a custom classifier.

• Groups data into tables or partitions – Data is grouped based on crawler heuristics.

• Writes metadata to the Data Catalog – You can configure how the crawler adds, updates, and
deletes tables and partitions.

When you define a crawler, you choose one or more classifiers that evaluate the format of your
data to infer a schema. When the crawler runs, the first classifier in your list to successfully
recognize your data store is used to create a schema for your table. You can use built-in classifiers
or define your own. You define your custom classifiers in a separate operation, before you define
the crawlers. AWS Glue provides built-in classifiers to infer schemas from common files with
formats that include JSON, CSV, and Apache Avro. For the current list of built-in classifiers in AWS
Glue, see Built-in classifiers in AWS Glue.

Using an AWS Glue crawler 84

AWS Glue User Guide

The metadata tables that a crawler creates are contained in a database when you define a crawler.
If your crawler does not specify a database, your tables are placed in the default database.
In addition, each table has a classification column that is filled in by the classifier that first
successfully recognized the data store.

If the file that is crawled is compressed, the crawler must download it to process it. When a
crawler runs, it interrogates files to determine their format and compression type and writes these
properties into the Data Catalog. Some file formats (for example, Apache Parquet) enable you
to compress parts of the file as it is written. For these files, the compressed data is an internal
component of the file, and AWS Glue does not populate the compressionType property when
it writes tables into the Data Catalog. In contrast, if an entire file is compressed by a compression
algorithm (for example, gzip), then the compressionType property is populated when tables are
written into the Data Catalog.

The crawler generates the names for the tables that it creates. The names of the tables that are
stored in the AWS Glue Data Catalog follow these rules:

• Only alphanumeric characters and underscore (_) are allowed.

• Any custom prefix cannot be longer than 64 characters.

• The maximum length of the name cannot be longer than 128 characters. The crawler truncates
generated names to fit within the limit.

• If duplicate table names are encountered, the crawler adds a hash string suffix to the name.

If your crawler runs more than once, perhaps on a schedule, it looks for new or changed files or
tables in your data store. The output of the crawler includes new tables and partitions found since
a previous run.

Which data stores can I crawl?

Crawlers can crawl the following file-based and table-based data stores.

Access type that crawler uses Data stores

Native client • Amazon Simple Storage Service (Amazon S3)

• Amazon DynamoDB

• Delta Lake 2.0.x

Using an AWS Glue crawler 85

AWS Glue User Guide

Access type that crawler uses Data stores

• Apache Iceberg 1.5

• Apache Hudi 0.14

JDBC Amazon Redshift

Snowflake

Within Amazon Relational Database Service (Amazon RDS) or
external to Amazon RDS:

• Amazon Aurora

• MariaDB

• Microsoft SQL Server

• MySQL

• Oracle

• PostgreSQL

MongoDB client • MongoDB

• MongoDB Atlas

• Amazon DocumentDB (with MongoDB compatibility)

Note

Currently AWS Glue does not support crawlers for data streams.

For JDBC, MongoDB, MongoDB Atlas, and Amazon DocumentDB (with MongoDB compatibility)
data stores, you must specify an AWS Glue connection that the crawler can use to connect to the
data store. For Amazon S3, you can optionally specify a connection of type Network. A connection
is a Data Catalog object that stores connection information, such as credentials, URL, Amazon
Virtual Private Cloud information, and more. For more information, see Connecting to data.

The following are the versions of drivers supported by the crawler:

Using an AWS Glue crawler 86

AWS Glue User Guide

Product Crawler supported driver

PostgreSQL 42.2.1

Amazon Aurora Same as native crawler drivers

MariaDB 8.0.13

Microsoft SQL Server 6.1.0

MySQL 8.0.13

Oracle 11.2.2

Amazon Redshift 4.1

Snowflake 3.13.20

MongoDB 4.7.2

MongoDB Atlas 4.7.2

The following are notes about the various data stores.

Amazon S3

You can choose to crawl a path in your account or in another account. If all the Amazon S3 files
in a folder have the same schema, the crawler creates one table. Also, if the Amazon S3 object is
partitioned, only one metadata table is created and partition information is added to the Data
Catalog for that table.

Amazon S3 and Amazon DynamoDB

Crawlers use an AWS Identity and Access Management (IAM) role for permission to access your
data stores. The role you pass to the crawler must have permission to access Amazon S3 paths
and Amazon DynamoDB tables that are crawled.

Amazon DynamoDB

When defining a crawler using the AWS Glue console, you specify one DynamoDB table. If
you're using the AWS Glue API, you can specify a list of tables. You can choose to crawl only a
small sample of the data to reduce crawler run times.

Using an AWS Glue crawler 87

AWS Glue User Guide

Delta Lake

For each Delta Lake data store, you specify how to create the Delta tables:

• Create Native tables: Allow integration with query engines that support querying of the
Delta transaction log directly. For more information, see Querying Delta Lake tables.

• Create Symlink tables: Create a _symlink_manifest folder with manifest files partitioned
by the partition keys, based on the specified configuration parameters.

Iceberg

For each Iceberg data store, you specify an Amazon S3 path that contains the metadata for your
Iceberg tables. If crawler discovers Iceberg table metadata, it registers it in the Data Catalog.
You can set a schedule for the crawler to keep the tables updated.

You can define these parameters for the data store:

• Exclusions: Allows you to skip certain folders.

• Maximum Traversal Depth: Sets the depth limit the crawler can crawl in your Amazon S3
bucket. The default maximum traversal depth is 10 and the maximum depth you can set is 20.

Hudi

For each Hudi data store, you specify an Amazon S3 path that contains the metadata for your
Hudi tables. If crawler discovers Hudi table metadata, it registers it in the Data Catalog. You can
set a schedule for the crawler to keep the tables updated.

You can define these parameters for the data store:

• Exclusions: Allows you to skip certain folders.

• Maximum Traversal Depth: Sets the depth limit the crawler can crawl in your Amazon S3
bucket. The default maximum traversal depth is 10 and the maximum depth you can set is 20.

Note

Timestamp columns with millis as logical types will be interpreted as bigint, due to
an incompatibility with Hudi 0.13.1 and timestamp types. A resolution may be provided
in the upcoming Hudi release.

Hudi tables are categorized as follows, with specific implications for each:

Using an AWS Glue crawler 88

https://docs.aws.amazon.com/athena/latest/ug/delta-lake-tables.html

AWS Glue User Guide

• Copy on Write (CoW): Data is stored in a columnar format (Parquet), and each update creates
a new version of files during a write.

• Merge on Read (MoR): Data is stored using a combination of columnar (Parquet) and row-
based (Avro) formats. Updates are logged to row-based delta files and are compacted as
needed to create new versions of the columnar files.

With CoW datasets, each time there is an update to a record, the file that contains the record
is rewritten with the updated values. With a MoR dataset, each time there is an update, Hudi
writes only the row for the changed record. MoR is better suited for write- or change-heavy
workloads with fewer reads. CoW is better suited for read-heavy workloads on data that change
less frequently.

Hudi provides three query types for accessing the data:

• Snapshot queries: Queries that see the latest snapshot of the table as of a given commit or
compaction action. For MoR tables, snapshot queries expose the most recent state of the
table by merging the base and delta files of the latest file slice at the time of the query.

• Incremental queries: Queries only see new data written to the table, since a given commit/
compaction. This effectively provides change streams to enable incremental data pipelines.

• Read optimized queries: For MoR tables, queries see the latest data compacted. For CoW
tables, queries see the latest data committed.

For Copy-On-Write tables, the crawlers creates a single table in the Data Catalog with the
ReadOptimized serde org.apache.hudi.hadoop.HoodieParquetInputFormat.

For Merge-On-Read tables, the crawler creates two tables in the Data Catalog for the same
table location:

• A table with suffix _ro which uses the ReadOptimized serde
org.apache.hudi.hadoop.HoodieParquetInputFormat.

• A table with suffix _rt which uses the RealTime Serde allowing for Snapshot queries:
org.apache.hudi.hadoop.realtime.HoodieParquetRealtimeInputFormat.

MongoDB and Amazon DocumentDB (with MongoDB compatibility)

MongoDB versions 3.2 and later are supported. You can choose to crawl only a small sample of
the data to reduce crawler run times.

Relational database

Authentication is with a database user name and password. Depending on the type of database
engine, you can choose which objects are crawled, such as databases, schemas, and tables.

Using an AWS Glue crawler 89

AWS Glue User Guide

Snowflake

The Snowflake JDBC crawler supports crawling the Table, External Table, View, and Materialized
View. The Materialized View Definition will not be populated.

For Snowflake external tables, the crawler only will crawl if it points to an Amazon S3 location.
In addition to the the table schema, the crawler will also crawl the Amazon S3 location, file
format and output as table parameters in the Data Catalog table. Note that the partition
information of the partitioned external table is not populated.

ETL is currently not supported for Data Catalog tables created using the Snowflake crawler.

How does a crawler determine when to create partitions?

When an AWS Glue crawler scans Amazon S3 and detects multiple folders in a bucket, it
determines the root of a table in the folder structure and which folders are partitions of a table.
The name of the table is based on the Amazon S3 prefix or folder name. You provide an Include
path that points to the folder level to crawl. When the majority of schemas at a folder level are
similar, the crawler creates partitions of a table instead of separate tables. To influence the crawler
to create separate tables, add each table's root folder as a separate data store when you define the
crawler.

For example, consider the following Amazon S3 folder structure.

The paths to the four lowest level folders are the following:

S3://sales/year=2019/month=Jan/day=1

Using an AWS Glue crawler 90

AWS Glue User Guide

S3://sales/year=2019/month=Jan/day=2
S3://sales/year=2019/month=Feb/day=1
S3://sales/year=2019/month=Feb/day=2

Assume that the crawler target is set at Sales, and that all files in the day=n folders have the
same format (for example, JSON, not encrypted), and have the same or very similar schemas. The
crawler will create a single table with four partitions, with partition keys year, month, and day.

In the next example, consider the following Amazon S3 structure:

s3://bucket01/folder1/table1/partition1/file.txt
s3://bucket01/folder1/table1/partition2/file.txt
s3://bucket01/folder1/table1/partition3/file.txt
s3://bucket01/folder1/table2/partition4/file.txt
s3://bucket01/folder1/table2/partition5/file.txt

If the schemas for files under table1 and table2 are similar, and a single data store is defined
in the crawler with Include path s3://bucket01/folder1/, the crawler creates a single table
with two partition key columns. The first partition key column contains table1 and table2, and
the second partition key column contains partition1 through partition3 for the table1
partition and partition4 and partition5 for the table2 partition. To create two separate
tables, define the crawler with two data stores. In this example, define the first Include path as
s3://bucket01/folder1/table1/ and the second as s3://bucket01/folder1/table2.

Note

In Amazon Athena, each table corresponds to an Amazon S3 prefix with all the objects in
it. If objects have different schemas, Athena does not recognize different objects within
the same prefix as separate tables. This can happen if a crawler creates multiple tables
from the same Amazon S3 prefix. This might lead to queries in Athena that return zero
results. For Athena to properly recognize and query tables, create the crawler with a
separate Include path for each different table schema in the Amazon S3 folder structure.
For more information, see Best Practices When Using Athena with AWS Glue and this AWS
Knowledge Center article.

Using an AWS Glue crawler 91

https://docs.aws.amazon.com/athena/latest/ug/glue-best-practices.html
https://aws.amazon.com/premiumsupport/knowledge-center/athena-empty-results/
https://aws.amazon.com/premiumsupport/knowledge-center/athena-empty-results/

AWS Glue User Guide

Crawler prerequisites

The crawler assumes the permissions of the AWS Identity and Access Management (IAM) role that
you specify when you define it. This IAM role must have permissions to extract data from your data
store and write to the Data Catalog. The AWS Glue console lists only IAM roles that have attached
a trust policy for the AWS Glue principal service. From the console, you can also create an IAM role
with an IAM policy to access Amazon S3 data stores accessed by the crawler. For more information
about providing roles for AWS Glue, see Identity-based policies for AWS Glue.

Note

When crawling a Delta Lake data store, you must have Read/Write permissions to the
Amazon S3 location.

For your crawler, you can create a role and attach the following policies:

• The AWSGlueServiceRole AWS managed policy, which grants the required permissions on the
Data Catalog

• An inline policy that grants permissions on the data source.

• An inline policy that grants iam:PassRole permission on the role.

A quicker approach is to let the AWS Glue console crawler wizard create a role for you. The
role that it creates is specifically for the crawler, and includes the AWSGlueServiceRole AWS
managed policy plus the required inline policy for the specified data source.

If you specify an existing role for a crawler, ensure that it includes the AWSGlueServiceRole
policy or equivalent (or a scoped down version of this policy), plus the required inline policies. For
example, for an Amazon S3 data store, the inline policy would at a minimum be the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"

Using an AWS Glue crawler 92

AWS Glue User Guide

],
 "Resource": [
 "arn:aws:s3:::bucket/object*"
]
 }
]
}

For an Amazon DynamoDB data store, the policy would at a minimum be the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:Scan"
],
 "Resource": [
 "arn:aws:dynamodb:region:account-id:table/table-name*"
]
 }
]
}

In addition, if the crawler reads AWS Key Management Service (AWS KMS) encrypted Amazon S3
data, then the IAM role must have decrypt permission on the AWS KMS key. For more information,
see Step 2: Create an IAM role for AWS Glue.

Configuring a crawler

A crawler accesses your data store, extracts metadata, and creates table definitions in the AWS
Glue Data Catalog. The Crawlers pane in the AWS Glue console lists all the crawlers that you
create. The list displays status and metrics from the last run of your crawler.

Note

If you choose to bring in your own JDBC driver versions, AWS Glue crawlers will consume
resources in AWS Glue jobs and Amazon S3 buckets to ensure your provided driver are run
in your environment. The additional usage of resources will be reflected in your account.

Using an AWS Glue crawler 93

AWS Glue User Guide

Additionally, providing your own JDBC driver does not mean that the crawler is able to
leverage all of the driver's features. Drivers are limited to the properties described in
Adding an AWS Glue connection.

To configure a crawler

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/. Choose Crawlers in the navigation pane.

2. Choose Create crawler, and follow the instructions in the Add crawler wizard. The wizard will
guide you the steps required to create a crawler. If you want to add custom calssifiers to define
the schema, see Adding classifiers to a crawler in AWS Glue.

Step 1: Set crawler properties

Enter a name for your crawler and description (optional). Optionally, you can tag your crawler
with a Tag key and optional Tag value. Once created, tag keys are read-only. Use tags on some
resources to help you organize and identify them. For more information, see AWS tags in AWS
Glue.

Name

Name may contain letters (A-Z), numbers (0-9), hyphens (-), or underscores (_), and can be up to
255 characters long.

Description

Descriptions can be up to 2048 characters long.

Tags

Use tags to organize and identify your resources. For more information, see the following:

• AWS tags in AWS Glue

Step 2: Choose data sources and classifiers

Data source configuration

Select the appropriate option for Is your data already mapped to AWS Glue tables? choose
'Not yet' or 'Yes'. By default, 'Not yet' is selected.

Using an AWS Glue crawler 94

https://docs.aws.amazon.com/glue/latest/dg/console-connections.html
https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

The crawler can access data stores directly as the source of the crawl, or it can use existing
tables in the Data Catalog as the source. If the crawler uses existing catalog tables, it crawls the
data stores that are specified by those catalog tables.

• Not yet: Select one or more data sources to be crawled. A crawler can crawl multiple data
stores of different types (Amazon S3, JDBC, and so on).

You can configure only one data store at a time. After you have provided the connection
information and include paths and exclude patterns, you then have the option of adding
another data store.

• Yes: Select existing tables from your AWS Glue Data Catalog. The catalog tables specify the
data stores to crawl. The crawler can crawl only catalog tables in a single run; it can't mix in
other source types.

A common reason to specify a catalog table as the source is when you create the table
manually (because you already know the structure of the data store) and you want a crawler
to keep the table updated, including adding new partitions. For a discussion of other reasons,
see Updating manually created Data Catalog tables using crawlers.

When you specify existing tables as the crawler source type, the following conditions apply:

• Database name is optional.

• Only catalog tables that specify Amazon S3 or Amazon DynamoDB data stores are
permitted.

• No new catalog tables are created when the crawler runs. Existing tables are updated as
needed, including adding new partitions.

• Deleted objects found in the data stores are ignored; no catalog tables are deleted. Instead,
the crawler writes a log message. (SchemaChangePolicy.DeleteBehavior=LOG)

• The crawler configuration option to create a single schema for each
Amazon S3 path is enabled by default and cannot be disabled.
(TableGroupingPolicy=CombineCompatibleSchemas) For more information, see How
to create a single schema for each Amazon S3 include path.

• You can't mix catalog tables as a source with any other source types (for example Amazon
S3 or Amazon DynamoDB).

Data sources

Select or add the list of data sources to be scanned by the crawler.

Using an AWS Glue crawler 95

AWS Glue User Guide

(Optional) If you choose JDBC as the data source, you can use your own JDBC drivers when
specifying the Connection access where the driver info is stored.

Include path

When evaluating what to include or exclude in a crawl, a crawler starts by evaluating the
required include path. For Amazon S3, MongoDB, MongoDB Atlas, Amazon DocumentDB (with
MongoDB compatibility), and relational data stores, you must specify an include path.

For an Amazon S3 data store

Choose whether to specify a path in this account or in a different account, and then browse
to choose an Amazon S3 path.

For Amazon S3 data stores, include path syntax is bucket-name/folder-name/file-
name.ext. To crawl all objects in a bucket, you specify just the bucket name in the include
path. The exclude pattern is relative to the include path

For a Delta Lake data store

Specify one or more Amazon S3 paths to Delta tables as s3://bucket/prefix/object.

For an Iceberg or Hudi data store

Specify one or more Amazon S3 paths that contain folders with Iceberg or Hudi table
metadata as s3://bucket/prefix.

For a Hudi data store, the Hudi folder may be located in a child folder of the root folder. The
crawler will scan all folders underneath a path for a Hudi folder.

For a JDBC data store

Enter <database>/<schema>/<table> or <database>/<table>, depending on the
database product. Oracle Database and MySQL don’t support schema in the path. You can
substitute the percent (%) character for <schema> or <table>. For example, for an Oracle
database with a system identifier (SID) of orcl, enter orcl/% to import all tables to which
the user named in the connection has access.

Important

This field is case-sensitive.

Using an AWS Glue crawler 96

AWS Glue User Guide

For a MongoDB, MongoDB Atlas, or Amazon DocumentDB data store

Enter database/collection.

For MongoDB, MongoDB Atlas, and Amazon DocumentDB (with MongoDB compatibility), the
syntax is database/collection.

For JDBC data stores, the syntax is either database-name/schema-name/table-name or
database-name/table-name. The syntax depends on whether the database engine supports
schemas within a database. For example, for database engines such as MySQL or Oracle, don't
specify a schema-name in your include path. You can substitute the percent sign (%) for a
schema or table in the include path to represent all schemas or all tables in a database. You
cannot substitute the percent sign (%) for database in the include path.

Maximum transversal depth (for Iceberg or Hudi data stores only)

Defines the maximum depth of the Amazon S3 path that the crawler can traverse to discover
the Iceberg or Hudi metadata folder in your Amazon S3 path. The purpose of this parameter is
to limit the crawler run time. The default value is 10 and the maximum is 20.

Exclude patterns

These enable you to exclude certain files or tables from the crawl. The exclude path is relative
to the include path. For example, to exclude a table in your JDBC data store, type the table
name in the exclude path.

A crawler connects to a JDBC data store using an AWS Glue connection that contains a JDBC URI
connection string. The crawler only has access to objects in the database engine using the JDBC
user name and password in the AWS Glue connection. The crawler can only create tables that it
can access through the JDBC connection. After the crawler accesses the database engine with the
JDBC URI, the include path is used to determine which tables in the database engine are created
in the Data Catalog. For example, with MySQL, if you specify an include path of MyDatabase/
%, then all tables within MyDatabase are created in the Data Catalog. When accessing Amazon
Redshift, if you specify an include path of MyDatabase/%, then all tables within all schemas
for database MyDatabase are created in the Data Catalog. If you specify an include path of
MyDatabase/MySchema/%, then all tables in database MyDatabase and schema MySchema
are created.

After you specify an include path, you can then exclude objects from the crawl that your include
path would otherwise include by specifying one or more Unix-style glob exclude patterns.

Using an AWS Glue crawler 97

AWS Glue User Guide

These patterns are applied to your include path to determine which objects are excluded. These
patterns are also stored as a property of tables created by the crawler. AWS Glue PySpark
extensions, such as create_dynamic_frame.from_catalog, read the table properties and
exclude objects defined by the exclude pattern.

AWS Glue supports the following kinds of glob patterns in the exclude pattern.

Exclude pattern Description

*.csv Matches an Amazon S3 path that represents
an object name in the current folder ending
in .csv

. Matches all object names that contain a dot

*.{csv,avro} Matches object names ending with .csv or
.avro

foo.? Matches object names starting with foo.
that are followed by a single character
extension

myfolder/* Matches objects in one level of subfolder
from myfolder, such as /myfolder/
mysource

myfolder/*/* Matches objects in two levels of subfolder
s from myfolder, such as /myfolder/
mysource/data

myfolder/** Matches objects in all subfolders of
myfolder, such as /myfolder/mysource
/mydata and /myfolder/mysource/
data

myfolder** Matches subfolder myfolder as well as files
below myfolder, such as /myfolder and
/myfolder/mydata.txt

Using an AWS Glue crawler 98

AWS Glue User Guide

Exclude pattern Description

Market* Matches tables in a JDBC database with
names that begin with Market, such as
Market_us and Market_fr

AWS Glue interprets glob exclude patterns as follows:

• The slash (/) character is the delimiter to separate Amazon S3 keys into a folder hierarchy.

• The asterisk (*) character matches zero or more characters of a name component without
crossing folder boundaries.

• A double asterisk (**) matches zero or more characters crossing folder or schema boundaries.

• The question mark (?) character matches exactly one character of a name component.

• The backslash (\) character is used to escape characters that otherwise can be interpreted
as special characters. The expression \\ matches a single backslash, and \{ matches a left
brace.

• Brackets [] create a bracket expression that matches a single character of a name
component out of a set of characters. For example, [abc] matches a, b, or c. The hyphen (-)
can be used to specify a range, so [a-z] specifies a range that matches from a through z
(inclusive). These forms can be mixed, so [abce-g] matches a, b, c, e, f, or g. If the character
after the bracket ([) is an exclamation point (!), the bracket expression is negated. For
example, [!a-c] matches any character except a, b, or c.

Within a bracket expression, the *, ?, and \ characters match themselves. The hyphen
(-) character matches itself if it is the first character within the brackets, or if it's the first
character after the ! when you are negating.

• Braces ({ }) enclose a group of subpatterns, where the group matches if any subpattern
in the group matches. A comma (,) character is used to separate the subpatterns. Groups
cannot be nested.

• Leading period or dot characters in file names are treated as normal characters in match
operations. For example, the * exclude pattern matches the file name .hidden.

Example Amazon S3 exclude patterns

Each exclude pattern is evaluated against the include path. For example, suppose that you have
the following Amazon S3 directory structure:

Using an AWS Glue crawler 99

AWS Glue User Guide

/mybucket/myfolder/
 departments/
 finance.json
 market-us.json
 market-emea.json
 market-ap.json
 employees/
 hr.json
 john.csv
 jane.csv
 juan.txt

Given the include path s3://mybucket/myfolder/, the following are some sample results
for exclude patterns:

Exclude pattern Results

departments/** Excludes all files and folders below
departments and includes the
employees folder and its files

departments/market* Excludes market-us.json , market-em
ea.json , and market-ap.json

**.csv Excludes all objects below myfolder that
have a name ending with .csv

employees/*.csv Excludes all .csv files in the employees
folder

Example Excluding a subset of Amazon S3 partitions

Suppose that your data is partitioned by day, so that each day in a year is in a separate Amazon
S3 partition. For January 2015, there are 31 partitions. Now, to crawl data for only the first
week of January, you must exclude all partitions except days 1 through 7:

 2015/01/{[!0],0[8-9]}**, 2015/0[2-9]/**, 2015/1[0-2]/**

Using an AWS Glue crawler 100

AWS Glue User Guide

Take a look at the parts of this glob pattern. The first part, 2015/01/{[!0],0[8-9]}**,
excludes all days that don't begin with a "0" in addition to day 08 and day 09 from month 01
in year 2015. Notice that "**" is used as the suffix to the day number pattern and crosses folder
boundaries to lower-level folders. If "*" is used, lower folder levels are not excluded.

The second part, 2015/0[2-9]/**, excludes days in months 02 to 09, in year 2015.

The third part, 2015/1[0-2]/**, excludes days in months 10, 11, and 12, in year 2015.

Example JDBC exclude patterns

Suppose that you are crawling a JDBC database with the following schema structure:

MyDatabase/MySchema/
 HR_us
 HR_fr
 Employees_Table
 Finance
 Market_US_Table
 Market_EMEA_Table
 Market_AP_Table

Given the include path MyDatabase/MySchema/%, the following are some sample results for
exclude patterns:

Exclude pattern Results

HR* Excludes the tables with names that begin
with HR

Market_* Excludes the tables with names that begin
with Market_

**_Table Excludes all tables with names that end with
_Table

Additional crawler source parameters

Each source type requires a different set of additional parameters. The following is an
incomplete list:

Using an AWS Glue crawler 101

AWS Glue User Guide

Connection

Select or add an AWS Glue connection. For information about connections, see Connecting to
data.

Additional metadata - optional (for JDBC data stores)

Select additional metadata properties for the crawler to crawl.

• Comments: Crawl associated table level and column level comments.

• Raw types: Persist the raw datatypes of the table columns in additional metadata. As a
default behavior, the crawler translates the raw datatypes to Hive-compatible types.

JDBC Driver Class name - optional (for JDBC data stores)

Type a custom JDBC driver class name for the crawler to connect to the data source:

• Postgres: org.postgresql.Driver

• MySQL: com.mysql.jdbc.Driver, com.mysql.cj.jdbc.Driver

• Redshift: com.amazon.redshift.jdbc.Driver, com.amazon.redshift.jdbc42.Driver

• Oracle: oracle.jdbc.driver.OracleDriver

• SQL Server: com.microsoft.sqlserver.jdbc.SQLServerDriver

JDBC Driver S3 Path - optional (for JDBC data stores)

Choose an existing Amazon S3 path to a .jar file. This is where the .jar file will be stored
when using a custom JDBC driver for the crawler to connect to the data source.

Enable data sampling (for Amazon DynamoDB, MongoDB, MongoDB Atlas, and Amazon
DocumentDB data stores only)

Select whether to crawl a data sample only. If not selected the entire table is crawled. Scanning
all the records can take a long time when the table is not a high throughput table.

Create tables for querying (for Delta Lake data stores only)

Select how you want to create the Delta Lake tables:

• Create Native tables: Allow integration with query engines that support querying of the Delta
transaction log directly.

• Create Symlink tables: Create a symlink manifest folder with manifest files partitioned by the
partition keys, based on the specified configuration parameters.

Using an AWS Glue crawler 102

AWS Glue User Guide

Scanning rate - optional (for DynamoDB data stores only)

Specify the percentage of the DynamoDB table Read Capacity Units to use by the crawler. Read
capacity units is a term defined by DynamoDB, and is a numeric value that acts as rate limiter
for the number of reads that can be performed on that table per second. Enter a value between
0.1 and 1.5. If not specified, defaults to 0.5% for provisioned tables and 1/4 of maximum
configured capacity for on-demand tables. Note that only provisioned capacity mode should be
used with AWS Glue crawlers.

Note

For DynamoDB data stores, set the provisioned capacity mode for processing reads and
writes on your tables. The AWS Glue crawler should not be used with the on-demand
capacity mode.

Network connection - optional (for Amazon S3 data stores only)

Optionally include a Network connection to use with this Amazon S3 target. Note that each
crawler is limited to one Network connection so any other Amazon S3 targets will also use the
same connection (or none, if left blank).

For information about connections, see Connecting to data.

Sample only a subset of files and Sample size (for Amazon S3 data stores only)

Specify the number of files in each leaf folder to be crawled when crawling sample files in a
dataset. When this feature is turned on, instead of crawling all the files in this dataset, the
crawler randomly selects some files in each leaf folder to crawl.

The sampling crawler is best suited for customers who have previous knowledge about their
data formats and know that schemas in their folders do not change. Turning on this feature will
significantly reduce crawler runtime.

A valid value is an integer between 1 and 249. If not specified, all the files are crawled.

Subsequent crawler runs

This field is a global field that affects all Amazon S3 data sources.

• Crawl all sub-folders: Crawl all folders again with every subsequent crawl.

Using an AWS Glue crawler 103

AWS Glue User Guide

• Crawl new sub-folders only: Only Amazon S3 folders that were added since the last crawl will
be crawled. If the schemas are compatible, new partitions will be added to existing tables. For
more information, see the section called “Incremental crawls for adding new partitions”.

• Crawl based on events: Rely on Amazon S3 events to control what folders to crawl. For more
information, see the section called “Accelerating crawls using Amazon S3 event notifications”.

Custom classifiers - optional

Define custom classifiers before defining crawlers. A classifier checks whether a given file
is in a format the crawler can handle. If it is, the classifier creates a schema in the form of a
StructType object that matches that data format.

For more information, see Adding classifiers to a crawler in AWS Glue.

Step 3: Configure security settings

IAM role

The crawler assumes this role. It must have permissions similar to the AWS managed policy
AWSGlueServiceRole. For Amazon S3 and DynamoDB sources, it must also have permissions
to access the data store. If the crawler reads Amazon S3 data encrypted with AWS Key
Management Service (AWS KMS), then the role must have decrypt permissions on the AWS KMS
key.

For an Amazon S3 data store, additional permissions attached to the role would be similar to
the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::bucket/object*"
]
 }
]

Using an AWS Glue crawler 104

AWS Glue User Guide

}

For an Amazon DynamoDB data store, additional permissions attached to the role would be
similar to the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:Scan"
],
 "Resource": [
 "arn:aws:dynamodb:region:account-id:table/table-name*"
]
 }
]
}

In order to add your own JDBC driver, additional permissions need to be added.

• Grant permissions for the following job actions: CreateJob, DeleteJob, GetJob,
GetJobRun, StartJobRun.

• Grant permissions for Amazon S3 actions: s3:DeleteObjects, s3:GetObject,
s3:ListBucket, s3:PutObject.

Note

The s3:ListBucket is not needed if the Amazon S3 bucket policy is disabled.

• Grant service principal access to bucket/folder in the Amazon S3 policy.

Example Amazon S3 policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",

Using an AWS Glue crawler 105

AWS Glue User Guide

 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::bucket-name/driver-parent-folder/driver.jar",
 "arn:aws:s3:::bucket-name"
]
 }
]
}

AWS Glue creates the following folders (_crawler and _glue_job_crawler at the same level
as the JDBC driver in your Amazon S3 bucket. For example, if the driver path is <s3-path/
driver_folder/driver.jar>, then the following folders will be created if they do not
already exist:

• <s3-path/driver_folder/_crawler>

• <s3-path/driver_folder/_glue_job_crawler>

Optionally, you can add a security configuration to a crawler to specify at-rest encryption
options.

For more information, see Step 2: Create an IAM role for AWS Glue and Identity and access
management for AWS Glue.

Lake Formation configuration - optional

Allow the crawler to use Lake Formation credentials for crawling the data source.

Checking Use Lake Formation credentials for crawling S3 data source will allow the crawler
to use Lake Formation credentials for crawling the data source. If the data source belongs to
another account, you must provide the registered account ID. Otherwise, the crawler will crawl
only those data sources associated to the account. Only applicable to Amazon S3 and Data
Catalog data sources.

Security configuration - optional

Settings include security configurations. For more information, see the following:

Using an AWS Glue crawler 106

AWS Glue User Guide

• Encrypting data written by AWS Glue

Note

Once a security configuration has been set on a crawler, you can change, but you cannot
remove it. To lower the level of security on a crawler, explicitly set the security feature
to DISABLED within your configuration, or create a new crawler.

Step 4: Set output and scheduling

Output configuration

Options include how the crawler should handle detected schema changes, deleted objects in
the data store, and more. For more information, see Customizing crawler behavior

Crawler schedule

You can run a crawler on demand or define a time-based schedule for your crawlers and
jobs in AWS Glue. The definition of these schedules uses the Unix-like cron syntax. For more
information, see Scheduling an AWS Glue crawler.

Step 5: Review and create

Review the crawler settings you configured, and create the crawler.

Adding classifiers to a crawler in AWS Glue

A classifier reads the data in a data store. If it recognizes the format of the data, it generates
a schema. The classifier also returns a certainty number to indicate how certain the format
recognition was.

AWS Glue provides a set of built-in classifiers, but you can also create custom classifiers. AWS
Glue invokes custom classifiers first, in the order that you specify in your crawler definition.
Depending on the results that are returned from custom classifiers, AWS Glue might also invoke
built-in classifiers. If a classifier returns certainty=1.0 during processing, it indicates that it's
100 percent certain that it can create the correct schema. AWS Glue then uses the output of that
classifier.

Using an AWS Glue crawler 107

AWS Glue User Guide

If no classifier returns certainty=1.0, AWS Glue uses the output of the classifier that has the
highest certainty. If no classifier returns a certainty greater than 0.0, AWS Glue returns the default
classification string of UNKNOWN.

When do I use a classifier?

You use classifiers when you crawl a data store to define metadata tables in the AWS Glue Data
Catalog. You can set up your crawler with an ordered set of classifiers. When the crawler invokes a
classifier, the classifier determines whether the data is recognized. If the classifier can't recognize
the data or is not 100 percent certain, the crawler invokes the next classifier in the list to determine
whether it can recognize the data.

For more information about creating a classifier using the AWS Glue console, see Working with
classifiers on the AWS Glue console.

Custom classifiers

The output of a classifier includes a string that indicates the file's classification or format (for
example, json) and the schema of the file. For custom classifiers, you define the logic for creating
the schema based on the type of classifier. Classifier types include defining schemas based on grok
patterns, XML tags, and JSON paths.

If you change a classifier definition, any data that was previously crawled using the classifier
is not reclassified. A crawler keeps track of previously crawled data. New data is classified with
the updated classifier, which might result in an updated schema. If the schema of your data has
evolved, update the classifier to account for any schema changes when your crawler runs. To
reclassify data to correct an incorrect classifier, create a new crawler with the updated classifier.

For more information about creating custom classifiers in AWS Glue, see Writing custom classifiers.

Note

If your data format is recognized by one of the built-in classifiers, you don't need to create
a custom classifier.

Built-in classifiers in AWS Glue

AWS Glue provides built-in classifiers for various formats, including JSON, CSV, web logs, and many
database systems.

Using an AWS Glue crawler 108

AWS Glue User Guide

If AWS Glue doesn't find a custom classifier that fits the input data format with 100 percent
certainty, it invokes the built-in classifiers in the order shown in the following table. The built-in
classifiers return a result to indicate whether the format matches (certainty=1.0) or does not
match (certainty=0.0). The first classifier that has certainty=1.0 provides the classification
string and schema for a metadata table in your Data Catalog.

Classifier type Classification
string

Notes

Apache Avro avro Reads the schema at the beginning of the file to
determine format.

Apache ORC orc Reads the file metadata to determine format.

Apache Parquet parquet Reads the schema at the end of the file to
determine format.

JSON json Reads the beginning of the file to determine
format.

Binary JSON bson Reads the beginning of the file to determine
format.

XML xml Reads the beginning of the file to determine
format. AWS Glue determines the table schema
based on XML tags in the document.

For information about creating a custom XML
classifier to specify rows in the document, see
Writing XML custom classifiers.

Amazon Ion ion Reads the beginning of the file to determine
format.

Combined Apache
log

combined_
apache

Determines log formats through a grok pattern.

Apache log apache Determines log formats through a grok pattern.

Using an AWS Glue crawler 109

AWS Glue User Guide

Classifier type Classification
string

Notes

Linux kernel log linux_kernel Determines log formats through a grok pattern.

Microsoft log microsoft_log Determines log formats through a grok pattern.

Ruby log ruby_logger Reads the beginning of the file to determine
format.

Squid 3.x log squid Reads the beginning of the file to determine
format.

Redis monitor log redismonlog Reads the beginning of the file to determine
format.

Redis log redislog Reads the beginning of the file to determine
format.

CSV csv Checks for the following delimiters: comma (,),
pipe (|), tab (\t), semicolon (;), and Ctrl-A (\u0001).
Ctrl-A is the Unicode control character for Start
Of Heading.

Amazon Redshift redshift Uses JDBC connection to import metadata.

MySQL mysql Uses JDBC connection to import metadata.

PostgreSQL postgresql Uses JDBC connection to import metadata.

Oracle database oracle Uses JDBC connection to import metadata.

Microsoft SQL
Server

sqlserver Uses JDBC connection to import metadata.

Amazon
DynamoDB

dynamodb Reads data from the DynamoDB table.

Files in the following compressed formats can be classified:

Using an AWS Glue crawler 110

AWS Glue User Guide

• ZIP (supported for archives containing only a single file). Note that Zip is not well-supported in
other services (because of the archive).

• BZIP

• GZIP

• LZ4

• Snappy (supported for both standard and Hadoop native Snappy formats)

Built-in CSV classifier

The built-in CSV classifier parses CSV file contents to determine the schema for an AWS Glue table.
This classifier checks for the following delimiters:

• Comma (,)

• Pipe (|)

• Tab (\t)

• Semicolon (;)

• Ctrl-A (\u0001)

Ctrl-A is the Unicode control character for Start Of Heading.

To be classified as CSV, the table schema must have at least two columns and two rows of data.
The CSV classifier uses a number of heuristics to determine whether a header is present in a
given file. If the classifier can't determine a header from the first row of data, column headers are
displayed as col1, col2, col3, and so on. The built-in CSV classifier determines whether to infer a
header by evaluating the following characteristics of the file:

• Every column in a potential header parses as a STRING data type.

• Except for the last column, every column in a potential header has content that is fewer than 150
characters. To allow for a trailing delimiter, the last column can be empty throughout the file.

• Every column in a potential header must meet the AWS Glue regex requirements for a column
name.

• The header row must be sufficiently different from the data rows. To determine this, one or more
of the rows must parse as other than STRING type. If all columns are of type STRING, then the
first row of data is not sufficiently different from subsequent rows to be used as the header.

Using an AWS Glue crawler 111

AWS Glue User Guide

Note

If the built-in CSV classifier does not create your AWS Glue table as you want, you might be
able to use one of the following alternatives:

• Change the column names in the Data Catalog, set the SchemaChangePolicy to LOG,
and set the partition output configuration to InheritFromTable for future crawler
runs.

• Create a custom grok classifier to parse the data and assign the columns that you want.

• The built-in CSV classifier creates tables referencing the LazySimpleSerDe as the
serialization library, which is a good choice for type inference. However, if the CSV
data contains quoted strings, edit the table definition and change the SerDe library to
OpenCSVSerDe. Adjust any inferred types to STRING, set the SchemaChangePolicy
to LOG, and set the partitions output configuration to InheritFromTable for future
crawler runs. For more information about SerDe libraries, see SerDe Reference in the
Amazon Athena User Guide.

Writing custom classifiers

You can provide a custom classifier to classify your data in AWS Glue. You can create a custom
classifier using a grok pattern, an XML tag, JavaScript Object Notation (JSON), or comma-separated
values (CSV). An AWS Glue crawler calls a custom classifier. If the classifier recognizes the data, it
returns the classification and schema of the data to the crawler. You might need to define a custom
classifier if your data doesn't match any built-in classifiers, or if you want to customize the tables
that are created by the crawler.

For more information about creating a classifier using the AWS Glue console, see Working with
classifiers on the AWS Glue console.

AWS Glue runs custom classifiers before built-in classifiers, in the order you specify. When a
crawler finds a classifier that matches the data, the classification string and schema are used in the
definition of tables that are written to your AWS Glue Data Catalog.

Topics

• Writing grok custom classifiers

• Writing XML custom classifiers

Using an AWS Glue crawler 112

https://docs.aws.amazon.com/athena/latest/ug/serde-reference.html

AWS Glue User Guide

• Writing JSON custom classifiers

• Writing CSV custom classifiers

Writing grok custom classifiers

Grok is a tool that is used to parse textual data given a matching pattern. A grok pattern is a
named set of regular expressions (regex) that are used to match data one line at a time. AWS Glue
uses grok patterns to infer the schema of your data. When a grok pattern matches your data, AWS
Glue uses the pattern to determine the structure of your data and map it into fields.

AWS Glue provides many built-in patterns, or you can define your own. You can create a grok
pattern using built-in patterns and custom patterns in your custom classifier definition. You can
tailor a grok pattern to classify custom text file formats.

Note

AWS Glue grok custom classifiers use the GrokSerDe serialization library for tables created
in the AWS Glue Data Catalog. If you are using the AWS Glue Data Catalog with Amazon
Athena, Amazon EMR, or Redshift Spectrum, check the documentation about those
services for information about support of the GrokSerDe. Currently, you might encounter
problems querying tables created with the GrokSerDe from Amazon EMR and Redshift
Spectrum.

The following is the basic syntax for the components of a grok pattern:

%{PATTERN:field-name}

Data that matches the named PATTERN is mapped to the field-name column in the schema,
with a default data type of string. Optionally, the data type for the field can be cast to byte,
boolean, double, short, int, long, or float in the resulting schema.

%{PATTERN:field-name:data-type}

For example, to cast a num field to an int data type, you can use this pattern:

%{NUMBER:num:int}

Using an AWS Glue crawler 113

AWS Glue User Guide

Patterns can be composed of other patterns. For example, you can have a pattern for a SYSLOG
timestamp that is defined by patterns for month, day of the month, and time (for example, Feb 1
06:25:43). For this data, you might define the following pattern:

SYSLOGTIMESTAMP %{MONTH} +%{MONTHDAY} %{TIME}

Note

Grok patterns can process only one line at a time. Multiple-line patterns are not supported.
Also, line breaks within a pattern are not supported.

Custom classifier values in AWS Glue

When you define a grok classifier, you supply the following values to AWS Glue to create the
custom classifier.

Name

Name of the classifier.

Classification

The text string that is written to describe the format of the data that is classified; for example,
special-logs.

Grok pattern

The set of patterns that are applied to the data store to determine whether there is a match.
These patterns are from AWS Glue built-in patterns and any custom patterns that you define.

The following is an example of a grok pattern:

%{TIMESTAMP_ISO8601:timestamp} \[%{MESSAGEPREFIX:message_prefix}\]
 %{CRAWLERLOGLEVEL:loglevel} : %{GREEDYDATA:message}

When the data matches TIMESTAMP_ISO8601, a schema column timestamp is created. The
behavior is similar for the other named patterns in the example.

Using an AWS Glue crawler 114

AWS Glue User Guide

Custom patterns

Optional custom patterns that you define. These patterns are referenced by the grok pattern
that classifies your data. You can reference these custom patterns in the grok pattern that is
applied to your data. Each custom component pattern must be on a separate line. Regular
expression (regex) syntax is used to define the pattern.

The following is an example of using custom patterns:

CRAWLERLOGLEVEL (BENCHMARK|ERROR|WARN|INFO|TRACE)
MESSAGEPREFIX .*-.*-.*-.*-.*

The first custom named pattern, CRAWLERLOGLEVEL, is a match when the data matches one
of the enumerated strings. The second custom pattern, MESSAGEPREFIX, tries to match a
message prefix string.

AWS Glue keeps track of the creation time, last update time, and version of your classifier.

AWS Glue built-in patterns

AWS Glue provides many common patterns that you can use to build a custom classifier. You add a
named pattern to the grok pattern in a classifier definition.

The following list consists of a line for each pattern. In each line, the pattern name is followed its
definition. Regular expression (regex) syntax is used in defining the pattern.

#<noloc>&GLU;</noloc> Built-in patterns
 USERNAME [a-zA-Z0-9._-]+
 USER %{USERNAME:UNWANTED}
 INT (?:[+-]?(?:[0-9]+))
 BASE10NUM (?<![0-9.+-])(?>[+-]?(?:(?:[0-9]+(?:\.[0-9]+)?)|(?:\.[0-9]+)))
 NUMBER (?:%{BASE10NUM:UNWANTED})
 BASE16NUM (?<![0-9A-Fa-f])(?:[+-]?(?:0x)?(?:[0-9A-Fa-f]+))
 BASE16FLOAT \b(?<![0-9A-Fa-f.])(?:[+-]?(?:0x)?(?:(?:[0-9A-Fa-f]+(?:\.[0-9A-Fa-f]*)?)|
(?:\.[0-9A-Fa-f]+)))\b
 BOOLEAN (?i)(true|false)

 POSINT \b(?:[1-9][0-9]*)\b
 NONNEGINT \b(?:[0-9]+)\b
 WORD \b\w+\b
 NOTSPACE \S+

Using an AWS Glue crawler 115

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

AWS Glue User Guide

 SPACE \s*
 DATA .*?
 GREEDYDATA .*
 #QUOTEDSTRING (?:(?<!\\)(?:"(?:\\.|[^\\"])*"|(?:'(?:\\.|[^\\'])*')|(?:`(?:\\.|[^\
\`])*`)))
 QUOTEDSTRING (?>(?<!\\)(?>"(?>\\.|[^\\"]+)+"|""|(?>'(?>\\.|[^\\']+)+')|''|(?>`(?>\\.|
[^\\`]+)+`)|``))
 UUID [A-Fa-f0-9]{8}-(?:[A-Fa-f0-9]{4}-){3}[A-Fa-f0-9]{12}

 # Networking
 MAC (?:%{CISCOMAC:UNWANTED}|%{WINDOWSMAC:UNWANTED}|%{COMMONMAC:UNWANTED})
 CISCOMAC (?:(?:[A-Fa-f0-9]{4}\.){2}[A-Fa-f0-9]{4})
 WINDOWSMAC (?:(?:[A-Fa-f0-9]{2}-){5}[A-Fa-f0-9]{2})
 COMMONMAC (?:(?:[A-Fa-f0-9]{2}:){5}[A-Fa-f0-9]{2})
 IPV6 ((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-
Fa-f]{1,4}|((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d))
{3})|:))|(([0-9A-Fa-f]{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]\d|1\d
\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){4}(((:
[0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa-f]{1,4})?:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.
(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){3}(((:[0-9A-Fa-f]
{1,4}){1,4})|((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|
2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){2}(((:[0-9A-Fa-f]{1,4}){1,5})|
((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d
\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-
f]{1,4}){0,4}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d))
{3}))|:))|(:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,5}:((25[0-5]|2[0-4]\d|
1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:)))(%.+)?
 IPV4 (?<![0-9])(?:(?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|
[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|
[0-1]?[0-9]{1,2}))(?![0-9])
 IP (?:%{IPV6:UNWANTED}|%{IPV4:UNWANTED})
 HOSTNAME \b(?:[0-9A-Za-z][0-9A-Za-z-_]{0,62})(?:\.(?:[0-9A-Za-z][0-9A-Za-z-_]
{0,62}))*(\.?|\b)
 HOST %{HOSTNAME:UNWANTED}
 IPORHOST (?:%{HOSTNAME:UNWANTED}|%{IP:UNWANTED})
 HOSTPORT (?:%{IPORHOST}:%{POSINT:PORT})

 # paths
 PATH (?:%{UNIXPATH}|%{WINPATH})
 UNIXPATH (?>/(?>[\w_%!$@:.,~-]+|\\.)*)+
 #UNIXPATH (?<![\w\/])(?:/[^\/\s?*]*)+
 TTY (?:/dev/(pts|tty([pq])?)(\w+)?/?(?:[0-9]+))
 WINPATH (?>[A-Za-z]+:|\\)(?:\\[^\\?*]*)+
 URIPROTO [A-Za-z]+(\+[A-Za-z+]+)?

Using an AWS Glue crawler 116

AWS Glue User Guide

 URIHOST %{IPORHOST}(?::%{POSINT:port})?
 # uripath comes loosely from RFC1738, but mostly from what Firefox
 # doesn't turn into %XX
 URIPATH (?:/[A-Za-z0-9$.+!*'(){},~:;=@#%_\-]*)+
 #URIPARAM \?(?:[A-Za-z0-9]+(?:=(?:[^&]*))?(?:&(?:[A-Za-z0-9]+(?:=(?:[^&]*))?)?)*)?
 URIPARAM \?[A-Za-z0-9$.+!*'|(){},~@#%&/=:;_?\-\[\]]*
 URIPATHPARAM %{URIPATH}(?:%{URIPARAM})?
 URI %{URIPROTO}://(?:%{USER}(?::[^@]*)?@)?(?:%{URIHOST})?(?:%{URIPATHPARAM})?

 # Months: January, Feb, 3, 03, 12, December
 MONTH \b(?:Jan(?:uary)?|Feb(?:ruary)?|Mar(?:ch)?|Apr(?:il)?|May|Jun(?:e)?|Jul(?:y)?|
Aug(?:ust)?|Sep(?:tember)?|Oct(?:ober)?|Nov(?:ember)?|Dec(?:ember)?)\b
 MONTHNUM (?:0?[1-9]|1[0-2])
 MONTHNUM2 (?:0[1-9]|1[0-2])
 MONTHDAY (?:(?:0[1-9])|(?:[12][0-9])|(?:3[01])|[1-9])

 # Days: Monday, Tue, Thu, etc...
 DAY (?:Mon(?:day)?|Tue(?:sday)?|Wed(?:nesday)?|Thu(?:rsday)?|Fri(?:day)?|
Sat(?:urday)?|Sun(?:day)?)

 # Years?
 YEAR (?>\d\d){1,2}
 # Time: HH:MM:SS
 #TIME \d{2}:\d{2}(?::\d{2}(?:\.\d+)?)?
 # TIME %{POSINT<24}:%{POSINT<60}(?::%{POSINT<60}(?:\.%{POSINT})?)?
 HOUR (?:2[0123]|[01]?[0-9])
 MINUTE (?:[0-5][0-9])
 # '60' is a leap second in most time standards and thus is valid.
 SECOND (?:(?:[0-5]?[0-9]|60)(?:[:.,][0-9]+)?)
 TIME (?!<[0-9])%{HOUR}:%{MINUTE}(?::%{SECOND})(?![0-9])
 # datestamp is YYYY/MM/DD-HH:MM:SS.UUUU (or something like it)
 DATE_US %{MONTHNUM}[/-]%{MONTHDAY}[/-]%{YEAR}
 DATE_EU %{MONTHDAY}[./-]%{MONTHNUM}[./-]%{YEAR}
 DATESTAMP_US %{DATE_US}[-]%{TIME}
 DATESTAMP_EU %{DATE_EU}[-]%{TIME}
 ISO8601_TIMEZONE (?:Z|[+-]%{HOUR}(?::?%{MINUTE}))
 ISO8601_SECOND (?:%{SECOND}|60)
 TIMESTAMP_ISO8601 %{YEAR}-%{MONTHNUM}-%{MONTHDAY}[T]%{HOUR}:?%{MINUTE}(?::?
%{SECOND})?%{ISO8601_TIMEZONE}?
 TZ (?:[PMCE][SD]T|UTC)
 DATESTAMP_RFC822 %{DAY} %{MONTH} %{MONTHDAY} %{YEAR} %{TIME} %{TZ}
 DATESTAMP_RFC2822 %{DAY}, %{MONTHDAY} %{MONTH} %{YEAR} %{TIME} %{ISO8601_TIMEZONE}
 DATESTAMP_OTHER %{DAY} %{MONTH} %{MONTHDAY} %{TIME} %{TZ} %{YEAR}
 DATESTAMP_EVENTLOG %{YEAR}%{MONTHNUM2}%{MONTHDAY}%{HOUR}%{MINUTE}%{SECOND}

Using an AWS Glue crawler 117

AWS Glue User Guide

 CISCOTIMESTAMP %{MONTH} %{MONTHDAY} %{TIME}

 # Syslog Dates: Month Day HH:MM:SS
 SYSLOGTIMESTAMP %{MONTH} +%{MONTHDAY} %{TIME}
 PROG (?:[\w._/%-]+)
 SYSLOGPROG %{PROG:program}(?:\[%{POSINT:pid}\])?
 SYSLOGHOST %{IPORHOST}
 SYSLOGFACILITY <%{NONNEGINT:facility}.%{NONNEGINT:priority}>
 HTTPDATE %{MONTHDAY}/%{MONTH}/%{YEAR}:%{TIME} %{INT}

 # Shortcuts
 QS %{QUOTEDSTRING:UNWANTED}

 # Log formats
 SYSLOGBASE %{SYSLOGTIMESTAMP:timestamp} (?:%{SYSLOGFACILITY})?%{SYSLOGHOST:logsource}
 %{SYSLOGPROG}:

 MESSAGESLOG %{SYSLOGBASE} %{DATA}

 COMMONAPACHELOG %{IPORHOST:clientip} %{USER:ident} %{USER:auth}
 \[%{HTTPDATE:timestamp}\] "(?:%{WORD:verb} %{NOTSPACE:request}(?: HTTP/
%{NUMBER:httpversion})?|%{DATA:rawrequest})" %{NUMBER:response} (?:%{Bytes:bytes=
%{NUMBER}|-})
 COMBINEDAPACHELOG %{COMMONAPACHELOG} %{QS:referrer} %{QS:agent}
 COMMONAPACHELOG_DATATYPED %{IPORHOST:clientip} %{USER:ident;boolean} %{USER:auth}
 \[%{HTTPDATE:timestamp;date;dd/MMM/yyyy:HH:mm:ss Z}\] "(?:%{WORD:verb;string}
 %{NOTSPACE:request}(?: HTTP/%{NUMBER:httpversion;float})?|%{DATA:rawrequest})"
 %{NUMBER:response;int} (?:%{NUMBER:bytes;long}|-)

 # Log Levels
 LOGLEVEL ([A|a]lert|ALERT|[T|t]race|TRACE|[D|d]ebug|DEBUG|[N|n]otice|NOTICE|[I|i]nfo|
INFO|[W|w]arn?(?:ing)?|WARN?(?:ING)?|[E|e]rr?(?:or)?|ERR?(?:OR)?|[C|c]rit?(?:ical)?|
CRIT?(?:ICAL)?|[F|f]atal|FATAL|[S|s]evere|SEVERE|EMERG(?:ENCY)?|[Ee]merg(?:ency)?)

Writing XML custom classifiers

XML defines the structure of a document with the use of tags in the file. With an XML custom
classifier, you can specify the tag name used to define a row.

Custom classifier values in AWS Glue

When you define an XML classifier, you supply the following values to AWS Glue to create the
classifier. The classification field of this classifier is set to xml.

Using an AWS Glue crawler 118

AWS Glue User Guide

Name

Name of the classifier.

Row tag

The XML tag name that defines a table row in the XML document, without angle brackets < >.
The name must comply with XML rules for a tag.

Note

The element containing the row data cannot be a self-closing empty element. For
example, this empty element is not parsed by AWS Glue:

 <row att1=”xx” att2=”yy” />

Empty elements can be written as follows:

 <row att1=”xx” att2=”yy”> </row>

AWS Glue keeps track of the creation time, last update time, and version of your classifier.

For example, suppose that you have the following XML file. To create an AWS Glue table that only
contains columns for author and title, create a classifier in the AWS Glue console with Row tag as
AnyCompany. Then add and run a crawler that uses this custom classifier.

<?xml version="1.0"?>
<catalog>
 <book id="bk101">
 <AnyCompany>
 <author>Rivera, Martha</author>
 <title>AnyCompany Developer Guide</title>
 </AnyCompany>
 </book>
 <book id="bk102">
 <AnyCompany>

Using an AWS Glue crawler 119

AWS Glue User Guide

 <author>Stiles, John</author>
 <title>Style Guide for AnyCompany</title>
 </AnyCompany>
 </book>
</catalog>

Writing JSON custom classifiers

JSON is a data-interchange format. It defines data structures with name-value pairs or an ordered
list of values. With a JSON custom classifier, you can specify the JSON path to a data structure that
is used to define the schema for your table.

Custom classifier values in AWS Glue

When you define a JSON classifier, you supply the following values to AWS Glue to create the
classifier. The classification field of this classifier is set to json.

Name

Name of the classifier.

JSON path

A JSON path that points to an object that is used to define a table schema. The JSON path can
be written in dot notation or bracket notation. The following operators are supported:

OperatorDescription

$Root element of a JSON object. This starts all path expressions

*Wildcard character. Available anywhere a name or numeric are required in the JSON path.

.<name>Dot-notated child. Specifies a child field in a JSON object.

['<name>'
]
Bracket-notated child. Specifies child field in a JSON object. Only a single child field can be
specified.

[<number>
]
Array index. Specifies the value of an array by index.

AWS Glue keeps track of the creation time, last update time, and version of your classifier.

Using an AWS Glue crawler 120

AWS Glue User Guide

Example Using a JSON classifier to pull records from an array

Suppose that your JSON data is an array of records. For example, the first few lines of your file
might look like the following:

[
 {
 "type": "constituency",
 "id": "ocd-division\/country:us\/state:ak",
 "name": "Alaska"
 },
 {
 "type": "constituency",
 "id": "ocd-division\/country:us\/state:al\/cd:1",
 "name": "Alabama's 1st congressional district"
 },
 {
 "type": "constituency",
 "id": "ocd-division\/country:us\/state:al\/cd:2",
 "name": "Alabama's 2nd congressional district"
 },
 {
 "type": "constituency",
 "id": "ocd-division\/country:us\/state:al\/cd:3",
 "name": "Alabama's 3rd congressional district"
 },
 {
 "type": "constituency",
 "id": "ocd-division\/country:us\/state:al\/cd:4",
 "name": "Alabama's 4th congressional district"
 },
 {
 "type": "constituency",
 "id": "ocd-division\/country:us\/state:al\/cd:5",
 "name": "Alabama's 5th congressional district"
 },
 {
 "type": "constituency",
 "id": "ocd-division\/country:us\/state:al\/cd:6",
 "name": "Alabama's 6th congressional district"
 },
 {
 "type": "constituency",

Using an AWS Glue crawler 121

AWS Glue User Guide

 "id": "ocd-division\/country:us\/state:al\/cd:7",
 "name": "Alabama's 7th congressional district"
 },
 {
 "type": "constituency",
 "id": "ocd-division\/country:us\/state:ar\/cd:1",
 "name": "Arkansas's 1st congressional district"
 },
 {
 "type": "constituency",
 "id": "ocd-division\/country:us\/state:ar\/cd:2",
 "name": "Arkansas's 2nd congressional district"
 },
 {
 "type": "constituency",
 "id": "ocd-division\/country:us\/state:ar\/cd:3",
 "name": "Arkansas's 3rd congressional district"
 },
 {
 "type": "constituency",
 "id": "ocd-division\/country:us\/state:ar\/cd:4",
 "name": "Arkansas's 4th congressional district"
 }
]

When you run a crawler using the built-in JSON classifier, the entire file is used to define the
schema. Because you don’t specify a JSON path, the crawler treats the data as one object, that is,
just an array. For example, the schema might look like the following:

root
|-- record: array

However, to create a schema that is based on each record in the JSON array, create a custom JSON
classifier and specify the JSON path as $[*]. When you specify this JSON path, the classifier
interrogates all 12 records in the array to determine the schema. The resulting schema contains
separate fields for each object, similar to the following example:

root
|-- type: string
|-- id: string

Using an AWS Glue crawler 122

AWS Glue User Guide

|-- name: string

Example Using a JSON classifier to examine only parts of a file

Suppose that your JSON data follows the pattern of the example JSON file s3://awsglue-
datasets/examples/us-legislators/all/areas.json drawn from http://
everypolitician.org/. Example objects in the JSON file look like the following:

{
 "type": "constituency",
 "id": "ocd-division\/country:us\/state:ak",
 "name": "Alaska"
}
{
 "type": "constituency",
 "identifiers": [
 {
 "scheme": "dmoz",
 "identifier": "Regional\/North_America\/United_States\/Alaska\/"
 },
 {
 "scheme": "freebase",
 "identifier": "\/m\/0hjy"
 },
 {
 "scheme": "fips",
 "identifier": "US02"
 },
 {
 "scheme": "quora",
 "identifier": "Alaska-state"
 },
 {
 "scheme": "britannica",
 "identifier": "place\/Alaska"
 },
 {
 "scheme": "wikidata",
 "identifier": "Q797"
 }
],
 "other_names": [

Using an AWS Glue crawler 123

http://everypolitician.org/
http://everypolitician.org/

AWS Glue User Guide

 {
 "lang": "en",
 "note": "multilingual",
 "name": "Alaska"
 },
 {
 "lang": "fr",
 "note": "multilingual",
 "name": "Alaska"
 },
 {
 "lang": "nov",
 "note": "multilingual",
 "name": "Alaska"
 }
],
 "id": "ocd-division\/country:us\/state:ak",
 "name": "Alaska"
}

When you run a crawler using the built-in JSON classifier, the entire file is used to create the
schema. You might end up with a schema like this:

root
|-- type: string
|-- id: string
|-- name: string
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- other_names: array
| |-- element: struct
| | |-- lang: string
| | |-- note: string
| | |-- name: string

However, to create a schema using just the "id" object, create a custom JSON classifier and specify
the JSON path as $.id. Then the schema is based on only the "id" field:

Using an AWS Glue crawler 124

AWS Glue User Guide

root
|-- record: string

The first few lines of data extracted with this schema look like this:

{"record": "ocd-division/country:us/state:ak"}
{"record": "ocd-division/country:us/state:al/cd:1"}
{"record": "ocd-division/country:us/state:al/cd:2"}
{"record": "ocd-division/country:us/state:al/cd:3"}
{"record": "ocd-division/country:us/state:al/cd:4"}
{"record": "ocd-division/country:us/state:al/cd:5"}
{"record": "ocd-division/country:us/state:al/cd:6"}
{"record": "ocd-division/country:us/state:al/cd:7"}
{"record": "ocd-division/country:us/state:ar/cd:1"}
{"record": "ocd-division/country:us/state:ar/cd:2"}
{"record": "ocd-division/country:us/state:ar/cd:3"}
{"record": "ocd-division/country:us/state:ar/cd:4"}
{"record": "ocd-division/country:us/state:as"}
{"record": "ocd-division/country:us/state:az/cd:1"}
{"record": "ocd-division/country:us/state:az/cd:2"}
{"record": "ocd-division/country:us/state:az/cd:3"}
{"record": "ocd-division/country:us/state:az/cd:4"}
{"record": "ocd-division/country:us/state:az/cd:5"}
{"record": "ocd-division/country:us/state:az/cd:6"}
{"record": "ocd-division/country:us/state:az/cd:7"}

To create a schema based on a deeply nested object, such as "identifier," in the
JSON file, you can create a custom JSON classifier and specify the JSON path as
$.identifiers[*].identifier. Although the schema is similar to the previous example, it is
based on a different object in the JSON file.

The schema looks like the following:

root
|-- record: string

Listing the first few lines of data from the table shows that the schema is based on the data in the
"identifier" object:

Using an AWS Glue crawler 125

AWS Glue User Guide

{"record": "Regional/North_America/United_States/Alaska/"}
{"record": "/m/0hjy"}
{"record": "US02"}
{"record": "5879092"}
{"record": "4001016-8"}
{"record": "destination/alaska"}
{"record": "1116270"}
{"record": "139487266"}
{"record": "n79018447"}
{"record": "01490999-8dec-4129-8254-eef6e80fadc3"}
{"record": "Alaska-state"}
{"record": "place/Alaska"}
{"record": "Q797"}
{"record": "Regional/North_America/United_States/Alabama/"}
{"record": "/m/0gyh"}
{"record": "US01"}
{"record": "4829764"}
{"record": "4084839-5"}
{"record": "161950"}
{"record": "131885589"}

To create a table based on another deeply nested object, such as the "name" field in the
"other_names" array in the JSON file, you can create a custom JSON classifier and specify the
JSON path as $.other_names[*].name. Although the schema is similar to the previous example,
it is based on a different object in the JSON file. The schema looks like the following:

root
|-- record: string

Listing the first few lines of data in the table shows that it is based on the data in the "name" object
in the "other_names" array:

{"record": "Alaska"}
{"record": "Alaska"}
{"record": "Аляска"}
{"record": "Alaska"}
{"record": "Alaska"}
{"record": "Alaska"}

Using an AWS Glue crawler 126

AWS Glue User Guide

{"record": "Alaska"}
{"record": "Alaska"}
{"record": "Alaska"}
{"record": "######"}
{"record": "######"}
{"record": "######"}
{"record": "Alaska"}
{"record": "Alyaska"}
{"record": "Alaska"}
{"record": "Alaska"}
{"record": "Штат Аляска"}
{"record": "Аляска"}
{"record": "Alaska"}
{"record": "#######"}

Writing CSV custom classifiers

Custom CSV classifiers allows you to specify datatypes for each column in the custom csv classifier
field. You can specify each column’s datatype separated by a comma. By specifying datatypes, you
can override the crawlers inferred datatypes and ensure data will be classified appropriately.

You can set the SerDe for processing CSV in the classifier, which will be applied in the Data Catalog.

When you create a custom classifier, you can also re-use the classifer for different crawlers.

• For csv files with only headers (no data), these files will be classified as UNKNOWN since not
enough information is provided. If you specify that the CSV 'Has headings' in the Column
headings option, and provide the datatypes, we can classify these files correctly.

You can use a custom CSV classifier to infer the schema of various types of CSV data. The custom
attributes that you can provide for your classifier include delimiters, a CSV SerDe option, options
about the header, and whether to perform certain validations on the data.

Custom classifier values in AWS Glue

When you define a CSV classifier, you provide the following values to AWS Glue to create the
classifier. The classification field of this classifier is set to csv.

Classifier name

Name of the classifier.

Using an AWS Glue crawler 127

AWS Glue User Guide

CSV Serde

Sets the SerDe for processing CSV in the classifier, which will be applied in the Data Catalog.
Options are Open CSV SerDe, Lazy Simple SerDe, and None. You can specify the None value
when you want the crawler to do the detection.

Column delimiter

A custom symbol to denote what separates each column entry in the row. Provide a unicode
character. If you cannot type your delimiter, you can copy and paste it. This works for printable
characters, including those your system does not support (typically shown as □).

Quote symbol

A custom symbol to denote what combines content into a single column value. Must be
different from the column delimiter. Provide a unicode character. If you cannot type your
delimiter, you can copy and paste it. This works for printable characters, including those your
system does not support (typically shown as □).

Column headings

Indicates the behavior for how column headings should be detected in the CSV file. If your
custom CSV file has column headings, enter a comma-delimited list of the column headings.

Processing options: Allow files with single column

Enables the processing of files that contain only one column.

Processing options: Trim white space before identifying column values

Specifies whether to trim values before identifying the type of column values.

Custom datatypes - optional

Enter the custom datatype separated by a comma. Specifies the custom datatypes in the CSV
file. The custom datatype must be a supported datatype. Supported datatypes are: “BINARY”,
“BOOLEAN”, “DATE”, “DECIMAL”, “DOUBLE”, “FLOAT”, “INT”, “LONG”, “SHORT”, “STRING”,
“TIMESTAMP”. Unsupported datatypes will display an error.

Working with classifiers on the AWS Glue console

A classifier determines the schema of your data. You can write a custom classifier and point to it
from AWS Glue.

Using an AWS Glue crawler 128

AWS Glue User Guide

Viewing classifiers

To see a list of all the classifiers that you have created, open the AWS Glue console at https://
console.aws.amazon.com/glue/, and choose the Classifiers tab.

The list displays the following properties about each classifier:

• Classifier – The classifier name. When you create a classifier, you must provide a name for it.

• Classification – The classification type of tables inferred by this classifier.

• Last updated – The last time this classifier was updated.

Managing classifiers

From the Classifiers list in the AWS Glue console, you can add, edit, and delete classifiers. To see
more details for a classifier, choose the classifier name in the list. Details include the information
you defined when you created the classifier.

Creating classifiers

To add a classifier in the AWS Glue console, choose Add classifier. When you define a classifier, you
supply values for the following:

• Classifier name – Provide a unique name for your classifier.

• Classifier type – The classification type of tables inferred by this classifier.

• Last updated – The last time this classifier was updated.

Classifier name

Provide a unique name for your classifier.

Classifier type

Choose the type of classifier to create.

Depending on the type of classifier you choose, configure the following properties for your
classifier:

Grok

• Classification

Using an AWS Glue crawler 129

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

Describe the format or type of data that is classified or provide a custom label.

• Grok pattern

This is used to parse your data into a structured schema. The grok pattern is composed of
named patterns that describe the format of your data store. You write this grok pattern
using the named built-in patterns provided by AWS Glue and custom patterns you write and
include in the Custom patterns field. Although grok debugger results might not match the
results from AWS Glue exactly, we suggest that you try your pattern using some sample data
with a grok debugger. You can find grok debuggers on the web. The named built-in patterns
provided by AWS Glue are generally compatible with grok patterns that are available on the
web.

Build your grok pattern by iteratively adding named patterns and check your results in a
debugger. This activity gives you confidence that when the AWS Glue crawler runs your grok
pattern, your data can be parsed.

• Custom patterns

For grok classifiers, these are optional building blocks for the Grok pattern that you write.
When built-in patterns cannot parse your data, you might need to write a custom pattern.
These custom patterns are defined in this field and referenced in the Grok pattern field. Each
custom pattern is defined on a separate line. Just like the built-in patterns, it consists of a
named pattern definition that uses regular expression (regex) syntax.

For example, the following has the name MESSAGEPREFIX followed by a regular expression
definition to apply to your data to determine whether it follows the pattern.

MESSAGEPREFIX .*-.*-.*-.*-.*

XML

• Row tag

For XML classifiers, this is the name of the XML tag that defines a table row in the XML
document. Type the name without angle brackets < >. The name must comply with XML
rules for a tag.

Using an AWS Glue crawler 130

http://en.wikipedia.org/wiki/Regular_expression

AWS Glue User Guide

For more information, see Writing XML custom classifiers.

JSON

• JSON path

For JSON classifiers, this is the JSON path to the object, array, or value that defines a row of
the table being created. Type the name in either dot or bracket JSON syntax using AWS Glue
supported operators.

For more information, see the list of operators in Writing JSON custom classifiers.

CSV

• Column delimiter

A single character or symbol to denote what separates each column entry in the row. Choose
the delimiter from the list, or choose Other to enter a custom delimiter.

• Quote symbol

A single character or symbol to denote what combines content into a single column value.
Must be different from the column delimiter. Choose the quote symbol from the list, or
choose Other to enter a custom quote character.

• Column headings

Indicates the behavior for how column headings should be detected in the CSV file. You can
choose Has headings, No headings, or Detect headings. If your custom CSV file has
column headings, enter a comma-delimited list of the column headings.

• Allow files with single column

To be classified as CSV, the data must have at least two columns and two rows of data. Use
this option to allow the processing of files that contain only one column.

• Trim whitespace before identifying column values

This option specifies whether to trim values before identifying the type of column values.

• Custom datatype

Using an AWS Glue crawler 131

AWS Glue User Guide

(Optional) - Enter custom datatypes in a comma-delimited list. The supported datatypes are:
“BINARY”, “BOOLEAN”, “DATE”, “DECIMAL”, “DOUBLE”, “FLOAT”, “INT”, “LONG”, “SHORT”,
“STRING”, “TIMESTAMP”.

• CSV Serde

(Optional) - A SerDe for processing CSV in the classifier, which will be applied in the Data
Catalog. Choose from Open CSV SerDe, Lazy Simple SerDe, or None. You can specify
the None value when you want the crawler to do the detection.

For more information, see Writing custom classifiers.

Scheduling an AWS Glue crawler

You can run an AWS Glue crawler on demand or on a regular schedule. Crawler schedules can be
expressed in cron format. For more information, see cron in Wikipedia.

When you create a crawler based on a schedule, you can specify certain constraints, such as the
frequency the crawler runs, which days of the week it runs, and at what time. These constraints
are based on cron. When setting up a crawler schedule, you should consider the features and
limitations of cron. For example, if you choose to run your crawler on day 31 each month, keep in
mind that some months don't have 31 days.

Crawls for each crawler is valid only for up to 12 months

For more information about using cron to schedule jobs and crawlers, see Time-based schedules
for jobs and crawlers.

Viewing crawler results and details

After the crawler runs successfully, it creates table definitions in the Data Catalog. Choose Tables
in the navigation pane to see the tables that were created by your crawler in the database that you
specified.

You can view information related to the crawler itself as follows:

• The Crawlers page on the AWS Glue console displays the following properties for a crawler:

Using an AWS Glue crawler 132

http://en.wikipedia.org/wiki/Cron

AWS Glue User Guide

Property Description

Name When you create a crawler, you must give it a
unique name.

Status A crawler can be ready, starting, stopping,
scheduled, or schedule paused. A running
crawler progresses from starting to stopping.
You can resume or pause a schedule attached
to a crawler.

Schedule You can choose to run your crawler on
demand or choose a frequency with a
schedule. For more information about
scheduling a crawler, see Scheduling a
crawler.

Last run The date and time of the last time the
crawler was run.

Log Links to any available logs from the last run
of the crawler.

Tables changes from last run The number of tables in the AWS Glue Data
Catalog that were updated by the latest run
of the crawler.

• To view the history of a crawler, choose Crawlers in the navigation pane to see the crawlers you
created. Choose a crawler from the list of available crawlers. You can view the crawler properties
and view the crawler history in the Crawler runs tab.

The Crawler runs tab displays information about each time the crawler ran, including Start time
(UTC), End time (UTC), Duration, Status, DPU hours, and Table changes.

The Crawler runs tab displays only the crawls that have occurred since the launch date of the
crawler history feature, and only retains up to 12 months of crawls. Older crawls will not be
returned.

Using an AWS Glue crawler 133

AWS Glue User Guide

• To see additional information, choose a tab in the crawler details page. Each tab will display
information related to the crawler.

• Schedule: Any schedules created for the crawler will be visible here.

• Data sources: All data sources scanned by the crawler will be visible here.

• Classifiers: All classifiers assigned to the crawler will be visible here.

• Tags: Any tags created and assigned to an AWS resource will be visible here.

Parameters set on Data Catalog tables by crawler

These table properties are set by AWS Glue crawlers. We expect users to consume the
classification and compressionType properties. Other properties, including table
size estimates, are used for internal calculations, and we do not guarantee their accuracy or
applicability to customer use cases. Changing these parameters may alter the behavior of the
crawler, we do not support this workflow.

Property key Property value

UPDATED_B
Y_CRAWLER

Name of crawler performing update.

connectionName The name of the connection in the Data Catalog for the crawler used to
connect the to the data store.

recordCount Estimate count of records in table, based on file sizes and headers.

skip.head
er.line.count

Rows skipped to skip header. Set on tables classified as CSV.

CrawlerSc
hemaSeria
lizerVersion

For internal use

classification Format of data, inferred by crawler. For more information about data
formats supported by AWS Glue crawlers see the section called “Built-
in classifiers in AWS Glue”.

Using an AWS Glue crawler 134

AWS Glue User Guide

Property key Property value

CrawlerSc
hemaDeser
ializerVersion

For internal use

sizeKey Combined size of files in table crawled.

averageRe
cordSize

Average size of row in table, in bytes.

compressionType Type of compression used on data in the table. For more informati
on about compression types supported by AWS Glue crawlers see the
section called “Built-in classifiers in AWS Glue”.

typeOfData file, table or view.

objectCount Number of objects under Amazon S3 path for table.

These additional table properties are set by AWS Glue crawlers for Snowflake data stores.

Property key Property value

aws:RawTa
bleLastAltered

Records the last altered timestamp of the Snowflake table.

ViewOrigi
nalText

View SQL statement.

ViewExpan
dedText

View SQL statement encoded in Base64 format.

ExternalT
able:S3Lo
cation

Amazon S3 location of the Snowflake external table.

Using an AWS Glue crawler 135

AWS Glue User Guide

Property key Property value

ExternalT
able:File
Format

Amazon S3 file format of the Snowflake external table.

These additional table properties are set by AWS Glue crawlers for JDBC-type data stores such as
Amazon Redshift, Microsoft SQL Server, MySQL, PostgreSQL, and Oracle.

Property key Property value

aws:RawType When a crawler store the data in the Data Catalog it translates the
datatypes to Hive-compatible types, which many times causes the
information on the native datatype to be lost. The crawler outputs the
aws:RawType parameter to provide the native-level datatype.

aws:RawCo
lumnComment

If a comment is associated with a column in the database, the crawler
outputs the corresponding comment in the catalog table. The comment
string is truncated to 255 bytes.

Comments are not supported for Microsoft SQL Server.

aws:RawTa
bleComment

If a comment is associated with a table in the database, the crawler
outputs corresponding comment in the catalog table. The comment
string is truncated to 255 bytes.

Comments are not supported for Microsoft SQL Server.

Customizing crawler behavior

When a crawler runs, it might encounter changes to your data store that result in a schema or
partition that is different from a previous crawl. You can use the AWS Management Console or the
AWS Glue API to configure how your crawler processes certain types of changes.

Topics

• Incremental crawls for adding new partitions

• Setting the partition index crawler configuration option

Using an AWS Glue crawler 136

AWS Glue User Guide

• Accelerating crawls using Amazon S3 event notifications

• How to prevent the crawler from changing an existing schema

• How to create a single schema for each Amazon S3 include path

• How to specify the table location and partitioning level

• How to specify the maximum number of tables the crawler is allowed to create

• How to specify configuration options for a Delta Lake data store

• How to configure a crawler to use Lake Formation credentials

Console

When you define a crawler using the AWS Glue console, you have several options for
configuring the behavior of your crawler. For more information about using the AWS Glue
console to add a crawler, see Configuring a crawler.

When a crawler runs against a previously crawled data store, it might discover that a schema
has changed or that some objects in the data store have been deleted. The crawler logs changes
to a schema. Depending on the source type for the crawler, new tables and partitions might be
created regardless of the schema change policy.

To specify what the crawler does when it finds changes in the schema, you can choose one of
the following actions on the console:

• Update the table definition in the Data Catalog – Add new columns, remove missing
columns, and modify the definitions of existing columns in the AWS Glue Data Catalog.
Remove any metadata that is not set by the crawler. This is the default setting.

• Add new columns only – For tables that map to an Amazon S3 data store, add new columns
as they are discovered, but don't remove or change the type of existing columns in the
Data Catalog. Choose this option when the current columns in the Data Catalog are correct
and you don't want the crawler to remove or change the type of the existing columns. If a
fundamental Amazon S3 table attribute changes, such as classification, compression type,
or CSV delimiter, mark the table as deprecated. Maintain input format and output format as
they exist in the Data Catalog. Update SerDe parameters only if the parameter is one that is
set by the crawler. For all other data stores, modify existing column definitions.

• Ignore the change and don't update the table in the Data Catalog – Only new tables and
partitions are created.

Using an AWS Glue crawler 137

AWS Glue User Guide

This is the default setting for incremental crawls.

A crawler might also discover new or changed partitions. By default, new partitions are added
and existing partitions are updated if they have changed. In addition, you can set a crawler
configuration option to Update all new and existing partitions with metadata from the table
on the AWS Glue console. When this option is set, partitions inherit metadata properties—such
as their classification, input format, output format, SerDe information, and schema—from their
parent table. Any changes to these properties in a table are propagated to its partitions. When
this configuration option is set on an existing crawler, existing partitions are updated to match
the properties of their parent table the next time the crawler runs.

To specify what the crawler does when it finds a deleted object in the data store, choose one of
the following actions:

• Delete tables and partitions from the Data Catalog

• Ignore the change and don't update the table in the Data Catalog

This is the default setting for incremental crawls.

• Mark the table as deprecated in the Data Catalog – This is the default setting.

AWS CLI

aws glue create-crawler \
--name "your-crawler-name" \
--role "your-iam-role-arn" \
--database-name "your-database-name" \
--targets 'S3Targets=[{Path="s3://your-bucket-name/path-to-data"}]' \
--configuration '{"Version": 1.0, "CrawlerOutput": {"Partitions":
 {"AddOrUpdateBehavior": "InheritFromTable"}, "Tables": {"AddOrUpdateBehavior":
 "MergeNewColumns"}}}'

API

When you define a crawler using the AWS Glue API, you can choose from several fields to
configure your crawler. The SchemaChangePolicy in the crawler API determines what the
crawler does when it discovers a changed schema or a deleted object. The crawler logs schema
changes as it runs.

Using an AWS Glue crawler 138

AWS Glue User Guide

Sample python code showing the crawler configuration options

import boto3
import json

Initialize a boto3 client for AWS Glue
glue_client = boto3.client('glue', region_name='us-east-1') # Replace 'us-east-1'
 with your desired AWS region

Define the crawler configuration
crawler_configuration = {
 "Version": 1.0,
 "CrawlerOutput": {
 "Partitions": {
 "AddOrUpdateBehavior": "InheritFromTable"
 },
 "Tables": {
 "AddOrUpdateBehavior": "MergeNewColumns"
 }
 }
}

configuration_json = json.dumps(crawler_configuration)
Create the crawler with the specified configuration
response = glue_client.create_crawler(
 Name='your-crawler-name', # Replace with your desired crawler name
 Role='crawler-test-role', # Replace with the ARN of your IAM role for Glue
 DatabaseName='default', # Replace with your target Glue database name
 Targets={
 'S3Targets': [
 {
 'Path': "s3://your-bucket-name/path/", # Replace with your S3 path
 to the data
 },
],
 # Include other target types like 'JdbcTargets' if needed
 },
 Configuration=configuration_json,
 # Include other parameters like Schedule, Classifiers, TablePrefix,
 SchemaChangePolicy, etc., as needed
)

print(response)a

Using an AWS Glue crawler 139

AWS Glue User Guide

When a crawler runs, new tables and partitions are always created regardless of the schema
change policy. You can choose one of the following actions in the UpdateBehavior field in the
SchemaChangePolicy structure to determine what the crawler does when it finds a changed
table schema:

• UPDATE_IN_DATABASE – Update the table in the AWS Glue Data Catalog. Add new columns,
remove missing columns, and modify the definitions of existing columns. Remove any
metadata that is not set by the crawler.

• LOG – Ignore the changes, and don't update the table in the Data Catalog.

This is the default setting for incremental crawls.

You can also override the SchemaChangePolicy structure using a JSON object supplied in
the crawler API Configuration field. This JSON object can contain a key-value pair to set the
policy to not update existing columns and only add new columns. For example, provide the
following JSON object as a string:

{
 "Version": 1.0,
 "CrawlerOutput": {
 "Tables": { "AddOrUpdateBehavior": "MergeNewColumns" }
 }
}

This option corresponds to the Add new columns only option on the AWS Glue console. It
overrides the SchemaChangePolicy structure for tables that result from crawling Amazon
S3 data stores only. Choose this option if you want to maintain the metadata as it exists in the
Data Catalog (the source of truth). New columns are added as they are encountered, including
nested data types. But existing columns are not removed, and their type is not changed. If
an Amazon S3 table attribute changes significantly, mark the table as deprecated, and log a
warning that an incompatible attribute needs to be resolved. This option is not applicable for
incremental crawler.

When a crawler runs against a previously crawled data store, it might discover new or changed
partitions. By default, new partitions are added and existing partitions are updated if they
have changed. In addition, you can set a crawler configuration option to InheritFromTable

Using an AWS Glue crawler 140

AWS Glue User Guide

(corresponding to the Update all new and existing partitions with metadata from the
table option on the AWS Glue console). When this option is set, partitions inherit metadata
properties from their parent table, such as their classification, input format, output format,
SerDe information, and schema. Any property changes to the parent table are propagated to its
partitions.

When this configuration option is set on an existing crawler, existing partitions are updated to
match the properties of their parent table the next time the crawler runs. This behavior is set
crawler API Configuration field. For example, provide the following JSON object as a string:

{
 "Version": 1.0,
 "CrawlerOutput": {
 "Partitions": { "AddOrUpdateBehavior": "InheritFromTable" }
 }
}

The crawler API Configuration field can set multiple configuration options. For example,
to configure the crawler output for both partitions and tables, you can provide a string
representation of the following JSON object:

{
 "Version": 1.0,
 "CrawlerOutput": {
 "Partitions": { "AddOrUpdateBehavior": "InheritFromTable" },
 "Tables": {"AddOrUpdateBehavior": "MergeNewColumns" }
 }
}

You can choose one of the following actions to determine what the crawler does when it finds
a deleted object in the data store. The DeleteBehavior field in the SchemaChangePolicy
structure in the crawler API sets the behavior of the crawler when it discovers a deleted object.

• DELETE_FROM_DATABASE – Delete tables and partitions from the Data Catalog.

• LOG – Ignore the change. Don't update the Data Catalog. Write a log message instead.

• DEPRECATE_IN_DATABASE – Mark the table as deprecated in the Data Catalog. This is the
default setting.

Using an AWS Glue crawler 141

AWS Glue User Guide

Incremental crawls for adding new partitions

The crawler provides an option for adding new partitions resulting in faster crawls for incremental
datasets with a stable table schema. The typical use case is for scheduled crawlers, where during
each crawl, new partitions are added. When this option is turned on, it will first run a complete
crawl on the target dataset to allow the crawler to record the initial schema and partition structure.
During a recrawl, new partitions will be added to existing tables only when the schemas are
compatible. No schema changes are made and no new tables will be added to the Data Catalog
after the first crawl run.

You can use this option when setting up an Amazon S3 data source. You can set the
RecrawlPolicy with RecrawlBehavior as "Crawl_New_Folders" in the CreateCrawler API or
Subsequent crawler runs as Crawl new sub-folders only in the console.

Continuing with the example in the section called “How does a crawler determine when to create
partitions?”, the following diagram shows that files for the month of March have been added.

If you set the RecrawlBehavior as the "Crawl_New_Folders" option, only the new folder,
month=Mar is crawled.

Notes and restrictions

When this option is turned on, you can't change the Amazon S3 target data stores when editing
the crawler. This option affects certain crawler configuration settings. When turned on, it forces the
update behavior and delete behavior of the crawler to LOG. This means that:

• If it discovers objects where schemas are not compatible, the crawler will not add the objects in
the Data Catalog, and adds this detail as a log in CloudWatch Logs.

Using an AWS Glue crawler 142

AWS Glue User Guide

• It will not update deleted objects in the Data Catalog.

For more information, see the section called “Customizing crawler behavior”.

Setting the partition index crawler configuration option

The Data Catalog supports partition indexes to provide efficient lookup for specific partitions. For
more information, see Working with partition indexes in AWS Glue. The AWS Glue crawler creates
partition indexes for Amazon S3 and Delta Lake targets by deafult.

When you define a cralwer, the option to Create partition indexes automatically is enabled by
default under Advanced options on the Set output and scheduling page.

To disable this option, you can unselect the checkbox Create partition indexes automatically
in the console. You can also disable this option by using the crawler API, set the
CreatePartitionIndex in the Configuration. The default value is true.

Usage notes for partition indexes

• Tables created by the crawler do not have the variable partition_filtering.enabled by
default. For more information, see AWS Glue partition indexing and filtering.

• Creating partition indexes for encrypted partitions is not supported.

Accelerating crawls using Amazon S3 event notifications

Instead of listing the objects from an Amazon S3 or Data Catalog target, you can configure the
crawler to use Amazon S3 events to find any changes. This feature improves the recrawl time by
using Amazon S3 events to identify the changes between two crawls by listing all the files from the
subfolder which triggered the event instead of listing the full Amazon S3 or Data Catalog target.

The first crawl lists all Amazon S3 objects from the target. After the first successful crawl, you can
choose to recrawl manually or on a set schedule. The crawler will list only the objects from those
events instead of listing all objects.

The advantages of moving to an Amazon S3 event based crawler are:

• A faster recrawl as the listing of all the objects from the target is not required, instead the listing
of specific folders is done where objects are added or deleted.

• A reduction in the overall crawl cost as the listing of specific folders is done where objects are
added or deleted.

Using an AWS Glue crawler 143

https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://docs.aws.amazon.com/athena/latest/ug/glue-best-practices.html#glue-best-practices-partition-index

AWS Glue User Guide

The Amazon S3 event crawl runs by consuming Amazon S3 events from the SQS queue based on
the crawler schedule. There will be no cost if there are no events in the queue. Amazon S3 events
can be configured to go directly to the SQS queue or in cases where multiple consumers need the
same event, a combination of SNS and SQS. For more information, see the section called “Setting
up your account for Amazon S3 event notifications”.

After creating and configuring the crawler in event mode, the first crawl runs in listing mode by
performing full a listing of the Amazon S3 or Data Catalog target. The following log confirms the
operation of the crawl by consuming Amazon S3 events after the first successful crawl: "The crawl
is running by consuming Amazon S3 events."

After creating the Amazon S3 event crawl and updating the crawler properties which may impact
the crawl, the crawl operates in list mode and the following log is added: "Crawl is not running in
S3 event mode".

Note

The maximum number of messages to consume is 10,000 messages per crawl.

Catalog target

When the target is the Data Catalog the crawler updates the existing tables in the Data Catalog
with changes (for example, extra partitions in a table).

Topics

• Setting up your account for Amazon S3 event notifications

• Using encryption with the Amazon S3 event crawler

Setting up your account for Amazon S3 event notifications

This section describes how to set up your account for Amazon S3 event notifications, and provides
instructions for doing so using a script, or the AWS Glue console.

Prerequisites

Complete the following setup tasks. Note the values in parenthesis reference the configurable
settings from the script.

1. Create an Amazon S3 bucket (s3_bucket_name).

Using an AWS Glue crawler 144

AWS Glue User Guide

2. Identify a crawler target (folder_name, such as "test1") which is a path in the identified bucket.

3. Prepare a crawler name (crawler_name)

4. Prepare an SNS Topic name (sns_topic_name) which could be the same as the crawler name.

5. Prepare the AWS Region where the crawler is to run and the S3 bucket exists (region).

6. Optionally prepare an email address if email is used to get the Amazon S3 events
(subscribing_email).

You can also use the CloudFormation stack to create your resources. Complete the following steps:

1. Launch your CloudFormation stack in US East (N. Virginia):

2. Under Parameters, enter a name for your Amazon S3 bucket (include your account number).

3. Select I acknowledge that AWS CloudFormation might create IAM resources
with custom names.

4. Choose Create stack.

Limitations:

• Only a single target is supported by the crawler, whether for Amazon S3 or Data Catalog targets.

• SQS on private VPC is not supported.

• Amazon S3 sampling is not supported.

• The crawler target should be a folder for an Amazon S3 target, or one or more AWS Glue Data
Catalog tables for a Data Catalog target.

• The 'everything' path wildcard is not supported: s3://%

• For a Data Catalog target, all catalog tables should point to same Amazon S3 bucket for Amazon
S3 event mode.

• For a Data Catalog target, a catalog table should not point to an Amazon S3 location in the Delta
Lake format (containing _symlink folders, or checking the catalog table's InputFormat).

To use the Amazon S3 event based crawler, you should enable event notification on the S3 bucket
with events filtered from the prefix which is the same as the S3 target and store in SQS. You can
set up SQS and event notification through the console by following the steps in Walkthrough:
Configuring a bucket for notifications or using the the section called “Script to generate SQS and
configure Amazon S3 events from the target”.

Using an AWS Glue crawler 145

https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/create/review?stackName=Glue-Crawler-Blog;templateURL=https://aws-bigdata-blog.s3.amazonaws.com/artifacts/gluenewcrawlerui/cftemplate/newcrawlerui.json
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ways-to-add-notification-config-to-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ways-to-add-notification-config-to-bucket.html

AWS Glue User Guide

SQS policy

Add the following SQS policy which is required to be attached to the role used by the crawler.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "sqs:DeleteMessage",
 "sqs:GetQueueUrl",
 "sqs:ListDeadLetterSourceQueues",
 "sqs:ReceiveMessage",
 "sqs:GetQueueAttributes",
 "sqs:ListQueueTags",
 "sqs:SetQueueAttributes",
 "sqs:PurgeQueue"
],
 "Resource": "arn:aws:sqs:{region}:{accountID}:cfn-sqs-queue"
 }
]
}

Script to generate SQS and configure Amazon S3 events from the target

After ensuring the prerequisites are met, you can run the following Python script to create the SQS.
Replace the Configurable settings with the names prepared from the prerequisites.

Note

After running the script, login to the SQS console to find the ARN of the SQS created.

Amazon SQS sets a visibility timeout, a period of time during which Amazon SQS prevents other
consumers from receiving and processing the message. Set the visibility timeout approximately
equal to the crawl run time.

#!venv/bin/python
import boto3
import botocore

Using an AWS Glue crawler 146

AWS Glue User Guide

#---------Start : READ ME FIRST ----------------------#
1. Purpose of this script is to create the SQS, SNS and enable S3 bucket
 notification.
The following are the operations performed by the scripts:
a. Enable S3 bucket notification to trigger 's3:ObjectCreated:' and
 's3:ObjectRemoved:' events.
b. Create SNS topic for fan out.
c. Create SQS queue for saving events which will be consumed by the crawler.
SQS Event Queue ARN will be used to create the crawler after running the
 script.
2. This script does not create the crawler.
3. SNS topic is created to support FAN out of S3 events. If S3 event is also used by
 another
purpose, SNS topic created by the script can be used.
1. Creation of bucket is an optional step.
To create a bucket set create_bucket variable to true.
2. The purpose of crawler_name is to easily locate the SQS/SNS.
crawler_name is used to create SQS and SNS with the same name as crawler.
3. 'folder_name' is the target of crawl inside the specified bucket 's3_bucket_name'
#
#---------End : READ ME FIRST ------------------------#

#--------------------------------#
Start : Configurable settings
#--------------------------------#

#Create
region = 'us-west-2'
s3_bucket_name = 's3eventtestuswest2'
folder_name = "test"
crawler_name = "test33S3Event"
sns_topic_name = crawler_name
sqs_queue_name = sns_topic_name
create_bucket = False

#-------------------------------#
End : Configurable settings
#-------------------------------#

Define aws clients
dev = boto3.session.Session(profile_name='myprofile')
boto3.setup_default_session(profile_name='myprofile')

Using an AWS Glue crawler 147

AWS Glue User Guide

s3 = boto3.resource('s3', region_name=region)
sns = boto3.client('sns', region_name=region)
sqs = boto3.client('sqs', region_name=region)
client = boto3.client("sts")
account_id = client.get_caller_identity()["Account"]
queue_arn = ""

def print_error(e):
 print(e.message + ' RequestId: ' + e.response['ResponseMetadata']['RequestId'])

def create_s3_bucket(bucket_name, client):
 bucket = client.Bucket(bucket_name)
 try:
 if not create_bucket:
 return True
 response = bucket.create(
 ACL='private',
 CreateBucketConfiguration={
 'LocationConstraint': region
 },
)
 return True
 except botocore.exceptions.ClientError as e:
 print_error(e)
 if 'BucketAlreadyOwnedByYou' in e.message: # we own this bucket so continue
 print('We own the bucket already. Lets continue...')
 return True
 return False

def create_s3_bucket_folder(bucket_name, client, directory_name):
 s3.put_object(Bucket=bucket_name, Key=(directory_name + '/'))

def set_s3_notification_sns(bucket_name, client, topic_arn):
 bucket_notification = client.BucketNotification(bucket_name)
 try:

 response = bucket_notification.put(
 NotificationConfiguration={
 'TopicConfigurations': [
 {
 'Id' : crawler_name,
 'TopicArn': topic_arn,
 'Events': [

Using an AWS Glue crawler 148

AWS Glue User Guide

 's3:ObjectCreated:*',
 's3:ObjectRemoved:*',

],
 'Filter' : {'Key': {'FilterRules': [{'Name': 'prefix',
 'Value': folder_name}]}}
 },
]
 }
)
 return True
 except botocore.exceptions.ClientError as e:
 print_error(e)
 return False

def create_sns_topic(topic_name, client):
 try:
 response = client.create_topic(
 Name=topic_name
)
 return response['TopicArn']
 except botocore.exceptions.ClientError as e:
 print_error(e)
 return None

def set_sns_topic_policy(topic_arn, client, bucket_name):
 try:
 response = client.set_topic_attributes(
 TopicArn=topic_arn,
 AttributeName='Policy',
 AttributeValue='''{
 "Version": "2008-10-17",
 "Id": "s3-publish-to-sns",
 "Statement": [{
 "Effect": "Allow",
 "Principal": { "AWS" : "*" },
 "Action": ["SNS:Publish"],
 "Resource": "%s",
 "Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "%s"
 },
 "ArnLike": {

Using an AWS Glue crawler 149

AWS Glue User Guide

 "aws:SourceArn": "arn:aws:s3:*:*:%s"
 }
 }
 }]
 }''' % (topic_arn, account_id, bucket_name)
)
 return True
 except botocore.exceptions.ClientError as e:
 print_error(e)

 return False

def subscribe_to_sns_topic(topic_arn, client, protocol, endpoint):
 try:
 response = client.subscribe(
 TopicArn=topic_arn,
 Protocol=protocol,
 Endpoint=endpoint
)
 return response['SubscriptionArn']
 except botocore.exceptions.ClientError as e:
 print_error(e)
 return None

def create_sqs_queue(queue_name, client):
 try:
 response = client.create_queue(
 QueueName=queue_name,
)
 return response['QueueUrl']
 except botocore.exceptions.ClientError as e:
 print_error(e)
 return None

def get_sqs_queue_arn(queue_url, client):
 try:
 response = client.get_queue_attributes(
 QueueUrl=queue_url,
 AttributeNames=[
 'QueueArn',
]

Using an AWS Glue crawler 150

AWS Glue User Guide

)
 return response['Attributes']['QueueArn']
 except botocore.exceptions.ClientError as e:
 print_error(e)
 return None

def set_sqs_policy(queue_url, queue_arn, client, topic_arn):
 try:
 response = client.set_queue_attributes(
 QueueUrl=queue_url,
 Attributes={
 'Policy': '''{
 "Version": "2012-10-17",
 "Id": "AllowSNSPublish",
 "Statement": [
 {
 "Sid": "AllowSNSPublish01",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "SQS:SendMessage",
 "Resource": "%s",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "%s"
 }
 }
 }
]
}''' % (queue_arn, topic_arn)
 }
)
 return True
 except botocore.exceptions.ClientError as e:
 print_error(e)
 return False

if __name__ == "__main__":
 print('Creating S3 bucket %s.' % s3_bucket_name)
 if create_s3_bucket(s3_bucket_name, s3):
 print('\nCreating SNS topic %s.' % sns_topic_name)
 topic_arn = create_sns_topic(sns_topic_name, sns)
 if topic_arn:
 print('SNS topic created successfully: %s' % topic_arn)

Using an AWS Glue crawler 151

AWS Glue User Guide

 print('Creating SQS queue %s' % sqs_queue_name)
 queue_url = create_sqs_queue(sqs_queue_name, sqs)
 if queue_url is not None:
 print('Subscribing sqs queue with sns.')
 queue_arn = get_sqs_queue_arn(queue_url, sqs)
 if queue_arn is not None:
 if set_sqs_policy(queue_url, queue_arn, sqs, topic_arn):
 print('Successfully configured queue policy.')
 subscription_arn = subscribe_to_sns_topic(topic_arn, sns,
 'sqs', queue_arn)
 if subscription_arn is not None:
 if 'pending confirmation' in subscription_arn:
 print('Please confirm SNS subscription by visiting the
 subscribe URL.')
 else:
 print('Successfully subscribed SQS queue: ' +
 queue_arn)
 else:
 print('Failed to subscribe SNS')
 else:
 print('Failed to set queue policy.')
 else:
 print("Failed to get queue arn for %s" % queue_url)
 # ------------ End subscriptions to SNS topic -----------------

 print('\nSetting topic policy to allow s3 bucket %s to publish.' %
 s3_bucket_name)
 if set_sns_topic_policy(topic_arn, sns, s3_bucket_name):
 print('SNS topic policy added successfully.')
 if set_s3_notification_sns(s3_bucket_name, s3, topic_arn):
 print('Successfully configured event for S3 bucket %s' %
 s3_bucket_name)
 print('Create S3 Event Crawler using SQS ARN %s' % queue_arn)
 else:
 print('Failed to configure S3 bucket notification.')
 else:
 print('Failed to add SNS topic policy.')
 else:
 print('Failed to create SNS topic.')

Using an AWS Glue crawler 152

AWS Glue User Guide

Setting up a crawler for Amazon S3 event notifications using the console (Amazon S3 target)

To set up a crawler for Amazon S3 event notifications using the AWS Glue console for an Amazon
S3 target:

1. Set your crawler properties. For more information, see Setting Crawler Configuration Options
on the AWS Glue console .

2. In the section Data source configuration, you are asked Is your data already mapped to AWS
Glue tables?

By default Not yet is already selected. Leave this as the default as you are using an Amazon S3
data source and the data is not already mapped to AWS Glue tables.

3. In the section Data sources, choose Add a data source.

4. In the Add data source modal, configure the Amazon S3 data source:

• Data source: By default, Amazon S3 is selected.

• Network connection (Optional): Choose Add new connection.

• Location of Amazon S3 data: By default, In this account is selected.

• Amazon S3 path: Specify the Amazon S3 path where folders and files are crawled.

• Subsequent crawler runs: Choose Crawl based on events to use Amazon S3 event
notifications for your crawler.

Using an AWS Glue crawler 153

https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-configure-changes-console
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-configure-changes-console

AWS Glue User Guide

• Include SQS ARN: Specify the data store parameters including the a valid SQS ARN. (For
example, arn:aws:sqs:region:account:sqs).

• Include dead-letter SQS ARN (Optional): Specify a valid Amazon dead-letter SQS ARN. (For
example, arn:aws:sqs:region:account:deadLetterQueue).

• Choose Add an Amazon S3 data source.

Setting up a crawler for Amazon S3 event notifications using the AWS CLI

The following is an example Amazon S3 AWS CLI call to create SQS queues and setup event
notifications on Amazon S3 target bucket.

Using an AWS Glue crawler 154

AWS Glue User Guide

S3 Event AWS CLI
aws sqs create-queue --queue-name MyQueue --attributes file://create-queue.json
create-queue.json
```
{ 
    "Policy": { 
        "Version": "2012-10-17", 
        "Id": "example-ID", 
        "Statement": [ 
            { 
                "Sid": "example-statement-ID", 
                "Effect": "Allow", 
                "Principal": { 
                    "Service": "s3.amazonaws.com" 
                }, 
                "Action": [ 
                    "SQS:SendMessage" 
                ], 
                "Resource": "SQS-queue-ARN", 
                "Condition": { 
                    "ArnLike": { 
                        "aws:SourceArn": "arn:aws:s3:*:*:awsexamplebucket1" 
                    }, 
                    "StringEquals": { 
                        "aws:SourceAccount": "bucket-owner-account-id" 
                    } 
                } 
            } 
        ] 
    }
}
```
aws s3api put-bucket-notification-configuration --bucket customer-data-pdx --
notification-configuration file://s3-event-config.json
s3-event-config.json
```
{ 
    "QueueConfigurations": [ 
        { 
          "Id": "s3event-sqs-queue", 
          "QueueArn": "arn:aws:sqs:{region}:{account}:queuename", 
          "Events": [ 
                "s3:ObjectCreated:*", 
                "s3:ObjectRemoved:*" 

Using an AWS Glue crawler 155



AWS Glue User Guide

          ], 
          "Filter": { 
              "Key": { 
                  "FilterRules": [ 
                      { 
                          "Name": "Prefix", 
                          "Value": "/json" 
                      } 
                  ] 
              } 
          } 
        } 
    ]
}
```
Create Crawler:

Setting up a crawler for Amazon S3 event notifications using the console (Data Catalog target)

When you have a catalog target, set up a crawler for Amazon S3 event notifications using the AWS
Glue console:

1. Set your crawler properties. For more information, see Setting Crawler Configuration Options
on the AWS Glue console .

2. In the section Data source configuration, you are asked Is your data already mapped to AWS
Glue tables?

Select Yes to select existing tables from your Data Catalog as your data source.

3. In the section Glue tables, choose Add tables.

Using an AWS Glue crawler 156

https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-configure-changes-console
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-configure-changes-console

AWS Glue User Guide

4. In the Add table modal, configure the database and tables:

• Network connection (Optional): Choose Add new connection.

• Database: Select a database in the Data Catalog.

• Tables: Select one or more tables from that database in the Data Catalog.

• Subsequent crawler runs: Choose Crawl based on events to use Amazon S3 event
notifications for your crawler.

• Include SQS ARN: Specify the data store parameters including the a valid SQS ARN. (For
example, arn:aws:sqs:region:account:sqs).

• Include dead-letter SQS ARN (Optional): Specify a valid Amazon dead-letter SQS ARN. (For
example, arn:aws:sqs:region:account:deadLetterQueue).

• Choose Confirm.

Using an AWS Glue crawler 157

AWS Glue User Guide

Using encryption with the Amazon S3 event crawler

This section describes using encryption on SQS only or on both SQS and Amazon S3.

Topics

• Enabling encryption on SQS only

• Enabling encryption on both SQS and Amazon S3

• FAQ

Using an AWS Glue crawler 158

AWS Glue User Guide

Enabling encryption on SQS only

Amazon SQS provides encryption in-transit by default. To add optional Server-Side Encryption
(SSE) to your queue you can attach a customer master key (CMK) in the edit panel. This means that
SQS encrypts all customer data at-rest on SQS servers.

Create a Customer Master Key (CMK)

1. Choose Key Management Service (KMS) > Customer Managed Keys > Create key.

2. Follow the steps to add your own alias and description.

3. Add the respective IAM roles you would like to be able to use this key.

4. In the key policy, add another statement to the "Statement" list so that your custom key policy
gives the Amazon SNS sufficient key usage permissions.

 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*"
 }
]

Enable Server-Side Encryption (SSE) on your queue

1. Choose Amazon SQS > Queues > sqs_queue_name > Encryption tab.

2. Choose Edit, and scroll down to the Encryption drop down.

3. Select Enabled to add SSE.

4. Select the CMK you created earlier, and not the default key with the name alias/aws/sqs.

Using an AWS Glue crawler 159

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key_permissions

AWS Glue User Guide

After adding this, your Encryption tab is updated with the key you added.

Note

Amazon SQS automatically deletes messages that have been in a queue for more than the
maximum message retention period. The default message retention period is 4 days. To
avoid missing events change the SQS MessageRetentionPeriod to the maximum of 14
days.

Enabling encryption on both SQS and Amazon S3

Enable Server-Side Encryption (SSE) on SQS

1. Follow the steps in the section called “Enabling encryption on SQS only”.

2. In the last step of the CMK setup, give Amazon S3 sufficient key usage permissions.

Paste the following in to the "Statement" list:

 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {

Using an AWS Glue crawler 160

AWS Glue User Guide

 "Service": "s3.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*"
 }
]

Enable Server-Side Encryption (SSE) on your Amazon S3 bucket

1. Follow the steps in the section called “Enabling encryption on SQS only”.

2. Do one of the following:

• To enable SSE for your entire S3 bucket, navigate to the Properties tab in your target
bucket.

Here you can enable SSE and choose the encryption type you would like to use. Amazon
S3 provides an encryption key that Amazon S3 creates, manages, and uses for you, or you
can choose a key from KMS as well.

Using an AWS Glue crawler 161

AWS Glue User Guide

• To enable SSE on a specific folder, click the checkbox beside your target folder and choose
Edit server-side encryption under the Actions drop down.

Using an AWS Glue crawler 162

AWS Glue User Guide

FAQ

Why aren't messages that I publish to my Amazon SNS topic getting delivered to my subscribed
Amazon SQS queue that has server-side encryption (SSE) enabled?

Double check that your Amazon SQS queue is using:

1. A customer master key (CMK) that is customer managed. Not the default one provided by SQS.

2. Your CMK from (1) includes a custom key policythat gives the Amazon SNS sufficient key usage
permissions.

For more information, see this article in the knowledge center.

I’ve subscribed to email notifications, but I don’t receive any email updates when I edit my
Amazon S3 bucket.

Make sure that you have confirmed your email address by clicking the "Confirm Subscription" link
in your email. You can verify the status of your confirmation by checking the Subscriptions table
under your SNS topic.

Choose Amazon SNS > Topics > sns_topic_name > Subscriptions table.

If you followed our prerequisite script, you will find that the sns_topic_name is equal to your
sqs_queue_name. It should look similar to the following:

Only some of the folders I added are showing up in my table after enabling server-side
encryption on my SQS queue. Why am I missing some parquets?

If the Amazon S3 bucket changes were made before enabling SSE on your SQS queue, they may
not be picked up by the crawler. To ensure that you have crawled all the updates to your S3 bucket,
run the crawler again in listing mode ("Crawl All Folders"). Another option is to start fresh by
creating a new crawler with S3 events enabled.

Using an AWS Glue crawler 163

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key_permissions
https://aws.amazon.com/premiumsupport/knowledge-center/sns-topic-sqs-queue-sse-cmk-policy/

AWS Glue User Guide

How to prevent the crawler from changing an existing schema

If you don't want a crawler to overwrite updates you made to existing fields in an Amazon
S3 table definition, choose the option on the console to Add new columns only or set
the configuration option MergeNewColumns. This applies to tables and partitions, unless
Partitions.AddOrUpdateBehavior is overridden to InheritFromTable.

If you don't want a table schema to change at all when a crawler runs, set the schema change
policy to LOG. You can also set a configuration option that sets partition schemas to inherit from
the table.

If you are configuring the crawler on the console, you can choose the following actions:

• Ignore the change and don't update the table in the Data Catalog

• Update all new and existing partitions with metadata from the table

When you configure the crawler using the API, set the following parameters:

• Set the UpdateBehavior field in SchemaChangePolicy structure to LOG.

• Set the Configuration field with a string representation of the following JSON object in the
crawler API; for example:

{
 "Version": 1.0,
 "CrawlerOutput": {
 "Partitions": { "AddOrUpdateBehavior": "InheritFromTable" }
 }
}

How to create a single schema for each Amazon S3 include path

By default, when a crawler defines tables for data stored in Amazon S3, it considers both data
compatibility and schema similarity. Data compatibility factors that it considers include whether
the data is of the same format (for example, JSON), the same compression type (for example,
GZIP), the structure of the Amazon S3 path, and other data attributes. Schema similarity is a
measure of how closely the schemas of separate Amazon S3 objects are similar.

Using an AWS Glue crawler 164

AWS Glue User Guide

You can configure a crawler to CombineCompatibleSchemas into a common table definition
when possible. With this option, the crawler still considers data compatibility, but ignores the
similarity of the specific schemas when evaluating Amazon S3 objects in the specified include path.

If you are configuring the crawler on the console, to combine schemas, select the crawler option
Create a single schema for each S3 path.

When you configure the crawler using the API, set the following configuration option:

• Set the Configuration field with a string representation of the following JSON object in the
crawler API; for example:

{
 "Version": 1.0,
 "Grouping": {
 "TableGroupingPolicy": "CombineCompatibleSchemas" }
}

To help illustrate this option, suppose that you define a crawler with an include path s3://
bucket/table1/. When the crawler runs, it finds two JSON files with the following
characteristics:

• File 1 – S3://bucket/table1/year=2017/data1.json

• File content – {“A”: 1, “B”: 2}

• Schema – A:int, B:int

• File 2 – S3://bucket/table1/year=2018/data2.json

• File content – {“C”: 3, “D”: 4}

• Schema – C: int, D: int

By default, the crawler creates two tables, named year_2017 and year_2018 because the
schemas are not sufficiently similar. However, if the option Create a single schema for each S3
path is selected, and if the data is compatible, the crawler creates one table. The table has the
schema A:int,B:int,C:int,D:int and partitionKey year:string.

Using an AWS Glue crawler 165

AWS Glue User Guide

How to specify the table location and partitioning level

By default, when a crawler defines tables for data stored in Amazon S3 the crawler attempts to
merge schemas together and create top-level tables (year=2019). In some cases, you may expect
the crawler to create a table for the folder month=Jan but instead the crawler creates a partition
since a sibling folder (month=Mar) was merged into the same table.

The table level crawler option provides you the flexibility to tell the crawler where the tables are
located, and how you want partitions created. When you specify a Table level, the table is created
at that absolute level from the Amazon S3 bucket.

When configuring the crawler on the console, you can specify a value for the Table level crawler
option. The value must be a positive integer that indicates the table location (the absolute level in

Using an AWS Glue crawler 166

AWS Glue User Guide

the dataset). The level for the top level folder is 1. For example, for the path mydataset/year/
month/day/hour, if the level is set to 3, the table is created at location mydataset/year/
month.

Console

API

When you configure the crawler using the API, set the Configuration field with a string
representation of the following JSON object; for example:

configuration = jsonencode(

{
 "Version": 1.0,
 "Grouping": {
 TableLevelConfiguration = 2
 }
})

Using an AWS Glue crawler 167

AWS Glue User Guide

CloudFormation

In this example, you set the Table level option available in the console within your
CloudFormation template:

"Configuration": "{
 \"Version\":1.0,
 \"Grouping\":{\"TableLevelConfiguration\":2}
}"

How to specify the maximum number of tables the crawler is allowed to create

You can optionally specify the maximum number of tables the crawler is allowed to create by
specifying a TableThreshold via the AWS Glue console or CLI. If the tables detected by the
crawler during its crawl is greater that this input value, the crawl fails and no data is written to the
Data Catalog.

This parameter is useful when the tables that would be detected and created by the crawler are
much greater more than what you expect. There can be multiple reasons for this, such as:

• When using an AWS Glue job to populate your Amazon S3 locations you can end up with empty
files at the same level as a folder. In such cases when you run a crawler on this Amazon S3
location, the crawler creates multiple tables due to files and folders present at the same level.

• If you do not configure "TableGroupingPolicy": "CombineCompatibleSchemas" you
may end up with more tables than expected.

You specify the TableThreshold as an integer value greater than 0. This value is configured on
a per crawler basis. That is, for every crawl this value is considered. For example: a crawler has the
TableThreshold value set as 5. In each crawl AWS Glue compares the number of tables detected
with this table threshold value (5) and if the number of tables detected is less than 5, AWS Glue
writes the tables to the Data Catalog and if not, the crawl fails without writing to the Data Catalog.

Console

To set TableThreshold using the AWS console:

Using an AWS Glue crawler 168

AWS Glue User Guide

CLI

To set TableThreshold using the AWS CLI:

"{"Version":1.0,
"CrawlerOutput":
{"Tables":{"AddOrUpdateBehavior":"MergeNewColumns",
"TableThreshold":5}}}";

Error messages are logged to help you identify table paths and clean-up your data. Example log
in your account if the crawler fails because the table count was greater than table threshold value
provided:

Table Threshold value = 28, Tables detected - 29

In CloudWatch, we log all table locations detected as an INFO message. An error is logged as the
reason for the failure.

ERROR com.amazonaws.services.glue.customerLogs.CustomerLogService - CustomerLogService
 received CustomerFacingException with message
The number of tables detected by crawler: 29 is greater than the table threshold value
 provided: 28. Failing crawler without writing to Data Catalog.
com.amazonaws.services.glue.exceptions.CustomerFacingInternalException: The number of
 tables detected by crawler: 29 is greater than the table threshold value provided:
 28.
Failing crawler without writing to Data Catalog.

How to specify configuration options for a Delta Lake data store

When you configure a crawler for a Delta Lake data store, you specify these configuration
parameters:

Using an AWS Glue crawler 169

AWS Glue User Guide

Connection

Optionally select or add a Network connection to use with this Amazon S3 target. For
information about connections, see Connecting to data.

Create tables for querying

Select how you want to create the Delta Lake tables:

• Create Native tables: Allow integration with query engines that support querying of the Delta
transaction log directly.

• Create Symlink tables: Create a symlink manifest folder with manifest files partitioned by the
partition keys, based on the specified configuration parameters.

Enable write manifest (configurable only you've selected to Create Symlink tables for a Delta Lake
source

Select whether to detect table metadata or schema changes in the Delta Lake transaction log; it
regenerates the manifest file. You should not choose this option if you configured an automatic
manifest update with Delta Lake SET TBLPROPERTIES.

Include delta lake table path(s)

Specify one or more Amazon S3 paths to Delta tables as s3://bucket/prefix/object.

Using an AWS Glue crawler 170

AWS Glue User Guide

How to configure a crawler to use Lake Formation credentials

You can configure a crawler to use AWS Lake Formation credentials to access an Amazon S3 data
store or a Data Catalog table with an underlying Amazon S3 location within the same AWS account
or another AWS account. You can configure an existing Data Catalog table as a crawler's target, if

Using an AWS Glue crawler 171

AWS Glue User Guide

the crawler and the Data Catalog table reside in the same account. Currently, only a single catalog
target with a single catalog table is allowed when using a Data Catalog table as a cralwer's target.

Note

When you are defining a Data Catalog table as a crawler target, make sure that the
underlying location of the Data Catalog table is an Amazon S3 location. Crawlers that use
Lake Formation credentials only support Data Catalog targets with underlying Amazon S3
locations.

Setup required when the crawler and registered Amazon S3 location or Data Catalog table
reside in the same account (in-account crawling)

To allow the crawler to access a data store or Data Catalog table by using Lake Formation
credentials, you need to register the data location with Lake Formation. Also, the crawler's IAM
role must have permissions to read the data from the destination where the Amazon S3 bucket is
registered.

You can complete the following configuration steps using the AWS Management Console or AWS
Command Line Interface (AWS CLI).

AWS Management Console

1. Before configuring a crawler to access the crawler source, register the data location of
the data store or the Data Catalog with Lake Formation. In the Lake Formation console
(https://console.aws.amazon.com/lakeformation/), register an Amazon S3 location as the
root location of your data lake in the AWS account where the crawler is defined. For more
information, see Registering an Amazon S3 location.

2. Grant Data location permissions to the IAM role that's used for the crawler run so that the
crawler can read the data from the destination in Lake Formation. For more information, see
Granting data location permissions (same account).

3. Grant the crawler role access permissions (Create) to the database, which is specified as the
output database. For more information, see Granting database permissions using the Lake
Formation console and the named resource method.

4. In the IAM console (https://console.aws.amazon.com/iam/), create an IAM role for the
crawler. Add the lakeformation:GetDataAccess policy to the role.

Using an AWS Glue crawler 172

https://console.aws.amazon.com/lakeformation/
https://docs.aws.amazon.com/lake-formation/latest/dg/register-location.html
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-location-permissions-local.html
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-database-permissions.html
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-database-permissions.html
https://console.aws.amazon.com/iam/

AWS Glue User Guide

5. In the AWS Glue console (https://console.aws.amazon.com/glue/), while configuring the
crawler, select the option Use Lake Formation credentials for crawling Amazon S3 data
source.

Note

The accountId field is optional for in-account crawling.

AWS CLI

aws glue --profile demo create-crawler --debug --cli-input-json '{
 "Name": "prod-test-crawler",
 "Role": "arn:aws:iam::111122223333:role/service-role/AWSGlueServiceRole-prod-
test-run-role",
 "DatabaseName": "prod-run-db",
 "Description": "",
 "Targets": {
 "S3Targets":[
 {
 "Path": "s3://crawl-testbucket"
 }
]
 },
 "SchemaChangePolicy": {
 "UpdateBehavior": "LOG",
 "DeleteBehavior": "LOG"
 },
 "RecrawlPolicy": {
 "RecrawlBehavior": "CRAWL_EVERYTHING"
 },
 "LineageConfiguration": {
 "CrawlerLineageSettings": "DISABLE"
 },
 "LakeFormationConfiguration": {
 "UseLakeFormationCredentials": true,
 "AccountId": "111122223333"
 },
 "Configuration": {
 "Version": 1.0,
 "CrawlerOutput": {
 "Partitions": { "AddOrUpdateBehavior": "InheritFromTable" },

Using an AWS Glue crawler 173

https://console.aws.amazon.com/glue/

AWS Glue User Guide

 "Tables": {"AddOrUpdateBehavior": "MergeNewColumns" }
 },
 "Grouping": { "TableGroupingPolicy": "CombineCompatibleSchemas" }
 },
 "CrawlerSecurityConfiguration": "",
 "Tags": {
 "KeyName": ""
 }
}'

Setup required when the crawler and registered Amazon S3 location reside in different
accounts (cross-account crawling)

To allow the crawler to access a data store in a different account using Lake Formation credentials,
you must first register the Amazon S3 data location with Lake Formation. Then, you grant data
location permissions to the crawler's account by taking the following steps.

You can complete the following steps using the AWS Management Console or AWS CLI.

AWS Management Console

1. In the account where the Amazon S3 location is registered (account B):

a. Register an Amazon S3 path with Lake Formation. For more information, see Registering
Amazon S3 location.

b. Grant Data location permissions to the account (account A) where the crawler will be run.
For more information, see Grant data location permissions.

c. Create an empty database in Lake Formation with the underlying location as the target
Amazon S3 location. For more information, see Creating a database.

d. Grant account A (the account where the crawler will be run) access to the database
that you created in the previous step. For more information, see Granting database
permissions.

2. In the account where the crawler is created and will be run (account A):

a. Using the AWS RAM console, accept the database that was shared from the external
account (account B). For more information, see Accepting a resource share invitation from
AWS Resource Access Manager.

b. Create an IAM role for the crawler. Add lakeformation:GetDataAccess policy to the
role.

Using an AWS Glue crawler 174

https://docs.aws.amazon.com/lake-formation/latest/dg/register-location.html
https://docs.aws.amazon.com/lake-formation/latest/dg/register-location.html
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-location-permissions-local.html
https://docs.aws.amazon.com/lake-formation/latest/dg/creating-database.html
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-database-permissions.html
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-database-permissions.html
https://docs.aws.amazon.com/lake-formation/latest/dg/accepting-ram-invite.html
https://docs.aws.amazon.com/lake-formation/latest/dg/accepting-ram-invite.html

AWS Glue User Guide

c. In the Lake Formation console (https://console.aws.amazon.com/lakeformation/), grant
Data location permissions on the target Amazon S3 location to the IAM role used for the
crawler run so that the crawler can read the data from the destination in Lake Formation.
For more information, see Granting data location permissions.

d. Create a resource link on the shared database. For more information, see Create a resource
link.

e. Grant the crawler role access permissions (Create) on the shared database and
(Describe) the resource link. The resource link is specified in the output for the crawler.

f. In the AWS Glue console (https://console.aws.amazon.com/glue/), while configuring the
crawler, select the option Use Lake Formation credentials for crawling Amazon S3 data
source.

For cross-account crawling, specify the AWS account ID where the target Amazon S3
location is registered with Lake Formation. For in-account crawling, the accountId field is
optional.

AWS CLI

aws glue --profile demo create-crawler --debug --cli-input-json '{
 "Name": "prod-test-crawler",

Using an AWS Glue crawler 175

https://console.aws.amazon.com/lakeformation/
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-location-permissions-local.html
https://docs.aws.amazon.com/lake-formation/latest/dg/create-resource-link-database.html
https://docs.aws.amazon.com/lake-formation/latest/dg/create-resource-link-database.html
https://console.aws.amazon.com/glue/

AWS Glue User Guide

 "Role": "arn:aws:iam::111122223333:role/service-role/AWSGlueServiceRole-prod-
test-run-role",
 "DatabaseName": "prod-run-db",
 "Description": "",
 "Targets": {
 "S3Targets":[
 {
 "Path": "s3://crawl-testbucket"
 }
]
 },
 "SchemaChangePolicy": {
 "UpdateBehavior": "LOG",
 "DeleteBehavior": "LOG"
 },
 "RecrawlPolicy": {
 "RecrawlBehavior": "CRAWL_EVERYTHING"
 },
 "LineageConfiguration": {
 "CrawlerLineageSettings": "DISABLE"
 },
 "LakeFormationConfiguration": {
 "UseLakeFormationCredentials": true,
 "AccountId": "111111111111"
 },
 "Configuration": {
 "Version": 1.0,
 "CrawlerOutput": {
 "Partitions": { "AddOrUpdateBehavior": "InheritFromTable" },
 "Tables": {"AddOrUpdateBehavior": "MergeNewColumns" }
 },
 "Grouping": { "TableGroupingPolicy": "CombineCompatibleSchemas" }
 },
 "CrawlerSecurityConfiguration": "",
 "Tags": {
 "KeyName": ""
 }
}'

Using an AWS Glue crawler 176

AWS Glue User Guide

Note

• A crawler using Lake Formation credentials is only supported for Amazon S3 and Data
Catalog targets.

• For targets using Lake Formation credential vending, the underlying Amazon S3 locations
must belong to the same bucket. For example, customers can use multiple targets (s3://
bucket1/folder1, s3://bucket1/folder2) as long as all target locations are under the same
bucket (bucket1). Specifying different buckets (s3://bucket1/folder1, s3://bucket2/
folder2) is not allowed.

• Currently for Data Catalog target crawlers, only a single catalog target with a single
catalog table is allowed.

Tutorial: Adding an AWS Glue crawler

For this AWS Glue scenario, you're asked to analyze arrival data for major air carriers to calculate
the popularity of departure airports month over month. You have flights data for the year 2016
in CSV format stored in Amazon S3. Before you transform and analyze your data, you catalog its
metadata in the AWS Glue Data Catalog.

In this tutorial, let’s add a crawler that infers metadata from these flight logs in Amazon S3 and
creates a table in your Data Catalog.

Topics

• Prerequisites

• Step 1: Add a crawler

• Step 2: Run the crawler

• Step 3: View AWS Glue Data Catalog objects

Prerequisites

This tutorial assumes that you have an AWS account and access to AWS Glue.

Step 1: Add a crawler

Use these steps to configure and run a crawler that extracts the metadata from a CSV file stored in
Amazon S3.

Using an AWS Glue crawler 177

AWS Glue User Guide

To create a crawler that reads files stored on Amazon S3

1. On the AWS Glue service console, on the left-side menu, choose Crawlers.

2. On the Crawlers page, choose Create crawler. This starts a series of pages that prompt you for
the crawler details.

3. In the Crawler name field, enter Flights Data Crawler, and choose Next.

Crawlers invoke classifiers to infer the schema of your data. This tutorial uses the built-in
classifier for CSV by default.

4. For the crawler source type, choose Data stores and choose Next.

5. Now let's point the crawler to your data. On the Add a data store page, choose the Amazon
S3 data store. This tutorial doesn't use a connection, so leave the Connection field blank if it's
visible.

For the option Crawl data in, choose Specified path in another account. Then, for the Include
path, enter the path where the crawler can find the flights data, which is s3://crawler-
public-us-east-1/flight/2016/csv. After you enter the path, the title of this field
changes to Include path. Choose Next.

6. You can crawl multiple data stores with a single crawler. However, in this tutorial, we're using
only a single data store, so choose No, and then choose Next.

7. The crawler needs permissions to access the data store and create objects in the AWS Glue
Data Catalog. To configure these permissions, choose Create an IAM role. The IAM role name
starts with AWSGlueServiceRole-, and in the field, you enter the last part of the role name.
Enter CrawlerTutorial, and then choose Next.

Using an AWS Glue crawler 178

AWS Glue User Guide

Note

To create an IAM role, your AWS user must have CreateRole, CreatePolicy, and
AttachRolePolicy permissions.

The wizard creates an IAM role named AWSGlueServiceRole-CrawlerTutorial, attaches
the AWS managed policy AWSGlueServiceRole to this role, and adds an inline policy
that allows read access to the Amazon S3 location s3://crawler-public-us-east-1/
flight/2016/csv.

8. Create a schedule for the crawler. For Frequency, choose Run on demand, and then choose
Next.

9. Crawlers create tables in your Data Catalog. Tables are contained in a database in the Data
Catalog. First, choose Add database to create a database. In the pop-up window, enter test-
flights-db for the database name, and then choose Create.

Next, enter flights for Prefix added to tables. Use the default values for the rest of the
options, and choose Next.

10. Verify the choices you made in the Add crawler wizard. If you see any mistakes, you can
choose Back to return to previous pages and make changes.

After you have reviewed the information, choose Finish to create the crawler.

Step 2: Run the crawler

After creating a crawler, the wizard sends you to the Crawlers view page. Because you create the
crawler with an on-demand schedule, you're given the option to run the crawler.

To run the crawler

1. The banner near the top of this page lets you know that the crawler was created, and asks if
you want to run it now. Choose Run it now? to run the crawler.

The banner changes to show "Attempting to run" and Running" messages for your crawler.
After the crawler starts running, the banner disappears, and the crawler display is updated to
show a status of Starting for your crawler. After a minute, you can click the Refresh icon to
update the status of the crawler that is displayed in the table.

Using an AWS Glue crawler 179

AWS Glue User Guide

2. When the crawler completes, a new banner appears that describes the changes made by the
crawler. You can choose the test-flights-db link to view the Data Catalog objects.

Step 3: View AWS Glue Data Catalog objects

The crawler reads data at the source location and creates tables in the Data Catalog. A table is the
metadata definition that represents your data, including its schema. The tables in the Data Catalog
do not contain data. Instead, you use these tables as a source or target in a job definition.

To view the Data Catalog objects created by the crawler

1. In the left-side navigation, under Data catalog, choose Databases. Here you can view the
flights-db database that is created by the crawler.

2. In the left-side navigation, under Data catalog and below Databases, choose Tables. Here you
can view the flightscsv table created by the crawler. If you choose the table name, then you
can view the table settings, parameters, and properties. Scrolling down in this view, you can
view the schema, which is information about the columns and data types of the table.

3. If you choose View partitions on the table view page, you can see the partitions created for
the data. The first column is the partition key.

Defining metadata manually

The AWS Glue Data Catalog is a central repository that stores metadata about your data sources
and data sets. While a crawler can automatically crawl and populate metadata for supported data
sources, there are certain scenarios where you may need to define metadata manually in the Data
Catalog:

• Unsupported data formats – If you have data sources that are not supported by the crawler, you
need to manually define the metadata for those data sources in the Data Catalog.

• Custom metadata requirements – The AWS Glue crawler infers metadata based on predefined
rules and conventions. If you have specific metadata requirements that are not covered by the
AWS Glue crawler inferred metadata, you can manually define the metadata to meet your needs

• Data governance and standardization – In some cases, you may want to have more control over
the metadata definitions for data governance, compliance, or security reasons. Manually defining
metadata allows you to ensure that the metadata adheres to your organization's standards and
policies.

Defining metadata manually 180

AWS Glue User Guide

• Placeholder for future data ingestion – If you have data sources that are not immediately
available or accessible, you can create empty schema tables as placeholders. Once the data
sources become available, you can populate the tables with the actual data, while maintaining
the predefined structure.

To define metadata manually, you can use the AWS Glue console, Lake Formation console, AWS
Glue API, or the AWS Command Line Interface (AWS CLI). You can create databases, tables, and
partitions, and specify metadata properties such as column names, data types, descriptions, and
other attributes.

Creating databases

Databases are used to organize metadata tables in the AWS Glue. When you define a table in the
AWS Glue Data Catalog, you add it to a database. A table can be in only one database.

Your database can contain tables that define data from many different data stores. This data can
include objects in Amazon Simple Storage Service (Amazon S3) and relational tables in Amazon
Relational Database Service.

Note

When you delete a database from the AWS Glue Data Catalog, all the tables in the
database are also deleted.

To view the list of databases, sign in to the AWS Management Console and open the AWS Glue
console at https://console.aws.amazon.com/glue/. Choose Databases, and then choose a database
name in the list to view the details.

From the Databases tab in the AWS Glue console, you can add, edit, and delete databases:

• To create a new database, choose Add database and provide a name and description. For
compatibility with other metadata stores, such as Apache Hive, the name is folded to lowercase
characters.

Defining metadata manually 181

https://console.aws.amazon.com/glue/

AWS Glue User Guide

Note

If you plan to access the database from Amazon Athena, then provide a name with only
alphanumeric and underscore characters. For more information, see Athena names.

• To edit the description for a database, select the check box next to the database name and
choose Edit.

• To delete a database, select the check box next to the database name and choose Remove.

• To display the list of tables contained in the database, choose the database name and the
database properties will display all tables in the database.

To change the database that a crawler writes to, you must change the crawler definition. For more
information, see Using crawlers to populate the Data Catalog .

Database resource links

The AWS Glue console was recently updated. The current version of the console does not
support Database Resource Links.

The Data Catalog can also contain resource links to databases. A database resource link is a link to a
local or shared database. Currently, you can create resource links only in AWS Lake Formation. After
you create a resource link to a database, you can use the resource link name wherever you would
use the database name. Along with databases that you own or that are shared with you, database
resource links are returned by glue:GetDatabases() and appear as entries on the Databases
page of the AWS Glue console.

The Data Catalog can also contain table resource links.

For more information about resource links, see Creating Resource Links in the AWS Lake Formation
Developer Guide.

Creating tables

Even though running a crawler is the recommended method to take inventory of the data in your
data stores, you can add metadata tables to the AWS Glue Data Catalog manually. This approach
allows you to have more control over the metadata definitions and customize them according them
to your specific requirements.

Defining metadata manually 182

https://docs.aws.amazon.com/athena/latest/ug/tables-databases-columns-names.html#ate-table-database-and-column-names-allow-only-underscore-special-characters
https://docs.aws.amazon.com/lake-formation/latest/dg/creating-resource-links.html

AWS Glue User Guide

You can also add tables to the Data Catalog manually in the following ways:

• Use the AWS Glue console to manually create a table in the AWS Glue Data Catalog. For more
information, see Working with tables on the AWS Glue console.

• Use the CreateTable operation in the AWS Glue API to create a table in the AWS Glue Data
Catalog. For more information, see CreateTable action (Python: create_table).

• Use AWS CloudFormation templates. For more information, see AWS CloudFormation for AWS
Glue.

When you define a table manually using the console or an API, you specify the table schema and
the value of a classification field that indicates the type and format of the data in the data source.
If a crawler creates the table, the data format and schema are determined by either a built-in
classifier or a custom classifier. For more information about creating a table using the AWS Glue
console, see Working with tables on the AWS Glue console.

Topics

• Table partitions

• Table resource links

• Updating manually created Data Catalog tables using crawlers

• Data Catalog table properties

• Working with tables on the AWS Glue console

• Working with partition indexes in AWS Glue

Table partitions

An AWS Glue table definition of an Amazon Simple Storage Service (Amazon S3) folder can
describe a partitioned table. For example, to improve query performance, a partitioned table might
separate monthly data into different files using the name of the month as a key. In AWS Glue, table
definitions include the partitioning key of a table. When AWS Glue evaluates the data in Amazon
S3 folders to catalog a table, it determines whether an individual table or a partitioned table is
added.

You can create partition indexes on a table to fetch a subset of the partitions instead of loading all
the partitions in the table. For information about working with partition indexes, see Working with
partition indexes in AWS Glue.

Defining metadata manually 183

AWS Glue User Guide

All the following conditions must be true for AWS Glue to create a partitioned table for an Amazon
S3 folder:

• The schemas of the files are similar, as determined by AWS Glue.

• The data format of the files is the same.

• The compression format of the files is the same.

For example, you might own an Amazon S3 bucket named my-app-bucket, where you store both
iOS and Android app sales data. The data is partitioned by year, month, and day. The data files for
iOS and Android sales have the same schema, data format, and compression format. In the AWS
Glue Data Catalog, the AWS Glue crawler creates one table definition with partitioning keys for
year, month, and day.

The following Amazon S3 listing of my-app-bucket shows some of the partitions. The = symbol is
used to assign partition key values.

 my-app-bucket/Sales/year=2010/month=feb/day=1/iOS.csv
 my-app-bucket/Sales/year=2010/month=feb/day=1/Android.csv
 my-app-bucket/Sales/year=2010/month=feb/day=2/iOS.csv
 my-app-bucket/Sales/year=2010/month=feb/day=2/Android.csv
 ...
 my-app-bucket/Sales/year=2017/month=feb/day=4/iOS.csv
 my-app-bucket/Sales/year=2017/month=feb/day=4/Android.csv

Table resource links

The AWS Glue console was recently updated. The current version of the console does not
support Table Resource Links.

The Data Catalog can also contain resource links to tables. A table resource link is a link to a local or
shared table. Currently, you can create resource links only in AWS Lake Formation. After you create
a resource link to a table, you can use the resource link name wherever you would use the table
name. Along with tables that you own or that are shared with you, table resource links are returned
by glue:GetTables() and appear as entries on the Tables page of the AWS Glue console.

The Data Catalog can also contain database resource links.

Defining metadata manually 184

AWS Glue User Guide

For more information about resource links, see Creating Resource Links in the AWS Lake Formation
Developer Guide.

Updating manually created Data Catalog tables using crawlers

You might want to create AWS Glue Data Catalog tables manually and then keep them updated
with AWS Glue crawlers. Crawlers running on a schedule can add new partitions and update
the tables with any schema changes. This also applies to tables migrated from an Apache Hive
metastore.

To do this, when you define a crawler, instead of specifying one or more data stores as the source
of a crawl, you specify one or more existing Data Catalog tables. The crawler then crawls the
data stores specified by the catalog tables. In this case, no new tables are created; instead, your
manually created tables are updated.

The following are other reasons why you might want to manually create catalog tables and specify
catalog tables as the crawler source:

• You want to choose the catalog table name and not rely on the catalog table naming algorithm.

• You want to prevent new tables from being created in the case where files with a format that
could disrupt partition detection are mistakenly saved in the data source path.

For more information, see Step 2: Choose data sources and classifiers.

Data Catalog table properties

Table properties, or parameters, as they are known in the AWS CLI, are unvalidated key and value
strings. You can set your own properties on the table to support uses of the Data Catalog outside
of AWS Glue. Other services using the Data Catalog may do so as well. AWS Glue sets some table
properties when running jobs or crawlers. Unless otherwise described, these properties are for
internal use, we do not support that they will continue to exist in their current form, or support
product behavior if these properties are manually changed.

For more information about table properties set by AWS Glue crawlers, see the section called
“Parameters set on Data Catalog tables by crawler”.

Working with tables on the AWS Glue console

A table in the AWS Glue Data Catalog is the metadata definition that represents the data in a data
store. You create tables when you run a crawler, or you can create a table manually in the AWS Glue

Defining metadata manually 185

https://docs.aws.amazon.com/lake-formation/latest/dg/creating-resource-links.html

AWS Glue User Guide

console. The Tables list in the AWS Glue console displays values of your table's metadata. You use
table definitions to specify sources and targets when you create ETL (extract, transform, and load)
jobs.

Note

With recent changes to the AWS management console, you may need to modify your
existing IAM roles to have the SearchTables permission. For new role creation, the
SearchTables API permission has already been added as default.

To get started, sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/. Choose the Tables tab, and use the Add tables button to create
tables either with a crawler or by manually typing attributes.

Adding tables on the console

To use a crawler to add tables, choose Add tables, Add tables using a crawler. Then follow the
instructions in the Add crawler wizard. When the crawler runs, tables are added to the AWS Glue
Data Catalog. For more information, see Using crawlers to populate the Data Catalog .

If you know the attributes that are required to create an Amazon Simple Storage Service (Amazon
S3) table definition in your Data Catalog, you can create it with the table wizard. Choose Add
tables, Add table manually, and follow the instructions in the Add table wizard.

When adding a table manually through the console, consider the following:

• If you plan to access the table from Amazon Athena, then provide a name with only
alphanumeric and underscore characters. For more information, see Athena names.

• The location of your source data must be an Amazon S3 path.

• The data format of the data must match one of the listed formats in the wizard. The
corresponding classification, SerDe, and other table properties are automatically populated
based on the format chosen. You can define tables with the following formats:

Avro

Apache Avro JSON binary format.

Defining metadata manually 186

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-tables.html#aws-glue-api-catalog-tables-SearchTables
https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/
https://docs.aws.amazon.com/athena/latest/ug/tables-databases-columns-names.html#ate-table-database-and-column-names-allow-only-underscore-special-characters

AWS Glue User Guide

CSV

Character separated values. You also specify the delimiter of either comma, pipe, semicolon,
tab, or Ctrl-A.

JSON

JavaScript Object Notation.

XML

Extensible Markup Language format. Specify the XML tag that defines a row in the data.
Columns are defined within row tags.

Parquet

Apache Parquet columnar storage.

ORC

Optimized Row Columnar (ORC) file format. A format designed to efficiently store Hive data.

• You can define a partition key for the table.

• Currently, partitioned tables that you create with the console cannot be used in ETL jobs.

Table attributes

The following are some important attributes of your table:

Name

The name is determined when the table is created, and you can't change it. You refer to a table
name in many AWS Glue operations.

Database

The container object where your table resides. This object contains an organization of your
tables that exists within the AWS Glue Data Catalog and might differ from an organization
in your data store. When you delete a database, all tables contained in the database are also
deleted from the Data Catalog.

Description

The description of the table. You can write a description to help you understand the contents of
the table.

Defining metadata manually 187

AWS Glue User Guide

Table format

Specify creating a standard AWS Glue table, or a table in Apache Iceberg format.

Enable compaction

Choose Enable compaction to compact small Amazon S3 objects in the table into larger
objects.

IAM role

To run compaction, the service assumes an IAM role on your behalf. You can choose an IAM role
using the drop-down. Ensure that the role has the permissions required to enable compaction.

To learn more about the required permissions for the IAM role, see Table optimization
prerequisites .

Location

The pointer to the location of the data in a data store that this table definition represents.

Classification

A categorization value provided when the table was created. Typically, this is written when a
crawler runs and specifies the format of the source data.

Last updated

The time and date (UTC) that this table was updated in the Data Catalog.

Date added

The time and date (UTC) that this table was added to the Data Catalog.

Deprecated

If AWS Glue discovers that a table in the Data Catalog no longer exists in its original data
store, it marks the table as deprecated in the data catalog. If you run a job that references a
deprecated table, the job might fail. Edit jobs that reference deprecated tables to remove them
as sources and targets. We recommend that you delete deprecated tables when they are no
longer needed.

Connection

If AWS Glue requires a connection to your data store, the name of the connection is associated
with the table.

Defining metadata manually 188

AWS Glue User Guide

Viewing and editing table details

To see the details of an existing table, choose the table name in the list, and then choose Action,
View details.

The table details include properties of your table and its schema. This view displays the schema of
the table, including column names in the order defined for the table, data types, and key columns
for partitions. If a column is a complex type, you can choose View properties to display details of
the structure of that field, as shown in the following example:

{
"StorageDescriptor":
 {
 "cols": {
 "FieldSchema": [
 {
 "name": "primary-1",
 "type": "CHAR",
 "comment": ""
 },
 {
 "name": "second ",
 "type": "STRING",
 "comment": ""
 }
]
 },
 "location": "s3://aws-logs-111122223333-us-east-1",
 "inputFormat": "",
 "outputFormat": "org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat",
 "compressed": "false",
 "numBuckets": "0",
 "SerDeInfo": {
 "name": "",
 "serializationLib": "org.apache.hadoop.hive.serde2.OpenCSVSerde",
 "parameters": {
 "separatorChar": "|"
 }
 },
 "bucketCols": [],
 "sortCols": [],
 "parameters": {},
 "SkewedInfo": {},

Defining metadata manually 189

AWS Glue User Guide

 "storedAsSubDirectories": "false"
 },
 "parameters": {
 "classification": "csv"
 }
}

For more information about the properties of a table, such as StorageDescriptor, see
StorageDescriptor structure.

To change the schema of a table, choose Edit schema to add and remove columns, change column
names, and change data types.

To compare different versions of a table, including its schema, choose Compare versions to see
a side-by-side comparison of two versions of the schema for a table. For more information, see
Compare table schema versions .

To display the files that make up an Amazon S3 partition, choose View partition. For Amazon S3
tables, the Key column displays the partition keys that are used to partition the table in the source
data store. Partitioning is a way to divide a table into related parts based on the values of a key
column, such as date, location, or department. For more information about partitions, search the
internet for information about "hive partitioning."

Note

To get step-by-step guidance for viewing the details of a table, see the Explore table
tutorial in the console.

Compare table schema versions

When you compare two versions of table schemas, you can compare nested row changes by
expanding and collapsing nested rows, compare schemas of two versions side-by-side, and view
table properties side-by-side.

To compare versions

1. From the AWS Glue console, choose Tables, then Actions and choose Compare versions.

Defining metadata manually 190

AWS Glue User Guide

2. Choose a version to compare by choosing the version drop-down menu. When comparing
schemas, the Schema tab is highlighted in orange.

3. When you compare tables between two versions, the table schemas are presented to you
on the left and right side of the screen. This enables you to determine changes visually by
comparing the Column name, data type, key, and comment fields side-by-side. When there is a
change, a colored icon displays the type of change that was made.

• Deleted – displayed by a red icon indicates where the column was removed from a previous
version of the table schema.

• Edited or Moved – displayed by a blue icon indicates where the column was modified or
moved in a newer version of the table schema.

• Added – displayed by a green icon indicates where the column was added to a newer version
of the table schema.

Defining metadata manually 191

AWS Glue User Guide

• Nested changes – displayed by a yellow icon indicates where the nested column contains
changes. Choose the column to expand and view the columns that have either been deleted,
edited, moved, or added.

4. Use the filter fields search bar to display fields based on the characters you enter here. If you
enter a column name in either table version, the filtered fields are displayed in both table
versions to show you where the changes have occurred.

5. To compare properties, choose the Properties tab.

6. To stop comparing versions, choose Stop comparing to return to the list of tables.

Defining metadata manually 192

AWS Glue User Guide

Working with partition indexes in AWS Glue

Over time, hundreds of thousands of partitions get added to a table. The GetPartitions API is used
to fetch the partitions in the table. The API returns partitions which match the expression provided
in the request.

Lets take a sales_data table as an example which is partitioned by the keys Country, Category,
Year, Month, and creationDate. If you want to obtain sales data for all the items sold for the Books
category in the year 2020 after 2020-08-15, you have to make a GetPartitions request with the
expression "Category = 'Books' and creationDate > '2020-08-15'" to the Data Catalog.

If no partition indexes are present on the table, AWS Glue loads all the partitions of the table,
and then filters the loaded partitions using the query expression provided by the user in the
GetPartitions request. The query takes more time to run as the number of partitions increase
on a table with no indexes. With an index, the GetPartitions query will try to fetch a subset of
the partitions instead of loading all the partitions in the table.

Topics

• About partition indexes

• Creating a table with partition indexes

• Adding a partition index to an existing table

• Describing partition indexes on a table

• Limitations on using partition indexes

• Using indexes for an optimized GetPartitions call

• Integration with engines

About partition indexes

When you create a partition index, you specify a list of partition keys that already exist on a given
table. Partition index is sub list of partition keys defined in the table. A partition index can be
created on any permutation of partition keys defined on the table. For the above sales_data table,
the possible indexes are (country, category, creationDate), (country, category, year), (country,
category), (country), (category, country, year, month), and so on.

The Data Catalog will concatenate the partition values in the order provided at the time of index
creation. The index is built consistently as partitions are added to the table. Indexes can be created

Defining metadata manually 193

https://docs.aws.amazon.com/glue/latest/webapi/API_GetPartitions.html

AWS Glue User Guide

for String (string, char, and varchar), Numeric (int, bigint, long, tinyint, and smallint), and Date
(yyyy-MM-dd) column types.

Supported data types

• Date – A date in ISO format, such as YYYY-MM-DD. For example, date 2020-08-15. The format
uses hyphens (‐) to separate the year, month, and day. The permissible range for dates for
indexing spans from 0000-01-01 to 9999-12-31.

• String – A string literal enclosed in single or double quotes.

• Char – Fixed length character data, with a specified length between 1 and 255, such as char(10).

• Varchar – Variable length character data, with a specified length between 1 and 65535, such as
varchar(10).

• Numeric – int, bigint, long, tinyint, and smallint

Indexes on Numeric, String, and Date data types support =, >, >=, <, <= and between operators.
The indexing solution currently only supports the AND logical operator. Sub-expressions with the
operators "LIKE", "IN", "OR", and "NOT" are ignored in the expression for filtering using an index.
Filtering for the ignored sub-expression is done on the partitions fetched after applying index
filtering.

For each partition added to a table, there is a corresponding index item created. For a table with ‘n’
partitions, 1 partition index will result in 'n' partition index items. 'm' partition index on same table
will result into 'm*n' partition index items. Each partition index item will be charged according to
the current AWS Glue pricing policy for data catalog storage. For details on storage object pricing,
see AWS Glue pricing.

Creating a table with partition indexes

You can create a partition index during table creation. The CreateTable request takes a list of
PartitionIndex objects as an input. A maximum of 3 partition indexes can be created on a given
table. Each partition index requires a name and a list of partitionKeys defined for the table.
Created indexes on a table can be fetched using the GetPartitionIndexes API

Adding a partition index to an existing table

To add a partition index to an existing table, use the CreatePartitionIndex operation. You
can create one PartitionIndex per CreatePartitionIndex operation. Adding an index does

Defining metadata manually 194

https://aws.amazon.com/glue/pricing/
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-tables.html#aws-glue-api-catalog-tables-PartitionIndex
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-tables.html#aws-glue-api-catalog-tables-GetPartitionIndexes

AWS Glue User Guide

not affect the availability of a table, as the table continues to be available while indexes are being
created.

The index status for an added partition is set to CREATING and the creation of the index data is
started. If the process for creating the indexes is successful, the indexStatus is updated to ACTIVE
and for an unsuccessful process, the index status is updated to FAILED. Index creation can fail for
multiple reasons, and you can use the GetPartitionIndexes operation to retrieve the failure
details. The possible failures are:

• ENCRYPTED_PARTITION_ERROR — Index creation on a table with encrypted partitions is not
supported.

• INVALID_PARTITION_TYPE_DATA_ERROR — Observed when the partitionKey value is not a
valid value for the corresponding partitionKey data type. For example: a partitionKey with
the 'int' datatype has a value 'foo'.

• MISSING_PARTITION_VALUE_ERROR — Observed when the partitionValue for an
indexedKey is not present. This can happen when a table is not partitioned consistently.

• UNSUPPORTED_PARTITION_CHARACTER_ERROR — Observed when the value for an indexed
partition key contains the characters \u0000, \u0001 or \u0002

• INTERNAL_ERROR — An internal error occurred while indexes were being created.

Describing partition indexes on a table

To fetch the partition indexes created on a table, use the GetPartitionIndexes operation.
The response returns all the indexes on the table, along with the current status of each index (the
IndexStatus).

The IndexStatus for a partition index will be one of the following:

• CREATING — The index is currently being created, and is not yet available for use.

• ACTIVE — The index is ready for use. Requests can use the index to perform an optimized query.

• DELETING — The index is currently being deleted, and can no longer be used. An index in the
active state can be deleted using the DeletePartitionIndex request, which moves the status
from ACTIVE to DELETING.

• FAILED — The index creation on an existing table failed. Each table stores the last 10 failed
indexes.

Defining metadata manually 195

AWS Glue User Guide

The possible state transitions for indexes created on an existing table are:

• CREATING → ACTIVE → DELETING

• CREATING → FAILED

Limitations on using partition indexes

Once you have created a partition index, note these changes to table and partition functionality:

New partition creation (after Index Addition)

After a partition index is created on a table, all new partitions added to the table will be validated
for the data type checks for indexed keys. The partition value of the indexed keys will be validated
for data type format. If the data type check fails, the create partition operation will fail. For the
sales_data table, if an index is created for keys (category, year) where the category is of type
string and year of type int, the creation of the new partition with a value of YEAR as "foo" will
fail.

After indexes are enabled, the addition of partitions with indexed key values having the characters
U+0000, U+00001, and U+0002 will start to fail.

Table updates

Once a partition index is created on a table, you cannot modify the partition key names for existing
partition keys, and you cannot change the type, or order, of keys which are registered with the
index.

Using indexes for an optimized GetPartitions call

When you call GetPartitions on a table with an index, you can include an expression, and if
applicable the Data Catalog will use an index if possible. The first key of the index should be passed
in the expression for the indexes to be used in filtering. Index optimization in filtering is applied as
a best effort. The Data Catalog tries to use index optimization as much as possible, but in case of a
missing index, or unsupported operator, it falls back to the existing implementation of loading all
partitions.

For the sales_data table above, lets add the index [Country, Category, Year]. If "Country" is not
passed in the expression, the registered index will not be able to filter partitions using indexes. You
can add up to 3 indexes to support various query patterns.

Defining metadata manually 196

AWS Glue User Guide

Lets take some example expressions and see how indexes work on them:

Expressions How index will be used

Country = 'US' Index will be used to filter partitions.

Country = 'US' and Category = 'Shoes' Index will be used to filter partitions.

Category = 'Shoes' Indexes will not be used as "country" is not
provided in the expression. All partitions will
be loaded to return a response.

Country = 'US' and Category = 'Shoes' and
Year > '2018'

Index will be used to filter partitions.

Country = 'US' and Category = 'Shoes' and
Year > '2018' and month = 2

Index will be used to fetch all partitions with
country = "US" and category = "shoes" and
year > 2018. Then, filtering on the month
expression will be performed.

Country = 'US' AND Category = 'Shoes' OR
Year > '2018'

Indexes will not be used as an OR operator is
present in the expression.

Country = 'US' AND Category = 'Shoes' AND
(Year = 2017 OR Year = '2018')

Index will be used to fetch all partitions with
country = "US" and category = "shoes", and
then filtering on the year expression will be
performed.

Country in ('US', 'UK') AND Category = 'Shoes' Indexes will not be used for filtering as the IN
operator is not supported currently.

Country = 'US' AND Category in ('Shoes',
'Books')

Index will be used to fetch all partitions with
country = "US", and then filtering on the
Category expression will be performed.

Country = 'US' AND Category in ('Shoes',
'Books') AND (creationDate > '2023-9-01'

Index will be used to fetch all partition
s with country = "US", with creationDate
> '2023-9-01', and then filtering on the
Category expression will be performed.

Defining metadata manually 197

AWS Glue User Guide

Integration with engines

Redshift Spectrum, Amazon EMR and AWS Glue ETL Spark DataFrames are able to utilize indexes
for fetching partitions after indexes are in an ACTIVE state in AWS Glue. Athena and AWS Glue ETL
Dynamic frames require you to follow extra steps to utilize indexes for query improvement.

Enable partition filtering

To enable partition filtering in Athena, you need to update the table properties as follows:

1. In the AWS Glue console, under Data Catalog, choose Tables.

2. Choose a table.

3. Under Actions, choose Edit table.

4. Under Table properties, add the following:

• Key –partition_filtering.enabled

• Value – true

5. Choose Apply.

Alternatively, you can set this parameter by running an ALTER TABLE SET PROPERTIES query in
Athena.

ALTER TABLE partition_index.table_with_index
SET TBLPROPERTIES ('partition_filtering.enabled' = 'true')

Integrating with other AWS services

While you can use AWS Glue crawlers to populate the AWS Glue Data Catalog, there are several
AWS services that can automatically integrate with and populate the catalog for you. The following
sections provide more information about the specific use cases supported by AWS services that can
populate the Data Catalog.

Topics

• AWS Lake Formation

• Amazon Athena

Integrating with other AWS services 198

https://docs.aws.amazon.com/athena/latest/ug/glue-best-practices.html#glue-best-practices-partition-index
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-cat-predicates
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-cat-predicates
https://docs.aws.amazon.com/athena/latest/ug/alter-table-set-tblproperties.html

AWS Glue User Guide

AWS Lake Formation

AWS Lake Formation is a service that makes it easier to set up a secure data lake in AWS. Lake
Formation is built on AWS Glue, and Lake Formation and AWS Glue share the same AWS Glue
Data Catalog. You can register your Amazon S3 data location with Lake Formation, and use Lake
Formation console to create databases and tables in the AWS Glue Data Catalog, define data access
policies, and audit data access across your data lake from a central place. You can use the Lake
Formation fine-grained access control to manage your existing Data Catalog resources and Amazon
S3 data locations.

With data registered with Lake Formation, you can securely share Data Catalog resources across
IAM principals, AWS accounts, AWS organizations, and organizational units.

For more information about creating Data Catalog resources using Lake Formation, see Creating
Data Catalog tables and databases in the AWS Lake Formation Developer Guide.

Amazon Athena

Amazon Athena uses the Data Catalog to store and retrieve table metadata for the Amazon S3
data in your AWS account. The table metadata lets the Athena query engine know how to find,
read, and process the data that you want to query.

You can populate the AWS Glue Data Catalog by using Athena CREATE TABLE statements directly.
You can manually define and populate the schema and partition metadata in the Data Catalog
without needing to run a crawler.

1. In the Athena console, create a database that will store the table metadata in the Data
Catalog.

2. Use the CREATE EXTERNAL TABLE statement to define the schema of your data source.

3. Use the PARTITIONED BY clause to define any partition keys if your data is partitioned.

4. Use the LOCATION clause to specify the Amazon S3 path where your actual data files are
stored.

5. Run the CREATE TABLE statement.

This query creates the table metadata in the Data Catalog based on your defined schema and
partitions, without actually crawling the data.

Integrating with other AWS services 199

https://docs.aws.amazon.com/lake-formation/latest/dg/populating-catalog.html
https://docs.aws.amazon.com/lake-formation/latest/dg/populating-catalog.html

AWS Glue User Guide

You can query the table in Athena, and it will use the metadata from the Data Catalog to access
and query your data files in Amazon S3.

For more information, see Creating databases and tables in the Amazon Athena User Guide.

Data Catalog settings

The Data Catalog settings contains options to set encryption and permissions options for the Data
Catalog in your account.

Data Catalog settings 200

https://docs.aws.amazon.com/athena/latest/ug/work-with-data.html

AWS Glue User Guide

Data Catalog settings 201

AWS Glue User Guide

To change the fine-grained access control of the Data Catalog

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. Choose an encryption option.

• Metadata encryption – Select this check box to encrypt the metadata in your Data Catalog.
Metadata is encrypted at rest using the AWS Key Management Service (AWS KMS) key that
you specify. For more information, see Encrypting your Data Catalog.

• Encrypt connection passwords – Select this check box to encrypt passwords in the AWS
Glue connection object when the connection is created or updated. Passwords are encrypted
using the AWS KMS key that you specify. When passwords are returned, they are encrypted.
This option is a global setting for all AWS Glue connections in the Data Catalog. If you
clear this check box, previously encrypted passwords remain encrypted using the key that
was used when they were created or updated. For more information about AWS Glue
connections, see Connecting to data.

When you enable this option, choose an AWS KMS key, or choose Enter a key ARN
and provide the Amazon Resource Name (ARN) for the key. Enter the ARN in the form
arn:aws:kms:region:account-id:key/key-id . You can also provide the ARN as a
key alias, such as arn:aws:kms:region:account-id:alias/alias-name .

Important

If this option is selected, any user or role that creates or updates a connection must
have kms:Encrypt permission on the specified KMS key.

For more information, see Encrypting connection passwords.

3. Choose Settings, and then in the Permissions editor, add the policy statement to change fine-
grained access control of the Data Catalog for your account. Only one policy at a time can be
attached to a Data Catalog. You can paste a JSON resource policy into this control. For more
information, see Resource-based policies within AWS Glue.

4. Choose Save to update your Data Catalog with any changes you made.

You can also use AWS Glue API operations to put, get, and delete resource policies. For more
information, see Security APIs in AWS Glue.

Data Catalog settings 202

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

Populating and managing transactional tables

Apache Iceberg, Apache Hudi, and Linux Foundation Delta Lake are open-source table formats
designed for handling large-scale data analytics and data lake workloads in Apache Spark.

You can populate Iceberg, Hudi, and Delta Lake tables in the AWS Glue Data Catalog using the
following methods:

• AWS Glue crawler; – AWS Glue crawlers can automatically discover and populate Iceberg, Hudi
and Delta Lake table metadata in the Data Catalog. For more information, see Using crawlers to
populate the Data Catalog .

• AWS Glue ETL Jobs – You can create ETL jobs to write data to Iceberg, Hudi, and Delta Lake
tables and populate their metadata in the Data Catalog. For more information, see Using data
lake frameworks with AWS Glue ETL jobs.

• AWS Glue console, AWS Lake Formation console, AWS CLI or API – You can use the AWS Glue
console, Lake Formation console, or API to create and manage Iceberg table definitions in the
Data Catalog.

Topics

• Creating Apache Iceberg tables

• Optimizing Iceberg tables

Creating Apache Iceberg tables

You can create Apache Iceberg tables that use the Apache Parquet data format in the AWS Glue
Data Catalog with data residing in Amazon S3. A table in the Data Catalog is the metadata
definition that represents the data in a data store. By default, AWS Glue creates Iceberg v2 tables.
For the difference between v1 and v2 tables, see Format version changes in the Apache Iceberg
documentation.

Apache Iceberg is an open table format for very large analytic datasets. Iceberg allows for easy
changes to your schema, also known as schema evolution, meaning that users can add, rename, or
remove columns from a data table without disrupting the underlying data. Iceberg also provides
support for data versioning, which allows users to track changes to data overtime. This enables the
time travel feature, which allows users to access and query historical versions of data and analyze
changes to the data between updates and deletes.

Populating and managing transactional tables 203

https://iceberg.apache.org/
https://hudi.incubator.apache.org/
https://delta.io/
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-datalake-native-frameworks.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-datalake-native-frameworks.html
https://iceberg.apache.org/spec/#appendix-e-format-version-changes
https://iceberg.apache.org/

AWS Glue User Guide

You can use AWS Glue or Lake Formation console or the CreateTable operation in the AWS Glue
API to create an Iceberg table in the Data Catalog. For more information, see CreateTable action
(Python: create_table).

When you create an Iceberg table in the Data Catalog, you must specify the table format and
metadata file path in Amazon S3 to be able to perform reads and writes.

You can use Lake Formation to secure your Iceberg table using fine-grained access control
permissions when you register the Amazon S3 data location with AWS Lake Formation. For source
data in Amazon S3 and metadata that is not registered with Lake Formation, access is determined
by IAM permissions policies for Amazon S3 and AWS Glue actions. For more information, see
Managing permissions.

Note

Data Catalog doesn’t support creating partitions and adding Iceberg table properties.

Prerequisites

To create Iceberg tables in the Data Catalog, and set up Lake Formation data access permissions,
you need to complete the following requirements:

1. Permissions required to create Iceberg tables without the data registered with Lake
Formation.

In addition to the permissions required to create a table in the Data Catalog, the table creator
requires the following permissions:

• s3:PutObject on resource arn:aws:s3:::{bucketName}

• s3:GetObject on resource arn:aws:s3:::{bucketName}

• s3:DeleteObjecton resource arn:aws:s3:::{bucketName}

2. Permissions required to create Iceberg tables with data registered with Lake Formation:

To use Lake Formation to manage and secure the data in your data lake, register your Amazon
S3 location that has the data for tables with Lake Formation. This is so that Lake Formation
can vend credentials to AWS analytical services such as Athena, Redshift Spectrum, and
Amazon EMR to access data. For more information on registering an Amazon S3 location, see
Adding an Amazon S3 location to your data lake.

Creating Iceberg tables 204

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-tables.html#aws-glue-api-catalog-tables-CreateTable
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-tables.html#aws-glue-api-catalog-tables-CreateTable
https://docs.aws.amazon.com/lake-formation/latest/dg/managing-permissions.html
https://docs.aws.amazon.com/lake-formation/latest/dg/register-data-lake.html

AWS Glue User Guide

A principal who reads and writes the underlying data that is registered with Lake Formation
requires the following permissions:

• lakeformation:GetDataAccess

• DATA_LOCATION_ACCESS

A principal who has data location permissions on a location also has location permissions on
all child locations.

For more information on data location permissions, see Underlying data access controlulink.

To enable compaction, the service needs to assume an IAM role that has permissions to update
tables in the Data Catalog. For details, see Table optimization prerequisites

Creating an Iceberg table

You can create Iceberg v1 and v2 tables using AWS Glue or Lake Formation console or AWS
Command Line Interface as documented on this page. You can also create Iceberg tables using the
AWS Glue crawler. For more information, see Data Catalog and Crawlers in the AWS Glue Developer
Guide.

To create an Iceberg table

Console

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. Under Data Catalog, choose Tables, and use the Create table button to specify the following
attributes:

• Table name – Enter a name for the table. If you’re using Athena to access tables, use these
naming tips in the Amazon Athena User Guide.

• Database – Choose an existing database or create a new one.

• Description – The description of the table. You can write a description to help you
understand the contents of the table.

• Table format – For Table format, choose Apache Iceberg.

• Enable compaction – Choose Enable compaction to compact small Amazon S3 objects in
the table into larger objects.

Creating Iceberg tables 205

https://docs.aws.amazon.com/lake-formation/latest/dg/access-control-underlying-data.html#data-location-permissions
https://docs.aws.amazon.com/glue/latest/dg/catalog-and-crawler.html
https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/
https://docs.aws.amazon.com/athena/latest/ug/tables-databases-columns-names.html

AWS Glue User Guide

• IAM role – To run compaction, the service assumes an IAM role on your behalf. You can
choose an IAM role using the drop-down. Ensure that the role has the permissions required
to enable compaction.

To learn more about the required permissions, see Table optimization prerequisites .

• Location – Specify the path to the folder in Amazon S3 that stores the metadata table.
Iceberg needs a metadata file and location in the Data Catalog to be able to perform reads
and writes.

• Schema – Choose Add columns to add columns and data types of the columns. You have
the option to create an empty table and update the schema later. Data Catalog supports
Hive data types. For more information, see Hive data types.

Iceberg allows you to evolve schema and partition after you create the table. You can use
Athena queries to update the table schema and Spark queries for updating partitions.

AWS CLI

aws glue create-table \
 --database-name iceberg-db \
 --region us-west-2 \
 --open-table-format-input '{
 "IcebergInput": {
 "MetadataOperation": "CREATE",
 "Version": "2"
 }
 }' \
 --table-input '{"Name":"test-iceberg-input-demo",
 "TableType": "EXTERNAL_TABLE",
 "StorageDescriptor":{
 "Columns":[
 {"Name":"col1", "Type":"int"},
 {"Name":"col2", "Type":"int"},
 {"Name":"col3", "Type":"string"}
],
 "Location":"s3://DOC_EXAMPLE_BUCKET_ICEBERG/"
 }
 }'

Creating Iceberg tables 206

https://cwiki.apache.org/confluence/plugins/servlet/mobile?contentId=27838462#content/view/27838462
https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg-evolving-table-schema.html
https://iceberg.apache.org/docs/latest/spark-ddl/#alter-table-sql-extensions

AWS Glue User Guide

Optimizing Iceberg tables

The Amazon S3 data lakes using open table formats such as Apache Iceberg store the data
as Amazon S3 objects. Having thousands of small Amazon S3 objects in a data lake table
increases metadata overhead on Iceberg tables and affects the read performance. For better
read performance by AWS analytics services such as Amazon Athena and Amazon EMR, and AWS
Glue ETL jobs, AWS Glue Data Catalog provides managed compaction (a process that compacts
small Amazon S3 objects into larger objects) for Iceberg tables in Data Catalog. You can use Lake
Formation console, AWS Glue console, AWS CLI, or AWS API to enable or disable compaction for
individual Iceberg tables that are in the Data Catalog.

The table optimizer continuously monitors table partitions and kicks off the compaction process
when the threshold is exceeded for the number of files and file sizes. An Iceberg table qualifies for
compaction if the file size specified in the write.target-file-size-bytes property is within the 128MB
to 512MB range. In the Data Catalog, the compaction process starts if the table has more than five
files, each smaller than 75% of the write.target-file-size-bytes property.

For example, you have a table with the file size threshold set to 512MB in the write.target-file-
size-bytes property (within the prescribed range of 128MB to 512MB), and the table contains 10
files. If 6 out of the 10 files are less than 384MB (.75*512) each, then the Data Catalog triggers
compaction.

Data Catalog performs compaction without interfering with concurrent queries. Data Catalog
supports data compaction only for tables in the Parquet format.

For supported data types, compression formats, and limitations, see Supported formats and
limitations for managed data compaction .

Topics

• Table optimization prerequisites

• Enabling compaction

• Disabling compaction

• Viewing compaction details

• Viewing Amazon CloudWatch metrics

• Deleting an optimizer

• Supported formats and limitations for managed data compaction

Optimizing Iceberg tables 207

AWS Glue User Guide

Table optimization prerequisites

The table optimizer assumes the permissions of the AWS Identity and Access Management
(IAM) role that you specify when you enable compaction for a table. The IAM role must have the
permissions to read data and update metadata in the Data Catalog. You can create an IAM role and
attach the following inline policies:

• Add the following inline policy that grants Amazon S3 read/write permissions on the location for
data that is not registered with Lake Formation. This policy also includes permissions to update
the table in the Data Catalog, and to permit AWS Glue to add logs in Amazon CloudWatch logs
and publish metrics. For source data in Amazon S3 that isn't registered with Lake Formation,
access is determined by IAM permissions policies for Amazon S3 and AWS Glue actions.

In the following inline policies, replace bucket-name with your Amazon S3 bucket name, aws-
account-id and region with a valid AWS account number and Region of the Data Catalog,
database_name with the name of your database, and table_name with the name of the table.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::<bucket-name>/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::<bucket-name>"
]
 },
 {
 "Effect": "Allow",

Optimizing Iceberg tables 208

AWS Glue User Guide

 "Action": [
 "glue:UpdateTable",
 "glue:GetTable"
],
 "Resource": [
 "arn:aws:glue:<region>:<aws-account-id>:table/<database-name>/<table-
name>",
 "arn:aws:glue:<region>:<aws-account-id>:database/<database-name>",
 "arn:aws:glue:<region>:<aws-account-id>:catalog"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:<region>:<aws-account-id>:log-group:/aws-glue/
iceberg-compaction/logs:*"
 }
]
}

• Use the following policy to enable compaction for data registered with Lake Formation.

If the compaction role doesn't have IAM_ALLOWED_PRINCIPALS group permissions granted on
the table, the role requires Lake Formation ALTER, DESCRIBE, INSERT and DELETE permissions
on the table.

For more information on registering an Amazon S3 bucket with Lake Formation, see Adding an
Amazon S3 location to your data lake.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lakeformation:GetDataAccess"
],
 "Resource": "*"
 },

Optimizing Iceberg tables 209

https://docs.aws.amazon.com/lake-formation/latest/dg/register-data-lake.html
https://docs.aws.amazon.com/lake-formation/latest/dg/register-data-lake.html

AWS Glue User Guide

 {
 "Effect": "Allow",
 "Action": [
 "glue:UpdateTable",
 "glue:GetTable"
],

 "Resource": [
 "arn:aws:glue:<region>:<aws-account-
id>:table/<databaseName>/<tableName>",
 "arn:aws:glue:<region>:<aws-account-id>:database/<database-name>",
 "arn:aws:glue:<region>:<aws-account-id>:catalog"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:<region>:<aws-account-id>:log-group:/aws-glue/
iceberg-compaction/logs:*"
 }
]
 }

• (Optional) To compact Iceberg tables with data in Amazon S3 buckets encrypted using Server-
side encryption, the compaction role requires permissions to decrypt Amazon S3 objects and
generate a new data key to write objects to the encrypted buckets. Add the following policy to
the desired AWS KMS key. We support only bucket-level encryption.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::<aws-account-id>:role/<compaction-role-name>"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*"

Optimizing Iceberg tables 210

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html

AWS Glue User Guide

}

• (Optional) For data location registered with Lake Formation, the role used to register the location
requires permissions to decrypt Amazon S3 objects and generate a new data key to write objects
to the encrypted buckets. For more information, see Registering an encrypted Amazon S3
location.

• (Optional) If the AWS KMS key is stored in a different AWS account, you need to include the
following permissions to the compaction role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": ["arn:aws:kms:<REGION>:<KEY_OWNER_ACCOUNT_ID>:key/<KEY_ID>"]
 }
]
}

• The role you use to run compaction must have the iam:PassRole permission on the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::<account-id>:role/<compaction-role-name>"
]
 }
]
}

Optimizing Iceberg tables 211

https://docs.aws.amazon.com/lake-formation/latest/dg/register-encrypted.html
https://docs.aws.amazon.com/lake-formation/latest/dg/register-encrypted.html

AWS Glue User Guide

• Add the following trust policy to the role for AWS Glue service to assume the IAM role to run the
compaction process.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "glue.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }

Enabling compaction

You can use Lake Formation console, AWS Glue console, AWS CLI, or AWS API to enable compaction
for your Apache Iceberg tables in the Data Catalog. For new tables, you can choose Apache Iceberg
as table format and enable compaction when you create the table. Compaction is disabled by
default for new tables.

Console

To enable compaction

1. Open the AWS Glue console at https://console.aws.amazon.com/glue/ and sign in
as a data lake administrator, the table creator, or a user who has been granted the
glue:UpdateTable and lakeformation:GetDataAccess permissions on the table.

2. In the navigation pane, under Data Catalog, choose Tables.

3. On the Tables page, choose a table in open table format that you want to enable compaction
for, then under Actions menu, choose Enable compaction.

4. You can also enable compaction by selecting the table and opening the Table details page.
Choose the Table optimization tab on the lower section of the page, and choose Enable
compaction.

Optimizing Iceberg tables 212

https://console.aws.amazon.com/glue/

AWS Glue User Guide

5. Next, select an existing IAM role from the drop down with the permissions shown in the
Table optimization prerequisites section.

When you choose Create a new IAM role option, the service creates a custom role with the
required permissions to run compaction.

Follow the steps below to update an existing IAM role:

a. To update the permissions policy for the IAM role, in the IAM console, go to the IAM role
that is being used for running compaction.

b. In the Add permissions section, choose Create policy. In the newly opened browser
window, create a new policy to use with your role.

c. On the Create policy page, choose the JSON tab. Copy the JSON code shown in the
Prerequisites into the policy editor field.

AWS CLI

The following example shows how to enable compaction. Replace the account ID with a valid
AWS account ID. Replace the database name and table name with actual Iceberg table name
and the database name. Replace the roleArn with the AWS Resource Name (ARN) of the IAM
role and name of the IAM role that has the required permissions to run compaction.

aws glue create-table-optimizer \
 --catalog-id 123456789012 \
 --database-name iceberg_db \
 --table-name iceberg_table \
 --table-optimizer-configuration
 '{"roleArn":"arn:aws:iam::123456789012:role/compaction_role", "enabled":'true'}' \
 --type compaction

AWS API

Call CreateTableOptimizer operation to enable compaction for a table.

After you enable compaction, Table optimization tab shows the following compaction details
(after approximately 15-20 minutes):

Optimizing Iceberg tables 213

AWS Glue User Guide

Start time

The time at which the compaction process started within Lake Formation. The value is a
timestamp in UTC time.

End time

The time at which the compaction process ended in Data Catalog. The value is a timestamp in
UTC time.

Status

The status of the compaction run. Values are success or fail.

Files compacted

Total number of files compacted.

Bytes compacted

Total number of bytes compacted.

Disabling compaction

You can disable automatic compaction for a particular Apache Iceberg table using AWS Glue
console or AWS CLI.

Console

1. Choose Data Catalog and choose Tables. From the tables list, choose the table in open table
format that you want to disable compaction.

2. You can choose an Iceberg table, and choose Disable compaction under Actions.

You can also disable compaction for the table by choosing Disable compaction on the lower
section of the Tables details page.

3. Choose Disable compaction on the confirmation message. You can re-enable compaction at
a later time.

After the you confirm, compaction is disabled and the compaction status for the table turns
back to Off.

Optimizing Iceberg tables 214

AWS Glue User Guide

AWS CLI

In the following example, replace the account ID with a valid AWS account ID. Replace the
database name and table name with actual Iceberg table name and the database name. Replace
the roleArn with the AWS Resource Name (ARN) of the IAM role and actual name of the IAM
role that has the required permissions to run compaction.

aws glue update-table-optimizer \
 --catalog-id 123456789012 \
 --database-name iceberg_db \
 --table-name iceberg_table \
 --table-optimizer-configuration
 '{"roleArn":"arn:aws:iam::123456789012:role/compaction_role", "enabled":'false'}'\
 --type compaction

AWS API

Call UpdateTableOptimizer operation to disable compaction for a specific table.

Viewing compaction details

You can view compaction status for Apache Iceberg in the Lake Formation console, AWS CLI, or
using AWS API operations.

Console

To view compaction status for Iceberg tables (console)

• You can view compaction status for Iceberg tables on the Lake Formation console by choosing
Tables under Data Catalog. The Compaction status field shows the status of the compaction
run. You can display table format and compaction status using the table preferences.

• To view the compaction run history for a specific table, choose Tables under AWS Glue Data
Catalog, and choose a table to view the table details. The Table optimization tab shows the
compaction history for the table.

AWS CLI

You can view the compaction details using AWS CLI.

Optimizing Iceberg tables 215

AWS Glue User Guide

In the following examples, replace the account ID with a valid AWS account ID, the database
name, and table name with actual Iceberg table name.

• To get the last compaction run details for a table

aws get-table-optimizer \
 --catalog-id 123456789012 \
 --database-name iceberg_db \
 --table-name iceberg_table \
 --type compaction

• Use the following example to retrieve the history of an optimizer for a specific table.

aws list-table-optimizer-runs \
 --catalog-id 123456789012 \
 --database-name iceberg_db \
 --table-name iceberg_table \
 --type compaction

• The following example shows how to retrieve the compaction run and configuration details
for multiple optimizers. You can specify a maximum of 20 optimizers.

aws glue batch-get-table-optimizer \
--entries '[{"catalogId":"123456789012", "databaseName":"iceberg_db",
 "tableName":"iceberg_table", "type":"compaction"}]'

AWS API

• Use GetTableOptimizer operation to retrieve the last run details of an optimizer.

• Use ListTableOptimizerRuns operation to retrieve history of a given optimizer on a
specific table. You can specify 20 optimizers in a single API call.

• Use BatchGetTableOptimizer operation to retrieve configuration details for multiple
optimizers in your account. This operation doesn't support cross account calls.

Viewing Amazon CloudWatch metrics

After running the compaction successfully, the service creates Amazon CloudWatch metrics on
the compaction job performance. You can go to the CloudWatch Metrics and choose Metrics, All

Optimizing Iceberg tables 216

AWS Glue User Guide

metrics. You can to filter metrics by the specific namespace (for example AWS Glue), table name, or
database name.

For more information, see View available metrics in the Amazon CloudWatch User Guide.

• Number of bytes compacted

• Number of files compacted

• Number of DPU allocated to job

• Duration of job (Hours)

Deleting an optimizer

You can delete an optimizer and associated metadata for the table using AWS CLI or AWS API
operation.

Run the following AWS CLI command to delete compaction history for a table.

aws glue delete-table-optimizer \
 --catalog-id 123456789012 \
 --database-name iceberg_db \
 --table-name iceberg_table \
 --type compaction

Use DeleteTableOptimizer operation to delete an optimizer for a table.

Supported formats and limitations for managed data compaction

For better read performance by AWS analytics services such as Amazon Athena, Amazon EMR,
and AWS Glue ETL jobs, AWS Glue Data Catalog provides managed compaction (a process that
compacts small Amazon S3 objects into larger objects) for Iceberg tables in Data Catalog.

Data compaction supports a variety of data types and compression formats for reading and writing
data, including reading data from encrypted tables.

Data compaction supports:

• File types – Parquet

• Data types – Boolean, Integer, Long, Float, Double, String, Decimal, Date, Time, Timestamp,
String, UUID, Binary

• Compression – zstd, gzip, snappy, uncompressed

Optimizing Iceberg tables 217

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/viewing_metrics_with_cloudwatch.html

AWS Glue User Guide

• Encryption – Data compaction only supports default Amazon S3 encryption (SSE-S3) and server-
side KMS encryption (SSE-KMS).

• Bin pack compaction

• Schema evolution

• Tables with target file size (write.target-file-size-bytes property in iceberg configuration)
within the inclusive range 128MB to 512 MB.

• Regions

• Asia Pacific (Tokyo)

• Asia Pacific (Seoul)

• Asia Pacific (Mumbai)

• Asia Pacific (Singapore)

• Europe (Ireland)

• Europe (London)

• Europe (Frankfurt)

• US East (N. Virginia)

• US East (Ohio)

• US West (N. California)

• South America (São Paulo)

• You can run compaction from the account where Data Catalog resides when the Amazon S3
bucket that stores the underlying data is in another account. To do this, the compaction role
requires access to the Amazon S3 bucket.

Data compaction currently doesn’t support:

• File types – Avro, ORC

• Data types – Fixed

• Compression – brotli, lz4

• Compaction of files while the partition spec evolves.

• Regular sorting or z-order sorting

• Merge or delete files – The compaction process skips data files that have delete files associated
with them.

• Compaction on cross-account tables – You can't run compaction on cross-account tables.

Optimizing Iceberg tables 218

AWS Glue User Guide

• Compaction on cross-Region tables – You can't run compaction on cross-Region tables.

• Enabling compaction on resource links

• VPC endpoints for Amazon S3 buckets

• DynamoDB lock manager – When using data compaction, no other data loading jobs should use
lock-impl as org.apache.iceberg.aws.dynamodb.DynamoDbLockManager.

Managing the Data Catalog

The AWS Glue Data Catalog is a central metadata repository that stores structural and operational
metadata for your Amazon S3 data sets. Managing the Data Catalog effectively is crucial for
maintaining data quality, performance, security, and governance.

By understanding and applying these Data Catalog management practices, you can ensure your
metadata remains accurate, performant, secure, and well-governed as your data landscape evolves.

This section covers the following aspects of Data Catalog management:

• Updating table schema and partitions As your data evolves, you may need to update the table
schema or partition structure defined in the Data Catalog. For more information on how to make
these updates programmatically using the AWS Glue ETL, see Updating the schema, and adding
new partitions in the Data Catalog using AWS Glue ETL jobs.

• Managing column statistics: Accurate column statistics help optimize query plans and improve
performance. For more information on how to generate, update, and manage column statistics,
see Optimizing query performance using column statistics.

• Encrypting the Data Catalog To protect sensitive metadata, you can encrypt your Data Catalog
using AWS Key Management Service (AWS KMS). This section explains how to enable and
manage encryption for your Data Catalog.

• Securing the Data Catalog with AWS Lake Formation Lake Formation provides a comprehensive
approach to data lake security and access control. You can use Lake Formation to secure and
govern access to your Data Catalog and underlying data.

Topics

• Updating the schema, and adding new partitions in the Data Catalog using AWS Glue ETL jobs

• Optimizing query performance using column statistics

• Encrypting your Data Catalog

Managing the Data Catalog 219

https://iceberg.apache.org/docs/1.5.1/aws/#dynamodb-lock-manager

AWS Glue User Guide

• Securing your Data Catalog using Lake Formation

Updating the schema, and adding new partitions in the Data Catalog
using AWS Glue ETL jobs

Your extract, transform, and load (ETL) job might create new table partitions in the target data
store. Your dataset schema can evolve and diverge from the AWS Glue Data Catalog schema over
time. AWS Glue ETL jobs now provide several features that you can use within your ETL script to
update your schema and partitions in the Data Catalog. These features allow you to see the results
of your ETL work in the Data Catalog, without having to rerun the crawler.

New partitions

If you want to view the new partitions in the AWS Glue Data Catalog, you can do one of the
following:

• When the job finishes, rerun the crawler, and view the new partitions on the console when the
crawler finishes.

• When the job finishes, view the new partitions on the console right away, without having to
rerun the crawler. You can enable this feature by adding a few lines of code to your ETL script,
as shown in the following examples. The code uses the enableUpdateCatalog argument to
indicate that the Data Catalog is to be updated during the job run as the new partitions are
created.

Method 1

Pass enableUpdateCatalog and partitionKeys in an options argument.

Python

additionalOptions = {"enableUpdateCatalog": True}
additionalOptions["partitionKeys"] = ["region", "year", "month", "day"]

sink = glueContext.write_dynamic_frame_from_catalog(frame=last_transform,
 database=<target_db_name>,

 table_name=<target_table_name>, transformation_ctx="write_sink",

Updating the schema and adding new partitions 220

AWS Glue User Guide

 additional_options=additionalOptions)

Scala

val options = JsonOptions(Map(
 "path" -> <S3_output_path>,
 "partitionKeys" -> Seq("region", "year", "month", "day"),
 "enableUpdateCatalog" -> true))
val sink = glueContext.getCatalogSink(
 database = <target_db_name>,
 tableName = <target_table_name>,
 additionalOptions = options)sink.writeDynamicFrame(df)

Method 2

Pass enableUpdateCatalog and partitionKeys in getSink(), and call
setCatalogInfo() on the DataSink object.

Python

sink = glueContext.getSink(
 connection_type="s3",
 path="<S3_output_path>",
 enableUpdateCatalog=True,
 partitionKeys=["region", "year", "month", "day"])
sink.setFormat("json")
sink.setCatalogInfo(catalogDatabase=<target_db_name>,
 catalogTableName=<target_table_name>)
sink.writeFrame(last_transform)

Scala

val options = JsonOptions(
 Map("path" -> <S3_output_path>,
 "partitionKeys" -> Seq("region", "year", "month", "day"),
 "enableUpdateCatalog" -> true))
val sink = glueContext.getSink("s3", options).withFormat("json")
sink.setCatalogInfo(<target_db_name>, <target_table_name>)
sink.writeDynamicFrame(df)

Updating the schema and adding new partitions 221

AWS Glue User Guide

Now, you can create new catalog tables, update existing tables with modified schema, and add new
table partitions in the Data Catalog using an AWS Glue ETL job itself, without the need to re-run
crawlers.

Updating table schema

If you want to overwrite the Data Catalog table’s schema you can do one of the following:

• When the job finishes, rerun the crawler and make sure your crawler is configured to update the
table definition as well. View the new partitions on the console along with any schema updates,
when the crawler finishes. For more information, see Configuring a Crawler Using the API.

• When the job finishes, view the modified schema on the console right away, without having to
rerun the crawler. You can enable this feature by adding a few lines of code to your ETL script, as
shown in the following examples. The code uses enableUpdateCatalog set to true, and also
updateBehavior set to UPDATE_IN_DATABASE, which indicates to overwrite the schema and
add new partitions in the Data Catalog during the job run.

Python

additionalOptions = {
 "enableUpdateCatalog": True,
 "updateBehavior": "UPDATE_IN_DATABASE"}
additionalOptions["partitionKeys"] = ["partition_key0", "partition_key1"]

sink = glueContext.write_dynamic_frame_from_catalog(frame=last_transform,
 database=<dst_db_name>,
 table_name=<dst_tbl_name>, transformation_ctx="write_sink",
 additional_options=additionalOptions)
job.commit()

Scala

val options = JsonOptions(Map(
 "path" -> outputPath,
 "partitionKeys" -> Seq("partition_0", "partition_1"),
 "enableUpdateCatalog" -> true))
val sink = glueContext.getCatalogSink(database = nameSpace, tableName = tableName,
 additionalOptions = options)
sink.writeDynamicFrame(df)

Updating the schema and adding new partitions 222

https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-configure-changes-api

AWS Glue User Guide

You can also set the updateBehavior value to LOG if you want to prevent your table schema from
being overwritten, but still want to add the new partitions. The default value of updateBehavior
is UPDATE_IN_DATABASE, so if you don’t explicitly define it, then the table schema will be
overwritten.

If enableUpdateCatalog is not set to true, regardless of whichever option selected for
updateBehavior, the ETL job will not update the table in the Data Catalog.

Creating new tables

You can also use the same options to create a new table in the Data Catalog. You can specify the
database and new table name using setCatalogInfo.

Python

sink = glueContext.getSink(connection_type="s3", path="s3://path/to/data",
 enableUpdateCatalog=True, updateBehavior="UPDATE_IN_DATABASE",
 partitionKeys=["partition_key0", "partition_key1"])
sink.setFormat("<format>")
sink.setCatalogInfo(catalogDatabase=<dst_db_name>, catalogTableName=<dst_tbl_name>)
sink.writeFrame(last_transform)

Scala

val options = JsonOptions(Map(
 "path" -> outputPath,
 "partitionKeys" -> Seq("<partition_1>", "<partition_2>"),
 "enableUpdateCatalog" -> true,
 "updateBehavior" -> "UPDATE_IN_DATABASE"))
val sink = glueContext.getSink(connectionType = "s3", connectionOptions =
 options).withFormat("<format>")
sink.setCatalogInfo(catalogDatabase = “<dst_db_name>”, catalogTableName =
 “<dst_tbl_name>”)
sink.writeDynamicFrame(df)

Restrictions

Take note of the following restrictions:

• Only Amazon Simple Storage Service (Amazon S3) targets are supported.

• The enableUpdateCatalog feature is not supported for governed tables.

Updating the schema and adding new partitions 223

AWS Glue User Guide

• Only the following formats are supported: json, csv, avro, and parquet.

• To create or update tables with the parquet classification, you must utilize the AWS Glue
optimized parquet writer for DynamicFrames. This can be achieved with one of the following:

• If you're updating an existing table in the catalog with parquet classification, the table
must have the "useGlueParquetWriter" table property set to true before you update it.
You can set this property via the AWS Glue APIs/SDK, via the console or via an Athena DDL
statement.

Once the catalog table property is set, you can use the following snippet of code to update the
catalog table with the new data:

glueContext.write_dynamic_frame.from_catalog(
 frame=frameToWrite,
 database="dbName",
 table_name="tableName",
 additional_options={
 "enableUpdateCatalog": True,

Updating the schema and adding new partitions 224

AWS Glue User Guide

 "updateBehavior": "UPDATE_IN_DATABASE"
 }
)

• If the table doesn't already exist within catalog, you can utilize the getSink() method in
your script with connection_type="s3" to add the table and its partitions to the catalog,
along with writing the data to Amazon S3. Provide the appropriate partitionKeys and
compression for your workflow.

s3sink = glueContext.getSink(
 path="s3://bucket/folder/",
 connection_type="s3",
 updateBehavior="UPDATE_IN_DATABASE",
 partitionKeys=[],
 compression="snappy",
 enableUpdateCatalog=True
)

s3sink.setCatalogInfo(
 catalogDatabase="dbName", catalogTableName="tableName"
)

s3sink.setFormat("parquet", useGlueParquetWriter=true)
s3sink.writeFrame(frameToWrite)

• The glueparquet format value is a legacy method of enabling the AWS Glue parquet writer.

• When the updateBehavior is set to LOG, new partitions will be added only if the
DynamicFrame schema is equivalent to or contains a subset of the columns defined in the Data
Catalog table's schema.

• Schema updates are not supported for non-partitioned tables (not using the "partitionKeys"
option).

• Your partitionKeys must be equivalent, and in the same order, between your parameter passed in
your ETL script and the partitionKeys in your Data Catalog table schema.

• This feature currently does not yet support updating/creating tables in which the updating
schemas are nested (for example, arrays inside of structs).

For more information, see the section called “AWS Glue for Spark”.

Updating the schema and adding new partitions 225

AWS Glue User Guide

Working with MongoDB connections in ETL jobs

You can create a connection for MongoDB and then use that connection in your AWS Glue job. For
more information, see the section called “MongoDB connections” in the AWS Glue programming
guide. The connection url, username and password are stored in the MongoDB connection.
Other options can be specified in your ETL job script using the additionalOptions parameter of
glueContext.getCatalogSource. The other options can include:

• database: (Required) The MongoDB database to read from.

• collection: (Required) The MongoDB collection to read from.

By placing the database and collection information inside the ETL job script, you can use the
same connection for in multiple jobs.

1. Create an AWS Glue Data Catalog connection for the MongoDB data source. See
"connectionType": "mongodb" for a description of the connection parameters. You can create
the connection using the console, APIs or CLI.

2. Create a database in the AWS Glue Data Catalog to store the table definitions for your
MongoDB data. See Creating databases for more information.

3. Create a crawler that crawls the data in the MongoDB using the information in the connection
to connect to the MongoDB. The crawler creates the tables in the AWS Glue Data Catalog that
describe the tables in the MongoDB database that you use in your job. See Using crawlers to
populate the Data Catalog for more information.

4. Create a job with a custom script. You can create the job using the console, APIs or CLI. For
more information, see Adding Jobs in AWS Glue.

5. Choose the data targets for your job. The tables that represent the data target can be defined
in your Data Catalog, or your job can create the target tables when it runs. You choose a target
location when you author the job. If the target requires a connection, the connection is also
referenced in your job. If your job requires multiple data targets, you can add them later by
editing the script.

6. Customize the job-processing environment by providing arguments for your job and generated
script.

Here is an example of creating a DynamicFrame from the MongoDB database based on the
table structure defined in the Data Catalog. The code uses additionalOptions to provide
the additional data source information:

Updating the schema and adding new partitions 226

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-mongodb
https://docs.aws.amazon.com/glue/latest/dg/add-job.html

AWS Glue User Guide

Scala

val resultFrame: DynamicFrame = glueContext.getCatalogSource(
 database = catalogDB,
 tableName = catalogTable,
 additionalOptions = JsonOptions(Map("database" -> DATABASE_NAME,
 "collection" -> COLLECTION_NAME))
).getDynamicFrame()

Python

glue_context.create_dynamic_frame_from_catalog(
 database = catalogDB,
 table_name = catalogTable,
 additional_options = {"database":"database_name",
 "collection":"collection_name"})

7. Run the job, either on-demand or through a trigger.

Optimizing query performance using column statistics

You can compute column-level statistics for AWS Glue Data Catalog tables in data formats such
as Parquet, ORC, JSON, ION, CSV, and XML without setting up additional data pipelines. Column
statistics help you to understand data profiles by getting insights about values within a column.
Data Catalog supports generating statistics for column values such as minimum value, maximum
value, total null values, total distinct values, average length of values, and total occurrences of true
values.

AWS analytical services such as Amazon Redshift and Amazon Athena can use these column
statistics to generate query execution plans, and choose the optimal plan that improves query
performance.

You can configure to run column statistics generation task using AWS Glue console or AWS CLI.
When you initiate the process, AWS Glue starts a Spark job in the background and updates the AWS
Glue table metadata in the Data Catalog. You can view column statistics using AWS Glue console or
AWS CLI or by calling the GetColumnStatisticsForTable API operation.

Optimizing query performance using column statistics 227

https://docs.aws.amazon.com/glue/latest/webapi/API_GetColumnStatisticsForTable.html

AWS Glue User Guide

Note

If you're using Lake Formation permissions to control access to the table, the role assumed
by the column statistics task requires full table access to generate statistics.

Topics

• Prerequisites for generating column statistics

• Generating column statistics

• Viewing column statistics

• Updating column statistics

• Deleting column statistics

• Viewing column statistics task runs

• Stopping column statistics task run

• Considerations and limitations

Prerequisites for generating column statistics

To generate or update column statistics, the statistics generation task assumes an AWS Identity
and Access Management (IAM) role on your behalf. Based on the permissions granted to the role,
the column statistics generation task can read the data from the Amazon S3 data store.

Note

To generate statistics for tables managed by Lake Formation, the IAM role used to generate
statistics requires full table access.

To use role-based access control, you must create an IAM role with the permissions listed in the
policy below, and add that role to the column statistics generation task.

To create an IAM role for generating column statistics

1. To create an IAM role, see Create an IAM role for AWS Glue.

2. To update an existing role, in the IAM console, go to the IAM role that is being used by the
generate column statistics process.

Optimizing query performance using column statistics 228

https://docs.aws.amazon.com/glue/latest/dg/create-an-iam-role.html

AWS Glue User Guide

3. In the Add permissions section, choose Attach policies. In the newly opened browser window,
choose AWSGlueServiceRole AWS managed policy.

4. You also need to include permissions to read data from the Amazon S3 data location.

In the Add permissions section, choose Create policy. In the newly opened browser window,
create a new policy to use with your role.

5. In the Create policy page, choose the JSON tab. Copy the following JSON code into the policy
editor field.

Note

In the following policies, replace account ID with a valid AWS account, and replace
region with the Region of the table, and bucket-name with the Amazon S3 bucket
name.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3BucketAccess",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::<bucket-name>/*",
 "arn:aws:s3:::<bucket-name>"
]
 }
]
}

6. (Optional) If you're using Lake Formation permissions to provide access to your data, the IAM
role requires lakeformation:GetDataAccess permissions.

{
 "Version": "2012-10-17",
 "Statement": [

Optimizing query performance using column statistics 229

AWS Glue User Guide

 {
 "Sid": "LakeFormationDataAccess",
 "Effect": "Allow",
 "Action": "lakeformation:GetDataAccess",
 "Resource": [
 "*"
]
 }
]
}

If the Amazon S3 data location is registered with Lake Formation, and the IAM role assumed
by the column statistics generation task doesn't have IAM_ALLOWED_PRINCIPALS group
permissions granted on the table, the role requires Lake Formation ALTER and DESCRIBE
permissions on the table. The role used for registering the Amazon S3 bucket requires Lake
Formation INSERT and DELETE permissions on the table.

If the Amazon S3 data location is not registered with Lake Formation, and the IAM role doesn't
have IAM_ALLOWED_PRINCIPALS group permissions granted on the table, the role requires
Lake Formation ALTER, DESCRIBE, INSERT and DELETE permissions on the table.

7. (Optional) The column statistics generation task that writes encrypted Amazon CloudWatch
Logs requires the following permissions in the key policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "CWLogsKmsPermissions",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:AssociateKmsKey"
],
 "Resource": [
 "arn:aws:logs:<region>:111122223333:log-group:/aws-glue:*"
]
 },
 {
 "Sid": "KmsPermissions",

Optimizing query performance using column statistics 230

AWS Glue User Guide

 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt",
 "kms:Encrypt"
],
 "Resource": [
 "arn:aws:kms:<region>:111122223333:key/"arn of key used for ETL cloudwatch
 encryption"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": ["glue.<region>.amazonaws.com"]
 }
 }
 }
]
}

8. The role you use to run column statistics must have the iam:PassRole permission on the
role.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::111122223333:role/<columnstats-role-name>"
]
 }]
}

9. When you create an IAM role for generating column statistics, that role must also have the
following trust policy that enables the service to assume the role.

{
 "Version": "2012-10-17",
 "Statement": [

Optimizing query performance using column statistics 231

AWS Glue User Guide

 {
 "Sid": "TrustPolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "glue.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 }
]
}

Generating column statistics

Follow these steps to manage statistics generation in the Data Catalog using AWS Glue console or
AWS CLI.

Console

To generate column statistics using the console

1. Sign in to the AWS Glue console at https://console.aws.amazon.com/glue/.

2. Choose Data Catalog tables.

3. Choose a table from the list.

4. Choose Generate statistics under Actions menu.

You can also choose Generate statistics button under Column statistics tab in the lower
section of the Tables page.

5. On the Generate statistics page, specify the following options:

Optimizing query performance using column statistics 232

https://console.aws.amazon.com/glue/

AWS Glue User Guide

• Table (all columns) – Choose this option to generate statistics for all columns in the
table.

• Selected columns – Choose this option to generate statistics for specific columns. You
can select the columns from the drop-down list.

• All rows – Choose all rows from the table to generate accurate statistics.

• Sample rows – Choose only a specific percent of rows from the table to generate
statistics. The default is all rows. Use the up and down arrows to increase or decrease the
percent value.

Note

We recommend to include all rows in the table to compute accurate statistics.
Use sample rows to generate column statistics only when approximate values are
acceptable.

6. (Optional) Next, choose a security configuration to enable at-rest encryption for logs.

7. Choose Generate statistics to run the process.

Optimizing query performance using column statistics 233

AWS Glue User Guide

AWS CLI

In the following example, replace values for DatabaseName, TableName, and
ColumnNameList with actual database, table, and column names. Replace account ID with a
valid AWS account, and role name with the name of the IAM role that you're using to generate
statistics.

aws glue start-column-statistics-task-run --input-cli-json file://input.json
{
 "DatabaseName": "<test-db>",
 "TableName": "<test-table>",
 "ColumnNameList": [
 "<column1>",
 "<column2>",
],
 "Role": "arn:aws:iam::<123456789012>:role/<Stats-Role>",
 "SampleSize": 10.0
}

You can generate column statistics also by calling the StartColumnStatisticsTaskRun operation.

Viewing column statistics

After generating the statistics successfully, Data Catalog stores this information for the cost-based
optimizers in Amazon Athena and Amazon Redshift to make optimal choices when running queries.
The statistics varies based on the type of the column.

AWS Management Console

To view column statistics for a table

• After running column statistics task, the Column statistics tab on the Table details page
shows the statistics for the table.

Optimizing query performance using column statistics 234

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-column-statistics.html#aws-glue-api-crawler-column-statistics-StartColumnStatisticsTaskRun

AWS Glue User Guide

The following statistics are available:

• Column name: Column name used to generate statistics

• Last updated: Data and time when the statistics were generated

• Average length: Average length of values in the column

• Distinct values: Total number of distinct values in the column. We estimate the number
of distinct values in a column with 5% relative error.

• Max value: The largest value in the column.

• Min value: The smallest value in the column.

• Max length: The length of the highest value in the column.

• Null values: The total number of null values in the column.

• True values: The total number of true values in the column.

• False values: The total number of false values in the column.

AWS CLI

The following example shows how to retrieve column statistics using AWS CLI.

aws glue get-column-statistics-for-table \
Optimizing query performance using column statistics 235

AWS Glue User Guide

 --database-name <test_db> \
 --table-name <test_tble> \
 --column-names <col1>

You can also view the column statistics using the GetColumnStatisticsForTable API operation.

Updating column statistics

Keeping statistics current improves query performance by enabling the query planner to choose
optimal plans. You need to explicitly run the Generate statistics task from the AWS Glue console to
refresh the column statistics. Data Catalog doesn't automatically refresh the statistics.

If you are not using AWS Glue's statistics generation feature in the console, you can manually
update column statistics using the UpdateColumnStatisticsForTable API operation or AWS CLI. The
following example shows how to update column statistics using AWS CLI.

aws glue update-column-statistics-for-table --cli-input-json:

{
 "CatalogId": "111122223333",
 "DatabaseName": "test_db",
 "TableName": "test_table",
 "ColumnStatisticsList": [
 {
 "ColumnName": "col1",
 "ColumnType": "Boolean",
 "AnalyzedTime": "1970-01-01T00:00:00",
 "StatisticsData": {
 "Type": "BOOLEAN",
 "BooleanColumnStatisticsData": {
 "NumberOfTrues": 5,
 "NumberOfFalses": 5,
 "NumberOfNulls": 0
 }
 }
 }
]
}

Optimizing query performance using column statistics 236

https://docs.aws.amazon.com/glue/latest/webapi/API_GetColumnStatisticsForTable.html
https://docs.aws.amazon.com/glue/latest/webapi/API_UpdateColumnStatisticsForTable.html

AWS Glue User Guide

Deleting column statistics

You can delete column statistics using the DeleteColumnStatisticsForTable API operation or AWS
CLI. The following example shows how to delete column statistics using AWS Command Line
Interface (AWS CLI).

aws glue delete-column-statistics-for-table \
 --database-name test_db \
 --table-name test_table \
 --column-name col1

Viewing column statistics task runs

After you run a column statistics task, you can explore the task run details for a table using AWS
Glue console, AWS CLI or using GetColumnStatisticsTaskRuns operation.

Console

To view column statistics task run details

1. On AWS Glue console, choose Tables under Data Catalog.

2. Select a table with column statistics.

3. On the Table details page, choose Column statistics.

4. Choose View runs.

You can see information about all runs associated with the specified table.

AWS CLI

In the following example, replace values for DatabaseName and TableName with the actual
database and table name.

Optimizing query performance using column statistics 237

https://docs.aws.amazon.com/glue/latest/webapi/API_DeleteColumnStatisticsForTable.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-column-statistics.html#aws-glue-api-crawler-column-statistics-GetColumnStatisticsTaskRun

AWS Glue User Guide

aws glue get-column-statistics-task-runs --input-cli-json file://input.json
{
 "DatabaseName": "<test-db>",
 "TableName": "<test-table>"
}

Stopping column statistics task run

You can stop a column statistics task run for a table using AWS Glue console, AWS CLI or using
StopColumnStatisticsTaskRun operation.

Console

To stop a column statistics task run

1. On AWS Glue console, choose Tables under Data Catalog.

2. Select the table with the column statistics task run is in progress.

3. On the Table details page, choose Column statistics.

4. Choose Stop.

If you stop the task before the run is complete, column statistics won't be generated for the
table.

AWS CLI

In the following example, replace values for DatabaseName and TableName with the actual
database and table name.

aws glue stop-column-statistics-task-run --input-cli-json file://input.json
{
 "DatabaseName": "<test-db>",
 "TableName": "<test-table>"
}

Optimizing query performance using column statistics 238

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-column-statistics.html#aws-glue-api-crawler-column-statistics-StopColumnStatisticsTaskRun

AWS Glue User Guide

Considerations and limitations

The following considerations and limitations apply to generating column statistics.

Considerations

• Using sampling to generate statistics reduces run time, but can generate inaccurate statistics.

• Each column statistics run requires processing the entire dataset.

• Data Catalog doesn't store different versions of the statistics.

• You can only run one statistics generation task at a time per table.

• If a table is encrypted using customer AWS KMS key registered with Data Catalog, AWS Glue uses
the same key to encrypt statistics.

Column statistics task supports generating statistics:

• When the IAM role has full table permissions (IAM or Lake Formation).

• When the IAM role has permissions on the table using Lake Formation hybrid access mode.

Column statistics task doesn’t support generating statistics for:

• Tables with Lake Formation cell-based access control.

• Transactional data lakes - Linux foundation Delta Lake, Apache Iceberg, Apache Hudi.

• Tables in federated databases - Hive metastore, Amazon Redshift datashares

• Nested columns, arrays, and struct data types.

• Table that is shared with you from another account.

Encrypting your Data Catalog

You can protect your metadata stored in the AWS Glue Data Catalog at rest using encryption keys
managed by AWS Key Management Service (AWS KMS). You can enable Data Catalog encryption
for new Data Catalog, by using the Data Catalog settings. You can enable or disable encryption for
existing Data Catalog as needed. When enabled, AWS Glue encrypts all new metadata written to
the catalog, while existing metadata remains unencrypted.

For detailed information about encrypting your Data Catalog, see Encrypting your Data Catalog.

Encrypting your Data Catalog 239

AWS Glue User Guide

Securing your Data Catalog using Lake Formation

AWS Lake Formation is a service that makes it easier to set up a secure data lake in AWS. It provides
a central place to create and securely manage your data lakes by defining fine-granied access
control permissions. Lake Formation uses the Data Catalog to store and retrieve metadata about
your data lake, such as table definitions, schema information, and data access control settings.

You can register your Amazon S3 data location of the metadata table or database with Lake
Formation and use it to define metadata-level permissions on the Data Catalog resources. You can
also use Lake Formation to manage storage access permissions on the underlying data stored in
Amazon S3 on behalf of integrated analytical engines.

For more information see What is AWS Lake Formation?.

Accessing the Data Catalog

You can use the AWS Glue Data Catalog to discover and understand your data. Data Catalog
provides a consistent way to maintain schema definitions, data types, locations, and other
metadata. You can access the Data Catalog using the following methods:

• AWS Glue console – You can access and manage the Data Catalog through the AWS Glue console,
a web-based user interface. The console allows you to browse and search for databases, tables,
and their associated metadata, as well as create, update, and delete metadata definitions.

• AWS Glue crawler – Crawlers are programs that automatically scan your data sources and
populate the Data Catalog with metadata. You can create and run crawlers to discover and
catalog data from various sources like Amazon S3, Amazon RDS, Amazon DynamoDB, Amazon
CloudWatch, and JDBC-compliant relational databases such as MySQL, and PostgreSQL as well
as several non-AWS sources such as Snowflake and Google BigQuery.

• AWS Glue APIs – You can access the Data Catalog programmatically using the AWS Glue APIs.
These APIs allow you to interact with the Data Catalog programmatically, enabling automation
and integration with other applications and services.

• AWS Command Line Interface (AWS CLI) – You can use the AWS CLI to access and manage the
Data Catalog from the command line. The CLI provides commands for creating, updating, and
deleting metadata definitions, as well as querying and retrieving metadata information.

• Integration with other AWS services – The Data Catalog integrates with various other AWS
services, allowing you to access and utilize the metadata stored in the catalog. For example, you

Securing your Data Catalog using Lake Formation 240

lake-formation/latest/dg/what-is-lake-formation.html

AWS Glue User Guide

can use Amazon Athena to query data sources using the metadata in the Data Catalog, and use
AWS Lake Formation to manage data access and governance for the Data Catalog resources.

AWS Glue Data Catalog best practices

This section covers best practices for effectively managing and utilizing the AWS Glue Data
Catalog. It emphasizes practices such as efficient crawler usage, metadata organization, security,
performance optimization, automation, data governance, and integration with other AWS services.

• Use crawlers effectively – Run crawlers regularly to keep the Data Catalog up-to-date with
changes in your data sources. Use incremental crawls for frequently changing data sources to
improve performance. Configure crawlers to automatically add new partitions or update schemas
when changes are detected.

• Organize and name metadata tables – Establish a consistent naming convention for databases
and tables in the Data Catalog. Group related data sources into logical databases or folders for
better organization. Use descriptive names that convey the purpose and content of each table.

• Manage schemas effectively – Take advantage of the schema inference capabilities of AWS
Glue crawlers. Review and update schema changes before applying them to avoid breaking
downstream applications. Use schema evolution features to handle schema changes gracefully.

• Secure the Data Catalog – Enable data encryption at rest and in transit for the Data Catalog.
Implement fine-grained access control policies to restrict access to sensitive data. Regularly audit
and review Data Catalog permissions and activity logs.

• Integrate with other AWS services Data Catalog Use the Data Catalog as a centralized metadata
layer for services like Amazon Athena, Redshift Spectrum, and AWS Lake Formation. Leverage
AWS Glue ETL jobs to transform and load data into various data stores while maintaining
metadata in the Data Catalog.

• Monitor and optimize performance Data Catalog Monitor the performance of crawlers and ETL
jobs using Amazon CloudWatch metrics. Partition large datasets in the Data Catalog to improve
query performance. Implement performance optimizations for frequently accessed metadata.

• Stay updated with AWS Glue documentation and best practices Data Catalog Regularly check
the AWS Glue documentation and AWS Glue resources for the latest updates, best practices,
and recommendations. Attend AWS Glue webinars, workshops, and other events to learn from
experts and stay informed about new features and capabilities.

Data Catalog best practices 241

AWS Glue User Guide

AWS Glue Schema Registry

Note

AWS Glue Schema Registry is not supported in the following Regions in the AWS Glue
console: Asia Pacific (Jakarta) and Middle East (UAE).

The AWS Glue Schema Registry is a new feature that allows you to centrally discover, control, and
evolve data stream schemas. A schema defines the structure and format of a data record. With AWS
Glue Schema Registry, you can manage and enforce schemas on your data streaming applications
using convenient integrations with Apache Kafka, Amazon Managed Streaming for Apache Kafka,
Amazon Kinesis Data Streams, Amazon Managed Service for Apache Flink, and AWS Lambda.

The AWS Glue Schema Registry supports AVRO (v1.10.2) data format, JSON Data format with
JSON Schema format for the schema (specifications Draft-04, Draft-06, and Draft-07) with JSON
schema validation using the Everit library, Protocol Buffers (Protobuf) versions proto2 and proto3
without support for extensions or groups, and Java language support, with other data formats
and languages to come. Supported features include compatibility, schema sourcing via metadata,
auto-registration of schemas, IAM compatibility, and optional ZLIB compression to reduce storage
and data transfer. AWS Glue Schema Registry is serverless and free to use.

Using a schema as a data format contract between producers and consumers leads to improved
data governance, higher quality data, and enables data consumers to be resilient to compatible
upstream changes.

The Schema Registry allows disparate systems to share a schema for serialization and de-
serialization. For example, assume you have a producer and consumer of data. The producer knows
the schema when it publishes the data. The Schema Registry supplies a serializer and deserializer
for certain systems such as Amazon MSK or Apache Kafka.

For more information, see How the Schema Registry works.

Topics

• Schemas

• Registries

• Schema versioning and compatibility

• Open source Serde libraries

AWS Glue Schema Registry 242

https://aws.amazon.com/msk/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-analytics/
https://aws.amazon.com/lambda/
https://json-schema.org/
https://github.com/everit-org/json-schema

AWS Glue User Guide

• Quotas of the Schema Registry

• How the Schema Registry works

• Getting started with Schema Registry

• Integrating with AWS Glue Schema Registry

• Migration from a third-party schema registry to AWS Glue Schema Registry

Schemas

A schema defines the structure and format of a data record. A schema is a versioned specification
for reliable data publication, consumption, or storage.

In this example schema for Avro, the format and structure are defined by the layout and field
names, and the format of the field names is defined by the data types (e.g., string, int).

{
 "type": "record",
 "namespace": "ABC_Organization",
 "name": "Employee",
 "fields": [
 {
 "name": "Name",
 "type": "string"
 },
 {
 "name": "Age",
 "type": "int"
 },
 {
 "name": "address",
 "type": {
 "type": "record",
 "name": "addressRecord",
 "fields": [
 {
 "name": "street",
 "type": "string"
 },
 {
 "name": "zipcode",
 "type": "int"
 }

Schemas 243

AWS Glue User Guide

]
 }
 }
]
}

In this example JSON Schema Draft-07 for JSON, the format is defined by the JSON Schema
organization.

{
 "$id": "https://example.com/person.schema.json",
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Person",
 "type": "object",
 "properties": {
 "firstName": {
 "type": "string",
 "description": "The person's first name."
 },
 "lastName": {
 "type": "string",
 "description": "The person's last name."
 },
 "age": {
 "description": "Age in years which must be equal to or greater than zero.",
 "type": "integer",
 "minimum": 0
 }
 }
}

In this example for Protobuf, the format is defined by the version 2 of the Protocol Buffers
language (proto2).

syntax = "proto2";

package tutorial;

option java_multiple_files = true;
option java_package = "com.example.tutorial.protos";
option java_outer_classname = "AddressBookProtos";

message Person {

Schemas 244

https://json-schema.org/
https://json-schema.org/
https://developers.google.com/protocol-buffers/docs/reference/proto2-spec
https://developers.google.com/protocol-buffers/docs/reference/proto2-spec

AWS Glue User Guide

 optional string name = 1;
 optional int32 id = 2;
 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 optional string number = 1;
 optional PhoneType type = 2 [default = HOME];
 }

 repeated PhoneNumber phones = 4;
}

message AddressBook {
 repeated Person people = 1;
}

Registries

A registry is a logical container of schemas. Registries allow you to organize your schemas, as well
as manage access control for your applications. A registry has an Amazon Resource Name (ARN) to
allow you to organize and set different access permissions to schema operations within the registry.

You may use the default registry or create as many new registries as necessary.

AWS Glue Schema Registry Hierarchy

• RegistryName: [string]

• RegistryArn: [AWS ARN]

• CreatedTime: [timestamp]

• UpdatedTime: [timestamp]

• SchemaName: [string]

•
SchemaArn: [AWS ARN]

• DataFormat: [Avro, Json, or Protobuf]

Registries 245

AWS Glue User Guide

• Compatibility: [eg. BACKWARD, BACKWARD_ALL, FORWARD, FORWARD_ALL, FULL,
FULL_ALL, NONE, DISABLED]

• Status: [eg. PENDING, AVAILABLE, DELETING]

• SchemaCheckpoint: [integer]

• CreatedTime: [timestamp]

• UpdatedTime: [timestamp]

• SchemaVersion: [string]

• SchemaVersionNumber: [integer]

• Status: [eg. PENDING, AVAILABLE, DELETING, FAILURE]

• SchemaDefinition: [string, Value: JSON]

• CreatedTime: [timestamp]

• SchemaVersionMetadata: [list]

• MetadataKey: [string]

• MetadataInfo

• MetadataValue: [string]

• CreatedTime: [timestamp]

Schema versioning and compatibility

Each schema can have multiple versions. Versioning is governed by a compatibility rule that is
applied on a schema. Requests to register new schema versions are checked against this rule by the
Schema Registry before they can succeed.

A schema version that is marked as a checkpoint is used to determine the compatibility of
registering new versions of a schema. When a schema first gets created the default checkpoint will
be the first version. As the schema evolves with more versions, you can use the CLI/SDK to change
the checkpoint to a version of a schema using the UpdateSchema API that adheres to a set of
constraints. In the console, editing the schema definition or compatibility mode will change the
checkpoint to the latest version by default.

Compatibility modes allow you to control how schemas can or cannot evolve over time. These
modes form the contract between applications producing and consuming data. When a new
version of a schema is submitted to the registry, the compatibility rule applied to the schema name

Schema versioning and compatibility 246

AWS Glue User Guide

is used to determine if the new version can be accepted. There are 8 compatibility modes: NONE,
DISABLED, BACKWARD, BACKWARD_ALL, FORWARD, FORWARD_ALL, FULL, FULL_ALL.

In the Avro data format, fields may be optional or required. An optional field is one in which the
Type includes null. Required fields do not have null as the Type.

In the Protobuf data format, fields can be optional (including repeated) or required in proto2
syntax, while all fields are optional (including repeated) in proto3 syntax. All compatibility rules
are determined based on the understanding of the Protocol Buffers specifications as well as the
guidance from the Google Protocol Buffers documentation.

• NONE: No compatibility mode applies. You can use this choice in development scenarios or if you
do not know the compatibility modes that you want to apply to schemas. Any new version added
will be accepted without undergoing a compatibility check.

• DISABLED: This compatibility choice prevents versioning for a particular schema. No new versions
can be added.

• BACKWARD: This compatibility choice is recommended because it allows consumers to read both
the current and the previous schema version. You can use this choice to check compatibility
against the previous schema version when you delete fields or add optional fields. A typical use
case for BACKWARD is when your application has been created for the most recent schema.

AVRO

For example, assume you have a schema defined by first name (required), last name (required),
email (required), and phone number (optional).

If your next schema version removes the required email field, this would successfully register.
BACKWARD compatibility requires consumers to be able to read the current and previous schema
version. Your consumers will be able to read the new schema as the extra email field from old
messages is ignored.

If you have a proposed new schema version that adds a required field, for example, zip code,
this would not successfully register with BACKWARD compatibility. Your consumers on the new
version would not be able to read old messages before the schema change, as they are missing
the required zip code field. However, if the zip code field was set as optional in the new schema,
then the proposed version would successfully register as consumers can read the old schema
without the optional zip code field.

JSON

Schema versioning and compatibility 247

https://developers.google.com/protocol-buffers/docs/overview#updating

AWS Glue User Guide

For example, assume you have a schema version defined by first name (optional), last name
(optional), email (optional) and phone number (optional).

If your next schema version adds the optional phone number property, this would successfully
register as long as the original schema version does not allow any additional properties
by setting the additionalProperties field to false. BACKWARD compatibility requires
consumers to be able to read the current and previous schema version. Your consumers will be
able to read data produced with the original schema where phone number property does not
exist.

If you have a proposed new schema version that adds the optional phone number property, this
would not successfully register with BACKWARD compatibility when the original schema version
sets the additionalProperties field to true, namely allowing any additional property. Your
consumers on the new version would not be able to read old messages before the schema
change, as they cannot read data with phone number property in a different type, for example
string instead of number.

PROTOBUF

For example, assume you have a schema version defined by a Message Person with first
name (required), last name (required), email (required), and phone number (optional) fields
under proto2 syntax.

Similar to AVRO scenarios, if your next schema version removes the required email field, this
would successfully register. BACKWARD compatibility requires consumers to be able to read the
current and previous schema version. Your consumers will be able to read the new schema as the
extra email field from old messages is ignored.

If you have a proposed new schema version that adds a required field, for example, zip code,
this would not successfully register with BACKWARD compatibility. Your consumers on the new
version would not be able to read old messages before the schema change, as they are missing
the required zip code field. However, if the zip code field was set as optional in the new
schema, then the proposed version would successfully register as consumers can read the old
schema without the optional zip code field.

In case of a gRPC use case, adding new RPC service or RPC method is a backward compatible
change. For example, assume you have a schema version defined by an RPC service MyService
with two RPC methods Foo and Bar.

Schema versioning and compatibility 248

AWS Glue User Guide

If your next schema version adds a new RPC method called Baz, this would successfully register.
Your consumers will be able to read data produced with the original schema according to
BACKWARD compatibility since the newly added RPC method Baz is optional.

If you have a proposed new schema version that removes the existing RPC method Foo, this
would not successfully register with BACKWARD compatibility. Your consumers on the new
version would not be able to read old messages before the schema change, as they cannot
understand and read data with the non-existent RPC method Foo in a gRPC application.

• BACKWARD_ALL: This compatibility choice allows consumers to read both the current and all
previous schema versions. You can use this choice to check compatibility against all previous
schema versions when you delete fields or add optional fields.

• FORWARD: This compatibility choice allows consumers to read both the current and the
subsequent schema versions, but not necessarily later versions. You can use this choice to check
compatibility against the last schema version when you add fields or delete optional fields. A
typical use case for FORWARD is when your application has been created for a previous schema
and should be able to process a more recent schema.

AVRO

For example, assume you have a schema version defined by first name (required), last name
(required), email (optional).

If you have a new schema version that adds a required field, e.g. phone number, this would
successfully register. FORWARD compatibility requires consumers to be able to read data
produced with the new schema by using the previous version.

If you have a proposed schema version that deletes the required first name field, this would not
successfully register with FORWARD compatibility. Your consumers on the prior version would
not be able to read the proposed schemas as they are missing the required first name field.
However, if the first name field was originally optional, then the proposed new schema would
successfully register as the consumers can read data based on the new schema that doesn’t have
the optional first name field.

JSON

For example, assume you have a schema version defined by first name (optional), last name
(optional), email (optional) and phone number (optional).

Schema versioning and compatibility 249

AWS Glue User Guide

If you have a new schema version that removes the optional phone number property, this
would successfully register as long as the new schema version does not allow any additional
properties by setting the additionalProperties field to false. FORWARD compatibility
requires consumers to be able to read data produced with the new schema by using the previous
version.

If you have a proposed schema version that deletes the optional phone number property, this
would not successfully register with FORWARD compatibility when the new schema version
sets the additionalProperties field to true, namely allowing any additional property. Your
consumers on the prior version would not be able to read the proposed schemas as they could
have phone number property in a different type, for example string instead of number.

PROTOBUF

For example, assume you have a schema version defined by a Message Person with first
name (required), last name (required), email (optional) fields under proto2 syntax.

Similar to AVRO scenarios, if you have a new schema version that adds a required field, e.g.
phone number, this would successfully register. FORWARD compatibility requires consumers to
be able to read data produced with the new schema by using the previous version.

If you have a proposed schema version that deletes the required first name field, this would
not successfully register with FORWARD compatibility. Your consumers on the prior version
would not be able to read the proposed schemas as they are missing the required first name
field. However, if the first name field was originally optional, then the proposed new schema
would successfully register as the consumers can read data based on the new schema that
doesn’t have the optional first name field.

In case of a gRPC use case, removing an RPC service or RPC method is a forward-compatible
change. For example, assume you have a schema version defined by an RPC service MyService
with two RPC methods Foo and Bar.

If your next schema version deletes the existing RPC method named Foo, this would successfully
register according to FORWARD compatibility as the consumers can read data produced with
the new schema by using the previous version. If you have a proposed new schema version that
adds an RPC method Baz, this would not successfully register with FORWARD compatibility. Your
consumers on the prior version would not be able to read the proposed schemas as they are
missing the RPC method Baz.

Schema versioning and compatibility 250

AWS Glue User Guide

• FORWARD_ALL: This compatibility choice allows consumers to read data written by producers
of any new registered schema. You can use this choice when you need to add fields or delete
optional fields, and check compatibility against all previous schema versions.

• FULL: This compatibility choice allows consumers to read data written by producers using the
previous or next version of the schema, but not earlier or later versions. You can use this choice
to check compatibility against the last schema version when you add or remove optional fields.

• FULL_ALL: This compatibility choice allows consumers to read data written by producers using
all previous schema versions. You can use this choice to check compatibility against all previous
schema versions when you add or remove optional fields.

Open source Serde libraries

AWS provides open-source Serde libraries as a framework for serializing and deserializing data. The
open source design of these libraries allows common open-source applications and frameworks to
support these libraries in their projects.

For more details on how the Serde libraries work, see How the Schema Registry works.

Quotas of the Schema Registry

Quotas, also referred to as limits in AWS, are the maximum values for the resources, actions, and
items in your AWS account. The following are soft limits for the Schema Registry in AWS Glue.

Schema version metadata key-value pairs

You can have up to 10 key-value pairs per SchemaVersion per AWS Region.

You can view or set the key-value metadata pairs using the QuerySchemaVersionMetadata action
(Python: query_schema_version_metadata) or PutSchemaVersionMetadata action (Python:
put_schema_version_metadata) APIs.

The following are hard limits for the Schema Registry in AWS Glue.

Registries

You can have up to 100 registries per AWS Region for this account.

SchemaVersion

You can have up to 10000 schema versions per AWS Region for this account.

Open source Serde libraries 251

AWS Glue User Guide

Each new schema creates a new schema version, so you can theoretically have up to 10000
schemas per account per region, if each schema has only one version.

Schema payloads

There is a size limit of 170KB for schema payloads.

How the Schema Registry works

This section describes how the serialization and deserialization processes in Schema Registry work.

1. Register a schema: If the schema doesn’t already exist in the registry, the schema can be
registered with a schema name equal to the name of the destination (e.g., test_topic,
test_stream, prod_firehose) or the producer can provide a custom name for the schema.
Producers can also add key-value pairs to the schema as metadata, such as source:
msk_kafka_topic_A, or apply AWS tags to schemas on schema creation. Once a schema is
registered the Schema Registry returns the schema version ID to the serializer. If the schema
exists but the serializer is using a new version that doesn’t exist, the Schema Registry will
check the schema reference a compatibility rule to ensure the new version is compatible before
registering it as a new version.

There are two methods of registering a schema: manual registration and auto-registration. You
can register a schema manually via the AWS Glue console or CLI/SDK.

When auto-registration is turned on in the serializer settings, automatic registration of the
schema will be performed. If REGISTRY_NAME is not provided in the producer configurations,
then auto-registration will register the new schema version under the default registry (default-
registry). See Installing SerDe Libraries for information on specifying the auto-registration
property.

2. Serializer validates data records against the schema: When the application producing data has
registered its schema, the Schema Registry serializer validates the record being produced by
the application is structured with the fields and data types matching a registered schema. If the
schema of the record does not match a registered schema, the serializer will return an exception
and the application will fail to deliver the record to the destination.

If no schema exists and if the schema name is not provided via the producer configurations, then
the schema is created with the same name as the topic name (if Apache Kafka or Amazon MSK)
or stream name (if Kinesis Data Streams).

How it works 252

AWS Glue User Guide

Every record has a schema definition and data. The schema definition is queried against the
existing schemas and versions in the Schema Registry.

By default, producers cache schema definitions and schema version IDs of registered schemas. If
a record’s schema version definition does not match what’s available in cache, the producer will
attempt to validate the schema with the Schema Registry. If the schema version is valid, then its
version ID and definition will be cached locally on the producer.

You can adjust the default cache period (24 hours) within the optional producer properties in
step #3 of Installing SerDe Libraries.

3. Serialize and deliver records: If the record complies with the schema, the serializer decorates
each record with the schema version ID, serializes the record based on the data format selected
(AVRO, JSON, Protobuf, or other formats coming soon), compresses the record (optional
producer configuration), and delivers it to the destination.

4. Consumers deserialize the data: Consumers reading this data use the Schema Registry
deserializer library that parses the schema version ID from the record payload.

5. Deserializer may request the schema from the Schema Registry: If this is the first time the
deserializer has seen records with a particular schema version ID, using the schema version ID
the deserializer will request the schema from the Schema Registry and cache the schema locally
on the consumer. If the Schema Registry cannot deserialize the record, the consumer can log the
data from the record and move on, or halt the application.

6. The deserializer uses the schema to deserialize the record: When the deserializer retrieves the
schema version ID from the Schema Registry, the deserializer decompresses the record (if record
sent by producer is compressed) and uses the schema to deserialize the record. The application
now processes the record.

Note

Encryption: Your clients communicate with the Schema Registry via API calls which encrypt
data in-transit using TLS encryption over HTTPS. Schemas stored in the Schema Registry
are always encrypted at rest using a service-managed AWS Key Management Service (AWS
KMS) key.

How it works 253

AWS Glue User Guide

Note

User Authorization: The Schema Registry supports identity-based IAM policies.

Getting started with Schema Registry

The following sections provide an overview and walk you through setting up and using Schema
Registry. For information about Schema Registry concepts and components, see AWS Glue Schema
Registry.

Topics

• Installing SerDe Libraries

• Using AWS CLI for the AWS Glue Schema Registry APIs

• Creating a registry

• Dealing with a specific record (JAVA POJO) for JSON

• Creating a schema

• Updating a schema or registry

• Deleting a schema or registry

• IAM examples for serializers

• IAM examples for deserializers

• Private connectivity using AWS PrivateLink

• Accessing Amazon CloudWatch metrics

• Sample AWS CloudFormation template for Schema Registry

Installing SerDe Libraries

Note

Prerequisites: Before completing the following steps, you will need to have a Amazon
Managed Streaming for Apache Kafka (Amazon MSK) or Apache Kafka cluster running. Your
producers and consumers need to be running on Java 8 or above.

The SerDe libraries provide a framework for serializing and deserializing data.

Getting started 254

AWS Glue User Guide

You will install the open source serializer for your applications producing data (collectively the
"serializers"). The serializer handles serialization, compression, and the interaction with the Schema
Registry. The serializer automatically extracts the schema from a record being written to a Schema
Registry compatible destination, such as Amazon MSK. Likewise, you will install the open source
deserializer on your applications consuming data.

To install the libraries on producers and consumers:

1. Inside both the producers’ and consumers’ pom.xml files, add this dependency via the code
below:

<dependency>
 <groupId>software.amazon.glue</groupId>
 <artifactId>schema-registry-serde</artifactId>
 <version>1.1.5</version>
</dependency>

Alternatively, you can clone the AWS Glue Schema Registry Github repository.

2. Setup your producers with these required properties:

props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
 StringSerializer.class.getName()); // Can replace StringSerializer.class.getName())
 with any other key serializer that you may use
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
 GlueSchemaRegistryKafkaSerializer.class.getName());
props.put(AWSSchemaRegistryConstants.AWS_REGION, "us-east-2");
properties.put(AWSSchemaRegistryConstants.DATA_FORMAT, "JSON"); // OR "AVRO"

If there are no existing schemas, then auto-registration needs to be turned on (next step). If you
do have a schema that you would like to apply, then replace "my-schema" with your schema
name. Also the "registry-name" has to be provided if schema auto-registration is off. If the
schema is created under the "default-registry" then registry name can be omitted.

3. (Optional) Set any of these optional producer properties. For detailed property descriptions, see
the ReadMe file.

props.put(AWSSchemaRegistryConstants.SCHEMA_AUTO_REGISTRATION_SETTING, "true"); // If
 not passed, uses "false"

Getting started 255

https://github.com/awslabs/aws-glue-schema-registry
https://github.com/awslabs/aws-glue-schema-registry/blob/master/README.md

AWS Glue User Guide

props.put(AWSSchemaRegistryConstants.SCHEMA_NAME, "my-schema"); // If not passed,
 uses transport name (topic name in case of Kafka, or stream name in case of Kinesis
 Data Streams)
props.put(AWSSchemaRegistryConstants.REGISTRY_NAME, "my-registry"); // If not passed,
 uses "default-registry"
props.put(AWSSchemaRegistryConstants.CACHE_TIME_TO_LIVE_MILLIS, "86400000"); // If
 not passed, uses 86400000 (24 Hours)
props.put(AWSSchemaRegistryConstants.CACHE_SIZE, "10"); // default value is 200
props.put(AWSSchemaRegistryConstants.COMPATIBILITY_SETTING, Compatibility.FULL); //
 Pass a compatibility mode. If not passed, uses Compatibility.BACKWARD
props.put(AWSSchemaRegistryConstants.DESCRIPTION, "This registry is used for several
 purposes."); // If not passed, constructs a description
props.put(AWSSchemaRegistryConstants.COMPRESSION_TYPE,
 AWSSchemaRegistryConstants.COMPRESSION.ZLIB); // If not passed, records are sent
 uncompressed

Auto-registration registers the schema version under the default registry ("default-registry").
If a SCHEMA_NAME is not specified in the previous step, then the topic name is inferred as
SCHEMA_NAME.

See Schema versioning and compatibility for more information on compatibility modes.

4. Setup your consumers with these required properties:

props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
 StringDeserializer.class.getName());
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
 GlueSchemaRegistryKafkaDeserializer.class.getName());
props.put(AWSSchemaRegistryConstants.AWS_REGION, "us-east-2"); // Pass an AWS Region
props.put(AWSSchemaRegistryConstants.AVRO_RECORD_TYPE,
 AvroRecordType.GENERIC_RECORD.getName()); // Only required for AVRO data format

5. (Optional) Set these optional consumer properties. For detailed property descriptions, see the
ReadMe file.

properties.put(AWSSchemaRegistryConstants.CACHE_TIME_TO_LIVE_MILLIS, "86400000"); //
 If not passed, uses 86400000
props.put(AWSSchemaRegistryConstants.CACHE_SIZE, "10"); // default value is 200
props.put(AWSSchemaRegistryConstants.SECONDARY_DESERIALIZER,
 "com.amazonaws.services.schemaregistry.deserializers.external.ThirdPartyDeserializer"); //
 For migration fall back scenario

Getting started 256

https://github.com/awslabs/aws-glue-schema-registry/blob/master/README.md
https://github.com/awslabs/aws-glue-schema-registry/blob/master/README.md

AWS Glue User Guide

Using AWS CLI for the AWS Glue Schema Registry APIs

To use the AWS CLI for the AWS Glue Schema Registry APIs, make sure to update your AWS CLI to
the latest version.

Creating a registry

You may use the default registry or create as many new registries as necessary using the AWS Glue
APIs or AWS Glue console.

AWS Glue APIs

You can use these steps to perform this task using the AWS Glue APIs.

To add a new registry, use the CreateRegistry action (Python: create_registry) API. Specify
RegistryName as the name of the registry to be created, with a max length of 255, containing
only letters, numbers, hyphens, underscores, dollar signs, or hash marks.

Specify a Description as a string not more than 2048 bytes long, matching the URI address
multi-line string pattern.

Optionally, specify one or more Tags for your registry, as a map array of key-value pairs.

aws glue create-registry --registry-name registryName1 --description description

When your registry is created it is assigned an Amazon Resource Name (ARN), which you can view
in the RegistryArn of the API response. Now that you've created a registry, create one or more
schemas for that registry.

AWS Glue console

To add a new registry in the AWS Glue console:

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, under Data catalog, choose Schema registries.

3. Choose Add registry.

4. Enter a Registry name for the registry, consisting of letters, numbers, hyphens, or underscores.
This name cannot be changed.

Getting started 257

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-common.html#aws-glue-api-common-_string-patterns
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-common.html#aws-glue-api-common-_string-patterns
https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

5. Enter a Description (optional) for the registry.

6. Optionally, apply one or more tags to your registry. Choose Add new tag and specify a Tag key
and optionally a Tag value.

7. Choose Add registry.

When your registry is created it is assigned an Amazon Resource Name (ARN), which you can view
by choosing the registry from the list in Schema registries. Now that you've created a registry,
create one or more schemas for that registry.

Dealing with a specific record (JAVA POJO) for JSON

You can use a plain old Java object (POJO) and pass the object as a record. This is similar to the
notion of a specific record in AVRO. The mbknor-jackson-jsonschema can generate a JSON schema
for the POJO passed. This library can also inject additional information in the JSON schema.

Getting started 258

https://github.com/mbknor/mbknor-jackson-jsonSchema

AWS Glue User Guide

The AWS Glue Schema Registry library uses the injected "className" field in schema to provide a
fully classified class name. The "className" field is used by the deserializer to deserialize into an
object of that class.

 Example class :

@JsonSchemaDescription("This is a car")
@JsonSchemaTitle("Simple Car Schema")
@Builder
@AllArgsConstructor
@EqualsAndHashCode
// Fully qualified class name to be added to an additionally injected property
// called className for deserializer to determine which class to deserialize
// the bytes into
@JsonSchemaInject(
 strings = {@JsonSchemaString(path = "className",
 value =
 "com.amazonaws.services.schemaregistry.integrationtests.generators.Car")}
)
// List of annotations to help infer JSON Schema are defined by https://github.com/
mbknor/mbknor-jackson-jsonSchema
public class Car {
 @JsonProperty(required = true)
 private String make;

 @JsonProperty(required = true)
 private String model;

 @JsonSchemaDefault("true")
 @JsonProperty
 public boolean used;

 @JsonSchemaInject(ints = {@JsonSchemaInt(path = "multipleOf", value = 1000)})
 @Max(200000)
 @JsonProperty
 private int miles;

 @Min(2000)
 @JsonProperty
 private int year;

 @JsonProperty
 private Date purchaseDate;

Getting started 259

AWS Glue User Guide

 @JsonProperty
 @JsonFormat(shape = JsonFormat.Shape.NUMBER)
 private Date listedDate;

 @JsonProperty
 private String[] owners;

 @JsonProperty
 private Collection<Float> serviceChecks;

 // Empty constructor is required by Jackson to deserialize bytes
 // into an Object of this class
 public Car() {}
}

Creating a schema

You can create a schema using the AWS Glue APIs or the AWS Glue console.

AWS Glue APIs

You can use these steps to perform this task using the AWS Glue APIs.

To add a new schema, use the CreateSchema action (Python: create_schema) API.

Specify a RegistryId structure to indicate a registry for the schema. Or, omit the RegistryId to
use the default registry.

Specify a SchemaName consisting of letters, numbers, hyphens, or underscores, and DataFormat
as AVRO or JSON. DataFormat once set on a schema is not changeable.

Specify a Compatibility mode:

• Backward (recommended) — Consumer can read both current and previous version.

• Backward all — Consumer can read current and all previous versions.

• Forward — Consumer can read both current and subsequent version.

• Forward all — Consumer can read both current and all subsequent versions.

• Full — Combination of Backward and Forward.

• Full all — Combination of Backward all and Forward all.

Getting started 260

AWS Glue User Guide

• None — No compatibility checks are performed.

• Disabled — Prevent any versioning for this schema.

Optionally, specify Tags for your schema.

Specify a SchemaDefinition to define the schema in Avro, JSON, or Protobuf data format. See
the examples.

For Avro data format:

aws glue create-schema --registry-id RegistryName="registryName1" --schema-name
 testschema --compatibility NONE --data-format AVRO --schema-definition "{\"type\":
 \"record\", \"name\": \"r1\", \"fields\": [{\"name\": \"f1\", \"type\": \"int\"},
 {\"name\": \"f2\", \"type\": \"string\"}]}"

aws glue create-schema --registry-id RegistryArn="arn:aws:glue:us-
east-2:901234567890:registry/registryName1" --schema-name testschema --compatibility
 NONE --data-format AVRO --schema-definition "{\"type\": \"record\", \"name\": \"r1\",
 \"fields\": [{\"name\": \"f1\", \"type\": \"int\"}, {\"name\": \"f2\", \"type\":
 \"string\"}]}"

For JSON data format:

aws glue create-schema --registry-id RegistryName="registryName" --schema-name
 testSchemaJson --compatibility NONE --data-format JSON --schema-definition "{\"$schema
\": \"http://json-schema.org/draft-07/schema#\",\"type\":\"object\",\"properties\":
{\"f1\":{\"type\":\"string\"}}}"

aws glue create-schema --registry-id RegistryArn="arn:aws:glue:us-
east-2:901234567890:registry/registryName" --schema-name testSchemaJson --compatibility
 NONE --data-format JSON --schema-definition "{\"$schema\": \"http://json-schema.org/
draft-07/schema#\",\"type\":\"object\",\"properties\":{\"f1\":{\"type\":\"string\"}}}"

For Protobuf data format:

aws glue create-schema --registry-id RegistryName="registryName" --schema-name
 testSchemaProtobuf --compatibility NONE --data-format PROTOBUF --schema-definition
 "syntax = \"proto2\";package org.test;message Basic { optional int32 basic = 1;}"

Getting started 261

AWS Glue User Guide

aws glue create-schema --registry-id RegistryArn="arn:aws:glue:us-
east-2:901234567890:registry/registryName" --schema-name testSchemaProtobuf
 --compatibility NONE --data-format PROTOBUF --schema-definition "syntax =
 \"proto2\";package org.test;message Basic { optional int32 basic = 1;}"

AWS Glue console

To add a new schema using the AWS Glue console:

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, under Data catalog, choose Schemas.

3. Choose Add schema.

4. Enter a Schema name, consisting of letters, numbers, hyphens, underscores, dollar signs, or
hashmarks. This name cannot be changed.

5. Choose the Registry where the schema will be stored from the drop-down menu. The parent
registry cannot be changed post-creation.

6. Leave the Data format as Apache Avro or JSON. This format applies to all versions of this
schema.

7. Choose a Compatibility mode.

• Backward (recommended) — receiver can read both current and previous versions.

• Backward All — receiver can read current and all previous versions.

• Forward — sender can write both current and previous versions.

• Forward All — sender can write current and all previous versions.

• Full — combination of Backward and Forward.

• Full All — combination of Backward All and Forward All.

• None — no compatibility checks performed.

• Disabled — prevent any versioning for this schema.

8. Enter an optional Description for the registry of up to 250 characters.

Getting started 262

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

9. Optionally, apply one or more tags to your schema. Choose Add new tag and specify a Tag key
and optionally a Tag value.

10.In the First schema version box, enter or paste your initial schema. .

For Avro format, see Working with Avro data format

For JSON format, see Working with JSON data format

Getting started 263

AWS Glue User Guide

11.Optionally, choose Add metadata to add version metadata to annotate or classify your schema
version.

12.Choose Create schema and version.

The schema is created and appears in the list under Schemas.

Getting started 264

AWS Glue User Guide

Working with Avro data format

Avro provides data serialization and data exchange services. Avro stores the data definition in JSON
format making it easy to read and interpret. The data itself is stored in binary format.

For information on defining an Apache Avro schema, see the Apache Avro specification.

Working with JSON data format

Data can be serialized with JSON format. JSON Schema format defines the standard for JSON
Schema format.

Updating a schema or registry

Once created you can edit your schemas, schema versions, or registry.

Updating a registry

You can update a registry using the AWS Glue APIs or the AWS Glue console. The name of an
existing registry cannot be edited. You can edit the description for a registry.

AWS Glue APIs

To update an existing registry, use the UpdateRegistry action (Python: update_registry) API.

Specify a RegistryId structure to indicate the registry that you want to update. Pass a
Description to change the description for a registry.

aws glue update-registry --description updatedDescription --registry-id
 RegistryArn="arn:aws:glue:us-east-2:901234567890:registry/registryName1"

AWS Glue console

To update a registry using the AWS Glue console:

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, under Data catalog, choose Schema registries.

3. Choose a registry from the the list of registries, by checking its box.

4. In the Action menu, choose Edit registry.

Getting started 265

http://avro.apache.org/docs/current/spec.html
https://json-schema.org/
https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

Updating a schema

You can update the description or compatibility setting for a schema.

To update an existing schema, use the UpdateSchema action (Python: update_schema) API.

Specify a SchemaId structure to indicate the schema that you want to update. One of
VersionNumber or Compatibility has to be provided.

Code example 11:

aws glue update-schema --description testDescription --schema-id
 SchemaName="testSchema1",RegistryName="registryName1" --schema-version-number
 LatestVersion=true --compatibility NONE

aws glue update-schema --description testDescription --schema-id
 SchemaArn="arn:aws:glue:us-east-2:901234567890:schema/registryName1/testSchema1" --
schema-version-number LatestVersion=true --compatibility NONE

Adding a schema version

When you add a schema version, you will need to compare the versions to make sure the new
schema will be accepted.

To add a new version to an existing schema, use the RegisterSchemaVersion action (Python:
register_schema_version) API.

Specify a SchemaId structure to indicate the schema for which you want to add a version, and a
SchemaDefinition to define the schema.

Code example 12:

aws glue register-schema-version --schema-definition "{\"type\": \"record\", \"name\":
 \"r1\", \"fields\": [{\"name\": \"f1\", \"type\": \"int\"}, {\"name\": \"f2\", \"type
\": \"string\"}]}" --schema-id SchemaArn="arn:aws:glue:us-east-1:901234567890:schema/
registryName/testschema"

aws glue register-schema-version --schema-definition "{\"type\": \"record\", \"name\":
 \"r1\", \"fields\": [{\"name\": \"f1\", \"type\": \"int\"}, {\"name\": \"f2\", \"type
\": \"string\"}]}" --schema-id SchemaName="testschema",RegistryName="testregistry"

Getting started 266

AWS Glue User Guide

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, under Data catalog, choose Schemas.

3. Choose the schema from the the list of schemas, by checking its box.

4. Choose one or more schemas from the list, by checking the boxes.

5. In the Action menu, choose Register new version.

6. In the New version box, enter or paste your new schema.

7. Choose Compare with previous version to see differences with the previous schema version.

8. Optionally, choose Add metadata to add version metadata to annotate or classify your schema
version. Enter Key and optional Value.

9. Choose Register version.

Getting started 267

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

The schema(s) version appears in the list of versions. If the version changed the compatibility
mode, the version will be marked as a checkpoint.

Example of a schema version comparison

When you choose to Compare with previous version, you will see the previous and new versions
displayed together. Changed information will be highlighted as follows:

• Yellow: indicates changed information.

Getting started 268

AWS Glue User Guide

• Green: indicates content added in the latest version.

• Red: indicates content removed in the latest version.

You can also compare against earlier versions.

Deleting a schema or registry

Deleting a schema, a schema version, or a registry are permanent actions that cannot be undone.

Deleting a schema

You may want to delete a schema when it will no longer be used within a registry, using the AWS
Management Console, or the DeleteSchema action (Python: delete_schema) API.

Deleting one or more schemas is a permanent action that cannot be undone. Make sure that the
schema or schemas are no longer needed.

To delete a schema from the registry, call the DeleteSchema action (Python: delete_schema) API,
specifying the SchemaId structure to identify the schema.

Getting started 269

AWS Glue User Guide

For example:

aws glue delete-schema --schema-id SchemaArn="arn:aws:glue:us-
east-2:901234567890:schema/registryName1/schemaname"

aws glue delete-schema --schema-id SchemaName="TestSchema6-
deleteschemabyname",RegistryName="default-registry"

AWS Glue console

To delete a schema from the AWS Glue console:

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, under Data catalog, choose Schema registries.

3. Choose the registry that contains your schema from the the list of registries.

4. Choose one or more schemas from the list, by checking the boxes.

5. In the Action menu, choose Delete schema.

6. Enter the text Delete in the field to confirm deletion.

7. Choose Delete.

The schema(s) you specified are deleted from the registry.

Deleting a schema version

As schemas accumulate in the registry, you may want to delete unwanted schema versions
using the AWS Management Console, or the DeleteSchemaVersions action (Python:
delete_schema_versions) API. Deleting one or more schema versions is a permanent action that
cannot be undone. Make sure that the schema versions are no longer needed.

When deleting schema versions, take note of the following constraints:

• You cannot delete a check-pointed version.

• The range of contiguous versions cannot be more than 25.

• The latest schema version must not be in a pending state.

Getting started 270

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

Specify the SchemaId structure to identify the schema, and specify Versions as a range
of versions to delete. For more information on specifying a version or range of versions, see
DeleteRegistry action (Python: delete_registry). The schema versions you specified are deleted
from the registry.

Calling the ListSchemaVersions action (Python: list_schema_versions) API after this call will list the
status of the deleted versions.

For example:

aws glue delete-schema-versions --schema-id
 SchemaName="TestSchema6",RegistryName="default-registry" --versions "1-1"

aws glue delete-schema-versions --schema-id SchemaArn="arn:aws:glue:us-
east-2:901234567890:schema/default-registry/TestSchema6-NON-Existent" --versions "1-1"

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, under Data catalog, choose Schema registries.

3. Choose the registry that contains your schema from the the list of registries.

4. Choose one or more schemas from the list, by checking the boxes.

5. In the Action menu, choose Delete schema.

6. Enter the text Delete in the field to confirm deletion.

7. Choose Delete.

The schema versions you specified are deleted from the registry.

Deleting a registry

You may want to delete a registry when the schemas it contains should no longer be organized
under that registry. You will need to reassign those schemas to another registry.

Deleting one or more registries is a permanent action that cannot be undone. Make sure that the
registry or registries no longer needed.

The default registry can be deleted using the AWS CLI.

AWS Glue API

Getting started 271

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

To delete the entire registry including the schema and all of its versions, call the DeleteRegistry
action (Python: delete_registry) API. Specify a RegistryId structure to identify the registry.

For example:

aws glue delete-registry --registry-id RegistryArn="arn:aws:glue:us-
east-2:901234567890:registry/registryName1"

aws glue delete-registry --registry-id RegistryName="TestRegistry-deletebyname"

To get the status of the delete operation, you can call the GetRegistry API after the
asynchronous call.

AWS Glue console

To delete a registry from the AWS Glue console:

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, under Data catalog, choose Schema registries.

3. Choose a registry from the list, by checking a box.

4. In the Action menu, choose Delete registry.

5. Enter the text Delete in the field to confirm deletion.

6. Choose Delete.

The registries you selected are deleted from AWS Glue.

IAM examples for serializers

Note

AWS managed policies grant necessary permissions for common use cases. For information
on using managed policies to manage the schema registry, see AWS managed (predefined)
policies for AWS Glue.

For serializers, you should create a minimal policy similar to that below to give you the ability to
find the schemaVersionId for a given schema definition. Note, you should have read permissions

Getting started 272

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

on the registry in order to read the schemas in the registry. You can limit the registries that can be
read by using the Resource clause.

Code example 13:

{
 "Sid" : "GetSchemaByDefinition",
 "Effect" : "Allow",
 "Action" :
 [
 "glue:GetSchemaByDefinition"
],
 "Resource" : ["arn:aws:glue:us-east-2:012345678:registry/registryname-1",
 "arn:aws:glue:us-east-2:012345678:schema/registryname-1/
schemaname-1",
 "arn:aws:glue:us-east-2:012345678:schema/registryname-1/
schemaname-2"
]
}

Further, you can also allow producers to create new schemas and versions by including the
following extra methods. Note, you should be able to inspect the registry in order to add/remove/
evolve the schemas inside it. You can limit the registries that can be inspected by using the
Resource clause.

Code example 14:

{
 "Sid" : "RegisterSchemaWithMetadata",
 "Effect" : "Allow",
 "Action" :
 [
 "glue:GetSchemaByDefinition",
 "glue:CreateSchema",
 "glue:RegisterSchemaVersion",
 "glue:PutSchemaVersionMetadata",
],
 "Resource" : ["arn:aws:glue:aws-region:123456789012:registry/registryname-1",
 "arn:aws:glue:aws-region:123456789012:schema/registryname-1/
schemaname-1",
 "arn:aws:glue:aws-region:123456789012:schema/registryname-1/
schemaname-2"
]

Getting started 273

AWS Glue User Guide

}

IAM examples for deserializers

For deserializers (consumer side), you should create a policy similar to that below to allow the
deserializer to fetch the schema from the Schema Registry for deserialization. Note, you should be
able to inspect the registry in order to fetch the schemas inside it.

Code example 15:

{
 "Sid" : "GetSchemaVersion",
 "Effect" : "Allow",
 "Action" :
 [
 "glue:GetSchemaVersion"
],
 "Resource" : ["*"]
}

Private connectivity using AWS PrivateLink

You can use AWS PrivateLink to connect your data producer’s VPC to AWS Glue by defining an
interface VPC endpoint for AWS Glue. When you use a VPC interface endpoint, communication
between your VPC and AWS Glue is conducted entirely within the AWS network. For more
information, see Using AWS Glue with VPC Endpoints.

Accessing Amazon CloudWatch metrics

Amazon CloudWatch metrics are available as part of CloudWatch’s free tier. You can access
these metrics in the CloudWatch Console. API-Level metrics include CreateSchema (Success and
Latency), GetSchemaByDefinition, (Success and Latency), GetSchemaVersion (Success and Latency),
RegisterSchemaVersion (Success and Latency), PutSchemaVersionMetadata (Success and Latency).
Resource-level metrics include Registry.ThrottledByLimit, SchemaVersion.ThrottledByLimit,
SchemaVersion.Size.

Sample AWS CloudFormation template for Schema Registry

The following is a sample template for creating Schema Registry resources in AWS
CloudFormation. To create this stack in your account, copy the above template into a file
SampleTemplate.yaml, and run the following command:

Getting started 274

https://docs.aws.amazon.com/glue/latest/dg/vpc-endpoint.html

AWS Glue User Guide

aws cloudformation create-stack --stack-name ABCSchemaRegistryStack --template-body
 "'cat SampleTemplate.yaml'"

This example uses AWS::Glue::Registry to create a registry, AWS::Glue::Schema
to create a schema, AWS::Glue::SchemaVersion to create a schema version, and
AWS::Glue::SchemaVersionMetadata to populate schema version metadata.

Description: "A sample CloudFormation template for creating Schema Registry resources."
Resources:
 ABCRegistry:
 Type: "AWS::Glue::Registry"
 Properties:
 Name: "ABCSchemaRegistry"
 Description: "ABC Corp. Schema Registry"
 Tags:
 - Key: "Project"
 Value: "Foo"
 ABCSchema:
 Type: "AWS::Glue::Schema"
 Properties:
 Registry:
 Arn: !Ref ABCRegistry
 Name: "TestSchema"
 Compatibility: "NONE"
 DataFormat: "AVRO"
 SchemaDefinition: >
 {"namespace":"foo.avro","type":"record","name":"user","fields":
[{"name":"name","type":"string"},{"name":"favorite_number","type":"int"}]}
 Tags:
 - Key: "Project"
 Value: "Foo"
 SecondSchemaVersion:
 Type: "AWS::Glue::SchemaVersion"
 Properties:
 Schema:
 SchemaArn: !Ref ABCSchema
 SchemaDefinition: >
 {"namespace":"foo.avro","type":"record","name":"user","fields":
[{"name":"status","type":"string", "default":"ON"}, {"name":"name","type":"string"},
{"name":"favorite_number","type":"int"}]}
 FirstSchemaVersionMetadata:
 Type: "AWS::Glue::SchemaVersionMetadata"

Getting started 275

AWS Glue User Guide

 Properties:
 SchemaVersionId: !GetAtt ABCSchema.InitialSchemaVersionId
 Key: "Application"
 Value: "Kinesis"
 SecondSchemaVersionMetadata:
 Type: "AWS::Glue::SchemaVersionMetadata"
 Properties:
 SchemaVersionId: !Ref SecondSchemaVersion
 Key: "Application"
 Value: "Kinesis"

Integrating with AWS Glue Schema Registry

These sections describe integrations with AWS Glue Schema Registry. The examples in these
section show a schema with AVRO data format. For more examples, including schemas with JSON
data format, see the integration tests and ReadMe information in the AWS Glue Schema Registry
open source repository.

Topics

• Use case: Connecting Schema Registry to Amazon MSK or Apache Kafka

• Use case: Integrating Amazon Kinesis Data Streams with the AWS Glue Schema Registry

• Use case: Amazon Managed Service for Apache Flink

• Use Case: Integration with AWS Lambda

• Use case: AWS Glue Data Catalog

• Use case: AWS Glue streaming

• Use case: Apache Kafka Streams

• Use case: Apache Kafka Connect

Use case: Connecting Schema Registry to Amazon MSK or Apache Kafka

Let's assume you are writing data to an Apache Kafka topic, and you can follow these steps to get
started.

1. Create an Amazon Managed Streaming for Apache Kafka (Amazon MSK) or Apache Kafka cluster
with at least one topic. If creating an Amazon MSK cluster, you can use the AWS Management

Integrating with AWS Glue Schema Registry 276

https://github.com/awslabs/aws-glue-schema-registry
https://github.com/awslabs/aws-glue-schema-registry

AWS Glue User Guide

Console. Follow these instructions: Getting Started Using Amazon MSK in the Amazon Managed
Streaming for Apache Kafka Developer Guide.

2. Follow the Installing SerDe Libraries step above.

3. To create schema registries, schemas, or schema versions, follow the instructions under the
Getting started with Schema Registry section of this document.

4. Start your producers and consumers to use the Schema Registry to write and read records to/
from the Amazon MSK or Apache Kafka topic. Example producer and consumer code can be
found in the ReadMe file from the Serde libraries. The Schema Registry library on the producer
will automatically serialize the record and decorate the record with a schema version ID.

5. If the schema of this record has been inputted, or if auto-registration is turned on, then the
schema will have been registered in the Schema Registry.

6. The consumer reading from the Amazon MSK or Apache Kafka topic, using the AWS Glue
Schema Registry library, will automatically lookup the schema from the Schema Registry.

Use case: Integrating Amazon Kinesis Data Streams with the AWS Glue Schema
Registry

This integration requires that you have an existing Amazon Kinesis data stream. For more
information, see Getting Started with Amazon Kinesis Data Streams in the Amazon Kinesis Data
Streams Developer Guide.

There are two ways that you can interact with data in a Kinesis data stream.

• Through the Kinesis Producer Library (KPL) and Kinesis Client Library (KCL) libraries in Java.
Multi-language support is not provided.

• Through the PutRecords, PutRecord, and GetRecords Kinesis Data Streams APIs available in
the AWS SDK for Java.

If you currently use the KPL/KCL libraries, we recommend continuing to use that method. There
are updated KCL and KPL versions with Schema Registry integrated, as shown in the examples.
Otherwise, you can use the sample code to leverage the AWS Glue Schema Registry if using the
KDS APIs directly.

Schema Registry integration is only available with KPL v0.14.2 or later and with KCL v2.3 or later.
Schema Registry integration with JSON data format is available with KPL v0.14.8 or later and with
KCL v2.3.6 or later.

Integrating with AWS Glue Schema Registry 277

https://docs.aws.amazon.com/msk/latest/developerguide/getting-started.html
https://github.com/awslabs/aws-glue-schema-registry/blob/master/README.md
https://docs.aws.amazon.com/streams/latest/dev/getting-started.html

AWS Glue User Guide

Interacting with Data Using Kinesis SDK V2

This section describes interacting with Kinesis using Kinesis SDK V2

// Example JSON Record, you can construct a AVRO record also
private static final JsonDataWithSchema record =
 JsonDataWithSchema.builder(schemaString, payloadString);
private static final DataFormat dataFormat = DataFormat.JSON;

//Configurations for Schema Registry
GlueSchemaRegistryConfiguration gsrConfig = new GlueSchemaRegistryConfiguration("us-
east-1");

GlueSchemaRegistrySerializer glueSchemaRegistrySerializer =
 new GlueSchemaRegistrySerializerImpl(awsCredentialsProvider, gsrConfig);
GlueSchemaRegistryDataFormatSerializer dataFormatSerializer =
 new GlueSchemaRegistrySerializerFactory().getInstance(dataFormat, gsrConfig);

Schema gsrSchema =
 new Schema(dataFormatSerializer.getSchemaDefinition(record), dataFormat.name(),
 "MySchema");

byte[] serializedBytes = dataFormatSerializer.serialize(record);

byte[] gsrEncodedBytes = glueSchemaRegistrySerializer.encode(streamName, gsrSchema,
 serializedBytes);

PutRecordRequest putRecordRequest = PutRecordRequest.builder()
 .streamName(streamName)
 .partitionKey("partitionKey")
 .data(SdkBytes.fromByteArray(gsrEncodedBytes))
 .build();
shardId = kinesisClient.putRecord(putRecordRequest)
 .get()
 .shardId();

GlueSchemaRegistryDeserializer glueSchemaRegistryDeserializer = new
 GlueSchemaRegistryDeserializerImpl(awsCredentialsProvider, gsrConfig);

GlueSchemaRegistryDataFormatDeserializer gsrDataFormatDeserializer =
 glueSchemaRegistryDeserializerFactory.getInstance(dataFormat, gsrConfig);

GetShardIteratorRequest getShardIteratorRequest = GetShardIteratorRequest.builder()
 .streamName(streamName)

Integrating with AWS Glue Schema Registry 278

AWS Glue User Guide

 .shardId(shardId)
 .shardIteratorType(ShardIteratorType.TRIM_HORIZON)
 .build();

String shardIterator = kinesisClient.getShardIterator(getShardIteratorRequest)
 .get()
 .shardIterator();

GetRecordsRequest getRecordRequest = GetRecordsRequest.builder()
 .shardIterator(shardIterator)
 .build();
GetRecordsResponse recordsResponse = kinesisClient.getRecords(getRecordRequest)
 .get();

List<Object> consumerRecords = new ArrayList<>();
List<Record> recordsFromKinesis = recordsResponse.records();

for (int i = 0; i < recordsFromKinesis.size(); i++) {
 byte[] consumedBytes = recordsFromKinesis.get(i)
 .data()
 .asByteArray();

 Schema gsrSchema = glueSchemaRegistryDeserializer.getSchema(consumedBytes);
 Object decodedRecord =
 gsrDataFormatDeserializer.deserialize(ByteBuffer.wrap(consumedBytes),

 gsrSchema.getSchemaDefinition());
 consumerRecords.add(decodedRecord);
}

Interacting with data using the KPL/KCL libraries

This section describes integrating Kinesis Data Streams with Schema Registry using the KPL/KCL
libraries. For more information on using KPL/KCL, see Developing Producers Using the Amazon
Kinesis Producer Library in the Amazon Kinesis Data Streams Developer Guide.

Setting up the Schema Registry in KPL

1. Define the schema definition for the data, data format and schema name authored in the AWS
Glue Schema Registry.

2. Optionally configure the GlueSchemaRegistryConfiguration object.

3. Pass the schema object to the addUserRecord API.

Integrating with AWS Glue Schema Registry 279

https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html

AWS Glue User Guide

private static final String SCHEMA_DEFINITION = "{"namespace": "example.avro",\n"
+ " "type": "record",\n"
+ " "name": "User",\n"
+ " "fields": [\n"
+ " {"name": "name", "type": "string"},\n"
+ " {"name": "favorite_number", "type": ["int", "null"]},\n"
+ " {"name": "favorite_color", "type": ["string", "null"]}\n"
+ "]\n"
+ "}";

KinesisProducerConfiguration config = new KinesisProducerConfiguration();
config.setRegion("us-west-1")

//[Optional] configuration for Schema Registry.

GlueSchemaRegistryConfiguration schemaRegistryConfig =
new GlueSchemaRegistryConfiguration("us-west-1");

schemaRegistryConfig.setCompression(true);

config.setGlueSchemaRegistryConfiguration(schemaRegistryConfig);

///Optional configuration ends.

final KinesisProducer producer =
 new KinesisProducer(config);

final ByteBuffer data = getDataToSend();

com.amazonaws.services.schemaregistry.common.Schema gsrSchema =
 new Schema(SCHEMA_DEFINITION, DataFormat.AVRO.toString(), "demoSchema");

ListenableFuture<UserRecordResult> f = producer.addUserRecord(
config.getStreamName(), TIMESTAMP, Utils.randomExplicitHashKey(), data, gsrSchema);

private static ByteBuffer getDataToSend() {
 org.apache.avro.Schema avroSchema =
 new org.apache.avro.Schema.Parser().parse(SCHEMA_DEFINITION);

 GenericRecord user = new GenericData.Record(avroSchema);
 user.put("name", "Emily");
 user.put("favorite_number", 32);
 user.put("favorite_color", "green");

Integrating with AWS Glue Schema Registry 280

AWS Glue User Guide

 ByteArrayOutputStream outBytes = new ByteArrayOutputStream();
 Encoder encoder = EncoderFactory.get().directBinaryEncoder(outBytes, null);
 new GenericDatumWriter<>(avroSchema).write(user, encoder);
 encoder.flush();
 return ByteBuffer.wrap(outBytes.toByteArray());
 }

Setting up the Kinesis client library

You will develop your Kinesis Client Library consumer in Java. For more information, see
Developing a Kinesis Client Library Consumer in Java in the Amazon Kinesis Data Streams Developer
Guide.

1. Create an instance of GlueSchemaRegistryDeserializer by passing a
GlueSchemaRegistryConfiguration object.

2. Pass the GlueSchemaRegistryDeserializer to
retrievalConfig.glueSchemaRegistryDeserializer.

3. Access the schema of incoming messages by calling kinesisClientRecord.getSchema().

GlueSchemaRegistryConfiguration schemaRegistryConfig =
 new GlueSchemaRegistryConfiguration(this.region.toString());

 GlueSchemaRegistryDeserializer glueSchemaRegistryDeserializer =
 new
 GlueSchemaRegistryDeserializerImpl(DefaultCredentialsProvider.builder().build(),
 schemaRegistryConfig);

 RetrievalConfig retrievalConfig =
 configsBuilder.retrievalConfig().retrievalSpecificConfig(new
 PollingConfig(streamName, kinesisClient));
 retrievalConfig.glueSchemaRegistryDeserializer(glueSchemaRegistryDeserializer);

 Scheduler scheduler = new Scheduler(
 configsBuilder.checkpointConfig(),
 configsBuilder.coordinatorConfig(),
 configsBuilder.leaseManagementConfig(),
 configsBuilder.lifecycleConfig(),
 configsBuilder.metricsConfig(),
 configsBuilder.processorConfig(),
 retrievalConfig

Integrating with AWS Glue Schema Registry 281

https://docs.aws.amazon.com/streams/latest/dev/kcl2-standard-consumer-java-example.html

AWS Glue User Guide

);

 public void processRecords(ProcessRecordsInput processRecordsInput) {
 MDC.put(SHARD_ID_MDC_KEY, shardId);
 try {
 log.info("Processing {} record(s)",
 processRecordsInput.records().size());
 processRecordsInput.records()
 .forEach(
 r ->
 log.info("Processed record pk: {} -- Seq: {} : data {} with
 schema: {}",
 r.partitionKey(),
 r.sequenceNumber(), recordToAvroObj(r).toString(), r.getSchema()));
 } catch (Throwable t) {
 log.error("Caught throwable while processing records. Aborting.");
 Runtime.getRuntime().halt(1);
 } finally {
 MDC.remove(SHARD_ID_MDC_KEY);
 }
 }

 private GenericRecord recordToAvroObj(KinesisClientRecord r) {
 byte[] data = new byte[r.data().remaining()];
 r.data().get(data, 0, data.length);
 org.apache.avro.Schema schema = new
 org.apache.avro.Schema.Parser().parse(r.schema().getSchemaDefinition());
 DatumReader datumReader = new GenericDatumReader<>(schema);

 BinaryDecoder binaryDecoder = DecoderFactory.get().binaryDecoder(data, 0,
 data.length, null);
 return (GenericRecord) datumReader.read(null, binaryDecoder);
 }

Interacting with data using the Kinesis Data Streams APIs

This section describes integrating Kinesis Data Streams with Schema Registry using the Kinesis
Data Streams APIs.

1. Update these Maven dependencies:

<dependencyManagement>

Integrating with AWS Glue Schema Registry 282

AWS Glue User Guide

 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.11.884</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-kinesis</artifactId>
 </dependency>

 <dependency>
 <groupId>software.amazon.glue</groupId>
 <artifactId>schema-registry-serde</artifactId>
 <version>1.1.5</version>
 </dependency>

 <dependency>
 <groupId>com.fasterxml.jackson.dataformat</groupId>
 <artifactId>jackson-dataformat-cbor</artifactId>
 <version>2.11.3</version>
 </dependency>
 </dependencies>

2. In the producer, add schema header information using the PutRecords or PutRecord API in
Kinesis Data Streams.

//The following lines add a Schema Header to the record
 com.amazonaws.services.schemaregistry.common.Schema awsSchema =
 new com.amazonaws.services.schemaregistry.common.Schema(schemaDefinition,
 DataFormat.AVRO.name(),
 schemaName);
 GlueSchemaRegistrySerializerImpl glueSchemaRegistrySerializer =
 new
 GlueSchemaRegistrySerializerImpl(DefaultCredentialsProvider.builder().build(), new
 GlueSchemaRegistryConfiguration(getConfigs()));
 byte[] recordWithSchemaHeader =

Integrating with AWS Glue Schema Registry 283

AWS Glue User Guide

 glueSchemaRegistrySerializer.encode(streamName, awsSchema,
 recordAsBytes);

3. In the producer, use the PutRecords or PutRecord API to put the record into the data stream.

4. In the consumer, remove the schema record from the header, and serialize an Avro schema
record.

//The following lines remove Schema Header from record
 GlueSchemaRegistryDeserializerImpl glueSchemaRegistryDeserializer =
 new
 GlueSchemaRegistryDeserializerImpl(DefaultCredentialsProvider.builder().build(),
 getConfigs());
 byte[] recordWithSchemaHeaderBytes = new
 byte[recordWithSchemaHeader.remaining()];
 recordWithSchemaHeader.get(recordWithSchemaHeaderBytes, 0,
 recordWithSchemaHeaderBytes.length);
 com.amazonaws.services.schemaregistry.common.Schema awsSchema =
 glueSchemaRegistryDeserializer.getSchema(recordWithSchemaHeaderBytes);
 byte[] record =
 glueSchemaRegistryDeserializer.getData(recordWithSchemaHeaderBytes);

 //The following lines serialize an AVRO schema record
 if (DataFormat.AVRO.name().equals(awsSchema.getDataFormat())) {
 Schema avroSchema = new
 org.apache.avro.Schema.Parser().parse(awsSchema.getSchemaDefinition());
 Object genericRecord = convertBytesToRecord(avroSchema, record);
 System.out.println(genericRecord);
 }

Interacting with data using the Kinesis Data Streams APIs

The following is example code for using the PutRecords and GetRecords APIs.

//Full sample code
import
 com.amazonaws.services.schemaregistry.deserializers.GlueSchemaRegistryDeserializerImpl;
import
 com.amazonaws.services.schemaregistry.serializers.GlueSchemaRegistrySerializerImpl;
import com.amazonaws.services.schemaregistry.utils.AVROUtils;
import com.amazonaws.services.schemaregistry.utils.AWSSchemaRegistryConstants;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;

Integrating with AWS Glue Schema Registry 284

AWS Glue User Guide

import org.apache.avro.generic.GenericDatumReader;
import org.apache.avro.generic.GenericDatumWriter;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.io.Decoder;
import org.apache.avro.io.DecoderFactory;
import org.apache.avro.io.Encoder;
import org.apache.avro.io.EncoderFactory;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.services.glue.model.DataFormat;

import java.io.ByteArrayOutputStream;
import java.io.File;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

public class PutAndGetExampleWithEncodedData {
 static final String regionName = "us-east-2";
 static final String streamName = "testStream1";
 static final String schemaName = "User-Topic";
 static final String AVRO_USER_SCHEMA_FILE = "src/main/resources/user.avsc";
 KinesisApi kinesisApi = new KinesisApi();

 void runSampleForPutRecord() throws IOException {
 Object testRecord = getTestRecord();
 byte[] recordAsBytes = convertRecordToBytes(testRecord);
 String schemaDefinition =
 AVROUtils.getInstance().getSchemaDefinition(testRecord);

 //The following lines add a Schema Header to a record
 com.amazonaws.services.schemaregistry.common.Schema awsSchema =
 new com.amazonaws.services.schemaregistry.common.Schema(schemaDefinition,
 DataFormat.AVRO.name(),
 schemaName);
 GlueSchemaRegistrySerializerImpl glueSchemaRegistrySerializer =
 new
 GlueSchemaRegistrySerializerImpl(DefaultCredentialsProvider.builder().build(), new
 GlueSchemaRegistryConfiguration(regionName));
 byte[] recordWithSchemaHeader =
 glueSchemaRegistrySerializer.encode(streamName, awsSchema, recordAsBytes);

Integrating with AWS Glue Schema Registry 285

AWS Glue User Guide

 //Use PutRecords api to pass a list of records
 kinesisApi.putRecords(Collections.singletonList(recordWithSchemaHeader),
 streamName, regionName);

 //OR
 //Use PutRecord api to pass single record
 //kinesisApi.putRecord(recordWithSchemaHeader, streamName, regionName);
 }

 byte[] runSampleForGetRecord() throws IOException {
 ByteBuffer recordWithSchemaHeader = kinesisApi.getRecords(streamName,
 regionName);

 //The following lines remove the schema registry header
 GlueSchemaRegistryDeserializerImpl glueSchemaRegistryDeserializer =
 new
 GlueSchemaRegistryDeserializerImpl(DefaultCredentialsProvider.builder().build(), new
 GlueSchemaRegistryConfiguration(regionName));
 byte[] recordWithSchemaHeaderBytes = new
 byte[recordWithSchemaHeader.remaining()];
 recordWithSchemaHeader.get(recordWithSchemaHeaderBytes, 0,
 recordWithSchemaHeaderBytes.length);

 com.amazonaws.services.schemaregistry.common.Schema awsSchema =
 glueSchemaRegistryDeserializer.getSchema(recordWithSchemaHeaderBytes);

 byte[] record =
 glueSchemaRegistryDeserializer.getData(recordWithSchemaHeaderBytes);

 //The following lines serialize an AVRO schema record
 if (DataFormat.AVRO.name().equals(awsSchema.getDataFormat())) {
 Schema avroSchema = new
 org.apache.avro.Schema.Parser().parse(awsSchema.getSchemaDefinition());
 Object genericRecord = convertBytesToRecord(avroSchema, record);
 System.out.println(genericRecord);
 }

 return record;
 }

 private byte[] convertRecordToBytes(final Object record) throws IOException {
 ByteArrayOutputStream recordAsBytes = new ByteArrayOutputStream();
 Encoder encoder = EncoderFactory.get().directBinaryEncoder(recordAsBytes,
 null);

Integrating with AWS Glue Schema Registry 286

AWS Glue User Guide

 GenericDatumWriter datumWriter = new
 GenericDatumWriter<>(AVROUtils.getInstance().getSchema(record));
 datumWriter.write(record, encoder);
 encoder.flush();
 return recordAsBytes.toByteArray();
 }

 private GenericRecord convertBytesToRecord(Schema avroSchema, byte[] record) throws
 IOException {
 final GenericDatumReader<GenericRecord> datumReader = new
 GenericDatumReader<>(avroSchema);
 Decoder decoder = DecoderFactory.get().binaryDecoder(record, null);
 GenericRecord genericRecord = datumReader.read(null, decoder);
 return genericRecord;
 }

 private Map<String, String> getMetadata() {
 Map<String, String> metadata = new HashMap<>();
 metadata.put("event-source-1", "topic1");
 metadata.put("event-source-2", "topic2");
 metadata.put("event-source-3", "topic3");
 metadata.put("event-source-4", "topic4");
 metadata.put("event-source-5", "topic5");
 return metadata;
 }

 private GlueSchemaRegistryConfiguration getConfigs() {
 GlueSchemaRegistryConfiguration configs = new
 GlueSchemaRegistryConfiguration(regionName);
 configs.setSchemaName(schemaName);
 configs.setAutoRegistration(true);
 configs.setMetadata(getMetadata());
 return configs;
 }

 private Object getTestRecord() throws IOException {
 GenericRecord genericRecord;
 Schema.Parser parser = new Schema.Parser();
 Schema avroSchema = parser.parse(new File(AVRO_USER_SCHEMA_FILE));

 genericRecord = new GenericData.Record(avroSchema);
 genericRecord.put("name", "testName");
 genericRecord.put("favorite_number", 99);
 genericRecord.put("favorite_color", "red");

Integrating with AWS Glue Schema Registry 287

AWS Glue User Guide

 return genericRecord;
 }
}

Use case: Amazon Managed Service for Apache Flink

Apache Flink is a popular open source framework and distributed processing engine for stateful
computations over unbounded and bounded data streams. Amazon Managed Service for
Apache Flink is a fully managed AWS service that enables you to build and manage Apache Flink
applications to process streaming data.

Open source Apache Flink provides a number of sources and sinks. For example, predefined data
sources include reading from files, directories, and sockets, and ingesting data from collections
and iterators. Apache Flink DataStream Connectors provide code for Apache Flink to interface with
various third-party systems, such as Apache Kafka or Kinesis as sources and/or sinks.

For more information, see Amazon Kinesis Data Analytics Developer Guide.

Apache Flink Kafka connector

Apache Flink provides an Apache Kafka data stream connector for reading data from and writing
data to Kafka topics with exactly-once guarantees. Flink's Kafka consumer, FlinkKafkaConsumer,
provides access to read from one or more Kafka topics. Apache Flink’s Kafka Producer,
FlinkKafkaProducer, allows writing a stream of records to one or more Kafka topics. For more
information, see Apache Kafka Connector.

Apache Flink Kinesis streams Connector

The Kinesis data stream connector provides access to Amazon Kinesis Data Streams. The
FlinkKinesisConsumer is an exactly-once parallel streaming data source that subscribes to
multiple Kinesis streams within the same AWS service region, and can transparently handle re-
sharding of streams while the job is running. Each subtask of the consumer is responsible for
fetching data records from multiple Kinesis shards. The number of shards fetched by each subtask
will change as shards are closed and created by Kinesis. The FlinkKinesisProducer uses Kinesis
Producer Library (KPL) to put data from an Apache Flink stream into a Kinesis stream. For more
information, see Amazon Kinesis Streams Connector.

For more information, see the AWS Glue Schema Github repository.

Integrating with AWS Glue Schema Registry 288

https://docs.aws.amazon.com/kinesisanalytics/latest/java/what-is.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/connectors/kafka.html
https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/connectors/kinesis.html
https://github.com/awslabs/aws-glue-schema-registry

AWS Glue User Guide

Integrating with Apache Flink

The SerDes library provided with Schema Registry integrates with
Apache Flink. To work with Apache Flink, you are required to implement
SerializationSchema and DeserializationSchema interfaces
called GlueSchemaRegistryAvroSerializationSchema and
GlueSchemaRegistryAvroDeserializationSchema, which you can plug into Apache Flink
connectors.

Adding an AWS Glue Schema Registry dependency into the Apache Flink application

To set up the integration dependencies to AWS Glue Schema Registry in the Apache Flink
application:

1. Add the dependency to the pom.xml file.

<dependency>
 <groupId>software.amazon.glue</groupId>
 <artifactId>schema-registry-flink-serde</artifactId>
 <version>1.0.0</version>
</dependency>

Integrating Kafka or Amazon MSK with Apache Flink

You can use Managed Service for Apache Flink for Apache Flink, with Kafka as a source or Kafka as
a sink.

Kafka as a source

The following diagram shows integrating Kinesis Data Streams with Managed Service for Apache
Flink for Apache Flink, with Kafka as a source.

Integrating with AWS Glue Schema Registry 289

https://github.com/apache/flink/blob/master/flink-streaming-java/src/main/java/org/apache/flink/streaming/util/serialization/SerializationSchema.java
https://github.com/apache/flink/blob/8674b69964eae50cad024f2c5caf92a71bf21a09/flink-core/src/main/java/org/apache/flink/api/common/serialization/DeserializationSchema.java

AWS Glue User Guide

Kafka as a sink

The following diagram shows integrating Kinesis Data Streams with Managed Service for Apache
Flink for Apache Flink, with Kafka as a sink.

To integrate Kafka (or Amazon MSK) with Managed Service for Apache Flink for Apache Flink, with
Kafka as a source or Kafka as a sink, make the code changes below. Add the bolded code blocks to
your respective code in the analogous sections.

If Kafka is the source, then use the deserializer code (block 2). If Kafka is the sink, use the serializer
code (block 3).

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

Integrating with AWS Glue Schema Registry 290

AWS Glue User Guide

String topic = "topic";
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "test");

// block 1
Map<String, Object> configs = new HashMap<>();
configs.put(AWSSchemaRegistryConstants.AWS_REGION, "aws-region");
configs.put(AWSSchemaRegistryConstants.SCHEMA_AUTO_REGISTRATION_SETTING, true);
configs.put(AWSSchemaRegistryConstants.AVRO_RECORD_TYPE,
 AvroRecordType.GENERIC_RECORD.getName());

FlinkKafkaConsumer<GenericRecord> consumer = new FlinkKafkaConsumer<>(
 topic,
 // block 2
 GlueSchemaRegistryAvroDeserializationSchema.forGeneric(schema, configs),
 properties);

FlinkKafkaProducer<GenericRecord> producer = new FlinkKafkaProducer<>(
 topic,
 // block 3
 GlueSchemaRegistryAvroSerializationSchema.forGeneric(schema, topic, configs),
 properties);

DataStream<GenericRecord> stream = env.addSource(consumer);
stream.addSink(producer);
env.execute();

Integrating Kinesis Data Streams with Apache Flink

You can use Managed Service for Apache Flink for Apache Flink with Kinesis Data Streams as a
source or a sink.

Kinesis Data Streams as a source

The following diagram shows integrating Kinesis Data Streams with Managed Service for Apache
Flink for Apache Flink, with Kinesis Data Streams as a source.

Integrating with AWS Glue Schema Registry 291

AWS Glue User Guide

Kinesis Data Streams as a sink

The following diagram shows integrating Kinesis Data Streams with Managed Service for Apache
Flink for Apache Flink, with Kinesis Data Streams as a sink.

To integrate Kinesis Data Streams with Managed Service for Apache Flink for Apache Flink, with
Kinesis Data Streams as a source or Kinesis Data Streams as a sink, make the code changes below.
Add the bolded code blocks to your respective code in the analogous sections.

If Kinesis Data Streams is the source, use the deserializer code (block 2). If Kinesis Data Streams is
the sink, use the serializer code (block 3).

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

Integrating with AWS Glue Schema Registry 292

AWS Glue User Guide

String streamName = "stream";
Properties consumerConfig = new Properties();
consumerConfig.put(AWSConfigConstants.AWS_REGION, "aws-region");
consumerConfig.put(AWSConfigConstants.AWS_ACCESS_KEY_ID, "aws_access_key_id");
consumerConfig.put(AWSConfigConstants.AWS_SECRET_ACCESS_KEY, "aws_secret_access_key");
consumerConfig.put(ConsumerConfigConstants.STREAM_INITIAL_POSITION, "LATEST");

// block 1
Map<String, Object> configs = new HashMap<>();
configs.put(AWSSchemaRegistryConstants.AWS_REGION, "aws-region");
configs.put(AWSSchemaRegistryConstants.SCHEMA_AUTO_REGISTRATION_SETTING, true);
configs.put(AWSSchemaRegistryConstants.AVRO_RECORD_TYPE,
 AvroRecordType.GENERIC_RECORD.getName());

FlinkKinesisConsumer<GenericRecord> consumer = new FlinkKinesisConsumer<>(
 streamName,
 // block 2
 GlueSchemaRegistryAvroDeserializationSchema.forGeneric(schema, configs),
 properties);

FlinkKinesisProducer<GenericRecord> producer = new FlinkKinesisProducer<>(
 // block 3
 GlueSchemaRegistryAvroSerializationSchema.forGeneric(schema, topic, configs),
 properties);
producer.setDefaultStream(streamName);
producer.setDefaultPartition("0");

DataStream<GenericRecord> stream = env.addSource(consumer);
stream.addSink(producer);
env.execute();

Use Case: Integration with AWS Lambda

To use an AWS Lambdafunction as an Apache Kafka/Amazon MSK consumer and deserialize Avro-
encoded messages using AWS Glue Schema Registry, visit the MSK Labs page.

Use case: AWS Glue Data Catalog

AWS Glue tables support schemas that you can specify manually or by reference to the AWS
Glue Schema Registry. The Schema Registry integrates with the Data Catalog to allow you to
optionally use schemas stored in the Schema Registry when creating or updating AWS Glue tables
or partitions in the Data Catalog. To identify a schema definition in the Schema Registry, at a
minimum, you need to know the ARN of the schema it is part of. A schema version of a schema,

Integrating with AWS Glue Schema Registry 293

https://amazonmsk-labs.workshop.aws/en/msklambda/gsrschemareg.html

AWS Glue User Guide

which contains a schema definition, can be referenced by its UUID or version number. There is
always one schema version, the "latest" version, that can be looked up without knowing its version
number or UUID.

When calling the CreateTable or UpdateTable operations, you will pass a TableInput
structure that contains a StorageDescriptor, which may have a SchemaReference to an
existing schema in the Schema Registry. Similarly, when you call the GetTable or GetPartition
APIs, the response may contain the schema and the SchemaReference. When a table or partition
was created using a schema references, the Data Catalog will try to fetch the schema for this
schema reference. In case it is unable to find the schema in the Schema Registry, it returns an
empty schema in the GetTable response; otherwise the response will have both the schema and
schema reference.

You can also perform the actions from the AWS Glue console.

To perform these operations and create, update, or view the schema information, you must give an
IAM role to the calling user that provides permissions for the GetSchemaVersion API.

Adding a table or updating the schema for a table

Adding a new table from an existing schema binds the table to a specific schema version. Once new
schema versions get registered, you can update this table definition from the View table page in
the AWS Glue console or using the UpdateTable action (Python: update_table) API.

Adding a table from an existing schema

You can create an AWS Glue table from a schema version in the registry using the AWS Glue
console or CreateTable API.

AWS Glue API

When calling the CreateTable API, you will pass a TableInput that contains a
StorageDescriptor which has a SchemaReference to an existing schema in the Schema
Registry.

AWS Glue console

To create a table from the AWS Glue console:

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, under Data catalog, choose Tables.

Integrating with AWS Glue Schema Registry 294

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

3. In the Add Tables menu, choose Add table from existing schema.

4. Configure the table properties and data store per the AWS Glue Developer Guide.

5. In the Choose a Glue schema page, select the Registry where the schema resides.

6. Choose the Schema name and select the Version of the schema to apply.

7. Review the schema preview, and choose Next.

8. Review and create the table.

The schema and version applied to the table appears in the Glue schema column in the list of
tables. You can view the table to see more details.

Updating the schema for a table

When a new schema version becomes available, you may want to update a table's schema using
the UpdateTable action (Python: update_table) API or the AWS Glue console.

Important

When updating the schema for an existing table that has an AWS Glue schema specified
manually, the new schema referenced in the Schema Registry may be incompatible. This
can result in your jobs failing.

AWS Glue API

When calling the UpdateTable API, you will pass a TableInput that contains a
StorageDescriptor which has a SchemaReference to an existing schema in the Schema
Registry.

AWS Glue console

To update the schema for a table from the AWS Glue console:

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, under Data catalog, choose Tables.

3. View the table from the list of tables.

4. Click Update schema in the box that informs you about a new version.

5. Review the differences between the current and new schema.

Integrating with AWS Glue Schema Registry 295

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

6. Choose Show all schema differences to see more details.

7. Choose Save table to accept the new version.

Use case: AWS Glue streaming

AWS Glue streaming consumes data from streaming sources and perform ETL operations before
writing to an output sink. Input streaming source can be specified using a Data Table or directly by
specifying the source configuration.

AWS Glue streaming supports a Data Catalog table for the streaming source created with the
schema present in the AWS Glue Schema Registry. You can create a schema in the AWS Glue
Schema Registry and create an AWS Glue table with a streaming source using this schema. This
AWS Glue table can be used as an input to an AWS Glue streaming job for deserializing data in the
input stream.

One point to note here is when the schema in the AWS Glue Schema Registry changes, you need to
restart the AWS Glue streaming job needs to reflect the changes in the schema.

Use case: Apache Kafka Streams

The Apache Kafka Streams API is a client library for processing and analyzing data stored in Apache
Kafka. This section describes the integration of Apache Kafka Streams with AWS Glue Schema
Registry, which allows you to manage and enforce schemas on your data streaming applications.
For more information on Apache Kafka Streams, see Apache Kafka Streams.

Integrating with the SerDes Libraries

There is a GlueSchemaRegistryKafkaStreamsSerde class that you can configure a Streams
application with.

Kafka Streams application example code

To use the AWS Glue Schema Registry within an Apache Kafka Streams application:

1. Configure the Kafka Streams application.

final Properties props = new Properties();
 props.put(StreamsConfig.APPLICATION_ID_CONFIG, "avro-streams");
 props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
 props.put(StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG, 0);

Integrating with AWS Glue Schema Registry 296

https://kafka.apache.org/documentation/streams/

AWS Glue User Guide

 props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG,
 Serdes.String().getClass().getName());
 props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG,
 AWSKafkaAvroSerDe.class.getName());
 props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");

 props.put(AWSSchemaRegistryConstants.AWS_REGION, "aws-region");
 props.put(AWSSchemaRegistryConstants.SCHEMA_AUTO_REGISTRATION_SETTING, true);
 props.put(AWSSchemaRegistryConstants.AVRO_RECORD_TYPE,
 AvroRecordType.GENERIC_RECORD.getName());
 props.put(AWSSchemaRegistryConstants.DATA_FORMAT, DataFormat.AVRO.name());

2. Create a stream from the topic avro-input.

StreamsBuilder builder = new StreamsBuilder();
final KStream<String, GenericRecord> source = builder.stream("avro-input");

3. Process the data records (the example filters out those records whose value of favorite_color is
pink or where the value of amount is 15).

final KStream<String, GenericRecord> result = source
 .filter((key, value) -
> !"pink".equals(String.valueOf(value.get("favorite_color"))));
 .filter((key, value) -> !"15.0".equals(String.valueOf(value.get("amount"))));

4. Write the results back to the topic avro-output.

result.to("avro-output");

5. Start the Apache Kafka Streams application.

KafkaStreams streams = new KafkaStreams(builder.build(), props);
streams.start();

Integrating with AWS Glue Schema Registry 297

AWS Glue User Guide

Implementation results

These results show the filtering process of records that were filtered out in step 3 as a
favorite_color of "pink" or value of "15.0".

Records before filtering:

{"name": "Sansa", "favorite_number": 99, "favorite_color": "white"}
{"name": "Harry", "favorite_number": 10, "favorite_color": "black"}
{"name": "Hermione", "favorite_number": 1, "favorite_color": "red"}
{"name": "Ron", "favorite_number": 0, "favorite_color": "pink"}
{"name": "Jay", "favorite_number": 0, "favorite_color": "pink"}

{"id": "commute_1","amount": 3.5}
{"id": "grocery_1","amount": 25.5}
{"id": "entertainment_1","amount": 19.2}
{"id": "entertainment_2","amount": 105}
 {"id": "commute_1","amount": 15}

Records after filtering:

{"name": "Sansa", "favorite_number": 99, "favorite_color": "white"}
{"name": "Harry", "favorite_number": 10, "favorite_color": "black"}
{"name": "Hermione", "favorite_number": 1, "favorite_color": "red"}
{"name": "Ron", "favorite_number": 0, "favorite_color": "pink"}

{"id": "commute_1","amount": 3.5}
{"id": "grocery_1","amount": 25.5}
{"id": "entertainment_1","amount": 19.2}
{"id": "entertainment_2","amount": 105}

Use case: Apache Kafka Connect

The integration of Apache Kafka Connect with the AWS Glue Schema Registry enables you to get
schema information from connectors. The Apache Kafka converters specify the format of data
within Apache Kafka and how to translate it into Apache Kafka Connect data. Every Apache Kafka
Connect user will need to configure these converters based on the format they want their data in
when loaded from or stored into Apache Kafka. In this way, you can define your own converters
to translate Apache Kafka Connect data into the type used in the AWS Glue Schema Registry (for

Integrating with AWS Glue Schema Registry 298

AWS Glue User Guide

example: Avro) and utilize our serializer to register its schema and do serialization. Then converters
are also able to use our deserializer to deserialize data received from Apache Kafka and convert it
back into Apache Kafka Connect data. An example workflow diagram is given below.

1. Install the aws-glue-schema-registry project by cloning the Github repository for the AWS
Glue Schema Registry.

git clone git@github.com:awslabs/aws-glue-schema-registry.git
cd aws-glue-schema-registry
mvn clean install
mvn dependency:copy-dependencies

2. If you plan on using Apache Kafka Connect in Standalone mode, update connect-
standalone.properties using the instructions below for this step. If you plan on using Apache
Kafka Connect in Distributed mode, update connect-avro-distributed.properties using the same
instructions.

a. Add these properties also to the Apache Kafka connect properties file:

key.converter.region=aws-region
value.converter.region=aws-region
key.converter.schemaAutoRegistrationEnabled=true
value.converter.schemaAutoRegistrationEnabled=true
key.converter.avroRecordType=GENERIC_RECORD

Integrating with AWS Glue Schema Registry 299

https://github.com/awslabs/aws-glue-schema-registry
https://github.com/awslabs/aws-glue-schema-registry

AWS Glue User Guide

value.converter.avroRecordType=GENERIC_RECORD

b. Add the command below to the Launch mode section under kafka-run-class.sh:

-cp $CLASSPATH:"<your AWS GlueSchema Registry base directory>/target/dependency/*"

3. Add the command below to the Launch mode section under kafka-run-class.sh

-cp $CLASSPATH:"<your AWS GlueSchema Registry base directory>/target/dependency/*"

It should look like this:

Launch mode
if ["x$DAEMON_MODE" = "xtrue"]; then
 nohup "$JAVA" $KAFKA_HEAP_OPTS $KAFKA_JVM_PERFORMANCE_OPTS $KAFKA_GC_LOG_OPTS
 $KAFKA_JMX_OPTS $KAFKA_LOG4J_OPTS -cp $CLASSPATH:"/Users/johndoe/aws-glue-schema-
registry/target/dependency/*" $KAFKA_OPTS "$@" > "$CONSOLE_OUTPUT_FILE" 2>&1 < /dev/
null &
else
 exec "$JAVA" $KAFKA_HEAP_OPTS $KAFKA_JVM_PERFORMANCE_OPTS $KAFKA_GC_LOG_OPTS
 $KAFKA_JMX_OPTS $KAFKA_LOG4J_OPTS -cp $CLASSPATH:"/Users/johndoe/aws-glue-schema-
registry/target/dependency/*" $KAFKA_OPTS "$@"
fi

4. If using bash, run the below commands to set-up your CLASSPATH in your bash_profile. For any
other shell, update the environment accordingly.

echo 'export GSR_LIB_BASE_DIR=<>' >>~/.bash_profile
echo 'export GSR_LIB_VERSION=1.0.0' >>~/.bash_profile
echo 'export KAFKA_HOME=<your Apache Kafka installation directory>' >>~/.bash_profile
echo 'export CLASSPATH=$CLASSPATH:$GSR_LIB_BASE_DIR/avro-kafkaconnect-converter/
target/schema-registry-kafkaconnect-converter-$GSR_LIB_VERSION.jar:$GSR_LIB_BASE_DIR/
common/target/schema-registry-common-$GSR_LIB_VERSION.jar:$GSR_LIB_BASE_DIR/
avro-serializer-deserializer/target/schema-registry-serde-$GSR_LIB_VERSION.jar'
 >>~/.bash_profile
source ~/.bash_profile

5. (Optional) If you want to test with a simple file source, then clone the file source connector.

git clone https://github.com/mmolimar/kafka-connect-fs.git
cd kafka-connect-fs/

Integrating with AWS Glue Schema Registry 300

AWS Glue User Guide

a. Under the source connector configuration, edit the data format to Avro, file reader to
AvroFileReader and update an example Avro object from the file path you are reading
from. For example:

vim config/kafka-connect-fs.properties

fs.uris=<path to a sample avro object>
policy.regexp=^.*\.avro$
file_reader.class=com.github.mmolimar.kafka.connect.fs.file.reader.AvroFileReader

b. Install the source connector.

mvn clean package
echo "export CLASSPATH=\$CLASSPATH:\"\$(find target/ -type f -name '*.jar'| grep
 '\-package' | tr '\n' ':')\"" >>~/.bash_profile
source ~/.bash_profile

c. Update the sink properties under <your Apache Kafka installation directory>/
config/connect-file-sink.properties update the topic name and out file name.

file=<output file full path>
topics=<my topic>

6. Start the Source Connector (in this example it is a file source connector).

$KAFKA_HOME/bin/connect-standalone.sh $KAFKA_HOME/config/connect-
standalone.properties config/kafka-connect-fs.properties

7. Run the Sink Connector (in this example it is a file sink connector).

$KAFKA_HOME/bin/connect-standalone.sh $KAFKA_HOME/config/connect-
standalone.properties $KAFKA_HOME/config/connect-file-sink.properties

For an example Kafka Connect usage, look at the run-local-tests.sh script under integration-tests
folder in the Github repository for the AWS Glue Schema Registry.

Integrating with AWS Glue Schema Registry 301

https://github.com/awslabs/aws-glue-schema-registry/tree/master/integration-tests

AWS Glue User Guide

Migration from a third-party schema registry to AWS Glue Schema
Registry

The migration from a third-party schema registry to the AWS Glue Schema Registry has a
dependency on the existing, current third-party schema registry. If there are records in an Apache
Kafka topic which were sent using a third-party schema registry, consumers need the third-party
schema registry to deserialize those records. The AWSKafkaAvroDeserializer provides the
ability to specify a secondary deserializer class which points to the third-party deserializer and is
used to deserialize those records.

There are two criteria for retirement of a third-party schema. First, retirement can occur only after
records in Apache Kafka topics using the 3rd party schema registry are either no longer required
by and for any consumers. Second, retirement can occur by aging out of the Apache Kafka topics,
depending on the retention period specified for those topics. Note that if you have topics which
have infinite retention, you can still migrate to the AWS Glue Schema Registry but you will not
be able to retire the third-party schema registry. As a workaround, you can use an application
or Mirror Maker 2 to read from the current topic and produce to a new topic with the AWS Glue
Schema Registry.

To migrate from a third-party schema registry to the AWS Glue Schema Registry:

1. Create a registry in the AWS Glue Schema Registry, or use the default registry.

2. Stop the consumer. Modify it to include AWS Glue Schema Registry as the primary deserializer,
and the third-party schema registry as the secondary.

• Set the consumer properties. In this example, the secondary_deserializer is set to a different
deserializer. The behavior is as follows: the consumer retrieves records from Amazon MSK
and first tries to use the AWSKafkaAvroDeserializer. If it is unable to read the magic
byte that contains the Avro Schema ID for the AWS Glue Schema Registry schema, the
AWSKafkaAvroDeserializer then tries to use the deserializer class provided in the
secondary_deserializer. The properties specific to the secondary deserializer also need
to be provided in the consumer properties, such as the schema_registry_url_config and
specific_avro_reader_config, as shown below.

consumerProps.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
 StringDeserializer.class.getName());
consumerProps.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
 AWSKafkaAvroDeserializer.class.getName());

Migrating to AWS Glue Schema Registry 302

AWS Glue User Guide

consumerProps.setProperty(AWSSchemaRegistryConstants.AWS_REGION,
 KafkaClickstreamConsumer.gsrRegion);
consumerProps.setProperty(AWSSchemaRegistryConstants.SECONDARY_DESERIALIZER,
 KafkaAvroDeserializer.class.getName());
consumerProps.setProperty(KafkaAvroDeserializerConfig.SCHEMA_REGISTRY_URL_CONFIG,
 "URL for third-party schema registry");
consumerProps.setProperty(KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG,
 "true");

3. Restart the consumer.

4. Stop the producer and point the producer to the AWS Glue Schema Registry.

a. Set the producer properties. In this example, the producer will use the default-registry and
auto register schema versions.

producerProps.setProperty(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
 StringSerializer.class.getName());
producerProps.setProperty(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
 AWSKafkaAvroSerializer.class.getName());
producerProps.setProperty(AWSSchemaRegistryConstants.AWS_REGION, "us-east-2");
producerProps.setProperty(AWSSchemaRegistryConstants.AVRO_RECORD_TYPE,
 AvroRecordType.SPECIFIC_RECORD.getName());
producerProps.setProperty(AWSSchemaRegistryConstants.SCHEMA_AUTO_REGISTRATION_SETTING,
 "true");

5. (Optional) Manually move existing schemas and schema versions from the current third-party
schema registry to the AWS Glue Schema Registry, either to the default-registry in AWS Glue
Schema Registry or to a specific non-default registry in AWS Glue Schema Registry. This can be
done by exporting schemas from the third-party schema registries in JSON format and creating
new schemas in AWS Glue Schema Registry using the AWS Management Console or the AWS CLI.

This step may be important if you need to enable compatibility checks with previous schema
versions for newly created schema versions using the AWS CLI and the AWS Management
Console, or when producers send messages with a new schema with auto-registration of schema
versions turned on.

6. Start the producer.

Migrating to AWS Glue Schema Registry 303

AWS Glue User Guide

Connecting to data

An AWS Glue connection is a Data Catalog object that stores login credentials, URI strings, virtual
private cloud (VPC) information, and more for a particular data store. AWS Glue crawlers, jobs, and
development endpoints use connections in order to access certain types of data stores. You can use
connections for both sources and targets, and reuse the same connection across multiple crawler or
extract, transform, and load (ETL) jobs.

AWS Glue supports the following connection types:

• Amazon DocumentDB

• Amazon OpenSearch Service, for use with AWS Glue for Spark.

• Amazon Redshift

• Azure Cosmos, for use of Azure Cosmos DB for NoSQL with AWS Glue ETL jobs

• Azure SQL, for use with AWS Glue for Spark.

• Google BigQuery, for use with AWS Glue for Spark.

• JDBC

• Kafka

• MongoDB

• MongoDB Atlas

• Salesforce

• SAP HANA, for use with AWS Glue for Spark.

• Snowflake, for use with AWS Glue for Spark.

• Teradata Vantage, when using AWS Glue for Spark.

• Vertica, for use with AWS Glue for Spark.

• Various Amazon Relational Database Service (Amazon RDS) offerings.

• Network (designates a connection to a data source that is in an Amazon Virtual Private Cloud
(Amazon VPC))

• Aurora (supported if the native JDBC driver is being used. Not all driver features can be
leveraged)

304

AWS Glue User Guide

With AWS Glue Studio, you can also create a connection for a connector. A connector is an optional
code package that assists with accessing data stores in AWS Glue Studio. For more information, see
Using connectors and connections with AWS Glue Studio

For information about how to connect to on-premises databases, see How to access and analyze
on-premises data stores using AWS Glue at the AWS Big Data Blog website.

This section includes the following topics to help you use AWS Glue connections:

• AWS Glue connection properties

• Storing connection credentials in AWS Secrets Manager

• Adding an AWS Glue connection

• Testing an AWS Glue connection

• Configuring AWS calls to go through your VPC

• Connecting to a JDBC data store in a VPC

• Using a MongoDB or MongoDB Atlas connection

• Crawling an Amazon S3 data store using a VPC endpoint

• Troubleshooting connection issues in AWS Glue

• Tutorial: Using the AWS Glue Connector for Elasticsearch

AWS Glue connection properties

This topic includes information about properties for AWS Glue connections.

Topics

• Required connection properties

• AWS Glue JDBC connection properties

• AWS Glue MongoDB and MongoDB Atlas connection properties

• Salesforce connection properties

• Snowflake connection

• Vertica connection

• SAP HANA connection

• Azure SQL connection

AWS Glue connection properties 305

https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html
https://aws.amazon.com/blogs/big-data/how-to-access-and-analyze-on-premises-data-stores-using-aws-glue/
https://aws.amazon.com/blogs/big-data/how-to-access-and-analyze-on-premises-data-stores-using-aws-glue/

AWS Glue User Guide

• Teradata Vantage connection

• OpenSearch Service connection

• Azure Cosmos connection

• AWS Glue SSL connection properties

• Apache Kafka connection properties for client authentication

• Google BigQuery connection

• Vertica connection

Required connection properties

When you define a connection on the AWS Glue console, you must provide values for the following
properties:

Connection name

Enter a unique name for your connection.

Connection type

Choose JDBC or one of the specific connection types.

For details about the JDBC connection type, see the section called “JDBC connection properties”

Choose Network to connect to a data source within an Amazon Virtual Private Cloud
environment (Amazon VPC)).

Depending on the type that you choose, the AWS Glue console displays other required fields.
For example, if you choose Amazon RDS, you must then choose the database engine.

Require SSL connection

When you select this option, AWS Glue must verify that the connection to the data store is
connected over a trusted Secure Sockets Layer (SSL).

For more information, including additional options that are available when you select this
option, see the section called “SSL connection properties”.

Select MSK cluster (Amazon managed streaming for Apache Kafka (MSK) only)

Specifies an MSK cluster from another AWS account.

Required connection properties 306

AWS Glue User Guide

Kafka bootstrap server URLs (Kafka only)

Specifies a comma-separated list of bootstrap server URLs. Include the port number.
For example: b-1.vpc-test-2.o4q88o.c6.kafka.us-east-1.amazonaws.com:9094, b-2.vpc-
test-2.o4q88o.c6.kafka.us-east-1.amazonaws.com:9094, b-3.vpc-test-2.o4q88o.c6.kafka.us-
east-1.amazonaws.com:9094

AWS Glue JDBC connection properties

AWS Glue can connect to the following data stores through a JDBC connection:

• Amazon Redshift

• Amazon Aurora

• Microsoft SQL Server

• MySQL

• Oracle

• PostgreSQL

• Snowflake, when using AWS Glue crawlers.

• Aurora (supported if the native JDBC driver is being used. Not all driver features can be
leveraged)

• Amazon RDS for MariaDB

Important

Currently, an ETL job can use JDBC connections within only one subnet. If you have
multiple data stores in a job, they must be on the same subnet, or accessible from the
subnet.
If you choose to bring in your own JDBC driver versions for AWS Glue crawlers, your
crawlers will consume resources in AWS Glue jobs and Amazon S3 to ensure your provided
drivers are run in your environment. The additional usage of resources will be reflected in
your account. Additionally, providing your own JDBC driver does not mean that the crawler
is able to leverage all of the driver’s features. Drivers are limited to the properties described
in Defining connections in the Data Catalog.

JDBC connection properties 307

https://docs.aws.amazon.com/glue/latest/dg/glue-connections.html

AWS Glue User Guide

The following are additional properties for the JDBC connection type.

JDBC URL

Enter the URL for your JDBC data store. For most database engines, this field is in the
following format. In this format, replace protocol, host, port, and db_name with your own
information.

jdbc:protocol://host:port/db_name

Depending on the database engine, a different JDBC URL format might be required. This format
can have slightly different use of the colon (:) and slash (/) or different keywords to specify
databases.

For JDBC to connect to the data store, a db_name in the data store is required. The db_name
is used to establish a network connection with the supplied username and password. When
connected, AWS Glue can access other databases in the data store to run a crawler or run an ETL
job.

The following JDBC URL examples show the syntax for several database engines.

• To connect to an Amazon Redshift cluster data store with a dev database:

jdbc:redshift://xxx.us-east-1.redshift.amazonaws.com:8192/dev

• To connect to an Amazon RDS for MySQL data store with an employee database:

jdbc:mysql://xxx-cluster.cluster-xxx.us-east-1.rds.amazonaws.com:3306/
employee

• To connect to an Amazon RDS for PostgreSQL data store with an employee database:

jdbc:postgresql://xxx-cluster.cluster-xxx.us-
east-1.rds.amazonaws.com:5432/employee

• To connect to an Amazon RDS for Oracle data store with an employee service name:

jdbc:oracle:thin://@xxx-cluster.cluster-xxx.us-
east-1.rds.amazonaws.com:1521/employee

The syntax for Amazon RDS for Oracle can follow the following patterns. In these patterns,
replace host, port, service_name, and SID with your own information.

• jdbc:oracle:thin://@host:port/service_name

JDBC connection properties 308

AWS Glue User Guide

• jdbc:oracle:thin://@host:port:SID

• To connect to an Amazon RDS for Microsoft SQL Server data store with an employee
database:

jdbc:sqlserver://xxx-cluster.cluster-xxx.us-
east-1.rds.amazonaws.com:1433;databaseName=employee

The syntax for Amazon RDS for SQL Server can follow the following patterns. In these
patterns, replace server_name, port, and db_name with your own information.

• jdbc:sqlserver://server_name:port;database=db_name

• jdbc:sqlserver://server_name:port;databaseName=db_name

• To connect to an Amazon Aurora PostgreSQL instance of the employee database, specify the
endpoint for the database instance, the port, and the database name:

jdbc:postgresql://employee_instance_1.xxxxxxxxxxxx.us-
east-2.rds.amazonaws.com:5432/employee

• To connect to an Amazon RDS for MariaDB data store with an employee database, specify
the endpoint for the database instance, the port, and the database name:

jdbc:mysql://xxx-cluster.cluster-xxx.aws-
region.rds.amazonaws.com:3306/employee

•
Warning

Snowflake JDBC connections are supported only by AWS Glue crawlers. When using
the Snowflake connector in AWS Glue jobs, use the Snowflake connection type.

To connect to a Snowflake instance of the sample database, specify the endpoint for the
snowflake instance, the user, the database name, and the role name. You can optionally add
the warehouse parameter.

jdbc:snowflake://account_name.snowflakecomputing.com/?
user=user_name&db=sample&role=role_name&warehouse=warehouse_name

JDBC connection properties 309

AWS Glue User Guide

Important

For Snowflake connections over JDBC, the order of parameters in the URL is enforced
and must be ordered as user, db, role_name, and warehouse.

• To connect to a Snowflake instance of the sample database with AWS private link, specify
the snowflake JDBC URL as follows:

jdbc:snowflake://account_name.region.privatelink.snowflakecomputing.com/?
user=user_name&db=sample&role=role_name&warehouse=warehouse_name

Username

Note

We recommend that you use an AWS secret to store connection credentials instead of
supplying your user name and password directly. For more information, see Storing
connection credentials in AWS Secrets Manager.

Provide a user name that has permission to access the JDBC data store.

Password

Enter the password for the user name that has access permission to the JDBC data store.

Port

Enter the port used in the JDBC URL to connect to an Amazon RDS Oracle instance. This field is
only shown when Require SSL connection is selected for an Amazon RDS Oracle instance.

VPC

Choose the name of the virtual private cloud (VPC) that contains your data store. The AWS Glue
console lists all VPCs for the current Region.

Important

When working over a JDBC connection which is hosted off of AWS, such as with
data from Snowflake, your VPC should have a NAT gateway which splits traffic into
public and private subnets. The public subnet is used for connection to the external
source, and the internal subnet is used for processing by AWS Glue. For information on

JDBC connection properties 310

AWS Glue User Guide

configuring your Amazon VPC for external connections, read Connect to the internet or
other networks using NAT devices and Setting up Amazon VPC for JDBC connections to
Amazon RDS data stores from AWS Glue.

Subnet

Choose the subnet within the VPC that contains your data store. The AWS Glue console lists all
subnets for the data store in your VPC.

Security groups

Choose the security groups that are associated with your data store. AWS Glue requires one or
more security groups with an inbound source rule that allows AWS Glue to connect. The AWS
Glue console lists all security groups that are granted inbound access to your VPC. AWS Glue
associates these security groups with the elastic network interface that is attached to your VPC
subnet.

JDBC Driver Class name - optional

Provide the custom JDBC driver class name:

• Postgres – org.postgresql.Driver

•
MySQL – com.mysql.jdbc.Driver, com.mysql.cj.jdbc.Driver

•
Redshift – com.amazon.redshift.jdbc.Driver, com.amazon.redshift.jdbc42.Driver

•
Oracle – oracle.jdbc.driver.OracleDriver

•
SQL Server – com.microsoft.sqlserver.jdbc.SQLServerDriver

JDBC Driver S3 Path - optional

Provide the Amazon S3 location to the custom JDBC driver. This is an absolute path to a .jar file.
If you want to provide your own JDBC drivers to connect to your data souces for your crawler-
supported databases,
you can specify values for parameters
customJdbcDriverS3Path and customJdbcDriverClassName.
Using a JDBC driver supplied by a customer is limited to the required Required connection
properties.

JDBC connection properties 311

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat.html

AWS Glue User Guide

AWS Glue MongoDB and MongoDB Atlas connection properties

The following are additional properties for the MongoDB or MongoDB Atlas connection type.

MongoDB URL

Enter the URL for your MongoDB or MongoDB Atlas data store:

• For MongoDB: mongodb://host:port/database. The host can be a hostname, IP address,
or UNIX domain socket. If the connection string doesn't specify a port, it uses the default
MongoDB port, 27017.

• For MongoDB Atlas: mongodb+srv://server.example.com/database. The host can be a
hostname that follows corresponds to a DNS SRV record. The SRV format does not require a
port and will use the default MongoDB port, 27017.

Username

Note

We recommend that you use an AWS secret to store connection credentials instead of
supplying your user name and password directly. For more information, see Storing
connection credentials in AWS Secrets Manager.

Provide a user name that has permission to access the JDBC data store.

Password

Enter the password for the user name that has access permission to the MongoDB or MongoDB
Atlas data store.

Salesforce connection properties

The following are additional properties for the Salesforce connection type.

• ENTITY_NAME(String) - (Required) Used for Read/Write. The name of your Object in Salesforce.

• API_VERSION(String) - (Required) Used for Read/Write. Salesforce Rest API version you want to
use.

• SELECTED_FIELDS(List<String>) - Default: empty(SELECT *). Used for Read. Columns you want
to select for the object.

MongoDB and MongoDB Atlas connection properties 312

AWS Glue User Guide

• FILTER_PREDICATE(String) - Default: empty. Used for Read. It should be in the Spark SQL
format.

• QUERY(String) - Default: empty. Used for Read. Full Spark SQL query.

• PARTITION_FIELD(String) - Used for Read. Field to be used to partition query.

• LOWER_BOUND(String)- Used for Read. An inclusive lower bound value of the chosen partition
field.

• UPPER_BOUND(String) - Used for Read. An exclusive upper bound value of the chosen partition
field.

• NUM_PARTITIONS(Integer) - Default: 1. Used for Read. Number of partitions for read.

• IMPORT_DELETED_RECORDS(String) - Default: FALSE. Used for read. To get the delete records
while querying.

• WRITE_OPERATION(String) - Default: INSERT. Used for write. Value should be INSERT, UPDATE,
UPSERT, DELETE.

• ID_FIELD_NAMES(String) - Default : null. Used only for UPSERT.

Snowflake connection

The following properties are used to set up a Snowflake connection used in AWS Glue ETL jobs.
When crawling Snowflake, use a JDBC connection.

Snowflake URL

The URL of your Snowflake endpoint. For more information about Snowflake endpoint URLs,
see Connecting to Your Accounts in the Snowflake documentation.

AWS Secret

The Secret name of a secret in AWS Secrets Manager. AWS Glue will connect to Snowflake using
the sfUser and sfPassword keys of your secret.

Snowflake role (optional)

A Snowflake security role AWS Glue will use when connecting.

Use the following properties when configuring a connection to a Snowflake endpoint hosted in
Amazon VPC using AWS PrivateLink.

Snowflake connection 313

https://docs.snowflake.com/en/user-guide/organizations-connect

AWS Glue User Guide

VPC

Choose the name of the virtual private cloud (VPC) that contains your data store. The AWS Glue
console lists all VPCs for the current Region.

Subnet

Choose the subnet within the VPC that contains your data store. The AWS Glue console lists all
subnets for the data store in your VPC.

Security groups

Choose the security groups that are associated with your data store. AWS Glue requires one or
more security groups with an inbound source rule that allows AWS Glue to connect. The AWS
Glue console lists all security groups that are granted inbound access to your VPC. AWS Glue
associates these security groups with the elastic network interface that is attached to your VPC
subnet.

Vertica connection

Use the following properties to set up a Vertica connection for AWS Glue ETL jobs.

Vertica Host

The hostname of your Vertica installation.

Vertica Port

The port your Vertica installation is available through.

AWS Secret

The Secret name of a secret in AWS Secrets Manager. AWS Glue will connect to Vertica using
the keys of your secret.

Use the following properties when configuring a connection to a Vertica endpoint hosted in
Amazon VPC.

VPC

Choose the name of the virtual private cloud (VPC) that contains your data store. The AWS Glue
console lists all VPCs for the current Region.

Vertica connection 314

AWS Glue User Guide

Subnet

Choose the subnet within the VPC that contains your data store. The AWS Glue console lists all
subnets for the data store in your VPC.

Security groups

Choose the security groups that are associated with your data store. AWS Glue requires one or
more security groups with an inbound source rule that allows AWS Glue to connect. The AWS
Glue console lists all security groups that are granted inbound access to your VPC. AWS Glue
associates these security groups with the elastic network interface that is attached to your VPC
subnet.

SAP HANA connection

Use the following properties to set up a SAP HANA connection for AWS Glue ETL jobs.

SAP HANA URL

A SAP JDBC URL.

SAP HANA JDBC URLs are in the form
jdbc:sap://saphanaHostname:saphanaPort/?databaseName=saphanaDBname,ParameterName=ParameterValue

AWS Glue requires the following JDBC URL parameters:

• databaseName – A default database in SAP HANA to connect to.

AWS Secret

The Secret name of a secret in AWS Secrets Manager. AWS Glue will connect to SAP HANA
using the keys of your secret.

Use the following properties when configuring a connection to a SAP HANA endpoint hosted in
Amazon VPC:

VPC

Choose the name of the virtual private cloud (VPC) that contains your data store. The AWS Glue
console lists all VPCs for the current Region.

SAP HANA connection 315

AWS Glue User Guide

Subnet

Choose the subnet within the VPC that contains your data store. The AWS Glue console lists all
subnets for the data store in your VPC.

Security groups

Choose the security groups that are associated with your data store. AWS Glue requires one or
more security groups with an inbound source rule that allows AWS Glue to connect. The AWS
Glue console lists all security groups that are granted inbound access to your VPC. AWS Glue
associates these security groups with the elastic network interface that is attached to your VPC
subnet.

Azure SQL connection

Use the following properties to set up a Azure SQL connection for AWS Glue ETL jobs.

Azure SQL URL

The JDBC URL of an Azure SQL endpoint.

The URL must be in the following format:
jdbc:sqlserver://databaseServerName:databasePort;databaseName=azuresqlDBname;.

AWS Glue requires the following URL properties:

• databaseName – A default database in Azure SQL to connect to.

For more information about JDBC URLs for Azure SQL Managed Instances, see the Microsoft
documentation.

AWS Secret

The Secret name of a secret in AWS Secrets Manager. AWS Glue will connect to Azure SQL using
the keys of your secret.

Teradata Vantage connection

Use the following properties to set up a Teradata Vantage connection for AWS Glue ETL jobs.

Azure SQL connection 316

https://learn.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=azuresqldb-mi-current
https://learn.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=azuresqldb-mi-current

AWS Glue User Guide

Teradata URL

To connect to a Teradata instance specify the hostname for the database instance and relevant
Teradata parameters:

jdbc:teradata://teradataHostname/ParameterName=ParameterValue,ParameterName=ParameterValue.

AWS Glue supports the following JDBC URL parameters:

• DATABASE_NAME – A default database in Teradata to connect to.

• DBS_PORT – Specifies the Teradata port, if nonstandard.

AWS Secret

The Secret name of a secret in AWS Secrets Manager. AWS Glue will connect to Teradata
Vantage using the keys of your secret.

Use the following properties when configuring a connection to a Teradata Vantage endpoint
hosted in Amazon VPC:

VPC

Choose the name of the virtual private cloud (VPC) that contains your data store. The AWS Glue
console lists all VPCs for the current Region.

Subnet

Choose the subnet within the VPC that contains your data store. The AWS Glue console lists all
subnets for the data store in your VPC.

Security groups

Choose the security groups that are associated with your data store. AWS Glue requires one or
more security groups with an inbound source rule that allows AWS Glue to connect. The AWS
Glue console lists all security groups that are granted inbound access to your VPC. AWS Glue
associates these security groups with the elastic network interface that is attached to your VPC
subnet.

OpenSearch Service connection

Use the following properties to set up a OpenSearch Service connection for AWS Glue ETL jobs.

OpenSearch Service connection 317

AWS Glue User Guide

Domain endpoint

An Amazon OpenSearch Service domain endpoint will have the following default form,
https://search-domainName-unstructuredIdContent.region.es.amazonaws.com. For
more information on identifying your domain endpoint, see Creating and managing Amazon
OpenSearch Service domains in the Amazon OpenSearch Service documentation.

Port

The port open on the endpoint.

AWS Secret

The Secret name of a secret in AWS Secrets Manager. AWS Glue will connect to OpenSearch
Service using the keys of your secret.

Use the following properties when configuring a connection to a OpenSearch Service endpoint
hosted in Amazon VPC:

VPC

Choose the name of the virtual private cloud (VPC) that contains your data store. The AWS Glue
console lists all VPCs for the current Region.

Subnet

Choose the subnet within the VPC that contains your data store. The AWS Glue console lists all
subnets for the data store in your VPC.

Security groups

Choose the security groups that are associated with your data store. AWS Glue requires one or
more security groups with an inbound source rule that allows AWS Glue to connect. The AWS
Glue console lists all security groups that are granted inbound access to your VPC. AWS Glue
associates these security groups with the elastic network interface that is attached to your VPC
subnet.

Azure Cosmos connection

Use the following properties to set up a Azure Cosmos connection for AWS Glue ETL jobs.

Azure Cosmos connection 318

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/createupdatedomains.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/createupdatedomains.html

AWS Glue User Guide

Azure Cosmos DB Account Endpoint URI

The endpoint used to connect to Azure Cosmos. For more information, see the Azure
documentation.

AWS Secret

The Secret name of a secret in AWS Secrets Manager. AWS Glue will connect to Azure Cosmos
using the keys of your secret.

AWS Glue SSL connection properties

The following are details about the Require SSL connection property.

If you do not require SSL connection, AWS Glue ignores failures when it uses SSL to encrypt
a connection to the data store. See the documentation for your data store for configuration
instructions. When you select this option, the job run, crawler, or ETL statements in a development
endpoint fail when AWS Glue cannot connect.

Note

Snowflake supports an SSL connection by default, so this property is not applicable for
Snowflake.

This option is validated on the AWS Glue client side. For JDBC connections, AWS Glue only connects
over SSL with certificate and host name validation. SSL connection support is available for:

• Oracle Database

• Microsoft SQL Server

• PostgreSQL

• Amazon Redshift

• MySQL (Amazon RDS instances only)

• Amazon Aurora MySQL (Amazon RDS instances only)

• Amazon Aurora PostgreSQL (Amazon RDS instances only)

• Kafka, which includes Amazon Managed Streaming for Apache Kafka

• MongoDB

SSL connection properties 319

https://learn.microsoft.com/en-us/rest/api/cosmos-db/cosmosdb-resource-uri-syntax-for-rest
https://learn.microsoft.com/en-us/rest/api/cosmos-db/cosmosdb-resource-uri-syntax-for-rest

AWS Glue User Guide

Note

To enable an Amazon RDS Oracle data store to use Require SSL connection, you must
create and attach an option group to the Oracle instance.

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Add an Option group to the Amazon RDS Oracle instance. For more information about
how to add an option group on the Amazon RDS console, see Creating an Option Group

3. Add an Option to the option group for SSL. The Port you specify for SSL is later
used when you create an AWS Glue JDBC connection URL for the Amazon RDS Oracle
instance. For more information about how to add an option on the Amazon RDS console,
see Adding an Option to an Option Group in the Amazon RDS User Guide. For more
information about the Oracle SSL option, see Oracle SSL in the Amazon RDS User Guide.

4. On the AWS Glue console, create a connection to the Amazon RDS Oracle instance. In
the connection definition, select Require SSL connection. When requested, enter the
Port that you used in the Amazon RDS Oracle SSL option.

The following additional optional properties are available when Require SSL connection is
selected for a connection:

Custom JDBC certificate in S3

If you have a certificate that you are currently using for SSL communication with your on-
premises or cloud databases, you can use that certificate for SSL connections to AWS Glue data
sources or targets. Enter an Amazon Simple Storage Service (Amazon S3) location that contains
a custom root certificate. AWS Glue uses this certificate to establish an SSL connection to the
database. AWS Glue handles only X.509 certificates. The certificate must be DER-encoded and
supplied in base64 encoding PEM format.

If this field is left blank, the default certificate is used.

Custom JDBC certificate string

Enter certificate information specific to your JDBC database. This string is used for domain
matching or distinguished name (DN) matching. For Oracle Database, this string maps to
the SSL_SERVER_CERT_DN parameter in the security section of the tnsnames.ora file. For
Microsoft SQL Server, this string is used as hostNameInCertificate.

SSL connection properties 320

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithOptionGroups.html#USER_WorkingWithOptionGroups.Create
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithOptionGroups.html#USER_WorkingWithOptionGroups.AddOption
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.SSL.html

AWS Glue User Guide

The following is an example for the Oracle Database SSL_SERVER_CERT_DN parameter.

cn=sales,cn=OracleContext,dc=us,dc=example,dc=com

Kafka private CA certificate location

If you have a certificate that you are currently using for SSL communication with your Kafka
data store, you can use that certificate with your AWS Glue connection. This option is required
for Kafka data stores, and optional for Amazon Managed Streaming for Apache Kafka data
stores. Enter an Amazon Simple Storage Service (Amazon S3) location that contains a custom
root certificate. AWS Glue uses this certificate to establish an SSL connection to the Kafka data
store. AWS Glue handles only X.509 certificates. The certificate must be DER-encoded and
supplied in base64 encoding PEM format.

Skip certificate validation

Select the Skip certificate validation check box to skip validation of the custom certificate by
AWS Glue. If you choose to validate, AWS Glue validates the signature algorithm and subject
public key algorithm for the certificate. If the certificate fails validation, any ETL job or crawler
that uses the connection fails.

The only permitted signature algorithms are SHA256withRSA, SHA384withRSA, or
SHA512withRSA. For the subject public key algorithm, the key length must be at least 2048.

Kafka client keystore location

The Amazon S3 location of the client keystore file for Kafka client side authentication. Path
must be in the form s3://bucket/prefix/filename.jks. It must end with the file name and .jks
extension.

Kafka client keystore password (optional)

The password to access the provided keystore.

Kafka client key password (optional)

A keystore can consist of multiple keys, so this is the password to access the client key to be
used with the Kafka server side key.

Apache Kafka connection properties for client authentication

AWS Glue supports the Simple Authentication and Security Layer (SASL) framework for
authentication when you create an Apache Kafka connection. The SASL framework supports

Kafka connection properties for authentication 321

AWS Glue User Guide

various mechanisms of authentication, and AWS Glue offers the SCRAM (user name and password),
GSSAPI (Kerberos protocol), and PLAIN protocols.

Use AWS Glue Studio to configure one of the following client authentication methods. For more
information, see Creating connections for connectors in the AWS Glue Studio user guide.

• None - No authentication. This is useful if creating a connection for testing purposes.

• SASL/SCRAM-SHA-512 - Choosing this authentication method will allow you to specify
authentication credentials. There are two options available:

• Use AWS Secrets Manager (recommended) - if you select this option, you can store your
user name and password in AWS Secrets Manager and let AWS Glue access them when
needed. Specify the secret that stores the SSL or SASL authentication credentials. For more
information, see Storing connection credentials in AWS Secrets Manager.

• Provide a user name and password directly.

• SASL/GSSAPI (Kerberos) - if you select this option, you can select the location of the keytab file,
krb5.conf file and enter the Kerberos principal name and Kerberos service name. The locations
for the keytab file and krb5.conf file must be in an Amazon S3 location. Since MSK does not yet
support SASL/GSSAPI, this option is only available for customer managed Apache Kafka clusters.
For more information, see MIT Kerberos Documentation: Keytab .

• SASL/PLAIN - choose this authentication method to specify authentication credentials. There are
two options available:

• Use AWS Secrets Manager (recommended) - if you select this option, you can store your
credentials in AWS Secrets Manager and let AWS Glue access the information when needed.
Specify the secret that stores the SSL or SASL authentication credentials.

• Provide username and password directly.

• SSL Client Authentication - if you select this option, you can you can select the location of the
Kafka client keystore by browsing Amazon S3. Optionally, you can enter the Kafka client keystore
password and Kafka client key password.

Google BigQuery connection

The following properties are used to set up a Google BigQuery connection used in AWS Glue ETL
jobs. For more information, see the section called “BigQuery connections”.

Google BigQuery connection 322

https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#creating-connections
https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html

AWS Glue User Guide

AWS Secret

The Secret name of a secret in AWS Secrets Manager. AWS Glue ETL jobs will connect to Google
BigQuery using the credentials key of your secret.

Vertica connection

The following properties are used to set up a Vertica connection used in AWS Glue ETL jobs. For
more information, see the section called “Vertica connections”.

Storing connection credentials in AWS Secrets Manager

We recommend that you use AWS Secrets Manager to supply connection credentials for your data
store. Using Secrets Manager this way lets AWS Glue access your secret at runtime for ETL jobs and
crawler runs, and helps keep your credentials secure.

Prerequisites

To use Secrets Manager with AWS Glue, you must grant your IAM role for AWS Glue permission
to retrieve secret values. The AWS managed policy AWSGlueServiceRole doesn't include AWS
Secrets Manager permissions. For example IAM policies, see Example: Permission to retrieve secret
values in the AWS Secrets Manager User Guide.

Depending on your network setup, you might also need to create a VPC endpoint to establish a
private connection between your VPC and Secrets Manager. For more information, see Using an
AWS Secrets Manager VPC endpoint.

To create a secret for AWS Glue

1. Follow the instructions in Create and manage secrets in the AWS Secrets Manager User Guide.
The following example JSON shows how to specify your credentials in the Plaintext tab when
you create a secret for AWS Glue.

{
 "username": "EXAMPLE-USERNAME",
 "password": "EXAMPLE-PASSWORD"
}

2. Associate your secret with a connection using the AWS Glue Studio interface. For detailed
instructions, see Creating connections for connectors in the AWS Glue Studio User Guide.

Vertica connection 323

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_read
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_read
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/managing-secrets.html
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#creating-connections

AWS Glue User Guide

Adding an AWS Glue connection

You can connect to data sources in AWS Glue for Spark programmatically. For more information,
see Connection types and options for ETL in AWS Glue for Spark

You can also use the AWS Glue console to add, edit, delete, and test connections. For information
about AWS Glue connections, see Connecting to data.

To add an AWS Glue connection

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, under Data catalog, choose Connections.

3. Choose Add connection and then complete the wizard, entering connection properties as
described in the section called “AWS Glue connection properties”.

Connecting to Amazon Redshift in AWS Glue Studio

Note

You can use AWS Glue for Spark to read from and write to tables in Amazon Redshift
databases outside of AWS Glue Studio. To configure Amazon Redshift with AWS Glue jobs
programatically, see Redshift connections.

AWS Glue provides built-in support for Amazon Redshift. AWS Glue Studio provides a visual
interface to connect to Amazon Redshift, author data integration jobs, and run them on AWS Glue
Studio serverless Spark runtime.

Topics

• Creating an Amazon Redshift connection

• Creating a Amazon Redshift source node

• Creating an Amazon Redshift target node

• Advanced options

Adding an AWS Glue connection 324

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

Creating an Amazon Redshift connection

Permissions needed

Additional permissions are need to use Amazon Redshift clusters and Amazon Redshift serverless
environments. For more information on how to add permissions to ETL jobs, see Review IAM
permissions needed for ETL jobs.

• redshift:DescribeClusters

• redshift-serverless:ListWorkgroups

• redshift-serverless:ListNamespaces

Overview

When adding an Amazon Redshift connection, you can choose an existing Amazon Redshift
connection or create a new connection when adding a Data source - Redshift node in AWS Glue
Studio.

AWS Glue supports both Amazon Redshift clusters and Amazon Redshift serverless environments.
When you create a connection, Amazon Redshift serverless environments display the serverless
label next to the connection option.

For more information on how to create a Amazon Redshift connection, see Moving data to and
from Amazon Redshift.

Creating a Amazon Redshift source node

Permissions needed

AWS Glue Studio jobs using Amazon Redshift data sources require additional permissions. For more
information on how to add permissions to ETL jobs, see Review IAM permissions needed for ETL
jobs.

The following permissions are needed in order to use an Amazon Redshift connection.

• redshift-data:ListSchemas

• redshift-data:ListTables

• redshift-data:DescribeTable

• redshift-data:ExecuteStatement

Connecting to Redshift 325

https://docs.aws.amazon.com/glue/latest/ug/setting-up.html#getting-started-min-privs-job
https://docs.aws.amazon.com/glue/latest/ug/setting-up.html#getting-started-min-privs-job
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-redshift.html#aws-glue-programming-etl-redshift-using
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-redshift.html#aws-glue-programming-etl-redshift-using
https://docs.aws.amazon.com/glue/latest/ug/setting-up.html#getting-started-min-privs-job
https://docs.aws.amazon.com/glue/latest/ug/setting-up.html#getting-started-min-privs-job

AWS Glue User Guide

• redshift-data:DescribeStatement

• redshift-data:GetStatementResult

Adding an Amazon Redshift data source

To add a Data Source – Amazon Redshift node:

1. Choose the Amazon Redshift access type:

• Direct data connection (recommended) – choose this option if you want to access your
Amazon Redshift data directly. This is the recommended option and also the default.

• Data Catalog tables – choose this option if you have Data Catalog tables that you want to
use.

2. If you choose Direct data connection, choose the connection for your Amazon Redshift data
source. This assumes that the connection already exists and you can select from existing
connections. If you need to create a connection, choose Create Redshift connection. For more
information, see Overview of using connectors and connections .

Once you have chosen a connection, you can view the connection properties by clicking View
properties. Information about the connection are visible, including URL, security groups,
subnet, availability zone, description, and created (UTC) and last updated (UTC) timestamps.

3. Choose a Amazon Redshift source option:

• Choose a single table – this is the table that contains the data you want to access from a
single Amazon Redshift table.

• Enter custom query – allows you to access a dataset from multiple Amazon Redshift tables
based on your custom query.

4. If you chose a single table, choose the Amazon Redshift schema. The list of available schema
to choose from is determined by the selected table.

Or, choose Enter custom query. Choose this option to access a custom dataset from multiple
Amazon Redshift tables. When you choose this option, enter the Amazon Redshift query.

When connecting to an Amazon Redshift serverless environment, add the following permission
to the custom query:

 GRANT SELECT ON ALL TABLES IN <schema> TO PUBLIC

Connecting to Redshift 326

https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#using-connectors-overview

AWS Glue User Guide

You can choose Infer schema to read the schema based on the query that you entered. You
can also choose Open Redshift query editor to enter a Amazon Redshift query. For more
information, see Querying a database using the query editor .

5. In Performance and security, choose the Amazon S3 staging directory and IAM role.

• Amazon S3 staging directory – choose the Amazon S3 location for temporarily staging
data.

• IAM role – choose the IAM role that can write to the Amazon S3 location you selected.

6. In Custom Redshift paramters - optional, enter the parameter and value.

Creating an Amazon Redshift target node

Permissions needed

AWS Glue Studio jobs using Amazon Redshift data target require additional permissions. For more
information on how to add permissions to ETL jobs, see Review IAM permissions needed for ETL
jobs.

The following permissions are needed in order to use an Amazon Redshift connection.

• redshift-data:ListSchemas

• redshift-data:ListTables

Adding an Amazon Redshift target node

To create a a Amazon Redshift target node:

1. Choose an existing Amazon Redshift table as the target, or enter a new table name.

2. When you use the Data target - Redshift target node, you can choose from the following
options:

• APPEND – If a table already exists, dump all the new data into the table as an insert. If the
table doesn't exist, create it and then insert all new data.

Additionally, check the box if you want to update (UPSERT) existing records in the target
table. The table must exist first, otherwise the operation will fail.

Connecting to Redshift 327

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor.html
https://docs.aws.amazon.com/glue/latest/ug/setting-up.html#getting-started-min-privs-job
https://docs.aws.amazon.com/glue/latest/ug/setting-up.html#getting-started-min-privs-job

AWS Glue User Guide

• MERGE – AWS Glue will update or append data to your target table based on the conditions
you specify.

Note

To use the merge action in AWS Glue, you must enable Amazon Redshift merge
functionality. For instructions on how to enable merge for your Amazon Redshift
instance, see MERGE (preview) .

Choose options:

• Choose keys and simple actions – choose the columns to be used as matching keys
between the source data and your target data set.

Specify the following options when matched:

• Update record in your target data set with data from source.

• Delete record in your target data set.

Specify the following options when not matched:

• Insert source data as a new row into your target data set.

• Do nothing.

• Enter custom MERGE statement – You can then choose Validate Merge statement to
verify that the statement is valid or invalid.

• TRUNCATE – If a table already exists, truncate the table data by first clearing the contents of
the target table. If truncate is successful, then insert all data. If the table doesn't exist, create
the table and insert all data. If truncate is not successful, the operation will fail.

• DROP – If a table already exists, delete the table metadata and data. If deletion is successful,
then insert all data. If the table doesn't exist, create the table and insert all data. If drop is
not successful, the operation will fail.

• CREATE – Create a new table with the default name. If table name already exist, create a
new table with a name postfix of job_datetime to the name for uniqueness. This will
insert all the data into the new table. If the table exists, the final table name will have the
postfix appended. If the table doesn’t exist, a table will be created. In either case, a new
table will be created.

Connecting to Redshift 328

https://docs.aws.amazon.com/redshift/latest/dg/r_MERGE.html

AWS Glue User Guide

Advanced options

See Using the Amazon Redshift Spark connector on AWS Glue.

Connecting to Azure Cosmos DB in AWS Glue Studio

AWS Glue provides built-in support for Azure Cosmos DB. AWS Glue Studio provides a visual
interface to connect to Azure Cosmos DB for NoSQL, author data integration jobs, and run them on
the AWS Glue Studio serverless Spark runtime.

Topics

• Creating a Azure Cosmos DB connection

• Creating a Azure Cosmos DB source node

• Creating a Azure Cosmos DB target node

• Advanced options

Creating a Azure Cosmos DB connection

Prerequisites:

• In Azure, you will need to identify or generate an Azure Cosmos DB Key for use by AWS Glue,
cosmosKey. For more information, see Secure access to data in Azure Cosmos DB in the Azure
documentation.

To configure a connection to Azure Cosmos DB:

1. In AWS Secrets Manager, create a secret using your Azure Cosmos DB Key. To create a secret
in Secrets Manager, follow the tutorial available in Create an AWS Secrets Manager secret in
the AWS Secrets Manager documentation. After creating the secret, keep the Secret name,
secretName for the next step.

• When selecting Key/value pairs, create a pair for the key spark.cosmos.accountKey
with the value cosmosKey.

2. In the AWS Glue console, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for future use in AWS Glue.

• When selecting a Connection type, select Azure Cosmos DB.

Connecting to Azure Cosmos DB 329

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-redshift.html#aws-glue-programming-etl-redshift-using
https://learn.microsoft.com/en-us/azure/cosmos-db/secure-access-to-data?tabs=using-primary-key
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Glue User Guide

• When selecting an AWS Secret, provide secretName.

Creating a Azure Cosmos DB source node

Prerequisites needed

• A AWS Glue Azure Cosmos DB connection, configured with an AWS Secrets Manager secret, as
described in the previous section, the section called “Creating a Azure Cosmos DB connection”.

• Appropriate permissions on your job to read the secret used by the connection.

• A Azure Cosmos DB for NoSQL container you would like to read from. You will need identification
information for the container.

An Azure Cosmos for NoSQL container is identified by its database and container. You must
provide the database, cosmosDBName, and container, cosmosContainerName, names when
connecting to the Azure Cosmos for NoSQL API.

Adding a Azure Cosmos DB data source

To add a Data source – Azure Cosmos DB node:

1. Choose the connection for your Azure Cosmos DB data source. Since you have created it, it
should be available in the dropdown. If you need to create a connection, choose Create Azure
Cosmos DB connection. For more information see the previous section, the section called
“Creating a Azure Cosmos DB connection”.

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

2. Choose Cosmos DB Database Name – provide the name of the database you want to read
from, cosmosDBName.

3. Choose Azure Cosmos DB Container – provide the name of the container you want to read
from, cosmosContainerName.

4. Optionally, choose Azure Cosmos DB Custom Query – provide a SQL SELECT query to retrieve
specific information from Azure Cosmos DB.

5. In Custom Azure Cosmos properties, enter parameters and values as needed.

Connecting to Azure Cosmos DB 330

AWS Glue User Guide

Creating a Azure Cosmos DB target node

Prerequisites needed

• A AWS Glue Azure Cosmos DB connection, configured with an AWS Secrets Manager secret, as
described in the previous section, the section called “Creating a Azure Cosmos DB connection”.

• Appropriate permissions on your job to read the secret used by the connection.

• A Azure Cosmos DB table you would like to write to. You will need identification information for
the container. You must create the container before calling the connection method.

An Azure Cosmos for NoSQL container is identified by its database and container. You must
provide the database, cosmosDBName, and container, cosmosContainerName, names when
connecting to the Azure Cosmos for NoSQL API.

Adding a Azure Cosmos DB data target

To add a Data target – Azure Cosmos DB node:

1. Choose the connection for your Azure Cosmos DB data source. Since you have created it, it
should be available in the dropdown. If you need to create a connection, choose Create Azure
Cosmos DB connection. For more information see the previous section, the section called
“Creating a Azure Cosmos DB connection”.

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

2. Choose Cosmos DB Database Name – provide the name of the database you want to read
from, cosmosDBName.

3. Choose Azure Cosmos DB Container – provide the name of the container you want to read
from, cosmosContainerName.

4. In Custom Azure Cosmos properties, enter parameters and values as needed.

Advanced options

You can provide advanced options when creating a Azure Cosmos DB node. These options are the
same as those available when programming AWS Glue for Spark scripts.

See the section called “Azure Cosmos DB connections”.

Connecting to Azure Cosmos DB 331

AWS Glue User Guide

Connecting to Azure SQL in AWS Glue Studio

AWS Glue provides built-in support for Azure SQL. AWS Glue Studio provides a visual interface
to connect to Azure SQL, author data integration jobs, and run them on the AWS Glue Studio
serverless Spark runtime.

Topics

• Creating a Azure SQL connection

• Creating a Azure SQL source node

• Creating a Azure SQL target node

• Advanced options

Creating a Azure SQL connection

To connect to Azure SQL from AWS Glue, you will need to create and store your Azure SQL
credentials in a AWS Secrets Manager secret, then associate that secret with a Azure SQL AWS Glue
connection.

To configure a connection to Azure SQL:

1. In AWS Secrets Manager, create a secret using your Azure SQL credentials. To create a secret
in Secrets Manager, follow the tutorial available in Create an AWS Secrets Manager secret in
the AWS Secrets Manager documentation. After creating the secret, keep the Secret name,
secretName for the next step.

• When selecting Key/value pairs, create a pair for the key user with the value
azuresqlUsername.

• When selecting Key/value pairs, create a pair for the key password with the value
azuresqlPassword.

2. In the AWS Glue console, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for future use in AWS Glue.

• When selecting a Connection type, select Azure SQL.

• When providing Azure SQL URL, provide a JDBC endpoint URL.

Connecting to Azure SQL 332

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Glue User Guide

The URL must be in the following format:
jdbc:sqlserver://databaseServerName:databasePort;databaseName=azuresqlDBname;.

AWS Glue requires the following URL properties:

• databaseName – A default database in Azure SQL to connect to.

For more information about JDBC URLs for Azure SQL Managed Instances, see the Microsoft
documentation.

• When selecting an AWS Secret, provide secretName.

Creating a Azure SQL source node

Prerequisites needed

• A AWS Glue Azure SQL connection, configured with an AWS Secrets Manager secret, as described
in the previous section, the section called “Creating a Azure SQL connection”.

• Appropriate permissions on your job to read the secret used by the connection.

• A Azure SQL table you would like to read from, tableName.

An Azure SQL table is identified by its database, schema and table name. You must provide
the database name and table name when connecting to Azure SQL. You also must provide
the schema if it is not the default, "public". Database is provided through a URL property in
connectionName , schema and table name through the dbtable.

Adding a Azure SQL data source

To add a Data source – Azure SQL node:

1. Choose the connection for your Azure SQL data source. Since you have created it, it should
be available in the dropdown. If you need to create a connection, choose Create Azure SQL
connection. For more information see the previous section, the section called “Creating a
Azure SQL connection”.

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

2. Choose a Azure SQL Source option:

Connecting to Azure SQL 333

https://learn.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=azuresqldb-mi-current
https://learn.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=azuresqldb-mi-current

AWS Glue User Guide

• Choose a single table – access all data from a single table.

• Enter custom query – access a dataset from multiple tables based on your custom query.

3. If you chose a single table, enter tableName.

If you chose Enter custom query, enter a TransactSQL SELECT query.

4. In Custom Azure SQL properties, enter parameters and values as needed.

Creating a Azure SQL target node

Prerequisites needed

• A AWS Glue Azure SQL connection, configured with an AWS Secrets Manager secret, as described
in the previous section, the section called “Creating a Azure SQL connection”.

• Appropriate permissions on your job to read the secret used by the connection.

• A Azure SQL table you would like to write to, tableName.

An Azure SQL table is identified by its database, schema and table name. You must provide
the database name and table name when connecting to Azure SQL. You also must provide
the schema if it is not the default, "public". Database is provided through a URL property in
connectionName , schema and table name through the dbtable.

Adding a Azure SQL data target

To add a Data target – Azure SQL node:

1. Choose the connection for your Azure SQL data source. Since you have created it, it should
be available in the dropdown. If you need to create a connection, choose Create Azure SQL
connection. For more information see the previous section, the section called “Creating a
Azure SQL connection”.

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

2. Configure Table name by providing tableName.

3. In Custom Azure SQL properties, enter parameters and values as needed.

Connecting to Azure SQL 334

AWS Glue User Guide

Advanced options

You can provide advanced options when creating a Azure SQL node. These options are the same as
those available when programming AWS Glue for Spark scripts.

See the section called “Azure SQL connections”.

Connecting to Google BigQuery in AWS Glue Studio

Note

You can use AWS Glue for Spark to read from and write to tables in Google BigQuery
in AWS Glue 4.0 and later versions. To configure Google BigQuery with AWS Glue jobs
programmatically, see
BigQuery connections.

AWS Glue Studio provides a visual interface to connect to BigQuery, author data integration jobs,
and run them on the AWS Glue Studio serverless Spark runtime.

Topics

• Creating a BigQuery connection

• Creating a BigQuery source node

• Creating a BigQuery target node

• Advanced options

Creating a BigQuery connection

To connect to Google BigQuery from AWS Glue, you will need to create and store your Google
Cloud Platform credentials in a AWS Secrets Manager secret, then associate that secret with a
Google BigQuery AWS Glue connection.

To configure a connection to BigQuery:

1. In Google Cloud Platform, create and identify relevant resources:

• Create or identify a GCP project containing BigQuery tables you would like to connect to.

Connecting to BigQuery 335

AWS Glue User Guide

• Enable the BigQuery API. For more information, see Use the BigQuery Storage Read API to
read table data .

2. In Google Cloud Platform, create and export service account credentials:

You can use the BigQuery credentials wizard to expedite this step: Create credentials.

To create a service account in GCP, follow the tutorial available in Create service accounts.

• When selecting project, select the project containing your BigQuery table.

• When selecting GCP IAM roles for your service account, add or create a role that would grant
appropriate permissions to run BigQuery jobs to read, write or create BigQuery tables.

To create credentials for your service account, follow the tutorial available in Create a service
account key.

• When selecting key type, select JSON.

You should now have downloaded a JSON file with credentials for your service account. It
should look similar to the following:

{
 "type": "service_account",
 "project_id": "*****",
 "private_key_id": "*****",
 "private_key": "*****",
 "client_email": "*****",
 "client_id": "*****",
 "auth_uri": "https://accounts.google.com/o/oauth2/auth",
 "token_uri": "https://oauth2.googleapis.com/token",
 "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
 "client_x509_cert_url": "*****",
 "universe_domain": "googleapis.com"
}

3. base64 encode your downloaded credentials file. On an AWS CloudShell session or similar, you
can do this from the command line by running cat credentialsFile.json | base64 -w
0. Retain the output of this command, credentialString.

4. In AWS Secrets Manager, create a secret using your Google Cloud Platform credentials. To
create a secret in Secrets Manager, follow the tutorial available in Create an AWS Secrets

Connecting to BigQuery 336

https://cloud.google.com/bigquery/docs/reference/storage/#enabling_the_api
https://cloud.google.com/bigquery/docs/reference/storage/#enabling_the_api
https://console.cloud.google.com/apis/credentials/wizard?api=bigquery.googleapis.com
https://cloud.google.com/iam/docs/service-accounts-create
https://cloud.google.com/iam/docs/keys-create-delete#creating
https://cloud.google.com/iam/docs/keys-create-delete#creating
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Glue User Guide

Manager secret in the AWS Secrets Manager documentation. After creating the secret, keep
the Secret name, secretName for the next step.

• When selecting Key/value pairs, create a pair for the key credentials with the value
credentialString.

5. In the AWS Glue Data Catalog, create a connection by following the steps in https://
docs.aws.amazon.com/glue/latest/dg/console-connections.html. After creating the
connection, keep the connection name, connectionName, for the next step.

• When selecting a Connection type, select Google BigQuery.

• When selecting an AWS Secret, provide secretName.

6. Grant the IAM role associated with your AWS Glue job permission to read secretName.

7. In your AWS Glue job configuration, provide connectionName as an Additional network
connection.

Creating a BigQuery source node

Prerequisites needed

• A BigQuery type AWS Glue Data Catalog connection

• An AWS Secrets Manager secret for your Google BigQuery credentials, used by the connection.

• Appropriate permissions on your job to read the secret used by the connection.

• The name and dataset of the table and corresponding Google Cloud project you would like to
read.

Adding a BigQuery data source

To add a Data source – BigQuery node:

1. Choose the connection for your BigQuery data source. Since you have created it, it should
be available in the dropdown. If you need to create a connection, choose Create BigQuery
connection. For more information, see Overview of using connectors and connections .

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

2. Identify what BigQuery data you would like to read, then choose a BigQuery Source option

Connecting to BigQuery 337

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/glue/latest/dg/console-connections.html
https://docs.aws.amazon.com/glue/latest/dg/console-connections.html
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#using-connectors-overview

AWS Glue User Guide

• Choose a single table – allows you to pull all data from a table.

• Enter a custom query – allows you to customize which data is retrieved by providing a query.

3. Describe the data you would like to read

(Required) set Parent Project to the project containing your table, or a billing parent project,
if relevant.

If you chose a single table, set Table to the name of a Google BigQuery table in the following
format: [dataset].[table]

If you chose a query, provide it to Query. In your query, refer to tables with their fully qualified
table name, in the format: [project].[dataset].[tableName].

4. Provide BigQuery properties

If you chose a single table, you do not need to provide additional properties.

If you chose a query, you must provide the following Custom Google BigQuery properties:

• Set viewsEnabled to true.

• Set materializationDataset to a dataset. The GCP principal authenticated by the
credentials provided through the AWS Glue connection must be able to create tables in this
dataset.

Creating a BigQuery target node

Prerequisites needed

• A BigQuery type AWS Glue Data Catalog connection

• An AWS Secrets Manager secret for your Google BigQuery credentials, used by the connection.

• Appropriate permissions on your job to read the secret used by the connection.

• The name and dataset of the table and corresponding Google Cloud project you would like to
write to.

Connecting to BigQuery 338

AWS Glue User Guide

Adding a BigQuery data target

To add a Data target – BigQuery node:

1. Choose the connection for your BigQuery data target. Since you have created it, it should
be available in the dropdown. If you need to create a connection, choose Create BigQuery
connection. For more information, see Overview of using connectors and connections .

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

2. Identify what BigQuery table you would like to write to, then choose a Write method.

• Direct – writes to BigQuery directly using the BigQuery Storage Write API.

• Indirect – writes to Google Cloud Storage, then copies to BigQuery.

If you would like to write indirectly, provide a destination GCS location with Temporary GCS
bucket. You will need to provide additional configuration in your AWS Glue connection. For
more information, see Using indirect write with Google BigQuery.

3. Describe the data you would like to read

(Required) set Parent Project to the project containing your table, or a billing parent project,
if relevant.

If you chose a single table, set Table to the name of a Google BigQuery table in the following
format: [dataset].[table]

Advanced options

You can provide advanced options when creating a BigQuery node. These options are the same as
those available when programming AWS Glue for Spark scripts.

See BigQuery connection option reference in the AWS Glue developer guide.

Connecting to MongoDB in AWS Glue Studio

AWS Glue provides built-in support for MongoDB. AWS Glue Studio provides a visual interface
to connect to MongoDB, author data integration jobs, and run them on the AWS Glue Studio
serverless Spark runtime.

Connecting to MongoDB 339

https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#using-connectors-overview
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect-bigquery-home.html#aws-glue-programming-etl-connect-bigquery-indirect-write
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect-bigquery-home.html

AWS Glue User Guide

Topics

• Creating a MongoDB connection

• Creating a MongoDB source node

• Creating a MongoDB target node

• Advanced options

Creating a MongoDB connection

Prerequisites:

• If your MongoDB instance is in an Amazon VPC, configure Amazon VPC to allow your AWS Glue
job to communicate with the MongoDB instance without traffic traversing the public internet.

In Amazon VPC, identify or create a VPC, Subnet and Security group that AWS Glue will use
while executing the job. Additionally, you need to ensure Amazon VPC is configured to permit
network traffic between your MongoDB instance and this location. Based on your network
layout, this may require changes to security group rules, Network ACLs, NAT Gateways and
Peering connections.

To configure a connection to MongoDB:

1. Optionally, in AWS Secrets Manager, create a secret using your MongoDB credentials. To create
a secret in Secrets Manager, follow the tutorial available in Create an AWS Secrets Manager
secret in the AWS Secrets Manager documentation. After creating the secret, keep the Secret
name, secretName for the next step.

• When selecting Key/value pairs, create a pair for the key username with the value
mongodbUser.

When selecting Key/value pairs, create a pair for the key password with the value
mongodbPass.

2. In the AWS Glue console, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for future use in AWS Glue.

• When selecting a Connection type, select MongoDB or MongoDB Atlas.

Connecting to MongoDB 340

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Glue User Guide

• When selecting MongoDB URL or MongoDB Atlas URL, provide the hostname of your
MongoDB instance.

A MongoDB URL is provided in the format
mongodb://mongoHost:mongoPort/mongoDBname.

A MongoDB Atlas URL is provided in the format mongodb
+srv://mongoHost:mongoPort/mongoDBname.

Providing the default database for the connection, mongoDBname is optional.

• If you chose to create an Secrets Manager secret, choose the AWS Secrets Manager
Credential type.

Then, in AWS Secret provide secretName.

• If you choose to provide Username and password, provide mongodbUser and
mongodbPass.

3. In the following situations, you may require additional configuration:

• For MongoDB instances hosted on AWS in an Amazon VPC

• You will need to provide Amazon VPC connection information to the AWS Glue connection
that defines your MongoDB security credentials. When creating or updating your
connection, set VPC, Subnet and Security groups in Network options.

After creating a AWS Glue MongoDB connection, you will need to perform the following steps
before running your AWS Glue job:

• When working with AWS Glue jobs in the visual editor, you must provide Amazon VPC connection
information for your job to connect to MongoDB. Identify a suitable location in Amazon VPC and
provide it to your AWS Glue MongoDB connection.

• If you chose to create an Secrets Manager secret, grant the IAM role associated with your AWS
Glue job permission to read secretName.

Connecting to MongoDB 341

AWS Glue User Guide

Creating a MongoDB source node

Prerequisites needed

• A AWS Glue MongoDB connection, as described in the previous section, the section called
“Creating a MongoDB connection”.

• If you chose to create an Secrets Manager secret, appropriate permissions on your job to read the
secret used by the connection.

• A MongoDB collection you would like to read from. You will need identification information for
the collection.

A MongoDB collection is identified by a database name and a collection name, mongodbName,
mongodbCollection.

Adding a MongoDB data source

To add a Data source – MongoDB node:

1. Choose the connection for your MongoDB data source. Since you have created it, it should
be available in the dropdown. If you need to create a connection, choose Create MongoDB
connection. For more information see the previous section, the section called “Creating a
MongoDB connection”.

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

2. Choose a Database. Enter mongodbName.

3. Choose a Collection. Enter mongodbCollection.

4. Choose your Partitioner, Partition size (MB) and Partition key. For more information about
partition parameters, see the section called “"connectionType": "mongodb" as source”.

5. In Custom MongoDB properties, enter parameters and values as needed.

Creating a MongoDB target node

Prerequisites needed

• A AWS Glue MongoDB connection, configured with an AWS Secrets Manager secret, as described
in the previous section, the section called “Creating a MongoDB connection”.

Connecting to MongoDB 342

AWS Glue User Guide

• Appropriate permissions on your job to read the secret used by the connection.

• A MongoDB table you would like to write to, tableName.

Adding a MongoDB data target

To add a Data target – MongoDB node:

1. Choose the connection for your MongoDB data source. Since you have created it, it should
be available in the dropdown. If you need to create a connection, choose Create MongoDB
connection. For more information see the previous section, the section called “Creating a
MongoDB connection”.

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

2. Choose a Database. Enter mongodbName.

3. Choose a Collection. Enter mongodbCollection.

4. Choose your Partitioner, Partition size (MB) and Partition key. For more information about
partition parameters, see the section called “"connectionType": "mongodb" as source”.

5. Choose Retry Writes if desired.

6. In Custom MongoDB properties, enter parameters and values as needed.

Advanced options

You can provide advanced options when creating a MongoDB node. These options are the same as
those available when programming AWS Glue for Spark scripts.

See the section called “MongoDB connection”.

Connecting to OpenSearch Service in AWS Glue Studio

AWS Glue provides built-in support for Amazon OpenSearch Service. AWS Glue Studio provides
a visual interface to connect to Amazon OpenSearch Service, author data integration jobs, and
run them on the AWS Glue Studio serverless Spark runtime. This feature is not compatible with
OpenSearch Service serverless.

Topics

• Creating a OpenSearch Service connection

Connecting to OpenSearch Service 343

AWS Glue User Guide

• Creating a OpenSearch Service source node

• Creating a OpenSearch Service target node

• Advanced options

Creating a OpenSearch Service connection

Prerequisites:

• Identify the domain endpoint, aosEndpoint and port, aosPort you would like to read from, or
create the resource by following instructions in the Amazon OpenSearch Service documentation.
For more information on creating a domain, see Creating and managing Amazon OpenSearch
Service domains in the Amazon OpenSearch Service documentation.

An Amazon OpenSearch Service domain endpoint will have the following default form,
https://search-domainName-unstructuredIdContent.region.es.amazonaws.com. For
more information on identifying your domain endpoint, see Creating and managing Amazon
OpenSearch Service domains in the Amazon OpenSearch Service documentation.

Identify or generate HTTP basic authentication credentials, aosUser and aosPassword for your
domain.

To configure a connection to OpenSearch Service:

1. In AWS Secrets Manager, create a secret using your OpenSearch Service credentials. To create
a secret in Secrets Manager, follow the tutorial available in Create an AWS Secrets Manager
secret in the AWS Secrets Manager documentation. After creating the secret, keep the Secret
name, secretName for the next step.

• When selecting Key/value pairs, create a pair for the key
opensearch.net.http.auth.user with the value aosUser.

• When selecting Key/value pairs, create a pair for the key
opensearch.net.http.auth.pass with the value aosPassword.

2. In the AWS Glue console, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for future use in AWS Glue.

• When selecting a Connection type, select OpenSearch Service.

Connecting to OpenSearch Service 344

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/createupdatedomains.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/createupdatedomains.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/createupdatedomains.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/createupdatedomains.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Glue User Guide

• When selecting a Domain endpoint, provide aosEndpoint.

• When selecting a port, provide aosPort.

• When selecting an AWS Secret, provide secretName.

Creating a OpenSearch Service source node

Prerequisites needed

• A AWS Glue OpenSearch Service connection, configured with an AWS Secrets Manager secret, as
described in the previous section, the section called “Creating a OpenSearch Service connection”.

• Appropriate permissions on your job to read the secret used by the connection.

• A OpenSearch Service index you would like to read from, aosIndex.

Adding a OpenSearch Service data source

To add a Data source – OpenSearch Service node:

1. Choose the connection for your OpenSearch Service data source. Since you have created it,
it should be available in the dropdown. If you need to create a connection, choose Create
OpenSearch Service connection. For more information see the previous section, the section
called “Creating a OpenSearch Service connection”.

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

2. Provide Index, the index you would like to read.

3. Optionally, provide Query, an OpenSearch query to deliver more specific results. For more
information about writing OpenSearch queries, consult the section called “Read from
OpenSearch Service”.

4. In Custom OpenSearch Service properties, enter parameters and values as needed.

Creating a OpenSearch Service target node

Prerequisites needed

• A AWS Glue OpenSearch Service connection, configured with an AWS Secrets Manager secret, as
described in the previous section, the section called “Creating a OpenSearch Service connection”.

Connecting to OpenSearch Service 345

AWS Glue User Guide

• Appropriate permissions on your job to read the secret used by the connection.

• A OpenSearch Service index you would like to write to, aosIndex.

Adding a OpenSearch Service data target

To add a Data target – OpenSearch Service node:

1. Choose the connection for your OpenSearch Service data source. Since you have created it,
it should be available in the dropdown. If you need to create a connection, choose Create
OpenSearch Service connection. For more information see the previous section, the section
called “Creating a OpenSearch Service connection”.

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

2. Provide Index, the index you would like to read.

3. In Custom OpenSearch Service properties, enter parameters and values as needed.

Advanced options

You can provide advanced options when creating a OpenSearch Service node. These options are
the same as those available when programming AWS Glue for Spark scripts.

See the section called “OpenSearch Service connections”.

Connecting to Salesforce in AWS Glue Studio

Salesforce provides customer relationship management (CRM) software that help you with sales,
customer service, e-commerce, and more. If you're a Salesforce user, you can connect AWS Glue
to your Salesforce account. Then, you can use Salesforce as a data source or destination in your
ETL Jobs. Run these jobs to transfer data between Salesforce and AWS services or other supported
applications.

Topics

• AWS Glue support for Salesforce

• Policies containing the API operations for creating and using connections

• Configuring Salesforce

• Configuring Salesforce connections

Connecting to Salesforce 346

AWS Glue User Guide

• Reading from Salesforce entities

• Writing to Salesforce

• Salesforce connection options

• Limitations for Salesforce connector

• Set up the JWT bearer OAuth flow for Salesforce

AWS Glue support for Salesforce

AWS Glue supports Salesforce as follows:

Supported as a source?

Yes. You can use AWS Glue ETL jobs to query data from Salesforce.

Supported as a target?

Yes. You can use AWS Glue ETL to write records into Salesforce.

Supported Salesforce API versions

The following Salesforce API versions are supported

• v58.0

• v59.0

• v60.0

Policies containing the API operations for creating and using connections

The following sample policy describes the required AWS IAM permissions for creating and using
connections. If you are creating a new role, create a policy that contains the following:

{
"Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:ListConnectionTypes",
 "glue:DescribeConnectionType",
 "glue:RefreshOAuth2Tokens"

Connecting to Salesforce 347

AWS Glue User Guide

 "glue:ListEntities",
 "glue:DescribeEntity"
],
 "Resource": "*"
 }
]
}

You can also use the following IAM policies to allow access:

• AWSGlueServiceRole – Grants access to resources that various AWS Glue processes require to
run on your behalf. These resources include AWS Glue, Amazon S3, IAM, CloudWatch Logs, and
Amazon EC2. If you follow the naming convention for resources specified in this policy, AWS Glue
processes have the required permissions. This policy is typically attached to roles specified when
defining crawlers, jobs, and development endpoints.

• AWSGlueConsoleFullAccess – Grants full access to AWS Glue resources when an identity that the
policy is attached to uses the AWS Management Console. If you follow the naming convention
for resources specified in this policy, users have full console capabilities. This policy is typically
attached to users of the AWS Glue console.

Configuring Salesforce

Before you can use AWS Glue to transfer data to or from Salesforce, you must meet these
requirements:

Minimum requirements

The following are minimum requirements:

• You have a Salesforce account.

• Your Salesforce account is enabled for API access. API access is enabled by default for the
Enterprise, Unlimited, Developer, and Performance editions.

• Your Salesforce account allows you to install connected apps. If you lack access to this
functionality, contact your Salesforce administrator. For more information, see Connected Apps
in the Salesforce help.

If you meet these requirements, you’re ready to connect AWS Glue to your Salesforce account. AWS
Glue handles the remaining requirements with the AWS managed connected app.

Connecting to Salesforce 348

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSGlueServiceRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSGlueConsoleFullAccess
https://help.salesforce.com/s/articleView?id=sf.connected_app_overview.htm

AWS Glue User Guide

The AWS managed connected app for Salesforce

The AWS managed connected app helps you create Salesforce connections in fewer steps. In
Salesforce, a connected app is a framework that authorizes external applications, like AWS Glue, to
access your Salesforce data.

• Create a Salesforce connection by using the AWS Glue console.

• When you configure the connection, set OAuth grant type to Authorization code.

Configuring Salesforce connections

To configure a Salesforce connection:

1. In AWS Secrets Manager, create a secret with the following details:

a. For the JWT_TOKEN grant type - the secret should contain the JWT_TOKEN key with its value.

b. For the AuthorizationCode grant type: for a customer managed connected
app the secret should contain the connected app Consumer Secret with
USER_MANAGED_CLIENT_APPLICATION_CLIENT_SECRET as key. For an AWS Managed
connected app, an empty secret or a secret with some temporary value.

c. Note: You must create a secret per connection in AWS Glue.

2. In the AWS Glue Data Catalog, create a connection by following the steps below:

a. When selecting a Connection type, select Salesforce.

b. Provide the INSTANCE_URL of the Salesforce you want to connect to.

c. Provide the Salesforce environment.

d. Select the AWS IAM role which AWS Glue can assume and has permissions for following
actions:

e. Select the OAuth2 grant type which you want to use for the connections. The grant type
determines how AWS Glue communicates with Salesforce to request access to your data. Your
choice affects the requirements that you must meet before you create the connection. You
can choose either of these types:

• JWT_BEARER Grant Type: This grant type works well for automation scenarios as it allows
a JSON Web Token (JWT) to be created up front with the permissions of a particular user
in the Salesforce instance. The creator has control over how long the JWT is valid for. AWS
Glue is able to use the JWT to obtain an access token which is used to call Salesforce APIs.

Connecting to Salesforce 349

AWS Glue User Guide

This flow requires that the user has created a connected app in their Salesforce instance
which enables issuing JWT-based access tokens for users.

For information on creating a connected app for the JWT bearer OAuth flow, see OAuth 2.0
JWT bearer flow for server-to-server integration. To set up the JWT bearer flow with the
Salesforce connected app, see Set up the JWT bearer OAuth flow for Salesforce.

• AUTHORIZATION_CODE Grant Type: This grant type is considered a "three-legged" OAuth
as it relies on redirecting users to the third-party authorization server to authenticate the
user. It is used when creating connections via the AWS Glue console. The user creating a
connection may by default rely on an AWS Glue connected app (AWS Glue managed client
application) where they do not need to provide any OAuth related information except for
their Salesforce instance URL. The AWS Glue console will redirect the user to Salesforce
where the user must login and allow AWS Glue the requested permissions to access their
Salesforce instance.

Users may still opt to create their own connected app in Salesforce and provide their own
client ID and client secret when creating connections through the AWS Glue console. In
this scenario, they will still be redirected to Salesforce to login and authorize AWS Glue to
access their resources.

This grant type results in a refresh token and access token. The access token is short lived,
and may be refreshed automatically without user interaction using the refresh token.

For information on creating a connected app for the Authorization Code OAuth flow, see
Configure a Connected App for the Authorization Code and Credentials Flow.

f. Select the secretName which you want to use for this connection in AWS Glue to put the
tokens.

g. Select the network options if you want to use your network. Grant the IAM role associated
with your AWS Glue job permission to read secretName.

3. Grant the IAM role associated with your AWS Glue job permission to read secretName.

4. In your AWS Glue job configuration, provide connectionName as an Additional network
connection.

{
"Version": "2012-10-17",
 "Statement": [
 {

Connecting to Salesforce 350

https://help.salesforce.com/s/articleView?id=sf.remoteaccess_oauth_jwt_flow.htm
https://help.salesforce.com/s/articleView?id=sf.remoteaccess_oauth_jwt_flow.htm
https://help.salesforce.com/s/articleView?id=sf.authorization_code_credentials_configure.htm

AWS Glue User Guide

 "Effect": "Allow",
 "Action": [
 "secretsmanager:DescribeSecret",
 "secretsmanager:GetSecretValue",
 "secretsmanager:PutSecretValue",
 "ec2:CreateNetworkInterface",
 "ec2:DescribeNetworkInterface",
 "ec2:DeleteNetworkInterface",
],
 "Resource": "*"
 }
]
}

Reading from Salesforce entities

Prerequisite

A Salesforce sObject you would like to read from. You will need the object name such as Account
or Case or Opportunity.

Example:

salesforce_read = glueContext.create_dynamic_frame.from_options(
 connection_type="salesforce",
 connection_options={
 "connectionName": "connectionName",
 "ENTITY_NAME": "Account",
 "API_VERSION": "v60.0"
 }

Partitioning queries

You can provide the additional Spark options PARTITION_FIELD, LOWER_BOUND, UPPER_BOUND,
and NUM_PARTITIONS if you want to utilize concurrency in Spark. With these parameters, the
original query would be split into NUM_PARTITIONS number of sub-queries that can be executed
by Spark tasks concurrently.

• PARTITION_FIELD: the name of the field to be used to partition the query.

• LOWER_BOUND: an inclusive lower bound value of the chosen partition field.

Connecting to Salesforce 351

AWS Glue User Guide

For timestamp field, we accept the Spark timestamp format used in Spark SQL queries.

Examples of valid values:

"TIMESTAMP \"1707256978123\""
"TIMESTAMP ’2024-02-06 22:02:58.123 UTC'"
"TIMESTAMP \"2018-08-08 00:00:00 Pacific/Tahiti\"
"TIMESTAMP \"2018-08-08 00:00:00\""
"TIMESTAMP \"-123456789\" Pacific/Tahiti"
"TIMESTAMP \"1702600882\""

• UPPER_BOUND: an exclusive upper bound value of the chosen partition field.

• NUM_PARTITIONS: the number of partitions.

Example:

salesforce_read = glueContext.create_dynamic_frame.from_options(
 connection_type="salesforce",
 connection_options={
 "connectionName": "connectionName",
 "ENTITY_NAME": "Account",
 "API_VERSION": "v60.0",
 "PARTITION_FIELD": "SystemModstamp"
 "LOWER_BOUND": "TIMESTAMP '2021-01-01 00:00:00 Pacific/Tahiti'"
 "UPPER_BOUND": "TIMESTAMP '2023-01-10 00:00:00 Pacific/Tahiti'"
 "NUM_PARTITIONS": "10"
 }

Writing to Salesforce

Prerequisites

A Salesforce sObject you would like to write to. You will need the object name such as Account or
Case or Opportunity.

The Salesforce connector supports four write operations:

• INSERT

• UPSERT

Connecting to Salesforce 352

AWS Glue User Guide

• UPDATE

• DELETE

When using the UPSERT write operation, the ID_FIELD_NAMES must be provided to specify the
external ID field for the records.

Example

salesforce_write = glueContext.write_dynamic_frame.from_options(
 frame=frameToWrite,
 connection_type="salesforce",
 connection_options={
 "connectionName": "connectionName",
 "ENTITY_NAME": "Account",
 "API_VERSION": "v60.0",
 "WRITE_OPERATION": "INSERT"
 }

Salesforce connection options

The following are connection options for Salesforce:

• ENTITY_NAME(String) - (Required) Used for Read/Write. The name of your Object in Salesforce.

• API_VERSION(String) - (Required) Used for Read/Write. Salesforce Rest API version you want to
use.

• SELECTED_FIELDS(List<String>) - Default: empty(SELECT *). Used for Read. Columns you want
to select for the object.

• FILTER_PREDICATE(String) - Default: empty. Used for Read. It should be in the Spark SQL
format.

• QUERY(String) - Default: empty. Used for Read. Full Spark SQL query.

• PARTITION_FIELD(String) - Used for Read. Field to be used to partition query.

• LOWER_BOUND(String)- Used for Read. An inclusive lower bound value of the chosen partition
field.

• UPPER_BOUND(String) - Used for Read. An exclusive upper bound value of the chosen partition
field.

• NUM_PARTITIONS(Integer) - Default: 1. Used for Read. Number of partitions for read.

Connecting to Salesforce 353

AWS Glue User Guide

• IMPORT_DELETED_RECORDS(String) - Default: FALSE. Used for read. To get the delete records
while querying.

• WRITE_OPERATION(String) - Default: INSERT. Used for write. Value should be INSERT, UPDATE,
UPSERT, DELETE.

• ID_FIELD_NAMES(String) - Default : null. Used only for UPSERT.

Limitations for Salesforce connector

The following are limitations for the Salesforce connector:

• We only support Spark SQL and Salesforce SOQL is not supported.

• Job bookmarks are not supported.

Set up the JWT bearer OAuth flow for Salesforce

Refer to Salesforce public documentation for enabling server-to-server integration with OAuth 2.0
JSON Web Tokens.

Creating a cert/key pair of PEM files

Create a cert/key pair of PEM files

openssl req -newkey rsa:4096 -new -nodes -x509 -days 3650 -keyout key.pem -out cert.pem

Creating a Salesforce connected app with JWT

1. Log in to Salesforce and click the settings gear at top right and select Setup.

2. On the left, navigate to App Manager. (Platform Tools > Apps > App Manager)

3. Choose New Connection App.

4. Provide an app name, let the rest be auto filled.

5. Check the box for Enable OAuth Settings.

6. Set a callback URL. It won’t be used for JWT, so you can use https://localhost.

7. Check the box for Use Digital Signatures.

8. Upload the cert.pem file created earlier.

9. Add the required permissions:

Connecting to Salesforce 354

https://help.salesforce.com/s/articleView?id=sf.remoteaccess_oauth_jwt_flow.htm
https://help.salesforce.com/s/articleView?id=sf.remoteaccess_oauth_jwt_flow.htm
https://login.salesforce.com/

AWS Glue User Guide

a. Manage user data via APIs (api).

b. Access custom permissions (custom_permissions).

c. Access the identity URL service (id, profile, email, address, phone).

d. Access unique user identifiers (openid).

e. Perform requests at any time (refresh_token, offline_access).

10.Check the box for Issue JSON Web Token (JWT)-based access tokens for named users.

11.Choose Save.

12.Choose Continue.

13.Choose Manage Consumer Details.

14.Copy the consumer key (client id).

15.Copy the consumer secret (client secret).

16.Click Cancel.

Generating a JSON Web Token (JWT)

1. Convert key pair into pkcs12 (set an export password when prompted).

 openssl pkcs12 -export -in cert.pem -inkey key.pem -name jwtcert > jwtcert.p12

2. Create a Java keystore from pkcs12 (set a destination keystore password when prompted, and
provide previous export password for source keystore password).

keytool -importkeystore -srckeystore jwtcert.p12 -destkeystore keystore.jks -
srcstoretype pkcs12 -alias jwtcert

3. Confirm keystore.jks includes jwtcert alias (enter previous destination keystore password when
prompted).

keytool -keystore keystore.jks -list

4. Use the Java class JWTExample provided in Salesforce documentation to generate the signed
token.

a. Edit the values in claimArray as necessary:

• claimArray[0] = client id

• claimArray[1] = salesforce user id

Connecting to Salesforce 355

AWS Glue User Guide

• claimArray[2] = salesforce login url

• claimArray[4] = expiration date in millis since epoch. 3660624000000 is 2085-12-31.

b. Replace path/to/keystore with correct path to your keystore.jks.

c. Replace keystorepassword with the destination keystore password you entered

d. Replace privatekeypassword with the source keystore password you entered

e. Compile the code. The code depends on the Apache Commons Codec for base64 encoding.

javac -classpath ".:./commons-codec-1.16.1.jar" JWTExample.java

f. Run the code.

java -classpath ".:commons-codec-1.16.1.jar" JWTExample

5. Once the connected app and JWT are created, still the user needs to be authorized for the app.
See step 3 in https://mannharleen.github.io/2020-03-03-salesforce-jwt/ for two approaches.

With the above steps completed, this should output a JSON Web Token (JWT) which can be used to
obtain access tokens from Salesforce.

Example input:

export password for pkcs12: awsglue
destination keystore password for jks: awsglue
source keystore password for jks: awsglue

claimArray[0] = “client-id”;
claimArray[1] = “my@email.com”;
claimArray[2] = "https://login.salesforce.com“;
claimArray[3] = "3660624000000";

path to keystore: ./keystore.jks
keystore password: awsglue
privatekey password: awsglue

Example output:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.signature

Useful links:

Connecting to Salesforce 356

https://commons.apache.org/codec/download_codec.cgi

AWS Glue User Guide

• https://www.base64encode.org/

• https://jwt.io/

• https://help.salesforce.com/s/articleView?id=sf.remoteaccess_oauth_jwt_flow.htm

JWTExample.java:

import org.apache.commons.codec.binary.Base64;
import java.io.*;
import java.security.*;
import java.text.MessageFormat;

public class JWTExample {

 public static void main(String[] args) {

 String header = "{\"alg\":\"RS256\"}";
 String claimTemplate = "'{'\"iss\": \"{0}\", \"sub\": \"{1}\", \"aud\": \"{2}\",
 \"exp\": \"{3}\"'}'";

 try {
 StringBuffer token = new StringBuffer();

 //Encode the JWT Header and add it to our string to sign
 token.append(Base64.encodeBase64URLSafeString(header.getBytes("UTF-8")));

 //Separate with a period
 token.append(".");

 //Create the JWT Claims Object
 String[] claimArray = new String[5];
 claimArray[0] = "value";
 claimArray[1] = "my@email.com";
 claimArray[2] = "https://login.salesforce.com";
 claimArray[3] = Long.toString((System.currentTimeMillis()/1000) + 300);
 MessageFormat claims;
 claims = new MessageFormat(claimTemplate);
 String payload = claims.format(claimArray);

 //Add the encoded claims object
 token.append(Base64.encodeBase64URLSafeString(payload.getBytes("UTF-8")));

 //Load the private key from a keystore

Connecting to Salesforce 357

AWS Glue User Guide

 KeyStore keystore = KeyStore.getInstance("JKS");
 keystore.load(new FileInputStream("./keystore.jks"), "awsglue".toCharArray());
 PrivateKey privateKey = (PrivateKey) keystore.getKey("jwtcert",
 "awsglue".toCharArray());

 //Sign the JWT Header + "." + JWT Claims Object
 Signature signature = Signature.getInstance("SHA256withRSA");
 signature.initSign(privateKey);
 signature.update(token.toString().getBytes("UTF-8"));
 String signedPayload = Base64.encodeBase64URLSafeString(signature.sign());

 //Separate with a period
 token.append(".");

 //Add the encoded signature
 token.append(signedPayload);

 System.out.println(token.toString());

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Connecting to SAP HANA in AWS Glue Studio

AWS Glue provides built-in support for SAP HANA. AWS Glue Studio provides a visual interface
to connect to SAP HANA, author data integration jobs, and run them on the AWS Glue Studio
serverless Spark runtime.

Topics

• Creating a SAP HANA connection

• Creating a SAP HANA source node

• Creating a SAP HANA target node

• Advanced options

Connecting to SAP HANA 358

AWS Glue User Guide

Creating a SAP HANA connection

To connect to SAP HANA from AWS Glue, you will need to create and store your SAP HANA
credentials in a AWS Secrets Manager secret, then associate that secret with a SAP HANA AWS Glue
connection. You will need to configure network connectivity between your SAP HANA service and
AWS Glue.

Prerequisites:

• If your SAP HANA service is in an Amazon VPC, configure Amazon VPC to allow your AWS Glue
job to communicate with the SAP HANA service without traffic traversing the public internet.

In Amazon VPC, identify or create a VPC, Subnet and Security group that AWS Glue will use
while executing the job. Additionally, you need to ensure Amazon VPC is configured to permit
network traffic between your SAP HANA endpoint and this location. Your job will need to
establish a TCP connection with your SAP HANA JDBC port. For more information about SAP
HANA ports, see the SAP HANA documentation. Based on your network layout, this may require
changes to security group rules, Network ACLs, NAT Gateways and Peering connections.

To configure a connection to SAP HANA:

1. In AWS Secrets Manager, create a secret using your SAP HANA credentials. To create a secret
in Secrets Manager, follow the tutorial available in Create an AWS Secrets Manager secret in
the AWS Secrets Manager documentation. After creating the secret, keep the Secret name,
secretName for the next step.

• When selecting Key/value pairs, create a pair for the key user with the value
saphanaUsername.

• When selecting Key/value pairs, create a pair for the key password with the value
saphanaPassword.

2. In the AWS Glue console, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for future use in AWS Glue.

• When selecting a Connection type, select SAP HANA.

• When providing SAP HANA URL, provide the URL for your instance.

Connecting to SAP HANA 359

https://help.sap.com/docs/HANA_SMART_DATA_INTEGRATION/7952ef28a6914997abc01745fef1b607/88e2e8bded9e4041ad3ad87dc46c7b55.html?locale=en-US
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Glue User Guide

SAP HANA JDBC URLs are in the form
jdbc:sap://saphanaHostname:saphanaPort/?databaseName=saphanaDBname,ParameterName=ParameterValue

AWS Glue requires the following JDBC URL parameters:

• databaseName – A default database in SAP HANA to connect to.

• When selecting an AWS Secret, provide secretName.

After creating a AWS Glue SAP HANA connection, you will need to perform the following steps
before running your AWS Glue job:

• Grant the IAM role associated with your AWS Glue job permission to read secretName.

Creating a SAP HANA source node

Prerequisites needed

• An AWS Glue SAP HANA connection, configured with an AWS Secrets Manager secret, as
described in the previous section, the section called “Creating a SAP HANA connection”.

• Appropriate permissions on your job to read the secret used by the connection.

• A SAP HANA table you would like to read from, tableName, or query targetQuery.

A table can be specified with a SAP HANA table name and schema name, in the form
schemaName.tableName. The schema name and "." separator are not required if the table is in
the default schema, "public". Call this tableIdentifier. Note that the database is provided as
a JDBC URL parameter in connectionName.

Adding a SAP HANA data source

To add a Data source – SAP HANA node:

1. Choose the connection for your SAP HANA data source. Since you have created it, it should
be available in the dropdown. If you need to create a connection, choose Create SAP HANA
connection. For more information see the previous section, the section called “Creating a SAP
HANA connection”.

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

Connecting to SAP HANA 360

AWS Glue User Guide

2. Choose a SAP HANA Source option:

• Choose a single table – access all data from a single table.

• Enter custom query – access a dataset from multiple tables based on your custom query.

3. If you chose a single table, enter tableName.

If you chose Enter custom query, enter a SQL SELECT query.

4. In Custom SAP HANA properties, enter parameters and values as needed.

Creating a SAP HANA target node

Prerequisites needed

• A AWS Glue SAP HANA connection, configured with an AWS Secrets Manager secret, as described
in the previous section, the section called “Creating a SAP HANA connection”.

• Appropriate permissions on your job to read the secret used by the connection.

• A SAP HANA table you would like to write to, tableName.

A table can be specified with a SAP HANA table name and schema name, in the form
schemaName.tableName. The schema name and "." separator are not required if the table is in
the default schema, "public". Call this tableIdentifier. Note that the database is provided as
a JDBC URL parameter in connectionName.

Adding a SAP HANA data target

To add a Data target – SAP HANA node:

1. Choose the connection for your SAP HANA data source. Since you have created it, it should
be available in the dropdown. If you need to create a connection, choose Create SAP HANA
connection. For more information see the previous section, the section called “Creating a SAP
HANA connection”.

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

2. Configure Table name by providing tableName.

3. In Custom Teradata properties, enter parameters and values as needed.

Connecting to SAP HANA 361

AWS Glue User Guide

Advanced options

You can provide advanced options when creating a SAP HANA node. These options are the same as
those available when programming AWS Glue for Spark scripts.

See the section called “SAP HANA connections”.

Connecting to Snowflake in AWS Glue Studio

Note

You can use AWS Glue for Spark to read from and write to tables in Snowflake in AWS
Glue 4.0 and later versions. To configure a Snowflake connection with AWS Glue jobs
programatically, see Redshift connections.

AWS Glue provides built-in support for Snowflake. AWS Glue Studio provides a visual interface
to connect to Snowflake, author data integration jobs, and run them on the AWS Glue Studio
serverless Spark runtime.

Topics

• Creating a Snowflake connection

• Creating a Snowflake source node

• Creating a Snowflake target node

• Advanced options

Creating a Snowflake connection

When adding a Data source - Snowflake node in AWS Glue Studio, you can choose an existing
AWS Glue Snowflake connection or create a new connection. You must choose a SNOWFLAKE
type connection and not a JDBC type connection configured to connect to Snowflake. Follow the
following procedure to create a AWS Glue Snowflake connection:

To create a Snowflake connection

1. In Snowflake, generate a user, snowflakeUser and password, snowflakePassword.

Connecting to Snowflake 362

AWS Glue User Guide

2. Determine which Snowflake warehouse this user will interact with, snowflakeWarehouse.
Either set it as the DEFAULT_WAREHOUSE for snowflakeUser in Snowflake or remember it
for the next step.

3. In AWS Secrets Manager, create a secret using your Snowflake credentials. To create a secret
in Secrets Manager, follow the tutorial available in Create an AWS Secrets Manager secret in
the AWS Secrets Manager documentation. After creating the secret, keep the Secret name,
secretName for the next step.

• When selecting Key/value pairs, create a pair for snowflakeUser with the key sfUser.

• When selecting Key/value pairs, create a pair for snowflakePassword with the key
sfPassword.

• When selecting Key/value pairs, create a pair for snowflakeWarehouse with the key
sfWarehouse. This is not needed if a default is set in Snowflake.

4. In the AWS Glue Data Catalog, create a connection by following the steps in Adding an AWS
Glue connection. After creating the connection, keep the connection name, connectionName,
for the next step.

• When selecting a Connection type, select Snowflake.

• When selecting Snowflake URL, provide the hostname of your Snowflake instance. The URL
will use a hostname in the form account_identifier.snowflakecomputing.com.

• When selecting an AWS Secret, provide secretName.

Creating a Snowflake source node

Permissions needed

AWS Glue Studio jobs using Snowflake data sources require additional permissions. For more
information on how to add permissions to ETL jobs, see Review IAM permissions needed for ETL
jobs.

SNOWFLAKE AWS Glue connections use an AWS Secrets Manager secret to provide credential
information. Your job and data preview roles in AWS Glue Studio must have permission to read this
secret.

Adding a Snowflake data source

Prerequisites:

Connecting to Snowflake 363

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html#create_secret_cli
https://docs.aws.amazon.com/glue/latest/dg/console-connections.html
https://docs.aws.amazon.com/glue/latest/dg/console-connections.html
https://docs.aws.amazon.com/glue/latest/ug/setting-up.html#getting-started-min-privs-job
https://docs.aws.amazon.com/glue/latest/ug/setting-up.html#getting-started-min-privs-job

AWS Glue User Guide

• An AWS Secrets Manager secret for your Snowflake credentials

• A Snowflake type AWS Glue Data Catalog connection

To add a Data Source – Snowflake node:

1. Choose the connection for your Snowflake data source. This assumes that the connection
already exists and you can select from existing connections. If you need to create a connection,
choose Create Snowflake connection. For more information, see Overview of using
connectors and connections .

Once you have chosen a connection, you can view the connection properties by clicking View
properties. Information about the connection are visible, including URL, security groups,
subnet, availability zone, description, and created (UTC) and last updated (UTC) timestamps.

2. Choose a Snowflake source option:

• Choose a single table – this is the table that contains the data you want to access from a
single Snowflake table.

• Enter custom query – allows you to access a dataset from multiple Snowflake tables based
on your custom query.

3. If you chose a single table, enter the name of a Snowflake schema.

Or, choose Enter custom query. Choose this option to access a custom dataset from multiple
Snowflake tables. When you choose this option, enter the Snowflake query.

4. In Performance and security options (optional),

• Enable query pushdown – choose if you want to offload work to the Snowflake instance.

5. In Custom Snowflake properties (optional), enter parameters and values as needed.

Creating a Snowflake target node

Permissions needed

AWS Glue Studio jobs using Snowflake data sources require additional permissions. For more
information on how to add permissions to ETL jobs, see Review IAM permissions needed for ETL
jobs.

Connecting to Snowflake 364

https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#using-connectors-overview
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#using-connectors-overview
https://docs.aws.amazon.com/glue/latest/ug/setting-up.html#getting-started-min-privs-job
https://docs.aws.amazon.com/glue/latest/ug/setting-up.html#getting-started-min-privs-job

AWS Glue User Guide

SNOWFLAKE AWS Glue connections use an AWS Secrets Manager secret to provide credential
information. Your job and data preview roles in AWS Glue Studio must have permission to read this
secret.

Adding a Snowflake data target

To create a Snowflake target node:

1. Choose an existing Snowflake table as the target, or enter a new table name.

2. When you use the Data target - Snowflake target node, you can choose from the following
options:

• APPEND – If a table already exists, dump all the new data into the table as an insert. If the
table doesn't exist, create it and then insert all new data.

• MERGE – AWS Glue will update or append data to your target table based on the conditions
you specify.

Choose options:

• Choose keys and simple actions – choose the columns to be used as matching keys
between the source data and your target data set.

Specify the following options when matched:

• Update record in your target data set with data from source.

• Delete record in your target data set.

Specify the following options when not matched:

• Insert source data as a new row into your target data set.

• Do nothing.

• Enter custom MERGE statement – You can then choose Validate Merge statement to
verify that the statement is valid or invalid.

• TRUNCATE – If a table already exists, truncate the table data by first clearing the contents of
the target table. If truncate is successful, then insert all data. If the table doesn't exist, create
the table and insert all data. If truncate is not successful, the operation will fail.

• DROP – If a table already exists, delete the table metadata and data. If deletion is successful,
then insert all data. If the table doesn't exist, create the table and insert all data. If drop is
not successful, the operation will fail.

Connecting to Snowflake 365

AWS Glue User Guide

Advanced options

See Snowflake connections in the AWS Glue developer guide.

Connecting to Teradata Vantage in AWS Glue Studio

AWS Glue provides built-in support for Teradata Vantage. AWS Glue Studio provides a visual
interface to connect to Teradata, author data integration jobs, and run them on the AWS Glue
Studio serverless Spark runtime.

Topics

• Creating a Teradata Vantage connection

• Creating a Teradata source node

• Creating a Teradata target node

• Advanced options

Creating a Teradata Vantage connection

To connect to Teradata Vantage from AWS Glue, you will need to create and store your Teradata
credentials in an AWS Secrets Manager secret, then associate that secret with a AWS Glue Teradata
connection.

Prerequisites:

• If you are accessing your Teradata environment through Amazon VPC, configure Amazon VPC
to allow your AWS Glue job to communicate with the Teradata environment. We discourage
accessing the Teradata environment over the public internet.

In Amazon VPC, identify or create a VPC, Subnet and Security group that AWS Glue will use
while executing the job. Additionally, you need to ensure Amazon VPC is configured to permit
network traffic between your Teradata instance and this location. Your job will need to establish
a TCP connection with your Teradata client port. For more information about Teradata ports, see
the Teradata documentation.

Based on your network layout, secure VPC connectivity may require changes in Amazon VPC
and other networking services. For more information about AWS connectivity, consult AWS
Connectivity Options in the Teradata documentation.

Connecting to Teradata 366

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect-snowflake-home.html
https://docs.teradata.com/r/Teradata-VantageTM-on-AWS-DIY-Installation-and-Administration-Guide/April-2020/Before-Deploying-Vantage-on-AWS-DIY/Security-Groups-and-Ports
https://docs.teradata.com/r/Teradata-VantageCloud-Enterprise/Get-Started/Connecting-Your-Environment/AWS-Connectivity-Options
https://docs.teradata.com/r/Teradata-VantageCloud-Enterprise/Get-Started/Connecting-Your-Environment/AWS-Connectivity-Options

AWS Glue User Guide

To configure a AWS Glue Teradata connection:

1. In your Teradata configuration, identify or create a user and password AWS Glue will connect
with, teradataUser and teradataPassword. For more information, consult Vantage
Security Overview in the Teradata documentation.

2. In AWS Secrets Manager, create a secret using your Teradata credentials. To create a secret in
Secrets Manager, follow the tutorial available in Create an AWS Secrets Manager secret in
the AWS Secrets Manager documentation. After creating the secret, keep the Secret name,
secretName for the next step.

• When selecting Key/value pairs, create a pair for the key user with the value
teradataUsername.

• When selecting Key/value pairs, create a pair for the key password with the value
teradataPassword.

3. In the AWS Glue console, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for the next step.

• When selecting a Connection type, select Teradata.

• When providing JDBC URL, provide the URL for your instance. You
can also hardcode certain comma separated connection parameters
in your JDBC URL. The URL must conform to the following format:
jdbc:teradata://teradataHostname/ParameterName=ParameterValue,ParameterName=ParameterValue

Supported URL parameters include:

• DATABASE– name of database on host to access by default.

• DBS_PORT– the database port, used when running on a nonstandard port.

• When selecting a Credential type, select AWS Secrets Manager, then set AWS Secret to
secretName.

4. In the following situations, you may require additional configuration:

• For Teradata instances hosted on AWS in an Amazon VPC

• You will need to provide Amazon VPC connection information to the AWS Glue connection
that defines your Teradata security credentials. When creating or updating your
connection, set VPC, Subnet and Security groups in Network options.

Connecting to Teradata 367

https://docs.teradata.com/r/Configuring-Teradata-VantageTM-After-Installation/January-2021/Security-Overview/Vantage-Security-Overview
https://docs.teradata.com/r/Configuring-Teradata-VantageTM-After-Installation/January-2021/Security-Overview/Vantage-Security-Overview
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Glue User Guide

Creating a Teradata source node

Prerequisites needed

• An AWS Glue Teradata Vantage connection, configured with an AWS Secrets Manager secret, as
described in the previous section, the section called “Creating a Teradata Vantage connection”.

• Appropriate permissions on your job to read the secret used by the connection.

• A Teradata table you would like to read from, tableName, or query targetQuery.

Adding a Teradata data source

To add a Data source – Teradata node:

1. Choose the connection for your Teradata data source. Since you have created it, it should
be available in the dropdown. If you need to create a connection, choose Create a new
connection. For more information see the previous section, the section called “Creating a
Teradata Vantage connection”.

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

2. Choose a Teradata Source option:

• Choose a single table – access all data from a single table.

• Enter custom query – access a dataset from multiple tables based on your custom query.

3. If you chose a single table, enter tableName.

If you chose Enter custom query, enter a SQL SELECT query.

4. In Custom Teradata properties, enter parameters and values as needed.

Creating a Teradata target node

Prerequisites needed

• A AWS Glue Teradata Vantage connection, configured with an AWS Secrets Manager secret, as
described in the previous section, the section called “Creating a Teradata Vantage connection”.

• Appropriate permissions on your job to read the secret used by the connection.

• A Teradata table you would like to write to, tableName.

Connecting to Teradata 368

AWS Glue User Guide

Adding a Teradata data target

To add a Data target – Teradata node:

1. Choose the connection for your Teradata data source. Since you have created it, it should
be available in the dropdown. If you need to create a connection, choose Create Teradata
connection. For more information, see Overview of using connectors and connections .

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

2. Configure Table name by providing tableName.

3. In Custom Teradata properties, enter parameters and values as needed.

Advanced options

You can provide advanced options when creating a Teradata node. These options are the same as
those available when programming AWS Glue for Spark scripts.

See the section called “Teradata Vantage connections”.

Connecting to Vertica in AWS Glue Studio

AWS Glue provides built-in support for Vertica. AWS Glue Studio provides a visual interface to
connect to Vertica, author data integration jobs, and run them on the AWS Glue Studio serverless
Spark runtime.

Topics

• Creating a Vertica connection

• Creating a Vertica source node

• Creating a Vertica target node

• Advanced options

Creating a Vertica connection

Prerequisites:

• An Amazon S3 bucket or folder to use for temporary storage when reading from and writing to
the database, referred to by tempS3Path.

Connecting to Vertica 369

https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#using-connectors-overview

AWS Glue User Guide

Note

When using Vertica in AWS Glue job data previews, temporary files may not be
automatically removed from tempS3Path. To ensure the removal of temporary files,
directly end the data preview session by choosing End session in the Data preview pane.
If you cannot guarantee the data preview session is ended directly, consider setting
Amazon S3 Lifecycle configuration to remove old data. We recommend removing
data older than 49 hours, based on maximum job runtime plus a margin. For more
information about configuring Amazon S3 Lifecycle, see Managing your storage lifecycle
in the Amazon S3 documentation.

• An IAM policy with appropriate permissions to your Amazon S3 path you can associate with your
AWS Glue job role.

• If your Vertica instance is in an Amazon VPC, configure Amazon VPC to allow your AWS Glue job
to communicate with the Vertica instance without traffic traversing the public internet.

In Amazon VPC, identify or create a VPC, Subnet and Security group that AWS Glue will use
while executing the job. Additionally, you need to ensure Amazon VPC is configured to permit
network traffic between your Vertica instance and this location. Your job will need to establish
a TCP connection with your Vertica client port, (default 5433). Based on your network layout,
this may require changes to security group rules, Network ACLs, NAT Gateways and Peering
connections.

To configure a connection to Vertica:

1. In AWS Secrets Manager, create a secret using your Vertica credentials, verticaUsername
and verticaPassword. To create a secret in Secrets Manager, follow the tutorial available
in Create an AWS Secrets Manager secret in the AWS Secrets Manager documentation. After
creating the secret, keep the Secret name, secretName for the next step.

• When selecting Key/value pairs, create a pair for the key user with the value
verticaUsername.

• When selecting Key/value pairs, create a pair for the key password with the value
verticaPassword.

Connecting to Vertica 370

https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Glue User Guide

2. In the AWS Glue console, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for the next step.

• When selecting a Connection type, select Vertica.

• When selecting Vertica Host, provide the hostname of your Vertica installation.

• When selecting Vertica Port, the port your Vertica installation is available through.

• When selecting an AWS Secret, provide secretName.

3. In the following situations, you may require additional configuration:

• For Vertica instances hosted on AWS in an Amazon VPC

• Provide Amazon VPC connection information to the AWS Glue connection that defines
your Vertica security credentials. When creating or updating your connection, set VPC,
Subnet and Security groups in Network options.

You will need to perform the following steps before running your AWS Glue job:

• Grant the IAM role associated with your AWS Glue job permissions to tempS3Path.

• Grant the IAM role associated with your AWS Glue job permission to read secretName.

Creating a Vertica source node

Prerequisites needed

• A Vertica type AWS Glue Data Catalog connection, connectionName and a temporary Amazon
S3 location, tempS3Path, as described in the previous section, the section called “Creating a
Vertica connection”.

• A Vertica table you would like to read from, tableName, or query targetQuery.

Adding a Vertica data source

To add a Data source – Vertica node:

1. Choose the connection for your Vertica data source. Since you have created it, it should
be available in the dropdown. If you need to create a connection, choose Create Vertica

Connecting to Vertica 371

AWS Glue User Guide

connection. For more information see the previous section, the section called “Creating a
Vertica connection”.

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

2. Choose the Database containing your table.

3. Choose the Staging area in Amazon S3, enter an S3A URI to tempS3Path.

4. Choose the Vertica Source.

• Choose a single table – access all data from a single table.

• Enter custom query – access a dataset from multiple tables based on your custom query.

5. If you chose a single table, enter tableName and optionally select a Schema.

If you chose Enter custom query, enter a SQL SELECT query and optionally select a Schema.

6. In Custom Vertica properties, enter parameters and values as needed.

Creating a Vertica target node

Prerequisites needed

• A Vertica type AWS Glue Data Catalog connection, connectionName and a temporary Amazon
S3 location, tempS3Path, as described in the previous section, the section called “Creating a
Vertica connection”.

Adding a Vertica data target

To add a Data target – Vertica node:

1. Choose the connection for your Vertica data source. Since you have created it, it should
be available in the dropdown. If you need to create a connection, choose Create Vertica
connection. For more information see the previous section, the section called “Creating a
Vertica connection”.

Once you have chosen a connection, you can view the connection properties by clicking View
properties.

2. Choose the Database containing your table.

3. Choose the Staging area in Amazon S3, enter an S3A URI to tempS3Path.

Connecting to Vertica 372

AWS Glue User Guide

4. Enter tableName and optionally select a Schema.

5. In Custom Vertica properties, enter parameters and values as needed.

Advanced options

You can provide advanced options when creating a Vertica node. These options are the same as
those available when programming AWS Glue for Spark scripts.

See the section called “Vertica connections”.

Using connectors and connections with AWS Glue Studio

AWS Glue provides built-in support for the most commonly used data stores (such as Amazon
Redshift, Amazon Aurora, Microsoft SQL Server, MySQL, MongoDB, and PostgreSQL) using JDBC
connections. AWS Glue also allows you to use custom JDBC drivers in your extract, transform, and
load (ETL) jobs. For data stores that are not natively supported, such as SaaS applications, you can
use connectors.

A connector is an optional code package that assists with accessing data stores in AWS Glue Studio.
You can subscribe to several connectors offered in AWS Marketplace.

When creating ETL jobs, you can use a natively supported data store, a connector from AWS
Marketplace, or your own custom connectors. If you use a connector, you must first create a
connection for the connector. A connection contains the properties that are required to connect to
a particular data store. You use the connection with your data sources and data targets in the ETL
job. Connectors and connections work together to facilitate access to the data stores.

Topics

• Overview of using connectors and connections

• Adding connectors to AWS Glue Studio

• Available connections

• Creating connections for connectors

• Authoring jobs with custom connectors

• Managing connectors and connections

• Developing custom connectors

Using connectors and connections 373

AWS Glue User Guide

• Restrictions for using connectors and connections in AWS Glue Studio

Overview of using connectors and connections

A connection contains the properties that are required to connect to a particular data store. When
you create a connection, it is stored in the AWS Glue Data Catalog. You choose a connector, and
then create a connection based on that connector.

You can subscribe to connectors for non-natively supported data stores in AWS Marketplace, and
then use those connectors when you're creating connections. Developers can also create their own
connectors, and you can use them when creating connections.

Note

Connections created using custom or AWS Marketplace connectors in AWS Glue Studio
appear in the AWS Glue console with type set to UNKNOWN.

The following steps describe the overall process of using connectors in AWS Glue Studio:

1. Subscribe to a connector in AWS Marketplace, or develop your own connector and upload it to
AWS Glue Studio. For more information, see Adding connectors to AWS Glue Studio.

2. Review the connector usage information. You can find this information on the Usage tab on
the connector product page. For example, if you click the Usage tab on this product page, AWS
Glue Connector for Google BigQuery, you can see in the Additional Resources section a link to a
blog about using this connector. Other connectors might contain links to the instructions in the
Overview section, as shown on the connector product page for Cloudwatch Logs connector for
AWS Glue.

3. Create a connection. You choose which connector to use and provide additional information
for the connection, such as login credentials, URI strings, and virtual private cloud (VPC)
information. For more information, see Creating connections for connectors.

4. Create an IAM role for your job. The job assumes the permissions of the IAM role that you specify
when you create it. This IAM role must have the necessary permissions to authenticate with,
extract data from, and write data to your data stores.

5. Create an ETL job and configure the data source properties for your ETL job. Provide the
connection options and authentication information as instructed by the custom connector
provider. For more information, see Authoring jobs with custom connectors.

Using connectors and connections 374

https://aws.amazon.com/marketplace/pp/prodview-w2ranrogj3xmm?ref_=beagle&applicationId=GlueStudio
https://aws.amazon.com/marketplace/pp/prodview-w2ranrogj3xmm?ref_=beagle&applicationId=GlueStudio
https://aws.amazon.com/marketplace/pp/B08MV9Y1TK?ref_=beagle&applicationId=GlueStudio
https://aws.amazon.com/marketplace/pp/B08MV9Y1TK?ref_=beagle&applicationId=GlueStudio

AWS Glue User Guide

6. Customize your ETL job by adding transforms or additional data stores, as described in Visual
ETL with AWS Glue Studio.

7. If using a connector for the data target, configure the data target properties for your ETL job.
Provide the connection options and authentication information as instructed by the custom
connector provider. For more information, see the section called “Authoring jobs with custom
connectors”.

8. Customize the job run environment by configuring job properties, as described in Modify the job
properties.

9. Run the job.

Adding connectors to AWS Glue Studio

A connector is a piece of code that facilitates communication between your data store and AWS
Glue. You can either subscribe to a connector offered in AWS Marketplace, or you can create your
own custom connector.

Topics

• Subscribing to AWS Marketplace connectors

• Creating custom connectors

Subscribing to AWS Marketplace connectors

AWS Glue Studio makes it easy to add connectors from AWS Marketplace.

To add a connector from AWS Marketplace to AWS Glue Studio

1. In the AWS Glue Studio console, choose Connectors in the console navigation pane.

2. On the Connectors page, choose Go to AWS Marketplace.

3. In AWS Marketplace, in Featured products, choose the connector you want to use. You can
choose one of the featured connectors, or use search. You can search on the name or type of
connector, and you can use options to refine the search results.

If you want to use one of the featured connectors, choose View product. If you used search to
locate a connector, then choose the name of the connector.

4. On the product page for the connector, use the tabs to view information about the connector.
If you decide to purchase this connector, choose Continue to Subscribe.

Using connectors and connections 375

AWS Glue User Guide

5. Provide the payment information, and then choose Continue to Configure.

6. On the Configure this software page, choose the method of deployment and the version of
the connector to use. Then choose Continue to Launch.

7. On the Launch this software page, you can review the Usage Instructions provided by the
connector provider. When you're ready to continue, choose Activate connection in AWS Glue
Studio.

After a small amount of time, the console displays the Create marketplace connection page in
AWS Glue Studio.

8. Create a connection that uses this connector, as described in Creating connections for
connectors.

Alternatively, you can choose Activate connector only to skip creating a connection at this
time. You must create a connection at a later date before you can use the connector.

Creating custom connectors

You can also build your own connector and then upload the connector code to AWS Glue Studio.

Custom connectors are integrated into AWS Glue Studio through the AWS Glue Spark runtime API.
The AWS Glue Spark runtime allows you to plug in any connector that is compliant with the Spark,
Athena, or JDBC interface. It allows you to pass in any connection option that is available with the
custom connector.

You can encapsulate all your connection properties with AWS Glue Connections and supply the
connection name to your ETL job. Integration with Data Catalog connections allows you to use the
same connection properties across multiple calls in a single Spark application or across different
applications.

You can specify additional options for the connection. The job script that AWS Glue Studio
generates contains a Datasource entry that uses the connection to plug in your connector with
the specified connection options. For example:

Datasource = glueContext.create_dynamic_frame.from_options(connection_type =
"custom.jdbc", connection_options = {"dbTable":"Account","connectionName":"my-custom-
jdbc-
connection"}, transformation_ctx = "DataSource0")

Using connectors and connections 376

https://docs.aws.amazon.com/glue/latest/dg/glue-connections.html

AWS Glue User Guide

To add a custom connector to AWS Glue Studio

1. Create the code for your custom connector. For more information, see Developing custom
connectors.

2. Add support for AWS Glue features to your connector. Here are some examples of these
features and how they are used within the job script generated by AWS Glue Studio:

• Data type mapping – Your connector can typecast the columns while reading them from
the underlying data store. For example, a dataTypeMapping of {"INTEGER":"STRING"}
converts all columns of type Integer to columns of type String when parsing the records
and constructing the DynamicFrame. This helps users to cast columns to types of their
choice.

DataSource0 = glueContext.create_dynamic_frame.from_options(connection_type
= "custom.jdbc", connection_options = {"dataTypeMapping":{"INTEGER":"STRING"}",
connectionName":"test-connection-jdbc"}, transformation_ctx = "DataSource0")

• Partitioning for parallel reads – AWS Glue allows parallel data reads from the data store
by partitioning the data on a column. You must specify the partition column, the lower
partition bound, the upper partition bound, and the number of partitions. This feature
enables you to make use of data parallelism and multiple Spark executors allocated for the
Spark application.

DataSource0 = glueContext.create_dynamic_frame.from_options(connection_type
= "custom.jdbc", connection_options = {"upperBound":"200","numPartitions":"4",
"partitionColumn":"id","lowerBound":"0","connectionName":"test-connection-jdbc"},
transformation_ctx = "DataSource0")

• Use AWS Secrets Manager for storing credentials –The Data Catalog connection can
also contain a secretId for a secret stored in AWS Secrets Manager. The AWS secret can
securely store authentication and credentials information and provide it to AWS Glue at
runtime. Alternatively, you can specify the secretId from the Spark script as follows:

DataSource = glueContext.create_dynamic_frame.from_options(connection_type
= "custom.jdbc", connection_options = {"connectionName":"test-connection-jdbc",
 "secretId"-> "my-secret-id"}, transformation_ctx = "DataSource0")

• Filtering the source data with row predicates and column projections – The AWS Glue
Spark runtime also allows users to push down SQL queries to filter data at the source with
row predicates and column projections. This allows your ETL job to load filtered data faster

Using connectors and connections 377

AWS Glue User Guide

from data stores that support push-downs. An example SQL query pushed down to a JDBC
data source is: SELECT id, name, department FROM department WHERE id <
200.

DataSource = glueContext.create_dynamic_frame.from_options(connection_type =
"custom.jdbc", connection_options = {"query":"SELECT id, name, department FROM
 department
WHERE id < 200","connectionName":"test-connection-jdbc"}, transformation_ctx =
"DataSource0")

• Job bookmarks – AWS Glue supports incremental loading of data from JDBC sources. AWS
Glue keeps track of the last processed record from the data store, and processes new data
records in the subsequent ETL job runs. Job bookmarks use the primary key as the default
column for the bookmark key, provided that this column increases or decreases sequentially.
For more information about job bookmarks, see Job Bookmarks in the AWS Glue Developer
Guide.

DataSource0 = glueContext.create_dynamic_frame.from_options(connection_type =
"custom.jdbc", connection_options = {"jobBookmarkKeys":["empno"],
 "jobBookmarkKeysSortOrder"
:"asc", "connectionName":"test-connection-jdbc"}, transformation_ctx =
 "DataSource0")

3. Package the custom connector as a JAR file and upload the file to Amazon S3.

4. Test your custom connector. For more information, see the instructions on GitHub at Glue
Custom Connectors: Local Validation Tests Guide.

5. In the AWS Glue Studio console, choose Connectors in the console navigation pane.

6. On the Connectors page, choose Create custom connector.

7. On the Create custom connector page, enter the following information:

• The path to the location of the custom code JAR file in Amazon S3.

• A name for the connector that will be used by AWS Glue Studio.

• Your connector type, which can be one of JDBC, Spark, or Athena.

• The name of the entry point within your custom code that AWS Glue Studio calls to use the
connector.

• For JDBC connectors, this field should be the class name of your JDBC driver.

Using connectors and connections 378

https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html
https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/localValidation/README.md
https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/localValidation/README.md

AWS Glue User Guide

• For Spark connectors, this field should be the fully qualified data source class name, or its
alias, that you use when loading the Spark data source with the format operator.

• (JDBC only) The base URL used by the JDBC connection for the data store.

• (Optional) A description of the custom connector.

8. Choose Create connector.

9. From the Connectors page, create a connection that uses this connector, as described in
Creating connections for connectors.

Available connections

The following connections are available when creating connections for connectors:

• Amazon Aurora – a scalable, high-performance relational database engine with built-in security,
backup and restore, and in-memory acceleration.

• Amazon DocumentDB – a scalable, highly available, and fully managed document database
service that supports MongoDB and SQL APIs.

• Amazon Redshift – a scalable, highly available, and fully managed document database service
that supports MongoDB and SQL APIs.

• Azure SQL – a cloud-based relational database service from Microsoft Azure that provides
scalable, reliable, and secure data storage and management capabilities.

• Cosmos DB – a globally distributed cloud database service from Microsoft Azure that provides
scalable, high-performance data storage and querying capabilities.

• Google BigQuery – a serverless cloud data warehouse for running fast SQL queries on large
datasets.

• JDBC – a relational database management system (RDBMS) that uses a Java API for connecting
and interacting with data connections.

• Kafka – an open-source stream processing platform used for real-time data streaming and
messaging.

• MariaDB – a community-developed fork of MySQL that offers enhanced performance, scalability,
and features.

• MongoDB – a cross-platform document-oriented database that provides high scalability,
flexibility, and performance.

• MongoDB Atlas – a cloud-based database as a service (DBaaS) offering from MongoDB that
simplifies the management and scaling of MongoDB deployments.

Using connectors and connections 379

AWS Glue User Guide

• Microsoft SQL Server – a relational database management system (RDBMS) from Microsoft that
provides robust data storage, analysis, and reporting capabilities.

• MySQL – an open-source relational database management system (RDBMS) that is widely used
in web applications and is known for its reliability and scalability.

• Network – a network data source represents a network-accessible resource or service that can be
accessed by a data integration platform.

• OpenSearch – an OpenSearch data source is an application that OpenSearch can connect to and
ingest data from.

• Oracle – a relational database management system (RDBMS) from Oracle Corporation that
provides robust data storage, analysis, and reporting capabilities.

• PostgreSQL – an open-source relational database management system (RDBMS) that provides
robust data storage, analysis, and reporting capabilities.

• Salesforce – Salesforce provides customer relationship management (CRM) software that help
you with sales, customer service, e-commerce, and more. If you're a Salesforce user, you can
connect AWS Glue to your Salesforce account. Then, you can use Salesforce as a data source
or destination in your ETL jobs. Run these jobs to transfer data between Salesforce and AWS
services or other supported applications.

• SAP HANA – an in-memory database and analytics platform that provides fast data processing,
advanced analytics, and real-time data integration.

• Snowflake – a cloud-based data warehouse that provides scalable, high-performance data
storage and analytics services.

• Teradata – a relational database management system (RDBMS) that provides high-performance
data storage, analysis, and reporting capabilities.

• Vertica – a columnar-oriented analytical data warehouse designed for big data analytics that
offers fast query performance, advanced analytics, and scalability.

Creating connections for connectors

An AWS Glue connection is a Data Catalog object that stores connection information for a
particular data store. Connections store login credentials, URI strings, virtual private cloud (VPC)
information, and more. Creating connections in the Data Catalog saves the effort of having to
specify all connection details every time you create a job.

Using connectors and connections 380

AWS Glue User Guide

To create a connection for a connector

1. In the AWS Glue Studio console, choose Connectors in the console navigation pane. In the
Connections section, choose Create connection.

2. Choose the data source you want to create a connection for in step 1 of the Create data
connection wizard. There are several ways to view the available data sources, including:

• Filter the available data sources by choosing a tab. By default, All connectors is selected.

• Toggle List to view the data sources as a list or toggle back to Grid to view the available
connectors in the grid layout.

• Use the search bar to narrow the list of data sources. As you type, search matches are
displayed and non-matching sources are removed from view.

Once you've chosen the data source, choose Next.

3. Configure the connection in Step 2 in the wizard.

Enter the connection details. Depending on the type of connector you selected, you're
prompted to enter additional information:

Using connectors and connections 381

AWS Glue User Guide

4. Choose the data source you want to create a connection for in step 1 of the Create data
connection wizard. There are several ways to view the available data sources. By default, you
will see all available data sources in a grid layout. You can also:

• Toggle List to view the data sources as a list or toggle back to Grid to view the available
connectors in the grid layout.

• Use the search bar to narrow the list of data sources. As you type, search matches are
displayed and non-matching sources are removed from view.

Once you've chosen the data source, choose Next.

5. Configure the connection in Step 2 in the wizard.

Enter the connection details. Depending on the type of connector you selected, you may be
required to enter additional connection information. This can include:

• Connection details – these fields will change depending on the data source you are
connecting to. For example, if you are connecting to Amazon DocumentDB databases, you
will enter the Amazon DocumentDB URL. If you are connecting to Amazon Aurora, you will
choose the database instance and enter the database name. The following is the Connection
details required for Amazon Aurora:

Using connectors and connections 382

AWS Glue User Guide

• Credential type – choose between Username and password or AWS Secrets Manager. Enter
the requested authentication information.

• For connectors that use JDBC, enter the information required to create the JDBC URL for the
data store.

• If you use a virtual private cloud (VPC), then enter the network information for your VPC.

6. Set the connection properties in step 3 of the wizard. You can add a description and tags as an
optional part of this step. Name is required and is prepopulated with a default value. Choose
Next.

7. Review the connection source, details, and properties. If you need to make any changes,
choose Edit for the step in the wizard. When ready, choose, Create connection .

Choose Create connection.

You are returned to the Connectors page, and the informational banner indicates the
connection that was created. You can now use the connection in your AWS Glue Studio jobs.

Creating a Kafka connection

When creating a Kafka connection, selecting Kafka from the drop-down menu will display
additional settings to configure:

Using connectors and connections 383

AWS Glue User Guide

• Kafka cluster details

• Authentication

• Encryption

• Network options

Configure Kafka cluster details

1. Choose the cluster location. You can choose from an Amazon managed streaming for Apache
Kafka (MSK) cluster or a Customer managed Apache Kafka cluster. For more information on
Amazon Managed streaming for Apache Kafka, see Amazon managed streaming for Apache
Kafka (MSK).

Note

Amazon Managed Streaming for Apache Kafka only supports TLS and SASL/SCRAM-
SHA-512 authentication methods.

2. Enter the URLs for your Kafka bootstrap servers. You may enter more than one by separating
each server by a comma. Include the port number at the end of the URL by appending :<port
number>.

For example: b-1.vpc-test-2.034a88o.kafka-us-east-1.amazonaws.com:9094

Using connectors and connections 384

https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html
https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html

AWS Glue User Guide

Select authentication method

AWS Glue supports the Simple Authentication and Security Layer (SASL) framework for
authentication. The SASL framework supports various mechanisms of authentication, and
AWS Glue offers the SCRAM (username and password), GSSAPI (Kerberos protocol), and PLAIN
(username and password) protocols.

When choosing an authentication method from the drop-down menu, the following client
authentication methods can be selected:

• None - No authentication. This is useful if you create a connection for testing purposes.

• SASL/SCRAM-SHA-512 - Choose this authentication method to specify authentication
credentials. There are two options available:

• Use AWS Secrets Manager (recommended) - if you select this option, you can store your
credentials in AWS Secrets Manager and let AWS Glue access the information when needed.
Specify the secret that stores the SSL or SASL authentication credentials.

Using connectors and connections 385

AWS Glue User Guide

• Provide username and password directly.

• SASL/GSSAPI (Kerberos) - if you select this option, you can select the location of the keytab file,
krb5.conf file and enter the Kerberos principal name and Kerberos service name. The locations
for the keytab file and krb5.conf file must be in an Amazon S3 location. Since MSK does not yet
support SASL/GSSAPI, this option is only available for customer managed Apache Kafka clusters.
For more information, see MIT Kerberos Documentation: Keytab .

• SASL/PLAIN - Choose this authentication method to specify authentication credentials. There are
two options available:

• Use AWS Secrets Manager (recommended) - if you select this option, you can store your
credentials in AWS Secrets Manager and let AWS Glue access the information when needed.
Specify the secret that stores the SSL or SASL authentication credentials.

• Provide username and password directly.

• SSL Client Authentication - if you select this option, you can you can select the location of the
Kafka client keystore by browsing Amazon S3. Optionally, you can enter the Kafka client keystore
password and Kafka client key password.

Configure encryption settings

1. If the Kafka connection requires SSL connection, select the checkbox for Require SSL
connection. Note that the connection will fail if it's unable to connect over SSL. SSL for

Using connectors and connections 386

https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html

AWS Glue User Guide

encryption can be used with any of the authentication methods (SASL/SCRAM-SHA-512,
SASL/GSSAPI, SASL/PLAIN, or SSL Client Authentication) and is optional.

If the authentication method is set to SSL client authentication, this option will be selected
automatically and will be disabled to prevent any changes.

2. (Optional). Choose the location of private certificate from certificate authority (CA). Note
that the location of the certification must be in an S3 location. Choose Browse to choose
the file from a connected S3 bucket. The path must be in the form s3://bucket/prefix/
filename.pem. It must end with the file name and .pem extension.

3. You can choose to skip validation of certificate from a certificate authority (CA). Choose the
checkbox Skip validation of certificate from certificate authority (CA). If this box is not
checked, AWS Glue validates certificates for three algorithms:

• SHA256withRSA

• SHA384withRSA

• SHA512withRSA

(Optional) Network options

The following are optional steps to configure VPC, Subnet and Security groups. If your AWS Glue
job needs to run on Amazon EC2 instances in a virtual private cloud (VPC) subnet, you must
provide additional VPC-specific configuration information.

1. Choose the VPC (virtual private cloud) that contains your data source.

2. Choose the subnet with your VPC.

Using connectors and connections 387

AWS Glue User Guide

3. Choose one or more security groups to allow access to the data store in your VPC subnet.
Security groups are associated to the ENI attached to your subnet. You must choose at least
one security group with a self-referencing inbound rule for all TCP ports.

Authoring jobs with custom connectors

You can use connectors and connections for both data source nodes and data target nodes in AWS
Glue Studio.

Topics

• Create jobs that use a connector for the data source

• Configure source properties for nodes that use connectors

• Configure target properties for nodes that use connectors

Create jobs that use a connector for the data source

When you create a new job, you can choose a connector for the data source and data targets.

Using connectors and connections 388

AWS Glue User Guide

To create a job that uses connectors for the data source or data target

1. Sign in to the AWS Management Console and open the AWS Glue Studio console at https://
console.aws.amazon.com/gluestudio/.

2. On the Connectors page, in the Your connections resource list, choose the connection you
want to use in your job, and then choose Create job.

Alternatively, on the AWS Glue Studio Jobs page, under Create job, choose Source and target
added to the graph. In the Source drop-down list, choose the custom connector that you want
to use in your job. You can also choose a connector for Target.

3. Choose Create to open the visual job editor.

4. Configure the data source node, as described in Configure source properties for nodes that use
connectors.

5. Continue creating your ETL job by adding transforms, additional data stores, and data targets,
as described in Visual ETL with AWS Glue Studio.

Using connectors and connections 389

https://console.aws.amazon.com/gluestudio/
https://console.aws.amazon.com/gluestudio/

AWS Glue User Guide

6. Customize the job run environment by configuring job properties as described in Modify the
job properties.

7. Save and run the job.

Configure source properties for nodes that use connectors

After you create a job that uses a connector for the data source, the visual job editor displays a job
graph with a data source node configured for the connector. You must configure the data source
properties for that node.

To configure the properties for a data source node that uses a connector

1. Choose the connector data source node in the job graph or add a new node and choose the
connector for the Node type. Then, on the right-side, in the node details panel, choose the
Data source properties tab, if it's not already selected.

2. In the Data source properties tab, choose the connection that you want to use for this job.

Enter the additional information required for each connection type:

Using connectors and connections 390

AWS Glue User Guide

JDBC

• Data source input type: Choose to provide either a table name or a SQL query as
the data source. Depending on your choice, you then need to provide the following
additional information:

• Table name: The name of the table in the data source. If the data source does not use
the term table, then supply the name of an appropriate data structure, as indicated by
the custom connector usage information (which is available in AWS Marketplace).

• Filter predicate: A condition clause to use when reading the data source, similar to a
WHERE clause, which is used to retrieve a subset of the data.

• Query code: Enter a SQL query to use to retrieve a specific dataset from the data
source. An example of a basic SQL query is:

SELECT column_list FROM
 table_name WHERE where_clause

• Schema: Because AWS Glue Studio is using information stored in the connection to
access the data source instead of retrieving metadata information from a Data Catalog
table, you must provide the schema metadata for the data source. Choose Add schema
to open the schema editor.

For instructions on how to use the schema editor, see Editing the schema in a custom
transform node.

• Partition column: (Optional) You can choose to partition the data reads by providing
values for Partition column, Lower bound, Upper bound, and Number of partitions.

The lowerBound and upperBound values are used to decide the partition stride, not for
filtering the rows in table. All rows in the table are partitioned and returned.

Note

Column partitioning adds an extra partitioning condition to the query used to
read the data. When using a query instead of a table name, you should validate
that the query works with the specified partitioning condition. For example:

Using connectors and connections 391

AWS Glue User Guide

• If your query format is "SELECT col1 FROM table1", then test the query
by appending a WHERE clause at the end of the query that uses the partition
column.

• If your query format is "SELECT col1 FROM table1 WHERE col2=val",
then test the query by extending the WHERE clause with AND and an expression
that uses the partition column.

• Data type casting: If the data source uses data types that are not available in JDBC, use
this section to specify how a data type from the data source should be converted into
JDBC data types. You can specify up to 50 different data type conversions. All columns in
the data source that use the same data type are converted in the same way.

For example, if you have three columns in the data source that use the Float data type,
and you indicate that the Float data type should be converted to the JDBC String data
type, then all three columns that use the Float data type are converted to String data
types.

• Job bookmark keys: Job bookmarks help AWS Glue maintain state information and
prevent the reprocessing of old data. Specify one more one or more columns as
bookmark keys. AWS Glue Studio uses bookmark keys to track data that has already
been processed during a previous run of the ETL job. Any columns you use for custom
bookmark keys must be strictly monotonically increasing or decreasing, but gaps are
permitted.

If you enter multiple bookmark keys, they're combined to form a single compound key. A
compound job bookmark key should not contain duplicate columns. If you don't specify
bookmark keys, AWS Glue Studio by default uses the primary key as the bookmark key,
provided that the primary key is sequentially increasing or decreasing (with no gaps).
If the table doesn't have a primary key, but the job bookmark property is enabled, you
must provide custom job bookmark keys. Otherwise, the search for primary keys to use
as the default will fail and the job run will fail.

• Job bookmark keys sorting order: Choose whether the key values are sequentially
increasing or decreasing.

Using connectors and connections 392

AWS Glue User Guide

Spark

• Schema: Because AWS Glue Studio is using information stored in the connection to
access the data source instead of retrieving metadata information from a Data Catalog
table, you must provide the schema metadata for the data source. Choose Add schema
to open the schema editor.

For instructions on how to use the schema editor, see Editing the schema in a custom
transform node.

• Connection options: Enter additional key-value pairs as needed to provide additional
connection information or options. For example, you might enter a database name, table
name, a user name, and password.

For example, for OpenSearch, you enter the following key-value pairs, as described in the
section called “ Tutorial: Using the AWS Glue Connector for Elasticsearch ”:

• es.net.http.auth.user : username

• es.net.http.auth.pass : password

• es.nodes : https://<Elasticsearch endpoint>

• es.port : 443

• path: <Elasticsearch resource>

• es.nodes.wan.only : true

For an example of the minimum connection options to use, see the sample test script
MinimalSparkConnectorTest.scala on GitHub, which shows the connection options you
would normally provide in a connection.

Athena

• Table name: The name of the table in the data source. If you're using a connector
for reading from Athena-CloudWatch logs, you would enter the table name
all_log_streams.

• Athena schema name: Choose the schema in your Athena data source that corresponds
to the database that contains the table. If you're using a connector for reading from
Athena-CloudWatch logs, you would enter a schema name similar to /aws/glue/name.

Using connectors and connections 393

https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/development/Spark/MinimalSparkConnectorTest.scala

AWS Glue User Guide

• Schema: Because AWS Glue Studio is using information stored in the connection to
access the data source instead of retrieving metadata information from a Data Catalog
table, you must provide the schema metadata for the data source. Choose Add schema
to open the schema editor.

For instructions on how to use the schema editor, see Editing the schema in a custom
transform node.

• Additional connection options: Enter additional key-value pairs as needed to provide
additional connection information or options.

For an example, see the README.md file at https://github.com/aws-samples/aws-glue-
samples/tree/master/GlueCustomConnectors/development/Athena. In the steps in this
document, the sample code shows the minimal required connection options, which are
tableName, schemaName, and className. The code example specifies these options as
part of the optionsMap variable, but you can specify them for your connection and then
use the connection.

3. (Optional) After providing the required information, you can view the resulting data schema
for your data source by choosing the Output schema tab in the node details panel. The
schema displayed on this tab is used by any child nodes that you add to the job graph.

4. (Optional) After configuring the node properties and data source properties, you can preview
the dataset from your data source by choosing the Data preview tab in the node details panel.
The first time you choose this tab for any node in your job, you are prompted to provide an
IAM role to access the data. There is a cost associated with using this feature, and billing starts
as soon as you provide an IAM role.

Configure target properties for nodes that use connectors

If you use a connector for the data target type, you must configure the properties of the data
target node.

To configure the properties for a data target node that uses a connector

1. Choose the connector data target node in the job graph. Then, on the right-side, in the node
details panel, choose the Data target properties tab, if it's not already selected.

2. In the Data target properties tab, choose the connection to use for writing to the target.

Enter the additional information required for each connection type:

Using connectors and connections 394

https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/development/Athena
https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/development/Athena

AWS Glue User Guide

JDBC

• Connection: Choose the connection to use with your connector. For information about
how to create a connection, see Creating connections for connectors.

• Table name: The name of the table in the data target. If the data target does not use the
term table, then supply the name of an appropriate data structure, as indicated by the
custom connector usage information (which is available in AWS Marketplace).

• Batch size (Optional): Enter the number of rows or records to insert in the target table in
a single operation. The default value is 1000 rows.

Spark

• Connection: Choose the connection to use with your connector. If you did not create a
connection previously, choose Create connection to create one. For information about
how to create a connection, see Creating connections for connectors.

• Connection options: Enter additional key-value pairs as needed to provide additional
connection information or options. You might enter a database name, table name, a user
name, and password.

For example, for OpenSearch, you enter the following key-value pairs, as described in the
section called “ Tutorial: Using the AWS Glue Connector for Elasticsearch ”:

• es.net.http.auth.user : username

• es.net.http.auth.pass : password

• es.nodes : https://<Elasticsearch endpoint>

• es.port : 443

• path: <Elasticsearch resource>

• es.nodes.wan.only : true

For an example of the minimum connection options to use, see the sample test script
MinimalSparkConnectorTest.scala on GitHub, which shows the connection options you
would normally provide in a connection.

3. After providing the required information, you can view the resulting data schema for your data
source by choosing the Output schema tab in the node details panel.

Using connectors and connections 395

https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/development/Spark/MinimalSparkConnectorTest.scala

AWS Glue User Guide

Managing connectors and connections

You use the Connections page in AWS Glue to manage your connectors and connections.

Topics

• Viewing connector and connection details

• Editing connectors and connections

• Deleting connectors and connections

• Cancel a subscription for a connector

Viewing connector and connection details

You can view summary information about your connectors and connections in the Your connectors
and Your connections resource tables on the Connectors page. To view detailed information,
perform the following steps.

To view connector or connection details

1. In the AWS Glue Studio console, choose Connectors in the console navigation pane.

2. Choose the connector or connection that you want to view detailed information for.

3. Choose Actions, and then choose View details to open the detail page for that connector or
connection.

4. On the detail page, you can choose to Edit or Delete the connector or connection.

• For connectors, you can choose Create connection to create a new connection that uses the
connector.

• For connections, you can choose Create job to create a job that uses the connection.

Editing connectors and connections

You use the Connectors page to change the information stored in your connectors and
connections.

To modify a connector or connection

1. In the AWS Glue Studio console, choose Connectors in the console navigation pane.

2. Choose the connector or connection that you want to change.

Using connectors and connections 396

AWS Glue User Guide

3. Choose Actions, and then choose Edit.

You can also choose View details and on the connector or connection detail page, you can
choose Edit.

4. On the Edit connector or Edit connection page, update the information, and then choose
Save.

Deleting connectors and connections

You use the Connectors page to delete connectors and connections. If you delete a connector, then
any connections that were created for that connector should also be deleted.

To remove connectors from AWS Glue Studio

1. In the AWS Glue Studio console, choose Connectors in the console navigation pane.

2. Choose the connector or connection you want to delete.

3. Choose Actions, and then choose Delete.

You can also choose View details, and on the connector or connection detail page, you can
choose Delete.

4. Verify that you want to remove the connector or connection by entering Delete, and then
choose Delete.

When deleting a connector, any connections that were created for that connector are also
deleted.

Any jobs that use a deleted connection will no longer work. You can either edit the jobs to use a
different data store, or remove the jobs. For information about how to delete a job, see Delete jobs.

If you delete a connector, this doesn't cancel the subscription for the connector in AWS
Marketplace. To remove a subscription for a deleted connector, follow the instructions in Cancel a
subscription for a connector .

Cancel a subscription for a connector

After you delete the connections and connector from AWS Glue Studio, you can cancel your
subscription in AWS Marketplace if you no longer need the connector.

Using connectors and connections 397

AWS Glue User Guide

Note

If you cancel your subscription to a connector, this does not remove the connector or
connection from your account. Any jobs that use the connector and related connections will
no longer be able to use the connector and will fail.
Before you unsubscribe or re-subscribe to a connector from AWS Marketplace, you should
delete existing connections and connectors associated with that AWS Marketplace product.

To unsubscribe from a connector in AWS Marketplace

1. Sign in to the AWS Marketplace console at https://console.aws.amazon.com/marketplace.

2. Choose Manage subscriptions.

3. On the Manage subscriptions page, choose Manage next to the connector subscription that
you want to cancel.

4. Choose Actions and then choose Cancel subscription.

5. Select the check box to acknowledge that running instances are charged to your account, and
then choose Yes, cancel subscription.

Developing custom connectors

You can write the code that reads data from or writes data to your data store and formats the data
for use with AWS Glue Studio jobs. You can create connectors for Spark, Athena, and JDBC data
stores. Sample code posted on GitHub provides an overview of the basic interfaces you need to
implement.

You will need a local development environment for creating your connector code. You can use
any IDE or even just a command line editor to write your connector. Examples of development
environments include:

• A local Scala environment with a local AWS Glue ETL Maven library, as described in Developing
Locally with Scala in the AWS Glue Developer Guide.

• IntelliJ IDE, by downloading the IDE from https://www.jetbrains.com/idea/.

Topics

• Developing Spark connectors

Using connectors and connections 398

https://console.aws.amazon.com/marketplace
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html#develop-local-scala
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html#develop-local-scala
https://www.jetbrains.com/idea/

AWS Glue User Guide

• Developing Athena connectors

• Developing JDBC connectors

• Examples of using custom connectors with AWS Glue Studio

• Developing AWS Glue connectors for AWS Marketplace

Developing Spark connectors

You can create a Spark connector with Spark DataSource API V2 (Spark 2.4) to read data.

To create a custom Spark connector

Follow the steps in the AWS Glue GitHub sample library for developing Spark connectors,
which is located at https://github.com/aws-samples/aws-glue-samples/tree/master/
GlueCustomConnectors/development/Spark/README.md.

Developing Athena connectors

You can create an Athena connector to be used by AWS Glue and AWS Glue Studio to query a
custom data source.

To create a custom Athena connector

Follow the steps in the AWS Glue GitHub sample library for developing Athena connectors,
which is located at https://github.com/aws-samples/aws-glue-samples/tree/master/
GlueCustomConnectors/development/Athena.

Developing JDBC connectors

You can create a connector that uses JDBC to access your data stores.

To create a custom JDBC connector

1. Install the AWS Glue Spark runtime libraries in your local development environment. Refer to
the instructions in the AWS Glue GitHub sample library at https://github.com/aws-samples/
aws-glue-samples/tree/master/GlueCustomConnectors/development/GlueSparkRuntime/
README.md.

2. Implement the JDBC driver that is responsible for retrieving the data from the data source.
Refer to the Java Documentation for Java SE 8.

Create an entry point within your code that AWS Glue Studio uses to locate your connector.
The Class name field should be the full path of your JDBC driver.

Using connectors and connections 399

https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/development/Spark/README.md
https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/development/Spark/README.md
https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/development/Athena
https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/development/Athena
https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/development/GlueSparkRuntime/README.md
https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/development/GlueSparkRuntime/README.md
https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/development/GlueSparkRuntime/README.md
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

AWS Glue User Guide

3. Use the GlueContext API to read data with the connector. Users can add more input options
in the AWS Glue Studio console to configure the connection to the data source, if necessary.
For a code example that shows how to read from and write to a JDBC database with a custom
JDBC connector, see Custom and AWS Marketplace connectionType values.

Examples of using custom connectors with AWS Glue Studio

You can refer to the following blogs for examples of using custom connectors:

• Developing, testing, and deploying custom connectors for your data stores with AWS Glue

• Apache Hudi: Writing to Apache Hudi tables using AWS Glue Custom Connector

• Google BigQuery: Migrating data from Google BigQuery to Amazon S3 using AWS Glue custom
connectors

• Snowflake (JDBC): Performing data transformations using Snowflake and AWS Glue

• SingleStore: Building fast ETL using SingleStore and AWS Glue

• Salesforce: Ingest Salesforce data into Amazon S3 using the CData JDBC custom connector with
AWS Glue -

• MongoDB: Building AWS Glue Spark ETL jobs using Amazon DocumentDB (with MongoDB
compatibility) and MongoDB

• Amazon Relational Database Service (Amazon RDS): Building AWS Glue Spark ETL jobs by
bringing your own JDBC drivers for Amazon RDS

• MySQL (JDBC): https://github.com/aws-samples/aws-glue-samples/blob/master/
GlueCustomConnectors/development/Spark/SparkConnectorMySQL.scala

Developing AWS Glue connectors for AWS Marketplace

As an AWS partner, you can create custom connectors and upload them to AWS Marketplace to sell
to AWS Glue customers.

The process for developing the connector code is the same as for custom connectors, but the
process of uploading and verifying the connector code is more detailed. Refer to the instructions in
Creating Connectors for AWS Marketplace on the GitHub website.

Restrictions for using connectors and connections in AWS Glue Studio

When you're using custom connectors or connectors from AWS Marketplace, take note of the
following restrictions:

Using connectors and connections 400

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-market
https://aws.amazon.com/blogs/big-data/developing-testing-and-deploying-custom-connectors-for-your-data-stores-with-aws-glue/
https://aws.amazon.com/blogs/big-data/writing-to-apache-hudi-tables-using-aws-glue-connector/
https://aws.amazon.com/blogs/big-data/migrating-data-from-google-bigquery-to-amazon-s3-using-aws-glue-custom-connectors/
https://aws.amazon.com/blogs/big-data/migrating-data-from-google-bigquery-to-amazon-s3-using-aws-glue-custom-connectors/
https://aws.amazon.com/blogs/big-data/performing-data-transformations-using-snowflake-and-aws-glue/
https://aws.amazon.com/blogs/big-data/building-fast-etl-using-singlestore-and-aws-glue/
https://aws.amazon.com/blogs/big-data/ingest-salesforce-data-into-amazon-s3-using-the-cdata-jdbc-custom-connector-with-aws-glue
https://aws.amazon.com/blogs/big-data/ingest-salesforce-data-into-amazon-s3-using-the-cdata-jdbc-custom-connector-with-aws-glue
https://aws.amazon.com/blogs/big-data/building-aws-glue-spark-etl-jobs-using-amazon-documentdb-with-mongodb-compatibility-and-mongodb/
https://aws.amazon.com/blogs/big-data/building-aws-glue-spark-etl-jobs-using-amazon-documentdb-with-mongodb-compatibility-and-mongodb/
https://aws.amazon.com/blogs/big-data/building-aws-glue-spark-etl-jobs-by-bringing-your-own-jdbc-drivers-for-amazon-rds/
https://aws.amazon.com/blogs/big-data/building-aws-glue-spark-etl-jobs-by-bringing-your-own-jdbc-drivers-for-amazon-rds/
https://github.com/aws-samples/aws-glue-samples/blob/master/GlueCustomConnectors/development/Spark/SparkConnectorMySQL.scala
https://github.com/aws-samples/aws-glue-samples/blob/master/GlueCustomConnectors/development/Spark/SparkConnectorMySQL.scala
https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/marketplace/publishGuide.pdf
https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/marketplace/publishGuide.pdf

AWS Glue User Guide

• The testConnection API isn't supported with connections created for custom connectors.

• Data Catalog connection password encryption isn't supported with custom connectors.

• You can't use job bookmarks if you specify a filter predicate for a data source node that uses a
JDBC connector.

• Creating a Marketplace connection is not supported outside of the AWS Glue Studio user
interface.

Connecting to data sources using Visual ETL jobs

While creating a new job, you can use connections to connect to data when editing visual ETL
jobs in AWS Glue. You can do this by adding source nodes that use connectors to read in data, and
target nodes to specify the location for writing out data.

Topics

• Modifying properties of a data source node

• Using Data Catalog tables for the data source

• Using a connector for the data source

• Using files in Amazon S3 for the data source

• Using a streaming data source

• References

Modifying properties of a data source node

To specify the data source properties, you first choose a data source node in the job diagram. Then,
on the right side in the node details panel, you configure the node properties.

To modify the properties of a data source node

1. Go to the visual editor for a new or saved job.

2. Choose a data source node in the job diagram.

3. Choose the Node properties tab in the node details panel, and then enter the following
information:

• Name: (Optional) Enter a name to associate with the node in the job diagram. This name
should be unique among all the nodes for this job.

Connecting to data sources 401

AWS Glue User Guide

• Node type: The node type determines the action that is performed by the node. In the list of
options for Node type, choose one of the values listed under the heading Data source.

4. Configure the Data source properties information. For more information, see the following
sections:

• Using Data Catalog tables for the data source

• Using a connector for the data source

• Using files in Amazon S3 for the data source

• Using a streaming data source

5. (Optional) After configuring the node properties and data source properties, you can view the
schema for your data source by choosing the Output schema tab in the node details panel.
The first time you choose this tab for any node in your job, you are prompted to provide an
IAM role to access the data. If you have not specified an IAM role on the Job details tab, you
are prompted to enter an IAM role here.

6. (Optional) After configuring the node properties and data source properties, you can preview
the dataset from your data source by choosing the Data preview tab in the node details panel.
The first time you choose this tab for any node in your job, you are prompted to provide an
IAM role to access the data. There is a cost associated with using this feature, and billing starts
as soon as you provide an IAM role.

Using Data Catalog tables for the data source

For all data sources except Amazon S3 and connectors, a table must exist in the AWS Glue Data
Catalog for the source type that you choose. AWS Glue does not create the Data Catalog table.

To configure a data source node based on a Data Catalog table

1. Go to the visual editor for a new or saved job.

2. Choose a data source node in the job diagram.

3. Choose the Data source properties tab, and then enter the following information:

• S3 source type: (For Amazon S3 data sources only) Choose the option Select a Catalog
table to use an existing AWS Glue Data Catalog table.

• Database: Choose the database in the Data Catalog that contains the source table you want
to use for this job. You can use the search field to search for a database by its name.

Connecting to data sources 402

AWS Glue User Guide

• Table: Choose the table associated with the source data from the list. This table must
already exist in theAWS Glue Data Catalog. You can use the search field to search for a table
by its name.

• Partition predicate: (For Amazon S3 data sources only) Enter a Boolean expression based on
Spark SQL that includes only the partitioning columns. For example: "(year=='2020' and
month=='04')"

• Temporary directory: (For Amazon Redshift data sources only) Enter a path for the location
of a working directory in Amazon S3 where your ETL job can write temporary intermediate
results.

• Role associated with the cluster: (For Amazon Redshift data sources only) Enter a role
for your ETL job to use that contains permissions for Amazon Redshift clusters. For more
information, see the section called “Data source and data target permissions”.

Using a connector for the data source

If you select a connector for the Node type, follow the instructions at Authoring jobs with custom
connectors to finish configuring the data source properties.

Using files in Amazon S3 for the data source

If you choose Amazon S3 as your data source, then you can choose either:

• A Data Catalog database and table.

• A bucket, folder, or file in Amazon S3.

If you use an Amazon S3 bucket as your data source, AWS Glue detects the schema of the data at
the specified location from one of the files, or by using the file you specify as a sample file. Schema
detection occurs when you use the Infer schema button. If you change the Amazon S3 location or
the sample file, then you must choose Infer schema again to perform the schema detection using
the new information.

To configure a data source node that reads directly from files in Amazon S3

1. Go to the visual editor for a new or saved job.

2. Choose a data source node in the job diagram for an Amazon S3 source.

3. Choose the Data source properties tab, and then enter the following information:

Connecting to data sources 403

AWS Glue User Guide

• S3 source type: (For Amazon S3 data sources only) Choose the option S3 location.

• S3 URL: Enter the path to the Amazon S3 bucket, folder, or file that contains the data for
your job. You can choose Browse S3 to select the path from the locations available to your
account.

• Recursive: Choose this option if you want AWS Glue to read data from files in child folders at
the S3 location.

If the child folders contain partitioned data, AWS Glue doesn't add any partition information
that's specified in the folder names to the Data Catalog. For example, consider the following
folders in Amazon S3:

S3://sales/year=2019/month=Jan/day=1
S3://sales/year=2019/month=Jan/day=2

If you choose Recursive and select the sales folder as your S3 location, then AWS Glue
reads the data in all the child folders, but doesn't create partitions for year, month or day.

• Data format: Choose the format that the data is stored in. You can choose JSON, CSV, or
Parquet. The value you select tells the AWS Glue job how to read the data from the source
file.

Note

If you don't select the correct format for your data, AWS Glue might infer the
schema correctly, but the job won't be able to correctly parse the data from the
source file.

You can enter additional configuration options, depending on the format you choose.

• JSON (JavaScript Object Notation)

• JsonPath: Enter a JSON path that points to an object that is used to define a table
schema. JSON path expressions always refer to a JSON structure in the same way as
XPath expression are used in combination with an XML document. The "root member
object" in the JSON path is always referred to as $, even if it's an object or array. The
JSON path can be written in dot notation or bracket notation.

For more information about the JSON path, see JsonPath on the GitHub website.

Connecting to data sources 404

https://github.com/json-path/JsonPath

AWS Glue User Guide

• Records in source files can span multiple lines: Choose this option if a single record
can span multiple lines in the CSV file.

• CSV (comma-separated values)

• Delimiter: Enter a character to denote what separates each column entry in the row, for
example, ; or ,.

• Escape character: Enter a character that is used as an escape character. This character
indicates that the character that immediately follows the escape character should be
taken literally, and should not be interpreted as a delimiter.

• Quote character: Enter the character that is used to group separate strings into a single
value. For example, you would choose Double quote (") if you have values such as
"This is a single value" in your CSV file.

• Records in source files can span multiple lines: Choose this option if a single record
can span multiple lines in the CSV file.

• First line of source file contains column headers: Choose this option if the first row in
the CSV file contains column headers instead of data.

• Parquet (Apache Parquet columnar storage)

There are no additional settings to configure for data stored in Parquet format.

• Partition predicate: To partition the data that is read from the data source, enter a Boolean
expression based on Spark SQL that includes only the partitioning columns. For example:
"(year=='2020' and month=='04')"

• Advanced options: Expand this section if you want AWS Glue to detect the schema of your
data based on a specific file.

• Schema inference: Choose the option Choose a sample file from S3 if you want to use a
specific file instead of letting AWS Glue choose a file.

• Auto-sampled file: Enter the path to the file in Amazon S3 to use for inferring the
schema.

If you're editing a data source node and change the selected sample file, choose Reload
schema to detect the schema by using the new sample file.

4. Choose the Infer schema button to detect the schema from the sources files in Amazon S3. If
you change the Amazon S3 location or the sample file, you must choose Infer schema again to
infer the schema using the new information.

Connecting to data sources 405

AWS Glue User Guide

Using a streaming data source

You can create streaming extract, transform, and load (ETL) jobs that run continuously and
consume data from streaming sources in Amazon Kinesis Data Streams, Apache Kafka, and Amazon
Managed Streaming for Apache Kafka (Amazon MSK).

To configure properties for a streaming data source

1. Go to the visual graph editor for a new or saved job.

2. Choose a data source node in the graph for Kafka or Kinesis Data Streams.

3. Choose the Data source properties tab, and then enter the following information:

Kinesis

• Kinesis source type: Choose the option Stream details to use direct access to the
streaming source or choose Data Catalog table to use the information stored there
instead.

If you choose Stream details, specify the following additional information.

• Location of data stream: Choose whether the stream is associated with the current
user, or if it is associated with a different user.

• Region: Choose the AWS Region where the stream exists. This information is used to
construct the ARN for accessing the data stream.

• Stream ARN: Enter the Amazon Resource Name (ARN) for the Kinesis data stream.
If the stream is located within the current account, you can choose the stream name
from the drop-down list. You can use the search field to search for a data stream by its
name or ARN.

• Data format: Choose the format used by the data stream from the list.

AWS Glue automatically detects the schema from the streaming data.

If you choose Data Catalog table, specify the following additional information.

• Database: (Optional) Choose the database in the AWS Glue Data Catalog that contains
the table associated with your streaming data source. You can use the search field to
search for a database by its name.

• Table: (Optional) Choose the table associated with the source data from the list. This
table must already exist in the AWS Glue Data Catalog. You can use the search field to
search for a table by its name.

Connecting to data sources 406

AWS Glue User Guide

• Detect schema: Choose this option to have AWS Glue detect the schema from the
streaming data, rather than using the schema information in a Data Catalog table. This
option is enabled automatically if you choose the Stream details option.

• Starting position: By default, the ETL job uses the Earliest option, which means it reads
data starting with the oldest available record in the stream. You can instead choose
Latest, which indicates the ETL job should start reading from just after the most recent
record in the stream.

• Window size: By default, your ETL job processes and writes out data in 100-second
windows. This allows data to be processed efficiently and permits aggregations to be
performed on data that arrives later than expected. You can modify this window size to
increase timeliness or aggregation accuracy.

AWS Glue streaming jobs use checkpoints rather than job bookmarks to track the data
that has been read.

• Connection options: Expand this section to add key-value pairs to specify additional
connection options. For information about what options you can specify here, see
"connectionType": "kinesis" in the AWS Glue Developer Guide.

Kafka

• Apache Kafka source: Choose the option Stream details to use direct access to the
streaming source or choose Data Catalog table to use the information stored there
instead.

If you choose Data Catalog table, specify the following additional information.

• Database: (Optional) Choose the database in the AWS Glue Data Catalog that contains
the table associated with your streaming data source. You can use the search field to
search for a database by its name.

• Table: (Optional) Choose the table associated with the source data from the list. This
table must already exist in the AWS Glue Data Catalog. You can use the search field to
search for a table by its name.

• Detect schema: Choose this option to have AWS Glue detect the schema from the
streaming data, rather than storing the schema information in a Data Catalog table.
This option is enabled automatically if you choose the Stream details option.

If you choose Stream details, specify the following additional information.

Connecting to data sources 407

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-kinesis

AWS Glue User Guide

• Connection name: Choose the AWS Glue connection that contains the access and
authentication information for the Kafka data stream. You must use a connection with
Kafka streaming data sources. If a connection doesn't exist, you can use the AWS Glue
console to create a connection for your Kafka data stream.

• Topic name: Enter the name of the topic to read from.

• Data format: Choose the format to use when reading data from the Kafka event
stream.

• Starting position: By default, the ETL job uses the Earliest option, which means it reads
data starting with the oldest available record in the stream. You can instead choose
Latest, which indicates the ETL job should start reading from just after the most recent
record in the stream.

• Window size: By default, your ETL job processes and writes out data in 100-second
windows. This allows data to be processed efficiently and permits aggregations to be
performed on data that arrives later than expected. You can modify this window size to
increase timeliness or aggregation accuracy.

AWS Glue streaming jobs use checkpoints rather than job bookmarks to track the data
that has been read.

• Connection options: Expand this section to add key-value pairs to specify additional
connection options. For information about what options you can specify here, see
"connectionType": "kafka" in the AWS Glue Developer Guide.

Note

Data previews are not currently supported for streaming data sources.

References

Best Practices

• Build an ETL service pipeline to load data incrementally from Amazon S3 to Amazon Redshift
using AWS Glue

ETL programming

Connecting to data sources 408

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-kafka
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/build-an-etl-service-pipeline-to-load-data-incrementally-from-amazon-s3-to-amazon-redshift-using-aws-glue.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/build-an-etl-service-pipeline-to-load-data-incrementally-from-amazon-s3-to-amazon-redshift-using-aws-glue.html

AWS Glue User Guide

• Connection types and options for ETL in AWS Glue

• JDBC connectionType values

• Advanced options for moving data to and from Amazon Redshift

Adding a JDBC connection using your own JDBC drivers

You can use your own JDBC driver when using a JDBC connection. When the default driver utilized
by the AWS Glue crawler is unable to connect to a database, you can use your own JDBC Driver. For
example, if you want to use SHA-256 with your Postgres database, and older postgres drivers do
not support this, you can use your own JDBC driver.

Supported datasources

Supported datasources Unsupported datasources

MySQL Snowflake

Postgres

Oracle

Redshift

SQL Server

Aurora*

*Supported if the native JDBC driver is being used. Not all driver features can be leveraged.

Adding a JDBC driver to a JDBC connection

Note

If you choose to bring in your own JDBC driver versions, AWS Glue crawlers will consume
resources in AWS Glue jobs and Amazon S3 buckets to ensure your provided driver are
run in your environment. The additional usage of resources will be reflected in your
account. The cost for AWS Glue crawlers and jobs is under the AWS Glue category in billing.

Adding a JDBC connection using your own JDBC drivers 409

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-connections.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-jdbc
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-redshift.html

AWS Glue User Guide

Additionally, providing your own JDBC driver does not mean that the crawler is able to
leverage all of the driver's features.

To add your own JDBC driver to a JDBC connection:

1. Add the JDBC driver file to an Amazon S3 location. You can create a bucket and/or folder or
use an existing bucket and/or folder.

2. In the AWS Glue console, choose Connections in the left-hand menu under Data Catalog, then
create a new connection.

3. Complete the fields for Connection properties and choose JDBC for Connection type.

4. In Connection access, enter the JDBC URL and JDBC Driver Class name – optional. The driver
class name must be for a datasource supported by AWS Glue crawlers.

Adding a JDBC connection using your own JDBC drivers 410

AWS Glue User Guide

5. Choose the Amazon S3 path where the JDBC driver is located in the JDBC Driver Amazon S3
Path – optional field.

6. Complete the fields for Credential type if entering a username and password or secret. When
complete, choose Create connection.

Note

Testing connection is not supported currently. When crawling the data source with a
JDBC driver you provided, the crawler skips this step.

7. Add the newly created connection to a crawler. In the AWS Glue console, choose Crawlers in
the left-hand menu under Data Catalog, then create a new crawler.

Adding a JDBC connection using your own JDBC drivers 411

AWS Glue User Guide

8. In the Add crawler wizard, in Step 2 choose Add a data source.

9. Choose JDBC as the data source and choose the the connection that was created in the
previous steps. Complete

10. In order to use your own JDBC driver with a AWS Glue crawler, add the following permissions
to the role used by the crawler:

• Grant permissions for the following job actions: CreateJob, DeleteJob, GetJob,
GetJobRun, StartJobRun.

• Grant permissions for IAM actions: iam:PassRole

Adding a JDBC connection using your own JDBC drivers 412

AWS Glue User Guide

• Grant permissions for Amazon S3 actions: s3:DeleteObjects, s3:GetObject,
s3:ListBucket, s3:PutObject.

• Grant service principal access to bucket/folder in the IAM policy.

Example IAM policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::bucket-name/driver-parent-folder/driver.jar",
 "arn:aws:s3:::bucket-name"
]
 }
]
}

11. If you are using a VPC, you must allow access to the AWS Glue endpoint by creating the
interface endpoint and add it to your route table. For more information, see Creating an
interface VPC endpoint for AWS Glue

12. If you are using encryption in your Data Catalog, create the AWS KMS interface endpoint and
add it to your route table. For more information, see Creating a VPC endpoint for AWS KMS.

Testing an AWS Glue connection

As a best practice, before you use an AWS Glue connection in an ETL job, use the AWS Glue console
to test the connection. AWS Glue uses the parameters in your connection to confirm that it can

Testing an AWS Glue connection 413

https://docs.aws.amazon.com/glue/latest/dg/vpc-interface-endpoints.html#vpc-endpoint-create
https://docs.aws.amazon.com/glue/latest/dg/vpc-interface-endpoints.html#vpc-endpoint-create
https://docs.aws.amazon.com/kms/latest/developerguide/kms-vpc-endpoint.html#vpce-create-endpoint

AWS Glue User Guide

access your data store and reports any errors. For information about AWS Glue connections, see
Connecting to data.

To test an AWS Glue connection

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, under Data Catalog, choose Connections. You can also choose Data
connections above Data Catalog in the navigation pane.

3. In Connections, select the check box next to the desired connection, and then choose Actions.
In the drop-down menu, choose Test connection.

4. In the Test connection dialog box, select a role or choose Create IAM role to go to the AWS
Identity and Access Management (IAM) console to create a new role. The role must have
permissions on the data store.

5. Choose Confirm.

The test begins and can take several minutes to complete. If the test fails, choose
Troubleshoot to view the steps to resolve the issue.

6. Choose Logs to view the logs in CloudWatch. You must have the required IAM permissions to
view the logs. For more information, see AWS Managed (Predefined) Policies for CloudWatch
Logs in the Amazon CloudWatch Logs User Guide.

Configuring AWS calls to go through your VPC

The special job parameter disable-proxy-v2 allows you to route your calls to services such
as Amazon S3, CloudWatch, and AWS Glue through your VPC. By default, AWS Glue uses a local
proxy to send traffic through the AWS Glue VPC to download scripts and libraries from Amazon
S3, to send requests to CloudWatch for publishing logs and metrics, and to send requests to AWS
Glue for accessing data catalogs. This proxy allows the job to function normally even if your VPC
doesn't configure a proper route to other AWS services, such as Amazon S3, CloudWatch, and AWS
Glue. AWS Glue now offers a parameter for you to turn off this behavior. For more information,
see Job parameters used by AWS Glue. AWS Glue will continue to use local proxy for publishing
CloudWatch logs of your AWS Glue jobs.

Configuring AWS calls to go through your VPC 414

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/iam-identity-based-access-control-cwl.html#managed-policies-cwl
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/iam-identity-based-access-control-cwl.html#managed-policies-cwl
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html

AWS Glue User Guide

Note

• This feature is supported for AWS Glue jobs with AWS Glue version 2.0 and above. When
using this feature, you need to ensure that your VPC has configured a route to Amazon
S3 through a NAT or service VPC endpoint.

• The deprecated job parameter disable-proxy only routes your calls to Amazon S3 for
downloading scripts and libraries through your VPC. It’s recommended to use the new
parameter disable-proxy-v2 instead.

Example usage

Create an AWS Glue job with disable-proxy-v2:

aws glue create-job \
 --name no-proxy-job \
 --role GlueDefaultRole \
 --command "Name=glueetl,ScriptLocation=s3://my-bucket/glue-script.py" \
 --connections Connections="traffic-monitored-connection" \
 --default-arguments '{"--disable-proxy-v2" : "true"}'

Connecting to a JDBC data store in a VPC

Typically, you create resources inside Amazon Virtual Private Cloud (Amazon VPC) so that they
cannot be accessed over the public internet. By default, AWS Glue can't access resources inside a
VPC. To enable AWS Glue to access resources inside your VPC, you must provide additional VPC-
specific configuration information that includes VPC subnet IDs and security group IDs. AWS Glue
uses this information to set up elastic network interfaces that enable your function to connect
securely to other resources in your private VPC.

When using a VPC endpoint, add it to your route table. For more information, see Creating an
interface VPC endpoint for AWS Glue and Prerequisites.

When using encryption in Data Catalog, create the KMS interface endpoint and add it to your route
table. For more information, see
Creating a VPC endpoint for AWS KMS.

Connecting to a JDBC data store in a VPC 415

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html
https://docs.aws.amazon.com/glue/latest/dg/vpc-interface-endpoints.html#vpc-endpoint-create
https://docs.aws.amazon.com/glue/latest/dg/vpc-interface-endpoints.html#vpc-endpoint-create
https://docs.aws.amazon.com/kms/latest/developerguide/kms-vpc-endpoint.html#vpce-create-endpoint

AWS Glue User Guide

Accessing VPC Data Using elastic network interfaces

When AWS Glue connects to a JDBC data store in a VPC, AWS Glue creates an elastic network
interface (with the prefix Glue_) in your account to access your VPC data. You can't delete this
network interface as long as it's attached to AWS Glue. As part of creating the elastic network
interface, AWS Glue associates one or more security groups to it. To enable AWS Glue to create
the network interface, security groups that are associated with the resource must allow inbound
access with a source rule. This rule contains a security group that is associated with the resource.
This gives the elastic network interface access to your data store with the same security group.

To allow AWS Glue to communicate with its components, specify a security group with a self-
referencing inbound rule for all TCP ports. By creating a self-referencing rule, you can restrict the
source to the same security group in the VPC and not open it to all networks. The default security
group for your VPC might already have a self-referencing inbound rule for ALL Traffic.

You can create rules in the Amazon VPC console. To update rule settings via the AWS Management
Console, navigate to the VPC console (https://console.aws.amazon.com/vpc/), and select the
appropriate security group. Specify the inbound rule for ALL TCP to have as its source the same
security group name. For more information about security group rules, see Security Groups for
Your VPC.

Each elastic network interface is assigned a private IP address from the IP address range in the
subnets that you specify. The network interface is not assigned any public IP addresses. AWS Glue
requires internet access (for example, to access AWS services that don't have VPC endpoints). You
can configure a network address translation (NAT) instance inside your VPC, or you can use the
Amazon VPC NAT gateway. For more information, see NAT Gateways in the Amazon VPC User
Guide. You can't directly use an internet gateway attached to your VPC as a route in your subnet
route table because that requires the network interface to have public IP addresses.

The VPC network attributes enableDnsHostnames and enableDnsSupport must be set to true.
For more information, see Using DNS with your VPC.

Important

Don't put your data store in a public subnet or in a private subnet that doesn't have
internet access. Instead, attach it only to private subnets that have internet access through
a NAT instance or an Amazon VPC NAT gateway.

Accessing VPC Data Using elastic network interfaces 416

https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html

AWS Glue User Guide

Elastic network interface properties

To create the elastic network interface, you must supply the following properties:

VPC

The name of the VPC that contains your data store.

Subnet

The subnet in the VPC that contains your data store.

Security groups

The security groups that are associated with your data store. AWS Glue associates these security
groups with the elastic network interface that is attached to your VPC subnet. To allow AWS
Glue components to communicate and also prevent access from other networks, at least one
chosen security group must specify a self-referencing inbound rule for all TCP ports.

For information about managing a VPC with Amazon Redshift, see Managing Clusters in an
Amazon Virtual Private Cloud (VPC).

For information about managing a VPC with Amazon Relational Database Service (Amazon RDS),
see Working with an Amazon RDS DB Instance in a VPC.

Using a MongoDB or MongoDB Atlas connection

After you create a connection for MongoDB or MongoDB Atlas, you can use the connection in your
ETL job. You create a table in the AWS Glue Data Catalog and specify the MongoDB or MongoDB
Atlas connection for the connection attribute of the table.

AWS Glue stores your connection url and credentials in the MongoDB connection. The connection
URI formats are as follows:

• For MongoDB: mongodb://host:port/database. The host can be a hostname, IP address, or UNIX
domain socket. If the connection string doesn't specify a port, it uses the default MongoDB port,
27017.

• For MongoDB Atlas: mongodb+srv://server.example.com/database. The host can be a hostname
that follows corresponds to a DNS SRV record. The SRV format does not require a port and will
use the default MongoDB port, 27017.

Elastic network interface properties 417

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html

AWS Glue User Guide

Additionally, you can specify options in your job script. For more information, see the section called
“MongoDB connection”.

Crawling an Amazon S3 data store using a VPC endpoint

For security, auditing, or control purposes you may want your Amazon S3 data store or Amazon
S3 backed Data Catalog tables to only be accessed through an Amazon Virtual Private Cloud
environment (Amazon VPC). This topic describes how to create and test a connection to the
Amazon S3 data store or Amazon S3 backed Data Catalog tables in a VPC endpoint using the
Network connection type.

Perform the following tasks to run a crawler on the data store:

• the section called “Prerequisites”

• the section called “Creating the connection to Amazon S3”

• the section called “Testing the connection to Amazon S3”

• the section called “Creating a crawler for an Amazon S3 data store”

• the section called “Running a crawler”

Prerequisites

Check that you have met these prerequisites for setting up your Amazon S3 data store or
Amazon S3 backed Data Catalog tables to be accessed through an Amazon Virtual Private Cloud
environment (Amazon VPC).

• A configured VPC. For example: vpc-01685961063b0d84b. For more information, see Getting
started with Amazon VPC in the Amazon VPC User Guide.

• An Amazon S3 endpoint attached to the VPC. For example: vpc-01685961063b0d84b. For more
information, see Endpoints for Amazon S3 in the Amazon VPC User Guide.

Crawling an Amazon S3 data store using a VPC endpoint 418

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-getting-started.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-getting-started.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html

AWS Glue User Guide

• A route entry pointing to the VPC endpoint. For example vpce-0ec5da4d265227786 in the route
table used by the VPC endpoint(vpce-0ec5da4d265227786).

• A network ACL attached to the VPC allows the traffic.

• A security group attached to the VPC allows the traffic.

Creating the connection to Amazon S3

Typically, you create resources inside Amazon Virtual Private Cloud (Amazon VPC) so that they
cannot be accessed over the public internet. By default, AWS Glue can't access resources inside a
VPC. To enable AWS Glue to access resources inside your VPC, you must provide additional VPC-

Creating the connection to Amazon S3 419

AWS Glue User Guide

specific configuration information that includes VPC subnet IDs and security group IDs. To create a
Network connection you need to specify the following information:

• A VPC ID

• A subnet within the VPC

• A security group

To set up a Network connection:

1. Choose Add connection in the navigation pane of the AWS Glue console.

2. Enter the connection name, choose Network as the connection type. Choose Next.

3. Configure the VPC, Subnet and Security groups information.

• VPC: choose the VPC name that contains your data store.

• Subnet: choose the subnet within your VPC.

• Security groups: choose one or more security groups that allow access to the data store in
your VPC.

Creating the connection to Amazon S3 420

AWS Glue User Guide

4. Choose Next.

5. Verify the connection information and choose Finish.

Creating the connection to Amazon S3 421

AWS Glue User Guide

Testing the connection to Amazon S3

Once you have created your Network connection, you can test the connectivity to your Amazon S3
data store in a VPC endpoint.

The following errors may occur when testing a connection:

• INTERNET CONNECTION ERROR: indicates an Internet connection issue

• INVALID BUCKET ERROR: indicates a problem with the Amazon S3 bucket

• S3 CONNECTION ERROR: indicates a failure to connect to Amazon S3

• INVALID CONNECTION TYPE: indicates the Connection type does not have the expected value,
NETWORK

• INVALID CONNECTION TEST TYPE: indicates a problem with the type of network connection test

• INVALID TARGET: indicates that the Amazon S3 bucket has not been specified properly

To test a Network connection:

1. Select the Network connection in the AWS Glue console.

2. Choose Test connection.

3. Choose the IAM role that you created in the previous step and specify an Amazon S3 Bucket.

Testing the connection to Amazon S3 422

AWS Glue User Guide

4. Choose Test connection to start the test. It might take few moments to show the result.

If you receive an error, check the following:

• The correct privileges are provided to the role selected.

• The correct Amazon S3 bucket is provided.

• The security groups and Network ACL allow the required incoming and outgoing traffic.

• The VPC you specified is connected to an Amazon S3 VPC endpoint.

Once you have successfully tested the connection, you can create a crawler.

Creating a crawler for an Amazon S3 data store

You can now create a crawler that specifies the Network connection you've created. For more
details on creating a crawler, see Configuring a crawler.

Creating a crawler for an Amazon S3 data store 423

AWS Glue User Guide

1. Start by choosing Crawlers in the navigation pane on the AWS Glue console.

2. Choose Add crawler.

3. Specify the crawler name and choose Next.

4. When asked for the data source, choose S3, and specify the Amazon S3 bucket prefix and the
connection you created earlier.

5. If you need to, add another data store on the same network connection.

6. Choose IAM role. The IAM role must allow access to the AWS Glue service and the Amazon S3
bucket. For more information, see the section called “Configuring a crawler”.

Creating a crawler for an Amazon S3 data store 424

AWS Glue User Guide

7. Define the schedule for the crawler.

8. Choose an existing database in the Data Catalog, or create a new database entry.

9. Finish the remaining setup.

Creating a crawler for an Amazon S3 data store 425

AWS Glue User Guide

Creating a crawler for Amazon S3 backed Data Catalog tables

You can now create a crawler that specifies the Network connection you've created and a Catalog
source type. For more details on creating a crawler, see Configuring a crawler.

1. Start by choosing Crawlers in the navigation pane on the AWS Glue console.

2. Choose Add crawler.

3. Specify the crawler name and choose Next.

4. When asked for the crawler source type, choose Existing catalog tables, and specify the existing
catalog tables to crawl from the list of available tables.

5. Choose IAM role. The IAM role must allow access to the AWS Glue service and the Amazon S3
bucket. For more information, see the section called “Configuring a crawler”.

6. Define the schedule for the crawler.

7. Choose an existing database in the Data Catalog, or create a new database entry.

8. Finish the remaining setup and review your steps.

Creating a crawler for Amazon S3 backed Data Catalog tables 426

AWS Glue User Guide

Running a crawler

Run your crawler.

Troubleshooting

For troubleshooting related to Amazon S3 buckets using a VPC gateway, see Why can’t I connect to
an S3 bucket using a gateway VPC endpoint?

Troubleshooting connection issues in AWS Glue

When an AWS Glue crawler or a job uses connection properties to access a data store, you might
encounter errors when you try to connect. AWS Glue uses private IP addresses in the subnet
when it creates elastic network interfaces in your specified virtual private cloud (VPC) and subnet.
Security groups specified in the connection are applied on each of the elastic network interfaces.

Running a crawler 427

https://aws.amazon.com/premiumsupport/knowledge-center/connect-s3-vpc-endpoint/
https://aws.amazon.com/premiumsupport/knowledge-center/connect-s3-vpc-endpoint/

AWS Glue User Guide

Check to see whether security groups allow outbound access and if they allow connectivity to the
database cluster.

In addition, Apache Spark requires bidirectional connectivity among driver and executor nodes.
One of the security groups needs to allow ingress rules on all TCP ports. You can prevent it
from being open to the world by restricting the source of the security group to itself with a self-
referencing security group.

Here are some typical actions you can take to troubleshoot connection problems:

• Check the port address of your connection.

• Check the user name and password string in your connection or secret.

• For a JDBC data store, verify that it allows incoming connections.

• Verify that your data store can be accessed within your VPC.

• If you store your connection credentials using AWS Secrets Manager, make sure that your IAM
role for AWS Glue has permission to access your secret. For more information, see Example:
Permission to retrieve secret values in the AWS Secrets Manager User Guide. Depending on your
network setup, you might also need to create a VPC endpoint to establish a private connection
between your VPC and Secrets Manager. For more information, see Using an AWS Secrets
Manager VPC endpoint.

Tutorial: Using the AWS Glue Connector for Elasticsearch

Elasticsearch is a popular open-source search and analytics engine for use cases such as log
analytics, real-time application monitoring, and clickstream analysis. You can use OpenSearch as a
data store for your extract, transform, and load (ETL) jobs by configuring the AWS Glue Connector
for Elasticsearch in AWS Glue Studio. This connector is available for free from AWS Marketplace.

Note

The AWS Marketplace Elasticsearch Spark Connector has been deprecated. Please use the
AWS Glue Connector for Elasticsearch instead.

In this tutorial, we will show how to connect to your Amazon OpenSearch Service nodes with a
minimal number of steps.

Topics

Tutorial: Using the AWS Glue Connector for Elasticsearch 428

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_read
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_read
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://aws.amazon.com/marketplace/pp/prodview-v5ygernwn2gb6
https://aws.amazon.com/marketplace/pp/B08PPT2V5J
https://aws.amazon.com/marketplace/pp/prodview-v5ygernwn2gb6

AWS Glue User Guide

• Prerequisites

• Step 1: (Optional) Create an AWS secret for your OpenSearch cluster information

• Step 2: Subscribe to the connector

• Step 3: Activate the connector in AWS Glue Studio and create a connection

• Step 4: Configure an IAM role for your ETL job

• Step 5: Create a job that uses the OpenSearch connection

• Step 6: Run the job

Prerequisites

To use this tutorial, you must have the following:

• Access to AWS Glue Studio

• Access to an OpenSearch cluster in the AWS Cloud

• (Optional) Access to AWS Secrets Manager.

Step 1: (Optional) Create an AWS secret for your OpenSearch cluster
information

To safely store and use your connection credential, save your credential in AWS Secrets Manager.
The secret you create will be used later in the tutorial by the connection. The credential key-value
pairs will be fed into the AWS Glue Connector for Elasticsearch as normal connection options.

For more information about creating secrets, see Creating and Managing Secrets with AWS Secrets
Manager in the AWS Secrets Manager User Guide.

To create an AWS secret

1. Sign in to the AWS Secrets Manager console.

2. On either the service introduction page or the Secrets list page, choose Store a new secret.

3. On the Store a new secret page, choose Other type of secret. This option means that you
must supply the structure and details of your secret.

4. Add a Key and Value pair for the OpenSearch cluster user name. For example:

es.net.http.auth.user: username

Prerequisites 429

https://docs.aws.amazon.com/secretsmanager/latest/userguide/managing-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/managing-secrets.html
https://console.aws.amazon.com/secretsmanager/

AWS Glue User Guide

5. Choose + Add row, and enter another key-value pair for the password. For example:

es.net.http.auth.pass: password

6. Choose Next.

7. Enter a secret name. For example: my-es-secret. You can optionally include a description.

Record the secret name, which is used later in this tutorial, and then choose Next.

8. Choose Next again, and then choose Store to create the secret.

Next step

Step 2: Subscribe to the connector

Step 2: Subscribe to the connector

The AWS Glue Connector for Elasticsearch is available for free from AWS Marketplace.

To subscribe to the AWS Glue Connector for Elasticsearch on AWS Marketplace

1. If you have not already configured your AWS account to use License Manager, do the following:

a. Open the AWS License Manager console at https://console.aws.amazon.com/license-
manager.

b. Choose Create customer managed license.

c. In the IAM permissions (one-time setup) window, choose I grant AWS License Manager
the required permissions, and then choose Grant permissions.

If you do not see this window, then you have already configured the necessary
permissions.

2. Open the AWS Glue Studio console at https://console.aws.amazon.com/gluestudio/.

3. In the AWS Glue Studio console, expand the menu icon

(),
and then choose Connectors in the navigation pane.

4. On the Connectors page, choose Go to AWS Marketplace.

5. In AWS Marketplace, in the Search AWS Glue Studio products section, enter AWS Glue
Connector for Elasticsearch in the search field, and then press Enter.

6. Choose the name of the connector, AWS Glue Connector for Elasticsearch.

Step 2: Subscribe to the connector 430

https://aws.amazon.com/marketplace/pp/prodview-v5ygernwn2gb6#pdp-pricing
https://console.aws.amazon.com/license-manager
https://console.aws.amazon.com/license-manager
https://console.aws.amazon.com/gluestudio/

AWS Glue User Guide

7. On the product page for the connector, use the tabs to view information about the connector.
When you're ready to continue, choose Continue to Subscribe.

8. Review the terms of use for the software. Click Accept Terms.

9. When the subscription process completes, you will see a notification: "Thank you for
subscribing to this product! You can now configure your software." Above the banner will be
the button Continue to Configuration. Choose Continue to Configuration.

10. Choose the Fulfillment option on the Configure this software page. You can either choose
between AWS Glue 1.0/2.0 or AWS Glue 3.0. Then, choose Continue to Launch.

Next step

Step 3: Activate the connector in AWS Glue Studio and create a connection

Step 3: Activate the connector in AWS Glue Studio and create a
connection

After you choose Continue to Launch, you see the Launch this software page in AWS Marketplace.
After you use the link to activate the connector in AWS Glue Studio, you create a connection.

To deploy the connector and create a connection in AWS Glue Studio

1. On the Launch this software page in the AWS Marketplace console, choose Usage
Instructions, and then choose the link in the window that appears.

Your browser is redirected to the AWS Glue Studio console Create marketplace connection
page.

2. Enter a name for the connection. For example: my-es-connection.

3. In the Connection access section, for Connection credential type, choose User name and
password.

4. For the AWS secret, enter the name of your secret. For example: my-es-secret.

5. In the Network options section, enter the VPC information to connect to OpenSearch cluster.

6. Choose Create connection and activate connector.

Next step

Step 4: Configure an IAM role for your ETL job

Step 3: Activate the connector in AWS Glue Studio and create a connection 431

AWS Glue User Guide

Step 4: Configure an IAM role for your ETL job

When you create the AWS Glue ETL job, you specify an AWS Identity and Access Management
(IAM) role for the job to use. The role must grant access to all resources used by the job, including
Amazon S3 (for any sources, targets, scripts, driver files, and temporary directories), and also AWS
Glue Data Catalog objects.

The assumed IAM role for the AWS Glue ETL job must also have access to the secret that was
created in the previous section. By default, the AWS managed role AWSGlueServiceRole does
not have access to the secret. To set up access control for your secrets, see Authentication and
Access Control for AWS Secrets Manager and Limiting Access to Specific Secrets.

To configure an IAM role for your ETL job

1. Configure the permissions described in the section called “Review IAM permissions needed for
ETL jobs”.

2. Configure the additional permissions needed when using connectors with AWS Glue Studio, as
described in the section called “Permissions required for using connectors”.

Next step

Step 5: Create a job that uses the OpenSearch connection

Step 5: Create a job that uses the OpenSearch connection

After creating a role for your ETL job, you can create a job in AWS Glue Studio that uses the
connection and connector for Open Spark ElasticSearch.

If your job runs within a Amazon Virtual Private Cloud (Amazon VPC), make sure the VPC is
configured correctly. For more information, see the section called “Configure a VPC for your ETL
job”.

To create a job that uses the Elasticsearch Spark Connector

1. In AWS Glue Studio, choose Connectors.

2. In the Your connections list, select the connection you just created and choose Create job.

3. In the visual job editor, choose the Data source node. On the right, on the Data source
properties - Connector tab, configure additional information for the connector.

Step 4: Configure an IAM role for your ETL job 432

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_identity-based-policies.html#permissions_grant-limited-resources

AWS Glue User Guide

a. Choose Add schema and enter the schema of the data set in the data source. Connections
do not use tables stored in the Data Catalog, which means that AWS Glue Studio doesn't
know the schema of the data. You must manually provide this schema information. For
instructions on how to use the schema editor, see the section called “Editing the schema in
a custom transform node”.

b. Expand Connection options.

c. Choose Add new option and enter the information needed for the connector that was not
entered in the AWS secret:

• es.nodes: https://<OpenSearch domain endpoint>

• es.port: 443

• path: test

• es.nodes.wan.only: true

For an explanation of these connection options, refer to: https://www.elastic.co/guide/
en/elasticsearch/hadoop/current/configuration.html.

4. Add a target node to the graph.

Your data target can be Amazon S3, or it can use information from an AWS Glue Data Catalog
or a connector to write data in a different location. For example, you can use a Data Catalog
table to write to a database in Amazon RDS, or you can use a connector as your data target to
write to data stores that are not natively supported in AWS Glue.

If you choose a connector for your data target, you must choose a connection created for
that connector. Also, if required by the connector provider, you must add options to provide
additional information to the connector. If you use a connection that contains information for
an AWS secret, then you don’t need to provide the user name and password authentication in
the connection options.

5. Optionally, add additional data sources and one or more transform nodes as described in the
section called “Editing AWS Glue managed data transform nodes”.

6. Configure the job properties as described in the section called “Modify the job properties”,
starting with step 3, and save the job.

Step 5: Create a job that uses the OpenSearch connection 433

https://www.elastic.co/guide/en/elasticsearch/hadoop/current/configuration.html
https://www.elastic.co/guide/en/elasticsearch/hadoop/current/configuration.html

AWS Glue User Guide

Next step

Step 6: Run the job

Step 6: Run the job

After you save your job, you can run the job to perform the ETL operations.

To run the job you created for the AWS Glue Connector for Elasticsearch

1. Using the AWS Glue Studio console, on the visual editor page, choose Run.

2. In the success banner, choose Run Details, or you can choose the Runs tab of the visual editor
to view information about the job run.

Step 6: Run the job 434

AWS Glue User Guide

Building AWS Glue jobs with interactive sessions

Data engineers can author AWS Glue jobs faster and more easily than before using interactive
sessions in AWS Glue.

Topics

• Overview of AWS Glue interactive sessions

• Getting started with AWS Glue interactive sessions

• Configuring AWS Glue interactive sessions for Jupyter and AWS Glue Studio notebooks

• Getting started with AWS Glue for Ray interactive sessions (preview)

• Interactive sessions with IAM

• Converting a script or notebook into an AWS Glue job

• AWS Glue interactive sessions for streaming

• Developing and testing AWS Glue job scripts locally

• Development endpoints

Overview of AWS Glue interactive sessions

With AWS Glue interactive sessions, you can rapidly build, test, and run data preparation and
analytics applications. Interactive sessions provides a programmatic and visual interface for
building and testing extract, transform, and load (ETL) scripts for data preparation. Interactive
sessions run Apache Spark analytics applications and provide on-demand access to a remote Spark
runtime environment. AWS Glue transparently manages serverless Spark for these interactive
sessions.

Interactive sessions are flexible, so you build and test your applications from the environment
of your choice. You can create and work with interactive sessions through the AWS Command
Line Interface and the API. You can use Jupyter-compatible notebooks to visually author and test
your notebook scripts. Interactive sessions provide an open-source Jupyter kernel that integrates
almost anywhere that Jupyter does, including integrating with IDEs such as PyCharm, IntelliJ, and
VS Code. This enables you to author code in your local environment and run it seamlessly on the
interactive sessions backend.

Overview of AWS Glue interactive sessions 435

AWS Glue User Guide

Using the interactive sessions API, customers can programmatically run applications that use
Apache Spark analytics without having to manage Spark infrastructure. You can run one or more
Spark statements within a single interactive session.

Interactive sessions therefore provide a faster, cheaper, more-flexible way to build and run
data preparation and analytics applications. To learn how to use interactive sessions, see the
documentation in this section. Magics supported by AWS Glue

Limitations

• Job bookmarks are not supported in interactive sessions.

• Creating notebook jobs using the AWS Command Line Interface is not supported.

Getting started with AWS Glue interactive sessions

These sections describe how to run AWS Glue interactive sessions locally.

Prerequisites for setting up interactive sessions locally

The following are prerequisites for installing interactive sessions:

• Supported Python versions are 3.6 - 3.10+.

• See sections below for MacOS/Linux and Windows instructions.

Installing Jupyter and AWS Glue interactive sessions Jupyter kernels

Use the following to install the kernel locally.

The command, install-glue-kernels, installs the jupyter kernelspec for both pyspark and
spark kernels and also installs logos in the right directory.

pip3 install --upgrade jupyter boto3 aws-glue-sessions

install-glue-kernels

Limitations 436

https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-magics.html#interactive-sessions-magics2

AWS Glue User Guide

Running Jupyter

To run Jupyter Notebook, complete the following steps.

1. Run the following command to launch Jupyter Notebook.

jupyter notebook

2. Choose New, and then choose one of the AWS Glue kernels to begin coding against AWS Glue.

Configuring session credentials and region

MacOS/Linux instructions

AWS Glue interactive sessions requires the same IAM permissions as AWS Glue Jobs and Dev
Endpoints. Specify the role used with interactive sessions in one of two ways:

1. With the %iam_role and %region magics

2. With an additional line in ~/.aws/config

Configuring a session role with magic

In the first cell, type %iam_role <YourGlueServiceRole> in the first cell executed.

Configuring a session role with ~/.aws/config

AWS Glue Service Role for interactive sessions can either be specified in the notebook itself or
stored alongside the AWS CLI config. If you have a role you typically use with AWS Glue Jobs this
will be that role. If you do not have a role you use for AWS Glue jobs, please follow this guide,
Configuring IAM permissions for AWS Glue , to set one up.

To set this role as the default role for interactive sessions:

1. With a text editor, open ~/.aws/config.

2. Look for the profile you use for AWS Glue. If you don't use a profile, use the [Default]
profile.

3. Add a line in the profile for the role you intend to use like
glue_role_arn=<AWSGlueServiceRole>.

Running Jupyter 437

https://docs.aws.amazon.com/glue/latest/dg/configure-iam-for-glue.html
https://docs.aws.amazon.com/glue/latest/dg/configure-iam-for-glue.html

AWS Glue User Guide

4. [Optional]: If your profile does not have a default region set, I recommend adding one with
region=us-east-1, replacing us-east-1 with your desired region.

5. Save the config.

For more information, see Interactive sessions with IAM.

Windows instructions

AWS Glue interactive sessions requires the same IAM permissions as AWS Glue Jobs and Dev
Endpoints. Specify the role used with interactive sessions in one of two ways:

1. With the %iam_role and %region magics

2. With an additional line in ~/.aws/config

Configuring a session role with magic

In the first cell, type %iam_role <YourGlueServiceRole> in the first cell executed.

Configuring a session role with ~/.aws/config

AWS Glue Service Role for interactive sessions can either be specified in the notebook itself or
stored alongside the AWS CLI config. If you have a role you typically use with AWS Glue Jobs this
will be that role. If you do not have a role you use for AWS Glue jobs, please follow this guide,
Setting up IAM permissions for AWS Glue , to set one up.

To set this role as the default role for interactive sessions:

1. With a text editor, open ~/.aws/config.

2. Look for the profile you use for AWS Glue. If you don't use a profile, use the [Default]
profile.

3. Add a line in the profile for the role you intend to use like
glue_role_arn=<AWSGlueServiceRole>.

4. [Optional]: If your profile does not have a default region set, I recommend adding one with
region=us-east-1, replacing us-east-1 with your desired region.

5. Save the config.

For more information, see Interactive sessions with IAM.

Configuring session credentials and region 438

https://docs.aws.amazon.com/glue/latest/dg/configure-iam-for-glue.html
https://docs.aws.amazon.com/glue/latest/dg/configure-iam-for-glue.html

AWS Glue User Guide

Upgrading from the interactive sessions preview

The kernel was upgraded with new names when it was released with version 0.27. To clean up
preview versions of the kernels run the following from a terminal or PowerShell.

Note

If you are a part of any other AWS Glue preview that requires a custom service model,
removing the kernel will remove the custom service model.

Remove Old Glue Kernels
jupyter kernelspec remove glue_python_kernel
jupyter kernelspec remove glue_scala_kernel

Remove Custom Model
cd ~/.aws/models
rm -rf glue/

Using interactive sessions with SageMaker Studio

AWS Glue Interactive Sessions is an on-demand, serverless, Apache Spark runtime environment
that data scientists and engineers can use to rapidly build, test, and run data preparation and
analytics applications. You can initiate an AWS Glue interactive session by starting a Amazon
SageMaker Studio Classic notebook.

For more information, see Prepare Data using AWS Glue interactive sessions .

Using interactive sessions with Microsoft Visual Studio Code

Prerequisites

• Install AWS Glue interactive sessions and verify it works with Jupyter Notebook.

• Download and install Visual Studio Code with Jupyter. For details, see Jupyter Notebook in VS
Code.

Upgrading from the interactive sessions preview 439

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-glue.html
https://code.visualstudio.com/docs/datascience/jupyter-notebooks
https://code.visualstudio.com/docs/datascience/jupyter-notebooks

AWS Glue User Guide

To get started with interactive sessions with VSCode

1. Disable Jupyter AutoStart in VS Code.

In Visual Studio Code, Jupyter kernels will auto-start which will prevent your magics from
taking effect as the session will already be started. To disable Auto Start on Windows, go to
File > Preferences > Extensions > Jupyter > right-click on Jupyter then choose Extension
Settings.

On MacOS, go to Code > Settings > Extensions > Jupyter > right-click on Jupyter then choose
Extension Settings.

Scroll down until you see Jupyter: Disable Jupyter Auto Start. Check the box "When true,
disables Jupyter from being automatically started for you. You must instead run a cell to start
Jupyter."

2. Go to File > New File > Save to save this file with name of your choice as an .ipynb extension
or select jupyter under select a language and save the file.

Using interactive sessions with Microsoft Visual Studio Code 440

AWS Glue User Guide

3. Double-click on the file. The Jupyter shell will display and a notebook will be opened.

4. On Windows, when you first create a file, by default no kernel is selected. Click on Select
Kernel and a list of available kernels is displayed. Choose Glue PySpark.

On MacOS, If you do not see the Glue PySpark kernel, try the following steps:

1. Run a local Jupyter session to obtain the URL.

For example, run the following command to launch Jupyter Notebook.

Using interactive sessions with Microsoft Visual Studio Code 441

AWS Glue User Guide

jupyter notebook

When the notebook first runs, you will see a URL that looks like http://
localhost:8888/?token=3398XXXXXXXXXXXXXXXX.

Copy the URL.

2. In VS Code, click the current kernel, then Select Another Kernel..., then select Existing
Jupyter Server.... Paste the URL you copied from the step above.

If you receive an error message, see the VS Code Jupyter wiki .

3. If successful, this will set the kernel to Glue PySpark.

Choose the Glue PySpark or Glue Spark kernel (for Python and Scala respectively).

If you don't see AWS Glue PySpark and AWS Glue Spark kernels in the drop-down list,
please ensure you have installed the AWS Glue kernel in the step above, or that your
python.defaultInterpreterPath setting in Visual Studio Code is correct. For more
information, see python.defaultInterpreterPath setting description .

Using interactive sessions with Microsoft Visual Studio Code 442

https://github.com/microsoft/vscode-jupyter/wiki/Connecting-to-a-remote-Jupyter-server-from-vscode.dev
https://github.com/microsoft/vscode-python/wiki/Setting-descriptions#pythondefaultinterpreterpath

AWS Glue User Guide

5. Create an AWS Glue Interactive Session. Proceed to create a session in the same manner as you
did in Jupyter Notebook. Specify any magics at the top of your first cell and run a statement of
code.

Configuring AWS Glue interactive sessions for Jupyter and AWS
Glue Studio notebooks

Introduction to Jupyter Magics

Jupyter Magics are commands that can be run at the beginning of a cell or as a whole cell body.
Magics start with % for line-magics and %% for cell-magics. Line-magics such as %region and
%connections can be run with multiple magics in a cell, or with code included in the cell body like
the following example.

%region us-east-2
%connections my_rds_connection
dy_f = glue_context.create_dynamic_frame.from_catalog(database='rds_tables',
 table_name='sales_table')

Cell magics must use the entire cell and can have the command span multiple lines. An example of
%%sql is below.

%%sql
select * from rds_tables.sales_table

Magics supported by AWS Glue interactive sessions for Jupyter

The following are magics that you can use with AWS Glue interactive sessions for Jupyter
notebooks.

Sessions magics

Name Type Description

%help n/a Return a list of descriptions and input
types for all magic commands.

Configuring AWS Glue interactive sessions for Jupyter and AWS Glue Studio notebooks 443

AWS Glue User Guide

Name Type Description

%profile String Specify a profile in your AWS configura
tion to use as the credentials provider.

%region String Specify the AWS Region; in which to
initialize a session. Default from ~/.aws/
configure.

Example: %region us-west-1

%idle_timeout Int The number of minutes of inactivity
after which a session will timeout after a
cell has been executed. The default idle
timeout value for Spark ETL sessions is
the default timeout, 2880 minutes (48
hours). For other session types, consult
documentation for that session type.

Example: %idle_timeout 3000

%session_id n/a Return the session ID for the running
session.

%session_id_prefix String Define a string that will precede all
session IDs in the format [session_
id_prefix]-[session_id]. If a session ID
is not provided, a random UUID will be
generated. This magic is not supported
when you run a Jupyter Notebook in AWS
Glue Studio.

Example: %session_id_prefix 001

%status Return the status of the current AWS Glue
session including its duration, configura
tion and executing user / role.

%stop_session Stop the current session.

Magics supported by AWS Glue interactive sessions for Jupyter 444

AWS Glue User Guide

Name Type Description

%list_sessions Lists all currently running sessions by
name and ID.

%session_type String Sets the session type to one of Streaming
, ETL, or Ray.

Example: %session_type Streaming

%glue_version String The version of AWS Glue to be used by
this session.

Example: %glue_version 3.0

Magics for selecting job types

Name Type Description

%streaming String Changes the session type to AWS Glue
Streaming.

%etl String Changes the session type to AWS Glue
ETL.

%glue_ray String Changes the session type to AWS Glue for
Ray. See Magics supported by AWS Glue
Ray interactive sessions.

AWS Glue for Spark config magics

The %%configure magic is a json-formatted dictionary consisting of all configuration parameters
for a session. Each parameter can be specified here or through individual magics.

Magics supported by AWS Glue interactive sessions for Jupyter 445

https://docs.aws.amazon.com/glue/latest/dg/is-using-ray-configuration
https://docs.aws.amazon.com/glue/latest/dg/is-using-ray-configuration

AWS Glue User Guide

Name Type Description

%%configure Dictionary Specify a JSON-formatted dictionary
consisting of all configuration parameter
s for a session. Each parameter can be
specified here or through individual
magics.

For a list of parameters and examples on
how to use %%configure , see the table
below: Using %%configure.

%iam_role String Specify an IAM role ARN to execute your
session with. Default from ~/.aws/co
nfigure.

Example: %iam_role AWSGlueSe
rviceRole

%number_of_workers Int The number of workers of a defined
worker_type that are allocated when a
job runs. worker_type must be set too.
The default number_of_workers is 5.

Example: %number_of_workers 2

%additional_python
_modules

List Comma separated list of additional
Python modules to include in your cluster
(can be from PyPI or S3).

Example: %additional_python
_modules pandas, numpy .

%%tags String Adds tags to a session. Specify the tags
within curly brackets { }. Each tag name
pair is enclosed in parentheses (" ") and
separated by a comma (,).

%%tags

Magics supported by AWS Glue interactive sessions for Jupyter 446

AWS Glue User Guide

Name Type Description

{"billing":"Data-Platform",
 "team":"analytics"}

Use the %status magic to view tags
associated with the session.

%status

Session ID: <sessionId>
 Status: READY
 Role: <example-role>
 CreatedOn: 2023-05-26 11:12:17.
056000-07:00
 GlueVersion: 3.0
 Job Type: glueetl
 Tags: {'owner':'example-owner',
 'team':'analytics', 'billing'
:'Data-Platform'}
 Worker Type: G.4X
 Number of Workers: 5
 Region: us-west-2
 Applying the following default
 arguments:
 --glue_kernel_version 0.38.0
 --enable-glue-datacatalog true
 Arguments Passed: ['--glue_
kernel_version: 0.38.0', '--
enable-glue-datacatalog: true']

Magics supported by AWS Glue interactive sessions for Jupyter 447

AWS Glue User Guide

Name Type Description

%%assume_role Dictionary Specify a json-formatted dictionary or an
IAM role ARN string to create a session for
cross-account access.

Example with ARN:

%%assume_role
{
 'arn:aws:iam::XXXXXXXXXXXX:
role/AWSGlueServiceRole'
}

Example with credentials:

 %%assume_role
{{
 "aws_access_key_id" =
 "XXXXXXXXXXXX",
 "aws_secret_access_key" =
 "XXXXXXXXXXXX",
 "aws_session_token" =
 "XXXXXXXXXXXX"
}}

%%configure cell magic arguments

The %%configure magic is a json-formatted dictionary consisting of all configuration parameters
for a session. Each parameter can be specified here or through individual magics. See below for
examples for arguments supported by the %%configure cell magic. Use the -- prefix for run
arguments specified for the job. Example:

%%configure
{
 "--user-jars-first": "true",
 "--enable-glue-datacatalog": "false"
}

Magics supported by AWS Glue interactive sessions for Jupyter 448

AWS Glue User Guide

For more information on job parameters, see Job parameters.

Session Configuration

Parameter Type Description

max_retries Int The maximum number of times to retry
this job if it fails.

%%configure
{
 "max_retries": "0"
}

max_concurrent_runs Int The maximum number of concurrent runs
allowed for a job.

Example:

%%configure
{
 "max_concurrent_runs": "3"
}

Session parameters

Parameter Type Description

--enable-spark-ui Boolean Enable Spark UI to monitor and debug
AWS Glue ETL jobs.

%%configure
{
 "--enable-spark-ui": "true"
}

Magics supported by AWS Glue interactive sessions for Jupyter 449

AWS Glue User Guide

Parameter Type Description

--spark-event-logs-path String Specifies an Amazon S3 path. When using
the Spark UI monitoring feature.

Example:

%%configure
{
 "--spark-event-logs-path":
 "s3://path/to/event/logs/"
}

--script_location String Specifies the S3 path to a script that
executes a job.

Example:

%%configure
{
 "script_location": "s3://new-
folder-here"
}

--SECURITY_CONFIGU
RATION

String The name of a AWS Glue security
configuration

Example:

%%configure
{
 "--SECURITY_CONFIG
URATION": security-configura
tion-name ,
}

Magics supported by AWS Glue interactive sessions for Jupyter 450

AWS Glue User Guide

Parameter Type Description

--job-language String The script programming language.
Accepts a value of 'scala' or 'python'.
Default is 'python'.

Example:

%%configure
{
 "--job-language": "scala"
}

--class String The Scala class that serves as the entry
point for your Scala script. Default is null.

Example:

%%configure
{
 "--class": "className"
}

--user-jars-first Boolean Prioritizes the customer's extra JAR files
in the classpath. Default is null.

Example:

%%configure
{
 "--user-jars-first": "true"
}

Magics supported by AWS Glue interactive sessions for Jupyter 451

AWS Glue User Guide

Parameter Type Description

--use-postgres-driver Boolean Prioritizes the Postgres JDBC driver in
the class path to avoid a conflict with the
Amazon Redshift JDBC driver. Default is
null.

Example:

%%configure
{
 "--use-postgres-driver": "true"
}

--extra-files List(string) The Amazon S3 paths to additional files,
such as configuration files that AWS Glue
copies to the working directory of your
script before executing it.

Example:

%%configure
{
 "--extra-files": "s3://path/to/
additional/files/"
}

Magics supported by AWS Glue interactive sessions for Jupyter 452

AWS Glue User Guide

Parameter Type Description

--job-bookmark-option String Controls the behavior of a job bookmark.
Accepts a value of 'job-bookmark-enable',
'job-bookmark-disable' or 'job-bookmark-
pause'. Default is 'job-bookmark-disable'.

Example:

%%configure
{
 "--job-bookmark-option": "job-
bookmark-enable"
}

--TempDir String Specifies an Amazon S3 path to a bucket
that can be used as a temporary directory
for the job. Default is null.

Example:

%%configure
{
 "--TempDir": "s3://path/to/temp
/dir"
}

Magics supported by AWS Glue interactive sessions for Jupyter 453

AWS Glue User Guide

Parameter Type Description

--enable-s3-parquet-
optimized-committer

Boolean Enables the EMRFS Amazon S3-optimized
committer for writing Parquet data into
Amazon S3. Default is 'true'.

Example:

%%configure
{
 "--enable-s3-parquet-optimi
zed-committer": "false"
}

--enable-rename-al
gorithm-v2

Boolean Sets the EMRFS rename algorithm version
to version 2. Default is 'true'.

Example:

%%configure
{
 "--enable-rename-algorithm-
v2": "true"
}

--enable-glue-data
catalog

Boolean Enables you to use the AWS Glue
Data Catalog as an Apache Spark Hive
metastore.

Example:

%%configure
{
 --"enable-glue-datacatalog":
 "true"
}

Magics supported by AWS Glue interactive sessions for Jupyter 454

AWS Glue User Guide

Parameter Type Description

--enable-metrics Boolean Enables the collection of metrics for job
profiling for job run. Default is 'false'.

Example:

%%configure
{
 "--enable-metrics": "true"
}

--enable-continuous-
cloudwatch-log

Boolean Enables real-time continuous logging for
AWS Glue jobs. Default is 'false'.

Example:

%%configure
{
 "--enable-continuous-cloudw
atch-log": "true"
}

--enable-continuous-
log-filter

Boolean Specifies a standard filter or no filter
when you create or edit a job enabled for
continuous logging. Default is 'true'.

Example:

%%configure
{
 "--enable-continuous-log-fi
lter": "true"
}

Magics supported by AWS Glue interactive sessions for Jupyter 455

AWS Glue User Guide

Parameter Type Description

--continuous-log-s
tream-prefix

String Specifies a custom Amazon CloudWatc
h log stream prefix for a job enabled for
continuous logging. Default is null.

Example:

%%configure
{
 "--continuous-log-stream-pr
efix": "prefix"
}

--continuous-log-c
onversionPattern

String Specifies a custom conversion log pattern
for a job enabled for continuous logging.
Default is null.

Example:

%%configure
{
 "--continuous-log-conversio
nPattern": "pattern"
}

Magics supported by AWS Glue interactive sessions for Jupyter 456

AWS Glue User Guide

Parameter Type Description

--conf String Controls Spark config parameters. It is for
advanced use cases. Use --conf before
each parameter. Example:

%%configure
{
 "--conf": "spark.hadoop.hive
.metastore.glue.catalogid=1
23456789012 --conf hive.meta
store.client.factory.class=
com.amazonaws.glue.catalog.
metastore.AWSGlueDataCatalo
gHiveClientFactory --conf
 hive.metastore.schema.verif
ication=false"
}

Spark jobs (ETL & streaming) magics

Name Type Description

%worker_type String Standard, G.1X, or G.2X. number_of
_workers must be set too. The default
worker_type is G.1X.

%connections List Specify a comma-separated list of
connections to use in the session.

Example:

%connections my_rds_connection
 dy_f =
 glue_context.create_dynamic
_frame.from_catalog(databas

Magics supported by AWS Glue interactive sessions for Jupyter 457

AWS Glue User Guide

Name Type Description

e='rds_tables', table_nam
e='sales_table')

%extra_py_files List Comma separated list of additional
Python files from Amazon S3.

%extra_jars List Comma-separated list of additional jars to
include in the cluster.

%spark_conf String Specify custom spark configurations for
your session. For example, %spark_co
nf spark.serializer=o
rg.apache.spark.serializer.
KryoSerializer .

Magics for Ray jobs

Name Type Description

%min_workers Int The minimum number of workers that are
allocated to a Ray job. Default: 1.

Example: %min_workers 2

%object_memory_head Int The percentage of free memory on the
instance head node after a warm start.
Minimum: 0. Maximum: 100.

Example: %object_memory_head
100

%object_memory_worker Int The percentage of free memory on the
instance worker nodes after a warm start.
Minimum: 0. Maximum: 100.

Magics supported by AWS Glue interactive sessions for Jupyter 458

AWS Glue User Guide

Name Type Description

Example: %object_memory_worker
100

Action magics

Name Type Description

%%sql String Run SQL code. All lines after the initial %
%sql magic will be passed as part of the
SQL code.

Example: %%sql select * from
rds_tables.sales_table

%matplot Matplotlib
figure

Visualize your data using the matplotlib
library.

Example:

import matplotlib.pyplot as plt

Set X-axis and Y-axis values
x = [5, 2, 8, 4, 9]
y = [10, 4, 8, 5, 2]

Create a bar chart
plt.bar(x, y)

Show the plot
%matplot plt

%plotly Plotly figure Visualize your data using the plotly
library.

Example:

Magics supported by AWS Glue interactive sessions for Jupyter 459

AWS Glue User Guide

Name Type Description

import plotly.express as px

#Create a graphical figure
fig = px.line(x=["a","b","c"],
 y=[1,3,2], title="sample
 figure")

#Show the figure
%plotly fig

Naming sessions

AWS Glue interactive sessions are AWS resources and require a name. Names should be unique
for each session and may be restricted by your IAM administrators. For more information, see
Interactive sessions with IAM. The Jupyter kernel automatically generates unique session names for
you. However sessions can be named manually in two ways:

1. Using the AWS Command Line Interface config file located at ~.aws/config. See Setting Up
AWS Config with the AWS Command Line Interface.

2. Using the %session_id_prefix magics. See Magics supported by AWS Glue interactive
sessions for Jupyter.

A session name is generated as follows:

• When the prefix and session_id are provided: the session name will be {prefix}-{UUID}.

• When nothing is provided: the session name will be {UUID}.

Prefixing session names allows you to recognize your session when listing it in the AWS CLI or
console.

Specifying an IAM role for interactive sessions

You must specify an AWS Identity and Access Management (IAM) role to use with AWS Glue ETL
code that you run with interactive sessions.

Naming sessions 460

https://docs.aws.amazon.com/config/latest/developerguide/gs-cli.html
https://docs.aws.amazon.com/config/latest/developerguide/gs-cli.html

AWS Glue User Guide

The role requires the same IAM permissions as those required to run AWS Glue jobs. See Create an
IAM role for AWS Glue for more information on creating a role for AWS Glue jobs and interactive
sessions.

IAM roles can be specified in two ways:

• Using the AWS Command Line Interface config file located at ~.aws/config (Recommended).
For more information, see Configuring sessions with ~/.aws/config .

Note

When the %profile magic is used, the configuration for glue_iam_role of that profile
is honored.

• Using the %iam_role magic. For more information, see Magics supported by AWS Glue
interactive sessions for Jupyter.

Configuring sessions with named profiles

AWS Glue interactive sessions uses the same credentials as the AWS Command Line Interface or
boto3, and interactive sessions honors and works with named profiles like the AWS CLI found in
~/.aws/config (Linux and MacOS) or %USERPROFILE%\.aws\config (Windows). For more
information, see Using named profiles .

Interactive sessions takes advantage of named profiles by allowing the AWS Glue Service
Role and Session ID Prefix to be specified in a profile. To configure a profile role, add a line
for the iam_role key and/or session_id_prefix to your named profile as shown below.
The session_id_prefix does not require quotes. For example, if you want to add a
session_id_prefix, enter the value of the session_id_prefix=myprefix.

[default]
region=us-east-1
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
glue_iam_role=arn:aws:iam::<AccountID>:role/<GlueServiceRole>
session_id_prefix=<prefix_for_session_names>

[user1]
region=eu-west-1
aws_access_key_id=AKIAI44QH8DHBEXAMPLE

Configuring sessions with named profiles 461

https://docs.aws.amazon.com/glue/latest/dg/create-an-iam-role.html
https://docs.aws.amazon.com/glue/latest/dg/create-an-iam-role.html
https://docs.aws.amazon.com/glue/latest/ug/interactive-sessions-magics.html#interactive-sessions-named-profiles
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles

AWS Glue User Guide

aws_secret_access_key=je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY
glue_iam_role=arn:aws:iam::<AccountID>:role/<GlueServiceRoleUser1>
session_id_prefix=<prefix_for_session_names_for_user1>

If you have a custom method of generating credentials, you can also configure your profile to use
the credential_process parameter in your ~/.aws/config file. For example:

[profile developer]
region=us-east-1
credential_process = "/Users/Dave/generate_my_credentials.sh" --username helen

You can find more details about sourcing credentials through the credential_process
parameter here: Sourcing credentials with an external process.

If a region or iam_role are not set in the profile that you are using, you must specify them using
the %region and %iam_role magics in the first cell that you run.

Getting started with AWS Glue for Ray interactive sessions
(preview)

Warning

The preview of AWS Glue for Ray interactive sessions ended April 30, 2024. You will no
longer be able to create new interactive sessions on AWS Glue for Ray.

Note

AWS Glue for Ray is available in US East (N. Virginia), US East (Ohio), US West (Oregon),
Asia Pacific (Tokyo), and Europe (Ireland).

Ray interactive sessions in the AWS Glue Studio Console

In the Jobs page in the AWS Glue Studio Console, select the existing Jupyter Notebook option.
This will open a Notebook setup page where you can select your Kernel. Select the Ray kernel to

AWS Glue for Ray interactive sessions (preview) 462

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sourcing-external.html

AWS Glue User Guide

begin a Ray interactive session. For more information about interactive sessions and how they are
used, see the section called “Getting started with AWS Glue interactive sessions”.

Ray interactive sessions using the Jupyter Kernel

To use the Ray Kernel outside of the AWS Glue Studio Console, you will need to install the aws-
glue-sessions package, which we publish on PyPI. For more information about using the
kernel package, see the the section called “Getting started with AWS Glue interactive sessions”
documentation.

To update or install the kernel, run pip install --upgrade aws-glue-sessions. You will
need version .37+ to use the Ray kernel.

Ray interactive sessions have access to the same libraries and versions of Ray as Ray jobs. In
preview, all Ray interactive sessions will use Ray 2.4.0.

Ray interactive sessions using the Jupyter Kernel 463

AWS Glue User Guide

Ray interactive session timeout defaults

• Timeout (for session) default: 8 hours.

• Idle Timeout default: 1 hour.

Magics supported by AWS Glue Ray interactive sessions

Magics for the AWS Glue Jupyter kernel when it powers Ray interactive sessions are similar to those
for the Spark sessions. For reference, see the section called “ Configuring AWS Glue interactive
sessions for Jupyter and AWS Glue Studio notebooks ”.

Sessions magics

Sessions magics are mostly the same as prior to the AWS Glue for Ray preview. For more
information about session magics outside of this preview, see the section called “Magics supported
by AWS Glue interactive sessions for Jupyter”. We introduce a new magic to set the session type to
AWS Glue for Ray.

Name Type Description

%glue_ray String Changes the session type to AWS Glue for
Ray.

AWS Glue config magics

Magics to configure AWS Glue in an interactive session may be different between session types.
Currently, we only support this subset of existing magics when using AWS Glue for Ray.

Warning

Known Issue: additional_python_modules
In the Ray interactive sessions preview, use of the additional_python_modules magic
will cause problems when saving your notebook. To configure python modules for Ray
sessions, use the %%configure magic to set the pip-install parameter defined in the
section called “Ray job parameters”.

Ray interactive session timeout defaults 464

AWS Glue User Guide

Name Type Description

%%configure Dictionary Specify a JSON-formatted dictionary
consisting of all configuration parameter
s for a session. Each parameter can be
specified here or through individual
magics.

%iam_role String Specify an IAM role ARN to execute your
session with. Default from ~/.aws/co
nfigure

%number_of_workers int The number of workers of a defined
worker_type that are allocated when a job
runs. worker_type must be set too.

%worker_type String In the AWS Glue for Ray preview, the only
supported worker type is Z.2X.

%additional_python
_modules

List Comma separated list of additional
Python modules to include in your cluster
(can be from Pypi or S3).

Action magics

AWS Glue Ray sessions do not support any action magics.

Interactive sessions with IAM

These sections describe security considerations for AWS Glue interactive sessions.

Topics

• IAM principals used with interactive sessions

• Setting up a client principal

• Setting up a runtime role

• Make your session private with TagOnCreate

Interactive sessions with IAM 465

AWS Glue User Guide

• IAM policy considerations

IAM principals used with interactive sessions

You use two IAM principals used with AWS Glue interactive sessions.

• Client principal: The client principal (either a user or a role) authorizes API operations for
interactive sessions from an AWS Glue client that's configured with the principal's identity-based
credentials. For example, this could be an IAM role that you typically use to access the AWS Glue
console. This could also be a role given to a user in IAM whose credentials are used for the AWS
Command Line Interface, or an AWS Glue client used by the interactive sessions Jupyter kernel.

• Runtime role: The runtime role is an IAM role that the client principal passes to interactive
sessions API operations. AWS Glue uses this role to run statements in your session. For example,
this role could be the one used for running AWS Glue ETL jobs.

For more information, see Setting up a runtime role.

Setting up a client principal

You must attach an identity policy to the client principal to allow it to call the interactive
sessions API. This role must have iam:PassRole access to the execution role that you would
pass to the interactive sessions API, such as CreateSession. For example, you can attach the
AWSGlueConsoleFullAccess managed policy to an IAM role which allows users in your account
with the policy attached to access all the sessions created in your account (such as runtime
statement or cancel statement).

If you would like to protect your session and make it private only to certain IAM roles, such as ones
associated with the user who created the session then you can use AWS Glue Interactive Session's
Tag Based Authorization Control called TagOnCreate. For more information, see Make your session
private with TagOnCreate on how an owner tag-based scoped down managed policy can make
your session private with TagOnCreate. For more information on identity-based policies, see
Identity-based policies for AWS Glue.

Setting up a runtime role

You must pass an IAM role to the CreateSession API operation in order to allow AWS Glue to
assume and run statements in interactive sessions. The role should have the same IAM permissions
as those required to run a typical AWS Glue job. For example, you can create a service role using

IAM principals used with interactive sessions 466

https://docs.aws.amazon.com/glue/latest/dg/security_iam_service-with-iam.html#security_iam_service-with-iam-id-based-policies
https://docs.aws.amazon.com/glue/latest/dg/security_iam_service-with-iam.html#security_iam_service-with-iam-id-based-policies

AWS Glue User Guide

the AWSGlueServiceRole policy that allows AWS Glue to call AWS services on your behalf. If
you use the AWS Glue console, it will automatically create a service role on your behalf or use an
existing one. You can also create your own IAM role and attach your own IAM policy to allow similar
permissions.

If you would like to protect your session and make it private only to the user who created the
session then you can use AWS Glue Interactive Session's Tag Based Authorization Control called
TagOnCreate. For more information, see Make your session private with TagOnCreate on how an
owner tag-based scoped down managed policy can make your session private with TagOnCreate.
For more information on identity-based policies, see Identity-based policies for AWS Glue. If you
are creating the execution role by yourself from the IAM console and you want to make your
service private with TagOnCreate feature then follow the steps below.

1. Create an IAM role with role type set to Glue.

2. Attach this AWS Glue managed policy: AwsGlueSessionUserRestrictedServiceRole

3. Prefix the role name with the policy name AwsGlueSessionUserRestrictedServiceRole. For
example, you can create a role with name AwsGlueSessionUserRestrictedServiceRole-myrole and
attach AWS Glue managed policy AwsGlueSessionUserRestrictedServiceRole.

4. Attach a trust policy like following to allow AWS Glue to assume the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "glue.amazonaws.com"
]
 },
 "Action": [
 "sts:AssumeRole"
]
 }
]
}

For an interactive sessions Jupyter kernel, you can specify the iam_role key in your AWS
Command Line Interface profile. For more information, see Configuring sessions with ~/.aws/

Setting up a runtime role 467

https://docs.aws.amazon.com/glue/latest/ug/interactive-sessions-magics.html#interactive-sessions-named-profiles

AWS Glue User Guide

config . If you're interacting with interactive sessions using an AWS Glue notebook, then you can
pass the execution role in the %iam_role magic in the first cell that you run.

Make your session private with TagOnCreate

AWS Glue interactive sessions supports tagging and Tag Based Authorization (TBAC) for interactive
sessions as a named resource. In addition to TBAC using TagResource and UntagResource APIs, AWS
Glue interactive sessions supports the TagOnCreate feature to 'tag' a session with a given tag only
during session creation with CreateSession operation. This also means those tags will be removed
on DeleteSession, aka UntagOnDelete.

TagOnCreate offers a powerful security mechanism to make your session private to the creator
of the session. For example, you can attach an IAM policy with "owner" RequestTag and value of
${aws:userId} to a client principal (such as an user) in order to allow creating a session only if an
"owner" tag with matching value of the callers userId is provided as userId tag in CreateSession
request. This policy allows AWS Glue interactive sessions to create a session resource and tag the
session with the userId tag only during session creation time. In addition to it you can scope down
the access (like running statements) to your session only to the creator (aka owner tag with value
${aws:userId}) of the session by attaching an IAM policy with "owner" ResourceTag to the execution
role you passed in during CreateSession.

In order to make it easier for you to use TagOnCreate feature to make a session private to the
session creator, AWS Glue provides specialized managed policies and service roles.

If you want to create a AWS Glue Interactive Session using an IAM AssumeRole principal (that is,
using credential vended by assuming an IAM role) and you want to make the session private to
the creator, then use policies similar to the AWSGlueSessionUserRestrictedNotebookPolicy and
AWSGlueSessionUserRestrictedNotebookServiceRole respectively. These policies allow AWS Glue
to use ${aws:PrincipalTag} to extract the owner tag value. This requires you to pass a userId tag
with value ${aws:userId} as SessionTag in the assume role credential. See ID session tags . If you
are using an Amazon EC2 instance with an instance profile vending the credential and you want to
create a session or interact with the session from within the Amazon EC2 instance , then you would
require to pass a userId tag with value ${aws:userId} as SessionTag in the assume role credential.

For example, If you are creating a session using an IAM AssumeRole principal credential and you
want to make your service private with TagOnCreate feature then follow the steps below.

1. Create a runtime role yourself from the IAM console. Please attach this AWS Glue managed
policy AwsGlueSessionUserRestrictedNotebookServiceRole and prefix the role name with the

Make your session private with TagOnCreate 468

https://docs.aws.amazon.com/glue/latest/ug/interactive-sessions-magics.html#interactive-sessions-named-profiles
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_session-tags.html

AWS Glue User Guide

policy name AwsGlueSessionUserRestrictedNotebookServiceRole. For example, you can create a
role with name AwsGlueSessionUserRestrictedNotebookServiceRole-myrole and attach AWS Glue
managed policy AwsGlueSessionUserRestrictedNotebookServiceRole.

2. Attach a trust policy like below to allow AWS Glue to assume the above role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "glue.amazonaws.com"
]
 },
 "Action": [
 "sts:AssumeRole"
]
 }
]
}

3. Create another role named with a prefix AwsGlueSessionUserRestrictedNotebookPolicy and
attach the AWS Glue managed policy AwsGlueSessionUserRestrictedNotebookPolicy to make the
session private. In addition to the managed policy please attach the following inline policy to
allow iam:PassRole to the role you created in step 1.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::*:role/
AwsGlueSessionUserRestrictedNotebookServiceRole*"
],
 "Condition": {
 "StringLike": {

Make your session private with TagOnCreate 469

AWS Glue User Guide

 "iam:PassedToService": [
 "glue.amazonaws.com"
]
 }
 }
 }
]
}

4. Attach a trust policy like following to the above IAM AWS Glue to assume the role.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "glue.amazonaws.com"
]
 },
 "Action": [
 "sts:AssumeRole",
 "sts:TagSession"
]
 }]
}

Note

Optionally, you can use a single role (for example, notebook role) and attach both of
the above managed policies AwsGlueSessionUserRestrictedNotebookServiceRole and
AwsGlueSessionUserRestrictedNotebookPolicy. Also attach the additional inline policy
to allow iam:passrole of your role to AWS Glue. And finally attach the above trust
policy to allow sts:AssumeRole and sts:TagSession.

Make your session private with TagOnCreate 470

AWS Glue User Guide

AWSGlueSessionUserRestrictedNotebookPolicy

The AWSGlueSessionUserRestrictedNotebookPolicy provides access to create a AWS Glue
Interactive Session from a notebook only if a tag key "owner" and value matching the AWS user
id of the principal (user or Role). For more information, see Where you can use policy variables
. This policy is attached to the principal (User or role) that creates AWS Glue Interactive Session
notebooks from AWS Glue Studio. This policy also permits sufficient access to the AWS Glue Studio
notebook to interact with the AWS Glue Studio Interactive Session resources that are created with
the "owner" tag value matching the AWS user ID of the principal. This policy denies permission to
change or remove "owner" tag from a AWS Glue session resource after the session is created.

AWSGlueSessionUserRestrictedNotebookServiceRole

The AWSGlueSessionUserRestrictedNotebookServiceRole provides sufficient access to the
AWS Glue Studio notebook to interact with the AWS Glue Interactive Session resources that are
created with the "owner" tag value matching the AWS user ID of the principal (user or role) of the
notebook creator. For more information, see Where you can use policy variables . This service-role
policy is attached to the role that is passed as magic to a notebook or passed as execution role to
the CreateSession API. This policy also permits to create a AWS Glue Interactive Session from a
notebook only if a tag key "owner" and value matching the AWS user ID of the principal. This policy
denies permission to change or remove "owner" tag from an AWS Glue session resource after the
session is created. This policy also includes permissions for writing and reading from Amazon S3
buckets, writing CloudWatch logs, creating and deleting tags for Amazon EC2 resources used by
AWS Glue.

Make your session private with user policies

You can attach the AWSGlueSessionUserRestrictedPolicy to IAM roles
attached to each of the users in your account to restrict them from creating a
session only with an owner tag with a value matching their own ${aws:userId}.
Instead of using the AWSGlueSessionUserRestrictedNotebookPolicy and
AWSGlueSessionUserRestrictedNotebookServiceRole you need to use policies similar to
the AWSGlueSessionUserRestrictedPolicy and AWSGlueSessionUserRestrictedServiceRole
respectively. For more information, see Using-identity based policies . This policy scopes down the
access to a session only to the creator, the ${aws:userId} of the user who created the session with
an owner tag bearing their own ${aws:userId}. If you have created the execution role yourself using
the IAM console by following the steps in Setting up a runtime role, then in addition to attaching
the AwsGlueSessionUserRestrictedPolicy managed policy, also attach the following inline policy

Make your session private with TagOnCreate 471

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html#policy-vars-infotouse
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html#policy-vars-infotouse
https://docs.aws.amazon.com/glue/latest/dg/using-identity-based-policies.html

AWS Glue User Guide

to each of the users in your account to allow iam:PassRole for the execution role you created
earlier.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::*:role/AwsGlueSessionUserRestrictedServiceRole*"
],
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "glue.amazonaws.com"
]
 }
 }
 }]
}

AWSGlueSessionUserRestrictedPolicy

The AWSGlueSessionUserRestrictedPolicy provides access to create an AWS Glue Interactive
Session using the CreateSession API only if a tag key "owner" and value matching their AWS user
ID is provided. This identity policy is attached to the user that invokes the CreateSession API. This
policy also permits to interact with the AWS Glue Interactive Session resources that were created
with a "owner" tag and value matching their AWS user id. This policy denies permission to change
or remove "owner" tag from a AWS Glue session resource after the session is created.

AWSGlueSessionUserRestrictedServiceRole

The AWSGlueSessionUserRestrictedServiceRole provides full access to all AWS Glue resources
except for sessions and allows users to create and use only the interactive sessions that are
associated with the user. This policy also includes other permissions needed by AWS Glue to
manage Glue resources in other AWS services. The policy also allows adding tags to AWS Glue
resources in other AWS services.

Make your session private with TagOnCreate 472

AWS Glue User Guide

IAM policy considerations

Interactive sessions are IAM resources in AWS Glue. Because they are IAM resources, access and
interaction to a session is governed by IAM policies. Based on the IAM policies attached to a client
principal or execution role configured by an admin, a client principal (user or role) will be able to
create new sessions and interact with its own sessions and other sessions.

If an admin has attached an IAM policy such as AWSGlueConsoleFullAccess or AWSGlueServiceRole
that allows access to all AWS Glue resources in that account, a client principal will be able to
collaborate with each other. For example, one user will be able to interact with sessions that are
created by other users if policies allow this.

If you'd like to configure a policy tailored to your specific needs, see IAM documentation about
configuring resources for a policy . For example, in order to isolate sessions that belong to an user,
you can use the TagOnCreate feature supported by AWS Glue Interactive sessions. See Make your
session private with TagOnCreate .

Interactive sessions supports limiting session creation based on certain VPC conditions. See Control
policies that control settings using condition keys.

Converting a script or notebook into an AWS Glue job

There are two ways you can convert a script or notebook into an AWS Glue job:

• Use nbconvert to convert your Jupyter .ipynb notebook document file into a .py file. For more
information, see nbconvert: Convert Notebooks to other formats.

• Upload the file to AWS Glue Studio Notebooks.

• In the AWS Glue Studio console, choose Jobs from the navigation menu.

• In the Create job section, choose Jupyter Notebook.

• In the Options section, choose Upload and edit an existing notebook.

• Select Choose file to upload an .ipynb file.

IAM policy considerations 473

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://nbconvert.readthedocs.io/en/latest/

AWS Glue User Guide

AWS Glue interactive sessions for streaming

Switching streaming session type

Use the AWS Glue interactive sessions configuration magic, %streaming, to define the job you are
running and initialize a streaming interactive session.

Sampling input stream for interactive development

One tool we have derived to help enhance the interactive experience in AWS Glue interactive
sessions is the addition of a new method under GlueContext to obtain a snapshot of a stream
in a static DynamicFrame. GlueContext allows you to inspect, interact and implement your
workflow.

With the GlueContext class instance, you will be able to locate the method
getSampleStreamingDynamicFrame. Required arguments for this method are:

• dataFrame: The Spark Streaming DataFrame

• options: See available options below

Available options include：

• windowSize: This is also called Microbatch Duration. This parameter will determine how long
a streaming query will wait after previous batch was triggered. This parameter value must be
smaller than pollingTimeInMs.

• pollingTimeInMs: The total length of time the method will run. It will fire off at least one micro
batch to obtain sample records from the input stream.

• recordPollingLimit: This parameter helps you limit the total number of records you will poll
from the stream.

• (Optional) You can also use writeStreamFunction to apply this custom function to every
record sampling function. See below for examples in Scala and Python.

Scala

val sampleBatchFunction = (batchDF: DataFrame, batchId: Long) => {//Optional but
 you can replace your own forEachBatch function here}

AWS Glue interactive sessions for streaming 474

AWS Glue User Guide

val jsonString: String = s"""{"pollingTimeInMs": "10000", "windowSize": "5
 seconds"}"""
val dynFrame = glueContext.getSampleStreamingDynamicFrame(YOUR_STREAMING_DF,
 JsonOptions(jsonString), sampleBatchFunction)
dynFrame.show()

Python

def sample_batch_function(batch_df, batch_id):
 //Optional but you can replace your own forEachBatch function here
options = {
 "pollingTimeInMs": "10000",
 "windowSize": "5 seconds",
 }
glue_context.getSampleStreamingDynamicFrame(YOUR_STREAMING_DF, options,
 sample_batch_function)

Note

When the sampled DynFrame is empty, it could be caused by a few reasons:

• The Streaming source is set to "Latest" and no new data has been ingested during the
sampling period.

• The polling time is not enough to process the records it ingested. Data won't show up
unless the whole batch has been processed.

Running streaming applications in interactive sessions

In AWS Glue interactive sessions, you can run a the AWS Glue streaming application like how you
would create a streaming application in the AWS Glue Console. Since interactive sessions is session-
based, encountering exceptions in the runtime does not cause the session to stop. We now have
the added benefit of developing your batch function iteratively. For example:

def batch_function(data_frame, batch_id):
 log.info(data_frame.count())
 invalid_method_call()

Running streaming applications in interactive sessions 475

AWS Glue User Guide

glueContext.forEachBatch(frame=streaming_df, batch_function = batch_function, options =
 {**})

In the example above, we included an invalid usage of a method and unlike regular AWS Glue jobs
which will exit the entire application, the user's coding context and definitions are fully preserved
and the session is still operational. There is no need to bootstrap a new cluster and rerun all
the preceding transformation. This allows you to focus on quickly iterating your batch function
implementations to obtain desirable outcomes.

It is important to note that Interactive Session evaluates each statement in a blocking manner so
that the session will only execute one statement at a time. Since streaming queries are continuous
and never ending, sessions with active streaming queries won't be able to handle any follow up
statements unless they are interrupted. You can issue the interruption command directly from
Jupyter Notebook and our kernel will handle the cancellation for you.

Take the following sequence of statements which are waiting for execution as an example:

Statement 1:
 val number = df.count()
 #Spark Action with deterministic result
 Result: 5

Statement 2:
 streamingQuery.start().awaitTermination()
 #Spark Streaming Query that will be executing continously
 Result: Constantly updated with each microbatch

Statement 3:
 val number2 = df.count()
 #This will not be executed as previous statement will be running indefinitely

Developing and testing AWS Glue job scripts locally

When you develop and test your AWS Glue for Spark job scripts, there are multiple available
options:

• AWS Glue Studio console

Developing and testing locally 476

AWS Glue User Guide

• Visual editor

• Script editor

• AWS Glue Studio notebook

• Interactive sessions

• Jupyter notebook

• Docker image

• Local development

• Remote development

• AWS Glue Studio ETL library

• Local development

You can choose any of the above options based on your requirements.

If you prefer no code or less code experience, the AWS Glue Studio visual editor is a good choice.

If you prefer an interactive notebook experience, AWS Glue Studio notebook is a good choice. For
more information, see Using Notebooks with AWS Glue Studio and AWS Glue. If you want to use
your own local environment, interactive sessions is a good choice. For more information, see Using
interactive sessions with AWS Glue.

If you prefer local/remote development experience, the Docker image is a good choice. This helps
you to develop and test AWS Glue for Spark job scripts anywhere you prefer without incurring AWS
Glue cost.

If you prefer local development without Docker, installing the AWS Glue ETL library directory
locally is a good choice.

Developing using AWS Glue Studio

The AWS Glue Studio visual editor is a graphical interface that makes it easy to create, run,
and monitor extract, transform, and load (ETL) jobs in AWS Glue. You can visually compose
data transformation workflows and seamlessly run them on AWS Glue's Apache Spark-based
serverless ETL engine. You can inspect the schema and data results in each step of the job. For
more information, see the AWS Glue Studio User Guide.

Developing using AWS Glue Studio 477

https://docs.aws.amazon.com/glue/latest/ug/notebooks-chapter.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-chapter.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-chapter.html
https://docs.aws.amazon.com/glue/latest/ug/what-is-glue-studio.html

AWS Glue User Guide

Developing using interactive sessions

Interactive sessions allow you to build and test applications from the environment of your choice.
For more information, see Using interactive sessions with AWS Glue.

Developing using a Docker image

Note

The instructions in this section have not been tested on Microsoft Windows operating
systems.
For local development and testing on Windows platforms, see the blog Building an AWS
Glue ETL pipeline locally without an AWS account

For a production-ready data platform, the development process and CI/CD pipeline for AWS Glue
jobs is a key topic. You can flexibly develop and test AWS Glue jobs in a Docker container. AWS
Glue hosts Docker images on Docker Hub to set up your development environment with additional
utilities. You can use your preferred IDE, notebook, or REPL using AWS Glue ETL library. This topic
describes how to develop and test AWS Glue version 4.0 jobs in a Docker container using a Docker
image.

The following Docker images are available for AWS Glue on Docker Hub.

• For AWS Glue version 4.0: amazon/aws-glue-libs:glue_libs_4.0.0_image_01

• For AWS Glue version 3.0: amazon/aws-glue-libs:glue_libs_3.0.0_image_01

• For AWS Glue version 2.0: amazon/aws-glue-libs:glue_libs_2.0.0_image_01

These images are for x86_64. It is recommended that you test on this architecture. However, it may
be possible to rework a local development solution on unsupported base images.

This example describes using amazon/aws-glue-libs:glue_libs_4.0.0_image_01 and
running the container on a local machine. This container image has been tested for an AWS Glue
version 3.3 Spark jobs. This image contains the following:

• Amazon Linux

• AWS Glue ETL library (aws-glue-libs)

• Apache Spark 3.3.0

Developing using interactive sessions 478

https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-chapter.html
https://aws.amazon.com/blogs/big-data/building-an-aws-glue-etl-pipeline-locally-without-an-aws-account/
https://aws.amazon.com/blogs/big-data/building-an-aws-glue-etl-pipeline-locally-without-an-aws-account/
https://github.com/awslabs/aws-glue-libs

AWS Glue User Guide

• Spark history server

• Jupyter Lab

• Livy

• Other library dependencies (the same set as the ones of AWS Glue job system)

Complete one of the following sections according to your requirements:

• Set up the container to use spark-submit

• Set up the container to use REPL shell (PySpark)

• Set up the container to use Pytest

• Set up the container to use Jupyter Lab

• Set up the container to use Visual Studio Code

Prerequisites

Before you start, make sure that Docker is installed and the Docker daemon is running. For
installation instructions, see the Docker documentation for Mac or Linux. The machine running the
Docker hosts the AWS Glue container. Also make sure that you have at least 7 GB of disk space for
the image on the host running the Docker.

For more information about restrictions when developing AWS Glue code locally, see Local
development restrictions.

Configuring AWS

To enable AWS API calls from the container, set up AWS credentials by following steps. In the
following sections, we will use this AWS named profile.

1. Set up the AWS CLI, configuring a named profile. For more information about AWS CLI
configuration, see Configuration and credential file settings in the AWS CLI documentation.

2. Run the following command in a terminal:

PROFILE_NAME="<your_profile_name>"

You may also need to set the AWS_REGION environment variable to specify the AWS Region to
send requests to.

Developing using a Docker image 479

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/engine/install/
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html#local-dev-restrictions
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html#local-dev-restrictions
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

AWS Glue User Guide

Setting up and running the container

Setting up the container to run PySpark code through the spark-submit command includes the
following high-level steps:

1. Pull the image from Docker Hub.

2. Run the container.

Pulling the image from Docker Hub

Run the following command to pull the image from Docker Hub:

docker pull amazon/aws-glue-libs:glue_libs_4.0.0_image_01

Running the container

You can now run a container using this image. You can choose any of following based on your
requirements.

spark-submit

You can run an AWS Glue job script by running the spark-submit command on the container.

1. Write the script and save it as sample1.py under the /local_path_to_workspace directory.
Sample code is included as the appendix in this topic.

$ WORKSPACE_LOCATION=/local_path_to_workspace
$ SCRIPT_FILE_NAME=sample.py
$ mkdir -p ${WORKSPACE_LOCATION}/src
$ vim ${WORKSPACE_LOCATION}/src/${SCRIPT_FILE_NAME}

2. Run the following command to execute the spark-submit command on the container to
submit a new Spark application:

$ docker run -it -v ~/.aws:/home/glue_user/.aws -v $WORKSPACE_LOCATION:/
home/glue_user/workspace/ -e AWS_PROFILE=$PROFILE_NAME -e DISABLE_SSL=true
 --rm -p 4040:4040 -p 18080:18080 --name glue_spark_submit amazon/aws-glue-
libs:glue_libs_4.0.0_image_01 spark-submit /home/glue_user/workspace/src/
$SCRIPT_FILE_NAME
...22/01/26 09:08:55 INFO DAGScheduler: Job 0 finished: fromRDD at
 DynamicFrame.scala:305, took 3.639886 s

Developing using a Docker image 480

AWS Glue User Guide

root
|-- family_name: string
|-- name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- gender: string
|-- image: string
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- other_names: array
| |-- element: struct
| | |-- lang: string
| | |-- note: string
| | |-- name: string
|-- sort_name: string
|-- images: array
| |-- element: struct
| | |-- url: string
|-- given_name: string
|-- birth_date: string
|-- id: string
|-- contact_details: array
| |-- element: struct
| | |-- type: string
| | |-- value: string
|-- death_date: string

...

3. (Optionally) Configure spark-submit to match your environment. For example, you can pass
your dependencies with the --jars configuration. For more information, consult Launching
Applications with spark-submit in the Spark documentation.

REPL shell (Pyspark)

You can run REPL (read-eval-print loops) shell for interactive development.

Run the following command to execute the PySpark command on the container to start the REPL
shell:

Developing using a Docker image 481

https://spark.apache.org/docs/3.3.0/submitting-applications.html#launching-applications-with-spark-submit
https://spark.apache.org/docs/3.3.0/submitting-applications.html#launching-applications-with-spark-submit

AWS Glue User Guide

$ docker run -it -v ~/.aws:/home/glue_user/.aws -e AWS_PROFILE=$PROFILE_NAME -e
 DISABLE_SSL=true --rm -p 4040:4040 -p 18080:18080 --name glue_pyspark amazon/aws-glue-
libs:glue_libs_4.0.0_image_01 pyspark
...
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 3.1.1-amzn-0
 /_/

Using Python version 3.7.10 (default, Jun 3 2021 00:02:01)
Spark context Web UI available at http://56e99d000c99:4040
Spark context available as 'sc' (master = local[*], app id = local-1643011860812).
SparkSession available as 'spark'.
>>>

Pytest

For unit testing, you can use pytest for AWS Glue Spark job scripts.

Run the following commands for preparation.

$ WORKSPACE_LOCATION=/local_path_to_workspace
$ SCRIPT_FILE_NAME=sample.py
$ UNIT_TEST_FILE_NAME=test_sample.py
$ mkdir -p ${WORKSPACE_LOCATION}/tests
$ vim ${WORKSPACE_LOCATION}/tests/${UNIT_TEST_FILE_NAME}

Run the following command to execute pytest on the test suite:

$ docker run -it -v ~/.aws:/home/glue_user/.aws -v $WORKSPACE_LOCATION:/home/glue_user/
workspace/ -e AWS_PROFILE=$PROFILE_NAME -e DISABLE_SSL=true --rm -p 4040:4040 -p
 18080:18080 --name glue_pytest amazon/aws-glue-libs:glue_libs_4.0.0_image_01 -c
 "python3 -m pytest"
starting org.apache.spark.deploy.history.HistoryServer,
 logging to /home/glue_user/spark/logs/spark-glue_user-
org.apache.spark.deploy.history.HistoryServer-1-5168f209bd78.out
*=== test session starts
 ===
*platform linux -- Python 3.7.10, pytest-6.2.3, py-1.11.0, pluggy-0.13.1
rootdir: /home/glue_user/workspace
plugins: anyio-3.4.0

Developing using a Docker image 482

AWS Glue User Guide

*collected 1 item *

tests/test_sample.py . [100%]

== warnings summary
 ===
tests/test_sample.py::test_counts
 /home/glue_user/spark/python/pyspark/sql/context.py:79: DeprecationWarning: Deprecated
 in 3.0.0. Use SparkSession.builder.getOrCreate() instead.
 DeprecationWarning)

-- Docs: https://docs.pytest.org/en/stable/warnings.html
== 1 passed, *1 warning* in
 21.07s ==

Jupyter Lab

You can start Jupyter for interactive development and ad-hoc queries on notebooks.

1. Run the following command to start Jupyter Lab:

$ JUPYTER_WORKSPACE_LOCATION=/local_path_to_workspace/jupyter_workspace/
$ docker run -it -v ~/.aws:/home/glue_user/.aws -v $JUPYTER_WORKSPACE_LOCATION:/
home/glue_user/workspace/jupyter_workspace/ -e AWS_PROFILE=$PROFILE_NAME -e
 DISABLE_SSL=true --rm -p 4040:4040 -p 18080:18080 -p 8998:8998 -p 8888:8888 --name
 glue_jupyter_lab amazon/aws-glue-libs:glue_libs_4.0.0_image_01 /home/glue_user/
jupyter/jupyter_start.sh
...
[I 2022-01-24 08:19:21.368 ServerApp] Serving notebooks from local directory: /home/
glue_user/workspace/jupyter_workspace
[I 2022-01-24 08:19:21.368 ServerApp] Jupyter Server 1.13.1 is running at:
[I 2022-01-24 08:19:21.368 ServerApp] http://faa541f8f99f:8888/lab
[I 2022-01-24 08:19:21.368 ServerApp] or http://127.0.0.1:8888/lab
[I 2022-01-24 08:19:21.368 ServerApp] Use Control-C to stop this server and shut down
 all kernels (twice to skip confirmation).

2. Open http://127.0.0.1:8888/lab in your web browser in your local machine, to see the Jupyter
lab UI.

Developing using a Docker image 483

AWS Glue User Guide

3. Choose Glue Spark Local (PySpark) under Notebook. You can start developing code in the
interactive Jupyter notebook UI.

Developing using a Docker image 484

AWS Glue User Guide

Setting up the container to use Visual Studio Code

Prerequisites:

1. Install Visual Studio Code.

2. Install Python.

3. Install Visual Studio Code Remote - Containers

4. Open the workspace folder in Visual Studio Code.

5. Choose Settings.

6. Choose Workspace.

7. Choose Open Settings (JSON).

8. Paste the following JSON and save it.

{
 "python.defaultInterpreterPath": "/usr/bin/python3",
 "python.analysis.extraPaths": [
 "/home/glue_user/aws-glue-libs/PyGlue.zip:/home/glue_user/spark/python/lib/
py4j-0.10.9-src.zip:/home/glue_user/spark/python/",
]

Developing using a Docker image 485

https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://code.visualstudio.com/docs/remote/containers

AWS Glue User Guide

}

Steps:

1. Run the Docker container.

$ docker run -it -v ~/.aws:/home/glue_user/.aws -v $WORKSPACE_LOCATION:/
home/glue_user/workspace/ -e AWS_PROFILE=$PROFILE_NAME -e DISABLE_SSL=true
 --rm -p 4040:4040 -p 18080:18080 --name glue_pyspark amazon/aws-glue-
libs:glue_libs_4.0.0_image_01 pyspark

2. Start Visual Studio Code.

3. Choose Remote Explorer on the left menu, and choose amazon/aws-glue-
libs:glue_libs_4.0.0_image_01.

4. Right click and choose Attach to Container. If a dialog is shown, choose Got it.

5. Open /home/glue_user/workspace/.

6. Create a Glue PySpark script and choose Run.

You will see the successful run of the script.

Developing using a Docker image 486

AWS Glue User Guide

Appendix: AWS Glue job sample code for testing

This appendix provides scripts as AWS Glue job sample code for testing purposes.

sample.py: Sample code to utilize the AWS Glue ETL library with an Amazon S3 API call

import sys
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.utils import getResolvedOptions

class GluePythonSampleTest:
 def __init__(self):
 params = []
 if '--JOB_NAME' in sys.argv:
 params.append('JOB_NAME')
 args = getResolvedOptions(sys.argv, params)

Developing using a Docker image 487

AWS Glue User Guide

 self.context = GlueContext(SparkContext.getOrCreate())
 self.job = Job(self.context)

 if 'JOB_NAME' in args:
 jobname = args['JOB_NAME']
 else:
 jobname = "test"
 self.job.init(jobname, args)

 def run(self):
 dyf = read_json(self.context, "s3://awsglue-datasets/examples/us-legislators/
all/persons.json")
 dyf.printSchema()

 self.job.commit()

def read_json(glue_context, path):
 dynamicframe = glue_context.create_dynamic_frame.from_options(
 connection_type='s3',
 connection_options={
 'paths': [path],
 'recurse': True
 },
 format='json'
)
 return dynamicframe

if __name__ == '__main__':
 GluePythonSampleTest().run()

The above code requires Amazon S3 permissions in AWS IAM. You need to grant the IAM managed
policy arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess or an IAM custom policy which
allows you to call ListBucket and GetObject for the Amazon S3 path.

test_sample.py: Sample code for unit test of sample.py.

import pytest
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.utils import getResolvedOptions

Developing using a Docker image 488

AWS Glue User Guide

import sys
from src import sample

@pytest.fixture(scope="module", autouse=True)
def glue_context():
 sys.argv.append('--JOB_NAME')
 sys.argv.append('test_count')

 args = getResolvedOptions(sys.argv, ['JOB_NAME'])
 context = GlueContext(SparkContext.getOrCreate())
 job = Job(context)
 job.init(args['JOB_NAME'], args)

 yield(context)

 job.commit()

def test_counts(glue_context):
 dyf = sample.read_json(glue_context, "s3://awsglue-datasets/examples/us-
legislators/all/persons.json")
 assert dyf.toDF().count() == 1961

Developing using the AWS Glue ETL library

The AWS Glue ETL library is available in a public Amazon S3 bucket, and can be consumed by
the Apache Maven build system. This enables you to develop and test your Python and Scala
extract, transform, and load (ETL) scripts locally, without the need for a network connection. Local
development with the Docker image is recommended, as it provides an environment properly
configured for the use of this library.

Local development is available for all AWS Glue versions, including AWS Glue version 0.9, 1.0, 2.0,
and later. For information about the versions of Python and Apache Spark that are available with
AWS Glue, see the Glue version job property.

The library is released with the Amazon Software license (https://aws.amazon.com/asl).

Local development restrictions

Keep the following restrictions in mind when using the AWS Glue Scala library to develop locally.

Developing using the AWS Glue ETL library 489

https://aws.amazon.com/asl

AWS Glue User Guide

• Avoid creating an assembly jar ("fat jar" or "uber jar") with the AWS Glue library because it causes
the following features to be disabled:

• Job bookmarks

• AWS Glue Parquet writer (Using the Parquet format in AWS Glue)

• FillMissingValues transform (Scala or Python)

These feature are available only within the AWS Glue job system.

• The FindMatches transform is not supported with local development.

• The vectorized SIMD CSV reader is not supported with local development.

• The property customJdbcDriverS3Path for loading JDBC driver from S3 path is not supported
with local development. Alternatively you can download the JDBC driver in your local and load
from there.

• The Glue Data Quality is not supported with local development.

Developing locally with Python

Complete some prerequisite steps and then use AWS Glue utilities to test and submit your Python
ETL script.

Prerequisites for local Python development

Complete these steps to prepare for local Python development:

1. Clone the AWS Glue Python repository from GitHub (https://github.com/awslabs/aws-glue-
libs).

2. Do one of the following:

• For AWS Glue version 0.9, check out branch glue-0.9.

• For AWS Glue versions 1.0, check out branch glue-1.0. All versions above AWS Glue 0.9
support Python 3.

• For AWS Glue versions 2.0, check out branch glue-2.0.

• For AWS Glue versions 3.0, check out branch glue-3.0.

• For AWS Glue version 4.0, check out the master branch.

3. Install Apache Maven from the following location: https://aws-glue-etl-
artifacts.s3.amazonaws.com/glue-common/apache-maven-3.6.0-bin.tar.gz.

4. Install the Apache Spark distribution from one of the following locations:

Developing using the AWS Glue ETL library 490

https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html
https://docs.aws.amazon.com/glue/latest/dg/glue-etl-scala-apis-glue-ml-fillmissingvalues.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-transforms-fillmissingvalues.html
https://docs.aws.amazon.com/glue/latest/dg/machine-learning.html#find-matches-transform
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format-csv-home.html#aws-glue-programming-etl-format-simd-csv-reader
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-jdbc
https://docs.aws.amazon.com/glue/latest/dg/glue-data-quality.html
https://github.com/awslabs/aws-glue-libs
https://github.com/awslabs/aws-glue-libs
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-common/apache-maven-3.6.0-bin.tar.gz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-common/apache-maven-3.6.0-bin.tar.gz

AWS Glue User Guide

• For AWS Glue version 0.9: https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-0.9/
spark-2.2.1-bin-hadoop2.7.tgz

• For AWS Glue version 1.0: https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-1.0/
spark-2.4.3-bin-hadoop2.8.tgz

• For AWS Glue version 2.0: https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-2.0/
spark-2.4.3-bin-hadoop2.8.tgz

• For AWS Glue version 3.0: https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-3.0/
spark-3.1.1-amzn-0-bin-3.2.1-amzn-3.tgz

• For AWS Glue version 4.0: https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-4.0/
spark-3.3.0-amzn-1-bin-3.3.3-amzn-0.tgz

5. Export the SPARK_HOME environment variable, setting it to the root location extracted from the
Spark archive. For example:

• For AWS Glue version 0.9: export SPARK_HOME=/home/$USER/spark-2.2.1-bin-
hadoop2.7

• For AWS Glue version 1.0 and 2.0: export SPARK_HOME=/home/$USER/spark-2.4.3-
bin-spark-2.4.3-bin-hadoop2.8

• For AWS Glue version 3.0: export SPARK_HOME=/home/$USER/spark-3.1.1-amzn-0-
bin-3.2.1-amzn-3

• For AWS Glue version 4.0: export SPARK_HOME=/home/$USER/spark-3.3.0-amzn-1-
bin-3.3.3-amzn-0

Running your Python ETL script

With the AWS Glue jar files available for local development, you can run the AWS Glue Python
package locally.

Use the following utilities and frameworks to test and run your Python script. The commands listed
in the following table are run from the root directory of the AWS Glue Python package.

Utility Command Description

AWS Glue
Shell

./bin/gluepyspark Enter and run Python scripts in a shell that
integrates with AWS Glue ETL libraries.

Developing using the AWS Glue ETL library 491

https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-0.9/spark-2.2.1-bin-hadoop2.7.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-0.9/spark-2.2.1-bin-hadoop2.7.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-1.0/spark-2.4.3-bin-hadoop2.8.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-1.0/spark-2.4.3-bin-hadoop2.8.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-2.0/spark-2.4.3-bin-hadoop2.8.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-2.0/spark-2.4.3-bin-hadoop2.8.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-3.0/spark-3.1.1-amzn-0-bin-3.2.1-amzn-3.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-3.0/spark-3.1.1-amzn-0-bin-3.2.1-amzn-3.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-4.0/spark-3.3.0-amzn-1-bin-3.3.3-amzn-0.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-4.0/spark-3.3.0-amzn-1-bin-3.3.3-amzn-0.tgz
https://github.com/awslabs/aws-glue-libs

AWS Glue User Guide

Utility Command Description

AWS Glue
Submit

./bin/gluesparksub
mit

Submit a complete Python script for execution
.

Pytest ./bin/gluepytest Write and run unit tests of your Python code.
The pytest module must be installed and
available in the PATH. For more information,
see the pytest documentation.

Developing locally with Scala

Complete some prerequisite steps and then issue a Maven command to run your Scala ETL script
locally.

Prerequisites for local Scala development

Complete these steps to prepare for local Scala development.

Step 1: Install software

In this step, you install software and set the required environment variable.

1. Install Apache Maven from the following location: https://aws-glue-etl-
artifacts.s3.amazonaws.com/glue-common/apache-maven-3.6.0-bin.tar.gz.

2. Install the Apache Spark distribution from one of the following locations:

• For AWS Glue version 0.9: https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-0.9/
spark-2.2.1-bin-hadoop2.7.tgz

• For AWS Glue version 1.0: https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-1.0/
spark-2.4.3-bin-hadoop2.8.tgz

• For AWS Glue version 2.0: https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-2.0/
spark-2.4.3-bin-hadoop2.8.tgz

• For AWS Glue version 3.0: https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-3.0/
spark-3.1.1-amzn-0-bin-3.2.1-amzn-3.tgz

• For AWS Glue version 4.0: https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-4.0/
spark-3.3.0-amzn-1-bin-3.3.3-amzn-0.tgz

Developing using the AWS Glue ETL library 492

https://docs.pytest.org/en/latest/
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-common/apache-maven-3.6.0-bin.tar.gz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-common/apache-maven-3.6.0-bin.tar.gz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-0.9/spark-2.2.1-bin-hadoop2.7.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-0.9/spark-2.2.1-bin-hadoop2.7.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-1.0/spark-2.4.3-bin-hadoop2.8.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-1.0/spark-2.4.3-bin-hadoop2.8.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-2.0/spark-2.4.3-bin-hadoop2.8.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-2.0/spark-2.4.3-bin-hadoop2.8.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-3.0/spark-3.1.1-amzn-0-bin-3.2.1-amzn-3.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-3.0/spark-3.1.1-amzn-0-bin-3.2.1-amzn-3.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-4.0/spark-3.3.0-amzn-1-bin-3.3.3-amzn-0.tgz
https://aws-glue-etl-artifacts.s3.amazonaws.com/glue-4.0/spark-3.3.0-amzn-1-bin-3.3.3-amzn-0.tgz

AWS Glue User Guide

3. Export the SPARK_HOME environment variable, setting it to the root location extracted from the
Spark archive. For example:

• For AWS Glue version 0.9: export SPARK_HOME=/home/$USER/spark-2.2.1-bin-
hadoop2.7

• For AWS Glue version 1.0 and 2.0: export SPARK_HOME=/home/$USER/spark-2.4.3-
bin-spark-2.4.3-bin-hadoop2.8

• For AWS Glue version 3.0: export SPARK_HOME=/home/$USER/spark-3.1.1-amzn-0-
bin-3.2.1-amzn-3

• For AWS Glue version 4.0: export SPARK_HOME=/home/$USER/spark-3.3.0-amzn-1-
bin-3.3.3-amzn-0

Step 2: Configure your Maven project

Use the following pom.xml file as a template for your AWS Glue Scala applications. It contains the
required dependencies, repositories, and plugins elements. Replace the Glue version
string with one of the following:

• 4.0.0 for AWS Glue version 4.0

• 3.0.0 for AWS Glue version 3.0

• 1.0.0 for AWS Glue version 1.0 or 2.0

• 0.9.0 for AWS Glue version 0.9

 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.amazonaws</groupId>
 <artifactId>AWSGlueApp</artifactId>
 <version>1.0-SNAPSHOT</version>
 <name>${project.artifactId}</name>
 <description>AWS ETL application</description>

 <properties>
 <scala.version>2.11.1 for AWS Glue 2.0 or below, 2.12.7 for AWS Glue 3.0
 and 4.0</scala.version>
 <glue.version>Glue version with three numbers (as mentioned earlier)</
glue.version>

Developing using the AWS Glue ETL library 493

AWS Glue User Guide

 </properties>
 <dependencies>
 <dependency>
 <groupId>org.scala-lang</groupId>
 <artifactId>scala-library</artifactId>
 <version>${scala.version}</version>
 <!-- A "provided" dependency, this will be ignored when you package your application
 -->
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>AWSGlueETL</artifactId>
 <version>${glue.version}</version>
 <!-- A "provided" dependency, this will be ignored when you package your
 application -->
 <scope>provided</scope>
 </dependency>
 </dependencies>

 <repositories>
 <repository>
 <id>aws-glue-etl-artifacts</id>
 <url>https://aws-glue-etl-artifacts.s3.amazonaws.com/release/</url>
 </repository>
 </repositories>
 <build>
 <sourceDirectory>src/main/scala</sourceDirectory>
 <plugins>
 <plugin>
 <!-- see http://davidb.github.com/scala-maven-plugin -->
 <groupId>net.alchim31.maven</groupId>
 <artifactId>scala-maven-plugin</artifactId>
 <version>3.4.0</version>
 <executions>
 <execution>
 <goals>
 <goal>compile</goal>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>

Developing using the AWS Glue ETL library 494

AWS Glue User Guide

 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.6.0</version>
 <executions>
 <execution>
 <goals>
 <goal>java</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <systemProperties>
 <systemProperty>
 <key>spark.master</key>
 <value>local[*]</value>
 </systemProperty>
 <systemProperty>
 <key>spark.app.name</key>
 <value>localrun</value>
 </systemProperty>
 <systemProperty>
 <key>org.xerial.snappy.lib.name</key>
 <value>libsnappyjava.jnilib</value>
 </systemProperty>
 </systemProperties>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>3.0.0-M2</version>
 <executions>
 <execution>
 <id>enforce-maven</id>
 <goals>
 <goal>enforce</goal>
 </goals>
 <configuration>
 <rules>
 <requireMavenVersion>
 <version>3.5.3</version>
 </requireMavenVersion>
 </rules>
 </configuration>

Developing using the AWS Glue ETL library 495

AWS Glue User Guide

 </execution>
 </executions>
 </plugin>
 <!-- The shade plugin will be helpful in building a uberjar or fatjar.
 You can use this jar in the AWS Glue runtime environment. For more information, see
 https://maven.apache.org/plugins/maven-shade-plugin/ -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>3.2.4</version>
 <configuration>
 <!-- any other shade configurations -->
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Running your Scala ETL script

Run the following command from the Maven project root directory to run your Scala ETL script.

mvn exec:java -Dexec.mainClass="mainClass" -Dexec.args="--JOB-NAME jobName"

Replace mainClass with the fully qualified class name of the script's main class. Replace jobName
with the desired job name.

Configuring a test environment

For examples of configuring a local test environment, see the following blog articles:

• Building an AWS Glue ETL pipeline locally without an AWS account

• Developing AWS Glue ETL jobs locally using a container

Developing using the AWS Glue ETL library 496

https://aws.amazon.com/blogs/big-data/building-an-aws-glue-etl-pipeline-locally-without-an-aws-account/
https://aws.amazon.com/blogs/big-data/developing-aws-glue-etl-jobs-locally-using-a-container/

AWS Glue User Guide

If you want to use development endpoints or notebooks for testing your ETL scripts, see
Developing scripts using development endpoints.

Note

Development endpoints are not supported for use with AWS Glue version 2.0 jobs. For
more information, see Running Spark ETL Jobs with Reduced Startup Times.

Development endpoints

Note

The console experience for dev endpoints has been removed as of March 31, 2023.
Creating, updating, and monitoring dev endpoints is still available via the Development
endpoints API and AWS Glue CLI.

We strongly recommend migrating from dev endpoints to interactive sessions for the reasons listed
below. For required actions on how to migrate from dev endpoints to interactive sessions, see
Migrating from dev endpoints to interactive sessions.

Description Dev endpoints Interactive sessions

Glue version support Supports AWS Glue version
0.9 and 1.0

Supports AWS Glue version
2.0 and later

Dev endpoints are not
available in the Asia Pacific
(Jakarta) (ap-southe
ast-3), Middle East (UAE)
(me-central-1), Europe
(Spain) (eu-south-2),
Europe (Zurich) (eu-centra
l-2), or other new regions
going forward

Interactive sessions are
not currently available in
the Middle East (UAE) (me-
central-1) region, but may
be made available later

Dev endpoints 497

https://docs.aws.amazon.com/glue/latest/dg/reduced-start-times-spark-etl-jobs.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glue/index.html#cli-aws-glue
https://docs.aws.amazon.com/glue/latest/dg/development-migration-checklist.html

AWS Glue User Guide

Description Dev endpoints Interactive sessions

Access method to the Spark
cluster

Supports SSH, REPL shell,
Jupyter notebook, IDE (e.g.
PyCharm)

supports AWS Glue Studio
notebook, Jupyter notebook,
various IDEs (for example,
Visual Studio Code, PyCharm),
and SageMaker notebook

Time to first query Requires 10-15 minutes to
setup a Spark cluster

Can take up to 1 minute to
set up an ephemeral Spark
cluster

Price model AWS charges for development
endpoints based on the time
that the endpoint is provision
ed and the number of DPUs.
Development endpoints do
not time out. There is a 10-
minute minimum billing
duration for each provision
ed development endpoint.
 Additionally, AWS charges
for Jupyter notebook on
Amazon EC2 instances, and
SageMaker notebooks when
you configure them with dev
endpoints.

AWS charges for interactive
sessions based on the time
that the session is active and
the number of DPUs. interacti
ve sessions have configura
ble idle timeouts. AWS Glue
Studio notebooks provide a
built-in interface for interacti
ve sessions and are offered
at no additional cost. There is
a 1-minute minimum billing
duration for each interacti
ve session. AWS Glue Studio
notebooks provide a built-
in interface for interactive
sessions and are offered at no
additional cost

Console experience Only available via the CLI and
API

Available through the AWS
Glue console, CLI, and APIs

Migrating from dev endpoints to interactive sessions

Use the following checklist to determine the appropriate method to migrate from dev endpoints to
interactive sessions.

Migrating from dev endpoints to interactive sessions 498

AWS Glue User Guide

Does your script depend on AWS Glue 0.9 or 1.0 specific features (for example, HDFS, YARN,
etc.)?

If the answer is yes, see Migrating AWS Glue jobs to AWS Glue version 3.0. to learn how to migrate
from Glue 0.9 or 1.0 to Glue 3.0 and later.

Which method do you use to access your dev endpoint?

If you use this method Then do this

SageMaker notebook, Jupyter notebook, or
JupyterLab

Migrate to AWS Glue Studio notebook by
downloading .ipynb files on Jupyter and
create a new AWS Glue Studio notebook job
by uploading the .ipynb file. Alternatively,
you can also use SageMaker Studio and select
the AWS Glue kernel.

Zeppelin notebook Convert the notebook to a Jupyter notebook
manually by copying and pasting code or
automatically using a third-party converter
such as ze2nb. Then, use the notebook in AWS
Glue Studio notebook or SageMaker Studio.

IDE See Author AWS Glue jobs with PyCharm
using AWS Glue interactive sessions, or Using
interactive sessions with Microsoft Visual
Studio Code.

REPL Install the aws-glue-session package
locally, then run the following command:

• For Python: jupyter console --kernal
glue_pyspark

• For Scala: jupyter console --kernal
glue_spark

SSH No corresponding option on interactive
sessions. Alternatively, you can use a Docker

Migrating from dev endpoints to interactive sessions 499

https://docs.aws.amazon.com/glue/latest/dg/migrating-version-30.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-gs-notebook.html
https://aws.amazon.com/blogs/machine-learning/prepare-data-at-scale-in-amazon-sagemaker-studio-using-serverless-aws-glue-interactive-sessions/
https://aws.amazon.com/blogs/big-data/author-aws-glue-jobs-with-pycharm-using-aws-glue-interactive-sessions/
https://aws.amazon.com/blogs/big-data/author-aws-glue-jobs-with-pycharm-using-aws-glue-interactive-sessions/
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-vscode.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-vscode.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-vscode.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions.html

AWS Glue User Guide

If you use this method Then do this

image. To learn more, see Developing using a
Docker image.

The following sections provide information on using dev endpoints to develop jobs in AWS Glue
version 1.0.

Topics

• Developing scripts using development endpoints

• Managing notebooks

Developing scripts using development endpoints

Note

Development Endpoints are only supported for versions of AWS Glue prior to 2.0. For an
interactive environment where you can author and test ETL scripts, use Notebooks on AWS
Glue Studio.

AWS Glue can create an environment—known as a development endpoint—that you can use to
iteratively develop and test your extract, transform, and load (ETL) scripts. You can create, edit, and
delete development endpoints using the AWS Glue console or API.

Managing your development environment

When you create a development endpoint, you provide configuration values to provision the
development environment. These values tell AWS Glue how to set up the network so that you can
access the endpoint securely and the endpoint can access your data stores.

You can then create a notebook that connects to the endpoint, and use your notebook to author
and test your ETL script. When you're satisfied with the results of your development process, you
can create an ETL job that runs your script. With this process, you can add functions and debug
your scripts in an interactive manner.

Follow the tutorials in this section to learn how to use your development endpoint with notebooks.

Developing scripts using development endpoints 500

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html#develop-local-docker-image
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html#develop-local-docker-image
https://docs.aws.amazon.com/glue/latest/ug/notebooks-chapter.html
https://docs.aws.amazon.com/glue/latest/ug/notebooks-chapter.html

AWS Glue User Guide

Topics

• Development endpoint workflow

• How AWS Glue development endpoints work with SageMaker notebooks

• Adding a development endpoint

• Accessing your development endpoint

• Tutorial: Set up a Jupyter notebook in JupyterLab to test and debug ETL scripts

• Tutorial: Use a SageMaker notebook with your development endpoint

• Tutorial: Use a REPL shell with your development endpoint

• Tutorial: Set up PyCharm professional with a development endpoint

• Advanced configuration: sharing development endpoints among multiple users

Development endpoint workflow

To use an AWS Glue development endpoint, you can follow this workflow:

1. Create a development endpoint using the API. The endpoint is launched in a virtual private
cloud (VPC) with your defined security groups.

2. The API polls the development endpoint until it is provisioned and ready for work. When it's
ready, connect to the development endpoint using one of the following methods to create and
test AWS Glue scripts.

• Create an SageMaker notebook in your account. For more information about how to create a
notebook, see the section called “Authoring code with AWS Glue Studio notebooks”.

• Open a terminal window to connect directly to a development endpoint.

• If you have the professional edition of the JetBrains PyCharm Python IDE, connect it to a
development endpoint and use it to develop interactively. If you insert pydevd statements
in your script, PyCharm can support remote breakpoints.

3. When you finish debugging and testing on your development endpoint, you can delete it.

How AWS Glue development endpoints work with SageMaker notebooks

One of the common ways to access your development endpoints is to use Jupyter on SageMaker
notebooks. The Jupyter notebook is an open-source web application which is widely used in

Developing scripts using development endpoints 501

https://www.jetbrains.com/pycharm/
https://jupyter.org/

AWS Glue User Guide

visualization, analytics, machine learning, etc. An AWS Glue SageMaker notebook provides you a
Jupyter notebook experience with AWS Glue development endpoints. In the AWS Glue SageMaker
notebook, the Jupyter notebook environment is pre-configured with SparkMagic, an open source
Jupyter plugin to submit Spark jobs to a remote Spark cluster. Apache Livy is a service that allows
interaction with a remote Spark cluster over a REST API. In the AWS Glue SageMaker notebook,
SparkMagic is configured to call the REST API against a Livy server running on an AWS Glue
development endpoint.

The following text flow explains how each component works:

AWS Glue SageMaker notebook: (Jupyter # SparkMagic) # (network) # AWS Glue development
endpoint: (Apache Livy # Apache Spark)

Once you run your Spark script written in each paragraph on a Jupyter notebook, the Spark code is
submitted to the Livy server via SparkMagic, then a Spark job named "livy-session-N" runs on the
Spark cluster. This job is called a Livy session. The Spark job will run while the notebook session is
alive. The Spark job will be terminated when you shutdown the Jupyter kernel from the notebook,
or when the session is timed out. One Spark job is launched per notebook (.ipynb) file.

You can use a single AWS Glue development endpoint with multiple SageMaker notebook
instances. You can create multiple notebook files in each SageMaker notebook instance. When you
open an each notebook file and run the paragraphs, then a Livy session is launched per notebook
file on the Spark cluster via SparkMagic. Each Livy session corresponds to single Spark job.

Default behavior for AWS Glue development endpoints and SageMaker notebooks

The Spark jobs run based on the Spark configuration. There are multiple ways to set the Spark
configuration (for example, Spark cluster configuration, SparkMagic's configuration, etc.).

By default, Spark allocates cluster resources to a Livy session based on the Spark cluster
configuration. In the AWS Glue development endpoints, the cluster configuration depends on the
worker type. Here's a table which explains the common configurations per worker type.

 Standard G.1X G.2X

spark.dri
ver.memor
y

5G 10G 20G

Developing scripts using development endpoints 502

https://github.com/jupyter-incubator/sparkmagic
https://livy.apache.org
https://spark.apache.org/docs/2.4.3/configuration.html

AWS Glue User Guide

 Standard G.1X G.2X

spark.exe
cutor.mem
ory

5G 10G 20G

spark.exe
cutor.cor
es

4 8 16

spark.dyn
amicAlloc
ation.ena
bled

TRUE TRUE TRUE

The maximum number of Spark executors is automatically calculated by combination of DPU (or
NumberOfWorkers) and worker type.

 Standard G.1X G.2X

The
number of
max Spark
executors

(DPU - 1) * 2
- 1

(NumberOfWorkers -
1)

(NumberOfWorkers - 1)

For example, if your development endpoint has 10 workers and the worker type is G.1X, then you
will have 9 Spark executors and the entire cluster will have 90G of executor memory since each
executor will have 10G of memory.

Regardless of the specified worker type, Spark dynamic resource allocation will be turned on.
If a dataset is large enough, Spark may allocate all the executors to a single Livy session since
spark.dynamicAllocation.maxExecutors is not set by default. This means that other Livy
sessions on the same dev endpoint will wait to launch new executors. If the dataset is small, Spark
will be able to allocate executors to multiple Livy sessions at the same time.

Developing scripts using development endpoints 503

AWS Glue User Guide

Note

For more information about how resources are allocated in different use cases and how
you set a configuration to modify the behavior, see Advanced configuration: sharing
development endpoints among multiple users.

Adding a development endpoint

Use development endpoints to iteratively develop and test your extract, transform, and load (ETL)
scripts in AWS Glue. Working with development endpoints is only available through the AWS
Command Line Interface.

1. In a command line window, enter a command similar to the following.

aws glue create-dev-endpoint --endpoint-name "endpoint1" --role-arn
 "arn:aws:iam::account-id:role/role-name" --number-of-nodes "3" --glue-version
 "1.0" --arguments '{"GLUE_PYTHON_VERSION": "3"}' --region "region-name"

This command specifies AWS Glue version 1.0. Because this version supports both Python 2
and Python 3, you can use the arguments parameter to indicate the desired Python version.
If the glue-version parameter is omitted, AWS Glue version 0.9 is assumed. For more
information about AWS Glue versions, see the Glue version job property.

For information about additional command line parameters, see create-dev-endpoint in the
AWS CLI Command Reference.

2. (Optional) Enter the following command to check the development endpoint status. When the
status changes to READY, the development endpoint is ready to use.

aws glue get-dev-endpoint --endpoint-name "endpoint1"

Accessing your development endpoint

When you create a development endpoint in a virtual private cloud (VPC), AWS Glue returns only
a private IP address. The public IP address field is not populated. When you create a non-VPC
development endpoint, AWS Glue returns only a public IP address.

Developing scripts using development endpoints 504

https://docs.aws.amazon.com/cli/latest/reference/glue/create-dev-endpoint.html

AWS Glue User Guide

If your development endpoint has a Public address, confirm that it is reachable with the SSH
private key for the development endpoint, as in the following example.

ssh -i dev-endpoint-private-key.pem glue@public-address

Suppose that your development endpoint has a Private address, your VPC subnet is routable from
the public internet, and its security groups allow inbound access from your client. In this case,
follow these steps to attach an Elastic IP address to a development endpoint to allow access from
the internet.

Note

If you want to use Elastic IP addresses, the subnet that is being used requires an internet
gateway associated through the route table.

To access a development endpoint by attaching an Elastic IP address

1. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

2. In the navigation pane, choose Dev endpoints, and navigate to the development endpoint
details page. Record the Private address for use in the next step.

3. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

4. In the navigation pane, under Network & Security, choose Network Interfaces.

5. Search for the Private DNS (IPv4) that corresponds to the Private address on the AWS Glue
console development endpoint details page.

You might need to modify which columns are displayed on your Amazon EC2 console. Note the
Network interface ID (ENI) for this address (for example, eni-12345678).

6. On the Amazon EC2 console, under Network & Security, choose Elastic IPs.

7. Choose Allocate new address, and then choose Allocate to allocate a new Elastic IP address.

8. On the Elastic IPs page, choose the newly allocated Elastic IP. Then choose Actions, Associate
address.

9. On the Associate address page, do the following:

• For Resource type, choose Network interface.

• In the Network interface box, enter the Network interface ID (ENI) for the private address.

Developing scripts using development endpoints 505

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/ec2/

AWS Glue User Guide

• Choose Associate.

10. Confirm that the newly associated Elastic IP address is reachable with the SSH private key that
is associated with the development endpoint, as in the following example.

ssh -i dev-endpoint-private-key.pem glue@elastic-ip

For information about using a bastion host to get SSH access to the development endpoint’s
private address, see the AWS Security Blog post Securely Connect to Linux Instances Running
in a Private Amazon VPC.

Tutorial: Set up a Jupyter notebook in JupyterLab to test and debug ETL scripts

In this tutorial, you connect a Jupyter notebook in JupyterLab running on your local machine to
a development endpoint. You do this so that you can interactively run, debug, and test AWS Glue
extract, transform, and load (ETL) scripts before deploying them. This tutorial uses Secure Shell
(SSH) port forwarding to connect your local machine to an AWS Glue development endpoint. For
more information, see Port forwarding on Wikipedia.

Step 1: Install JupyterLab and Sparkmagic

You can install JupyterLab by using conda or pip. conda is an open-source package management
system and environment management system that runs on Windows, macOS, and Linux. pip is the
package installer for Python.

If you're installing on macOS, you must have Xcode installed before you can install Sparkmagic.

1. Install JupyterLab, Sparkmagic, and the related extensions.

$ conda install -c conda-forge jupyterlab
$ pip install sparkmagic
$ jupyter nbextension enable --py --sys-prefix widgetsnbextension
$ jupyter labextension install @jupyter-widgets/jupyterlab-manager

2. Check the sparkmagic directory from Location.

$ pip show sparkmagic | grep Location
Location: /Users/username/.pyenv/versions/anaconda3-5.3.1/lib/python3.7/site-
packages

Developing scripts using development endpoints 506

https://aws.amazon.com/blogs/security/securely-connect-to-linux-instances-running-in-a-private-amazon-vpc/
https://aws.amazon.com/blogs/security/securely-connect-to-linux-instances-running-in-a-private-amazon-vpc/
https://en.wikipedia.org/wiki/Port_forwarding

AWS Glue User Guide

3. Change your directory to the one returned for Location, and install the kernels for Scala and
PySpark.

$ cd /Users/username/.pyenv/versions/anaconda3-5.3.1/lib/python3.7/site-packages
$ jupyter-kernelspec install sparkmagic/kernels/sparkkernel
$ jupyter-kernelspec install sparkmagic/kernels/pysparkkernel

4. Download a sample config file.

$ curl -o ~/.sparkmagic/config.json https://raw.githubusercontent.com/jupyter-
incubator/sparkmagic/master/sparkmagic/example_config.json

In this configuration file, you can configure Spark-related parameters like driverMemory and
executorCores.

Step 2: Start JupyterLab

When you start JupyterLab, your default web browser is automatically opened, and the URL
http://localhost:8888/lab/workspaces/{workspace_name} is shown.

$ jupyter lab

Step 3: Initiate SSH port forwarding to connect to your development endpoint

Next, use SSH local port forwarding to forward a local port (here, 8998) to the remote destination
that is defined by AWS Glue (169.254.76.1:8998).

1. Open a separate terminal window that gives you access to SSH. In Microsoft Windows, you can
use the BASH shell provided by Git for Windows, or you can install Cygwin.

2. Run the following SSH command, modified as follows:

• Replace private-key-file-path with a path to the .pem file that contains the private
key corresponding to the public key that you used to create your development endpoint.

• If you're forwarding a different port than 8998, replace 8998 with the port number that
you're actually using locally. The address 169.254.76.1:8998 is the remote port and isn't
changed by you.

• Replace dev-endpoint-public-dns with the public DNS address of your development
endpoint. To find this address, navigate to your development endpoint in the AWS Glue

Developing scripts using development endpoints 507

https://git-scm.com/downloads
https://www.cygwin.com/

AWS Glue User Guide

console, choose the name, and copy the Public address that's listed on the Endpoint details
page.

ssh -i private-key-file-path -NTL 8998:169.254.76.1:8998 glue@dev-endpoint-public-
dns

You will likely see a warning message like the following:

The authenticity of host 'ec2-xx-xxx-xxx-xx.us-west-2.compute.amazonaws.com
 (xx.xxx.xxx.xx)'
can't be established. ECDSA key fingerprint is SHA256:4e97875Brt+1wKzRko
+JflSnp21X7aTP3BcFnHYLEts.
Are you sure you want to continue connecting (yes/no)?

Enter yes and leave the terminal window open while you use JupyterLab.

3. Check that SSH port forwarding is working with the development endpoint correctly.

$ curl localhost:8998/sessions
{"from":0,"total":0,"sessions":[]}

Step 4: Run a simple script fragment in a notebook paragraph

Now your notebook in JupyterLab should work with your development endpoint. Enter the
following script fragment into your notebook and run it.

1. Check that Spark is running successfully. The following command instructs Spark to calculate 1
and then print the value.

spark.sql("select 1").show()

2. Check if AWS Glue Data Catalog integration is working. The following command lists the tables
in the Data Catalog.

spark.sql("show tables").show()

3. Check that a simple script fragment that uses AWS Glue libraries works.

Developing scripts using development endpoints 508

AWS Glue User Guide

The following script uses the persons_json table metadata in the AWS Glue Data Catalog
to create a DynamicFrame from your sample data. It then prints out the item count and the
schema of this data.

import sys
from pyspark.context import SparkContext
from awsglue.context import GlueContext

Create a Glue context
glueContext = GlueContext(SparkContext.getOrCreate())

Create a DynamicFrame using the 'persons_json' table
persons_DyF = glueContext.create_dynamic_frame.from_catalog(database="legislators",
 table_name="persons_json")

Print out information about *this* data
print("Count: ", persons_DyF.count())
persons_DyF.printSchema()

The output of the script is as follows.

 Count: 1961
 root
 |-- family_name: string
 |-- name: string
 |-- links: array
 | |-- element: struct
 | | |-- note: string
 | | |-- url: string
 |-- gender: string
 |-- image: string
 |-- identifiers: array
 | |-- element: struct
 | | |-- scheme: string
 | | |-- identifier: string
 |-- other_names: array
 | |-- element: struct
 | | |-- note: string
 | | |-- name: string
 | | |-- lang: string

Developing scripts using development endpoints 509

AWS Glue User Guide

 |-- sort_name: string
 |-- images: array
 | |-- element: struct
 | | |-- url: string
 |-- given_name: string
 |-- birth_date: string
 |-- id: string
 |-- contact_details: array
 | |-- element: struct
 | | |-- type: string
 | | |-- value: string
 |-- death_date: string

Troubleshooting

• During the installation of JupyterLab, if your computer is behind a corporate proxy or firewall,
you might encounter HTTP and SSL errors due to custom security profiles managed by corporate
IT departments.

The following is an example of a typical error that occurs when conda can't connect to its own
repositories:

CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://repo.anaconda.com/pkgs/
main/win-64/current_repodata.json>

This might happen because your company can block connections to widely used repositories
in Python and JavaScript communities. For more information, see Installation Problems on the
JupyterLab website.

• If you encounter a connection refused error when trying to connect to your development
endpoint, you might be using a development endpoint that is out of date. Try creating a new
development endpoint and reconnecting.

Tutorial: Use a SageMaker notebook with your development endpoint

In AWS Glue, you can create a development endpoint and then create a SageMaker notebook to
help develop your ETL and machine learning scripts. A SageMaker notebook is a fully managed
machine learning compute instance running the Jupyter Notebook application.

Developing scripts using development endpoints 510

https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html#installation-problems

AWS Glue User Guide

1. In the AWS Glue console, choose Dev endpoints to navigate to the development endpoints
list.

2. Select the check box next to the name of a development endpoint that you want to use, and
on the Action menu, choose Create SageMaker notebook.

3. Fill out the Create and configure a notebook page as follows:

a. Enter a notebook name.

b. Under Attach to development endpoint, verify the development endpoint.

c. Create or choose an AWS Identity and Access Management (IAM) role.

Creating a role is recommended. If you use an existing role, ensure that it has the required
permissions. For more information, see the section called “Step 6: Create an IAM policy for
SageMaker notebooks”.

d. (Optional) Choose a VPC, a subnet, and one or more security groups.

e. (Optional) Choose an AWS Key Management Service encryption key.

f. (Optional) Add tags for the notebook instance.

4. Choose Create notebook. On the Notebooks page, choose the refresh icon at the upper right,
and continue until the Status shows Ready.

5. Select the check box next to the new notebook name, and then choose Open notebook.

6. Create a new notebook: On the jupyter page, choose New, and then choose Sparkmagic
(PySpark).

Your screen should now look like the following:

Developing scripts using development endpoints 511

AWS Glue User Guide

7. (Optional) At the top of the page, choose Untitled, and give the notebook a name.

8. To start a Spark application, enter the following command into the notebook, and then in the
toolbar, choose Run.

spark

After a short delay, you should see the following response:

9. Create a dynamic frame and run a query against it: Copy, paste, and run the following code,
which outputs the count and schema of the persons_json table.

import sys
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.transforms import *
glueContext = GlueContext(SparkContext.getOrCreate())
persons_DyF = glueContext.create_dynamic_frame.from_catalog(database="legislators",
 table_name="persons_json")
print ("Count: ", persons_DyF.count())
persons_DyF.printSchema()

Tutorial: Use a REPL shell with your development endpoint

In AWS Glue, you can create a development endpoint and then invoke a REPL (Read–Evaluate–Print
Loop) shell to run PySpark code incrementally so that you can interactively debug your ETL scripts
before deploying them.

In order to use a REPL on a development endpoint, you need to have authorization to SSH to the
endpoint.

1. On your local computer, open a terminal window that can run SSH commands, and paste in
the edited SSH command. Run the command.

Developing scripts using development endpoints 512

AWS Glue User Guide

Assuming that you accepted AWS Glue version 1.0 with Python 3 for the development
endpoint, the output will look like this:

Python 3.6.8 (default, Aug 2 2019, 17:42:44)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-28)] on linux
Type "help", "copyright", "credits" or "license" for more information.
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/share/aws/glue/etl/jars/glue-assembly.jar!/
org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/lib/spark/jars/slf4j-log4j12-1.7.16.jar!/
org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use
 setLogLevel(newLevel).
2019-09-23 22:12:23,071 WARN [Thread-5] yarn.Client (Logging.scala:logWarning(66))
 - Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading
 libraries under SPARK_HOME.
2019-09-23 22:12:26,562 WARN [Thread-5] yarn.Client (Logging.scala:logWarning(66))
 - Same name resource file:/usr/lib/spark/python/lib/pyspark.zip added multiple
 times to distributed cache
2019-09-23 22:12:26,580 WARN [Thread-5] yarn.Client (Logging.scala:logWarning(66))
 - Same path resource file:///usr/share/aws/glue/etl/python/PyGlue.zip added
 multiple times to distributed cache.
2019-09-23 22:12:26,581 WARN [Thread-5] yarn.Client (Logging.scala:logWarning(66))
 - Same path resource file:///usr/lib/spark/python/lib/py4j-src.zip added multiple
 times to distributed cache.
2019-09-23 22:12:26,581 WARN [Thread-5] yarn.Client (Logging.scala:logWarning(66))
 - Same path resource file:///usr/share/aws/glue/libs/pyspark.zip added multiple
 times to distributed cache.
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 2.4.3
 /_/

Using Python version 3.6.8 (default, Aug 2 2019 17:42:44)
SparkSession available as 'spark'.
>>>

Developing scripts using development endpoints 513

AWS Glue User Guide

2. Test that the REPL shell is working correctly by typing the statement,
print(spark.version). As long as that displays the Spark version, your REPL is now ready
to use.

3. Now you can try executing the following simple script, line by line, in the shell:

import sys
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.transforms import *
glueContext = GlueContext(SparkContext.getOrCreate())
persons_DyF = glueContext.create_dynamic_frame.from_catalog(database="legislators",
 table_name="persons_json")
print ("Count: ", persons_DyF.count())
persons_DyF.printSchema()

Tutorial: Set up PyCharm professional with a development endpoint

This tutorial shows you how to connect the PyCharm Professional Python IDE running on your
local machine to a development endpoint so that you can interactively run, debug, and test AWS
Glue ETL (extract, transfer, and load) scripts before deploying them. The instructions and screen
captures in the tutorial are based on PyCharm Professional version 2019.3.

To connect to a development endpoint interactively, you must have PyCharm Professional
installed. You can't do this using the free edition.

Note

The tutorial uses Amazon S3 as a data source. If you want to use a JDBC data source
instead, you must run your development endpoint in a virtual private cloud (VPC). To
connect with SSH to a development endpoint in a VPC, you must create an SSH tunnel.
This tutorial does not include instructions for creating an SSH tunnel. For information on
using SSH to connect to a development endpoint in a VPC, see Securely Connect to Linux
Instances Running in a Private Amazon VPC in the AWS security blog.

Topics

• Connecting PyCharm professional to a development endpoint

• Deploying the script to your development endpoint

Developing scripts using development endpoints 514

https://www.jetbrains.com/pycharm/
https://aws.amazon.com/blogs/security/securely-connect-to-linux-instances-running-in-a-private-amazon-vpc/
https://aws.amazon.com/blogs/security/securely-connect-to-linux-instances-running-in-a-private-amazon-vpc/

AWS Glue User Guide

• Configuring a remote interpreter

• Running your script on the development endpoint

Connecting PyCharm professional to a development endpoint

1. Create a new pure-Python project in PyCharm named legislators.

2. Create a file named get_person_schema.py in the project with the following content:

from pyspark.context import SparkContext
from awsglue.context import GlueContext

def main():
 # Create a Glue context
 glueContext = GlueContext(SparkContext.getOrCreate())

 # Create a DynamicFrame using the 'persons_json' table
 persons_DyF =
 glueContext.create_dynamic_frame.from_catalog(database="legislators",
 table_name="persons_json")

 # Print out information about this data
 print("Count: ", persons_DyF.count())
 persons_DyF.printSchema()

if __name__ == "__main__":
 main()

3. Do one of the following:

• For AWS Glue version 0.9, download the AWS Glue Python library file, PyGlue.zip, from
https://s3.amazonaws.com/aws-glue-jes-prod-us-east-1-assets/etl/
python/PyGlue.zip to a convenient location on your local machine.

• For AWS Glue version 1.0 and later, download the AWS Glue Python library file,
PyGlue.zip, from https://s3.amazonaws.com/aws-glue-jes-prod-us-east-1-
assets/etl-1.0/python/PyGlue.zip to a convenient location on your local machine.

4. Add PyGlue.zip as a content root for your project in PyCharm:

Developing scripts using development endpoints 515

AWS Glue User Guide

• In PyCharm, choose File, Settings to open the Settings dialog box. (You can also press Ctrl
+Alt+S.)

• Expand the legislators project and choose Project Structure. Then in the right pane,
choose + Add Content Root.

• Navigate to the location where you saved PyGlue.zip, select it, then choose Apply.

The Settings screen should look something like the following:

Leave the Settings dialog box open after you choose Apply.

5. Configure deployment options to upload the local script to your development endpoint using
SFTP (this capability is available only in PyCharm Professional):

• In the Settings dialog box, expand the Build, Execution, Deployment section. Choose the
Deployment subsection.

• Choose the + icon at the top of the middle pane to add a new server. Set its Type to SFTP
and give it a name.

• Set the SFTP host to the Public address of your development endpoint, as listed on its
details page. (Choose the name of your development endpoint in the AWS Glue console to
display the details page). For a development endpoint running in a VPC, set SFTP host to the
host address and local port of your SSH tunnel to the development endpoint.

Developing scripts using development endpoints 516

AWS Glue User Guide

• Set the User name to glue.

• Set the Auth type to Key pair (OpenSSH or Putty). Set the Private key file by browsing
to the location where your development endpoint's private key file is located. Note that
PyCharm only supports DSA, RSA and ECDSA OpenSSH key types, and does not accept keys
in Putty's private format. You can use an up-to-date version of ssh-keygen to generate a
key-pair type that PyCharm accepts, using syntax like the following:

ssh-keygen -t rsa -f <key_file_name> -C "<your_email_address>"

• Choose Test connection, and allow the connection to be tested. If the connection succeeds,
choose Apply.

The Settings screen should now look something like the following:

Again, leave the Settings dialog box open after you choose Apply.

6. Map the local directory to a remote directory for deployment:

• In the right pane of the Deployment page, choose the middle tab at the top, labeled
Mappings.

• In the Deployment Path column, enter a path under /home/glue/scripts/ for
deployment of your project path. For example: /home/glue/scripts/legislators.

Developing scripts using development endpoints 517

AWS Glue User Guide

• Choose Apply.

The Settings screen should now look something like the following:

Choose OK to close the Settings dialog box.

Deploying the script to your development endpoint

1. Choose Tools, Deployment, and then choose the name under which you set up your
development endpoint, as shown in the following image:

Developing scripts using development endpoints 518

AWS Glue User Guide

After your script has been deployed, the bottom of the screen should look something like the
following:

2. On the menu bar, choose Tools, Deployment, Automatic Upload (always). Ensure that a check
mark appears next to Automatic Upload (always).

When this option is enabled, PyCharm automatically uploads changed files to the
development endpoint.

Configuring a remote interpreter

Configure PyCharm to use the Python interpreter on the development endpoint.

1. From the File menu, choose Settings.

2. Expand the project legislators and choose Project Interpreter.

3. Choose the gear icon next to the Project Interpreter list, and then choose Add.

4. In the Add Python Interpreter dialog box, in the left pane, choose SSH Interpreter.

5. Choose Existing server configuration, and in the Deployment configuration list, choose your
configuration.

Your screen should look something like the following image.

Developing scripts using development endpoints 519

AWS Glue User Guide

6. Choose Move this server to IDE settings, and then choose Next.

7. In the Interpreter field, change the path to /usr/bin/gluepython if you are using Python
2, or to /usr/bin/gluepython3 if you are using Python 3. Then choose Finish.

Running your script on the development endpoint

To run the script:

• In the left pane, right-click the file name and choose Run '<filename>'.

After a series of messages, the final output should show the count and the schema.

Count: 1961
root
|-- family_name: string
|-- name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- gender: string
|-- image: string
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- other_names: array

Developing scripts using development endpoints 520

AWS Glue User Guide

| |-- element: struct
| | |-- lang: string
| | |-- note: string
| | |-- name: string
|-- sort_name: string
|-- images: array
| |-- element: struct
| | |-- url: string
|-- given_name: string
|-- birth_date: string
|-- id: string
|-- contact_details: array
| |-- element: struct
| | |-- type: string
| | |-- value: string
|-- death_date: string

Process finished with exit code 0

You are now set up to debug your script remotely on your development endpoint.

Advanced configuration: sharing development endpoints among multiple users

This section explains how you can take advantage of development endpoints with SageMaker
notebooks in typical use cases to share development endpoints among multiple users.

Single-tenancy configuration

In single tenant use-cases, to simplify the developer experience and to avoid contention for
resources it is recommended that you have each developer use their own development endpoint
sized for the project they are working on. This also simplifies the decisions related to worker type
and DPU count leaving them up to the discretion of the developer and project they are working on.

You won't need to take care of resource allocation unless you runs multiple notebook files
concurrently. If you run code in multiple notebook files at the same time, multiple Livy sessions will
be launched concurrently. To segregate Spark cluster configurations in order to run multiple Livy
sessions at the same time, you can follow the steps which are introduced in multi tenant use-cases.

Developing scripts using development endpoints 521

AWS Glue User Guide

For example, if your development endpoint has 10 workers and the worker type is G.1X, then you
will have 9 Spark executors and the entire cluster will have 90G of executor memory since each
executor will have 10G of memory.

Regardless of the specified worker type, Spark dynamic resource allocation will be turned on.
If a dataset is large enough, Spark may allocate all the executors to a single Livy session since
spark.dynamicAllocation.maxExecutors is not set by default. This means that other Livy
sessions on the same dev endpoint will wait to launch new executors. If the dataset is small, Spark
will be able to allocate executors to multiple Livy sessions at the same time.

Note

For more information about how resources are allocated in different use cases and how
you set a configuration to modify the behavior, see Advanced configuration: sharing
development endpoints among multiple users.

Multi-tenancy configuration

Note

Please note, development endpoints are intended to emulate the AWS Glue ETL
environment as a single-tenant environment. While multi-tenant use is possible, it is an
advanced use-case and it is recommended most users maintain a pattern of single-tenancy
for each development endpoint.

In multi tenant use-cases, you might need to take care of resource allocation. The key factor is the
number of concurrent users who use a Jupyter notebook at the same time. If your team works in a
"follow-the-sun" workflow and there is only one Jupyter user at each time zone, then the number
of concurrent users is only one, so you won't need to be concerned with resource allocation.
However, if your notebook is shared among multiple users and each user submits code in an ad-hoc
basis, then you will need to consider the below points.

To partition Spark cluster resources among multiple users, you can use SparkMagic configurations.
There are two different ways to configure SparkMagic.

Developing scripts using development endpoints 522

AWS Glue User Guide

(A) Use the %%configure -f directive

If you want to modify the configuration per Livy session from the notebook, you can run the %
%configure -f directive on the notebook paragraph.

For example, if you want to run Spark application on 5 executors, you can run the following
command on the notebook paragraph.

%%configure -f
{"numExecutors":5}

Then you will see only 5 executors running for the job on the Spark UI.

We recommend limiting the maximum number of executors for dynamic resource allocation.

%%configure -f
{"conf":{"spark.dynamicAllocation.maxExecutors":"5"}}

(B) Modify the SparkMagic config file

SparkMagic works based on the Livy API. SparkMagic creates Livy sessions with configurations such
as driverMemory, driverCores, executorMemory, executorCores, numExecutors, conf,
etc. Those are the key factors that determine how much resources are consumed from the entire
Spark cluster. SparkMagic allows you to provide a config file to specify those parameters which are
sent to Livy. You can see a sample config file in this Github repository.

If you want to modify configuration across all the Livy sessions from a notebook, you can modify /
home/ec2-user/.sparkmagic/config.json to add session_config .

To modify the config file on a SageMaker notebook instance, you can follow these steps.

1. Open a SageMaker notebook.

2. Open the Terminal kernel.

3. Run the following commands:

sh-4.2$ cd .sparkmagic
sh-4.2$ ls
config.json logs
sh-4.2$ sudo vim config.json

Developing scripts using development endpoints 523

https://livy.incubator.apache.org/docs/latest/rest-api.html
https://github.com/jupyter-incubator/sparkmagic/blob/master/sparkmagic/example_config.json

AWS Glue User Guide

For example, you can add these lines to /home/ec2-user/.sparkmagic/config.json
and restart the Jupyter kernel from the notebook.

 "session_configs": {
 "conf": {
 "spark.dynamicAllocation.maxExecutors":"5"
 }
 },

Guidelines and best practices

To avoid this kind of resource conflict, you can use some basic approaches like:

• Have a larger Spark cluster by increasing the NumberOfWorkers (scaling horizontally) and
upgrading the workerType (scaling vertically)

• Allocate fewer resources per user (fewer resources per Livy session)

Your approach will depend on your use case. If you have a larger development endpoint, and
there is not a huge amount of data, the possibility of a resource conflict will decrease significantly
because Spark can allocate resources based on a dynamic allocation strategy.

As described above, the number of Spark executors can be automatically calculated based
on a combination of DPU (or NumberOfWorkers) and worker type. Each Spark application
launches one driver and multiple executors. To calculate you will need the NumberOfWorkers
= NumberOfExecutors + 1. The matrix below explains how much capacity you need in your
development endpoint based on the number of concurrent users.

Number of
concurrent
notebook users

Number of Spark executors
you want to allocate per user

Total NumberOfWorkers for your dev
endpoint

3 5 18

10 5 60

50 5 300

Developing scripts using development endpoints 524

AWS Glue User Guide

If you want to allocate fewer resources per user, the
spark.dynamicAllocation.maxExecutors (or numExecutors) would be the easiest
parameter to configure as a Livy session parameter. If you set the below configuration in /home/
ec2-user/.sparkmagic/config.json, then SparkMagic will assign a maximum of 5 executors
per Livy session. This will help segregating resources per Livy session.

"session_configs": {
 "conf": {
 "spark.dynamicAllocation.maxExecutors":"5"
 }
 },

Suppose there is a dev endpoint with 18 workers (G.1X) and there are 3 concurrent notebook users
at the same time. If your session config has spark.dynamicAllocation.maxExecutors=5
then each user can make use of 1 driver and 5 executors. There won't be any resource conflicts
even when you run multiple notebook paragraphs at the same time.

Trade-offs

With this session config "spark.dynamicAllocation.maxExecutors":"5", you will be able
to avoid resource conflict errors and you do not need to wait for resource allocation when there are
concurrent user accesses. However, even when there are many free resources (for example, there
are no other concurrent users), Spark cannot assign more than 5 executors for your Livy session.

Other notes

It is a good practice to stop the Jupyter kernel when you stop using a notebook. This will free
resources and other notebook users can use those resources immediately without waiting for
kernel expiration (auto-shutdown).

Common issues

Even when following the guidelines, you may experience certain issues.

Session not found

When you try to run a notebook paragraph even though your Livy session has been already
terminated, you will see the below message. To activate the Livy session, you need to restart
the Jupyter kernel by choosing Kernel > Restart in the Jupyter menu, then run the notebook
paragraph again.

Developing scripts using development endpoints 525

AWS Glue User Guide

An error was encountered:
Invalid status code '404' from http://localhost:8998/sessions/13 with error payload:
 "Session '13' not found."

Not enough YARN resources

When you try to run a notebook paragraph even though your Spark cluster does not have enough
resources to start a new Livy session, you will see the below message. You can often avoid this
issue by following the guidelines, however, there might be a possibility that you face this issue. To
workaround the issue, you can check if there are any unneeded, active Livy sessions. If there are
unneeded Livy sessions, you will need to terminate them to free the cluster resources. See the next
section for details.

Warning: The Spark session does not have enough YARN resources to start.
The code failed because of a fatal error:
 Session 16 did not start up in 60 seconds..

Some things to try:
a) Make sure Spark has enough available resources for Jupyter to create a Spark
 context.
b) Contact your Jupyter administrator to make sure the Spark magics library is
 configured correctly.
c) Restart the kernel.

Monitoring and debugging

This section describes techniques for monitoring resources and sessions.

Monitoring and debugging cluster resource allocation

You can watch the Spark UI to monitor how many resources are allocated per Livy session, and
what are the effective Spark configurations on the job. To activate the Spark UI, see Enabling the
Apache Spark Web UI for Development Endpoints.

(Optional) If you need a real-time view of the Spark UI, you can configure an SSH tunnel against
the Spark history server running on the Spark cluster.

ssh -i <private-key.pem> -N -L 8157:<development endpoint public address>:18080
 glue@<development endpoint public address>

Developing scripts using development endpoints 526

https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui-dev-endpoints.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui-dev-endpoints.html

AWS Glue User Guide

You can then open http://localhost:8157 on your browser to view the Spark UI.

Free unneeded Livy sessions

Review these procedures to shut down any unneeded Livy sessions from a notebook or a Spark
cluster.

(a). Terminate Livy sessions from a notebook

You can shut down the kernel on a Jupyter notebook to terminate unneeded Livy sessions.

(b). Terminate Livy sessions from a Spark cluster

If there are unneeded Livy sessions which are still running, you can shut down the Livy sessions on
the Spark cluster.

As a pre-requisite to perform this procedure, you need to configure your SSH public key for your
development endpoint.

To log in to the Spark cluster, you can run the following command:

$ ssh -i <private-key.pem> glue@<development endpoint public address>

You can run the following command to see the active Livy sessions:

$ yarn application -list
20/09/25 06:22:21 INFO client.RMProxy: Connecting to ResourceManager at
 ip-255-1-106-206.ec2.internal/172.38.106.206:8032
Total number of applications (application-types: [] and states: [SUBMITTED, ACCEPTED,
 RUNNING]):2
Application-Id Application-Name Application-Type User Queue State Final-State Progress
 Tracking-URL
application_1601003432160_0005 livy-session-4 SPARK livy default RUNNING UNDEFINED 10%
 http://ip-255-1-4-130.ec2.internal:41867
application_1601003432160_0004 livy-session-3 SPARK livy default RUNNING UNDEFINED 10%
 http://ip-255-1-179-185.ec2.internal:33727

You can then shut down the Livy session with the following command:

$ yarn application -kill application_1601003432160_0005
20/09/25 06:23:38 INFO client.RMProxy: Connecting to ResourceManager at
 ip-255-1-106-206.ec2.internal/255.1.106.206:8032

Developing scripts using development endpoints 527

AWS Glue User Guide

Killing application application_1601003432160_0005
20/09/25 06:23:39 INFO impl.YarnClientImpl: Killed application
 application_1601003432160_0005

Managing notebooks

Note

Development Endpoints are only supported for versions of AWS Glue prior to 2.0. For an
interactive environment where you can author and test ETL scripts, use Notebooks on AWS
Glue Studio.

A notebook enables interactive development and testing of your ETL (extract, transform, and
load) scripts on a development endpoint. AWS Glue provides an interface to SageMaker Jupyter
notebooks. With AWS Glue, you create and manage SageMaker notebooks. You can also open
SageMaker notebooks from the AWS Glue console.

In addition, you can use Apache Spark with SageMaker on AWS Glue development endpoints which
support SageMaker (but not AWS Glue ETL jobs). SageMaker Spark is an open source Apache Spark
library for SageMaker. For more information, see Using Apache Spark with Amazon SageMaker.

Important

Managing SageMaker notebooks with AWS Glue development endpoints is available in
the following AWS Regions:

Region Code

US East (Ohio) us-east-2

US East (N. Virginia) us-east-1

US West (N. California) us-west-1

US West (Oregon) us-west-2

Asia Pacific (Tokyo) ap-northeast-1

Managing notebooks 528

https://docs.aws.amazon.com/glue/latest/ug/notebooks-chapter.html
https://docs.aws.amazon.com/glue/latest/ug/notebooks-chapter.html
https://docs.aws.amazon.com/sagemaker/latest/dg/apache-spark.html

AWS Glue User Guide

Region Code

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Canada (Central) ca-central-1

Europe (Frankfurt) eu-central-1

Europe (Ireland) eu-west-1

Europe (London) eu-west-2

Managing notebooks 529

AWS Glue User Guide

Building visual ETL jobs with AWS Glue Studio

An AWS Glue job encapsulates a script that connects to your source data, processes it, and then
writes it out to your data target. Typically, a job runs extract, transform, and load (ETL) scripts.
Jobs can run scripts designed for Apache Spark and Ray runtime environments. Jobs can also run
general-purpose Python scripts (Python shell jobs.) AWS Glue triggers can start jobs based on a
schedule or event, or on demand. You can monitor job runs to understand runtime metrics such as
completion status, duration, and start time.

You can use scripts that AWS Glue generates or you can provide your own. With a source schema
and target location or schema, the AWS Glue Studio code generator can automatically create an
Apache Spark API (PySpark) script. You can use this script as a starting point and edit it to meet
your goals.

AWS Glue can write output files in several data formats. Each job type may support different
output formats. For some data formats, common compression formats can be written.

Signing in to the AWS Glue console

A job in AWS Glue consists of the business logic that performs extract, transform, and load (ETL)
work. You can create jobs in the ETL section of the AWS Glue console.

To view existing jobs, sign in to the AWS Management Console and open the AWS Glue console
at https://console.aws.amazon.com/glue/. Then choose the Jobs tab in AWS Glue. The Jobs list
displays the location of the script that is associated with each job, when the job was last modified,
and the current job bookmark option.

While creating a new job, or after you have saved your job, you can use can AWS Glue Studio to
modify your ETL jobs. You can do this by editing the nodes in the visual editor or by editing the job
script in developer mode. You can also add and remove nodes in the visual editor to create more
complicated ETL jobs.

Next steps for creating a job in AWS Glue Studio

You use the visual job editor to configure nodes for your job. Each node represents an action, such
as reading data from the source location or applying a transform to the data. Each node you add to
your job has properties that provide information about either the data location or the transform.

Signing in to the console 530

https://console.aws.amazon.com/glue/

AWS Glue User Guide

The next steps for creating and managing your jobs are:

• Visual ETL with AWS Glue Studio

• View the job script

• Modify the job properties

• Save the job

• Start a job run

• View information for recent job runs

• Accessing the job monitoring dashboard

Visual ETL with AWS Glue Studio

You can use the simple visual interface in AWS Glue Studio to create your ETL jobs. You use the
Jobs page to create new jobs. You can also use a script editor or notebook to work directly with
code in the AWS Glue Studio ETL job script.

On the Jobs page, you can see all the jobs that you have created either with AWS Glue Studio or
AWS Glue. You can view, manage, and run your jobs on this page.

Also see the blog tutorial
on another example of how to create ETL jobs with AWS Glue Studio.

Starting jobs in AWS Glue Studio

AWS Glue allows you to create a job through a visual interface, an interactive code notebook, or
with a script editor. You can start a job by clicking on any of the options or create a new job based
on a sample job.

Sample jobs create a job with the tool of your choice. For example, sample jobs allow you to
create a visual ETL job that joins CSV files into a catatlog table, create a job in an interactive code
notebook with AWS Glue for Ray or AWS Glue for Spark when working with pandas, or create a job
in an interactive code notebook with SparkSQL.

Creating a job in AWS Glue Studio from scratch

1. Sign in to the AWS Management Console and open the AWS Glue Studio console at https://
console.aws.amazon.com/gluestudio/.

Visual ETL with AWS Glue Studio 531

https://aws.amazon.com/blogs/big-data/making-etl-easier-with-aws-glue-studio/
https://console.aws.amazon.com/gluestudio/
https://console.aws.amazon.com/gluestudio/

AWS Glue User Guide

2. Choose ETL jobs from the navigation pane.

3. In the Create job section, select a configuration option for your job.

Options to create a job from scratch:

• Visual ETL – author in a visual interface focused on data flow

• Author using an Interactive code notebook – interactively author jobs in a notebook
interface based on Jupyter Notebooks

When you select this option, you must provide additional information before creating a
notebook authoring session. For more information about how to specify this information,
see Getting started with notebooks in AWS Glue Studio.

• Author code with a script editor – For those familiar with programming and writing ETL
scripts, choose this option to create a new Spark ETL job. Choose the engine (Python shell,
Ray, Spark (Python), or Spark (Scala). Then, choose Start fresh or Upload script. uploading
an existing script from a local file. If you choose to use the script editor, you can't use the
visual job editor to design or edit your job.

A Spark job is run in an Apache Spark environment managed by AWS Glue. By default, new
scripts are coded in Python. To write a new Scala script, see Creating and editing Scala
scripts in AWS Glue Studio.

Creating a job in AWS Glue Studio from an example job

You can choose to create a job from an example job. In the Example jobs section, choose a sample
job, then choose Create sample job. Creating a sample job from one of the options provides a
quick template you can work from.

Starting jobs in AWS Glue Studio 532

AWS Glue User Guide

1. Sign in to the AWS Management Console and open the AWS Glue Studio console at https://
console.aws.amazon.com/gluestudio/.

2. Choose ETL jobs from the navigation pane.

3. Select an option create a job from a sample job:

• Visual ETL job to join multiple sources – Read three CSV files, combine the data, change
the data types, then write the data to Amazon S3 and catalog it for querying later.

• Spark notebook using Pandas – Explore and visualize data using the popular Pandas
framework combined with Spark.

• Spark notebook using SQL – Use SQL to get started quickly with Apache Spark. Access data
through the AWS Glue Data Catalog and transform it using familiar commands.

4. Choose Create sample job.

Job editor features

The job editor provides the following features for creating and editing jobs.

• A visual diagram of your job, with a node for each job task: Data source nodes for reading the
data; transform nodes for modifying the data; data target nodes for writing the data.

You can view and configure the properties of each node in the job diagram. You can also view the
schema and sample data for each node in the job diagram. These features help you to verify that
your job is modifying and transforming the data in the right way, without having to run the job.

• A Script viewing and editing tab, where you can modify the code generated for your job.

• A Job details tab, where you can configure a variety of settings to customize the environment in
which your AWS Glue ETL job runs.

• A Runs tab, where you can view the current and previous runs of the job, view the status of the
job run, and access the logs for the job run.

• A Data quality tab, where you can apply data quality rules to your job.

• A Schedules tab, where you can configure the start time for you job, or set up a recurring job
runs.

• A Version Control tab, where you can configure a Git service to use with your job.

Job editor features 533

https://console.aws.amazon.com/gluestudio/
https://console.aws.amazon.com/gluestudio/

AWS Glue User Guide

Using schema previews in the visual job editor

While creating or editing your job, you can use the Output schema tab to view the schema for your
data.

Before you can see the schema, the job editor needs permissions to access the data source. You can
specify an IAM role on the Job details tab of the editor or on the Output schema tab for a node.
If the IAM role has all the necessary permissions to access the data source, you can then view the
schema on the Output schema tab for a node.

Using data previews in the visual job editor

Data previews help you create and test your job using a sample of your data without having to
repeatedly run the job. By using data preview, you can:

• Test an IAM role to make sure you have access to your data sources or data targets.

• Check that the transform is modifying the data in the intended way. For example, if you use a
Filter transform, you can make sure that the filter is selecting the right subset of data.

• Check your data. If your dataset contains columns with values of multiple types, the data preview
shows a list of tuples for these columns. Each tuple contains the data type and its value.

While creating or editing your job, you can use the Data preview tab beneath the job canvas to
view a sample of your data. A new data preview session will start automatically when the role is
already configured on the job or a default IAM role has been set up in the account. If a role has not
been previously configured, you can start a session by selecting the role.

Job editor features 534

AWS Glue User Guide

Note

The role you choose for the data preview session will also be used for the job.

You can see the status and the progress of your session as well as the session details by clicking the
info icon.

When the session is ready, AWS Glue Studio will load the data for the node you selected. You can
view the % complete as it progresses.

As you author your visual job, AWS Glue Studio will automatically update the schema for the
selected node when you toggle Infer schema from session in the Output schema tab.

Job editor features 535

AWS Glue User Guide

To configure your data preview preferences:

Choose the settings icon (a gear symbol) to configure your preferences for data previews. These
settings apply to all nodes in the job diagram. You can:

• Choose to wrap the text from one line to the next. This option is enabled by default

• Change the number of rows (default to 200)

• Choose an IAM role or create an IAM role if needed

• Choose to automatically start a new session when you author a job. This provisions a new
interactive session when authoring jobs. This setting applies at the account level. Once set, it
will apply to all users in your account when editing any job.

• Choose to automatically infer schema. Output schemas will be automatically inferred for the
selected node

• Choose to automatically import AWS Glue libraries. This is useful as it will prevent data preview
from restarting new sessions when adding new transforms that require a session restart

Job editor features 536

AWS Glue User Guide

Additional features include the ability to:

• Choose the Previewing x of y fields button to select which columns (fields) to preview. When
you preview you data using the default settings, the job editor shows the first 5 columns of your
dataset. You can change this to show all or none (not recommended).

Job editor features 537

AWS Glue User Guide

• Scroll through the data preview window both horizontally and vertically.

• Use the maximize button to expand the Data preview tab to over-lay the job graph to better
view the data and data structures. Similarly, use the minimize button to minimize the Data
preview tab. You can also grab the handle pane and drag up to expand the Data preview tab.

• Use End session to stop the data preview. When you stop the session, you can choose a new
IAM role, and set additional settings (such as turn on or off settings to automatically start a new
session, infer schema, or import AWS Glue libraries, and start the session again.

Restrictions when using data previews

When using data previews, you might encounter the following restrictions or limitations.

• The first time you choose the Data preview tab you must choose IAM role. This role must have
the necessary permissions to access the data and other resources needed to create the data
previews.

Job editor features 538

AWS Glue User Guide

• After you provide an IAM role, it takes a while before the data is available for viewing. For
datasets with less than 1 GB of data, it can take up to one minute. If you have a large dataset,
you should use partitions to improve the loading time. Loading data directly from Amazon S3
has the best performance.

• If you have a very large dataset, and it takes more than 15 minutes to query the data for the data
preview, the request will time out. Data previews have a 30 minute IDLE timeout. To alleviate
this, reduce the dataset size to use data previews.

• By default, you see the first 50 columns in the Data preview tab. If the columns have no data
values, you will get a message that there is no data to display. You can increase the number of
rows sampled, or selected different columns to see data values.

• Data previews are currently not supported for streaming data sources, or for data sources that
use custom connectors.

• Errors on one node effect the entire job. If any one node has an error with data previews, the
error will show up on all nodes until you correct it.

• If you change a data source for the job, then the child nodes of that data source might need to
be updated to match the new schema. For example, if you have an ApplyMapping node that
modifies a column, and the column does not exist in the replacement data source, you will need
to update the ApplyMapping transform node.

• If you view the Data preview tab for a SQL query transform node, and the SQL query uses an
incorrect field name, the Data preview tab shows an error.

Script code generation

When you use the visual editor to create a job, the ETL code is automatically generated for you.
AWS Glue Studio creates a functional and complete job script, and saves it in an Amazon S3
location.

There are two forms of code generated by AWS Glue Studio: the original, or Classic version, and a
newer, streamlined version. By default, the new code generator is used to create the job script. You
can generate a job script using classic code generator on the Script tab by choosing the Generate
classic script toggle button.

Some of the differences in the new version of the generated code include:

• Large comment blocks are no longer added to the script

Job editor features 539

AWS Glue User Guide

• Output structures in the code use the node name that you specify in the visual editor. In the class
script, the output structures are simply named DataSource0, DataSource1, Transform0,
Transform1, DataSink0, DataSink1, and so on.

• Long commands are split across multiple lines to remove the need to scroll across the page to
see the entire command.

New features in AWS Glue Studio require the new version of code generation, and will not work
with the classic code script. You are prompted to update these jobs when you attempt to run them.

Editing AWS Glue managed data transform nodes

AWS Glue Studio provides two types of transforms:

• AWS Glue-native transforms - available to all users and are managed by AWS Glue.

• Custom visual transforms - allows you to upload your own transforms to use in AWS Glue
Studio

AWS Glue managed data transform nodes

AWS Glue Studio provides a set of built-in transforms that you can use to process your data.
Your data passes from one node in the job diagram to another in a data structure called a
DynamicFrame, which is an extension to an Apache Spark SQL DataFrame.

In the pre-populated diagram for a job, between the data source and data target nodes is the
Change Schema transform node. You can configure this transform node to modify your data, or
you can use additional transforms.

The following built-in transforms are available with AWS Glue Studio:

• ChangeSchema: Map data property keys in the data source to data property keys in the data
target. You can rename keys, modify the data types for keys, and choose which keys to drop from
the dataset.

• SelectFields: Choose the data property keys that you want to keep.

• DropFields: Choose the data property keys that you want to drop.

• RenameField: Rename a single data property key.

• Spigot: Write samples of the data to an Amazon S3 bucket.

Editing AWS Glue managed data transform nodes 540

AWS Glue User Guide

• Join: Join two datasets into one dataset using a comparison phrase on the specified data
property keys. You can use inner, outer, left, right, left semi, and left anti joins.

• Union: Combine rows from more than one data source that have the same schema.

• SplitFields: Split data property keys into two DynamicFrames. Output is a collection of
DynamicFrames: one with selected data property keys, and one with the remaining data
property keys.

• SelectFromCollection: Choose one DynamicFrame from a collection of DynamicFrames. The
output is the selected DynamicFrame.

• FillMissingValues: Locate records in the dataset that have missing values and add a new field
with a suggested value that is determined by imputation

• Filter: Split a dataset into two, based on a filter condition.

• Drop Null Fields: Removes columns from the dataset if all values in the column are ‘null’.

• Drop Duplicates: Removes rows from your data source by choosing to match entire rows or
specify keys.

• SQL: Enter SparkSQL code into a text entry field to use a SQL query to transform the data. The
output is a single DynamicFrame.

• Aggregate: Performs a calculation (such as average, sum, min, max) on selected fields and rows,
and creates a new field with the newly calculated value(s).

• Flatten: Extract fields inside structs into top level fields.

• UUID: Add a column with a Universally Unique Identifier for each row.

• Identifier: Add a column with a numeric identifier for each row.

• To timestamp: Convert a column to timestamp type.

• Format timestamp: Convert a timestamp column to a formatted string.

• Conditional Router transform: Apply multiple conditions to incoming data. Each row of the
incoming data is evaluated by a group filter condition and processed into its corresponding
group.

• Concatenate Columns transform: Build a new string column using the values of other columns
with an optional spacer.

• Split String transform: Break up a string into an array of tokens using a regular expression to
define how the split is done.

• Array To Columns transform: Extract some or all the elements of a column of type array into
new columns.

Editing AWS Glue managed data transform nodes 541

AWS Glue User Guide

• Add Current Timestamp transform: Mark the rows with the time on which the data was
processed. This is useful for auditing purposes or to track latency in the data pipeline.

• Pivot Rows to Columns transform: Aggregate a numeric column by rotating unique values on
selected columns which become new columns. If multiple columns are selected, the values are
concatenated to name the new columns.

• Unpivot Columns To Rows transform: Convert columns into values of new columns generating a
row for each unique value.

• Autobalance Processing transform: Redistribute the data better among the workers. This is
useful where the data is unbalanced or as it comes from the source doesn’t allow enough parallel
processing on it.

• Derived Column transform: Define a new column based on a math formula or SQL expression in
which you can use other columns in the data, as well as constants and literals.

• Lookup transform: Add columns from a defined catalog table when the keys match the defined
lookup columns in the data.

• Explode Array or Map Into Rows transform: Extract values from a nested structure into
individual rows that are easier to manipulate.

• Record matching transform: Invoke an existing Record Matching machine learning data
classification transform.

• Remove null rows transform: Remove from the dataset rows that have all columns as null, or
empty.

• Parse JSON column transform: Parse a string column containing JSON data and convert it to a
struct or an array column, depending if the JSON is an object or an array, respectively.

• Extract JSON path transform: Extract new columns from a JSON string column.

• Extract string fragments from a regular expression: Extract string fragments using a regular
expression and create new column out of it, or multiple columns if using regex groups.

• Custom transform: Enter code into a text entry field to use custom transforms. The output is a
collection of DynamicFrames.

Using a data preparation recipe in AWS Glue Studio

AWS Glue Studio allows you to use a AWS Glue DataBrew recipe in a visual workflow. This allows
a customer's AWS Glue DataBrew recipes to be run in a AWS Glue job along with other AWS Glue
Studio nodes.

Editing AWS Glue managed data transform nodes 542

AWS Glue User Guide

In DataBrew, a recipe is a set of data transformation steps. DataBrew recipes prescribes how to
transform data that have already been read and doesn't describe where and how to read data, as
well as how and where to write data. This is configured in Source and Target nodes in AWS Glue
Studio. For more information on recipes, see Creating and using AWS Glue DataBrew recipes .

The Data Preparation Recipe node is available from the Resource panel. You can connect the Data
Preparation Recipe node to another node in the visual workflow, whether it is a Data source node
or another transformation node. After choosing a AWS Glue DataBrew recipe and version, the
applied steps in the recipe are visible in the node properties tab.

Prerequisites

• You have a AWS Glue DataBrew recipe created in AWS Glue DataBrew.

• You have the required IAM permissions as decribed in the section below.

IAM permissions for AWS Glue DataBrew

This topic provides information to help you understand the actions and resources that you an
IAM administrator can use in an AWS Identity and Access Management (IAM) policy for the Data
Preparation Recipe transform.

For additional information about security in AWS Glue, see Access Management.

The following table lists the permissions that a user needs in order to perform specific operations
to use the Data Preparation Recipe transform.

Data Preparaction Recipe transform actions

Action Description

databrew:ListRecipes Grants permission to retrieve AWS Glue
DataBrew recipes.

databrew:ListRecipeVersions Grants permission to retrieve AWS Glue
DataBrew recipe versions.

databrew:DescribeRecipe Grants permission to retrieve AWS Glue
DataBrew recipe description.

Editing AWS Glue managed data transform nodes 543

https://docs.aws.amazon.com/databrew/latest/dg/recipes.html
https://docs.aws.amazon.com/glue/latest/dg/security.html

AWS Glue User Guide

The role you’re using for accessing this functionality should have a policy that allows several AWS
Glue DataBrew You can achieve this by either using AWSGlueConsoleFullAccess policy that
includes necessary actions or add the following inline policy to your role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "databrew:ListRecipes",
 "databrew:ListRecipeVersions",
 "databrew:DescribeRecipe"
],
 "Resource": [
 "*"
]
 }
]
}

To use the Data Preparation Recipe transform, you must add the IAM:PassRole action to the
permissions policy.

Additional required permissions

Action Description

iam:PassRole Grants permission for IAM to allow the user to
pass the approved roles.

Without these permissions the following error occurs:

"errorCode": "AccessDenied"
"errorMessage": "User: arn:aws:sts::account_id:assumed-role/AWSGlueServiceRole is not
authorized to perform: iam:PassRole on resource: arn:aws:iam::account_id:role/service-
role/AWSGlueServiceRole
because no identity-based policy allows the iam:PassRole action"

Editing AWS Glue managed data transform nodes 544

AWS Glue User Guide

Limitations

• Not all AWS Glue DataBrew recipes are supported by AWS Glue. Some recipes will not be able to
be run in AWS Glue Studio.

• Recipes with UNION and JOIN transforms are not supported, however, AWS Glue Studio
already has "Join" and "Union" transform nodes which can be used before or after a Data
Preparation Recipe node instead.

• Data Preparation Recipe nodes are supported for jobs starting with AWS Glue version 4.0. This
version will be auto-selected after a Data Preparation Recipe node is added to the job.

• Data Preparation Recipe nodes require Python. This is automatically set when the Data
Preparation Recipe node is added to the job.

• When using Data Preview, you will need to restart your data preview session after adding a Data
Preparation Recipe node to your job.

How to use AWS Glue DataBrew recipes in AWS Glue Studio

To use AWS Glue DataBrew recipes in AWS Glue Studio, begin with creating recipes in AWS Glue
DataBrew. If you have recipes you want to use, you can skip this step.

To create a AWS Glue DataBrew recipe in AWS Glue DataBrew:

1. Author a recipe in AWS Glue DataBrew. For more information, see Getting started with AWS
Glue DataBrew.

2. Save your recipe.

3. Publish your recipe. This will publish your recipe as version 1.0.

To use a Data Preparation Recipe node in AWS Glue Studio:

You can use more than one Data Preparation Recipe node in a visual ETL job. To do this, add a
Data Preparation Recipe node by following the steps below and add another Data Preparation
Recipe node to the job. For example, a workflow might follow this pattern:

• Data source 1 > recipe 1 > output 1

• Data source 2 > recipe 2 > output 2

• output 1, output 2 > JOIN

Editing AWS Glue managed data transform nodes 545

https://docs.aws.amazon.com/databrew/latest/dg/getting-started.html
https://docs.aws.amazon.com/databrew/latest/dg/getting-started.html

AWS Glue User Guide

1. Start a AWS Glue job in AWS Glue Studio with a datasource.

2. Add the Data Preparation Recipe node to your datasource.

3. Filter for recipe by name by typing in the recipe name in the search field.

4. Choose the published version. Only published versions are available.

5. Finish authoring the job by adding other transformations nodes as needed and add Data target
node(s) to save the job output.

6. Make necessary configuration changes in the Job details tab, like naming your job and
adjusting allocated capacity as needed, and save the job.

7. Run the job by choosing Run from the Actions drop-down menu.

To change schema if the data source is Amazon S3 and the data format is CSV:

If all the columns in a CSV file are initially loaded as string data type in AWS Glue Studio, you
need to ensure that the column data type is compatible with the rest of the steps in the AWS Glue
DataBrew recipe.

AWS Glue DataBrew recipes only prescribes how to transform data that have already been read. It
doesn't describe where and how to read data.

1. Add a Change Schema node before the Multi-step recipe node.

2. Click the Change Schema node and change the schema to be the same as the column data
types in AWS Glue DataBrew by selecting the new data type in the Transform for columns as
needed.

Editing AWS Glue managed data transform nodes 546

AWS Glue User Guide

To change schema if the data source is headerless:

AWS Glue DataBrew recipes only prescribes how to transform data that have already been read. It
doesn't describe where and how to read data.

When loading header-less datasets in AWS Glue Studio, the default header names are different
than what are loaded in AWS Glue DataBrew.

Editing AWS Glue managed data transform nodes 547

AWS Glue User Guide

1. In the ETL job, add a Change Schema node before the Data Preparation Recipe node.

2. Choose the Change Schema node and change the column names to the same names used in
the AWS Glue DataBrew recipe.

Using Change Schema to remap data property keys

A Change Schema transform remaps the source data property keys into the desired configured for
the target data. In a Change Schema transform node, you can:

• Change the name of multiple data property keys.

• Change the data type of the data property keys, if the new data type is supported and there is a
transformation path between the two data types.

• Choose a subset of data property keys by indicating which data property keys you want to drop.

You can also add additional Change Schema nodes to the job diagram as needed – for example, to
modify additional data sources or following a Join transform.

Using Change Schema with decimal datatype

When using the Change Schema transform with decimal datatype, the Change Schema transform
modifies the precision to the default value of (10,2). To modify this and set the precision for your
use case, you can use the SQL Query transform and cast the columns with a specific precision.

For example, if you have an input column named "DecimalCol" of type Decimal, and you want to
remap it to an output column named "OutputDecimalCol" with a specific precision of (18,6), you
would:

1. Add a subsequent SQL Query transform after the Change Schema transform.

2. In the SQL Query transform, use an SQL query to cast the remapped column to the desired
precision. The SQL query would look like this:

SELECT col1, col2, CAST(DecimalCol AS DECIMAL(18,6)) AS OutputDecimalCol
FROM __THIS__

In the above SQL query:

• `col1` and `col2` are other columns in your data that you want to pass through without
modification.

Editing AWS Glue managed data transform nodes 548

AWS Glue User Guide

• `DecimalCol` is the original column name from the input data.

• `CAST(DecimalCol AS DECIMAL(18,6))` casts the `DecimalCol` to a Decimal type with a
precision of 18 digits and 6 decimal places.

• `AS OutputDecimalCol` renames the casted column to `OutputDecimalCol`.

By using the SQL Query transform, you can override the default precision set by the Change
Schema transform and explicitly cast the Decimal columns to the desired precision. This approach
allows you to leverage the Change Schema transform for renaming and restructuring your data
while handling the precision requirements for Decimal columns through the subsequent SQL
Query transformation.

Adding a Change Schema transform to your job

Note

The Change Schema transform is not case-sensitive.

To add a Change Schema transform node to your job diagram

1. (Optional) Open the Resource panel and then choose Change Schema to add a new transform
to your job diagram, if needed.

2. In the node properties panel, enter a name for the node in the job diagram. If a node parent
isn't already selected, choose a node from the Node parents list to use as the input source for
the transform.

3. Choose the Transform tab in the node properties panel.

4. Modify the input schema:

• To rename a data property key, enter the new name of the key in the Target key field.

• To change the data type for a data property key, choose the new data type for the key from
the Data type list.

• To remove a data property key from the target schema, choose the Drop check box for that
key.

5. (Optional) After configuring the transform node properties, you can view the modified schema
for your data by choosing the Output schema tab in the node details panel. The first time you
choose this tab for any node in your job, you are prompted to provide an IAM role to access the

Editing AWS Glue managed data transform nodes 549

AWS Glue User Guide

data. If you have not specified an IAM role on the Job details tab, you are prompted to enter
an IAM role here.

6. (Optional) After configuring the node properties and transform properties, you can preview
the modified dataset by choosing the Data preview tab in the node details panel. The first
time you choose this tab for any node in your job, you are prompted to provide an IAM role to
access the data. There is a cost associated with using this feature, and billing starts as soon as
you provide an IAM role.

Using Drop Duplicates

The Drop Duplicates transform removes rows from your data source by giving you two options. You
can choose to remove the duplicate row that are completely the same, or you can choose to choose
the fields to match and remove only those rows based on your chosen fields.

For example, in this data set, you have duplicate rows where all the values in some of the rows are
exactly the same as another row, and some of the values in rows are the same or different.

Row Name Email Age State Note

1 Joy joy@gmail 33 NY

2 Tim tim@gmail 45 OH

3 Rose rose@gmail 23 NJ

4 Tim tim@gmail 42 OH

5 Rose rose@gmail 23 NJ

6 Tim tim@gmail 42 OH this is a
duplicate row
and matches
completely
on all values
as row #4

7 Rose rose@gmail 23 NJ This is a
duplicate row
and matches

Editing AWS Glue managed data transform nodes 550

AWS Glue User Guide

Row Name Email Age State Note

completely
on all values
as row #5

If you choose to match entire rows, rows 6 and 7 will be removed from the data set. The data set is
now:

Row Name Email Age State

1 Joy joy@gmail 33 NY

2 Tim tim@gmail 45 OH

3 Rose rose@gmail 23 NJ

4 Tim tim@gmail 42 OH

5 Rose rose@gmail 23 NJ

If you chose to specify keys, you can choose to remove rows that match on ‘name’ and ‘email’.
This gives you finer control of what is a ‘duplicate row’ for your data set. By specifying ‘name’ and
‘email’, the data set is now:

Row Name Email Age State

1 Joy joy@gmail 33 NY

2 Tim tim@gmail 45 OH

3 Rose rose@gmail 23 NJ

Some things to keep in mind:

Editing AWS Glue managed data transform nodes 551

AWS Glue User Guide

• In order for rows to be recognized as a duplicate, values are case sensitive. all values in rows need
to have the same casing - this applies to either option you choose (Match entire rows or Specify
keys).

• All values are read in as strings.

• The Drop Duplicates transform utilizes the Spark dropDuplicates command.

• When using the Drop Duplicates transform, the first row is kept and other rows are dropped.

• The Drop Duplicates transform does not change the schema of the dataframe. If you choose to
specify keys, all fields are kept in the resulting dataframe.

Using SelectFields to remove most data property keys

You can create a subset of data property keys from the dataset using the SelectFields transform.
You indicate which data property keys you want to keep and the rest are removed from the
dataset.

Note

The SelectFields transform is case sensitive. Use ApplyMapping if you need a case-insensitive
way to select fields.

To add a SelectFields transform node to your job diagram

1. (Optional) Open the Resource panel, and then choose SelectFields to add a new transform to
your job diagram, if needed.

2. On the Node properties tab, enter a name for the node in the job diagram. If a node parent is
not already selected, choose a node from the Node parents list to use as the input source for
the transform.

3. Choose the Transform tab in the node details panel.

4. Under the heading SelectFields, choose the data property keys in the dataset that you want to
keep. Any data property keys not selected are dropped from the dataset.

You can also choose the check box next to the column heading Field to automatically choose
all the data property keys in the dataset. Then you can deselect individual data property keys
to remove them from the dataset.

Editing AWS Glue managed data transform nodes 552

AWS Glue User Guide

5. (Optional) After configuring the transform node properties, you can view the modified schema
for your data by choosing the Output schema tab in the node details panel. The first time you
choose this tab for any node in your job, you are prompted to provide an IAM role to access the
data. If you have not specified an IAM role on the Job details tab, you are prompted to enter
an IAM role here.

6. (Optional) After configuring the node properties and transform properties, you can preview
the modified dataset by choosing the Data preview tab in the node details panel. The first
time you choose this tab for any node in your job, you are prompted to provide an IAM role to
access the data. There is a cost associated with using this feature, and billing starts as soon as
you provide an IAM role.

Using DropFields to keep most data property keys

You can create a subset of data property keys from the dataset using the DropFields transform. You
indicate which data property keys you want to remove from the dataset and the rest of the keys
are retained.

Note

The DropFields transform is case sensitive. Use Change Schema if you need a case-
insensitive way to select fields.

To add a DropFields transform node to your job diagram

1. (Optional) Open the Resource panel and then choose DropFields to add a new transform to
your job diagram, if needed.

2. On the Node properties tab, enter a name for the node in the job diagram. If a node parent is
not already selected, then choose a node from the Node parents list to use as the input source
for the transform.

3. Choose the Transform tab in the node details panel.

4. Under the heading DropFields, choose the data property keys to drop from the data source.

You can also choose the check box next to the column heading Field to automatically choose
all the data property keys in the dataset. Then you can deselect individual data property keys
so they are retained in the dataset.

Editing AWS Glue managed data transform nodes 553

AWS Glue User Guide

5. (Optional) After configuring the transform node properties, you can view the modified schema
for your data by choosing the Output schema tab in the node details panel. The first time you
choose this tab for any node in your job, you are prompted to provide an IAM role to access the
data. If you have not specified an IAM role on the Job details tab, you are prompted to enter
an IAM role here.

6. (Optional) After configuring the node properties and transform properties, you can preview
the modified dataset by choosing the Data preview tab in the node details panel. The first
time you choose this tab for any node in your job, you are prompted to provide an IAM role to
access the data. There is a cost associated with using this feature, and billing starts as soon as
you provide an IAM role.

Renaming a field in the dataset

You can use the RenameField transform to change the name for an individual property key in the
dataset.

Note

The RenameField transform is case sensitive. Use ApplyMapping if you need a case-
insensitive transform.

Tip

If you use the Change Schema transform, you can rename multiple data property keys in
the dataset with a single transform.

To add a RenameField transform node to your job diagram

1. (Optional) Open the Resource panel and then choose RenameField to add a new transform to
your job diagram, if needed.

2. On the Node properties tab, enter a name for the node in the job diagram. If a node parent is
not already selected, then choose a node from the Node parents list to use as the input source
for the transform.

3. Choose the Transform tab.

Editing AWS Glue managed data transform nodes 554

AWS Glue User Guide

4. Under the heading Data field, choose a property key from the source data and then enter a
new name in the New field name field.

5. (Optional) After configuring the transform node properties, you can view the modified schema
for your data by choosing the Output schema tab in the node details panel. The first time you
choose this tab for any node in your job, you are prompted to provide an IAM role to access the
data. If you have not specified an IAM role on the Job details tab, you are prompted to enter
an IAM role here.

6. (Optional) After configuring the node properties and transform properties, you can preview
the modified dataset by choosing the Data preview tab in the node details panel. The first
time you choose this tab for any node in your job, you are prompted to provide an IAM role to
access the data. There is a cost associated with using this feature, and billing starts as soon as
you provide an IAM role.

Using Spigot to sample your dataset

To test the transformations performed by your job, you might want to get a sample of the data to
check that the transformation works as intended. The Spigot transform writes a subset of records
from the dataset to a JSON file in an Amazon S3 bucket. The data sampling method can be either
a specific number of records from the beginning of the file or a probability factor used to pick
records.

To add a Spigot transform node to your job diagram

1. (Optional) Open the Resource panel and then choose Spigot to add a new transform to your
job diagram, if needed.

2. On the Node properties tab, enter a name for the node in the job diagram. If a node parent is
not already selected, then choose a node from the Node parents list to use as the input source
for the transform.

3. Choose the Transform tab in the node details panel.

4. Enter an Amazon S3 path or choose Browse S3 to choose a location in Amazon S3. This is the
location where the job writes the JSON file that contains the data sample.

5. Enter information for the sampling method. You can specify a value for Number of records
to write starting from the beginning of the dataset and a Probability threshold (entered as a
decimal value with a maximum value of 1) of picking any given record.

Editing AWS Glue managed data transform nodes 555

AWS Glue User Guide

For example, to write the first 50 records from the dataset, you would set Number of records
to 50 and Probability threshold to 1 (100%).

Joining datasets

The Join transform allows you to combine two datasets into one. You specify the key names in the
schema of each dataset to compare. The output DynamicFrame contains rows where keys meet
the join condition. The rows in each dataset that meet the join condition are combined into a single
row in the output DynamicFrame that contains all the columns found in either dataset.

To add a Join transform node to your job diagram

1. If there is only one data source available, you must add a new data source node to the job
diagram.

2. Choose one of the source nodes for the join. Open the Resource panel and then choose Join to
add a new transform to your job diagram.

3. On the Node properties tab, enter a name for the node in the job diagram.

4. In the Node properties tab, under the heading Node parents, add a parent node so that
there are two datasets providing inputs for the join. The parent can be a data source node or a
transform node.

Note

A join can have only two parent nodes.

5. Choose the Transform tab.

If you see a message indicating that there are conflicting key names, you can either:

• Choose Resolve it to automatically add an ApplyMapping transform node to your job
diagram. The ApplyMapping node adds a prefix to any keys in the dataset that have the
same name as a key in the other dataset. For example, if you use the default value of right,
then any keys in the right dataset that have the same name as a key in the left dataset will
be renamed to (right)key name.

• Manually add a transform node earlier in the job diagram to remove or rename the
conflicting keys.

6. Choose the type of join in the Join type list.

Editing AWS Glue managed data transform nodes 556

AWS Glue User Guide

• Inner join: Returns a row with columns from both datasets for every match based on the
join condition. Rows that don't satisfy the join condition aren't returned.

• Left join: All rows from the left dataset and only the rows from the right dataset that satisfy
the join condition.

• Right join: All rows from the right dataset and only the rows from the left dataset that
satisfy the join condition.

• Outer join: All rows from both datasets.

• Left semi join: All rows from the left dataset that have a match in the right dataset based on
the join condition.

• Left anti join: All rows in the left dataset that don't have a match in the right dataset based
on join condition.

7. On the Transform tab, under the heading Join conditions, choose Add condition. Choose a
property key from each dataset to compare. Property keys on the left side of the comparison
operator are referred to as the left dataset and property keys on the right are referred to as
the right dataset.

For more complex join conditions, you can add additional matching keys by choosing Add
condition more than once. If you accidentally add a condition, you can choose the delete icon

()
to remove it.

8. (Optional) After configuring the transform node properties, you can view the modified schema
for your data by choosing the Output schema tab in the node details panel. The first time you
choose this tab for any node in your job, you are prompted to provide an IAM role to access the
data. If you have not specified an IAM role on the Job details tab, you are prompted to enter
an IAM role here.

9. (Optional) After configuring the node properties and transform properties, you can preview
the modified dataset by choosing the Data preview tab in the node details panel. The first
time you choose this tab for any node in your job, you are prompted to provide an IAM role to
access the data. There is a cost associated with using this feature, and billing starts as soon as
you provide an IAM role.

For an example of the join output schema, consider a join between two datasets with the following
property keys:

Editing AWS Glue managed data transform nodes 557

AWS Glue User Guide

Left: {id, dept, hire_date, salary, employment_status}
Right: {id, first_name, last_name, hire_date, title}

The join is configured to match on the id and hire_date keys using the = comparison operator.

Because both datasets contain id and hire_date keys, you chose Resolve it to automatically add
the prefix right to the keys in the right dataset.

The keys in the output schema would be:

{id, dept, hire_date, salary, employment_status,
(right)id, first_name, last_name, (right)hire_date, title}

Using Union to combine rows

You use the Union transform node when you want to combine rows from more than one data
source that have the same schema.

There are to types of Union transformations:

1. ALL – when applying ALL, the resulting union does not remove duplicate rows.

2. DISTINCT – when applying DISTINCT, the resulting union removes duplicate rows.

Unions vs. Joins

You use Union to combine rows. You use Join to combine columns.

Using the Union transform in the Visual ETL canvas

1. Add more than one data source to perform a union transform. To add a data source, open the
Resource Panel, then choose the data source from the Sources tab. Before using the Union
transformation, you must ensure that all data sources involved in the union have the same
schema and structure.

2. When you have at least two data sources that you want to combine using the Union transform,
create the Union transform by adding it to the canvas. Open the Resource Panel on the canvas
and search for 'Union'. You can also choose the Transforms tab in the Resource Panel and scroll
down until you find the Union transform, then choose Union.

3. Select the Union node on the job canvas. In the Node properties window, choose the parent
nodes to connect to the Union transform.

Editing AWS Glue managed data transform nodes 558

AWS Glue User Guide

4. AWS Glue checks for compatibility to make sure that the Union transform can be applied to all
data sources. If the schema for the data sources are the same, the operation will be allowed.
If the data sources do not have the same schema, an invalid error message is displayed: “The
input schemas of this union are not the same. Consider using ApplyMapping to match the
schemas.” To fix this, choose Use ApplyMapping.

5. Choose the Union type.

1. All – By default, the All Union type is selected; this will result in duplicate rows if there are
any in the data combination.

2. Distinct – Choose Distinct if you want duplicate rows to be removed from the resulting data
combination.

Using SplitFields to split a dataset into two

The SplitFields transform allows you to choose some of the data property keys in the input dataset
and put them into one dataset and the unselected keys into a separate dataset. The output from
this transform is a collection of DynamicFrames.

Note

You must use a SelectFromCollection transform to convert the collection of
DynamicFrames into a single DynamicFrame before you can send the output to a target
location.

The SplitFields transform is case sensitive. Add an ApplyMapping transform as a parent node if you
need case-insensitive property key names.

To add a SplitFields transform node to your job diagram

1. (Optional) Open the Resource panel and then choose SplitFields to add a new transform to
your job diagram, if needed.

2. On the Node properties tab, enter a name for the node in the job diagram. If a node parent is
not already selected, then choose a node from the Node parents list to use as the input source
for the transform.

3. Choose the Transform tab.

Editing AWS Glue managed data transform nodes 559

AWS Glue User Guide

4. Choose which property keys you want to put into the first dataset. The keys that you do not
choose are placed in the second dataset.

5. (Optional) After configuring the transform node properties, you can view the modified schema
for your data by choosing the Output schema tab in the node details panel. The first time you
choose this tab for any node in your job, you are prompted to provide an IAM role to access the
data. If you have not specified an IAM role on the Job details tab, you are prompted to enter
an IAM role here.

6. (Optional) After configuring the node properties and transform properties, you can preview
the modified dataset by choosing the Data preview tab in the node details panel. The first
time you choose this tab for any node in your job, you are prompted to provide an IAM role to
access the data. There is a cost associated with using this feature, and billing starts as soon as
you provide an IAM role.

7. Configure a SelectFromCollection transform node to process the resulting datasets.

Overview of SelectFromCollection transform

Certain transforms have multiple datasets as their output instead of a single dataset, for example,
SplitFields. The SelectFromCollection transform selects one dataset (DynamicFrame) from a
collection of datasets (an array of DynamicFrames). The output for the transform is the selected
DynamicFrame.

You must use this transform after you use a transform that creates a collection of
DynamicFrames, such as:

• Custom code transforms

• SplitFields

If you don't add a SelectFromCollection transform node to your job diagram after any of these
transforms, you will get an error for your job.

The parent node for this transform must be a node that returns a collection of DynamicFrames.
If you choose a parent for this transform node that returns a single DynamicFrame, such as a Join
transform, your job returns an error.

Similarly, if you use a SelectFromCollection node in your job diagram as the parent for a transform
that expects a single DynamicFrame as input, your job returns an error.

Editing AWS Glue managed data transform nodes 560

AWS Glue User Guide

Using SelectFromCollection to choose which dataset to keep

Use the SelectFromCollection transform to convert a collection of DynamicFrames into a single
DynamicFrame.

To add a SelectFromCollection transform node to your job diagram

1. (Optional) Open the Resource panel and then choose SelectFromCollection to add a new
transform to your job diagram, if needed.

2. On the Node properties tab, enter a name for the node in the job diagram. If a node parent is
not already selected, then choose a node from the Node parents list to use as the input source
for the transform.

3. Choose the Transform tab.

4. Under the heading Frame index, choose the array index number that corresponds to the
DynamicFrame you want to select from the collection of DynamicFrames.

For example, if the parent node for this transform is a SplitFields transform, on the Output
schema tab of that node you can see the schema for each DynamicFrame. If you want to keep
the DynamicFrame associated with the schema for Output 2, you would select 1 for the value
of Frame index, which is the second value in the list.

Only the DynamicFrame that you choose is included in the output.

5. (Optional) After configuring the transform node properties, you can view the modified schema
for your data by choosing the Output schema tab in the node details panel. The first time you
choose this tab for any node in your job, you are prompted to provide an IAM role to access the
data. If you have not specified an IAM role on the Job details tab, you are prompted to enter
an IAM role here.

6. (Optional) After configuring the node properties and transform properties, you can preview
the modified dataset by choosing the Data preview tab in the node details panel. The first
time you choose this tab for any node in your job, you are prompted to provide an IAM role to

Editing AWS Glue managed data transform nodes 561

AWS Glue User Guide

access the data. There is a cost associated with using this feature, and billing starts as soon as
you provide an IAM role.

Find and fill missing values in a dataset

You can use the FillMissingValues transform to locate records in the dataset that have missing
values and add a new field with a value determined by imputation. The input data set is used to
train the machine learning (ML) model that determines what the missing value should be. If you
use incremental data sets, then each incremental set is used as the training data for the ML model,
so the results might not be as accurate.

To use a FillMissingValues transform node in your job diagram

1. (Optional) Open the Resource panel and then choose FillMissingValues to add a new
transform to your job diagram, if needed.

2. On the Node properties tab, enter a name for the node in the job diagram. If a node parent
isn't already selected, choose a node from the Node parents list to use as the input source for
the transform.

3. Choose the Transform tab.

4. For Data field, choose the column or field name from the source data that you want to analyze
for missing values.

5. (Optional) In the New field name field, enter a name for the field added to each record that
will hold the estimated replacement value for the analyzed field. If the analyzed field doesn't
have a missing value, the value in the analyzed field is copied into the new field.

If you don't specify a name for the new field, the default name is the name of the analyzed
column with _filled appended. For example, if you enter Age for Data field and don't
specify a value for New field name, a new field named Age_filled is added to each record.

6. (Optional) After configuring the transform node properties, you can view the modified schema
for your data by choosing the Output schema tab in the node details panel. The first time you
choose this tab for any node in your job, you are prompted to provide an IAM role to access the
data. If you have not specified an IAM role on the Job details tab, you are prompted to enter
an IAM role here.

7. (Optional) After configuring the node properties and transform properties, you can preview
the modified dataset by choosing the Data preview tab in the node details panel. The first
time you choose this tab for any node in your job, you are prompted to provide an IAM role to

Editing AWS Glue managed data transform nodes 562

AWS Glue User Guide

access the data. There is a cost associated with using this feature, and billing starts as soon as
you provide an IAM role.

Filtering keys within a dataset

Use the Filter transform to create a new dataset by filtering records from the input dataset based
on a regular expression. Rows that don't satisfy the filter condition are removed from the output.

• For string data types, you can filter rows where the key value matches a specified string.

• For numeric data types, you can filter rows by comparing the key value to a specified value using
the comparison operators <, >, =, !=, <=, and >=.

If you specify multiple filter conditions, the results are combined using an AND operator by default,
but you can choose OR instead.

The Filter transform is case sensitive. Add an ApplyMapping transform as a parent node if you need
case-insensitive property key names.

To add a Filter transform node to your job diagram

1. (Optional) Open the Resource panel and then choose Filter to add a new transform to your job
diagram, if needed.

2. On the Node properties tab, enter a name for the node in the job diagram. If a node parent
isn't already selected, then choose a node from the Node parents list to use as the input
source for the transform.

3. Choose the Transform tab.

4. Choose either Global AND or Global OR. This determines how multiple filter conditions are
combined. All conditions are combined using either AND or OR operations. If you have only a
single filter conditions, then you can choose either one.

5. Choose the Add condition button in the Filter condition section to add a filter condition.

In the Key field, choose a property key name from the dataset. In the Operation field, choose
the comparison operator. In the Value field, enter the comparison value. Here are some
examples of filter conditions:

• year >= 2018

• State matches 'CA*'

Editing AWS Glue managed data transform nodes 563

AWS Glue User Guide

When you filter on string values, make sure that the comparison value uses a regular
expression format that matches the script language selected in the job properties (Python or
Scala).

6. Add additional filter conditions, as needed.

7. (Optional) After configuring the transform node properties, you can view the modified schema
for your data by choosing the Output schema tab in the node details panel. The first time you
choose this tab for any node in your job, you are prompted to provide an IAM role to access the
data. If you have not specified an IAM role on the Job details tab, you are prompted to enter
an IAM role here.

8. (Optional) After configuring the node properties and transform properties, you can preview
the modified dataset by choosing the Data preview tab in the node details panel. The first
time you choose this tab for any node in your job, you are prompted to provide an IAM role to
access the data. There is a cost associated with using this feature, and billing starts as soon as
you provide an IAM role.

Using DropNullFields to remove fields with null values

Use the DropNullFields transform to remove fields from the dataset if all values in the field are
‘null’. By default, AWS Glue Studio will recognize null objects, but some values such as empty
strings, strings that are “null”, -1 integers or other placeholders such as zeros, are not automatically
recognized as nulls.

To use the DropNullFields

1. Add a DropNullFields node to the job diagram.

2. On the Node properties tab, choose additional values that represent a null value. You can
choose to select none or all of the values:

Editing AWS Glue managed data transform nodes 564

AWS Glue User Guide

• Empty String ("" or '') - fields that contain empty strings will be removed

• "null string" - fields that contain the string with the word 'null' will be removed

• -1 integer - fields that contain a -1 (negative one) integer will be removed

3. If needed, you can also specify custom null values. These are null values that may be unique to
your dataset. To add a custom null value, choose Add new value.

4. Enter the custom null value. For example, this can zero, or any value that is being used to
represent a null in the dataset.

5. Choose the data type in the drop-down field. Data types can either be String or Integer.

Note

Custom null values and their data types must match exactly in order for the fields to
be recognized as null values and the fields removed. Partial matches where only the
custom null value matches but the data type does not will not result in the fields being
removed.

Editing AWS Glue managed data transform nodes 565

AWS Glue User Guide

Using a SQL query to transform data

You can use a SQL transform to write your own transform in the form of a SQL query.

A SQL transform node can have multiple datasets as inputs, but produces only a single dataset as
output. In contains a text field, where you enter the Apache SparkSQL query. You can assign aliases
to each dataset used as input, to help simply the SQL query. For more information about the SQL
syntax, see the Spark SQL documentation.

Note

If you use a Spark SQL transform with a data source located in a VPC, add an AWS Glue
VPC endpoint to the VPC that contains the data source. For more information about
configuring development endpoints, see Adding a Development Endpoint, Setting Up Your
Environment for Development Endpoints, and Accessing Your Development Endpoint in the
AWS Glue Developer Guide.

To use a SQL transform node in your job diagram

1. (Optional) Add a transform node to the job diagram, if needed. Choose Spark SQL for the
node type.

2. On the Node properties tab, enter a name for the node in the job diagram. If a node parent
is not already selected, or if you want multiple inputs for the SQL transform, choose a node
from the Node parents list to use as the input source for the transform. Add additional parent
nodes as needed.

3. Choose the Transform tab in the node details panel.

4. The source datasets for the SQL query are identified by the names you specified in the Name
field for each node. If you do not want to use these names, or if the names are not suitable for
a SQL query, you can associate a name to each dataset. The console provides default aliases,
such as MyDataSource.

Editing AWS Glue managed data transform nodes 566

https://spark.apache.org/docs/latest/sql-ref.html
https://docs.aws.amazon.com/glue/latest/dg/add-dev-endpoint.html
https://docs.aws.amazon.com/glue/latest/dg/start-development-endpoint.html
https://docs.aws.amazon.com/glue/latest/dg/start-development-endpoint.html
https://docs.aws.amazon.com/glue/latest/dg/dev-endpoint-elastic-ip.html

AWS Glue User Guide

For example, if a parent node for the SQL transform node is named Rename Org PK field,
you might associate the name org_table with this dataset. This alias can then be used in the
SQL query in place of the node name.

5. In the text entry field under the heading Code block, paste or enter the SQL query. The text
field displays SQL syntax highlighting and keyword suggestions.

6. With the SQL transform node selected, choose the Output schema tab, and then choose Edit.
Provide the columns and data types that describe the output fields of the SQL query.

Specify the schema using the following actions in the Output schema section of the page:

• To rename a column, place the cursor in the Key text box for the column (also referred to as
a field or property key) and enter the new name.

• To change the data type for a column, select the new data type for the column from the
drop-down list.

• To add a new top-level column to the schema, choose the Overflow
()
button, and then choose Add root key. New columns are added at the top of the schema.

• To remove a column from the schema, choose the delete icon

()
to the far right of the Key name.

Editing AWS Glue managed data transform nodes 567

AWS Glue User Guide

7. When you finish specifying the output schema, choose Apply to save your changes and exit
the schema editor. If you do not want to save you changes, choose Cancel to edit the schema
editor.

8. (Optional) After configuring the node properties and transform properties, you can preview
the modified dataset by choosing the Data preview tab in the node details panel. The first
time you choose this tab for any node in your job, you are prompted to provide an IAM role to
access the data. There is a cost associated with using this feature, and billing starts as soon as
you provide an IAM role.

Using Aggregate to perform summary calculations on selected fields

To use the Aggregate transform

1. Add the Aggregate node to the job diagram.

2. On the Node properties tab, choose fields to group together by selecting the drop-down field
(optional). You can select more than one field at a time or search for a field name by typing in
the search bar.

When fields are selected, the name and datatype are shown. To remove a field, choose 'X' on
the field.

Editing AWS Glue managed data transform nodes 568

AWS Glue User Guide

3. Choose Aggregate another column. It is required to select at least one field.

4. Choose a field in the Field to aggregate drop-down.

5. Choose the aggregation function to apply to the chosen field:

Editing AWS Glue managed data transform nodes 569

AWS Glue User Guide

• avg - calculates the average

• countDistinct - calculates the number of unique non-null values

• count - calculates the number of non-null values

• first - returns the first value that satisfies the 'group by' criteria

• last - returns the last value that satisfies the 'group by' criteria

• kurtosis - calculates the the sharpness of the peak of a frequency-distribution curve

• max - returns the highest value that satisfies the 'group by' criteria

• min - returns the lowest value that satisfies the 'group by' criteria

• skewness - measure of the asymmetry of the probability distribution of a normal
distribution

• stddev_pop - calculates the population standard deviation and returns the square root of
the population variance

• sum - the sum of all values in the group

• sumDistinct - the sum of distinct values in the group

• var_samp - the sample variance of the group (ignores nulls)

• var_pop - the population variance of the group (ignores nulls)

Flatten nested structs

Flatten the fields of nested structs in the data, so they become top level fields. The new fields are
named using the field name prefixed with the names of the struct fields to reach it, separated by
dots.

For example, if the data has a field of type Struct named “phone_numbers”, which among
other fields has one of type “Struct” named “home_phone” with two fields: “country_code”
and “number”. Once flattened, these two fields will become top level fields named:
“phone_numbers.home_phone.country_code” and “phone_numbers.home_phone.number”
respectively.

To add a Flatten transform node in your job diagram

1. Open the Resource panel and then choose the Transforms tab, then Flatten to add a new
transform to your job diagram. You can also use the search bar by entering 'Flatten', then
clicking the Flatten node. The node selected at the time of adding the node will be its parent.

Editing AWS Glue managed data transform nodes 570

AWS Glue User Guide

2. (Optional) On the Node properties tab, you can enter a name for the node in the job diagram.
If a node parent is not already selected, then choose a node from the Node parents list to use
as the input source for the transform.

3. (Optional) On the Transform tab, you can limit the maximum nesting level to flatten. For
instance, setting that value to 1 means that only top-level structs will be flattened. Setting the
max to 2 will flatten the top level and the structs directly under it.

Add a UUID column

When you add a UUID (Universally Unique Identified) column, each row will be assigned a unique
36-character string.

To add a UUID transform node in your job diagram

1. Open the Resource panel and then choose UUID to add a new transform to your job diagram.
The node selected at the time of adding the node will be its parent.

Editing AWS Glue managed data transform nodes 571

AWS Glue User Guide

2. (Optional) On the Node properties tab, you can enter a name for the node in the job diagram.
If a node parent is not already selected, then choose a node from the Node parents list to use
as the input source for the transform.

3. (Optional) On the Transform tab, you can customize the name of the new column. By default
it will be named "uuid".

Add an identifier column

Assign a numeric Identifier for each row in the dataset.

To add an Identifier transform node in your job diagram

1. Open the Resource panel and then choose Identifier to add a new transform to your job
diagram. The node selected at the time of adding the node will be its parent.

2. (Optional) On the Node properties tab, you can enter a name for the node in the job diagram.
If a node parent is not already selected, then choose a node from the Node parents list to use
as the input source for the transform.

3. (Optional) On the Transform tab, you can customize the name of the new column. By default,
it will be named "id".

4. (Optional) If the job processes and stores data incrementally, you want to avoid the same ids to
be reused between job runs.

On the Transform tab, mark the unique checkbox option. It will include the job timestamp
in the identifier, making it unique between multiple runs. To allow for the larger number, the
column instead of type long will be a decimal.

Convert a column to timestamp type

You can use the transform To timestamp to change the data type of a numeric or string column
into timestamp, so that it can be stored with that data type or applied to other transforms that
require a timestamp.

To add a To timestamp transform node in your job diagram

1. Open the Resource panel and then choose To timestamp to add a new transform to your job
diagram. The node selected at the time of adding the node will be its parent.

Editing AWS Glue managed data transform nodes 572

AWS Glue User Guide

2. (Optional) On the Node properties tab, you can enter a name for the node in the job diagram.
If a node parent is not already selected, then choose a node from the Node parents list to use
as the input source for the transform.

3. On the Transform tab, enter the name of the column to be converted.

4. On the Transform tab, define how to parse the column selected by choosing the type.

If the value is a number, it can be expressed in seconds (Unix/Python timestamp), milliseconds
or microseconds, choose the corresponding option.

If the value is a formatted string, choose the "iso" type, the string needs to conform to one of
the variants of the ISO format, for example: “2022-11-02T14:40:59.915Z“.

If you don’t know the type at this point or different rows use different types, then you can
choose ”autodetect“ and the system will make its best guess, with a small performance cost.

5. (Optional) On the Transform tab, instead of converting the selected column, you can create a
new one and keep the original by entering a name for the new column.

Convert a timestamp column to a formatted string

Format a timestamp column into a string based on a pattern. You can use Format timestamp to
get date and time as a string with the desired format. You can define the format using Spark date
syntax as well as most of the Python date codes.

For example, if you want your date string to be formatted like “2023-01-01 00:00”, you can define
such format using the Spark syntax as “yyyy-MM-dd HH:mm” or the equivalent Python date codes
as “%Y-%m-%d %H:%M”

To add a Format timestamp transform node in your job diagram

1. Open the Resource panel and then choose Format timestamp to add a new transform to your
job diagram. The node selected at the time of adding the node will be its parent.

2. (Optional) On the Node properties tab, you can enter a name for the node in the job diagram.
If a node parent is not already selected, then choose a node from the Node parents list to use
as the input source for the transform.

3. On the Transform tab, enter the name of the column to be converted.

4. On the Transform tab, enter the Timestamp format pattern to use, expressed using Spark
date syntax or Python date codes.

Editing AWS Glue managed data transform nodes 573

https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html
https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes
https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html
https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes

AWS Glue User Guide

5. (Optional) On the Transform tab, instead of converting the selected column, you can create a
new one and keep the original by entering a name for the new column.

Creating a Conditional Router transformation

The Conditional Router transform allows you to apply multiple conditions to incoming data.
Each row of the incoming data is evaluated by a group filter condition and processed into its
corresponding group. If a row meets more than one group filter condition, the transform passes
the row to multiple groups. If a row does not meet any condition, it can either be dropped or
routed to a default output group.

This transform is similar to the filter transform, but useful for users who want to test the same
input data on multiple conditions.

To add a Conditional Router transform:

1. Choose a node where you will perform the conditional router transformation. This can be a
source node or another transform.

2. Choose Action, then use the search bar to find and choose 'Conditional Router'. A Conditional
Router transform is added along with two output nodes. One output node, 'Default group',
contains records which do not meet any of the conditions defined in the other output node(s).
The default group cannot be edited.

Editing AWS Glue managed data transform nodes 574

AWS Glue User Guide

You can add additional output groups by choosing Add group. For each output group, you can
name the group and add filter conditions and a logical operator.

Editing AWS Glue managed data transform nodes 575

AWS Glue User Guide

3. Rename the output group name by entering a new name for the group. AWS Glue Studio will
automatically name your groups for you (for example, 'output_group_1').

4. Choose a logical operator (AND, OR) and add a Filter condition by specifying the Key,
Operation, and Value. Logical operators allow you to implement more than one filter
condition and perform the logical operator on each filter condition you specify.

When specifying the key, you can choose from available keys in your schema. You can then
choose the available operation depending on the type of key you selected. For example, if the
key type is 'string', then the available operation to choose from is 'matches'.

Editing AWS Glue managed data transform nodes 576

AWS Glue User Guide

5. Enter the value in the Value field. To add additional filter conditions, choose Add condition. To
remove filter conditions, choose the trash can icon.

Using the Concatenate Columns transform to append columns

The Concatenate transform allows you to build a new string column using the values of other
columns with an optional spacer. For example, if we define a concatenated column “date” as the
concatenation of “year”, “month” and “day” (in that order) with “-” as the spacer, we would get:

day month year date

01 01 2020 2020-01-01

02 01 2020 2020-01-02

03 01 2020 2020-01-03

04 01 2020 2020-01-04

To add a Concatenate transform:

1. Open the Resource panel. Then choose Concatenate Columns to add a new transform to your
job diagram. The node selected at the time of adding the node will be its parent.

2. (Optional) On the Node properties tab, you can enter a name for the node in the job diagram.
If a node parent is not already selected, then choose a node from the Node parents list to use
as the input source for the transform.

Editing AWS Glue managed data transform nodes 577

AWS Glue User Guide

3. On the Transform tab, enter the name of the column that will hold the concatenated string
as well as the columns to concatenate. The order in which you check the columns in the
dropdown will be the order used.

4. Spacer - optional – Enter a string to place betwen the concatenated fields. By default, there is
no spacer.

5. Null value - optional – Enter a string to use when a column value is null. By default, in the
cases where columns have the value 'NULL' or 'NA', an empty string is used.

Using the Split String transform to break up a string column

The Split String transform allows you to break up a string into an array of tokens using a regular
expression to define how the split is done. You can then keep the column as an array type or apply
an Array To Columns transform after this one, to extract the array values onto top level fields,
assuming that each token has a meaning we know beforehand. Also, if the order of the tokens
is irrelevant (for instance, a set of categories), you can use the Explode transform to generate a
separate row for each value.

Editing AWS Glue managed data transform nodes 578

AWS Glue User Guide

For example, you can split a the column “categories” using a comma as a pattern to add a column
“categories_arr”.

product_id categories categories_arr

1 sports,winter [sports, winter]

2 garden,tools [garden, tools]

3 videogames [videogames]

4 game,boardgame,social [game, boardgame, social]

To add a Split String transform:

1. Open the Resource panel and then choose Split String to add a new transform to your job
diagram. The node selected at the time of adding the node will be its parent.

2. (Optional) On the Node properties tab, you can enter a name for the node in the job diagram.
If a node parent is not already selected, then choose a node from the Node parents list to use
as the input source for the transform.

3. On the Transform tab, choose the column to split and enter the pattern to use to split the
string. In most cases you can just enter the character(s) unless it has a special meaning as a
regular expression and needs to be escaped. The characters that need escaping are: \.[]{}
()<>*+-=!?^$| by adding a backslash in front of the character. For instance if you want to
separate by a dot ('.') you need to enter \.. However, a comma doesn’t have a special meaning
and can just be specified as is: ,.

Editing AWS Glue managed data transform nodes 579

AWS Glue User Guide

4. (Optional) If you want to keep the original string column, then you can enter a name for a new
array column, this way keeping both the original string column and the new tokenized array
column.

Using the Array To Columns transform to extract the elements of an array into
top level columns

The Array To Columns transform allows you extract some or all the elements of a column of type
array into new columns. The transform will fill the new columns as much as possible if the array
has enough values to extract, optionally taking the elements in the positions specified.

For instance, if you have an array column “subnet”, which was the result of applying the “Split
String” transform on a ip v4 subnet, you can extract the first and forth positions into new columns
“first_octect” and “forth_octect”. The output of the transform in this example would be (notice the
last two rows have shorter arrays than expected):

subnet first_octect fourth_octect

[54, 240, 197, 238] 54 238

[192, 168, 0, 1] 192 1

Editing AWS Glue managed data transform nodes 580

AWS Glue User Guide

subnet first_octect fourth_octect

[192, 168] 192

[]

To add a Array To Columns transform:

1. Open the Resource panel and then choose Array To Columns to add a new transform to your
job diagram. The node selected at the time of adding the node will be its parent.

2. (Optional) On the Node properties tab, you can enter a name for the node in the job diagram.
If a node parent is not already selected, then choose a node from the Node parents list to use
as the input source for the transform.

3. On the Transform tab, choose the array column to extract and enter the list of new columns
for the tokens extracted.

4. (Optional) If you don’t want to take the array tokens in order to assign to columns, you can
specify the indexes to take which will be assigned to the list of columns in the same order
specified. For instance if the output columns are “column1, column2, column3” and the

Editing AWS Glue managed data transform nodes 581

AWS Glue User Guide

indexes “4, 1, 3”, the forth element of the array will go to column1, the first to column2 and
the third to column3 (if the array is shorter than the index number, a NULL value will be set).

Using the Add Current Timestamp transform

The Add Current Timestamp transform allows you to mark the rows with the time on which the
data was processed. This is useful for auditing purposes or to track latency in the data pipeline. You
can add this new column as a timestamp data type or a formatted string.

To add a Add Current Timestamp transform:

1. Open the Resource panel and then choose Add Current Timestamp to add a new transform to
your job diagram. The node selected at the time of adding the node will be its parent.

2. (Optional) On the Node properties tab, you can enter a name for the node in the job diagram.
If a node parent is not already selected, then choose a node from the Node parents list to use
as the input source for the transform.

3. (Optional) On the Transform tab, enter a custom name for the new column and a format if
you rather the column to be a formatted date string.

Using the Pivot Rows to Columns transform

The Pivot Rows to Columns transform allows you to aggregate a numeric column by rotating
unique values on selected columns which become new columns (if multiple columns are selected,
the values are concatenated to name the new columns). That way rows are consolidated while

Editing AWS Glue managed data transform nodes 582

AWS Glue User Guide

having more columns with partial aggregations for each unique value. For example, if you have this
dataset of sales by month and country (sorted to be easier to illustrate):

year month country amount

2020 Jan uk 32

2020 Jan de 42

2020 Jan us 64

2020 Feb uk 67

2020 Feb de 4

2020 Feb de 7

2020 Feb us 6

2020 Feb us 12

2020 Jan us 90

If you pivot amount and country as the aggregation columns, new columns are created from the
original country column. In the table below, you have new columns for de, uk, and us instead of
the country column.

year month de uk us

2020 Jan 42 32 64

2020 Jan 11 67 18

2021 Jan 90

If instead you want to pivot both the month and county, you get a column for each combination of
the values of those columns:

Editing AWS Glue managed data transform nodes 583

AWS Glue User Guide

year Jan_de Jan_uk Jan_us Feb_de Feb_uk Feb_us

2020 42 32 64 11 67 18

2021 90

To add a Pivot Rows To Columns transform:

1. Open the Resource panel and then choose Pivot Rows To Columns to add a new transform to
your job diagram. The node selected at the time of adding the node will be its parent.

2. (Optional) On the Node properties tab, you can enter a name for the node in the job diagram.
If a node parent is not already selected, then choose a node from the Node parents list to use
as the input source for the transform.

3. On the Transform tab, choose the numeric column which will be aggregated to produce the
values for the new columns, the aggregation function to apply and the column(s) to convert its
unique values into new columns.

Editing AWS Glue managed data transform nodes 584

AWS Glue User Guide

Using the Unpivot Columns To Rows transform

The Unpivot transform allows you convert columns into values of new columns generating a row
for each unique value. It’s the opposite of pivot but note that it’s not equivalent since it cannot
separate rows with identical values that were aggregated or split combinations into the original
columns (you can do that later using a Split transform). For example, if you have the following
table:

year month de uk us

2020 Jan 42 32 64

2020 Feb 11 67 18

2021 Jan 90

You can unpivot the columns: “de”, “uk” and “us” into a column “country” with the value “amount”,
and get the following (sorted here for illustration purposes):

year month country amount

2020 Jan uk 32

2020 Jan de 42

2020 Jan us 64

2020 Feb uk 67

2020 Feb de 11

2020 Feb us 18

2021 Jan us 90

Notice the columns that have a NULL value (“de” and “uk of Jan 2021) don’t get generated by
default. You can enable that option to get:

Editing AWS Glue managed data transform nodes 585

AWS Glue User Guide

year month country amount

2020 Jan uk 32

2020 Jan de 42

2020 Jan us 64

2020 Feb uk 67

2020 Feb de 11

2020 Feb us 18

2021 Jan us 90

2021 Jan de

2021 Jan uk

To add a Unpivot Columns to Rows transform:

1. Open the Resource panel and then choose Unpivot Columns to Rows to add a new transform
to your job diagram. The node selected at the time of adding the node will be its parent.

2. (Optional) On the Node properties tab, you can enter a name for the node in the job diagram.
If a node parent is not already selected, then choose a node from the Node parents list to use
as the input source for the transform.

3. On the Transform tab, enter the new columns to be created to hold the names and values of
the columns chosen to unpivot.

Editing AWS Glue managed data transform nodes 586

AWS Glue User Guide

Using the Autobalance Processing transform to optimize your runtime

The Autobalance Processing transform redistributes the data among the workers for better
performance. This helps in cases where the data is unbalanced or as it comes from the source
doesn’t allow enough parallel processing on it. This is common where the source is gzipped or is
JDBC. The redistribution of data has a modest performance cost, so the optimization might not
always compensate that effort if the data was already well balanced. Underneath, the transform
uses Apache Spark repartition to randomly reassign data among a number of partitions optimal
for the cluster capacity. For advanced users, it’s possible to enter a number of partitions manually.
In addition, it can be used to optimize the writing of partitioned tables by reorganizing the data
based on specified columns. This results in output files that are more consolidated.

1. Open the Resource panel and then choose Autobalance Processing to add a new transform to
your job diagram. The node selected at the time of adding the node will be its parent.

2. (Optional) On the Node properties tab, you can enter a name for the node in the job diagram.
If a node parent is not already selected, then choose a node from the Node parents list to use
as the input source for the transform.

3. (Optional) On the Transform tab, you can enter a number of partitions. In general, it’s
recommended that you let the system decide this value, however you can tune the multiplier
or enter a specific value if you need to control this. If you are going to save the data

Editing AWS Glue managed data transform nodes 587

AWS Glue User Guide

partitioned by columns, you can choose the same columns as repartition columns. This way it
will minimize the number of files on each partition and avoid having many files per partitions,
which would hinder the performance of the tools querying that data.

Using the Derived Column transform to combine other columns

The Derived Column transform allows you to define a new column based on a math formula or
SQL expression in which you can use other columns in the data, as well as constants and literals.
For instance, to derive a “percentage” column from the columns "success" and "count", you can
enter the SQL expression: "success * 100 / count || '%'".

Example result:

success count percentage

14 100 14%

6 20 3%

3 40 7.5%

To add a Derived Column transform:

1. Open the Resource panel and then choose Derived Column to add a new transform to your
job diagram. The node selected at the time of adding the node will be its parent.

Editing AWS Glue managed data transform nodes 588

AWS Glue User Guide

2. (Optional) On the Node properties tab, you can enter a name for the node in the job diagram.
If a node parent is not already selected, then choose a node from the Node parents list to use
as the input source for the transform.

3. On the Transform tab, enter the name of the column and the expression for its content.

Using the Lookup transform to add matching data from a catalog table

The Lookup transform allows you to add columns from a defined catalog table when the keys
match the defined lookup columns in the data. This is equivalent to doing a left outer join between
the data and the lookup table using as condition matching columns.

To add a Lookup transform:

1. Open the Resource panel and then choose Lookup to add a new transform to your job
diagram. The node selected at the time of adding the node will be its parent.

2. (Optional) On the Node properties tab, you can enter a name for the node in the job diagram.
If a node parent is not already selected, then choose a node from the Node parents list to use
as the input source for the transform.

3. On the Transform tab, enter the fully qualified catalog table name to use to perform the
lookups. For example, if your database is “mydb” and your table “mytable” then enter
“mydb.mytable”. Then enter the criteria to find a match in the lookup table, if the lookup key
is composed. Enter the list of key columns separated by commas. If one or more of the key
columns don’t have the same name then you need to define the match mapping.

Editing AWS Glue managed data transform nodes 589

AWS Glue User Guide

For example, if the data columns are “user_id” and “region” and in the users table the
corresponding columns are named “id” and “region“, then in the Columns to match field,
enter: ”user_id=id, region“. You could do region=region but it’s not needed since they are the
same.

4. Finally, enter the columns to bring from the row matched in the lookup table to incorporate
them into the data. If no match was found those columns will be set to NULL.

Note

Underneath the Lookup transform, it is using a left join in order to be efficient. If the
lookup table has a composite key, ensure the columns to match are setup to match all
the key columns so that only one match can occur. Otherwise, multiple lookup rows
will match and this will result in extra rows added for each of those matches.

Using the Explode Array or Map Into Rows transform

The Explode transform allows you to extract values from a nested structure into individual rows
that are easier to manipulate. In the case of an array, the transform will generate a row for each
value of the array, replicating the values for the other columns in the row. In the case of a map,

Editing AWS Glue managed data transform nodes 590

AWS Glue User Guide

the transform will generate a row for each entry with the key and value as columns plus any other
columns in the row.

For example, if we have this dataset which has a “category” array column with multiple values.

product_id category

1 [sports, winter]

2 [garden, tools]

3 [videogames]

4 [game, boardgame, social]

5 []

If you explode the 'category' column into a column with the same name, you will override the
column. You can select that you want NULLs included to get the following (ordered for illustration
purposes):

product_id category

1 sports

1 winter

2 garden

2 tool

3 videogames

4 game

4 boardgame

4 social

5

Editing AWS Glue managed data transform nodes 591

AWS Glue User Guide

To add a Explode Array Or Map Into Rows transform:

1. Open the Resource panel and then choose Explode Array Or Map Into Rows to add a new
transform to your job diagram. The node selected at the time of adding the node will be its
parent.

2. (Optional) On the Node properties tab, you can enter a name for the node in the job diagram.
If a node parent is not already selected, then choose a node from the Node parents list to use
as the input source for the transform.

3. On the Transform tab, choose the column to explode (it must be an array or map type). Then
enter a name for the column for the items of the array or the names of the columns for the
keys and values if you are exploding a map.

4. (Optional) On the Transform tab, by default if the column to explode is NULL or has an empty
structure, it will be omitted on the exploded dataset. If you want to keep the row (with the
new columns as NULL) then check “Include NULLs”.

Editing AWS Glue managed data transform nodes 592

AWS Glue User Guide

Using the Record Matching transform to invoke an existing data classification
transform

This transform invokes an existing Record Matching machine learning data classification transform.

The transform evaluates the current data against the trained model based on labels. A column
"match_id" is added to assign each row to a group of items that are considered equivalent based
on the algorithm training. For more information, see Record matching with Lake Formation
FindMatches.

Note

The version of AWS Glue used by the visual job must match the version that AWS Glue used
to create the Record Matching transform.

To add a Record Matching transform node to your job diagram

1. Open the Resource panel, and then choose Record Matching to add a new transform to your
job diagram. The node selected at the time of adding the node will be its parent.

Editing AWS Glue managed data transform nodes 593

https://docs.aws.amazon.com/glue/latest/dg/machine-learning.html
https://docs.aws.amazon.com/glue/latest/dg/machine-learning.html

AWS Glue User Guide

2. In the node properties panel, you can enter a name for the node in the job diagram. If a node
parent isn't already selected, choose a node from the Node parents list to use as the input
source for the transform.

3. On the Transform tab, enter the ID taken from the Machine learning transforms page:

4. (Optional) On the Transform tab, you can check the option to add the confidence scores. At
the cost of extra computing, the model will estimate a confidence score for each match as an
additional column.

Removing null rows

This transform removes from the dataset rows that have all columns as null. In addition, you can
extend this criteria to include empty fields, so as to keep rows where at least one column is non
empty.

To add a Remove Null Rows transform node to your job diagram

1. Open the Resource panel, and then choose Remove Null Rows to add a new transform to your
job diagram. The node selected at the time of adding the node will be its parent.

2. In the node properties panel, you can enter a name for the node in the job diagram. If a node
parent isn't already selected, choose a node from the Node parents list to use as the input
source for the transform.

3. (Optional) On the Transform tab, check the Extended option if you want to require rows
not just to not be null but also not empty, this way empty strings, arrays or maps will be
considered nulls for the purpose of this transform.

Editing AWS Glue managed data transform nodes 594

AWS Glue User Guide

Parsing a string column containing JSON data

This transform parses a string column containing JSON data and convert it to a struct or an array
column, depending if the JSON is an object or an array, respectively. Optionally you can keep both
the parsed and original column.

The JSON schema can be provided or inferred (in the case of JSON objects), with optional
sampling.

To add a Parse JSON Column transform node to your job diagram

1. Open the Resource panel, and then choose Parse JSON Column to add a new transform to
your job diagram. The node selected at the time of adding the node will be its parent.

2. In the node properties panel, you can enter a name for the node in the job diagram. If a node
parent isn't already selected, choose a node from the Node parents list to use as the input
source for the transform.

3. On the Transform tab, select the column containing the JSON string.

4. (Optional) On the Transform tab, enter the schema that the JSON data follows using SQL
syntax, for instance: "field1 STRING, field2 INT" in the case of an object or "ARRAY<STRING>" in
the case of an array.

If the case of an array the schema is required but in the case of an object, if the schema is
not specified it will be inferred using the data. To reduce the impact of inferring the schema
(especially on a large dataset), you can avoid reading the whole data twice by entering a Ratio
of samples to use to infer schema. If the value is lower than 1, the corresponding ratio of
random samples is used to infer the schema. If the data is reliable and the object is consistent
between rows, you can use a small ratio such as 0.1 to improve performance.

5. (Optional) On the Transform tab, you can enter a new column name if you want to keep both
the original string column and the parsed column.

Extracting a JSON path

This transform extracts new columns from a JSON string column. This transform is useful when you
only need a few data elements and don't want to import the entire JSON content into the table
schema.

Editing AWS Glue managed data transform nodes 595

AWS Glue User Guide

To add an Extract JSON Path transform node to your job diagram

1. Open the Resource panel, and then choose Extract JSON Path to add a new transform to your
job diagram. The node selected at the time of adding the node will be its parent.

2. In the node properties panel, you can enter a name for the node in the job diagram. If a node
parent isn't already selected, choose a node from the Node parents list to use as the input
source for the transform.

3. On the Transform tab, select the column containing the JSON string. Enter one of more JSON
path expressions separated by commas, each one referencing how to extract a value out of the
JSON array or object. For instance, if the JSON column contained an objects with properties
"prop_1" and "prop2" you could extract both specifying their names "prop_1, prop_2".

If the JSON field has special characters, for instance to extract the property from this JSON
{"a. a": 1} you could use the path $['a. a']. The exception is the comma because it
is reserved to separate paths. Then enter the corresponding column names for each path,
separated by commas.

4. (Optional) On the Transform tab, you can check to drop the JSON column once extracted, this
makes sense when you don't need the rest of the JSON data once you have extracted the parts
you need.

Extracting string fragments using a regular expression

This transform extracts string fragments using a regular expression and creates a new column out
of it, or multiple columns if using regex groups.

To add a Regex Extractor transform node to your job diagram

1. Open the Resource panel, and then choose Regex Extractor to add a new transform to your
job diagram. The node selected at the time of adding the node will be its parent.

2. In the node properties panel, you can enter a name for the node in the job diagram. If a node
parent isn't already selected, choose a node from the Node parents list to use as the input
source for the transform.

3. On the Transform tab, enter the regular expression and the column on which it needs to
be applied. Then enter the name of the new column on which to store the matching string.
The new column will be null only if the source column is null, if the regex doesn’t match the
column will be empty.

Editing AWS Glue managed data transform nodes 596

AWS Glue User Guide

If the regex uses groups, there has be a corresponding column name separated by comma but
you can skip groups by leaving the column name empty.

For example, if you have a column "purchase_date" with a string using both long and short ISO
date formats, then you want to extract the year, month, day and hour, when available. Notice
the hour group is optional, otherwise in the rows where not available, all the extracted groups
would be empty strings (because the regex didn’t match). In this case, we don't want the group
to make the time optional but the inner one, so we leave the name empty and it doesn’t get
extracted (that group would include the T character).

Resulting in the data preview:

Editing AWS Glue managed data transform nodes 597

AWS Glue User Guide

Creating a custom transformation

If you need to perform more complicated transformations on your data, or want to add data
property keys to the dataset, you can add a Custom code transform to your job diagram. The
Custom code node allows you to enter a script that performs the transformation.

When using custom code, you must use a schema editor to indicate the changes made to the
output through the custom code. When editing the schema, you can perform the following actions:

• Add or remove data property keys

• Change the data type of data property keys

• Change the name of data property keys

• Restructure a nested property key

You must use a SelectFromCollection transform to choose a single DynamicFrame from the result
of your Custom transform node before you can send the output to a target location.

Use the following tasks to add a custom transform node to your job diagram.

Editing AWS Glue managed data transform nodes 598

AWS Glue User Guide

Adding a custom code transform node to the job diagram

To add a custom transform node to your job diagram

1. (Optional) Open the Resource panel and then choose Custom transform to add a custom
transform to your job diagram.

2. On the Node properties tab, enter a name for the node in the job diagram. If a node parent is
not already selected, or if you want multiple inputs for the custom transform, then choose a
node from the Node parents list to use as the input source for the transform.

Entering code for the custom transform node

You can type or copy code into an input field. The job uses this code to perform the data
transformation. You can provide a code snippet in either Python or Scala. The code should take one
or more DynamicFrames as input and returns a collection of DynamicFrames.

To enter the script for a custom transform node

1. With the custom transform node selected in the job diagram, choose the Transform tab.

2. In the text entry field under the heading Code block, paste or enter the code for the
transformation. The code that you use must match the language specified for the job on the
Job details tab.

When referring to the input nodes in your code, AWS Glue Studio names the DynamicFrames
returned by the job diagram nodes sequentially based on the order of creation. Use one of the
following naming methods in your code:

• Classic code generation – Use functional names to refer to the nodes in your job diagram.

• Data source nodes: DataSource0, DataSource1, DataSource2, and so on.

• Transform nodes: Transform0, Transform1, Transform2, and so on.

• New code generation – Use the name specified on the Node properties tab of a
node, appended with '_node1', '_node2', and so on. For example, S3bucket_node1,
ApplyMapping_node2, S3bucket_node2, MyCustomNodeName_node1.

For more information about the new code generator, see Script code generation.

The following examples show the format of the code to enter in the code box:

Editing AWS Glue managed data transform nodes 599

AWS Glue User Guide

Python

The following example takes the first DynamicFrame received, converts it to a DataFrame to
apply the native filter method (keeping only records that have over 1000 votes), then converts
it back to a DynamicFrame before returning it.

def FilterHighVoteCounts (glueContext, dfc) -> DynamicFrameCollection:
 df = dfc.select(list(dfc.keys())[0]).toDF()
 df_filtered = df.filter(df["vote_count"] > 1000)
 dyf_filtered = DynamicFrame.fromDF(df_filtered, glueContext, "filter_votes")
 return(DynamicFrameCollection({"CustomTransform0": dyf_filtered}, glueContext))

Scala

The following example takes the first DynamicFrame received, converts it to a DataFrame to
apply the native filter method (keeping only records that have over 1000 votes), then converts
it back to a DynamicFrame before returning it.

object FilterHighVoteCounts {
 def execute(glueContext : GlueContext, input : Seq[DynamicFrame]) :
 Seq[DynamicFrame] = {
 val frame = input(0).toDF()
 val filtered = DynamicFrame(frame.filter(frame("vote_count") > 1000),
 glueContext)
 Seq(filtered)
 }
}

Editing the schema in a custom transform node

When you use a custom transform node, AWS Glue Studio cannot automatically infer the output
schemas created by the transform. You use the schema editor to describe the schema changes
implemented by the custom transform code.

A custom code node can have any number of parent nodes, each providing a DynamicFrame as
input for your custom code. A custom code node returns a collection of DynamicFrames. Each
DynamicFrame that is used as input has an associated schema. You must add a schema that
describes each DynamicFrame returned by the custom code node.

Editing AWS Glue managed data transform nodes 600

AWS Glue User Guide

Note

When you set your own schema on a custom transform, AWS Glue Studio does not inherit
schemas from previous nodes.To update the schema, select the Custom transform node,
then choose the Data preview tab. Once the preview is generated, choose 'Use Preview
Schema'. The schema will then be replaced by the schema using the preview data.

To edit the output schemas for a custom transform node

1. With the custom transform node selected in the job diagram, in the node details panel, choose
the Output schema tab.

2. Choose Edit to make changes to the schema.

If you have nested data property keys, such as an array or object, you can choose the Expand-
Rows icon

()
on the top right of each schema panel to expand the list of child data property
keys. After you choose this icon, it changes to the Collapse-Rows icon

(),
which you can choose to collapse the list of child property keys.

3. Modify the schema using the following actions in the section on the right side of the page:

• To rename a property key, place the cursor in the Key text box for the property key, then
enter the new name.

• To change the data type for a property key, use the list to choose the new data type for the
property key.

• To add a new top-level property key to the schema, choose the Overflow
()
icon to the left of the Cancel button, and then choose Add root key.

• To add a child property key to the schema, choose the Add-Key icon
associated

with the parent key. Enter a name for the child key and choose the data type.

• To remove a property key from the schema, choose the Remove icon

()
to the far right of the key name.

Editing AWS Glue managed data transform nodes 601

AWS Glue User Guide

4. If your custom transform code uses multiple DynamicFrames, you can add additional output
schemas.

• To add a new, empty schema, choose the Overflow
()
icon, and then choose Add output schema.

• To copy an existing schema to a new output schema, make sure the schema
you want to copy is displayed in the schema selector. Choose the Overflow
()
icon, and then choose Duplicate.

If you want to remove an output schema, make sure the schema you
want to copy is displayed in the schema selector. Choose the Overflow
()
icon, and then choose Delete.

5. Add new root keys to the new schema or edit the duplicated keys.

6. When you are modifying the output schemas, choose the Apply button to save your changes
and exit the schema editor.

If you do not want to save your changes, choose the Cancel button.

Configure the custom transform output

A custom code transform returns a collection of DynamicFrames, even if there is only one
DynamicFrame in the result set.

To process the output from a custom transform node

1. Add a SelectFromCollection transform node, which has the custom transform node as its
parent node. Update this transform to indicate which dataset you want to use. See Using
SelectFromCollection to choose which dataset to keep for more information.

2. Add additional SelectFromCollection transforms to the job diagram if you want to use
additional DynamicFrames produced by the custom transform node.

Consider a scenario in which you add a custom transform node to split a flight dataset into
multiple datasets, but duplicate some of the identifying property keys in each output schema,

Editing AWS Glue managed data transform nodes 602

AWS Glue User Guide

such as the flight date or flight number. You add a SelectFromCollection transform node for
each output schema, with the custom transform node as its parent.

3. (Optional) You can then use each SelectFromCollection transform node as input for other nodes
in the job, or as a parent for a data target node.

AWS Glue custom visual transforms

Custom visual transforms allow you to create transforms and make them available for use in AWS
Glue Studio jobs. Custom visual transforms enable ETL developers, who may not be familiar with
coding, to search and use a growing library of transforms using the AWS Glue Studio interface.

You can create a custom visual transform, then upload it to Amazon S3 to make available for use
through the visual editor in AWS Glue Studio to work with these jobs.

Topics

• Getting started with custom visual transforms

• Step 1. Create a JSON config file

• Step 2. Implement the transform logic

• Step 3. Validate and troubleshoot custom visual transforms in AWS Glue Studio

• Step 4. Update custom visual transforms as needed

• Step 5. Use custom visual transforms in AWS Glue Studio

• Usage examples

• Examples of custom visual scripts

• Video

Getting started with custom visual transforms

To create a custom visual transform, you go through the following steps.

• Step 1. Create a JSON config file

• Step 2. Implement the transform logic

• Step 3. Validate the custom visual transform

• Step 4. Update the custom visual transform as needed

• Step 5. Use the custom visual transform in AWS Glue Studio

Custom visual transforms 603

AWS Glue User Guide

Get started by setting up the Amazon S3 bucket and continue to Step 1. Create a JSON config file.

Prerequisites

Customer-supplied transforms reside within a customer AWS account. That account owns the
transforms and therefore has all permissions to view (search and use), edit, or delete them.

In order to use a custom transform in AWS Glue Studio, you will need to create and upload two
files to the Amazon S3 assets bucket in that AWS account:

• Python file – contains the transform function

• JSON file – describes the transform. This is also known as the config file that is required to
define the transform.

In order to pair the files together, use the same name for both. For example:

• myTransform.json

• myTransform.py

Optionally, you can give your custom visual transform a custom icon by providing a SVG file
containing the icon. In order to pair the files together, use the same name for the icon:

• myTransform.svg

AWS Glue Studio will automatically match them using their respective file names. File names
cannot be the same for any existing module.

Recommended convention for transform file name

AWS Glue Studio will import your file as module (for example, import myTransform) in your
job script. Therefore, your file name must follow the same naming rules set for python variable
names (identifiers). Specifically, they must start with either a letter or an underscore and then be
composed entirely of letters, digits, and/or underscores.

Note

Ensure your transform file name is not conflicting with existing loaded python modules (for
example, sys, array, copy etc.) to avoid unexpected runtime issues.

Custom visual transforms 604

AWS Glue User Guide

Setting up the Amazon S3 bucket

Transforms you create are stored in Amazon S3 and is owned by your AWS account. You create new
custom visual transforms by simply uploading files (json and py) to the Amazon S3 assets folder
where all job scripts are currently stored (for example, s3://aws-glue-assets-<accountid>-
<region>/transforms). If using a custom icon, upload it as well. By default, AWS Glue Studio
will read all .json files from the /transforms folder in the same S3 bucket.

Step 1. Create a JSON config file

A JSON config file is required to define and describe your custom visual transform. The schema for
the config file is as follows.

JSON file structure

Fields

• name: string – (required) the transform system name used to identify transforms. Follow
the same naming rules set for python variable names (identifiers). Specifically, they must start
with either a letter or an underscore and then be composed entirely of letters, digits, and/or
underscores.

• displayName: string – (optional) the name of the transform displayed in the AWS Glue
Studio visual job editor. If no displayName is specified, the name is used as the name of the
transform in AWS Glue Studio.

• description: string – (optional) the transform description is displayed in AWS Glue Studio
and is searchable.

• functionName: string – (required) the Python function name is used to identify the function
to call in the Python script.

• path: string – (optional) the full Amazon S3 path to the Python source file. If not specified,
AWS Glue uses file name matching to pair the .json and .py files together. For example, the name
of the JSON file, myTransform.json, will be paired to the Python file, myTransform.py, on
the same Amazon S3 location.

• parameters: Array of TransformParameter object – (optional) the list of parameters
to be displayed when you configure them in the AWS Glue Studio visual editor.

TransformParameter fields

Custom visual transforms 605

AWS Glue User Guide

• name: string – (required) the parameter name that will be passed to the python function
as a named argument in the job script. Follow the same naming rules set for python variable
names (identifiers). Specifically, they must start with either a letter or an underscore and then be
composed entirely of letters, digits, and/or underscores.

• displayName: string – (optional) the name of the transform displayed in the AWS Glue
Studio visual job editor. If no displayName is specified, the name is used as the name of the
transform in AWS Glue Studio.

• type: string – (required) the parameter type accepting common Python data types. Valid
values: 'str' | 'int' | 'float' | 'list' | 'bool'.

• isOptional: boolean – (optional) determines whether the parameter is optional. By default
all parameters are required.

• description: string — (optional) description is displayed in AWS Glue Studio to help the
user configure the transform parameter.

• validationType: string – (optional) defines the way this parameter is validated.
Currently, it only supports regular expressions. By default, the validation type is set to
RegularExpression.

• validationRule: string – (optional) regular expression used to validate form input before
submit when validationType is set to RegularExpression. Regular expression syntax must
be compatible with RegExp Ecmascript specifications.

• validationMessage: string – (optional) the message to display when validation fails.

• listOptions: An array of TransformParameterListOption object OR a
string or the string value ‘column’ – (optional) options to display in Select or Multiselect
UI control. Accepting a list of comma separated value or a strongly type JSON object of type
TransformParameterListOption. It can also dynamically populate the list of columns from
the parent node schema by specifying the string value “column”.

• listType: string – (optional) Define options types for type = 'list'. Valid values: 'str' | 'int' |
'float' | 'list' | 'bool'. Parameter type accepting common python data types.

TransformParameterListOption fields

• value: string | int | float | bool – (required) option value.

• label: string – (optional) option label displayed in the select dropdown.

Custom visual transforms 606

https://tc39.es/ecma262/multipage/text-processing.html#sec-regexp-regular-expression-objects

AWS Glue User Guide

Transform parameters in AWS Glue Studio

By default, parameters are required unless mark as isOptional in the .json file. In AWS Glue
Studio, parameters are displayed in the Transform tab. The example shows user-defined
parameters such as Email Address, Phone Number, Your age, Your gender and Your origin country.

You can enforce some validations in AWS Glue Studio using regular expressions in the json
file by specifying the validationRule parameter and specifying a validation message in
validationMessage.

 "validationRule": "^\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
 "validationMessage": "Please enter a valid US number"

Note

Since validation occurs in the browser, your regular expression syntax must be compatible
with RegExp Ecmascript specifications. Python syntax is not supported for these regular
expressions.

Adding validation will prevent the user from saving the job with incorrect user input. AWS Glue
Studio displays the validation message as displayed in the example:

Custom visual transforms 607

https://tc39.es/ecma262/multipage/text-processing.html#sec-regexp-regular-expression-objects

AWS Glue User Guide

Parameters are displayed in AWS Glue Studio based on the parameter configuration.

• When type is any of the following: str, int or float, a text input field is displayed. For
example, the screenshot shows input fields for 'Email Address' and 'Your age' parameters.

• When type is bool, a checkbox is displayed.

• When type is str and listOptions is provided, a single select list is displayed.

• When type is list and listOptions and listType are provided, a multi-select list is
displayed.

Custom visual transforms 608

AWS Glue User Guide

Displaying a column selector as parameter

If the configuration requires the user to choose a column from the schema, you can display a
column selector so the user isn't required to type the column name. By setting the listOptions
field to '“column”, AWS Glue Studio dynamically displays a column selector based on the parent
node output schema. AWS Glue Studio can display either a single or multiple column selector.

The following example uses the schema:

Custom visual transforms 609

AWS Glue User Guide

To define your Custom Visual Transform parameter to display a single column:

1. In your JSON file, for the parameters object, set the listOptions value to "column". This
allows a user to choose a column from a pick list in AWS Glue Studio.

2. You can also allow multiple columns selection by defining the parameter as:

• listOptions: "column"

• type: "list"

Custom visual transforms 610

AWS Glue User Guide

Step 2. Implement the transform logic

Note

Custom visual transforms only support Python scripts. Scala is not supported.

To add the code that implements the function defined by the .json config file, it is recommended to
place the Python file in the same location as the .json file, with the same name but with the “.py”
extension. AWS Glue Studio automatically pairs the .json and .py files so that you don’t need to
specify the path of the Python file in the config file.

In the Python file, add the declared function, with the named parameters configured and register it
to be used in DynamicFrame. The following is an example of a Python file:

from awsglue import DynamicFrame

self refers to the DynamicFrame to transform,
the parameter names must match the ones defined in the config
if it's optional, need to provide a default value
def myTransform(self, email, phone, age=None, gender="",
 country="", promotion=False):
 resulting_dynf = # do some transformation on self
 return resulting_dynf

DynamicFrame.myTransform = myTransform

Custom visual transforms 611

AWS Glue User Guide

It is recommended to use an AWS Glue notebook for the quickest way to develop and test the
python code. See Getting started with notebooks in AWS Glue Studio.

To illustrate how to implement the transform logic, the custom visual transform in the example
below is a transform to filter incoming data to keep only the data related to a specific US state.
The .json file contains the parameter for functionName as custom_filter_state and two
arguments ("state" and "colName" with type "str").

The example config .json file is:

{
"name": "custom_filter_state",
"displayName": "Filter State",
"description": "A simple example to filter the data to keep only the state indicated.",
"functionName": "custom_filter_state",
"parameters": [
 {
 "name": "colName",
 "displayName": "Column name",
 "type": "str",
 "description": "Name of the column in the data that holds the state postal code"
 },
 {
 "name": "state",
 "displayName": "State postal code",
 "type": "str",
 "description": "The postal code of the state whole rows to keep"
 }
]
}

To implement the companion script in Python

1. Start a AWS Glue notebook and run the initial cell provided for the session to be started.
Running the initial cell creates the basic components required.

2. Create a function that performs the filtering as describe in the example and register it on
DynamicFrame. Copy the code below and paste into a cell in the AWS Glue notebook.

Custom visual transforms 612

https://docs.aws.amazon.com/glue/latest/ug/notebook-getting-started.html

AWS Glue User Guide

from awsglue import DynamicFrame

def custom_filter_state(self, colName, state):
 return self.filter(lambda row: row[colName] == state)

DynamicFrame.custom_filter_state = custom_filter_state

3. Create or load sample data to test the code in the same cell or a new cell. If you add the
sample data in a new cell, don't forget to run the cell. For example:

A few of rows of sample data to test
data_sample = [
 {"state": "CA", "count": 4},
 {"state": "NY", "count": 2},
 {"state": "WA", "count": 3}
]
df1 = glueContext.sparkSession.sparkContext.parallelize(data_sample).toDF()
dynf1 = DynamicFrame.fromDF(df1, glueContext, None)

4. Test to validate the “custom_filter_state” with different arguments:

5. After running several tests, save the code with the .py extension and name the .py file with a
name that mirrors the .json file name. The .py and .json files should be in the same transform
folder.

Copy the following code and paste it to a file and rename it with a .py file extension.

from awsglue import DynamicFrame

def custom_filter_state(self, colName, state):
 return self.filter(lambda row: row[colName] == state)

DynamicFrame.custom_filter_state = custom_filter_state

Custom visual transforms 613

AWS Glue User Guide

6. In AWS Glue Studio, open a visual job and add the transform to the job by selecting it from the
list of available Transforms.

To reuse this transform in a Python script code, add the Amazon S3 path to the .py file in
the job under “Referenced files path” and in the script, import the name of the python file
(without the extension) by adding it to the top of the file. For example: import <name of the
file (without the extension)>

Step 3. Validate and troubleshoot custom visual transforms in AWS Glue Studio

AWS Glue Studio validates the JSON config file before custom visual transforms are loaded into
AWS Glue Studio. Validation includes:

• Presence of required fields

• JSON format validation

• Incorrect or invalid parameters

• Presence of both the .py and .json files in the same Amazon S3 path

• Matching filenames for the .py and .json

If validation succeeds, the transform is listed in the list of available Actions in the visual editor. If a
custom icon has been provided, it should be visible beside the Action.

If validation fails, AWS Glue Studio does not load the custom visual transform.

Step 4. Update custom visual transforms as needed

Once created and used, the transform script can be updated as long as the transform follows the
corresponding json definition:

• The name used when assigning to DynamicFrame much match the json functionName.

• The function arguments must be defined in the json file as described in Step 1. Create a JSON
config file .

• The Amazon S3 path of the Python file cannot change, since the jobs depend directly on it.

Custom visual transforms 614

AWS Glue User Guide

Note

If any updates need to be made, ensure the script and the .json file are consistently
updated and any visual jobs are correctly saved again with the new transform. If visual jobs
are not saved after the updates were made, the updates will not be applied and validated.
If the Python script file is renamed or not placed next to the .json file, then you need to
specify the full path in the .json file.

Custom icon

If you determine the default icon for your Action does not visually distinguish it as part of your
workflows, you can provide a custom icon, as described in the section called “ Getting started with
custom visual transforms ”. You can update the icon by updating the corresponding SVG hosted in
Amazon S3.

For best results, design your image to be viewed at 32x32px following guidelines from the
Cloudscape Design System. For more information about Cloudscape guidelines, see The Cloudscape
documentation

Step 5. Use custom visual transforms in AWS Glue Studio

To use a custom visual transform in AWS Glue Studio, you upload the config and source files, then
select the transform from the Action menu. Any parameters that need values or input are available
to you in the Transform tab.

1. Upload the two files (Python source file and JSON config file) to the Amazon S3 assets
folder where the job scripts are stored. By default, AWS Glue pulls all JSON files from the /
transforms folder within the same Amazon S3 bucket.

2. From the Action menu, choose the custom visual transform. It is named with the transform
displayName or name that you specified in the .json config file.

3. Enter values for any parameters that were configured in the config file.

Custom visual transforms 615

https://cloudscape.design/foundation/visual-foundation/iconography/#custom-icons
https://cloudscape.design/foundation/visual-foundation/iconography/#custom-icons

AWS Glue User Guide

Usage examples

The following is an example of all possible parameters in a .json config file.

{
 "name": "MyTransform",
 "displayName": "My Transform",
 "description": "This transform description will be displayed in UI",
 "functionName": "myTransform",
 "parameters": [
 {
 "name": "email",
 "displayName": "Email Address",
 "type": "str",
 "description": "Enter your work email address below",
 "validationType": "RegularExpression",
 "validationRule": "^\\w+([\\.-]?\\w+)*@\\w+([\\.-]?\\w+)*(\\.\\w{2,3})+$",
 "validationMessage": "Please enter a valid email address"
 },
 {
 "name": "phone",
 "displayName": "Phone Number",
 "type": "str",
 "description": "Enter your mobile phone number below",
 "validationRule": "^\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
 "validationMessage": "Please enter a valid US number"

Custom visual transforms 616

AWS Glue User Guide

 },
 {
 "name": "age",
 "displayName": "Your age",
 "type": "int",
 "isOptional": true
 },
 {
 "name": "gender",
 "displayName": "Your gender",
 "type": "str",
 "listOptions": [
 {"label": "Male", "value": "male"},
 {"label": "Female", "value": "female"},
 {"label": "Other", "value": "other"}
],
 "isOptional": true
 },
 {
 "name": "country",
 "displayName": "Your origin country ?",
 "type": "list",
 "listOptions": "Afghanistan,Albania,Algeria,American
 Samoa,Andorra,Angola,Anguilla,Antarctica,Antigua and
 Barbuda,Argentina,Armenia,Aruba,Australia,Austria,Azerbaijan,Bahamas,Bahrain,Bangladesh,Barbados,Belarus,Belgium,Belize,Benin,Bermuda,Bhutan,Bolivia,Bosnia
 and Herzegovina,Botswana,Bouvet Island,Brazil,British Indian Ocean Territory,Brunei
 Darussalam,Bulgaria,Burkina Faso,Burundi,Cambodia,Cameroon,Canada,Cape
 Verde,Cayman Islands,Central African Republic,Chad,Chile,China,Christmas
 Island,Cocos (Keeling Islands),Colombia,Comoros,Congo,Cook Islands,Costa
 Rica,Cote D'Ivoire (Ivory Coast),Croatia (Hrvatska,Cuba,Cyprus,Czech
 Republic,Denmark,Djibouti,Dominica,Dominican Republic,East Timor,Ecuador,Egypt,El
 Salvador,Equatorial Guinea,Eritrea,Estonia,Ethiopia,Falkland Islands (Malvinas),Faroe
 Islands,Fiji,Finland,France,France,Metropolitan,French Guiana,French Polynesia,French
 Southern
 Territories,Gabon,Gambia,Georgia,Germany,Ghana,Gibraltar,Greece,Greenland,Grenada,Guadeloupe,Guam,Guatemala,Guinea,Guinea-
Bissau,Guyana,Haiti,Heard and McDonald Islands,Honduras,Hong
 Kong,Hungary,Iceland,India,Indonesia,Iran,Iraq,Ireland,Israel,Italy,Jamaica,Japan,Jordan,Kazakhstan,Kenya,Kiribati,Korea
 (North),Korea
 (South),Kuwait,Kyrgyzstan,Laos,Latvia,Lebanon,Lesotho,Liberia,Libya,Liechtenstein,Lithuania,Luxembourg,Macau,Macedonia,Madagascar,Malawi,Malaysia,Maldives,Mali,Malta,Marshall
 Islands,Martinique,Mauritania,Mauritius,Mayotte,Mexico,Micronesia,Moldova,Monaco,Mongolia,Montserrat,Morocco,Mozambique,Myanmar,Namibia,Nauru,Nepal,Netherlands,Netherlands
 Antilles,New Caledonia,New Zealand,Nicaragua,Niger,Nigeria,Niue,Norfolk
 Island,Northern Mariana Islands,Norway,Oman,Pakistan,Palau,Panama,Papua
 New Guinea,Paraguay,Peru,Philippines,Pitcairn,Poland,Portugal,Puerto
 Rico,Qatar,Reunion,Romania,Russian Federation,Rwanda,Saint Kitts and Nevis,Saint

Custom visual transforms 617

AWS Glue User Guide

 Lucia,Saint Vincent and The Grenadines,Samoa,San Marino,Sao Tome and Principe,Saudi
 Arabia,Senegal,Seychelles,Sierra Leone,Singapore,Slovak Republic,Slovenia,Solomon
 Islands,Somalia,South Africa,S. Georgia and S. Sandwich Isls.,Spain,Sri
 Lanka,St. Helena,St. Pierre and Miquelon,Sudan,Suriname,Svalbard and Jan Mayen
 Islands,Swaziland,Sweden,Switzerland,Syria,Tajikistan,Tanzania,Thailand,Togo,Tokelau,Tonga,Trinidad
 and Tobago,Tunisia,Turkey,Turkmenistan,Turks and Caicos
 Islands,Tuvalu,Uganda,Ukraine,United Arab Emirates,United Kingdom
 (Britain / UK),United States of America (USA),US Minor Outlying
 Islands,Uruguay,Uzbekistan,Vanuatu,Vatican City State (Holy See),Venezuela,Viet
 Nam,Virgin Islands (British),Virgin Islands (US),Wallis and Futuna Islands,Western
 Sahara,Yemen,Yugoslavia,Zaire,Zambia,Zimbabwe",
 "description": "What country were you born in?",
 "listType": "str",
 "isOptional": true
 },
 {
 "name": "promotion",
 "displayName": "Do you want to receive promotional newsletter from us?",
 "type": "bool",
 "isOptional": true
 }
]
}

Examples of custom visual scripts

The following examples perform equivalent transformations. However, the second example
(SparkSQL) is the cleanest and most efficient, followed by the Pandas UDF and finally the low
level mapping in the first example. The following example is a complete example of a simple
transformation to add up two columns:

from awsglue import DynamicFrame

You can have other auxiliary variables, functions or classes on this file, it won't
 affect the runtime
def record_sum(rec, col1, col2, resultCol):
 rec[resultCol] = rec[col1] + rec[col2]
 return rec

The number and name of arguments must match the definition on json config file
(expect self which is the current DynamicFrame to transform

Custom visual transforms 618

AWS Glue User Guide

If an argument is optional, you need to define a default value here
(resultCol in this example is an optional argument)
def custom_add_columns(self, col1, col2, resultCol="result"):
 # The mapping will alter the columns order, which could be important
 fields = [field.name for field in self.schema()]
 if resultCol not in fields:
 # If it's a new column put it at the end
 fields.append(resultCol)
 return self.map(lambda record: record_sum(record, col1, col2,
 resultCol)).select_fields(paths=fields)

The name we assign on DynamicFrame must match the configured "functionName"
DynamicFrame.custom_add_columns = custom_add_columns

The following example is an equivalent transform leveraging the SparkSQL API.

from awsglue import DynamicFrame

The number and name of arguments must match the definition on json config file
(expect self which is the current DynamicFrame to transform
If an argument is optional, you need to define a default value here
(resultCol in this example is an optional argument)
def custom_add_columns(self, col1, col2, resultCol="result"):
 df = self.toDF()
 return DynamicFrame.fromDF(
 df.withColumn(resultCol, df[col1] + df[col2]) # This is the conversion logic
 , self.glue_ctx, self.name)

The name we assign on DynamicFrame must match the configured "functionName"
DynamicFrame.custom_add_columns = custom_add_columns

The following example uses the same transformations but using a pandas UDF, which is more
efficient that using a plain UDF. For more information about writing pandas UDFs see: Apache
Spark SQL documentation.

from awsglue import DynamicFrame
import pandas as pd
from pyspark.sql.functions import pandas_udf

Custom visual transforms 619

https://spark.apache.org/docs/3.1.1/api/python/reference/api/pyspark.sql.functions.pandas_udf.html
https://spark.apache.org/docs/3.1.1/api/python/reference/api/pyspark.sql.functions.pandas_udf.html

AWS Glue User Guide

The number and name of arguments must match the definition on json config file
(expect self which is the current DynamicFrame to transform
If an argument is optional, you need to define a default value here
(resultCol in this example is an optional argument)
def custom_add_columns(self, col1, col2, resultCol="result"):
 @pandas_udf("integer") # We need to declare the type of the result column
 def add_columns(value1: pd.Series, value2: pd.Series) # pd.Series:
 return value1 + value2

 df = self.toDF()
 return DynamicFrame.fromDF(
 df.withColumn(resultCol, add_columns(col1, col2)) # This is the conversion
 logic
 , self.glue_ctx, self.name)

The name we assign on DynamicFrame must match the configured "functionName"
DynamicFrame.custom_add_columns = custom_add_columns

Video

The following video provides an introduction to visual custom transforms and demonstrates how
to use them.

Using Data Lake frameworks with AWS Glue Studio

Overview

Open source data lake frameworks simplify incremental data processing for files stored in data
lakes built on Amazon S3. AWS Glue 3.0 and later supports the following open-source data
lake storage frameworks:

• Apache Hudi

• Linux Foundation Delta Lake

• Apache Iceberg

As of AWS Glue 4.0, AWS Glue provides native support for these frameworks so that you can read
and write data that you store in Amazon S3 in a transactionally consistent manner. There's no
need to install a separate connector or complete extra configuration steps in order to use these
frameworks in AWS Glue jobs.

Using Data Lake frameworks with AWS Glue Studio 620

AWS Glue User Guide

Data Lake frameworks can be used as a source or a target within AWS Glue Studio through Spark
Script Editor jobs. For more information on using Apache Hudi, Apache Iceberg and Delta Lake see:
Using data lake frameworks with AWS Glue ETL jobs.

Creating open table formats from an AWS Glue Streaming source

AWS Glue streaming ETL jobs continuously consume data from streaming sources, clean and
transform the data in-flight, and make it available for analysis in seconds.

AWS offers a broad selection of services to support your needs. A database replication service
such as AWS Database Migration Service can replicate the data from your source systems to
Amazon S3, which commonly hosts the storage layer of the data lake. Although it’s straightforward
to apply updates on a relational database management system (RDBMS) that backs an online
source application, it's difficult to apply this CDC process on your data lakes. The open-source data
management frameworks simplify incremental data processing and data pipeline development,
and are a good option to solve this problem.

For more information, see:

• Create an Apache Hudi-based near-real-time transactional data lake using AWS Glue Streaming

• Build a real-time GDPR-aligned Apache Iceberg data lake

Using Hudi framework in AWS Glue Studio

When creating or editing a job, AWS Glue Studio automatically adds the corresponding Hudi
libraries for you depending on the version of AWS Glue you are using. For more information, see
Using the Hudi framework in AWS Glue.

Using Apache Hudi framework in Data Catalog data sources

To add a Hudi data source format to a job:

1. From the Source menu, choose AWS Glue Studio Data Catalog.

2. In the Data source properties tab, choose a database and table.

3. AWS Glue Studio displays the format type as Apache Hudi and the Amazon S3 URL.

Using Data Lake frameworks with AWS Glue Studio 621

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-datalake-native-frameworks.html
https://aws.amazon.com/blogs/big-data/create-an-apache-hudi-based-near-real-time-transactional-data-lake-using-aws-dms-amazon-kinesis-aws-glue-streaming-etl-and-data-visualization-using-amazon-quicksight/
https://aws.amazon.com/blogs/big-data/build-a-real-time-gdpr-aligned-apache-iceberg-data-lake/
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format-hudi.html

AWS Glue User Guide

Using Hudi framework in Amazon S3 data sources

1. From the Source menu, choose Amazon S3.

2. If you choose Data Catalog table as the Amazon S3 source type, choose a database and table.

3. AWS Glue Studio displays the format as Apache Hudi and the Amazon S3 URL.

4. If you choose Amazon S3 location as the Amazon S3 source type, choose the Amazon S3 URL
by clicking Browse Amazon S3.

5. In Data format, select Apache Hudi.

Note

If AWS Glue Studio is unable to infer the schema from the Amazon S3 folder or file you
selected, choose Additional options to select a new folder or file.
In Additional options choose from the following options under Schema inference:

• Let AWS Glue Studio automatically choose a sample file — AWS Glue Studio will
choose a sample file in the Amazon S3 location so that the schema can be inferred.
In the Auto-sampled file field, you can view the file that was automatically selected.

• Choose a sample file from Amazon S3 — choose the Amazon S3 file to use by
clicking Browse Amazon S3.

Using Data Lake frameworks with AWS Glue Studio 622

AWS Glue User Guide

6. Click Infer schema. You can then view the output schema by clicking on the Output schema
tab.

7. Choose Additional options to enter a key-value pair.

Using Apache Hudi framework in data targets

Using Apache Hudi framework in Data Catalog data targets

1. From the Target menu, choose AWS Glue Studio Data Catalog.

2. In the Data source properties tab, choose a database and table.

3. AWS Glue Studio displays the format type as Apache Hudi and the Amazon S3 URL.

Using Apache Hudi framework in Amazon S3 data targets

Enter values or select from the available options to configure Apache Hudi format. For more
information on Apache Hudi, see Apache Hudi documentation.

Using Data Lake frameworks with AWS Glue Studio 623

https://hudi.apache.org/docs/overview

AWS Glue User Guide

Using Data Lake frameworks with AWS Glue Studio 624

AWS Glue User Guide

• Hudi Table Name — this is the name of your hudi table.

• Hudi Storage Type — choose from two options:

• Copy on write — recommended for optimizing read performance. This is the default Hudi
storage type. Each update creates a new version of files during a write.

• Merge on read — recommended for minimizing write latency. Updates are logged to row-
based delta files and are compacted as needed to create new versions of the columnar files.

• Hudi Write Operation - choose from the following options:

• Upsert — this is the default operation where the input records are first tagged as inserts or
updates by looking up the index. Recommended where you are updating existing data.

• Insert — this inserts records but doesn't check for existing records and may result in
duplicates.

• Bulk Insert — this inserts records and is recommended for large amounts of data.

• Hudi Record Key Fields — use the search bar to search for and choose primary record keys.
Records in Hudi are identified by a primary key which is a pair of record key and partition path
where the record belongs to.

• Hudi Precombine Field — this is the field used in preCombining before actual write. When two
records have the same key value, AWS Glue Studio will pick the one with the largest value for the
precombine field. Set a field with incremental value (e.g. updated_at) belongs to.

• Compression Type — choose from one of the compression type options: Uncompressed, GZIP,
LZO, or Snappy.

• Amazon S3 Target Location — choose the Amazon S3 target location by clicking Browse S3.

• Data Catalog update options — choose from the following options:

• Do not update the Data Catalog: (Default) Choose this option if you don't want the job to
update the Data Catalog, even if the schema changes or new partitions are added.

• Create a table in the Data Catalog and on subsequent runs, update the schema and add new
partitions: I f you choose this option, the job creates the table in the Data Catalog on the first
run of the job. On subsequent job runs, the job updates the Data Catalog table if the schema
changes or new partitions are added.

You must also select a database from the Data Catalog and enter a table name.

• Create a table in the Data Catalog and on subsequent runs, keep existing schema and add new
partitions: If you choose this option, the job creates the table in the Data Catalog on the first
run of the job. On subsequent job runs, the job updates the Data Catalog table only to add
new partitions.

Using Data Lake frameworks with AWS Glue Studio 625

AWS Glue User Guide

You must also select a database from the Data Catalog and enter a table name.

• Partition keys: Choose which columns to use as partitioning keys in the output. To add more
partition keys, choose Add a partition key.

• Addtional options — enter a key-value pair as needed.

Generating code through AWS Glue Studio

When the job is saved, the following job parameters are added to the job if a Hudi source or target
are detected:

• --datalake-formats – a distinct list of data lake formats detected in the visual job (either
directly by choosing a “Format” or indirectly by selecting a catalog table that is backed by a data
lake).

• --conf – generated based on the value of --datalake-formats. For example,
if the value for --datalake-formats is 'hudi', AWS Glue generates a value of
spark.serializer=org.apache.spark.serializer.KryoSerializer —conf
spark.sql.hive.convertMetastoreParquet=false for this parameter.

Overriding AWS Glue-provided libraries

To use a version of Hudi that AWS Glue doesn't support, you can specify your own Hudi library JAR
files. To use your own JAR file:

• use the --extra-jars job parameter. For example, '--extra-jars':
's3pathtojarfile.jar'. For more information, see AWS Glue job parameters.

• do not include hudi as a value for the --datalake-formats job parameter. Entering a
blank string as a value ensures that no data lake libraries are provided for you by AWS Glue
automatically. For more information, see Using the Hudi framework in AWS Glue.

Using Delta Lake framework in AWS Glue Studio

Using Delta Lake framework in data sources

Using Delta Lake framework in Amazon S3 data sources

1. From the Source menu, choose Amazon S3.

Using Data Lake frameworks with AWS Glue Studio 626

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format-hudi.html

AWS Glue User Guide

2. If you choose Data Catalog table as the Amazon S3 source type, choose a database and table.

3. AWS Glue Studio displays the format as Delta Lake and the Amazon S3 URL.

4. Choose Additional options to enter a key-value pair. For example, a key-value pair could be:
key: timestampAsOf and value: 2023-02-24 14:16:18.

5. If you choose Amazon S3 location as the Amazon S3 source type, choose the Amazon S3 URL
by clicking Browse Amazon S3.

6. In Data format, choose Delta Lake.

Note

If AWS Glue Studio is unable to infer the schema from the Amazon S3 folder or file you
selected, choose Additional options to select a new folder or file.
In Additional options choose from the following options under Schema inference:

• Let AWS Glue Studio automatically choose a sample file — AWS Glue Studio will
choose a sample file in the Amazon S3 location so that the schema can be inferred.
In the Auto-sampled file field, you can view the file that was automatically selected.

• Choose a sample file from Amazon S3 — choose the Amazon S3 file to use by
clicking Browse Amazon S3.

7. Click Infer schema. You can then view the output schema by clicking on the Output schema
tab.

Using Delta Lake framework in Data Catalog data sources

1. From the Source menu, choose AWS Glue Studio Data Catalog.

2. In the Data source properties tab, choose a database and table.

Using Data Lake frameworks with AWS Glue Studio 627

AWS Glue User Guide

3. AWS Glue Studio displays the format type as Delta Lake and the Amazon S3 URL.

Note

If your Delta Lake source is not registered as the AWS Glue Data Catalog table yet, you
have two options:

1. Create a AWS Glue crawler for the Delta Lake data store. For more information, see
How to specify configuration options for a Delta Lake data store.

2. Use an Amazon S3 data source to select your Delta Lake data source. See Using
Delta Lake framework in Amazon S3 data sources .

Using Delta Lake formats in data targets

Using Delta Lake formats in Data Catalog data targets

1. From the Target menu, choose AWS Glue Studio Data Catalog.

2. In the Data source properties tab, choose a database and table.

3. AWS Glue Studio displays the format type as Delta Lake and the Amazon S3 URL.

Using Delta Lake formats in Amazon S3 data sources

Enter values or select from the available options to configure Delta Lake format.

• Compression Type — choose from one of the compression type options: Uncompressed or
Snappy.

• Amazon S3 Target Location — choose the Amazon S3 target location by clicking Browse S3.

• Data Catalog update options — updating the Data Catalog is not supported for this format in
the Glue Studio visual editor.

• Do not update the Data Catalog: (Default) Choose this option if you don't want the job to
update the Data Catalog, even if the schema changes or new partitions are added.

• To update the Data Catalog after the AWS Glue job execution, run or schedule a AWS Glue
crawler. For more information, see How to specify configuration options for a Delta Lake data
store.

• Partition keys — Choose which columns to use as partitioning keys in the output. To add more
partition keys, choose Add a partition key.

Using Data Lake frameworks with AWS Glue Studio 628

https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-delta-lake
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-delta-lake
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-delta-lake
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-delta-lake

AWS Glue User Guide

• Optionally, choose Addtional options to enter a key-value pair. For example, a key-value pair
could be: key: timestampAsOf and value: 2023-02-24 14:16:18.

Using Apache Iceberg framework in AWS Glue Studio

Using Apache Iceberg framework in data targets

Using Apache Iceberg framework in Data Catalog data targets

1. From the Target menu, choose AWS Glue Studio Data Catalog.

2. In the Data source properties tab, choose a database and table.

3. AWS Glue Studio displays the format type as Apache Iceberg and the Amazon S3 URL.

Using Apache Iceberg framework in Amazon S3 data targets

Enter values or select from the available options to configure Apache Iceberg format.

• Format – choose Apache Iceberg from the drop-down menu.

• Amazon S3 Target Location – choose the Amazon S3 target location by clicking Browse S3.

• Data Catalog update options – Create a table in the Data Catalog and on subsequent runs,
keep existing schema and add new partitions must be selected to proceed. Writing a new
Iceberg table using AWS Glue requires the Data Catalog to be configured as the catalog for the
Iceberg table. To update an existing Iceberg table that has been registered in the Data Catalog,
choose Data Catalog as the target.

• Database – Choose the database from the Data Catalog.

• Table Name – Enter the value for your table name. Apache Iceberg table names must be
in all lower case. Use underscores if needed since spaces are not allowed. For example
"data_lake_format_tables".

Using Data Lake frameworks with AWS Glue Studio 629

AWS Glue User Guide

Using Apache Iceberg framework in Amazon S3 data sources

Using Apache Iceberg framework in Data Catalog data sources

1. From the Source menu, choose AWS Glue Studio Data Catalog.

2. In the Data source properties tab, choose a database and table.

3. AWS Glue Studio displays the format type as Apache Iceberg and the Amazon S3 URL.

Using Data Lake frameworks with AWS Glue Studio 630

AWS Glue User Guide

Using Apache Iceberg framework in Amazon S3 data sources

Apache Iceberg is not available as a data option for Amazon S3 source nodes in AWS Glue Studio.

Configuring data target nodes

The data target is where the job writes the transformed data.

Overview of data target options

Your data target (also called a data sink) can be:

Configuring data target nodes 631

AWS Glue User Guide

• S3 – The job writes the data in a file in the Amazon S3 location you choose and in the format you
specify.

If you configure partition columns for the data target, then the job writes the dataset to Amazon
S3 into directories based on the partition key.

• AWS Glue Data Catalog – The job uses the information associated with the table in the Data
Catalog to write the output data to a target location.

You can create the table manually or with the crawler. You can also use AWS CloudFormation
templates to create tables in the Data Catalog.

• A connector – A connector is a piece of code that facilitates communication between your data
store and AWS Glue. The job uses the connector and associated connection to write the output
data to a target location. You can either subscribe to a connector offered in AWS Marketplace, or
you can create your own custom connector. For more information, see Adding connectors to AWS
Glue Studio

You can choose to update the Data Catalog when your job writes to an Amazon S3 data target.
Instead of requiring a crawler to update the Data Catalog when the schema or partitions change,
this option makes it easy to keep your tables up to date. This option simplifies the process of
making your data available for analytics by optionally adding new tables to the Data Catalog,
updating table partitions, and updating the schema of your tables directly from the job.

Editing the data target node

The data target is where the job writes the transformed data.

To add or configure a data target node in your job diagram

1. (Optional) If you need to add a target node, choose Target in the toolbar at the top of the
visual editor, and then choose either S3 or Glue Data Catalog.

• If you choose S3 for the target, then the job writes the dataset to one or more files in the
Amazon S3 location you specify.

• If you choose AWS Glue Data Catalog for the target, then the job writes to a location
described by the table selected from the Data Catalog.

2. Choose a data target node in the job diagram. When you choose a node, the node details panel
appears on the right-side of the page.

3. Choose the Node properties tab, and then enter the following information:

Configuring data target nodes 632

AWS Glue User Guide

• Name: Enter a name to associate with the node in the job diagram.

• Node type: A value should already be selected, but you can change it as needed.

• Node parents: The parent node is the node in the job diagram that provides the output data
you want to write to the target location. For a pre-populated job diagram, the target node
should already have the parent node selected. If there is no parent node displayed, then
choose a parent node from the list.

A target node has a single parent node.

4. Configure the Data target properties information. For more information, see the following
sections:

• Using Amazon S3 for the data target

• Using Data Catalog tables for the data target

• Using a connector for the data target

5. (Optional) After configuring the data target node properties, you can view the output schema
for your data by choosing the Output schema tab in the node details panel. The first time you
choose this tab for any node in your job, you are prompted to provide an IAM role to access the
data. If you have not specified an IAM role on the Job details tab, you are prompted to enter
an IAM role here.

Using Amazon S3 for the data target

For all data sources except Amazon S3 and connectors, a table must exist in the AWS Glue Data
Catalog for the source type that you choose. AWS Glue Studio does not create the Data Catalog
table.

To configure a data target node that writes to Amazon S3

1. Go to the visual editor for a new or saved job.

2. Choose a data source node in the job diagram.

3. Choose the Data source properties tab, and then enter the following information:

• Format: Choose a format from the list. The available format types for the data results are:

• JSON: JavaScript Object Notation.

• CSV: Comma-separated values.

Configuring data target nodes 633

AWS Glue User Guide

• Avro: Apache Avro JSON binary.

• Parquet: Apache Parquet columnar storage.

• Glue Parquet: A custom Parquet writer type that is optimized for DynamicFrames as the
data format. Instead of requiring a precomputed schema for the data, it computes and
modifies the schema dynamically.

• ORC: Apache Optimized Row Columnar (ORC) format.

To learn more about these format options, see Format Options for ETL Inputs and Outputs
in AWS Glue in the AWS Glue Developer Guide.

• Compression Type: You can choose to optionally compress the data using either the gzip or
bzip2 format. The default is no compression, or None.

• S3 Target Location: The Amazon S3 bucket and location for the data output. You can
choose the Browse S3 button to see the Amazon S3 buckets that you have access to and
choose one as the target destination.

• Data catalog update options

• Do not update the Data Catalog: (Default) Choose this option if you don't want the job to
update the Data Catalog, even if the schema changes or new partitions are added.

• Create a table in the Data Catalog and on subsequent runs, update the schema and add
new partitions: If you choose this option, the job creates the table in the Data Catalog on
the first run of the job. On subsequent job runs, the job updates the Data Catalog table if
the schema changes or new partitions are added.

You must also select a database from the Data Catalog and enter a table name.

• Create a table in the Data Catalog and on subsequent runs, keep existing schema
and add new partitions: If you choose this option, the job creates the table in the Data
Catalog on the first run of the job. On subsequent job runs, the job updates the Data
Catalog table only to add new partitions.

You must also select a database from the Data Catalog and enter a table name.

• Partition keys: Choose which columns to use as partitioning keys in the output. To add
more partition keys, choose Add a partition key.

Configuring data target nodes 634

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format.html

AWS Glue User Guide

Using Data Catalog tables for the data target

For all data sources except Amazon S3 and connectors, a table must exist in the AWS Glue Data
Catalog for the target type that you choose. AWS Glue Studio does not create the Data Catalog
table.

To configure the data properties for a target that uses a Data Catalog table

1. Go to the visual editor for a new or saved job.

2. Choose a data target node in the job diagram.

3. Choose the Data target properties tab, and then enter the following information:

• Database: Choose the database that contains the table you want to use as the target from
the list. This database must already exist in the Data Catalog.

• Table: Choose the table that defines the schema of your output data from the list. This table
must already exist in the Data Catalog.

A table in the Data Catalog consists of the names of columns, data type definitions, partition
information, and other metadata about the target dataset. Your job writes to a location
described by this table in the Data Catalog.

For more information about creating tables in the Data Catalog, see Defining Tables in the
Data Catalog in the AWS Glue Developer Guide.

• Data catalog update options

• Do not change table definition: (Default) Choose this option if you don't want the job to
update the Data Catalog, even if the schema changes, or new partitions are added.

• Update schema and add new partitions: If you choose this option, the job updates the
Data Catalog table if the schema changes or new partitions are added.

• Keep existing schema and add new partitions: If you choose this option, the job updates
the Data Catalog table only to add new partitions.

• Partition keys: Choose which columns to use as partitioning keys in the output. To add
more partition keys, choose Add a partition key.

Using a connector for the data target

If you select a connector for the Node type, follow the instructions at Authoring jobs with custom
connectors to finish configuring the data target properties.

Configuring data target nodes 635

https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html

AWS Glue User Guide

Editing or uploading a job script

Use the AWS Glue Studio visual editor to edit the job script or upload your own script.

You can use the visual editor to edit job nodes only if the jobs were created with AWS Glue
Studio. If the job was created using the AWS Glue console, through API commands, or with the
command line interface (CLI), you can use the script editor in AWS Glue Studio to edit the job
script, parameters, and schedule. You can also edit the script for a job created in AWS Glue Studio
by converting the job to script-only mode.

To edit the job script or upload your own script

1. If creating a new job, on the Jobs page, choose the Spark script editor option to create a
Spark job or choose the Python Shell script editor to create a Python shell job. You can either
write a new script, or upload an existing script. If you choose Spark script editor, you can write
or upload either a Scala or Python script. If you choose Python Shell script editor, you can
only write or upload a Python script.

After choosing the option to create a new job, in the Options section that appears, you can
choose to either start with a starter script (Create a new script with boilerplate code), or you
can upload a local file to use as the job script.

If you chose Spark script editor, you can upload either Python or Scala script files. Scala
scripts must have the file extension .scala. Python scripts must be recognized as files of type
Python. If you chose Python Shell script editor, you can upload only Python script files.

When you are finished making your choices, choose Create to create the job and open the
visual editor.

2. Go to the visual job editor for the new or saved job, and then choose the Script tab.

3. If you didn't create a new job using one of the script editor options, and you have never edited
the script for an existing job, the Script tab displays the heading Script (Locked). This means
the script editor is in read-only mode. Choose Edit script to unlock the script for editing.

To make the script editable, AWS Glue Studio converts your job from a visual job to a script-
only job. If you unlock the script for editing, you can't use the visual editor anymore for this job
after you save it.

In the confirmation window, choose Confirm to continue or Cancel to keep the job available
for visual editing.

Editing or uploading a job script 636

AWS Glue User Guide

If you choose Confirm, the Visual tab no longer appears in the editor. You can use AWS Glue
Studio to modify the script using the script editor, modify the job details or schedule, or view
job runs.

Note

Until you save the job, the conversion to a script-only job is not permanent. If you
refresh the console web page, or close the job before saving it and reopen it in the
visual editor, you will still be able to edit the individual nodes in the visual editor.

4. Edit the script as needed.

When you are done editing the script, choose Save to save the job and permanently convert
the job from visual to script-only.

5. (Optional) You can download the script from the AWS Glue Studio console by choosing the
Download button on the Script tab. When you choose this button, a new browser window
opens, displaying the script from its location in Amazon S3. The Script filename and Script
path parameters in the Job details tab of the job determine the name and location of the
script file in Amazon S3.

Editing or uploading a job script 637

AWS Glue User Guide

When you save the job, AWS Glue save the job script at the location specified by these fields.
If you modify the script file at this location within Amazon S3, AWS Glue Studio will load the
modified script the next time you edit the job.

Creating and editing Scala scripts in AWS Glue Studio

When you choose the script editor for creating a job, by default, the job programming language
is set to Python 3. If you choose to write a new script instead of uploading a script, AWS Glue
Studio starts a new script with boilerplate text written in Python. If you want to write a Scala script
instead, you must first configure the script editor to use Scala.

Note

If you choose Scala as the programming language for the job and use the visual editor
to design your job, the generated job script is written in Scala, and no further actions are
needed.

Editing or uploading a job script 638

AWS Glue User Guide

To write a new Scala script in AWS Glue Studio

1. Create a new job by choosing the Spark script editor option.

2. Under Options, choose Create a new script with boilerplate code.

3. Choose the Job details tab and set Language to Scala (instead of Python 3).

Note

The Type property for the job is automatically set to Spark when you choose the
Spark script editor option to create a job.

4. Choose the Script tab.

5. Remove the Python boilerplate text. You can replace it with the following Scala boilerplate
text.

import com.amazonaws.services.glue.{DynamicRecord, GlueContext}
import org.apache.spark.SparkContext
import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job

object MyScript {
 def main(args: Array[String]): Unit = {
 val sc: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(sc)

 }
}

6. Write your Scala job script in the editor. Add additional import statements as needed.

Creating and editing Python shell jobs in AWS Glue Studio

When you choose the Python shell script editor for creating a job, you can upload an existing
Python script, or write a new one. If you choose to write a new script, boilerplate code is added to
the new Python job script.

To create a new Python shell job

Refer to the instructions at Starting jobs in AWS Glue Studio.

Editing or uploading a job script 639

AWS Glue User Guide

The job properties that are supported for Python shell jobs are not the same as those supported
for Spark jobs. The following list describes the changes to the available job parameters for Python
shell jobs on the Job details tab.

• The Type property for the job is automatically set to Python Shell and can't be changed.

• Instead of Language, there is a Python version property for the job. Currently, Python shell jobs
created in AWS Glue Studio use Python 3.6.

• The Glue version property is not available, because it does not apply to Python shell jobs.

• Instead of Worker type and Number of workers, a Data processing units property is shown
instead. This job property determines how many data processing units (DPUs) are consumed by
the Python shell when running the job.

• The Job bookmark property is not available, because it is not supported for Python shell jobs.

• Under Advanced properties, the following properties are not available for Python shell jobs.

• Job metrics

• Continuous logging

• Spark UI and Spark UI logs path

• Dependent jars path, under the heading Libraries

Changing the parent nodes for a node in the job diagram

You can change a node's parents to move nodes within the job diagram or to change a data source
for a node.

To change the parent node

1. Choose the node in the job diagram that you want to modify.

2. In the node details panel, on the Node properties tab, under the heading Node parents
remove the current parent for the node.

3. Choose a new parent node from the list.

4. Modify the other properties of the node as needed to match the newly selected parent node.

If you modified a node by mistake, you can use the Undo button on the toolbar to reverse the
action.

Changing the parent nodes for a node in the job diagram 640

AWS Glue User Guide

Deleting nodes from the job diagram

When working with Visual ETL jobs, you can remove nodes from the canvas without having to re-
add or restructure any nodes that are connected to the removed node.

In the example below, you can follow along by choosing ETL jobs > Visual ETL, then in Example
jobs, choosing Visual ETL job to join multiple sources. Choose Create example job to create a job
and follow along with the steps below.

To remove a node from the canvas

1. From the AWS Glue console, choose Visual ETL from the navigation menu and choose an
existing job. The job canvas displays the example job as depicted below.

Deleting nodes from the job diagram 641

AWS Glue User Guide

2. Choose the node you want to remove. The canvas will zoom in to the node. In the toolbar on
the right side of the canvas, choose the Trash icon. This will remove the node and any node
connected to the node will move to take its place in the workflow. In this example, the first
Join node was deleted from the canvas.

If you delete a node in the workflow, AWS Glue will re-arrange the nodes so that they are
organized in a way that does not result in an invalid workflow. You may still need to correct a
node's configuration.

In the example, the Join node beneath the Subscribers node was removed. As a result, the
Plans source node has been moved to the top level and is still connected to the child Join
node. The Join node now requires additional configuration since Join requires two parent
source nodes with selected tables. The Transform tab to the right of the canvas displays the
missing requirement under Join conditions .

Deleting nodes from the job diagram 642

AWS Glue User Guide

3. Delete the second Join node and Select Fields node. When the nodes have been deleted, the
workflow will look like the example below.

Deleting nodes from the job diagram 643

AWS Glue User Guide

4. To modify the node connections, click on the node's handle and drag the connection to a
new node. This will allow you to delete nodes and rearrange the nodes in a logical flow. In
the example, a new connection is being made by clicking the handle on the Plans node and
dragging the connection to the Join node as depicted by the red arrow.

Deleting nodes from the job diagram 644

AWS Glue User Guide

5. If you need to undo any action, choose the Undo icon directly beneath the Trash icon in the
toolbar on the right side of the canvas.

Adding source and target parameters to the AWS Glue Data Catalog
node

AWS Glue Studio allows you to parameterize visual jobs. Since catalog table names in production
and development environment may be different, you can define and select runtime parameters for
databases and tables that will run when your job runs.

Job parameterization allows you to parameterize sources and targets, and save those parameters
to the job when using the AWS Glue Data Catalog node. When you specify sources and targets
as paramters, you are enabling the reusability of jobs, particularly when using the same job in
multiple environments. This is useful when promoting code across deployment environments by
saving time and effort in managing your sources and targets. In addition, the custom parameters
you specify will override any default arguments for specific runs of AWS Glue jobs.

Adding source and target parameters to the AWS Glue Data Catalog node 645

AWS Glue User Guide

To add source and target parameters

Whether you are using the AWS Glue Data Catalog node as a source or a target, you can define
runtime parameters in the Advanced properties section on the Job details tab.

1. Choose the AWS Glue Data Catalog node as either the source node or the target node.

2. Choose the Job details tab.

3. Choose Advanced properties.

4. In the Job parameters section, enter a key value. For example, --db.source would be the
parameter for a database source. You can enter any name for the key, as long as the key name
is followed by the 'dash dash'.

5. Enter the value. For example, databasename would be the value for database being
parameterized.

6. Choose Add new parameter if you want to add more parameters. Max 50 parameters is
allowed. Once the key value pair has been defined, you can use the parameter in the AWS Glue
Data Catalog node.

To select a runtime parameter

Note

The process to select runtime parameters for databases and tables is the same whether the
the AWS Glue Data Catalog node is the source or the target.

1. Choose the AWS Glue Data Catalog node as either the source node or the target node.

2. In the Data source properties - Data Catalog tab, under Database, choose Use runtime
parameters.

Adding source and target parameters to the AWS Glue Data Catalog node 646

AWS Glue User Guide

3. Choose a parameter from the drop-down menu. For example, when you select a parameter
you defined for a source database, the database will automatically populate in the database
drop-down menu when you choose Apply.

4. In the Table section, choose a parameter you already defined as a source table. When you
choose Apply, the table is automatically populated as the table to use.

5. When you save and run the job, AWS Glue Studio will reference the selected parameters during
the job run.

Using Git version control systems in AWS Glue

Note

Notebooks are not currently supported for version control in AWS Glue Studio. However,
version control for AWS Glue job scripts and visual ETL jobs are supported.

If you have remote repositories and want to manage your AWS Glue jobs using your repositories,
you can use AWS Glue Studio or the AWS CLI to sync changes to your repositories and your jobs in
AWS Glue. When you sync changes this way, you're pushing the job from AWS Glue Studio to your
repository, or pulling from the repository to AWS Glue Studio.

With Git integration in AWS Glue Studio, you can:

• Integrate with Git version control systems, such as AWS CodeCommit, GitHub, GitLab, and
Bitbucket

• Edit AWS Glue jobs in AWS Glue Studio whether you use visual jobs or script jobs and sync them
to a repository

Using Git version control systems in AWS Glue 647

AWS Glue User Guide

• Parameterize sources and targets in jobs

• Pull jobs from a repository and edit them in AWS Glue Studio

• Test jobs by pulling from branches and/or pushing to branches utilizing multi-branch workflows
in AWS Glue Studio

• Download files from a repository and upload jobs into AWS Glue Studio for cross-account job
creation

• Use your automation tool of choice (for example, Jenkins, AWS CodeDeploy, etc.)

This video demonstrates how you can integrate AWS Glue with Git and build a continuous and
collaborative code pipeline.

IAM permissions

Ensure the job has one of the following IAM permissions. For more information on how to set up
IAM permissions, see Set up IAM permissions for AWS Glue Studio.

• AWSGlueServiceRole

• AWSGlueConsoleFullAccess

At minimum, the following actions are needed for Git integration:

• glue:UpdateJobFromSourceControl — to be able to update AWS Glue with a job present in
a version control system

• glue:UpdateSourceControlFromJob — to be able to update the version control system with
a job stored in AWS Glue

• s3:GetObject — to be able to retrieve the script for the job while pushing to version control
system

• s3:PutObject — to be able to update the script when pulling a job from a source control
system

Prerequisites

In order to push jobs to a source control repository, you will need:

• a repository that has already been created by your administrator

• a branch in the repository

Using Git version control systems in AWS Glue 648

https://docs.aws.amazon.com/glue/latest/ug/setting-up.html?icmpid=docs_glue_studio_helppanel#getting-started-iam-permissions

AWS Glue User Guide

• a personal access token (for Bitbucket, this is the Repository Access Token)

• the username of the repository owner

• set permissions in the repository to allow AWS Glue Studio to read and write to the repository

• GitLab – set token scopes to api, read_repository, and write_repository

• Bitbucket – set permissions to:

• Workspace membership – read, write

• Projects – write, admin read

• Repositories – read, write, admin, delete

Note

When using AWS CodeCommit, personal access token and repository owner are not
needed. See Getting started with Git and AWS CodeCommit.

Using jobs from your source control repository in AWS Glue Studio

In order to pull a job from your source control repository that is not in AWS Glue Studio, and to use
that job in AWS Glue Studio, the prerequisites will depend on the type of job.

For visual jobs:

• you need a folder and a JSON file of the job definition that matches the job name

For example, see the job definition below. The branch in your repository should contain a path
my-visual-job/my-visual-job.json where both the folder and the JSON file match the
job name

{
 "name" : "my-visual-job",
 "description" : "",
 "role" : "arn:aws:iam::aws_account_id:role/Rolename",
 "command" : {
 "name" : "glueetl",
 "scriptLocation" : "s3://foldername/scripts/my-visual-job.py",
 "pythonVersion" : "3"
 },

Using Git version control systems in AWS Glue 649

https://docs.aws.amazon.com/codecommit/latest/userguide/getting-started.html

AWS Glue User Guide

 "codeGenConfigurationNodes" : "{\"node-nodeID\":{\"S3CsvSource\":
{\"AdditionalOptions\":{\"EnableSamplePath\":false,\"SamplePath\":\"s3://notebook-
test-input/netflix_titles.csv\"},\"Escaper\":\"\",\"Exclusions\":[],\"Name\":\"Amazon
 S3\",\"OptimizePerformance\":false,\"OutputSchemas\":[{\"Columns\":[{\"Name\":
\"show_id\",\"Type\":\"string\"},{\"Name\":\"type\",\"Type\":\"string\"},{\"Name\":
\"title\",\"Type\":\"choice\"},{\"Name\":\"director\",\"Type\":\"string\"},{\"Name\":
\"cast\",\"Type\":\"string\"},{\"Name\":\"country\",\"Type\":\"string\"},{\"Name\":
\"date_added\",\"Type\":\"string\"},{\"Name\":\"release_year\",\"Type\":\"bigint\"},
{\"Name\":\"rating\",\"Type\":\"string\"},{\"Name\":\"duration\",\"Type\":\"string
\"},{\"Name\":\"listed_in\",\"Type\":\"string\"},{\"Name\":\"description\",\"Type
\":\"string\"}]}],\"Paths\":[\"s3://dalamgir-notebook-test-input/netflix_titles.csv
\"],\"QuoteChar\":\"quote\",\"Recurse\":true,\"Separator\":\"comma\",\"WithHeader
\":true}}}"
}

For script jobs:

• you need a folder, a JSON file of the job definition, and the script

• the folder and JSON file should match the job name. The script name needs to match the
scriptLocation in the job definition along with the file extension

For example, in the job definition below, the branch in your repository should contain a path my-
script-job/my-script-job.json and my-script-job/my-script-job.py. The script
name should match the name in the scriptLocation including the extension of the script

{
 "name" : "my-script-job",
 "description" : "",
 "role" : "arn:aws:iam::aws_account_id:role/Rolename",
 "command" : {
 "name" : "glueetl",
 "scriptLocation" : "s3://foldername/scripts/my-script-job.py",
 "pythonVersion" : "3"
 }
}

Using Git version control systems in AWS Glue 650

AWS Glue User Guide

Limitations

• AWS Glue currently does not support pushing/pulling from GitLab-Groups.

Connecting version control repositories with AWS Glue

You can enter your version control repository details and manage them in the Version Control tab
in the AWS Glue Studio job editor. To integrate with your Git repository, you must connect to your
repository every time you log in to AWS Glue Studio.

To connect a Git version control system:

1. In AWS Glue Studio, start a new job and choose the Version Control tab.

2. In Version control system, choose the Git Service from the available options by clicking on the
drop-down menu.

• AWS CodeCommit

• GitHub

• GitLab

• Bitbucket

Using Git version control systems in AWS Glue 651

https://docs.gitlab.com/ee/user/group

AWS Glue User Guide

3. Depending on the Git version control system you choose, you will have different fields to
complete.

For AWS CodeCommit:

Complete the repository configuration by selecting the repository and branch for your job:

• Repository — if you have set up repositories in AWS CodeCommit, select the repository
from the drop-down menu. Your repositories will automatically populate in the list

• Branch — select the branch from the drop-down menu

• Folder — optional - enter the name of the folder in which to save your job. If left empty, a
folder is automatically created. The folder name defaults to the job name

For GitHub:

Complete the GitHub configuration by completing the fields:

• Personal access token — this is the token provided by the GitHub repository. For more
information on personal access tokens, see GitHub Docs

• Repository owner — this is the owner of the GitHub repository.

Complete the repository configuration by selecting the repository and branch from GitHub.

• Repository — if you have set up repositories in GitHub, select the repository from the drop-
down menu. Your repositories will automatically populate in the list

• Branch — select the branch from the drop-down menu

• Folder — optional - enter the name of the folder in which to save your job. If left empty, a
folder is automatically created. The folder name defaults to the job name

For GitLab:

Note

AWS Glue currently does not support pushing/pulling from GitLab-Groups.

Using Git version control systems in AWS Glue 652

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.gitlab.com/ee/user/group

AWS Glue User Guide

• Personal access token — this is the token provided by the GitLab repository. For more
information on personal access tokens, see GitLab Personal access tokens

• Repository owner — this is the owner of the GitLab repository.

Complete the repository configuration by selecting the repository and branch from GitLab.

• Repository — if you have set up repositories in GitLab, select the repository from the drop-
down menu. Your repositories will automatically populate in the list

• Branch — select the branch from the drop-down menu

• Folder — optional - enter the name of the folder in which to save your job. If left empty, a
folder is automatically created. The folder name defaults to the job name

For Bitbucket:

• App password — Bitbucket uses App passwords and not Repository Access Tokens. For more
information on App passwords, see App passwords .

• Repository owner — this is the owner of the Bitbucket repository. In Bitbucket, the owner is
the creator of the repository.

Complete the repository configuration by selecting the workspace, repository, branch, and
folder from Bitbucket.

• Workspace – if you have workspaces set up in Bitbucket, select the workspace from the
drop-down menu. Your workspaces are automatically populated

• Repository — if you have set up repositories in Bitbucket, select the repository from the
drop-down menu. Your repositories are automatically populated

• Branch — select the branch from the drop-down menu. Your branches are automatically
populated

• Folder — optional - enter the name of the folder in which to save your job. If left empty, a
folder is automatically created with the job name.

4. Choose Save at the top of the AWS Glue Studio job

Using Git version control systems in AWS Glue 653

https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
https://support.atlassian.com/bitbucket-cloud/docs/app-passwords/

AWS Glue User Guide

Pushing AWS Glue jobs to the source repository

Once you've entered the details of your version control system, you can edit jobs in AWS Glue
Studio and push the jobs to your source repository. If you're unfamiliar with Git concepts such as
pushing and pulling, see this tutorial on Getting started with Git and AWS CodeCommit.

In order to push your job to a repository, you need to enter the details of your version control
system and save your job.

1. In the AWS Glue Studiojob, choose Actions. This will open additional menu options.

2. Choose Push to repository.

This action will save the job. When you push to repository, AWS Glue Studio pushes the last
saved change. If the job in the repository was modified by you or another user and is out of
sync with the job in AWS Glue Studio, the job in the repository is overwritten with the job
saved in AWS Glue Studio when you push the job from AWS Glue Studio.

3. Choose Confirm to complete the action. This creates a new commit in the repository. If you are
using AWS CodeCommit, a confirmation message will display a link to the latest commit on
AWS CodeCommit.

Using Git version control systems in AWS Glue 654

https://docs.aws.amazon.com/codecommit/latest/userguide/getting-started.html

AWS Glue User Guide

Pulling AWS Glue jobs from the source repository

Once you've entered details of your Git repository into the Version control tab, you can also pull
jobs from your repository and edit them in AWS Glue Studio.

1. In the AWS Glue Studio job, choose Actions. This will open additional menu options.

2. Choose Pull from repository.

3. Choose Confirm. This takes the latest commit from the repository and updates your job in
AWS Glue Studio.

4. Edit your job in AWS Glue Studio. If you make changes, you can sync your job to your
repository by choosing Push to repository from the Actions drop-down menu.

Authoring code with AWS Glue Studio notebooks

Data engineers can author AWS Glue jobs faster and more easily than before using the interactive
notebook interface in AWS Glue Studio or interactive sessions in AWS Glue.

Topics

• Overview of using notebooks

• Creating an ETL job using notebooks in AWS Glue Studio

• Notebook editor components

Authoring code with AWS Glue Studio notebooks 655

AWS Glue User Guide

• Saving your notebook and job script

• Managing notebook sessions

• Using CodeWhisperer with AWS Glue Studio notebooks

Overview of using notebooks

AWS Glue Studio allows you to interactively author jobs in a notebook interface based on Jupyter
Notebooks. Through notebooks in AWS Glue Studio, you can edit job scripts and view the output
without having to run a full job, and you can edit data integration code and view the output
without having to run a full job, and you can add markdown and save notebooks as .ipynb files and
job scripts. You can start a notebook without installing software locally or managing servers. When
you are satisfied with your code, AWS Glue Studio can convert your notebook to a Glue job with the
click of a button.

Some benefits of using notebooks include:

• No cluster to provision or manage

• No idle clusters to pay for

• No up-front configuration required

• No installation of Jupyter notebooks required

• The same runtime/platform as AWS Glue ETL

When you start a notebook through AWS Glue Studio, all the configuration steps are done for you
so that you can explore your data and start developing your job script after only a few seconds.
AWS Glue Studio configures a Jupyter notebook with the AWS Glue Jupyter kernel. You don’t have
to configure VPCs, network connections, or development endpoints to use this notebook.

To create jobs using the notebook interface:

• configure the necessary IAM permissions.

• start a notebook session to create a job

• write code in the cells in the notebook

• run and test the code to view the output

• save the job

Overview of using notebooks 656

AWS Glue User Guide

After your notebook is saved, your notebook is a full AWS Glue job. You can manage all aspects of
the job, such as scheduling jobs runs, setting job parameters, and viewing the job run history right
along side your notebook.

Creating an ETL job using notebooks in AWS Glue Studio

To start using notebooks in the AWS Glue Studio console

1. Attach AWS Identity and Access Management policies to the AWS Glue Studio user and create
an IAM role for your ETL job and notebook.

2. Configure additional IAM security for notebooks, as described in Granting permissions for the
IAM role.

3. Open the AWS Glue Studio console at https://console.aws.amazon.com/gluestudio/.

Note

Check that your browser does not block third-party cookies. Any browser that
blocks third party cookies either by default or as a user-enabled setting will prevent
notebooks from launching. For more information on managing cookies, see:

• Chrome

• Firefox

• Safari

4. Choose the Jobs link in the left-side navigation menu.

5. Choose Jupyter notebook and then choose Create to start a new notebook session.

6. On the Create job in Jupyter notebook page, provide the job name, and choose the IAM role
to use. Choose Create job.

After a short time period, the notebook editor appears.

7. After you add the code you must execute the cell to initiate a session. There are multiple ways
to execute the cell:

• Press the play button.

• Use a keyboard shortcut:

• On MacOS, Command + Enter to run the cell.

Creating an ETL job using notebooks in AWS Glue Studio 657

https://console.aws.amazon.com/gluestudio/
https://support.alertlogic.com/hc/en-us/articles/360018127132-Turn-Off-Block-Third-Party-Cookies-in-Chrome-for-Windows
https://support.mozilla.org/en-US/kb/third-party-cookies-firefox-tracking-protection
https://support.apple.com/guide/safari/manage-cookies-sfri11471/mac

AWS Glue User Guide

• On Windows, Shift + Enter to run the cell.

For information about writing code using a Jupyter notebook interface, see The Jupyter
Notebook User Documentation .

8. To test your script, run the entire script, or individual cells. Any command output will be
displayed in the area beneath the cell.

9. After you have finished developing your notebook, you can save the job and then run it. You
can find the script in the Script tab. Any magics you added to the notebook will be stripped
away and won't be saved as part of the script of the generated AWS Glue job. AWS Glue
Studio will auto-add a job.commit() to the end of your generated script from the notebook
contents.

For more information about running jobs, see Start a job run.

Notebook editor components

The notebook editor interface has the following main sections.

• Notebook interface (main panel) and toolbar

• Job editing tabs

The notebook editor

The AWS Glue Studio notebook editor is based on the Jupyter Notebook Application. The AWS
Glue Studio notebook interface is similar to that provided by Juypter Notebooks, which is described
in the section Notebook user interface . The notebook used by interactive sessions is a Jupyter
Notebook.

Although the AWS Glue Studio notebook is similar to Juptyer Notebooks, it differs in a few key
ways:

• currently, the AWS Glue Studio notebook cannot install extensions

• you cannot use multiple tabs; there is a 1:1 relationship between a job and a notebook

• the AWS Glue Studio notebook does not have the same top file menu that exists in Jupyter
Notebooks

Notebook editor components 658

https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html?highlight=toolbar#notebook-user-interface

AWS Glue User Guide

• currently, the AWS Glue Studio notebook only runs with the AWS Glue kernel. Note that you
cannot update the kernel on your own.

AWS Glue Studio job editing tabs

The tabs that you use to interact with the ETL job are at the top of the notebook page. They are
similar to tabs that appear in the visual job editor of AWS Glue Studio, and they perform the same
actions.

• Notebook – Use this tab to view the job script using the notebook interface.

• Job details – Configure the environment and properties for the job runs.

• Runs – View information about previous runs of this job.

• Schedules – Configure a schedule for running your job at specific times.

Saving your notebook and job script

You can save your notebook and the job script you are creating at any time. Simply choose the
Save button in the upper right corner, the same as if you were using the visual or script editor.

When you choose Save, the notebook file is saved in the default locations:

• By default, the job script is saved to the Amazon S3 location indicated in the Job Details tab,
under Advanced properties, in the Job details property Script path. Job scripts are saved in a
subfolder named Scripts.

• By default, the notebook file (.ipynb) is saved to the Amazon S3 location indicated in the Job
Details tab, under Advanced properties, in the Job details Script path. Notebook files are saved
in a subfolder named Notebooks.

Note

When you save the job, the job script contains only the code cells from the notebook. The
Markdown cells and magics aren't included in the job script. However, the .ipynb file will
contain any markdown and magics.

After you save the job, you can then run the job using the script that you created in the notebook.

Saving your notebook and job script 659

AWS Glue User Guide

Managing notebook sessions

Notebooks in AWS Glue Studio are based on the interactive sessions feature of AWS Glue. There
is a cost for using interactive sessions. To help manage your costs, you can monitor the sessions
created for your account, and configure the default settings for all sessions.

Change the default timeout for all notebook sessions

By default, the provisioned AWS Glue Studio notebook times out after 12 hours if the notebook
was launched and no cells have been executed. There is no cost associated to it and the timeout is
not configurable.

Once you execute a cell this will start an interactive session. This session has a default timeout of
48 hours. This timeout can be configured by passing an %idle_timeout magic before executing a
cell.

To modify the default session timeout for notebooks in AWS Glue Studio

1. In the notebook, enter the %idle_timeout magic in a cell and specify the timeout value in
minutes.

2. For example: %idle_timeout 15 will change the default timeout to 15 minutes. If the
session is not used in 15 minutes, the session is automatically stopped.

Installing additional Python modules

If you would like to install additional modules to your session using pip you can do so by using
%additional_python_modules to add them to your session:

%additional_python_modules awswrangler, s3://mybucket/mymodule.whl

All arguments to additional_python_modules are passed to pip3 install -m <>

For a list of available Python modules, see Using Python libraries with AWS Glue.

Managing notebook sessions 660

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-libraries.html

AWS Glue User Guide

Changing AWS Glue Configuration

You can use magics to control AWS Glue job configuration values. If you want to change a job
configuration value you have to use the proper magic in the notebook. See Magics supported by
AWS Glue interactive sessions for Jupyter.

Note

Overriding properties for a running session is no longer available. In order to change the
session’s configurations, you can stop the session, set the new configurations and then start
a new session.

AWS Glue supports various worker types. You can set the worker type with %worker_type. For
example: %worker_type G.2X . The default is G.1X.

You can also specify the Number of workers with %number_of_workers. For example, to specify
40 workers: %number_of_workers 40.

For more information see Defining Job Properties

Stop a notebook session

To stop a notebook session, use the magic %stop_session.

If you navigate away from the notebook in the AWS console, you will receive a warning message
where you can choose to stop the session.

Using CodeWhisperer with AWS Glue Studio notebooks

AWS Glue Studio allows you to interactively author jobs in a notebook interface based on Jupyter
Notebooks. Using CodeWhisperer improves the authoring experience within AWS Glue Studio
notebooks.

The Amazon CodeWhisperer extension supports writing code by generating code recommendations
and suggesting improvements related to code issues.

What is Amazon CodeWhisperer?

Amazon CodeWhisperer is a service powered by machine learning that helps improve developer
productivity. CodeWhisperer achieves this by generating code recommendations based on

Using CodeWhisperer with AWS Glue Studio notebooks 661

https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-magics.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-magics.html
https://docs.aws.amazon.com/glue/latest/dg/add-job.html

AWS Glue User Guide

developers’ comments in natural language and their code in the IDE. During preview, Amazon
CodeWhisperer is available for the Java, JavaScript, Python, C# and TypeScript programming
languages. The service integrates with JupyterLab, Amazon SageMaker Studio, Amazon SageMaker
notebook instances, and other integrated development environments (IDEs).

For more information, see the Setting up CodeWhisperer with AWS Glue Studio.

AWS Glue job run statuses on the console

You can view the status of an AWS Glue extract, transform, and load (ETL) job while it is running
or after it has stopped. You can view the status using the AWS Glue console. For more information
about job run statuses, see the section called “Job run statuses”.

Accessing the job monitoring dashboard

You access the job monitoring dashboard by choosing the Monitoring link in the AWS Glue
navigation pane.

Overview of the job monitoring dashboard

The job monitoring dashboard provides an overall summary of the job runs, with totals for the jobs
with a status of Running, Canceled, Success, or Failed. Additional tiles provide the overall job run
success rate, the estimated DPU usage for jobs, a breakdown of the job status counts by job type,
worker type, and by day.

The graphs in the tiles are interactive. You can choose any block in a graph to run a filter that
displays only those jobs in the Job runs table at the bottom of the page.

You can change the date range for the information displayed on this page by using the Date range
selector. When you change the date range, the information tiles adjust to show the values for the
specified number of days before the current date. You can also use a specific date range if you
choose Custom from the date range selector.

Job runs view

Note

Job run history is accessible for 90 days for your workflow and job run.

View job runs 662

https://docs.aws.amazon.com/codewhisperer/latest/userguide/glue-setup.html

AWS Glue User Guide

The Job runs resource list shows the jobs for the specified date range and filters.

You can filter the jobs on additional criteria, such as status, worker type, job type, and the job
name. In the filter box at the top of the table, you can enter the text to use as a filter. The table
results are updated with rows that contain matching text as you enter the text.

You can view a subset of the jobs by choosing elements from the graphs on the job monitoring
dashboard. For example, if you choose the number of running jobs in the Job runs summary tile,
then the Job runs list displays only the jobs that currently have a status of Running. If you choose
one of the bars in the Worker type breakdown bar chart, then only job runs with the matching
worker type and status are shown in the Job runs list.

The Job runs resource list displays the details for the job runs. You can sort the rows in the table by
choosing a column heading. The table contains the following information:

Property Description

Job name The name of the job.

Type The type of job environment:

• Glue ETL: Runs in an Apache Spark
environment managed by AWS Glue.

• Glue Streaming: Runs in an Apache Spark
environment and performs ETL on data
streams.

• Python shell: Runs Python scripts as a shell.

Start time The date and time at which this job run was
started.

End time The date and time that this job run completed.

Run status The current state of the job run. Values can be:

• STARTING

• RUNNING

• STOPPING

• STOPPED

Job runs view 663

AWS Glue User Guide

Property Description

• SUCCEEDED

• FAILED

• TIMEOUT

Run time The amount of time that the job run
consumed resources.

Capacity The number of AWS Glue data processing
units (DPUs) that were allocated for this job
run. For more information about capacity
planning, see Monitoring for DPU Capacity
Planning in the AWS Glue Developer Guide.

Job runs view 664

https://docs.aws.amazon.com/glue/latest/dg/monitor-debug-capacity.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-debug-capacity.html

AWS Glue User Guide

Property Description

Worker type The type of predefined worker that was
allocated when the job ran. Values can be
G.1X, G.2X, G.4X or G.8X.

• G.1X – When you choose this type, you also
provide a value for Number of workers.
Each worker maps to 1 DPU (4 vCPUs, 16 GB
of memory) with 84GB disk (approximately
34GB free). We recommend this worker
type for memory-intensive jobs. This is the
default Worker type for AWS Glue Version
2.0 or later jobs.

• G.2X – When you choose this type, you also
provide a value for Number of workers.
Each worker maps to 2 DPU (8 vCPUs, 32 GB
of memory) with 128GB disk (approximately
77GB free). We recommend this worker type
for memory-intensive jobs and jobs that run
machine learning transforms.

• G.4X – When you choose this type, you also
provide a value for Number of workers.
Each worker maps to 4 DPU (16 vCPUs, 64
GB of memory) with 256GB disk (approxim
ately 235GB free). We recommend this
worker type for jobs whose workloads
contain your most demanding transforms,
aggregations, joins, and queries. This worker
type is available only for AWS Glue version
3.0 or later Spark ETL jobs in the following
AWS Regions: US East (Ohio), US East (N.
Virginia), US West (Oregon), Asia Pacific
(Singapore), Asia Pacific (Sydney), Asia
Pacific (Tokyo), Canada (Central), Europe

Job runs view 665

AWS Glue User Guide

Property Description

(Frankfurt), Europe (Ireland), and Europe
(Stockholm).

• G.8X – When you choose this type, you also
provide a value for Number of workers.
Each worker maps to 8 DPU (32 vCPUs, 128
GB of memory) with 512GB disk (approxim
ately 487GB free). We recommend this
worker type for jobs whose workloads
contain your most demanding transforms,
aggregations, joins, and queries. This worker
type is available only for AWS Glue version
3.0 or later Spark ETL jobs, in the same AWS
Regions as supported for the G.4X worker
type.

DPU hours The estimated number of DPUs used for
the job run. A DPU is a relative measure of
processing power. DPUs are used to determine
the cost of running your job. For more
information, see the AWS Glue pricing page.

You can choose any job run in the list and view additional information. Choose a job run, and then
do one of the following:

• Choose the Actions menu and the View job option to view the job in the visual editor.

• Choose the Actions menu and the Stop run option to stop the current run of the job.

• Choose the View CloudWatch logs button to view the job run logs for that job.

• Choose View details to view the job run details page.

Viewing the job run logs

You can view the job logs in a variety of ways:

Viewing the job run logs 666

https://aws.amazon.com/glue/pricing/

AWS Glue User Guide

• On the Monitoring page, in the Job runs table, choose a job run, and then choose View
CloudWatch logs.

• In the visual job editor, on the Runs tab for a job, choose the hyperlinks to view the logs:

• Logs – Links to the Apache Spark job logs written when continuous logging is enabled for a
job run. When you choose this link, it takes you to the Amazon CloudWatch logs in the /aws-
glue/jobs/logs-v2 log group. By default, the logs exclude non-useful Apache Hadoop
YARN heartbeat and Apache Spark driver or executor log messages. For more information
about continuous logging, see Continuous Logging for AWS Glue Jobs in the AWS Glue
Developer Guide.

• Error logs – Links to the logs written to stderr for this job run. When you choose this link, it
takes you to the Amazon CloudWatch logs in the /aws-glue/jobs/error log group. You can
use these logs to view details about any errors that were encountered during the job run.

• Output logs – Links to the logs written to stdout for this job run. When you choose this link,
it takes you to the Amazon CloudWatch logs in the /aws-glue/jobs/output log group. You
can use these logs to see all the details about the tables that were created in the AWS Glue
Data Catalog and any errors that were encountered.

Viewing the details of a job run

You can choose a job in the Job runs list on the Monitoring page, and then choose View run
details to see detailed information for that run of the job.

The information displayed on the job run detail page includes:

Property Description

Job name The name of the job.

Run Status The current state of the job run. Values can be:

• STARTING

• RUNNING

• STOPPING

• STOPPED

• SUCCEEDED

• FAILED

Viewing the details of a job run 667

https://docs.aws.amazon.com/glue/latest/dg/monitor-continuous-logging.html

AWS Glue User Guide

Property Description

• TIMEOUT

Glue version The AWS Glue version used by the job run.

Recent attempt The number of automatic retry attempts for
this job run.

Start time The date and time at which this job run was
started.

End time The date and time that this job run completed.

Start-up time The amount of time spent preparing to run
the job.

Execution time The amount of time spent running the job
script.

Trigger name The name of the trigger associated with the
job.

Last modified on The date when the job was last modified.

Security configuration The security configuration for the job, which
includes Amazon S3 encryption, CloudWatc
h encryption, and job bookmarks encryption
settings.

Timeout The job run timeout threshold value.

Allocated capacity The number of AWS Glue data processing
units (DPUs) that were allocated for this job
run. For more information about capacity
planning, see Monitoring for DPU Capacity
Planning in the AWS Glue Developer Guide.

Max capacity The maximum capacity available to the job
run.

Viewing the details of a job run 668

https://docs.aws.amazon.com/glue/latest/dg/monitor-debug-capacity.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-debug-capacity.html

AWS Glue User Guide

Property Description

Number of workers The number of workers used for the job run.

Worker type The type of predefined workers allocated for
the job run. Values can be G.1X or G.2X.

• G.1X – When you choose this type, you also
provide a value for Number of workers.
Each worker maps to 1 DPU (4 vCPUs, 16
GB of memory, 64 GB disk), and provides 1
executor per worker. We recommend this
worker type for memory-intensive jobs. This
is the default Worker type for AWS Glue
Version 2.0 or later jobs.

• G.2X – When you choose this type, you also
provide a value for Number of workers.
Each worker maps to 2 DPUs (8 vCPUs, 32
GB of memory, 128 GB disk), and provides
1 executor per worker. We recommend this
worker type for memory-intensive jobs and
jobs that run machine learning transforms.

Logs A link to the job logs for continuous logging (/
aws-glue/jobs/logs-v2).

Output Logs A link to the job output log files (/aws-glue
/jobs/output).

Error logs A link to the job error log files (/aws-glue/
jobs/error).

You can also view the following additional items, which are available when you view information
for recent job runs. For more information, see the section called “View information for recent job
runs”.

• Input arguments

Viewing the details of a job run 669

AWS Glue User Guide

• Continuous logs

• Metrics – You can see visualizations of basic metrics. For more information on included metrics,
see the section called “Viewing Amazon CloudWatch metrics for a Spark job run”.

• Spark UI – You can visualize Spark logs for your job in the Spark UI. For more information about
using the Spark Web UI, see the section called “Monitoring with the Spark UI”. Enable this
feature by following the procedure in the section called “Enabling the Spark UI for jobs”.

Viewing Amazon CloudWatch metrics for a Spark job run

On the details page for a job run, below the Run details section, you can view the job metrics. AWS
Glue Studio sends job metrics to Amazon CloudWatch for every job run.

AWS Glue reports metrics to Amazon CloudWatch every 30 seconds. The AWS Glue metrics
represent delta values from the previously reported values. Where appropriate, metrics dashboards
aggregate (sum) the 30-second values to obtain a value for the entire last minute. However, the
Apache Spark metrics that AWS Glue passes on to Amazon CloudWatch are generally absolute
values that represent the current state at the time they are reported.

Note

You must configure your account to access Amazon CloudWatch, .

The metrics provide information about your job run, such as:

• ETL Data Movement – The number of bytes read from or written to Amazon S3.

• Memory Profile: Heap used – The number of memory bytes used by the Java virtual machine
(JVM) heap.

• Memory Profile: heap usage – The fraction of memory (scale: 0–1), shown as a percentage, used
by the JVM heap.

• CPU Load – The fraction of CPU system load used (scale: 0–1), shown as a percentage.

Viewing Amazon CloudWatch metrics for a Ray job run

On the details page for a job run, below the Run details section, you can view the job metrics. AWS
Glue Studio sends job metrics to Amazon CloudWatch for every job run.

Viewing Amazon CloudWatch metrics for a Spark job run 670

AWS Glue User Guide

AWS Glue reports metrics to Amazon CloudWatch every 30 seconds. The AWS Glue metrics
represent delta values from the previously reported values. Where appropriate, metrics dashboards
aggregate (sum) the 30-second values to obtain a value for the entire last minute. However, the
Apache Spark metrics that AWS Glue passes on to Amazon CloudWatch are generally absolute
values that represent the current state at the time they are reported.

Note

You must configure your account to access Amazon CloudWatch, as described in .

In Ray jobs, you can view the following aggregated metric graphs. With these, you can build a
profile of your cluster and tasks, and can access detailed information about each node. The time-
series data that back these graphs is available in CloudWatch for further analysis.

Task Profile: Task State

Shows the number of Ray tasks in the system. Each task lifecycle is given its own time series.

Task Profile: Task Name

Shows the number of Ray tasks in the system. Only pending and active tasks are shown. Each
type of task (by name) is given its own time series.

Cluster Profile: CPUs in use

Shows the number of CPU cores that are used. Each node is given its own time series. Nodes are
identified by IP addresses, which are ephemeral and only used for identification.

Cluster Profile: Object store memory use

Shows memory use by the Ray object cache. Each memory location (physical memory, cached
on disk, and spilled in Amazon S3) is given its own time series. The object store manages
data storage across all nodes in the cluster. For more information, see Objects in the Ray
documentation.

Cluster Profile: Node count

Shows the number of nodes provisioned for the cluster.

Node Detail: CPU use

Shows CPU utilization on each node as a percentage. Each series shows an aggregated
percentage of CPU usage across all cores on the node.

Viewing Amazon CloudWatch metrics for a Ray job run 671

https://docs.ray.io/en/latest/ray-core/objects.html

AWS Glue User Guide

Node Detail: Memory use

Shows memory use on each node in GB. Each series shows memory aggregated between all
processes on the node, including Ray tasks and the Plasma store process. This will not reflect
objects stored to disk or spilled to Amazon S3.

Node Detail: Disk use

Shows disk use on each node in GB.

Node Detail: Disk I/O speed

Shows disk I/O on each node in KB/s.

Node Detail: Network I/O throughput

Shows network I/O on each node in KB/s.

Node Detail: CPU use by Ray component

Shows CPU use in fractions of a core. Each ray component on each node is given its own time
series.

Node Detail: Memory use by Ray component

Shows memory use in GiB. Each ray component on each node is given its own time series.

Detect and process sensitive data

The Detect PII transform identifies Personal Identifiable Information (PII) in your data source. You
choose the PII entity to identify, how you want the data to be scanned, and what to do with the PII
entity that have been identified by the Detect PII transform.

The Detect PII transform provides the ability to detect, mask, or remove entities that you define, or
are pre-defined by AWS. This enables you to increase compliance and reduce liability. For example,
you may want to ensure that no personally identifiable information exists in your data that can
be read and want to mask social security numbers with a fixed string (such as xxx-xx-xxxx), phone
numbers, or addresses.

To work with sensitive data outside of AWS Glue Studio, see Using Sensitive Data Detection outside
AWS Glue Studio

Topics

• Choosing how you want the data to be scanned

Detect and process sensitive data 672

AWS Glue User Guide

• Choosing the PII entities to detect

• Specifying the level of detection sensitivity

• Choosing what to do with identified PII data

• Adding fine-grained action overrides

Choosing how you want the data to be scanned

When you scan your dataset for sensitive data like personally identifiable information (PII), you can
choose to detect PII in each row or detect the columns that contain PII data.

When you choose Detect PII in each cell, you’re choosing to scan all rows in the data source. This is
a comprehensive scan to ensure that PII entities are identified.

When you choose Detect fields containing PII, you’re choosing to scan a sample of rows for PII
entities. This is a way to keep costs and resources low while also identifying the fields where PII
entities are found.

When you choose to detect fields that contain PII, you can reduce costs and improve performance
by sampling a portion of rows. Choosing this option will allow you to specify additional options:

• Sample portion: This allows you to specify the percentage of rows to sample. For example, if
you enter ‘50’, you’re specifying that you want 50 percent of scanned rows for the PII entity.

Choosing how you want the data to be scanned 673

AWS Glue User Guide

• Detection threshold: This allows you to specify the percentage of rows that contain the PII
entity in order for the entire column to be identified as having the PII entity. For example, if you
enter ‘10’, you’re specifying that the number of the PII entity, US Phone, in the rows that are
scanned must be 10 percent or greater in order for the field to be identified as having the PII
entity, US Phone. If the percentage of rows that contain the PII entity is less than 10 percent,
that field will not be labeled as having the PII entity, US Phone, in it.

Choosing the PII entities to detect

If you chose Detect PII in each cell, you can choose from one of three options:

• All available PII patterns - this includes AWS entities.

• Select categories - when you select categories, PII patterns will automatically include patterns in
the categories that you select.

• Select specific patterns - Only the patterns that you select will be detected.

For a full list of managed sensitive data types, see Managed data types.

Choose from all available PII patterns

If you choose All available PII patterns, select entities pre-defined by AWS. You can select one,
more than one, or all entities.

Choosing the PII entities to detect 674

https://docs.aws.amazon.com/glue/latest/dg/sensitive-data-managed-data-types.html

AWS Glue User Guide

Choosing the PII entities to detect 675

AWS Glue User Guide

Select categories

If you chose Select categories as the PII patterns to detect, you can select from the options in the
drop-down menu. Note that some entities can belong to more than one category. For example,
Person's name is an entity that belongs to the Universal and HIPAA categories.

• Universal (examples: Email, Credit Card)

• HIPAA (examples: US Driving License, Healthcare Common Procedure Coding System (HCPCS)
code)

• Networking (examples: IP Address, MAC Address)

• Argentina

• Australia

• Austria

• Belgium

• Bosnia

• Bulgaria

• Canada

• Chile

• Colombia

• Croatia

• Cyprus

• Czechia

• Denmark

• Estonia

• Finland

• France

• Germany

• Greece

• Hungary

• Ireland

• Korea

• Japan

Choosing the PII entities to detect 676

AWS Glue User Guide

• Mexico

• Netherlands

• New Zealand

• Norway

• Portugal

• Romania

• Singapore

• Slovakia

• Slovenia

• Spain

• Sweden

• Switzerland

• Turkey

• Ukraine

• United States

• United Kingdom

• Venezuela

Select specific patterns

If you choose Select specific patterns as the PII patterns to detect, you can search or browse from
a list of patterns you've already created, or create a new detection entity pattern.

The steps below describe how to create a new custom pattern for detecting sensitive data. You will
create the custom pattern by entering a name for the custom pattern, add a regular expression,
and optionally, define context words.

1. To create a new pattern, click the Create new button.

Choosing the PII entities to detect 677

AWS Glue User Guide

2. In the Create detection entity page, enter the entity name and a regular expression. The
regular expression (Regex) is what AWS Glue will use to match entities.

3. Click Validate. If the validation is successful, you will see a confirmation message stating
that the string is a valid regular expression. If the validation is not successful, you will see a
message stating that the string does not conform to proper formatting and accepted character
literals, operators or constructs.

4. You can choose to add Context words in addition to the regular expression. Context words
may increase the likelihood of a match. These can be useful in cases where field names are
not descriptive of the entity. For example, social security numbers may be named 'SSN' or 'SS'.
Adding these context words can help match the entity.

5. Click Create to create the detection entity. Any created entities are visible in the AWS Glue
Studio console. Click on Detection entities in the left-hand navigation menu.

You can edit, delete, or create detection entities from the Detection entities page. You can
also search for a pattern using the search field.

Specifying the level of detection sensitivity

You can set the level of sensitivity when using detecting sensitive data.

• High – (Default) Detects more entities for use cases that require a higher level of sensitivity. All
AWS Glue jobs created after November 2023 are automatically opted-in to this setting.

• Low – Detects fewer entities and reduces false positives.

Choosing what to do with identified PII data

If you chose to detect PII in the entire data source, you can select a global action to apply:

Specifying the level of detection sensitivity 678

AWS Glue User Guide

• Enrich data with detection results: If you chose Detect PII in each cell, you can store the
detected entities into a new column.

• Redact detected text: You can replace the detected PII value with a string that you specify in
the optional Replacing text input field. If no string is specified, the detected PII entity is replaced
with '*******'.

• Partially redact detected text: You can replace part of the detected PII value with a string
you choose. There are two possible options: to either leave the ends unmasked or to mask by
providing an explicit regex pattern. This feature is not available in AWS Glue 2.0.

• Apply cryptographic hash: You can pass the detected PII value to a SHA-256 cryptographic hash
function and replace the value with the function’s output.

Differences between AWS Glue versions 2.0 and 3.0+

AWS Glue 2.0 jobs will return a new DataFrame with the detected PII information for each column
in a supplementary column. Any redaction or hash work is visible within the AWS Glue script in the
visual tab.

AWS Glue 3.0 and 4.0 jobs will return a new DataFrame with this same supplementary column.
A new key for “actionUsed” is present and can be one of DETECT, REDACT, PARTIAL_REDACT, or
SHA256_HASH. If a masking action is selected, the DataFrame will return data with sensitive data
masked.

Adding fine-grained action overrides

Additional detection and action settings can be added to the fine-grained actions overrides table.
This allows you to:

Adding fine-grained action overrides 679

AWS Glue User Guide

• Include or exclude certain columns from detection – An inferred schema on the data source
will populate the table with available columns.

• Specify specific settings that are more fine-grained than using global actions – For example,
you can specify different redaction text settings for different entity types.

• Specify a different action than the global action – If a different action wants to be applied on a
different sensitive data type, that can be done here. Note that two different edit-in-place actions
(redaction and hashing) cannot be used on the same column, but detect can always be used.

Managing ETL jobs with AWS Glue Studio

You can use the simple graphical interface in AWS Glue Studio to manage your ETL jobs. Using the
navigation menu, choose Jobs to view the Jobs page. On this page, you can see all the jobs that
you have created either with AWS Glue Studio or the AWS Glue console. You can view, manage, and
run your jobs on this page.

You can also perform the following tasks on this page:

• Start a job run

• Schedule job runs

• Manage job schedules

• Stop job runs

• View your jobs

• View information for recent job runs

Managing jobs 680

AWS Glue User Guide

• View the job script

• Modify the job properties

• Save the job

• Clone a job

• Delete jobs

Start a job run

In AWS Glue Studio, you can run your jobs on demand. A job can run multiple times, and each
time you run the job, AWS Glue collects information about the job activities and performance. This
information is referred to as a job run and is identified by a job run ID.

You can initiate a job run in the following ways in AWS Glue Studio:

• On the Jobs page, choose the job you want to start, and then choose the Run job button.

• If you're viewing a job in the visual editor and the job has been saved, you can choose the Run
button to start a job run.

For more information about job runs, see Working with Jobs on the AWS Glue Console in the AWS
Glue Developer Guide.

Schedule job runs

In AWS Glue Studio, you can create a schedule to have your jobs run at specific times. You can
specify constraints, such as the number of times that the jobs run, which days of the week they
run, and at what time. These constraints are based on cron and have the same limitations as
cron. For example, if you choose to run your job on day 31 of each month, keep in mind that some
months don't have 31 days. For more information about cron, see Cron Expressions in the AWS
Glue Developer Guide.

To run jobs according to a schedule

1. Create a job schedule using one of the following methods:

• On the Jobs page, choose the job you want to create a schedule for, choose Actions, and
then choose Schedule job.

Start a job run 681

https://docs.aws.amazon.com/glue/latest/dg/console-jobs.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html#CronExpressions

AWS Glue User Guide

• If you're viewing a job in the visual editor and the job has been saved, choose the Schedules
tab. Then choose Create Schedule.

2. On the Schedule job run page, enter the following information:

• Name: Enter a name for your job schedule.

• Frequency: Enter the frequency for the job schedule. You can choose the following:

• Hourly: The job will run every hour, starting at a specific minute. You can specify the
Minute of the hour that the job should run. By default, when you choose hourly, the job
runs at the beginning of the hour (minute 0).

• Daily: The job will run every day, starting at a time. You can specify the Minute of the
hour that the job should run and the Start hour for the job. Hours are specified using a
23-hour clock, where you use the numbers 13 to 23 for the afternoon hours. The default
values for minute and hour are 0, which means that if you select Daily, the job by default
will run at midnight.

• Weekly: The job will run every week on one or more days. In addition to the same settings
described previous for Daily, you can choose the days of the week on which the job will
run. You can choose one or more days.

• Monthly: The job will run every month on a specific day. In addition to the same settings
described previous for Daily, you can choose the day of the month on which the job will
run. Specify the day as a numeric value from 1 to 31. If you select a day that does not exist
in a month, for example the 30th day of February, then the job does not run that month.

• Custom: Enter an expression for your job schedule using the cron syntax. Cron
expressions allow you to create more complicated schedules, such as the last day of the
month (instead of a specific day of the month) or every third month on the 7th and 21st

days of the month.

See Cron Expressions in the AWS Glue Developer Guide

• Description: You can optionally enter a description for your job schedule. If you plan to use
the same schedule for multiple jobs, having a description makes it easier to determine what
the job schedule does.

3. Choose Create schedule to save the job schedule.

4. After you create the schedule, a success message appears at the top of the console page. You
can choose Job details in this banner to view the job details. This opens the visual job editor
page, with the Schedules tab selected.

Schedule job runs 682

https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html#CronExpressions

AWS Glue User Guide

Manage job schedules

After you have created schedules for a job, you can open the job in the visual editor and choose the
Schedules tab to manage the schedules.

On the Schedules tab of the visual editor, you can perform the following tasks:

• Create a new schedule.

Choose Create schedule, then enter the information for your schedule as described in the
section called “Schedule job runs”.

• Edit an existing schedule.

Choose the schedule you want to edit, then choose Action followed by Edit schedule. When
you choose to edit an existing schedule, the Frequency shows as Custom, and the schedule is
displayed as a cron expression. You can either modify the cron expression, or specify a new
schedule using the Frequency button. When you finish with your changes, choose Update
schedule.

• Pause an active schedule.

Choose an active schedule, and then choose Action followed by Pause schedule. The schedule is
instantly deactivated. Choose the refresh (reload) button to see the updated job schedule status.

• Resume a paused schedule.

Choose a deactivated schedule, and then choose Action followed by Resume schedule. The
schedule is instantly activated. Choose the refresh (reload) button to see the updated job
schedule status.

• Delete a schedule.

Choose the schedule you want to remove, and then choose Action followed by Delete schedule.
The schedule is instantly deleted. Choose the refresh (reload) button to see the updated job
schedule list. The schedule will show a status of Deleting until it has been completely removed.

Stop job runs

You can stop a job before it has completed its job run. You might choose this option if you know
that the job isn't configured correctly, or if the job is taking too long to complete.

Manage job schedules 683

AWS Glue User Guide

On the Monitoring page, in the Job runs list, choose the job that you want to stop, choose Actions,
and then choose Stop run.

View your jobs

You can view all your jobs on the Jobs page. You can access this page by choosing Jobs in the
navigation pane.

On the Jobs page, you can see all the jobs that were created in your account. The Your jobs list
shows the job name, its type, the status of the last run of that job, and the dates on which the job
was created and last modified. You can choose the name of a job to see detailed information for
that job.

You can also use the Monitoring dashboard to view all your jobs. You can access the dashboard by
choosing Monitoring in the navigation pane.

Customize the job display

You can customize how the jobs are displayed in the Your jobs section of the Jobs page. Also, you
can enter text in the search text field to display only jobs with a name that contains that text.

If you choose the settings icon

in the Your jobs section, you can customize how AWS Glue Studio displays the information in the
table. You can choose to wrap the lines of text in the display, change the number of jobs displayed
on the page, and specify which columns to display.

View information for recent job runs

A job can run multiple times as new data is added at the source location. Each time a job runs, the
job run is assigned a unique ID, and information about that job run is collected. You can view this
information by using the following methods:

• Choose the Runs tab of the visual editor to view the job run information for the currently
displayed job.

On the Runs tab (the Recent job runs page), there is a card for each job run. The information
displayed on the Runs tab includes:

• Job run ID

View your jobs 684

AWS Glue User Guide

• Number of attempts to run this job

• Status of the job run

• Start and end time for the job run

• The runtime for the job run

• A link to the job log files

• A link to the job error log files

• The error returned for failed jobs

• You can select a job run to view additional information about the job, including the following:

• Input arguments

• Continuous logs

• Metrics – You can see visualizations of basic metrics. For more information on included
metrics, see the section called “Viewing Amazon CloudWatch metrics for a Spark job run”.

• Spark UI – You can visualize Spark logs for your job in the Spark UI. For more information
about using the Spark Web UI, see the section called “Monitoring with the Spark UI”. Enable
this feature by following the procedure in the section called “Enabling the Spark UI for jobs”.

You can select View details to view similar information on the job run details page. Alternatively,
you can navigate to the job run details page through the Monitoring page. In the navigation pane,
choose Monitoring. Scroll down to the Job runs list. Choose the job and then choose View run
details. The contents are described in Viewing the details of a job run.

For more information about the job logs, see Viewing the job run logs.

View the job script

After you provide information for all the nodes in the job, AWS Glue Studio generates a script that
is used by the job to read the data from the source, transform the data, and write the data in the
target location. If you save the job, you can view this script at any time.

To view the generated script for your job

1. Choose Jobs in the navigation pane.

2. On the Jobs page, in the Your Jobs list, choose the name of the job you want to review.
Alternatively, you can select a job in the list, choose the Actions menu, and then choose Edit
job.

View the job script 685

AWS Glue User Guide

3. On the visual editor page, choose the Script tab at the top to view the job script.

If you want to edit the job script, see AWS Glue programming guide.

Modify the job properties

The nodes in the job diagram define the actions performed by the job, but there are several
properties that you can configure for the job as well. These properties determine the environment
that the job runs in, the resources it uses, the threshold settings, the security settings, and more.

To customize the job run environment

1. Choose Jobs in the navigation pane.

2. On the Jobs page, in the Your Jobs list, choose the name of the job you want to review.

3. On the visual editor page, choose the Job details tab at the top of the job editing pane.

4. Modify the job properties, as needed.

For more information about the job properties, see Defining Job Properties in the AWS Glue
Developer Guide.

5. Expand the Advanced properties section if you need to specify these additional job properties:

• Script filename – The name of the file that stores the job script in Amazon S3.

• Script path – The Amazon S3 location where the job script is stored.

• Job metrics – (Not available for Python shell jobs) Turns on the creation of Amazon
CloudWatch metrics when this job runs.

• Continuous logging – (Not available for Python shell jobs) Turns on continuous logging to
CloudWatch, so the logs are available for viewing before the job completes.

• Spark UI and Spark UI logs path – (Not available for Python shell jobs) Turns on the use of
Spark UI for monitoring this job and specifies the location for the Spark UI logs.

• Maximum concurrency – Sets the maximum number of concurrent runs that are allowed for
this job.

• Temporary path – The location of a working directory in Amazon S3 where temporary
intermediate results are written when AWS Glue runs the job script.

• Delay notification threshold (minutes) – Specify a delay threshold for the job. If the job
runs for a longer time than that specified by the threshold, then AWS Glue sends a delay
notification for the job to CloudWatch.

Modify the job properties 686

https://docs.aws.amazon.com/glue/latest/dg/add-job.html#create-job

AWS Glue User Guide

• Security configuration and Server-side encryption – Use these fields to choose the
encryption options for the job.

• Use Glue Data Catalog as the Hive metastore – Choose this option if you want to use the
AWS Glue Data Catalog as an alternative to Apache Hive Metastore.

• Additional network connection – For a data source in a VPC, you can specify a connection
of type Network to ensure your job accesses your data through the VPC.

• Python library path, Dependent jars path (Not available for Python shell jobs), or
Referenced files path – Use these fields to specify the location of additional files used by
the job when it runs the script.

• Job Parameters – You can add a set of key-value pairs that are passed as named parameters
to the job script. In Python calls to AWS Glue APIs, it's best to pass parameters explicitly
by name. For more information about using parameters in a job script, see Passing and
Accessing Python Parameters in AWS Glue in the AWS Glue Developer Guide.

• Tags – You can add tags to the job to help you organize and identify them.

6. After you have modified the job properties, save the job.

Store Spark shuffle files on Amazon S3

Some ETL jobs require reading and combining information from multiple partitions, for example,
when using a join transform. This operation is referred to as shuffling. During a shuffle, data is
written to disk and transferred across the network. With AWS Glue version 3.0, you can configure
Amazon S3 as a storage location for these files. AWS Glue provides a shuffle manager which writes
and reads shuffle files to and from Amazon S3. Writing and reading shuffle files from Amazon S3 is
slower (by 5%-20%) compared to local disk (or Amazon EBS which is heavily optimized for Amazon
EC2). However, Amazon S3 provides unlimited storage capacity, so you don't have to worry about
"No space left on device" errors when running your job.

To configure your job to use Amazon S3 for shuffle files

1. On the Jobs page, in the Your Jobs list, choose the name of the job you want to modify.

2. On the visual editor page, choose the Job details tab at the top of the job editing pane.

Scroll down to the Job parameters section.

3. Specify the following key-value pairs.

• --write-shuffle-files-to-s3 — true

Modify the job properties 687

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html#aws-glue-programming-python-calling-parameters
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html#aws-glue-programming-python-calling-parameters

AWS Glue User Guide

This is the main parameter that configures the shuffle manager in AWS Glue to use Amazon
S3 buckets for writing and reading shuffle data. By default, this parameter has a value of
false.

• (Optional) --write-shuffle-spills-to-s3 — true

This parameter allows you to offload spill files to Amazon S3 buckets, which provides
additional resiliency to your Spark job in AWS Glue. This is only required for large workloads
that spill a lot of data to disk. By default, this parameter has a value of false.

• (Optional) --conf spark.shuffle.glue.s3ShuffleBucket — S3://<shuffle-
bucket>

This parameter specifies the Amazon S3 bucket to use when writing the shuffle files. If you
do not set this parameter, the location is the shuffle-data folder in the location specified
for Temporary path (--TempDir).

Note

Make sure the location of the shuffle bucket is in the same AWS Region in which the
job runs.
Also, the shuffle service does not clean the files after the job finishes running, so
you should configure the Amazon S3 storage life cycle policies on the shuffle bucket
location. For more information, see Managing your storage lifecycle in the Amazon
S3 User Guide.

Save the job

A red Job has not been saved callout is displayed to the left of the Save button until you save the
job.

To save your job

1. Provide all the required information in the Visual and Job details tabs.

2. Choose the Save button.

Save the job 688

https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html

AWS Glue User Guide

After you save the job, the 'not saved' callout changes to display the time and date that the job
was last saved.

If you exit AWS Glue Studio before saving your job, the next time you sign in to AWS Glue Studio, a
notification appears. The notification indicates that there is an unsaved job, and asks if you want to
restore it. If you choose to restore the job, you can continue to edit it.

Troubleshooting errors when saving a job

If you choose the Save button, but your job is missing some required information, then a red
callout appears on the tab where the information is missing. The number in the callout indicates
how many missing fields were detected.

• If a node in the visual editor isn't configured correctly, the Visual tab
shows a red callout, and the node with the error displays a warning symbol

.

1. Choose the node. In the node details panel, a red callout appears on the tab where the missing
or incorrect information is located.

2. Choose the tab in the node details panel that shows a red callout, and then locate the
problem fields, which are highlighted. An error message below the fields provides additional
information about the problem.

Save the job 689

AWS Glue User Guide

• If there is a problem with the job properties, the Job details tab shows a red callout. Choose that
tab and locate the problem fields, which are highlighted. The error messages below the fields
provide additional information about the problem.

Save the job 690

AWS Glue User Guide

Clone a job

You can use the Clone job action to copy an existing job into a new job.

To create a new job by copying an existing job

1. On the Jobs page, in the Your jobs list, choose the job that you want to duplicate.

2. From the Actions menu, choose Clone job.

3. Enter a name for the new job. You can then save or edit the job.

Delete jobs

You can remove jobs that are no longer needed. You can delete one or more jobs in a single
operation.

Clone a job 691

AWS Glue User Guide

To remove jobs from AWS Glue Studio

1. On the Jobs page, in the Your jobs list, choose the jobs that you want to delete.

2. From the Actions menu, choose Delete job.

3. Verify that you want to delete the job by entering delete.

You can also delete a saved job when you're viewing the Job details tab for that job in the visual
editor.

Delete jobs 692

AWS Glue User Guide

Working with jobs in AWS Glue

The following sections provide information on ETL and Ray jobs in AWS Glue.

Topics

• AWS Glue versions

• Working with Spark jobs in AWS Glue

• Working with Ray jobs in AWS Glue

• Configuring job properties for Python shell jobs in AWS Glue

• Monitoring AWS Glue

• AWS Glue job run statuses

AWS Glue versions

You can configure the AWS Glue version parameter when you add or update a job. The AWS Glue
version determines the versions of Apache Spark and Python that AWS Glue supports. The Python
version indicates the version that's supported for jobs of type Spark. The following table lists the
available AWS Glue versions, the corresponding Spark and Python versions, and other changes in
functionality.

AWS Glue versions

AWS Glue version Supported runtime
environment
versions

Supported Java
version

Changes in functiona
lity

AWS Glue 4.0 Spark environment
versions

• Spark 3.3.0

• Python 3.10

Java 8 AWS Glue 4.0 is the
latest version of
AWS Glue. There are
several optimizations
and upgrades built
into this AWS Glue
release, such as:

AWS Glue versions 693

AWS Glue User Guide

AWS Glue version Supported runtime
environment
versions

Supported Java
version

Changes in functiona
lity

• Many Spark
functionality
upgrades from
Spark 3.1 to Spark
3.3:

• Several functiona
lity improveme
nts when paired
with Pandas. For
more informati
on, see What's
New in Spark 3.3.

• Additional
optimizations
developed on
Amazon EMR.

• Upgrade to EMR
File System
(EMRFS) 2.53.

• Log4j 2 migration
from Log4j 1.x

• Several Python
module updates
from AWS Glue
3.0, such as an
upgraded version
of Boto.

• Upgrade of
several connector
s, including the
default Amazon
Redshift connector

AWS Glue versions 694

https://spark.apache.org/releases/spark-release-3-3-0.html
https://spark.apache.org/releases/spark-release-3-3-0.html

AWS Glue User Guide

AWS Glue version Supported runtime
environment
versions

Supported Java
version

Changes in functiona
lity

. See Appendix
C: Connector
 upgrades.

• Upgrade of several
JDBC drivers. See
Appendix B: JDBC
driver upgrades.

• Updated with
a new Amazon
Redshift connector
and JDBC driver.

• Native support for
open-data lake
frameworks with
Apache Hudi, Delta
Lake, and Apache
Iceberg.

• Native support
for the Amazon
S3-based Cloud
Shuffle Storage
Plugin (an Apache
Spark plugin) to
use Amazon S3
for shuffling and
elastic storage
capacity.

Limitations

AWS Glue versions 695

AWS Glue User Guide

AWS Glue version Supported runtime
environment
versions

Supported Java
version

Changes in functiona
lity

The following are
limitations with AWS
Glue 4.0:

• AWS Glue machine
learning and
personally identifia
ble information
(PII) transforms are
not yet available in
AWS Glue 4.0.

For more information
about migrating to
AWS Glue version 4.0,
see Migrating AWS
Glue for Spark jobs to
AWS Glue version 4.0.

AWS Glue versions 696

AWS Glue User Guide

AWS Glue version Supported runtime
environment
versions

Supported Java
version

Changes in functiona
lity

Ray environment
versions

• Ray 2.4.0

Python 3.9

N/A Build and run
distributed Python
applications with
AWS Glue for Ray.

• Supports Ray-2.4.0
data distribution
(ray[data]) with
Python 3.9. For
more information
on this Ray release,
see Ray-2.4.0 in
the Ray GitHub
repository.

• Supports installing
additional Python
libraries into the
Ray2.4 runtime
environment. For
more informati
on, see the section
called “Additional
Python modules
for Ray jobs”.

• Integrates logs and
metrics from Ray
jobs with Amazon
CloudWatch. For
more informati
on, see the section
called “Troubles
hooting Ray errors”

AWS Glue versions 697

https://github.com/ray-project/ray/releases/tag/ray-2.4.0

AWS Glue User Guide

AWS Glue version Supported runtime
environment
versions

Supported Java
version

Changes in functiona
lity

and the section
called “Ray job
metrics”.

• Aggregates and
visualizes metrics
for Ray jobs in AWS
Glue Studio, on
each job run page.

• Supports distribut
ing files to each
working directory
 across your cluster,
spilling objects
from the Ray object
store to Amazon
S3, and controlli
ng the minimum
number of worker
nodes allocated
to your Ray job.
For more informati
on, see the section
called “Ray job
parameters”.

Limitations on Ray
jobs in AWS Glue 4.0

• AWS Glue interacti
ve sessions for Ray
remain in preview
for this release.

AWS Glue versions 698

AWS Glue User Guide

AWS Glue version Supported runtime
environment
versions

Supported Java
version

Changes in functiona
lity

• AWS Glue for Ray
integration with
Amazon VPC is not
currently available.
Resources in a VPC
in AWS will not be
accessible without
a public route. For
more informati
on about using
AWS Glue with
Amazon VPC, see
the section called
“VPC endpoints
(AWS PrivateLink)”.

• AWS Glue for Ray
is available in US
East (N. Virginia),
US East (Ohio), US
West (Oregon), Asia
Pacific (Tokyo), and
Europe (Ireland).

AWS Glue versions 699

AWS Glue User Guide

AWS Glue version Supported runtime
environment
versions

Supported Java
version

Changes in functiona
lity

AWS Glue 3.0 • Spark 3.1.1

• Python 3.7

Java 8 In addition to the
Spark engine upgrade
to 3.0, there are
optimizations and
upgrades built
into this AWS Glue
release, such as:

• Builds the AWS
Glue ETL Library
against Spark 3.0,
which is a major
release for Spark.

• Streaming jobs are
supported on AWS
Glue 3.0.

• Includes new AWS
Glue Spark runtime
optimizations for
performance and
reliability:

• Faster in-
memory
columnar
processing based
on Apache Arrow
for reading CSV
data.

• SIMD-based
execution for
vectorized reads
with CSV data.

AWS Glue versions 700

AWS Glue User Guide

AWS Glue version Supported runtime
environment
versions

Supported Java
version

Changes in functiona
lity

• Spark upgrade
also includes
additional
optimizations
developed on
Amazon EMR.

• Upgraded EMRFS
from 2.38 to 2.46
enabling new
features and bug
fixes for Amazon
S3 access.

• Upgraded several
dependencies that
were required
for the new
Spark version.
See Appendix A:
notable dependenc
y upgrades.

• Upgraded JDBC
drivers for our
natively supported
data sources. See
Appendix B: JDBC
driver upgrades.

Limitations

The following are
limitations with AWS
Glue 3.0:

AWS Glue versions 701

AWS Glue User Guide

AWS Glue version Supported runtime
environment
versions

Supported Java
version

Changes in functiona
lity

• AWS Glue machine
learning transform
s are not yet
available in AWS
Glue 3.0.

• Some custom
Spark connectors
do not work with
AWS Glue 3.0 if
they depend on
Spark 2.4 and do
not have compatibi
lity with Spark 3.1.

For more information
about migrating to
AWS Glue version 3.0,
see Migrating AWS
Glue for Spark jobs to
AWS Glue version 3.0.

AWS Glue versions 702

AWS Glue User Guide

AWS Glue version Supported runtime
environment
versions

Supported Java
version

Changes in functiona
lity

AWS Glue 2.0
(deprecated, end of
support)

• Spark 2.4.3

• Python 3.7

N/A In addition to the
features provided in
AWS Glue version 1.0,
AWS Glue version 2.0
also provides:

• An upgraded
infrastructure for
running Apache
Spark ETL jobs in
AWS Glue with
reduced startup
times.

• Default logging is
now real time, with
separate streams
for drivers and
executors, and
outputs and errors.

• Support for
specifying
additional Python
modules or
different versions
at the job level.

Note

AWS Glue
version 2.0
differs from
AWS Glue

AWS Glue versions 703

https://docs.aws.amazon.com/glue/latest/dg/glue-version-support-policy.html
https://docs.aws.amazon.com/glue/latest/dg/glue-version-support-policy.html

AWS Glue User Guide

AWS Glue version Supported runtime
environment
versions

Supported Java
version

Changes in functiona
lity

version 1.0
for some
dependenc
ies and
versions due
to underlyin
g architect
ural changes.
Validate your
AWS Glue
jobs before
migrating
across major
AWS Glue
version
releases.

For more informati
on about AWS Glue
version 2.0 features
and limitations, see
Running Spark ETL
jobs with reduced
startup times.

AWS Glue versions 704

AWS Glue User Guide

AWS Glue version Supported runtime
environment
versions

Supported Java
version

Changes in functiona
lity

AWS Glue 1.0
(deprecated, end of
support)

• Spark 2.4.3

• Python 2.7

• Python 3.6

N/A You can maintain
job bookmarks for
Parquet and ORC
formats in AWS
Glue ETL jobs (using
AWS Glue version
1.0). Previously, you
were only able to
bookmark common
Amazon S3 source
formats such as
JSON, CSV, Apache
Avro, and XML in AWS
Glue ETL jobs.

When setting format
options for ETL
inputs and outputs,
you can specify to
use Apache Avro
reader/writer format
1.8 to support Avro
logical type reading
and writing (using
AWS Glue version
1.0). Previously, only
the version 1.7 Avro
reader/writer format
was supported.

The DynamoDB
connection type
supports a writer

AWS Glue versions 705

https://docs.aws.amazon.com/glue/latest/dg/glue-version-support-policy.html
https://docs.aws.amazon.com/glue/latest/dg/glue-version-support-policy.html

AWS Glue User Guide

AWS Glue version Supported runtime
environment
versions

Supported Java
version

Changes in functiona
lity

option (using AWS
Glue version 1.0).

Limitations

The following are
limitations with AWS
Glue 1.0:

• AWS Glue versions
0.9 and 1.0 are
not available in
the Asia Pacific
(Jakarta) (ap-
southeast-3),
Middle East (UAE)
(me-central-1),
or other new
Regions going
forward.

AWS Glue versions 706

AWS Glue User Guide

AWS Glue version Supported runtime
environment
versions

Supported Java
version

Changes in functiona
lity

AWS Glue 0.9
(deprecated, end of
support)

• Spark 2.2.1

• Python 2.7

N/A Jobs that were
created without
specifying an AWS
Glue version default
to AWS Glue 0.9.

Limitations

The following are
limitations with AWS
Glue 0.9:

• AWS Glue versions
0.9 and 1.0 are
not available in
the Asia Pacific
(Jakarta) (ap-
southeast-3),
Middle East (UAE)
(me-central-1),
or other new
Regions going
forward.

Running Spark ETL jobs with reduced startup times

AWS Glue versions 2.0 and later provide an upgraded infrastructure for running Apache Spark ETL
(extract, transform, and load) jobs in AWS Glue with reduced startup times. With the reduced wait
times, data engineers can be more productive and increase their interactivity with AWS Glue. The
reduced variance in job start times can help you meet or exceed your SLAs of making data available
for analytics.

Running Spark ETL jobs with reduced startup times 707

https://docs.aws.amazon.com/glue/latest/dg/glue-version-support-policy.html
https://docs.aws.amazon.com/glue/latest/dg/glue-version-support-policy.html

AWS Glue User Guide

To use this feature with your AWS Glue ETL jobs, choose 2.0 or a later version for the Glue
version when creating your jobs.

Topics

• New features supported

• Logging behavior

• Features not supported

New features supported

This section describes new features supported with AWS Glue versions 2.0 and later.

Support for specifying additional Python modules at the job level

AWS Glue versions 2.0 and later also let you provide additional Python modules or different
versions at the job level. You can use the --additional-python-modules option with a list
of comma-separated Python modules to add a new module or change the version of an existing
module.

For example to update or to add a new scikit-learn module use the following key/value: "--
additional-python-modules", "scikit-learn==0.21.3".

Also, within the --additional-python-modules option you can specify an Amazon S3 path to
a Python wheel module. For example:

--additional-python-modules s3://aws-glue-native-spark/tests/j4.2/ephem-3.7.7.1-cp37-
cp37m-linux_x86_64.whl,s3://aws-glue-native-spark/tests/j4.2/fbprophet-0.6-py3-none-
any.whl,scikit-learn==0.21.3

AWS Glue uses the Python Package Installer (pip3) to install the additional modules. You can pass
additional options specified by the python-modules-installer-option to pip3 for installing
the modules. Any incompatibility or limitations from pip3 will apply.

Python modules already provided in AWS Glue version 2.0

AWS Glue version 2.0 supports the following python modules out of the box:

• setuptools—45.2.0

• subprocess32—3.5.4

Running Spark ETL jobs with reduced startup times 708

AWS Glue User Guide

• ptvsd—4.3.2

• pydevd—1.9.0

• PyMySQL—0.9.3

• docutils—0.15.2

• jmespath—0.9.4

• six—1.14.0

• python_dateutil—2.8.1

• urllib3—1.25.8

• botocore—1.15.4

• s3transfer—0.3.3

• boto3—1.12.4

• certifi—2019.11.28

• chardet—3.0.4

• idna—2.9

• requests—2.23.0

• pyparsing—2.4.6

• enum34—1.1.9

• pytz—2019.3

• numpy—1.18.1

• cycler—0.10.0

• kiwisolver—1.1.0

• scipy—1.4.1

• pandas—1.0.1

• pyarrow—0.16.0

• matplotlib—3.1.3

• pyhocon—0.3.54

• mpmath—1.1.0

• sympy—1.5.1

• patsy—0.5.1

• statsmodels—0.11.1

Running Spark ETL jobs with reduced startup times 709

AWS Glue User Guide

• fsspec—0.6.2

• s3fs—0.4.0

• Cython—0.29.15

• joblib—0.14.1

• pmdarima—1.5.3

• scikit-learn—0.22.1

• tbats—1.0.9

Logging behavior

AWS Glue versions 2.0 and later support different default logging behavior. The differences
include:

• Logging occurs in realtime.

• There are separate streams for drivers and executors.

• For each driver and executor there are two streams, the output stream and the error stream.

Driver and executor streams

Driver streams are identified by the job run ID. Executor streams are identified by the job <run
id>_<executor task id>. For example:

• "logStreamName":
"jr_8255308b426fff1b4e09e00e0bd5612b1b4ec848d7884cebe61ed33a31789..._g-
f65f617bd31d54bd94482af755b6cdf464542..."

Output and errors streams

The output stream has the standard output (stdout) from your code. The error stream has logging
messages from the your code/library.

• Log streams:

• Driver log streams have <jr>, where <jr> is the job run ID.

• Executor log streams have <jr>_<g>, where <g> is the task ID for the executor. You can look
up the executor task ID in the driver error log.

Running Spark ETL jobs with reduced startup times 710

AWS Glue User Guide

The default log groups for AWS Glue version 2.0 are as follows:

• /aws-glue/jobs/logs/output for output

• /aws-glue/jobs/logs/error for errors

When a security configuration is provided, the log group names change to:

• /aws-glue/jobs/<security configuration>-role/<Role Name>/output

• /aws-glue/jobs/<security configuration>-role/<Role Name>/error

On the console the Logs link points to the output log group and the Error link points to the error
log group. When continuous logging is enabled, the Logs links points to the continuous log group,
and the Output link points to the output log group.

Logging rules

Note

The default log groupname for continuous logging is /aws-glue/jobs/logs-v2.

In AWS Glue versions 2.0 and later, continuous logging has the same behavior as in AWS Glue
version 1.0:

• Default log group: /aws-glue/jobs/logs-v2

• Driver log stream: <jr>-driver

• Executor log stream: <jr>-<executor ID>

The log group name can be changed by setting --continuous-log-logGroupName

The log streams name can be prefixed by setting --continous-log-logStreamPrefix

Features not supported

The following AWS Glue features are not supported:

• Development endpoints

• AWS Glue versions 2.0 and later do not run on Apache YARN, so YARN settings do not apply

Running Spark ETL jobs with reduced startup times 711

AWS Glue User Guide

• AWS Glue versions 2.0 and later do not have a Hadoop Distributed File System (HDFS)

• AWS Glue versions 2.0 and later do not use dynamic allocation, hence the
ExecutorAllocationManager metrics are not available

• For AWS Glue version 2.0 or later jobs, you specify the number of workers and worker type, but
do not specify a maxCapacity.

• AWS Glue versions 2.0 and later do not support s3n out of the box. We recommend using s3 or
s3a. If jobs need to use s3n for any reason, you can pass the following additional argument:

--conf spark.hadoop.fs.s3n.impl=com.amazon.ws.emr.hadoop.fs.EmrFileSystem

Migrating AWS Glue for Spark jobs to AWS Glue version 3.0

This topic describes the changes between AWS Glue versions 0.9, 1.0, 2.0 and 3.0 to allow you to
migrate your Spark applications and ETL jobs to AWS Glue 3.0.

To use this feature with your AWS Glue ETL jobs, choose 3.0 for the Glue version when creating
your jobs.

Topics

• New features supported

• Actions to migrate to AWS Glue 3.0

• Migration check list

• Migrating from AWS Glue 0.9 to AWS Glue 3.0

• Migrating from AWS Glue 1.0 to AWS Glue 3.0

• Migrating from AWS Glue 2.0 to AWS Glue 3.0

• Appendix A: notable dependency upgrades

• Appendix B: JDBC driver upgrades

New features supported

This section describes new features and advantages of AWS Glue version 3.0.

• It is based on Apache Spark 3.1.1, which has optimizations from open-source Spark and
developed by the AWS Glue and EMR services such as adaptive query execution, vectorized
readers, and optimized shuffles and partition coalescing.

Migrating AWS Glue for Spark jobs to AWS Glue version 3.0 712

AWS Glue User Guide

• Upgraded JDBC drivers for all Glue native sources including MySQL, Microsoft SQL Server,
Oracle, PostgreSQL, MongoDB, and upgraded Spark libraries and dependencies brought in by
Spark 3.1.1.

• Optimized Amazon S3 access with upgraded EMRFS and enabled Amazon S3 optimized output
committers by default.

• Optimized Data Catalog access with partition indexes, push down predicates, partition listing,
and upgraded Hive metastore client.

• Integration with Lake Formation for governed catalog tables with cell-level filtering and data
lake transactions.

• Improved Spark UI experience with Spark 3.1.1 with new Spark executor memory metrics and
Spark structured streaming metrics.

• Reduced startup latency improving overall job completion times and interactivity, similar to AWS
Glue 2.0.

• Spark jobs are billed in 1-second increments with a 10x lower minimum billing duration—from a
10-minute minimum to a 1-minute minimum, similar to AWS Glue 2.0.

Actions to migrate to AWS Glue 3.0

For existing jobs, change the Glue version from the previous version to Glue 3.0 in the job
configuration.

• In the console, choose Spark 3.1, Python 3 (Glue Version 3.0) or Spark 3.1,
Scala 2 (Glue Version 3.0) in Glue version.

• In AWS Glue Studio, choose Glue 3.0 - Supports spark 3.1, Scala 2, Python 3 in
Glue version.

• In the API, choose 3.0 in the GlueVersion parameter in the UpdateJob API.

For new jobs, choose Glue 3.0 when you create a job.

• In the console, choose Spark 3.1, Python 3 (Glue Version 3.0) or Spark 3.1,
Scala 2 (Glue Version 3.0) in Glue version.

• In AWS Glue Studio, choose Glue 3.0 - Supports spark 3.1, Scala 2, Python 3 in
Glue version.

• In the API, choose 3.0 in the GlueVersion parameter in the CreateJob API.

Migrating AWS Glue for Spark jobs to AWS Glue version 3.0 713

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html#aws-glue-api-jobs-job-UpdateJob
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html#aws-glue-api-jobs-job-CreateJob

AWS Glue User Guide

To view Spark event logs of AWS Glue 3.0, launch an upgraded Spark history server for Glue 3.0
using CloudFormation or Docker.

Migration check list

Review this checklist for migration.

• Does your job depend on HDFS? If yes, try replacing HDFS with S3.

• Search the file system path starting with hdfs:// or / as DFS path in the job script code.

• Check if your default file system is not configured with HDFS. If it is configured explicitly, you
need to remove the fs.defaultFS configuration.

• Check if your job contains any dfs.* parameters. If it contains any, you need to verify it is
okay to disable the parameters.

• Does your job depend on YARN? If yes, verify the impacts by checking if your job contains the
following parameters. If it contains any, you need to verify it is okay to disable the parameters.

• spark.yarn.*

For example:

spark.yarn.executor.memoryOverhead
spark.yarn.driver.memoryOverhead
spark.yarn.scheduler.reporterThread.maxFailures

• yarn.*

For example:

yarn.scheduler.maximum-allocation-mb
yarn.nodemanager.resource.memory-mb

• Does your job depend on Spark 2.2.1 or Spark 2.4.3? If yes, verify the impacts by checking if your
job uses features changed in Spark 3.1.1.

• https://spark.apache.org/docs/latest/sql-migration-
guide.html#upgrading-from-spark-sql-22-to-23

For example the percentile_approx function, or the SparkSession with
SparkSession.builder.getOrCreate() when there is an existing SparkContext.

• https://spark.apache.org/docs/latest/sql-migration-
guide.html#upgrading-from-spark-sql-23-to-24

Migrating AWS Glue for Spark jobs to AWS Glue version 3.0 714

https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui-history.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui-history.html

AWS Glue User Guide

For example the array_contains function, or the CURRENT_DATE, CURRENT_TIMESTAMP
function with spark.sql.caseSensitive=true.

• Do your job's extra jars conflict in Glue 3.0?

• From AWS Glue 0.9/1.0: Extra jars supplied in existing AWS Glue 0.9/1.0 jobs may bring in
classpath conflicts due to upgraded or new dependencies available in Glue 3.0. You can avoid
classpath conflicts in AWS Glue 3.0 with the --user-jars-first AWS Glue job parameter or
by shading your dependencies.

• From AWS Glue 2.0: You can still avoid classpath conflicts in AWS Glue 3.0 with the --user-
jars-first AWS Glue job parameter or by shading your dependencies.

• Do your jobs depend on Scala 2.11?

• AWS Glue 3.0 uses Scala 2.12 so you need to rebuild your libraries with Scala 2.12 if your
libraries depend on Scala 2.11.

• Do your job's external Python libraries depend on Python 2.7/3.6?

• Use the --additional-python-modules parameters instead of setting the egg/wheel/zip
file in the Python library path.

• Update the dependent libraries from Python 2.7/3.6 to Python 3.7 as Spark 3.1.1 removed
Python 2.7 support.

Migrating from AWS Glue 0.9 to AWS Glue 3.0

Note the following changes when migrating:

• AWS Glue 0.9 uses open-source Spark 2.2.1 and AWS Glue 3.0 uses EMR-optimized Spark 3.1.1.

• Several Spark changes alone may require revision of your scripts to ensure removed features
are not being referenced.

• For example, Spark 3.1.1 does not enable Scala-untyped UDFs but Spark 2.2 does allow them.

• All jobs in AWS Glue 3.0 will be executed with significantly improved startup times. Spark jobs
will be billed in 1-second increments with a 10x lower minimum billing duration since startup
latency will go from 10 minutes maximum to 1 minute maximum.

• Logging behavior has changed since AWS Glue 2.0.

• Several dependency updates, highlighted in Appendix A: notable dependency upgrades.

• Scala is also updated to 2.12 from 2.11, and Scala 2.12 is not backwards compatible with Scala
2.11.

Migrating AWS Glue for Spark jobs to AWS Glue version 3.0 715

AWS Glue User Guide

• Python 3.7 is also the default version used for Python scripts, as AWS Glue 0.9 was only utilizing
Python 2.

• Python 2.7 is not supported with Spark 3.1.1.

• A new mechanism of installing additional Python modules is available.

• AWS Glue 3.0 does not run on Apache YARN, so YARN settings do not apply.

• AWS Glue 3.0 does not have a Hadoop Distributed File System (HDFS).

• Any extra jars supplied in existing AWS Glue 0.9 jobs may bring in conflicting dependencies since
there were upgrades in several dependencies in 3.0 from 0.9. You can avoid classpath conflicts in
AWS Glue 3.0 with the --user-jars-first AWS Glue job parameter.

• AWS Glue 3.0 does not yet support dynamic allocation, hence the ExecutorAllocationManager
metrics are not available.

• In AWS Glue version 3.0 jobs, you specify the number of workers and worker type, but do not
specify a maxCapacity.

• AWS Glue 3.0 does not yet support machine learning transforms.

• AWS Glue 3.0 does not yet support development endpoints.

Refer to the Spark migration documentation:

• see Upgrading from Spark SQL 2.2 to 2.3

• see Upgrading from Spark SQL 2.3 to 2.4

• see Upgrading from Spark SQL 2.4 to 3.0

• see Upgrading from Spark SQL 3.0 to 3.1

• see Changes in Datetime behavior to be expected since Spark 3.0.

Migrating from AWS Glue 1.0 to AWS Glue 3.0

Note the following changes when migrating:

• AWS Glue 1.0 uses open-source Spark 2.4 and AWS Glue 3.0 uses EMR-optimized Spark 3.1.1.

• Several Spark changes alone may require revision of your scripts to ensure removed features
are not being referenced.

• For example, Spark 3.1.1 does not enable Scala-untyped UDFs but Spark 2.4 does allow them.

Migrating AWS Glue for Spark jobs to AWS Glue version 3.0 716

https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-22-to-23
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-23-to-24
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-24-to-30
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-30-to-31
https://issues.apache.org/jira/browse/SPARK-31408

AWS Glue User Guide

• All jobs in AWS Glue 3.0 will be executed with significantly improved startup times. Spark jobs
will be billed in 1-second increments with a 10x lower minimum billing duration since startup
latency will go from 10 minutes maximum to 1 minute maximum.

• Logging behavior has changed since AWS Glue 2.0.

• Several dependency updates, highlighted in

• Scala is also updated to 2.12 from 2.11, and Scala 2.12 is not backwards compatible with Scala
2.11.

• Python 3.7 is also the default version used for Python scripts, as AWS Glue 0.9 was only utilizing
Python 2.

• Python 2.7 is not supported with Spark 3.1.1.

• A new mechanism of installing additional Python modules is available.

• AWS Glue 3.0 does not run on Apache YARN, so YARN settings do not apply.

• AWS Glue 3.0 does not have a Hadoop Distributed File System (HDFS).

• Any extra jars supplied in existing AWS Glue 1.0 jobs may bring in conflicting dependencies since
there were upgrades in several dependencies in 3.0 from 1.0. You can avoid classpath conflicts in
AWS Glue 3.0 with the --user-jars-first AWS Glue job parameter.

• AWS Glue 3.0 does not yet support dynamic allocation, hence the ExecutorAllocationManager
metrics are not available.

• In AWS Glue version 3.0 jobs, you specify the number of workers and worker type, but do not
specify a maxCapacity.

• AWS Glue 3.0 does not yet support machine learning transforms.

• AWS Glue 3.0 does not yet support development endpoints.

Refer to the Spark migration documentation:

• see Upgrading from Spark SQL 2.4 to 3.0

• see Changes in Datetime behavior to be expected since Spark 3.0.

Migrating from AWS Glue 2.0 to AWS Glue 3.0

Note the following changes when migrating:

• All existing job parameters and major features that exist in AWS Glue 2.0 will exist in AWS Glue
3.0.

Migrating AWS Glue for Spark jobs to AWS Glue version 3.0 717

https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-24-to-30
https://issues.apache.org/jira/browse/SPARK-31408

AWS Glue User Guide

• The EMRFS S3-optimized committer for writing Parquet data into Amazon S3 is enabled by
default in AWS Glue 3.0. However, you can still disable it by setting --enable-s3-parquet-
optimized-committer to false.

• AWS Glue 2.0 uses open-source Spark 2.4 and AWS Glue 3.0 uses EMR-optimized Spark 3.1.1.

• Several Spark changes alone may require revision of your scripts to ensure removed features
are not being referenced.

• For example, Spark 3.1.1 does not enable Scala-untyped UDFs but Spark 2.4 does allow them.

• AWS Glue 3.0 also features an update to EMRFS, updated JDBC drivers, and inclusions of
additional optimizations onto Spark itself provided by AWS Glue.

• All jobs in AWS Glue 3.0 will be executed with significantly improved startup times. Spark jobs
will be billed in 1-second increments with a 10x lower minimum billing duration since startup
latency will go from 10 minutes maximum to 1 minute maximum.

• Python 2.7 is not supported with Spark 3.1.1.

• Several dependency updates, highlighted in Appendix A: notable dependency upgrades.

• Scala is also updated to 2.12 from 2.11, and Scala 2.12 is not backwards compatible with Scala
2.11.

• Any extra jars supplied in existing AWS Glue 2.0 jobs may bring in conflicting dependencies since
there were upgrades in several dependencies in 3.0 from 2.0. You can avoid classpath conflicts in
AWS Glue 3.0 with the --user-jars-first AWS Glue job parameter.

• AWS Glue 3.0 has different Spark task parallelism for driver/executor configuration compared
to AWS Glue 2.0 and improves the performance and better utilizes the available resources.
Both spark.driver.cores and spark.executor.cores are configured to number of
cores on AWS Glue 3.0 (4 on the standard and G.1X worker, and 8 on the G.2X worker). These
configurations do not change the worker type or hardware for the AWS Glue job. You can use
these configurations to calculate the number of partitions or splits to match the Spark task
parallelism in your Spark application.

In general, jobs will see either similar or improved performance compared to AWS Glue 2.0. If
jobs run slower, you can increase the task parallelism by passing the following job argument:

• key: --executor-cores value: <desired number of tasks that can run in
parallel>

• The value should not exceed 2x the number of vCPUs on the worker type, which is 8 on G.1X,
16 on G.2X, 32 on G.4X and 64 on G.8X. You should exercise caution while updating this

Migrating AWS Glue for Spark jobs to AWS Glue version 3.0 718

AWS Glue User Guide

configuration as it could impact job performance because the increased parallelism causes
memory and disk pressure, as well as it could throttle the source and target systems.

• AWS Glue 3.0 uses Spark 3.1, which changes the behavior to loading/saving of timestamps from/
to parquet files. For more details, see Upgrading from Spark SQL 3.0 to 3.1.

We recommend to set the following parameters when reading/writing parquet data that
contains timestamp columns. Setting those parameters can resolve the calendar incompatibility
issue that occurs during the Spark 2 to Spark 3 upgrade, for both the AWS Glue Dynamic Frame
and Spark Data Frame. Use the CORRECTED option to read the datetime value as it is; and the
LEGACY option to rebase the datetime values with regard to the calendar difference during
reading.

- Key: --conf
- Value: spark.sql.legacy.parquet.int96RebaseModeInRead=[CORRECTED|LEGACY] --
conf spark.sql.legacy.parquet.int96RebaseModeInWrite=[CORRECTED|LEGACY] --conf
 spark.sql.legacy.parquet.datetimeRebaseModeInRead=[CORRECTED|LEGACY]

Refer to the Spark migration documentation:

• see Upgrading from Spark SQL 2.4 to 3.0

• see Changes in Datetime behavior to be expected since Spark 3.0.

Appendix A: notable dependency upgrades

The following are dependency upgrades:

Dependency Version in AWS
Glue 0.9

Version in AWS
Glue 1.0

Version in AWS
Glue 2.0

Version in AWS
Glue 3.0

Spark 2.2.1 2.4.3 2.4.3 3.1.1-amzn-0

Hadoop 2.7.3-amzn-6 2.8.5-amzn-1 2.8.5-amzn-5 3.2.1-amzn-3

Scala 2.11 2.11 2.11 2.12

Jackson 2.7.x 2.7.x 2.7.x 2.10.x

Hive 1.2 1.2 1.2 2.3.7-amzn-4

Migrating AWS Glue for Spark jobs to AWS Glue version 3.0 719

https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-30-to-31
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-24-to-30
https://issues.apache.org/jira/browse/SPARK-31408

AWS Glue User Guide

Dependency Version in AWS
Glue 0.9

Version in AWS
Glue 1.0

Version in AWS
Glue 2.0

Version in AWS
Glue 3.0

EMRFS 2.20.0 2.30.0 2.38.0 2.46.0

Json4s 3.2.x 3.5.x 3.5.x 3.6.6

Arrow N/A 0.10.0 0.10.0 2.0.0

AWS Glue
Catalog client

N/A N/A 1.10.0 3.0.0

Appendix B: JDBC driver upgrades

The following are JDBC driver upgrades:

Driver JDBC driver version in past
AWS Glue versions

JDBC driver version in AWS
Glue 3.0

MySQL 5.1 8.0.23

Microsoft SQL Server 6.1.0 7.0.0

Oracle Databases 11.2 21.1

PostgreSQL 42.1.0 42.2.18

MongoDB 2.0.0 4.0.0

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0

This topic describes the changes between AWS Glue versions 0.9, 1.0, 2.0, and 3.0 to allow you to
migrate your Spark applications and ETL jobs to AWS Glue 4.0. It also describes the features in AWS
Glue 4.0 and the advantages of using it.

To use this feature with your AWS Glue ETL jobs, choose 4.0 for the Glue version when creating
your jobs.

Topics

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 720

AWS Glue User Guide

• New features supported

• Actions to migrate to AWS Glue 4.0

• Migration checklist

• Migrating from AWS Glue 3.0 to AWS Glue 4.0

• Migrating from AWS Glue 2.0 to AWS Glue 4.0

• Migrating from AWS Glue 1.0 to AWS Glue 4.0

• Migrating from AWS Glue 0.9 to AWS Glue 4.0

• Connector and JDBC driver migration for AWS Glue 4.0

• Appendix A: Notable dependency upgrades

• Appendix B: JDBC driver upgrades

• Appendix C: Connector upgrades

New features supported

This section describes new features and advantages of AWS Glue version 4.0.

• It is based on Apache Spark 3.3.0, but includes optimizations in AWS Glue, and Amazon EMR,
such as adaptive query runs, vectorized readers, and optimized shuffles and partition coalescing.

• Upgraded JDBC drivers for all AWS Glue native sources including MySQL, Microsoft SQL Server,
Oracle, PostgreSQL, MongoDB, and upgraded Spark libraries and dependencies brought in by
Spark 3.3.0.

• Updated with a new Amazon Redshift connector and JDBC driver.

• Optimized Amazon S3 access with upgraded EMR File System (EMRFS) and enabled Amazon S3-
optimized output committers, by default.

• Optimized Data Catalog access with partition indexes, pushdown predicates, partition listing, and
an upgraded Hive metastore client.

• Integration with Lake Formation for governed catalog tables with cell-level filtering and data
lake transactions.

• Reduced startup latency to improve overall job completion times and interactivity.

• Spark jobs are billed in 1-second increments with a 10x lower minimum billing duration—from a
10-minute minimum to a 1-minute minimum.

• Native support for open-data lake frameworks with Apache Hudi, Delta Lake, and Apache
Iceberg.

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 721

AWS Glue User Guide

• Native support for the Amazon S3-based Cloud Shuffle Storage Plugin (an Apache Spark plugin)
to use Amazon S3 for shuffling and elastic storage capacity.

Major enhancements from Spark 3.1.1 to Spark 3.3.0

Note the following enhancements:

• Row-level runtime filtering (SPARK-32268).

• ANSI enhancements (SPARK-38860).

• Error message improvements (SPARK-38781).

• Support complex types for Parquet vectorized reader (SPARK-34863).

• Hidden file metadata support for Spark SQL (SPARK-37273).

• Provide a profiler for Python/Pandas UDFs (SPARK-37443).

• Introduce Trigger.AvailableNow for running streaming queries like Trigger.Once in multiple
batches (SPARK-36533).

• More comprehensive Datasource V2 pushdown capabilities (SPARK-38788).

• Migrating from log4j 1 to log4j 2 (SPARK-37814).

Other notable changes

Note the following changes:

• Breaking changes

• Drop references to Python 3.6 support in docs and Python/docs (SPARK-36977).

• Remove named tuple hack by replacing built-in pickle to cloudpickle (SPARK-32079).

• Bump minimum pandas version to 1.0.5 (SPARK-37465).

Actions to migrate to AWS Glue 4.0

For existing jobs, change the Glue version from the previous version to Glue 4.0 in the job
configuration.

• In AWS Glue Studio, choose Glue 4.0 - Supports Spark 3.3, Scala 2, Python 3 in
Glue version.

• In the API, choose 4.0 in the GlueVersion parameter in the UpdateJob API operation.

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 722

https://issues.apache.org/jira/browse/SPARK-32268
https://issues.apache.org/jira/browse/SPARK-38860
https://issues.apache.org/jira/browse/SPARK-38781
https://issues.apache.org/jira/browse/SPARK-34863
https://issues.apache.org/jira/browse/SPARK-37273
https://issues.apache.org/jira/browse/SPARK-37443
https://issues.apache.org/jira/browse/SPARK-36533
https://issues.apache.org/jira/browse/SPARK-38788
https://issues.apache.org/jira/browse/SPARK-37814
https://issues.apache.org/jira/browse/SPARK-36977
https://issues.apache.org/jira/browse/SPARK-32079
https://issues.apache.org/jira/browse/SPARK-37465
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html#aws-glue-api-jobs-job-UpdateJob

AWS Glue User Guide

For new jobs, choose Glue 4.0 when you create a job.

• In the console, choose Spark 3.3, Python 3 (Glue Version 4.0) or Spark 3.3,
Scala 2 (Glue Version 3.0) in Glue version.

• In AWS Glue Studio, choose Glue 4.0 - Supports Spark 3.3, Scala 2, Python 3 in
Glue version.

• In the API, choose 4.0 in the GlueVersion parameter in the CreateJob API operation.

To view Spark event logs of AWS Glue 4.0 coming from AWS Glue 2.0 or earlier, launch an
upgraded Spark history server for AWS Glue 4.0 using AWS CloudFormation or Docker.

Migration checklist

Review this checklist for migration:

Note

For checklist items related to AWS Glue 3.0, see Migration check list.

• Do your job's external Python libraries depend on Python 2.7/3.6?

• Update the dependent libraries from Python 2.7/3.6 to Python 3.10 as Spark 3.3.0 completely
removed Python 2.7 and 3.6 support.

Migrating from AWS Glue 3.0 to AWS Glue 4.0

Note the following changes when migrating:

• All existing job parameters and major features that exist in AWS Glue 3.0 will exist in AWS Glue
4.0.

• AWS Glue 3.0 uses Amazon EMR-optimized Spark 3.1.1, and AWS Glue 4.0 uses Amazon EMR-
optimized Spark 3.3.0.

Several Spark changes alone might require revision of your scripts to ensure that removed
features are not being referenced.

• AWS Glue 4.0 also features an update to EMRFS and Hadoop. For the specific version, see
Appendix A: Notable dependency upgrades.

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 723

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html#aws-glue-api-jobs-job-CreateJob
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui-history.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui-history.html

AWS Glue User Guide

• The AWS SDK provided in ETL jobs is now upgraded from 1.11 to 1.12.

• All Python jobs will be using Python version 3.10. Previously, Python 3.7 was used in AWS Glue
3.0.

As a result, some pymodules brought out-of-the-box by AWS Glue are upgraded.

• Log4j has been upgraded to Log4j2.

• For information on the Log4j2 migration path, see the Log4j documentation.

• You must rename any custom log4j.properties file as a log4j2.properties file instead, with the
appropriate log4j2 properties.

• For migrating certain connectors, see Connector and JDBC driver migration for AWS Glue 4.0.

• The AWS Encryption SDK is upgraded from 1.x to 2.x. AWS Glue jobs using AWS Glue security
configurations and jobs dependent on the AWS Encryption SDK dependency provided in runtime
are affected. See the instructions for AWS Glue job migration.

You can safely upgrade an AWS Glue 2.0/3.0 job to an AWS Glue 4.0 job because AWS Glue
2.0/3.0 already contains the AWS Encryption SDK bridge version.

Refer to the Spark migration documentation:

• Upgrading from Spark SQL 3.1 to 3.2

• Upgrading from Spark SQL 3.2 to 3.3

Migrating from AWS Glue 2.0 to AWS Glue 4.0

Note the following changes when migrating:

Note

For migration steps related to AWS Glue 3.0, see Migrating from AWS Glue 3.0 to AWS Glue
4.0.

• All existing job parameters and major features that exist in AWS Glue 2.0 will exist in AWS Glue
4.0.

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 724

https://logging.apache.org/log4j/2.x/manual/migration.html#Log4j2API
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-31-to-32
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-32-to-33

AWS Glue User Guide

• The EMRFS S3-optimized committer for writing Parquet data into Amazon S3 is enabled by
default since AWS Glue 3.0. However, you can still disable it by setting --enable-s3-parquet-
optimized-committer to false.

• AWS Glue 2.0 uses open-source Spark 2.4 and AWS Glue 4.0 uses Amazon EMR-optimized Spark
3.3.0.

• Several Spark changes alone may require revision of your scripts to ensure that removed
features are not being referenced.

• For example, Spark 3.3.0 does not enable Scala-untyped UDFs, but Spark 2.4 does allow them.

• The AWS SDK provided in ETL jobs is now upgraded from 1.11 to 1.12.

• AWS Glue 4.0 also features an update to EMRFS, updated JDBC drivers, and inclusions of
additional optimizations onto Spark itself provided by AWS Glue.

• Scala is updated to 2.12 from 2.11, and Scala 2.12 is not backward compatible with Scala 2.11.

• Python 3.10 is the default version used for Python scripts, as AWS Glue 2.0 was only using
Python 3.7 and 2.7.

• Python 2.7 is not supported with Spark 3.3.0. Any job requesting Python 2 in the job
configuration will fail with an IllegalArgumentException.

• A new mechanism of installing additional Python modules is available since AWS Glue 2.0.

• Several dependency updates, highlighted in Appendix A: Notable dependency upgrades.

• Any extra JAR files supplied in existing AWS Glue 2.0 jobs might bring in conflicting
dependencies because there were upgrades in several dependencies in 4.0 from 2.0. You
can avoid classpath conflicts in AWS Glue 4.0 with the --user-jars-first AWS Glue job
parameter.

• AWS Glue 4.0 uses Spark 3.3. Starting with Spark 3.1, there was a change in the behavior of
loading/saving of timestamps from/to parquet files. For more details, see Upgrading from Spark
SQL 3.0 to 3.1.

We recommend to set the following parameters when reading/writing parquet data that
contains timestamp columns. Setting those parameters can resolve the calendar incompatibility
issue that occurs during the Spark 2 to Spark 3 upgrade, for both the AWS Glue Dynamic Frame
and Spark Data Frame. Use the CORRECTED option to read the datetime value as it is; and the
LEGACY option to rebase the datetime values with regard to the calendar difference during
reading.

- Key: --conf

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 725

https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-30-to-31
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-30-to-31

AWS Glue User Guide

- Value: spark.sql.legacy.parquet.int96RebaseModeInRead=[CORRECTED|LEGACY] --
conf spark.sql.legacy.parquet.int96RebaseModeInWrite=[CORRECTED|LEGACY] --conf
 spark.sql.legacy.parquet.datetimeRebaseModeInRead=[CORRECTED|LEGACY]

• For migrating certain connectors, see Connector and JDBC driver migration for AWS Glue 4.0.

• The AWS Encryption SDK is upgraded from 1.x to 2.x. AWS Glue jobs using AWS Glue security
configurations and jobs dependent on the AWS Encryption SDK dependency provided in runtime
are affected. See these instructions for AWS Glue job migration:

• You can safely upgrade an AWS Glue 2.0 job to an AWS Glue 4.0 job because AWS Glue 2.0
already contains the AWS Encryption SDK bridge version.

Refer to the Spark migration documentation:

• Upgrading from Spark SQL 2.4 to 3.0

• Upgrading from Spark SQL 3.1 to 3.2

• Upgrading from Spark SQL 3.2 to 3.3

• Changes in Datetime behavior to be expected since Spark 3.0.

Migrating from AWS Glue 1.0 to AWS Glue 4.0

Note the following changes when migrating:

• AWS Glue 1.0 uses open-source Spark 2.4 and AWS Glue 4.0 uses Amazon EMR-optimized Spark
3.3.0.

• Several Spark changes alone may require revision of your scripts to ensure that removed
features are not being referenced.

• For example, Spark 3.3.0 does not enable Scala-untyped UDFs, but Spark 2.4 does allow them.

• All jobs in AWS Glue 4.0 will be run with significantly improved startup times. Spark jobs will be
billed in 1-second increments with a 10x lower minimum billing duration since startup latency
will go from 10 minutes maximum to 1 minute maximum.

• Logging behavior has changed significantly in AWS Glue 4.0, Spark 3.3.0 has a minimum
requirement of Log4j2.

• Several dependency updates, highlighted in the appendix.

• Scala is also updated to 2.12 from 2.11, and Scala 2.12 is not backward compatible with Scala
2.11.

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 726

https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-24-to-30
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-31-to-32
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-32-to-33
https://issues.apache.org/jira/browse/SPARK-31408

AWS Glue User Guide

• Python 3.10 is also the default version used for Python scripts, as AWS Glue 0.9 was only using
Python 2.

Python 2.7 is not supported with Spark 3.3.0. Any job requesting Python 2 in the job
configuration will fail with an IllegalArgumentException.

• A new mechanism of installing additional Python modules through pip is available since AWS
Glue 2.0. For more information, see Installing additional Python modules with pip in AWS Glue
2.0+.

• AWS Glue 4.0 does not run on Apache YARN, so YARN settings do not apply.

• AWS Glue 4.0 does not have a Hadoop Distributed File System (HDFS).

• Any extra JAR files supplied in existing AWS Glue 1.0 jobs might bring in conflicting
dependencies because there were upgrades in several dependencies in 4.0 from 1.0. We enable
AWS Glue 4.0 with the --user-jars-first AWS Glue job parameter by default, to avoid this
problem.

• AWS Glue 4.0 supports auto scaling. Therefore, the ExecutorAllocationManager metric will be
available when auto scaling is enabled.

• In AWS Glue version 4.0 jobs, you specify the number of workers and worker type, but do not
specify a maxCapacity.

• AWS Glue 4.0 does not yet support machine learning transforms.

• For migrating certain connectors, see Connector and JDBC driver migration for AWS Glue 4.0.

• The AWS Encryption SDK is upgraded from 1.x to 2.x. AWS Glue jobs using AWS Glue security
configurations and jobs dependent on the AWS Encryption SDK dependency provided in runtime
are affected. See these instructions for AWS Glue job migration.

• You cannot migrate an AWS Glue 0.9/1.0 job to an AWS Glue 4.0 job directly. This is because
when upgrading directly to version 2.x or later and enabling all new features immediately, the
AWS Encryption SDK won't be able to decrypt the ciphertext encrypted under earlier versions
of the AWS Encryption SDK.

• To safely upgrade, we first recommend that you migrate to an AWS Glue 2.0/3.0 job that
contains the AWS Encryption SDK bridge version. Run the job once to utilize the AWS
Encryption SDK bridge version.

• Upon completion, you can safely migrate the AWS Glue 2.0/3.0 job to AWS Glue 4.0.

Refer to the Spark migration documentation:

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 727

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-libraries.html#addl-python-modules-support
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-libraries.html#addl-python-modules-support

AWS Glue User Guide

• Upgrading from Spark SQL 2.4 to 3.0

• Upgrading from Spark SQL 3.0 to 3.1

• Upgrading from Spark SQL 3.1 to 3.2

• Upgrading from Spark SQL 3.2 to 3.3

• Changes in Datetime behavior to be expected since Spark 3.0.

Migrating from AWS Glue 0.9 to AWS Glue 4.0

Note the following changes when migrating:

• AWS Glue 0.9 uses open-source Spark 2.2.1 and AWS Glue 4.0 uses Amazon EMR-optimized
Spark 3.3.0.

• Several Spark changes alone might require revision of your scripts to ensure that removed
features are not being referenced.

• For example, Spark 3.3.0 does not enable Scala-untyped UDFs, but Spark 2.2 does allow them.

• All jobs in AWS Glue 4.0 will be run with significantly improved startup times. Spark jobs will be
billed in 1-second increments with a 10x lower minimum billing duration because startup latency
will go from 10 minutes maximum to 1 minute maximum.

• Logging behavior has changed significantly since AWS Glue 4.0, Spark 3.3.0 has a minimum
requirement of Log4j2 as mentioned here (https://spark.apache.org/docs/latest/core-migration-
guide.html#upgrading-from-core-32-to-33).

• Several dependency updates, highlighted in the appendix.

• Scala is also updated to 2.12 from 2.11, and Scala 2.12 is not backward compatible with Scala
2.11.

• Python 3.10 is also the default version used for Python scripts, as AWS Glue 0.9 was only using
Python 2.

• Python 2.7 is not supported with Spark 3.3.0. Any job requesting Python 2 in the job
configuration will fail with an IllegalArgumentException.

• A new mechanism of installing additional Python modules through pip is available.

• AWS Glue 4.0 does not run on Apache YARN, so YARN settings do not apply.

• AWS Glue 4.0 does not have a Hadoop Distributed File System (HDFS).

• Any extra JAR files supplied in existing AWS Glue 0.9 jobs might bring in conflicting
dependencies because there were upgrades in several dependencies in 3.0 from 0.9. You

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 728

https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-24-to-30
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-30-to-31
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-31-to-32
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-32-to-33
https://issues.apache.org/jira/browse/SPARK-31408

AWS Glue User Guide

can avoid classpath conflicts in AWS Glue 3.0 with the --user-jars-first AWS Glue job
parameter.

• AWS Glue 4.0 supports auto scaling. Therefore, the ExecutorAllocationManager metric will be
available when auto scaling is enabled.

• In AWS Glue version 4.0 jobs, you specify the number of workers and worker type, but do not
specify a maxCapacity.

• AWS Glue 4.0 does not yet support machine learning transforms.

• For migrating certain connectors, see Connector and JDBC driver migration for AWS Glue 4.0.

• The AWS Encryption SDK is upgraded from 1.x to 2.x. AWS Glue jobs using AWS Glue security
configurations and jobs dependent on the AWS Encryption SDK dependency provided in runtime
are affected. See these instructions for AWS Glue job migration.

• You cannot migrate an AWS Glue 0.9/1.0 job to an AWS Glue 4.0 job directly. This is because
when upgrading directly to version 2.x or later and enabling all new features immediately, the
AWS Encryption SDK won't be able to decrypt the ciphertext encrypted under earlier versions
of the AWS Encryption SDK.

• To safely upgrade, we first recommend that you migrate to an AWS Glue 2.0/3.0 job that
contains the AWS Encryption SDK bridge version. Run the job once to utilize the AWS
Encryption SDK bridge version.

• Upon completion, you can safely migrate the AWS Glue 2.0/3.0 job to AWS Glue 4.0.

Refer to the Spark migration documentation:

• Upgrading from Spark SQL 2.2 to 2.3

• Upgrading from Spark SQL 2.3 to 2.4

• Upgrading from Spark SQL 2.4 to 3.0

• Upgrading from Spark SQL 3.0 to 3.1

• Upgrading from Spark SQL 3.1 to 3.2

• Upgrading from Spark SQL 3.2 to 3.3

• Changes in Datetime behavior to be expected since Spark 3.0.

Connector and JDBC driver migration for AWS Glue 4.0

For the versions of JDBC and data lake connectors that were upgraded, see:

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 729

https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-22-to-23
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-23-to-24
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-24-to-30
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-30-to-31
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-31-to-32
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-32-to-33
https://issues.apache.org/jira/browse/SPARK-31408

AWS Glue User Guide

• Appendix B: JDBC driver upgrades

• Appendix C: Connector upgrades

Hudi

• Spark SQL support improvements:

• Through the Call Procedure command, there is added support for upgrade, downgrade,
bootstrap, clean, and repair. Create/Drop/Show/Refresh Index syntax is possible in Spark
SQL.

• A performance gap has been closed between usage through a Spark DataSource as opposed to
Spark SQL. Datasource writes in the past used to be faster than SQL.

• All built-in key generators implement more performant Spark-specific API operations.

• Replaced UDF transformation in the bulk insert operation with RDD transformations to cut
down on costs of using SerDe.

• Spark SQL with Hudi requires a primaryKey to be specified by tblproperites or options in
the SQL statement. For update and delete operations, the preCombineField is required as
well.

• Any Hudi table created before version 0.10.0 without a primaryKey needs to be recreated with
a primaryKey field since version 0.10.0.

PostgreSQL

• Several vulnerabilities (CVEs) were addressed.

• Java 8 is natively supported.

• If the job is using Arrays of Arrays, with the exception of byte arrays, this scenario can be treated
as multidimensional arrays.

MongoDB

• The current MongoDB connector supports Spark version 3.1 or later and MongoDB version 4.0 or
later.

• Due to the connector upgrade, a few property names changed. For example, the URI property
name changed to connection.uri. For more information on the current options, see the
MongoDB Spark Connector blog.

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 730

https://www.mongodb.com/docs/spark-connector/current/configuration/

AWS Glue User Guide

• Using MongoDB 4.0 hosted by Amazon DocumentDB has some functional differences. For more
information, see these topics:

• Functional Differences: Amazon DocumentDB and MongoDB

• Supported MongoDB APIs, Operations, and Data Types.

• The "partitioner" option is restricted to ShardedPartitioner,
PaginateIntoPartitionsPartitioner, and SinglePartitionPartitioner. It
cannot use default SamplePartitioner and PaginateBySizePartitioner for Amazon
DocumentDB because the stage operator does not support the MongoDB API. For more
information, see Supported MongoDB APIs, Operations, and Data Types.

Delta Lake

• Delta Lake now supports time travel in SQL to query older data easily. With this update, time
travel is now available both in Spark SQL and through the DataFrame API. Support has been
added for the current version of TIMESTAMP in SQL.

• Spark 3.3 introduces Trigger.AvailableNow for running streaming queries as an equivalent to
Trigger.Once for batch queries. This support is also available when using Delta tables as a
streaming source.

• Support for SHOW COLUMNS to return the list of columns in a table.

• Support for DESCRIBE DETAIL in the Scala and Python DeltaTable API. It retrieves detailed
information about a Delta table using either the DeltaTable API or Spark SQL.

• Support for returning operation metrics from SQL Delete, Merge, and Update commands.
Previously these SQL commands returned an empty DataFrame, now they return a DataFrame
with useful metrics about the operation performed.

• Optimize performance improvements:

• Set the configuration option
spark.databricks.delta.optimize.repartition.enabled=true to use
repartition(1) instead of coalesce(1) in the Optimize command for better performance
when compacting many small files.

• Improved performance by using a queue-based approach to parallelize compaction jobs.

• Other notable changes:

• Support for using variables in the VACUUM and OPTIMIZE SQL commands.

• Improvements for CONVERT TO DELTA with catalog tables including:

• Autofill the partition schema from the catalog when it's not provided.

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 731

https://docs.aws.amazon.com/documentdb/latest/developerguide/functional-differences.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/mongo-apis.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/mongo-apis.html
https://docs.delta.io/2.1.0/delta-batch.html#query-an-older-snapshot-of-a-table-time-travel
https://issues.apache.org/jira/browse/SPARK-36533
https://docs.delta.io/2.1.0/delta-utility.html#retrieve-delta-table-details
https://github.com/delta-io/delta/pull/1328
https://github.com/delta-io/delta/pull/1327
https://github.com/delta-io/delta/pull/1331
https://github.com/delta-io/delta/pull/1315
https://github.com/delta-io/delta/issues/1267
https://github.com/delta-io/delta/commit/18d4d12ed06f973006501f6c39c8785db51e2b1f

AWS Glue User Guide

• Use partition information from the catalog to find the data files to commit instead of doing
a full directory scan. Instead of committing all data files in the table directory, only data files
under the directories of active partitions will be committed.

• Support for Change Data Feed (CDF) batch reads on column mapping enabled tables when
DROP COLUMN and RENAME COLUMN have not been used. For more information, see the
Delta Lake documentation.

• Improve Update command performance by enabling schema pruning in the first pass.

Apache Iceberg

• Added several performance improvements for scan planning and Spark queries.

• Added a common REST catalog client that uses change-based commits to resolve commit
conflicts on the service side.

• AS OF syntax for SQL time travel queries is supported.

• Added merge-on-read support for MERGE and UPDATE queries.

• Added support to rewrite partitions using Z-order.

• Added a spec and implementation for Puffin, a format for large stats and index blobs, like Theta
sketches or bloom filters.

• Added new interfaces for consuming data incrementally (both append and changelog scans).

• Added support for bulk operations and ranged reads to FileIO interfaces.

• Added more metadata tables to show delete files in the metadata tree.

• The drop table behavior changed. In Iceberg 0.13.1, running DROP TABLE removes the table
from the catalog and deletes the table contents as well. In Iceberg 1.0.0, DROP TABLE only
removes the table from the catalog. To delete the table contents use DROP TABLE PURGE.

• Parquet vectorized reads are enabled by default in Iceberg 1.0.0. If you want to disable
vectorized reads, set read.parquet.vectorization.enabled to false.

Oracle

Changes are minor.

MySQL

Changes are minor.

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 732

https://github.com/delta-io/delta/commit/ebff29904f3ababb889897343f8f8f7a010a1f71
https://github.com/delta-io/delta/issues/1349
https://docs.delta.io/2.1.0/delta-change-data-feed.html#known-limitations
https://github.com/delta-io/delta/pull/1202
https://iceberg.apache.org/releases/#performance-improvements
https://datasketches.apache.org/docs/Theta/InverseEstimate.html
https://datasketches.apache.org/docs/Theta/InverseEstimate.html

AWS Glue User Guide

Amazon Redshift

AWS Glue 4.0 features a new Amazon Redshift connector with a new JDBC driver. For information
about the enhancements and how to migrate from previous AWS Glue versions, see the section
called “Redshift connections”.

Appendix A: Notable dependency upgrades

The following are dependency upgrades:

Dependency Version in AWS
Glue 4.0

Version in AWS
Glue 3.0

Version in AWS
Glue 2.0

Version in AWS
Glue 1.0

Spark 3.3.0-amzn-1 3.1.1-amzn-0 2.4.3 2.4.3

Hadoop 3.3.3-amzn-0 3.2.1-amzn-3 2.8.5-amzn-5 2.8.5-amzn-1

Scala 2.12 2.12 2.11 2.11

Jackson 2.13.3 2.10.x 2.7.x 2.7.x

Hive 2.3.9-amzn-2 2.3.7-amzn-4 1.2 1.2

EMRFS 2.54.0 2.46.0 2.38.0 2.30.0

Json4s 3.7.0-M11 3.6.6 3.5.x 3.5.x

Arrow 7.0.0 2.0.0 0.10.0 0.10.0

AWS Glue Data
Catalog client

3.7.0 3.0.0 1.10.0 N/A

Python 3.10 3.7 2.7 & 3.6 2.7 & 3.6

Boto 1.26 1.18 1.12 N/A

Appendix B: JDBC driver upgrades

The following are JDBC driver upgrades:

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 733

AWS Glue User Guide

Driver JDBC driver version
in past AWS Glue
versions

JDBC driver version
in AWS Glue 3.0

JDBC driver version
in AWS Glue 4.0

MySQL 5.1 8.0.23 8.0.23

Microsoft SQL Server 6.1.0 7.0.0 9.4.0

Oracle Databases 11.2 21.1 21.7

PostgreSQL 42.1.0 42.2.18 42.3.6

MongoDB 2.0.0 4.0.0 4.7.2

Amazon Redshift redshift-jdbc41-1.
2.12.1017

redshift-jdbc41-1.
2.12.1017

redshift-jdbc42-2.
1.0.16

Appendix C: Connector upgrades

The following are connector upgrades:

Driver Connector version in AWS
Glue 3.0

Connector version in AWS
Glue 4.0

MongoDB 3.0.0 10.0.4

Hudi 0.10.1 0.12.1

Delta Lake 1.0.0 2.1.0

Iceberg 0.13.1 1.0.0

DynamoDB 1.11 1.12

Migrating AWS Glue for Spark jobs to AWS Glue version 4.0 734

AWS Glue User Guide

Migrating AWS Glue for Ray from preview to the Ray2.4 runtime
environment

Warning

When you save your AWS Glue for Ray (preview) job in AWS Glue Studio, it will be
automatically upgraded to the Ray2.4 runtime. If you experience compatibility issues with
your script, please contact support.

You should migrate AWS Glue jobs that were created during the AWS Glue for Ray (preview) to
AWS Glue for Ray. This will involve a few concurrent changes to your job configuration.

• In the Runtime field, provide the Ray2.4 runtime value. This will upgrade the underlying Ray
version from 2.0.0 to 2.4.0.

• Certain Python libraries included by default in the preview are no longer provided. If your job
takes advantage of the AWS SDK for pandas (awswrangler), dask, modin, or pymars, you will
need to include these as additional libraries. For more information on including additional
Python libraries, see the section called “Additional Python modules for Ray jobs”.

• If you're using the --additional-python-modules parameter, the parameters used to
support this workflow have been broken out into --pip-install and --s3-py-modules. For
more information about these parameters, see the section called “Additional Python modules for
Ray jobs”.

• If you're using the --auto-scaling-ray-min-workers parameter, it has been renamed --
min-workers.

AWS Glue version support policy

AWS Glue is a serverless data integration service that makes it easy to discover, prepare, and
combine data for analytics, machine learning, and application development. An AWS Glue job
contains the business logic that performs the data integration work in AWS Glue. There are three
types of jobs in AWS Glue: Spark (batch and streaming), Ray and Python shell. When you define
your job, you specify the AWS Glue version, which configures versions in the underlying Spark, Ray
or Python runtime environment. For example: an AWS Glue version 2.0 Spark job supports Spark
2.4.3 and Python 3.7.

Migrating from AWS Glue for Ray (preview) to AWS Glue for Ray 735

AWS Glue User Guide

Support policy

Occasionally AWS Glue discontinues support for old AWS Glue versions. However, jobs running on
deprecated versions are no longer eligible for technical support. AWS Glue will no longer apply
security patches or other updates to deprecated versions. AWS Glue will also not honor SLAs when
jobs are run on deprecated versions.

When end of support occurs for AWS Glue version 2.0 or later, you will not be able to create jobs,
but only edit or run jobs.

The following AWS Glue versions have reached or are scheduled for end of support. End of support
starts at midnight (Pacific time zone) on the specified date.

Type Glue version End of support

Spark Spark 2.2, Scala 2 (Glue
version 0.9)

6/1/2022

Spark Spark 2.2, Python 2 (Glue
version 0.9)

6/1/2022

Spark Spark 2.4, Python 2 (Glue
version 1.0)

6/1/2022

Spark Spark 2.4, Python 3 (Glue
version 1.0)

9/30/2022

Spark Spark 2.4, Scala 2 (Glue
version 1.0)

9/30/2022

Spark Glue version 2.0 1/31/2024

Type Python version End of support

Python shell Python 2 (Glue Version 1.0) 6/1/2022

Type Notebook version End of support

Development endpoint Zeppelin notebook 9/30/2022

AWS Glue version support policy 736

AWS Glue User Guide

AWS strongly recommends that you migrate your jobs to supported versions.

For information on migrating your Spark jobs to the latest AWS Glue version, see Migrating AWS
Glue jobs to AWS Glue version 4.0.

For migrating your Python shell jobs to the latest AWS Glue version:

• In the console, choose Python 3 (Glue Version 4.0).

• In the CreateJob/UpdateJob API, set the GlueVersion parameter to 2.0, and the
PythonVersion to 3 under the Command parameter. The GlueVersion configuration
does not affect the behavior of Python shell jobs, so there is no advantage to incrementing
GlueVersion.

• You need to make your job script compatible with Python 3.

Note

All AWS Regions that were launched prior to the launch of the Jakarta, Indonesia(ap-
southeast-3) Region in August 2022 have an allow list of customers who are allowed to run
AWS Glue version 0.9/1.0 job runs. In these older Regions, you can create a job with a null
value and it will default to version 0.9/1.0 depending on Region. For any later launched
AWS Regions, you must explicitly set the AWS Glue version in the API. AWS Glue no longer
accepts a null parameter. If you pass 0.9 or 1.0 in the parameter you encounter the error
"Glue Version 0.9 (or) 1.0 is not supported."

Working with Spark jobs in AWS Glue

Provides information on AWS Glue for Spark ETL jobs.

Topics

• AWS Glue job parameters

• AWS Glue Spark and PySpark jobs

• Streaming ETL jobs in AWS Glue

• Record matching with AWS Lake Formation FindMatches

• Migrate Apache Spark programs to AWS Glue

Working with Spark jobs 737

https://docs.aws.amazon.com/glue/latest/dg/migrating-version-40.html
https://docs.aws.amazon.com/glue/latest/dg/migrating-version-40.html
https://docs.aws.amazon.com/glue/latest/webapi/API_CreateJob.html
https://docs.aws.amazon.com/glue/latest/webapi/API_UpdateJob.html

AWS Glue User Guide

AWS Glue job parameters

When creating a AWS Glue job, you set some standard fields, such as Role and WorkerType. You
can provide additional configuration information through the Argument fields (Job Parameters in
the console). In these fields, you can provide AWS Glue jobs with the arguments (parameters) listed
in this topic. For more information about the AWS Glue Job API, see the section called “Jobs”.

Setting job parameters

You can configure a job through the console on the Job details tab, under the Job Parameters
heading. You can also configure a job through the AWS CLI by setting DefaultArguments or
NonOverridableArguments on a job, or setting Arguments on a job run. Arguments set on
the job will be passed in every time the job is run, while arguments set on the job run will only be
passed in for that individual run.

For example, the following is the syntax for running a job using --arguments to set a job
parameter.

$ aws glue start-job-run --job-name "CSV to CSV" --arguments='--scriptLocation="s3://
my_glue/libraries/test_lib.py"'

Accessing job parameters

When writing AWS Glue scripts, you may want to access job parameter values to alter the behavior
of your own code. We provide helper methods to do so in our libraries. These methods resolve
job run parameter values that override job parameter values. When resolving parameters set in
multiple places, job NonOverridableArguments will override job run Arguments, which will
override job DefaultArguments.

In Python:

In Python jobs, we provide a function named getResolvedParameters. For more information,
see the section called “getResolvedOptions”. Job parameters are available in the sys.argv
variable.

In Scala:

In Scala jobs, we provide an object named GlueArgParser. For more information, see the section
called “GlueArgParser”. Job parameters are available in the sysArgs variable.

Job parameters 738

AWS Glue User Guide

Job parameter reference

AWS Glue recognizes the following argument names that you can use to set up the script
environment for your jobs and job runs:

--additional-python-modules

A comma delimited list representing a set of Python packages to be installed. You can install
packages from PyPI or provide a custom distribution. A PyPI package entry will be in the
format package==version, with the PyPI name and version of your target package. A custom
distribution entry is the S3 path to the distribution.

Entries use Python version matching to match package and version. This means you will need
to use two equals signs, such as ==. There are other version matching operators, for more
information see PEP 440.

To pass module installation options to pip3, use the --python-modules-installer-option
parameter.

--auto-scale-within-microbatch

The default value is false. This parameter can only be used for AWS Glue streaming jobs, which
process the streaming data in a series of micro batches, and auto scaling must be enabled.
When setting this value to false, it computes the exponential moving average of batch duration
for completed micro-batches and compares this value with the window size to determine
whether to scale up or scale down the number of executors. Scaling only happens when a micro
batch is completed. When setting this value to true, during a micro-batch, it scales up when
the number of Spark tasks remains the same for 30 seconds, or the current batch processing is
greater than the window size. The number of executors will drop if an executor has been idle for
more than 60 seconds, or the exponential moving average of batch duration is low.

--class

The Scala class that serves as the entry point for your Scala script. This applies only if your --
job-language is set to scala.

--continuous-log-conversionPattern

Specifies a custom conversion log pattern for a job enabled for continuous logging. The
conversion pattern applies only to driver logs and executor logs. It does not affect the AWS Glue
progress bar.

Job parameters 739

https://peps.python.org/pep-0440/#version-matching

AWS Glue User Guide

--continuous-log-logGroup

Specifies a custom Amazon CloudWatch log group name for a job enabled for continuous
logging.

--continuous-log-logStreamPrefix

Specifies a custom CloudWatch log stream prefix for a job enabled for continuous logging.

--customer-driver-env-vars and --customer-executor-env-vars

These parameters set environment variables on the operating system respectively for each
worker (driver or executor). You can use these parameters when building platforms and custom
frameworks on top of AWS Glue, to let your users write jobs on top of it. Enabling these
two flags will allow you to set different environment variables on the driver and executor
respectively without having to inject the same logic in the job script itself.

Example usage

The following is an example of using these parameters:

"—customer-driver-env-vars", "CUSTOMER_KEY1=VAL1,CUSTOMER_KEY2=\"val2,val2 val2\"",
"—customer-executor-env-vars", "CUSTOMER_KEY3=VAL3,KEY4=VAL4"

Setting these in the job run argument is equivalent to running the following commands:

In the driver:

• export CUSTOMER_KEY1=VAL1

• export CUSTOMER_KEY2="val2,val2 val2"

In the executor:

• export CUSTOMER_KEY3=VAL3

Then, in the job script itself, you can retrieve the environment variables using
os.environ.get("CUSTOMER_KEY1") or System.getenv("CUSTOMER_KEY1").

Enforced syntax

Observe the following standards when defining environment variables:

• Each key must have the CUSTOMER_ prefix.

For example: for "CUSTOMER_KEY3=VAL3,KEY4=VAL4", KEY4=VAL4 will be ignored and not
set.

Job parameters 740

AWS Glue User Guide

• Each key and value pair must be delineated with a single comma.

For example: "CUSTOMER_KEY3=VAL3,CUSTOMER_KEY4=VAL4"

• If the "value" has spaces or commas, then it must be defined within quotations.

For example: CUSTOMER_KEY2=\"val2,val2 val2\"

This syntax closely models the standards of setting bash environment variables.

--datalake-formats

Supported in AWS Glue 3.0 and later versions.

Specifies the data lake framework to use. AWS Glue adds the required JAR files for the
frameworks that you specify into the classpath. For more information, see Using data lake
frameworks with AWS Glue ETL jobs.

You can specify one or more of the following values, separated by a comma:

• hudi

• delta

• iceberg

For example, pass the following argument to specify all three frameworks.

'--datalake-formats': 'hudi,delta,iceberg'

--disable-proxy-v2

Disable the service proxy to allow AWS service calls to Amazon S3, CloudWatch, and AWS Glue
originating from your script through your VPC. For more information, see Configuring AWS
calls to go through your VPC . To disable the service proxy, set the value of this paramater to
true.

--enable-auto-scaling

Turns on auto scaling and per-worker billing when you set the value to true.

--enable-continuous-cloudwatch-log

Enables real-time continuous logging for AWS Glue jobs. You can view real-time Apache Spark
job logs in CloudWatch.

Job parameters 741

https://docs.aws.amazon.com/glue/latest/dg/connection-VPC-disable-proxy.html
https://docs.aws.amazon.com/glue/latest/dg/connection-VPC-disable-proxy.html

AWS Glue User Guide

--enable-continuous-log-filter

Specifies a standard filter (true) or no filter (false) when you create or edit a job enabled for
continuous logging. Choosing the standard filter prunes out non-useful Apache Spark driver/
executor and Apache Hadoop YARN heartbeat log messages. Choosing no filter gives you all the
log messages.

--enable-glue-datacatalog

Enables you to use the AWS Glue Data Catalog as an Apache Spark Hive metastore. To enable
this feature, set the value to true.

--enable-job-insights

Enables additional error analysis monitoring with AWS Glue job run insights. For details, see the
section called “Monitoring with AWS Glue job run insights”. By default, the value is set to true
and job run insights are enabled.

This option is available for AWS Glue version 2.0 and 3.0.

--enable-metrics

Enables the collection of metrics for job profiling for this job run. These metrics are available
on the AWS Glue console and the Amazon CloudWatch console. The value of this parameter
is not relevant. To enable this feature, you can provide this parameter with any value, but
true is recommended for clarity. To disable this feature, remove this parameter from your job
configuration.

--enable-observability-metrics

Enables a set of Observability metrics to generate insights into what is happening inside each
job run on Job Runs Monitoring page under AWS Glue console and the Amazon CloudWatch
console. To enable this feature, set the value of this parameter to true. To disable this feature,
set it to false or remove this parameter from your job configuration.

--enable-rename-algorithm-v2

Sets the EMRFS rename algorithm version to version 2. When a Spark job uses dynamic
partition overwrite mode, there is a possibility that a duplicate partition is created. For instance,
you can end up with a duplicate partition such as s3://bucket/table/location/p1=1/
p1=1. Here, P1 is the partition that is being overwritten. Rename algorithm version 2 fixes this
issue.

This option is only available on AWS Glue version 1.0.

Job parameters 742

AWS Glue User Guide

--enable-s3-parquet-optimized-committer

Enables the EMRFS S3-optimized committer for writing Parquet data into Amazon S3. You can
supply the parameter/value pair via the AWS Glue console when creating or updating an AWS
Glue job. Setting the value to true enables the committer. By default, the flag is turned on in
AWS Glue 3.0 and off in AWS Glue 2.0.

For more information, see Using the EMRFS S3-optimized Committer.

--enable-spark-ui

When set to true, turns on the feature to use the Spark UI to monitor and debug AWS Glue ETL
jobs.

--executor-cores

Number of spark tasks that can run in parallel. This option is supported on AWS Glue 3.0+.
The value should not exceed 2x the number of vCPUs on the worker type, which is 8 on G.1X,
16 on G.2X, 32 on G.4X and 64 on G.8X. You should exercise caution while updating this
configuration as it could impact job performance because increased task parallelism causes
memory, disk pressure as well as it could throttle the source and target systems (for example: it
would cause more concurrent connections on Amazon RDS).

--extra-files

The Amazon S3 paths to additional files, such as configuration files that AWS Glue copies to
the working directory of your script before running it. Multiple values must be complete paths
separated by a comma (,). Only individual files are supported, not a directory path. This option
is not supported for Python Shell job types.

--extra-jars

The Amazon S3 paths to additional Java .jar files that AWS Glue adds to the Java classpath
before executing your script. Multiple values must be complete paths separated by a comma (,).

--extra-py-files

The Amazon S3 paths to additional Python modules that AWS Glue adds to the Python path
before running your script. Multiple values must be complete paths separated by a comma (,).
Only individual files are supported, not a directory path.

--job-bookmark-option

Controls the behavior of a job bookmark. The following option values can be set.

Job parameters 743

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-s3-optimized-committer.html

AWS Glue User Guide

‑‑job‑boo kmark‑opt ion value Description

job-bookmark-enable Keep track of previously processed data. When a job
runs, process new data since the last checkpoint.

job-bookmark-disable Always process the entire dataset. You are responsible
for managing the output from previous job runs.

job-bookmark-pause Process incremental data since the last successful run
or the data in the range identified by the following
suboptions, without updating the state of the last
bookmark. You are responsible for managing the
output from previous job runs. The two suboptions are
as follows:

• job-bookmark-from <from-value> is the run
ID that represents all the input that was processed
until the last successful run before and including the
specified run ID. The corresponding input is ignored.

• job-bookmark-to <to-value> is the run ID
that represents all the input that was processed
until the last successful run before and including the
specified run ID. The corresponding input excluding
the input identified by the <from-value> is
processed by the job. Any input later than this input
is also excluded for processing.

The job bookmark state is not updated when this
option set is specified.

The suboptions are optional. However, when used,
both suboptions must be provided.

For example, to enable a job bookmark, pass the following argument.

'--job-bookmark-option': 'job-bookmark-enable'

Job parameters 744

AWS Glue User Guide

--job-language

The script programming language. This value must be either scala or python. If this
parameter is not present, the default is python.

--python-modules-installer-option

A plaintext string that defines options to be passed to pip3 when installing modules with --
additional-python-modules. Provide options as you would in the command line, separated
by spaces and prefixed by dashes. For more information about usage, see the section called
“Installing additional Python modules with pip in AWS Glue 2.0+”.

Note

This option is not supported for AWS Glue jobs when you use Python 3.9.

--scriptLocation

The Amazon Simple Storage Service (Amazon S3) location where your ETL script is located (in
the form s3://path/to/my/script.py). This parameter overrides a script location set in the
JobCommand object.

--spark-event-logs-path

Specifies an Amazon S3 path. When using the Spark UI monitoring feature, AWS Glue flushes
the Spark event logs to this Amazon S3 path every 30 seconds to a bucket that can be used as a
temporary directory for storing Spark UI events.

--TempDir

Specifies an Amazon S3 path to a bucket that can be used as a temporary directory for the job.

For example, to set a temporary directory, pass the following argument.

'--TempDir': 's3-path-to-directory'

Note

AWS Glue creates a temporary bucket for jobs if a bucket doesn't already exist in a
Region. This bucket might permit public access. You can either modify the bucket in

Job parameters 745

AWS Glue User Guide

Amazon S3 to set the public access block, or delete the bucket later after all jobs in that
Region have completed.

--use-postgres-driver

When setting this value to true, it prioritizes the Postgres JDBC driver in the class path to
avoid a conflict with the Amazon Redshift JDBC driver. This option is only available in AWS Glue
version 2.0.

--user-jars-first

When setting this value to true, it prioritizes the customer's extra JAR files in the classpath.
This option is only available in AWS Glue version 2.0 or later.

--conf

Controls Spark config parameters. It is for advanced use cases.

--encryption-type

Legacy parameter. The corresponding behavior should be configured using security
configurations. for more information about security configurations, see the section called
“Encrypting data written by AWS Glue”.

AWS Glue uses the following arguments internally and you should never use them:

• --debug — Internal to AWS Glue. Do not set.

• --mode — Internal to AWS Glue. Do not set.

• --JOB_NAME — Internal to AWS Glue. Do not set.

• --endpoint — Internal to AWS Glue. Do not set.

AWS Glue supports bootstrapping an environment with Python's site module using
sitecustomize to perform site-specific customizations. Bootstrapping your own initilization
functions is recommended for advanced use cases only and is supported on a best-effort basis on
AWS Glue 4.0.

The environment variable prefix, GLUE_CUSTOMER, is reserved for customer use.

Job parameters 746

AWS Glue User Guide

AWS Glue Spark and PySpark jobs

The following sections provide information on AWS Glue Spark and PySpark jobs.

Topics

• Adding Spark and PySpark jobs in AWS Glue

• Tracking processed data using job bookmarks

• AWS Glue Spark shuffle plugin with Amazon S3

• Monitoring AWS Glue Spark jobs

Adding Spark and PySpark jobs in AWS Glue

The following sections provide information on adding Spark and PySpark jobs in AWS Glue.

Topics

• Configuring job properties for Spark jobs in AWS Glue

• Editing Spark scripts in the AWS Glue console

• Jobs (legacy)

Configuring job properties for Spark jobs in AWS Glue

An AWS Glue job encapsulates a script that connects to your source data, processes it, and then
writes it out to your data target. Typically, a job runs extract, transform, and load (ETL) scripts.
Jobs can also run general-purpose Python scripts (Python shell jobs.) AWS Glue triggers can start
jobs based on a schedule or event, or on demand. You can monitor job runs to understand runtime
metrics such as completion status, duration, and start time.

You can use scripts that AWS Glue generates or you can provide your own. With a source schema
and target location or schema, the AWS Glue code generator can automatically create an Apache
Spark API (PySpark) script. You can use this script as a starting point and edit it to meet your goals.

AWS Glue can write output files in several data formats, including JSON, CSV, ORC (Optimized
Row Columnar), Apache Parquet, and Apache Avro. For some data formats, common compression
formats can be written.

There are three types of jobs in AWS Glue: Spark, Streaming ETL, and Python shell.

Spark and PySpark jobs 747

AWS Glue User Guide

• A Spark job is run in an Apache Spark environment managed by AWS Glue. It processes data in
batches.

• A streaming ETL job is similar to a Spark job, except that it performs ETL on data streams. It uses
the Apache Spark Structured Streaming framework. Some Spark job features are not available to
streaming ETL jobs.

• A Python shell job runs Python scripts as a shell and supports a Python version that depends on
the AWS Glue version you are using. You can use these jobs to schedule and run tasks that don't
require an Apache Spark environment.

Defining job properties for Spark jobs

When you define your job on the AWS Glue console, you provide values for properties to control
the AWS Glue runtime environment.

The following list describes the properties of a Spark job. For the properties of a Python shell job,
see Defining job properties for Python shell jobs. For properties of a streaming ETL job, see the
section called “Defining job properties for a streaming ETL job”.

The properties are listed in the order in which they appear on the Add job wizard on AWS Glue
console.

Name

Provide a UTF-8 string with a maximum length of 255 characters.

Description

Provide an optional description of up to 2048 characters.

IAM Role

Specify the IAM role that is used for authorization to resources used to run the job and access
data stores. For more information about permissions for running jobs in AWS Glue, see Identity
and access management for AWS Glue.

Type

The type of ETL job. This is set automatically based on the type of data sources you select.

• Spark runs an Apache Spark ETL script with the job command glueetl.

• Spark Streaming runs a Apache Spark streaming ETL script with the job command
gluestreaming. For more information, see the section called “Streaming ETL jobs”.

Spark and PySpark jobs 748

AWS Glue User Guide

• Python shell run a Python script with the job command pythonshell. For more
information, see Configuring job properties for Python shell jobs in AWS Glue.

AWS Glue version

AWS Glue version determines the versions of Apache Spark and Python that are available to the
job, as specified in the following table.

AWS Glue version Supported Spark and Python versions

4.0 • Spark 3.3.0

• Python 3.10

3.0 • Spark 3.1.1

• Python 3.7

2.0 • Spark 2.4.3

• Python 3.7

1.0 • Spark 2.4.3

• Python 2.7

• Python 3.6

0.9 • Spark 2.2.1

• Python 2.7

Worker type

The following worker types are available:

The resources available on AWS Glue workers are measured in DPUs. A DPU is a relative measure
of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory.

• G.1X – When you choose this type, you also provide a value for Number of workers. Each
worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB
free). We recommend this worker type for workloads such as data transforms, joins, and
queries, to offers a scalable and cost effective way to run most jobs.

• G.2X – When you choose this type, you also provide a value for Number of workers. Each
worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB

Spark and PySpark jobs 749

AWS Glue User Guide

free). We recommend this worker type for workloads such as data transforms, joins, and
queries, to offers a scalable and cost effective way to run most jobs.

• G.4X – When you choose this type, you also provide a value for Number of workers. Each
worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately
235GB free). We recommend this worker type for jobs whose workloads contain your most
demanding transforms, aggregations, joins, and queries. This worker type is available only
for AWS Glue version 3.0 or later Spark ETL jobs in the following AWS Regions: US East
(Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney),
Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe
(Stockholm).

• G.8X – When you choose this type, you also provide a value for Number of workers. Each
worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately
487GB free). We recommend this worker type for jobs whose workloads contain your most
demanding transforms, aggregations, joins, and queries. This worker type is available only for
AWS Glue version 3.0 or later Spark ETL jobs, in the same AWS Regions as supported for the
G.4X worker type.

• G.025X – When you choose this type, you also provide a value for Number of workers. Each
worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB
free). We recommend this worker type for low volume streaming jobs. This worker type is
only available for AWS Glue version 3.0 streaming jobs.

You are charged an hourly rate based on the number of DPUs used to run your ETL jobs. For
more information, see the AWS Glue pricing page.

For AWS Glue version 1.0 or earlier jobs, when you configure a job using the console and specify
a Worker type of Standard, the Maximum capacity is set and the Number of workers becomes
the value of Maximum capacity - 1. If you use the AWS Command Line Interface (AWS CLI) or
AWS SDK, you can specify the Max capacity parameter, or you can specify both Worker type
and the Number of workers.

For AWS Glue version 2.0 or later jobs, you cannot specify a Maximum capacity. Instead, you
should specify a Worker type and the Number of workers.

Language

The code in the ETL script defines your job's logic. The script can be coded in Python or Scala.
You can choose whether the script that the job runs is generated by AWS Glue or provided by
you. You provide the script name and location in Amazon Simple Storage Service (Amazon S3).

Spark and PySpark jobs 750

https://aws.amazon.com/glue/pricing/

AWS Glue User Guide

Confirm that there isn't a file with the same name as the script directory in the path. To learn
more about writing scripts, see AWS Glue programming guide.

Requested number of workers

For most worker types, you must specify the number of workers that are allocated when the job
runs.

Job bookmark

Specify how AWS Glue processes state information when the job runs. You can have it
remember previously processed data, update state information, or ignore state information. For
more information, see the section called “Tracking processed data using job bookmarks”.

Flex execution

When you configure a job using AWS Studio or the API you may specify a standard or flexible
job execution class. Your jobs may have varying degrees of priority and time sensitivity. The
standard execution-class is ideal for time-sensitive workloads that require fast job startup and
dedicated resources.

The flexible execution class is appropriate for non-urgent jobs such as pre-production jobs,
testing, and one-time data loads. Flexible job runs are supported for jobs using AWS Glue
version 3.0 or later and G.1X or G.2X worker types.

Flex job runs are billed based on the number of workers running at any point in time. Number
of workers may be added or removed for a running flexible job run. Instead of billing as a
simple calculation of Max Capacity * Execution Time, each worker will contribute for the
time it ran during the job run. The bill is the sum of (Number of DPUs per worker * time
each worker ran).

For more information, see the help panel in AWS Studio, or Jobs and Job runs.

Number of retries

Specify the number of times, from 0 to 10, that AWS Glue should automatically restart the job
if it fails. Jobs that reach the timeout limit are not restarted.

Job timeout

Sets the maximum execution time in minutes. The default is 2880 minutes (48 hours) for batch
jobs. When the job execution time exceeds this limit, the job run state changes to TIMEOUT.

Streaming jobs must have timeout values less than 7 days or 10080 minutes. When the value
is left blank, the job will be restarted after 7 days based if you have not setup a maintenance

Spark and PySpark jobs 751

AWS Glue User Guide

window. If you have setup a maintenance window, it will be restarted during the maintenance
window after 7 days.

Best practices for job timeouts

Jobs are billed based on execution time. To avoid unexpected charges, configure
timeout values appropriate for the expected execution time of your job.

Advanced Properties

Script filename

A unique script name for your job. Cannot be named Untitled job.

Script path

The Amazon S3 location of the script. The path must be in the form s3://bucket/
prefix/path/. It must end with a slash (/) and not include any files.

Job metrics

Turn on or turn off the creation of Amazon CloudWatch metrics when this job runs. To see
profiling data, you must enable this option. For more information about how to turn on and
visualize metrics, see Job monitoring and debugging.

Job observability metrics

Turn on the creation of additional observability CloudWatch metrics when this job runs. For
more information, see the section called “Monitoring with AWS Glue Observability metrics”.

Continuous logging

Turn on continuous logging to Amazon CloudWatch. If this option is not enabled, logs
are available only after the job completes. For more information, see the section called
“Continuous logging for AWS Glue jobs”.

Spark UI

Turn on the use of Spark UI for monitoring this job. For more information, see Enabling the
Apache Spark web UI for AWS Glue jobs.

Spark UI logs path

The path to write logs when Spark UI is enabled.

Spark and PySpark jobs 752

AWS Glue User Guide

Spark UI logging and monitoring configuration

Choose one of the following options:

• Standard: write logs using the AWS Glue job run ID as the filename. Turn on Spark UI
monitoring in the AWS Glue console.

• Legacy: write logs using 'spark-application-{timestamp}' as the filename. Do not turn on
Spark UI monitoring.

• Standard and legacy: write logs to both the standard and legacy locations. Turn on Spark
UI monitoring in the AWS Glue console.

Maximum concurrency

Sets the maximum number of concurrent runs that are allowed for this job. The default is
1. An error is returned when this threshold is reached. The maximum value you can specify
is controlled by a service limit. For example, if a previous run of a job is still running when a
new instance is started, you might want to return an error to prevent two instances of the
same job from running concurrently.

Temporary path

Provide the location of a working directory in Amazon S3 where temporary intermediate
results are written when AWS Glue runs the script. Confirm that there isn't a file with the
same name as the temporary directory in the path. This directory is used when AWS Glue
reads and writes to Amazon Redshift and by certain AWS Glue transforms.

Note

AWS Glue creates a temporary bucket for jobs if a bucket doesn't already exist in a
region. This bucket might permit public access. You can either modify the bucket in
Amazon S3 to set the public access block, or delete the bucket later after all jobs in
that region have completed.

Delay notification threshold (minutes)

Sets the threshold (in minutes) before a delay notification is sent. You can set this threshold
to send notifications when a RUNNING, STARTING, or STOPPING job run takes more than an
expected number of minutes.

Spark and PySpark jobs 753

AWS Glue User Guide

Security configuration

Choose a security configuration from the list. A security configuration specifies how the data
at the Amazon S3 target is encrypted: no encryption, server-side encryption with AWS KMS-
managed keys (SSE-KMS), or Amazon S3-managed encryption keys (SSE-S3).

Server-side encryption

If you select this option, when the ETL job writes to Amazon S3, the data is encrypted at rest
using SSE-S3 encryption. Both your Amazon S3 data target and any data that is written to
an Amazon S3 temporary directory is encrypted. This option is passed as a job parameter.
For more information, see Protecting Data Using Server-Side Encryption with Amazon S3-
Managed Encryption Keys (SSE-S3) in the Amazon Simple Storage Service User Guide.

Important

This option is ignored if a security configuration is specified.

Use Glue data catalog as the Hive metastore

Select to use the AWS Glue Data Catalog as the Hive metastore. The IAM role used for
the job must have the glue:CreateDatabase permission. A database called “default” is
created in the Data Catalog if it does not exist.

Connections

Choose a VPC configuration to access Amazon S3 data sources located in your virtual
private cloud (VPC). You can create and manage Network connection in AWS Glue. For more
information, see Connecting to data.

Libraries

Python library path, Dependent JARs path, and Referenced files path

Specify these options if your script requires them. You can define the comma-separated
Amazon S3 paths for these options when you define the job. You can override these paths
when you run the job. For more information, see Providing your own custom scripts.

Job parameters

A set of key-value pairs that are passed as named parameters to the script. These are default
values that are used when the script is run, but you can override them in triggers or when

Spark and PySpark jobs 754

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html

AWS Glue User Guide

you run the job. You must prefix the key name with --; for example: --myKey. You pass job
parameters as a map when using the AWS Command Line Interface.

For examples, see Python parameters in Passing and accessing Python parameters in AWS
Glue.

Tags

Tag your job with a Tag key and an optional Tag value. After tag keys are created, they are
read-only. Use tags on some resources to help you organize and identify them. For more
information, see AWS tags in AWS Glue.

Restrictions for jobs that access Lake Formation managed tables

Keep in mind the following notes and restrictions when creating jobs that read from or write to
tables managed by AWS Lake Formation:

• The following features are not supported in jobs that access tables with cell-level filters:

• Job bookmarks and bounded execution

• Push-down predicates

• Server-side catalog partition predicates

• enableUpdateCatalog

Editing Spark scripts in the AWS Glue console

A script contains the code that extracts data from sources, transforms it, and loads it into targets.
AWS Glue runs a script when it starts a job.

AWS Glue ETL scripts can be coded in Python or Scala. Python scripts use a language that is an
extension of the PySpark Python dialect for extract, transform, and load (ETL) jobs. The script
contains extended constructs to deal with ETL transformations. When you automatically generate
the source code logic for your job, a script is created. You can edit this script, or you can provide
your own script to process your ETL work.

For information about defining and editing scripts in AWS Glue, see AWS Glue programming guide.

Additional libraries or files

If your script requires additional libraries or files, you can specify them as follows:

Spark and PySpark jobs 755

https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html
https://docs.aws.amazon.com/glue/latest/dg/bounded-execution.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-pushdowns
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-cat-predicates
https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html

AWS Glue User Guide

Python library path

Comma-separated Amazon Simple Storage Service (Amazon S3) paths to Python libraries that
are required by the script.

Note

Only pure Python libraries can be used. Libraries that rely on C extensions, such as the
pandas Python Data Analysis Library, are not yet supported.

Dependent jars path

Comma-separated Amazon S3 paths to JAR files that are required by the script.

Note

Currently, only pure Java or Scala (2.11) libraries can be used.

Referenced files path

Comma-separated Amazon S3 paths to additional files (for example, configuration files) that
are required by the script.

Jobs (legacy)

A script contains the code that performs extract, transform, and load (ETL) work. You can provide
your own script, or AWS Glue can generate a script with guidance from you. For information about
creating your own scripts, see Providing your own custom scripts.

You can edit a script in the AWS Glue console. When you edit a script, you can add sources, targets,
and transforms.

To edit a script

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/. Then choose the Jobs tab.

2. Choose a job in the list, and then choose Action, Edit script to open the script editor.

Spark and PySpark jobs 756

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

You can also access the script editor from the job details page. Choose the Script tab, and then
choose Edit script.

Script editor

The AWS Glue script editor lets you insert, modify, and delete sources, targets, and transforms in
your script. The script editor displays both the script and a diagram to help you visualize the flow of
data.

To create a diagram for the script, choose Generate diagram. AWS Glue uses annotation lines
in the script beginning with ## to render the diagram. To correctly represent your script in the
diagram, you must keep the parameters in the annotations and the parameters in the Apache
Spark code in sync.

The script editor lets you add code templates wherever your cursor is positioned in the script. At
the top of the editor, choose from the following options:

• To add a source table to the script, choose Source.

• To add a target table to the script, choose Target.

• To add a target location to the script, choose Target location.

• To add a transform to the script, choose Transform. For information about the functions that are
called in your script, see Program AWS Glue ETL scripts in PySpark.

• To add a Spigot transform to the script, choose Spigot.

In the inserted code, modify the parameters in both the annotations and Apache Spark code.
For example, if you add a Spigot transform, verify that the path is replaced in both the @args
annotation line and the output code line.

The Logs tab shows the logs that are associated with your job as it runs. The most recent 1,000
lines are displayed.

The Schema tab shows the schema of the selected sources and targets, when available in the Data
Catalog.

Spark and PySpark jobs 757

AWS Glue User Guide

Tracking processed data using job bookmarks

AWS Glue tracks data that has already been processed during a previous run of an ETL job by
persisting state information from the job run. This persisted state information is called a job
bookmark. Job bookmarks help AWS Glue maintain state information and prevent the reprocessing
of old data. With job bookmarks, you can process new data when rerunning on a scheduled
interval. A job bookmark is composed of the states for various elements of jobs, such as sources,
transformations, and targets. For example, your ETL job might read new partitions in an Amazon
S3 file. AWS Glue tracks which partitions the job has processed successfully to prevent duplicate
processing and duplicate data in the job's target data store.

Job bookmarks are implemented for JDBC data sources, the Relationalize transform, and some
Amazon Simple Storage Service (Amazon S3) sources. The following table lists the Amazon S3
source formats that AWS Glue supports for job bookmarks.

AWS Glue version Amazon S3 source formats

Version 0.9 JSON, CSV, Apache Avro, XML

Version 1.0 and later JSON, CSV, Apache Avro, XML, Parquet, ORC

For information about AWS Glue versions, see Defining job properties for Spark jobs.

The job bookmarks feature has additional functionalities when accessed through AWS Glue scripts.
When browsing your generated script, you may see transformation contexts, which are related to
this feature. For more information, see the section called “Using job bookmarks”.

Topics

• Using job bookmarks in AWS Glue

• Operational details of the job bookmarks feature

Using job bookmarks in AWS Glue

The job bookmark option is passed as a parameter when the job is started. The following table
describes the options for setting job bookmarks on the AWS Glue console.

Spark and PySpark jobs 758

AWS Glue User Guide

Job bookmark Description

Enable Causes the job to update the state after a run to keep track of previousl
y processed data. If your job has a source with job bookmark support, it
will keep track of processed data, and when a job runs, it processes new
data since the last checkpoint.

Disable Job bookmarks are not used, and the job always processes the entire
dataset. You are responsible for managing the output from previous
job runs. This is the default.

Pause Process incremental data since the last successful run or the data in the
range identified by the following sub-options, without updating the
state of last bookmark. You are responsible for managing the output
from previous job runs. The two sub-options are:

• job-bookmark-from <from-value> is the run ID which represents all
the input that was processed until the last successful run before and
including the specified run ID. The corresponding input is ignored.

• job-bookmark-to <to-value> is the run ID which represents all the
input that was processed until the last successful run before and
including the specified run ID. The corresponding input excluding
the input identified by the <from-value> is processed by the job. Any
input later than this input is also excluded for processing.

The job bookmark state is not updated when this option set is specified
.

The sub-options are optional, however when used both the sub-options
needs to be provided.

For details about the parameters passed to a job on the command line, and specifically for job
bookmarks, see AWS Glue job parameters.

For Amazon S3 input sources, AWS Glue job bookmarks check the last modified time of the objects
to verify which objects need to be reprocessed. If your input source data has been modified since
your last job run, the files are reprocessed when you run the job again.

Spark and PySpark jobs 759

AWS Glue User Guide

For JDBC sources, the following rules apply:

• For each table, AWS Glue uses one or more columns as bookmark keys to determine new and
processed data. The bookmark keys combine to form a single compound key.

• AWS Glue by default uses the primary key as the bookmark key, provided that it is sequentially
increasing or decreasing (with no gaps).

• You can specify the columns to use as bookmark keys in your AWS Glue script. For more
information about using Job bookmarks in AWS Glue scripts, see the section called “Using job
bookmarks”.

• AWS Glue doesn't support using columns with case-sensitive names as job bookmark keys.

You can rewind your job bookmarks for your AWS Glue Spark ETL jobs to any previous job run. You
can support data backfilling scenarios better by rewinding your job bookmarks to any previous job
run, resulting in the subsequent job run reprocessing data only from the bookmarked job run.

If you intend to reprocess all the data using the same job, reset the job bookmark. To reset
the job bookmark state, use the AWS Glue console, the ResetJobBookmark action (Python:
reset_job_bookmark) API operation, or the AWS CLI. For example, enter the following command
using the AWS CLI:

 aws glue reset-job-bookmark --job-name my-job-name

When you rewind or reset a bookmark, AWS Glue does not clean the target files because there
could be multiple targets and targets are not tracked with job bookmarks. Only source files
are tracked with job bookmarks. You can create different output targets when rewinding and
reprocessing the source files to avoid duplicate data in your output.

AWS Glue keeps track of job bookmarks by job. If you delete a job, the job bookmark is deleted.

In some cases, you might have enabled AWS Glue job bookmarks but your ETL job is reprocessing
data that was already processed in an earlier run. For information about resolving common causes
of this error, see Troubleshooting errors in AWS Glue for Spark.

Operational details of the job bookmarks feature

This section describes more of the operational details of using job bookmarks.

Spark and PySpark jobs 760

AWS Glue User Guide

Job bookmarks store the states for a job. Each instance of the state is keyed by a job name
and a version number. When a script invokes job.init, it retrieves its state and always gets
the latest version. Within a state, there are multiple state elements, which are specific to each
source, transformation, and sink instance in the script. These state elements are identified by a
transformation context that is attached to the corresponding element (source, transformation, or
sink) in the script. The state elements are saved atomically when job.commit is invoked from the
user script. The script gets the job name and the control option for the job bookmarks from the
arguments.

The state elements in the job bookmark are source, transformation, or sink-specific data. For
example, suppose that you want to read incremental data from an Amazon S3 location that is
being constantly written to by an upstream job or process. In this case, the script must determine
what has been processed so far. The job bookmark implementation for the Amazon S3 source saves
information so that when the job runs again, it can filter only the new objects using the saved
information and recompute the state for the next run of the job. A timestamp is used to filter the
new files.

In addition to the state elements, job bookmarks have a run number, an attempt number, and
a version number. The run number tracks the run of the job, and the attempt number records
the attempts for a job run. The job run number is a monotonically increasing number that is
incremented for every successful run. The attempt number tracks the attempts for each run, and
is only incremented when there is a run after a failed attempt. The version number increases
monotonically and tracks the updates to a job bookmark.

In the AWS Glue service database, the bookmark states for all the transformations are stored
together as key-value pairs:

{
 "job_name" : ...,
 "run_id": ...,
 "run_number": ..,
 "attempt_number": ...
 "states": {
 "transformation_ctx1" : {
 bookmark_state1
 },
 "transformation_ctx2" : {
 bookmark_state2
 }
 }

Spark and PySpark jobs 761

AWS Glue User Guide

}

Best practices

The following are best practices for using job bookmarks.

• Do not change the data source property with the bookmark enabled. For example, there is a
datasource0 pointing to an Amazon S3 input path A, and the job has been reading from a source
which has been running for several rounds with the bookmark enabled. If you change the input
path of datasource0 to Amazon S3 path B without changing the transformation_ctx, the
AWS Glue job will use the old bookmark state stored. That will result in missing or skipping files
in the input path B as AWS Glue would assume that those files had been processed in previous
runs.

• Use a catalog table with bookmarks for better partition management. Bookmarks works both for
data sources from the Data Catalog or from options. However, it's difficult to remove/add new
partitions with the from options approach. Using a catalog table with crawlers can provide better
automation to track the newly added partitions and give you the flexibility to select particular
partitions with a pushdown predicate.

• Use the AWS Glue Amazon S3 file lister for large datasets. A bookmark will list all files under each
input partition and do the filering, so if there are too many files under a single partition the
bookmark can run into driver OOM. Use the AWS Glue Amazon S3 file lister to avoid listing all
files in memory at once.

AWS Glue Spark shuffle plugin with Amazon S3

Shuffling is an important step in a Spark job whenever data is rearranged between partitions.
This is required because wide transformations such as join, groupByKey, reduceByKey,
and repartition require information from other partitions to complete processing. Spark
gathers the required data from each partition and combines it into a new partition. During
a shuffle, data is written to disk and transferred across the network. As a result, the shuffle
operation is bound to local disk capacity. Spark throws a No space left on device or
MetadataFetchFailedException error when there is not enough disk space left on the
executor and there is no recovery.

Note

AWS Glue Spark shuffle plugin with Amazon S3 is only supported for AWS Glue ETL jobs.

Spark and PySpark jobs 762

https://docs.aws.amazon.com/glue/latest/dg/tables-described.html#tables-partition
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html
https://aws.amazon.com/premiumsupport/knowledge-center/glue-oom-java-heap-space-error/

AWS Glue User Guide

Solution

With AWS Glue, you can now use Amazon S3 to store Spark shuffle data. Amazon S3 is an object
storage service that offers industry-leading scalability, data availability, security, and performance.
This solution disaggregates compute and storage for your Spark jobs, and gives complete elasticity
and low-cost shuffle storage, allowing you to run your most shuffle-intensive workloads reliably.

Spark and PySpark jobs 763

AWS Glue User Guide

We are introducing a new Cloud Shuffle Storage Plugin for Apache Spark to use Amazon S3. You
can turn on Amazon S3 shuffling to run your AWS Glue jobs reliably without failures if they are
known to be bound by the local disk capacity for large shuffle operations. In some cases, shuffling

Spark and PySpark jobs 764

AWS Glue User Guide

to Amazon S3 is marginally slower than local disk (or EBS) if you have a large number of small
partitions or shuffle files written out to Amazon S3.

Prerequisites for using Cloud Shuffle Storage Plugin

In order to use the Cloud Shuffle Storage Plugin with AWS Glue ETL jobs, you need the following:

• An Amazon S3 bucket located in the same region as your job run, for storing the intermediate
shuffle and spilled data. The Amazon S3 prefix of shuffle storage can be specified with --conf
spark.shuffle.glue.s3ShuffleBucket=s3://shuffle-bucket/prefix/, as in the
following example:

--conf spark.shuffle.glue.s3ShuffleBucket=s3://glue-shuffle-123456789-us-east-1/glue-
shuffle-data/

• Set the Amazon S3 storage lifecycle policies on the prefix (such as glue-shuffle-data) as
the shuffle manager does not clean the files after the job is done. The intermediate shuffle and
spilled data should be deleted after a job is finished. Users can set a short lifecycle policies on
the prefix. Instructions for setting up an Amazon S3 lifecycle policy are available at Setting
lifecycle configuration on a bucket in the Amazon Simple Storage Service User Guide.

Using AWS Glue Spark shuffle manager from the AWS console

To set up the AWS Glue Spark shuffle manager using the AWS Glue console or AWS Glue Studio
when configuring a job: choose the --write-shuffle-files-to-s3 job parameter to turn on Amazon
S3 shuffling for the job.

Using AWS Glue Spark shuffle plugin

The following job parameters turn on and tune the AWS Glue shuffle manager. These parameters
are flags, so any values provided are not considered.

Spark and PySpark jobs 765

https://docs.aws.amazon.com/AmazonS3/latest/userguide/how-to-set-lifecycle-configuration-intro.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/how-to-set-lifecycle-configuration-intro.html

AWS Glue User Guide

• --write-shuffle-files-to-s3 — The main flag, which enables the AWS Glue Spark shuffle
manager to use Amazon S3 buckets for writing and reading shuffle data. When the flag is not
specified, the shuffle manager is not used.

• --write-shuffle-spills-to-s3 — (Supported only on AWS Glue version 2.0). An optional
flag that allows you to offload spill files to Amazon S3 buckets, which provides additional
resiliency to your Spark job. This is only required for large workloads that spill a lot of data to
disk. When the flag is not specified, no intermediate spill files are written.

• --conf spark.shuffle.glue.s3ShuffleBucket=s3://<shuffle-bucket>
— Another optional flag that specifies the Amazon S3 bucket where you write
the shuffle files. By default, --TempDir/shuffle-data. AWS Glue 3.0+ supports
writing shuffle files to multiple buckets by specifying buckets with comma delimiter,
as in --conf spark.shuffle.glue.s3ShuffleBucket=s3://shuffle-
bucket-1/prefix,s3://shuffle-bucket-2/prefix/. Using multiple buckets improves
performance.

You need to provide security configuration settings to enable encryption at-rest for the shuffle
data. For more information about security configurations, see the section called “Setting up
encryption”. AWS Glue supports all other shuffle related configurations provided by Spark.

Software binaries for the Cloud Shuffle Storage plugin

You can also download the software binaries of the Cloud Shuffle Storage Plugin for Apache Spark
under the Apache 2.0 license and run it on any Spark environment. The new plugin comes with out-
of-the box support for Amazon S3, and can also be easily configured to use other forms of cloud
storage such as Google Cloud Storage and Microsoft Azure Blob Storage. For more information, see
Cloud Shuffle Storage Plugin for Apache Spark.

Notes and limitations

The following are notes or limitations for the AWS Glue shuffle manager:

• AWS Glue shuffle manager doesn't automatically delete the (temporary) shuffle data files
stored in your Amazon S3 bucket after a job is completed. To ensure data protection, follow the
instructions in Prerequisites for using Cloud Shuffle Storage Plugin before enabling the Cloud
Shuffle Storage Plugin.

• You can use this feature if your data is skewed.

Spark and PySpark jobs 766

https://github.com/aws-samples/aws-glue-samples/blob/master/docs/cloud-shuffle-plugin/README.md
https://docs.aws.amazon.com/glue/latest/dg/cloud-shuffle-storage-plugin.html

AWS Glue User Guide

Cloud Shuffle Storage Plugin for Apache Spark

The Cloud Shuffle Storage Plugin is an Apache Spark plugin compatible with the ShuffleDataIO
API which allows storing shuffle data on cloud storage systems (such as Amazon S3). It helps you to
supplement or replace local disk storage capacity for large shuffle operations, commonly triggered
by transformations such as join, reduceByKey, groupByKey and repartition in your Spark
applications, thereby reducing common failures or price/performance dislocation of your serverless
data analytics jobs and pipelines.

AWS Glue

AWS Glue versions 3.0 and 4.0 comes with the plugin pre-installed and ready to enable shuffling to
Amazon S3 without any extra steps. For more information, see AWS Glue Spark shuffle plugin with
Amazon S3 to enable the feature for your Spark applications.

Other Spark environments

The plugin requires the following Spark configurations to be set on other Spark environments:

• --conf
spark.shuffle.sort.io.plugin.class=com.amazonaws.spark.shuffle.io.cloud.ChopperPlugin:
This informs Spark to use this plugin for Shuffle IO.

• --conf spark.shuffle.storage.path=s3://bucket-name/shuffle-file-dir: The
path where your shuffle files will be stored.

Note

The plugin overwrites one Spark core class. As a result, the plugin jar needs to be loaded
before Spark jars. You can do this using userClassPathFirst in on-prem YARN
environments if the plugin is used outside AWS Glue.

Bundling the plugin with your Spark applications

You can bundle the plugin with your Spark applications and Spark distributions (versions 3.1 and
above) by adding the plugin dependency in your Maven pom.xml while developing your Spark
applications locally. For more information on the plugin and Spark versions, see Plugin versions.

<repositories>

Spark and PySpark jobs 767

https://github.com/apache/spark/blob/master/core/src/main/java/org/apache/spark/shuffle/api/ShuffleDataIO.java
https://github.com/apache/spark/blob/master/core/src/main/java/org/apache/spark/shuffle/api/ShuffleDataIO.java
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-shuffle-manager.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-shuffle-manager.html

AWS Glue User Guide

 ...
 <repository>
 <id>aws-glue-etl-artifacts</id>
 <url>https://aws-glue-etl-artifacts.s3.amazonaws.com/release/ </url>
 </repository>
</repositories>
...
<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>chopper-plugin</artifactId>
 <version>3.1-amzn-LATEST</version>
</dependency>

You can alternatively download the binaries from AWS Glue Maven artifacts directly and include
them in your Spark application as follows.

#!/bin/bash
sudo wget -v https://aws-glue-etl-artifacts.s3.amazonaws.com/release/com/amazonaws/
chopper-plugin/3.1-amzn-LATEST/chopper-plugin-3.1-amzn-LATEST.jar -P /usr/lib/spark/
jars/

Example spark-submit

spark-submit --deploy-mode cluster \
--conf spark.shuffle.storage.s3.path=s3://<ShuffleBucket>/<shuffle-dir> \
--conf spark.driver.extraClassPath=<Path to plugin jar> \
--conf spark.executor.extraClassPath=<Path to plugin jar> \
--class <your test class name> s3://<ShuffleBucket>/<Your application jar> \

Optional configurations

These are optional configuration values that control Amazon S3 shuffle behavior.

• spark.shuffle.storage.s3.enableServerSideEncryption: Enable/disable S3 SSE for
shuffle and spill files. Default value is true.

• spark.shuffle.storage.s3.serverSideEncryption.algorithm: The SSE algorithm to
be used. Default value is AES256.

• spark.shuffle.storage.s3.serverSideEncryption.kms.key: The KMS key ARN when
SSE aws:kms is enabled.

Spark and PySpark jobs 768

AWS Glue User Guide

Along with these configurations, you may need to set configurations such as
spark.hadoop.fs.s3.enableServerSideEncryption and other environment-specific
configurations to ensure appropriate encryption is applied for your use case.

Plugin versions

This plugin is supported for the Spark versions associated with each AWS Glue version. The
following table shows the AWS Glue version, Spark version and associated plugin version with
Amazon S3 location for the plugin's software binary.

AWS Glue version Spark version Plugin version Amazon S3 location

3.0 3.1 3.1-amzn-LATEST s3://aws-glue-etl-
artifacts/release/
com/amazonaws/
chopper-plugin/3.1-
amzn-0/chopper-
plugin-3.1-amzn-
LATEST.jar

4.0 3.3 3.3-amzn-LATEST s3://aws-glue-etl-
artifacts/release/
com/amazonaws/
chopper-plugin/3.3-
amzn-0/chopper-
plugin-3.3-amzn-
LATEST.jar

License

The software binary for this plugin is licensed under the Apache-2.0 License.

Monitoring AWS Glue Spark jobs

Topics

• Spark Metrics available in AWS Glue Studio

• Monitoring jobs using the Apache Spark web UI

Spark and PySpark jobs 769

AWS Glue User Guide

• Monitoring with AWS Glue job run insights

• Monitoring with Amazon CloudWatch

• Job monitoring and debugging

Spark Metrics available in AWS Glue Studio

The Metrics tab shows metrics collected when a job runs and profiling is turned on. The following
graphs are shown in Spark jobs:

• ETL Data Movement

• Memory Profile: Driver and Executors

Choose View additional metrics to show the following graphs:

• ETL Data Movement

• Memory Profile: Driver and Executors

• Data Shuffle Across Executors

• CPU Load: Driver and Executors

• Job Execution: Active Executors, Completed Stages & Maximum Needed Executors

Data for these graphs is pushed to CloudWatch metrics if the job is configured to collect metrics.
For more information about how to turn on metrics and interpret the graphs, see Job monitoring
and debugging.

Example ETL data movement graph

The ETL Data Movement graph shows the following metrics:

• The number of bytes read from Amazon S3 by all executors
—glue.ALL.s3.filesystem.read_bytes

• The number of bytes written to Amazon S3 by all executors
—glue.ALL.s3.filesystem.write_bytes

Spark and PySpark jobs 770

AWS Glue User Guide

Example Memory profile graph

The Memory Profile graph shows the following metrics:

• The fraction of memory used by the JVM heap for this driver (scale: 0–1) by the driver, an
executor identified by executorId, or all executors—

• glue.driver.jvm.heap.usage

• glue.executorId.jvm.heap.usage

• glue.ALL.jvm.heap.usage

Example Data shuffle across executors graph

The Data Shuffle Across Executors graph shows the following metrics:

Spark and PySpark jobs 771

AWS Glue User Guide

• The number of bytes read by all executors to shuffle data between them
—glue.driver.aggregate.shuffleLocalBytesRead

• The number of bytes written by all executors to shuffle data between them
—glue.driver.aggregate.shuffleBytesWritten

Example CPU load graph

The CPU Load graph shows the following metrics:

• The fraction of CPU system load used (scale: 0–1) by the driver, an executor identified by
executorId, or all executors—

• glue.driver.system.cpuSystemLoad

• glue.executorId.system.cpuSystemLoad

• glue.ALL.system.cpuSystemLoad

Example Job execution graph

The Job Execution graph shows the following metrics:

Spark and PySpark jobs 772

AWS Glue User Guide

• The number of actively running executors
—glue.driver.ExecutorAllocationManager.executors.numberAllExecutors

• The number of completed stages—glue.aggregate.numCompletedStages

• The number of maximum needed executors
—glue.driver.ExecutorAllocationManager.executors.numberMaxNeededExecutors

Monitoring jobs using the Apache Spark web UI

You can use the Apache Spark web UI to monitor and debug AWS Glue ETL jobs running on the
AWS Glue job system, and also Spark applications running on AWS Glue development endpoints.
The Spark UI enables you to check the following for each job:

• The event timeline of each Spark stage

• A directed acyclic graph (DAG) of the job

• Physical and logical plans for SparkSQL queries

• The underlying Spark environmental variables for each job

For more information about using the Spark Web UI, see Web UI in the Spark documentation. For
guidance on how to interpret Spark UI results to improve the performance of your job, see Best
practices for performance tuning AWS Glue for Apache Spark jobs in AWS Prescriptive Guidance.

You can see the Spark UI in the AWS Glue console. This is available when an AWS Glue job runs on
AWS Glue 3.0 or later versions with logs generated in the Standard (rather than legacy) format,
which is the default for newer jobs. If you have log files greater than 0.5 GB, you can enable rolling
log support for job runs on AWS Glue 4.0 or later versions to simplify log archiving, analysis, and
troubleshooting.

You can enable the Spark UI by using the AWS Glue console or the AWS Command Line Interface
(AWS CLI). When you enable the Spark UI, AWS Glue ETL jobs and Spark applications on AWS Glue

Spark and PySpark jobs 773

https://spark.apache.org/docs/3.3.0/web-ui.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/tuning-aws-glue-for-apache-spark/introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/tuning-aws-glue-for-apache-spark/introduction.html

AWS Glue User Guide

development endpoints can back up Spark event logs to a location that you specify in Amazon
Simple Storage Service (Amazon S3). You can use the backed up event logs in Amazon S3 with
the Spark UI, both in real time as the job is operating and after the job is complete. While the logs
remain in Amazon S3, the Spark UI in the AWS Glue console can view them.

Permissions

In order to use the Spark UI in the AWS Glue console, you can use UseGlueStudio or add all the
individual service APIs. All APIs are needed to use the Spark UI completely, however users can
access SparkUI features by adding its service APIs in their IAM permission for fine-grained access.

RequestLogParsing is the most critical as it performs the parsing of logs. The remaining APIs are
for reading the respective parsed data. For example, GetStages provides access to the data about
all stages of a Spark job.

The list of Spark UI service APIs mapped to UseGlueStudio are below in the sample policy. The
policy below provides access to use only Spark UI features. To add more permissions like Amazon
S3 and IAM see Creating Custom IAM Policies for AWS Glue Studio.

The list of Spark UI service APIs mapped to UseGlueStudio is below in the sample policy. When
using a Spark UI service API, use the following namespace: glue:<ServiceAPI>.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowGlueStudioSparkUI",
 "Effect": "Allow",
 "Action": [
 "glue:RequestLogParsing",
 "glue:GetLogParsingStatus",
 "glue:GetEnvironment",
 "glue:GetJobs",
 "glue:GetJob",
 "glue:GetStage",
 "glue:GetStages",
 "glue:GetStageFiles",
 "glue:BatchGetStageFiles",
 "glue:GetStageAttempt",
 "glue:GetStageAttemptTaskList",
 "glue:GetStageAttemptTaskSummary",
 "glue:GetExecutors",

Spark and PySpark jobs 774

https://docs.aws.amazon.com/glue/latest/dg/getting-started-min-privs.html#getting-started-all-gs-privs.html

AWS Glue User Guide

 "glue:GetExecutorsThreads",
 "glue:GetStorage",
 "glue:GetStorageUnit",
 "glue:GetQueries",
 "glue:GetQuery"
],
 "Resource": [
 "*"
]
 }
]
}

Limitations

• Spark UI in the AWS Glue console is not available for job runs that occurred before 20 Nov 2023
because they are in the legacy log format.

• Spark UI in the AWS Glue console supports rolling logs for AWS Glue 4.0, such as those
generated by default in streaming jobs. The maximum sum of all generated rolled log event files
is 2 GB. For AWS Glue jobs without rolled log support, the maximum log event file size supported
for SparkUI is 0.5 GB.

• Serverless Spark UI is not available for Spark event logs stored in an Amazon S3 bucket that can
only be accessed by your VPC.

Example: Apache Spark web UI

This example shows you how to use the Spark UI to understand your job performance. Screen shots
show the Spark web UI as provided by a self-managed Spark history server. Spark UI in the AWS
Glue console provides similar views. For more information about using the Spark Web UI, see Web
UI in the Spark documentation.

The following is an example of a Spark application that reads from two data sources, performs a
join transform, and writes it out to Amazon S3 in Parquet format.

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext

Spark and PySpark jobs 775

https://spark.apache.org/docs/3.3.0/web-ui.html
https://spark.apache.org/docs/3.3.0/web-ui.html

AWS Glue User Guide

from awsglue.job import Job
from pyspark.sql.functions import count, when, expr, col, sum, isnull
from pyspark.sql.functions import countDistinct
from awsglue.dynamicframe import DynamicFrame

args = getResolvedOptions(sys.argv, ['JOB_NAME'])

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session

job = Job(glueContext)
job.init(args['JOB_NAME'])

df_persons = spark.read.json("s3://awsglue-datasets/examples/us-legislators/all/
persons.json")
df_memberships = spark.read.json("s3://awsglue-datasets/examples/us-legislators/all/
memberships.json")

df_joined = df_persons.join(df_memberships, df_persons.id == df_memberships.person_id,
 'fullouter')
df_joined.write.parquet("s3://aws-glue-demo-sparkui/output/")

job.commit()

The following DAG visualization shows the different stages in this Spark job.

Spark and PySpark jobs 776

AWS Glue User Guide

The following event timeline for a job shows the start, execution, and termination of different
Spark executors.

Spark and PySpark jobs 777

AWS Glue User Guide

Spark and PySpark jobs 778

AWS Glue User Guide

The following screen shows the details of the SparkSQL query plans:

• Parsed logical plan

• Analyzed logical plan

• Optimized logical plan

• Physical plan for execution

Spark and PySpark jobs 779

AWS Glue User Guide

Spark and PySpark jobs 780

AWS Glue User Guide

Topics

• Enabling the Apache Spark web UI for AWS Glue jobs

• Launching the Spark history server

Enabling the Apache Spark web UI for AWS Glue jobs

You can use the Apache Spark web UI to monitor and debug AWS Glue ETL jobs running on the
AWS Glue job system. You can configure the Spark UI using the AWS Glue console or the AWS
Command Line Interface (AWS CLI).

Every 30 seconds, AWS Glue backs up the Spark event logs to the Amazon S3 path that you specify.

Topics

• Configuring the Spark UI (console)

• Configuring the Spark UI (AWS CLI)

• Configuring the Spark UI for sessions using Notebooks

• Enable rolling logs

Configuring the Spark UI (console)

Follow these steps to configure the Spark UI by using the AWS Management Console. When
creating an AWS Glue job, Spark UI is enabled by default.

To turn on the Spark UI when you create or edit a job

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, choose Jobs.

3. Choose Add job, or select an existing one.

4. In Job details, open the Advanced properties.

5. Under the Spark UI tab, choose Write Spark UI logs to Amazon S3.

6. Specify an Amazon S3 path for storing the Spark event logs for the job. Note that if you use a
security configuration in the job, the encryption also applies to the Spark UI log file. For more
information, see Encrypting data written by AWS Glue.

7. Under Spark UI logging and monitoring configuration:

Spark and PySpark jobs 781

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

• Select Standard if you are generating logs to view in the AWS Glue console.

• Select Legacy if you are generating logs to view on a Spark history server.

• You can also choose to generate both.

Configuring the Spark UI (AWS CLI)

To generate logs for viewing with Spark UI, in the AWS Glue console, use the AWS CLI to pass the
following job parameters to AWS Glue jobs. For more information, see the section called “Job
parameters”.

'--enable-spark-ui': 'true',
'--spark-event-logs-path': 's3://s3-event-log-path'

To distribute logs to their legacy locations, set the --enable-spark-ui-legacy-path
parameter to "true". If you do not want to generate logs in both formats, remove the --enable-
spark-ui parameter.

Configuring the Spark UI for sessions using Notebooks

Warning

AWS Glue interactive sessions do not currently support Spark UI in the console. Configure a
Spark history server.

If you use AWS Glue notebooks, set up SparkUI config before starting the session. To do this, use
the %%configure cell magic:

%%configure { “--enable-spark-ui”: “true”, “--spark-event-logs-path”: “s3://path” }

Enable rolling logs

Enabling SparkUI and rolling log event files for AWS Glue jobs provides several benefits:

• Rolling Log Event Files – With rolling log event files enabled, AWS Glue generates separate log
files for each step of the job execution, making it easier to identify and troubleshoot issues
specific to a particular stage or transformation.

Spark and PySpark jobs 782

AWS Glue User Guide

• Better Log Management – Rolling log event files help in managing log files more efficiently.
Instead of having a single, potentially large log file, the logs are split into smaller, more
manageable files based on the job execution stages. This can simplify log archiving, analysis, and
troubleshooting.

• Improved Fault Tolerance – If a AWS Glue job fails or is interrupted, the rolling log event files can
provide valuable information about the last successful stage, making it easier to resume the job
from that point rather than starting from scratch.

• Cost Optimization – By enabling rolling log event files, you can save on storage costs associated
with log files. Instead of storing a single, potentially large log file, you store smaller, more
manageable log files, which can be more cost-effective, especially for long-running or complex
jobs.

In a new environment, users can explicitly enable rolling logs through:

'—conf': 'spark.eventLog.rolling.enabled=true'

or

'—conf': 'spark.eventLog.rolling.enabled=true —conf
spark.eventLog.rolling.maxFileSize=128m'

When rolling logs are activated, spark.eventLog.rolling.maxFileSize specifies the
maximum size of the event log file before it rolls over. The default value of this optional parameter
if not specified is 128 MB. Minimum is 10 MB.

The maximum sum of all generated rolled log event files is 2 GB. For AWS Glue jobs without rolling
log support, the maximum log event file size supported for SparkUI is 0.5 GB.

You can turn off rolling logs for a streaming job by passing an additional configuration. Note that
very large log files may be costly to maintain.

To turn off rolling logs, provide the following configuration:

'--spark-ui-event-logs-path': 'true',
'--conf': 'spark.eventLog.rolling.enabled=false'

Spark and PySpark jobs 783

AWS Glue User Guide

Launching the Spark history server

You can use a Spark history server to visualize Spark logs on your own infrastructure. You can see
the same visualizations in the AWS Glue console for AWS Glue job runs on AWS Glue 4.0 or later
versions with logs generated in the Standard (rather than legacy) format. For more information,
see the section called “Monitoring with the Spark UI”.

You can launch the Spark history server using a AWS CloudFormation template that hosts the
server on an EC2 instance, or launch locally using Docker.

Topics

• Launching the Spark history server and viewing the Spark UI using AWS CloudFormation

• Launching the Spark history server and viewing the Spark UI using Docker

Launching the Spark history server and viewing the Spark UI using AWS CloudFormation

You can use an AWS CloudFormation template to start the Apache Spark history server and view
the Spark web UI. These templates are samples that you should modify to meet your requirements.

To start the Spark history server and view the Spark UI using AWS CloudFormation

1. Choose one of the Launch Stack buttons in the following table. This launches the stack on the
AWS CloudFormation console.

Region Launch

US East (Ohio)

US East (N. Virginia)

US West (N. California)

US West (Oregon)

Africa (Cape Town)

Spark and PySpark jobs 784

https://console.aws.amazon.com/cloudformation/home?region=us-east-2#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-us-east-2.s3.us-east-2.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-us-east-1.s3.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=us-west-1#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-us-west-1.s3.us-west-1.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-us-west-2.s3.us-west-2.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=af-south-1#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-af-south-1.s3.af-south-1.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4

AWS Glue User Guide

Region Launch

Asia Pacific (Hong Kong)

Asia Pacific (Mumbai)

Asia Pacific (Osaka)

Asia Pacific (Seoul)

Asia Pacific (Singapore)

Asia Pacific (Sydney)

Asia Pacific (Tokyo)

Canada (Central)

Europe (Frankfurt)

Europe (Ireland)

Europe (London)

Europe (Milan)

Europe (Paris)

Europe (Stockholm)

Middle East (Bahrain)

Spark and PySpark jobs 785

https://console.aws.amazon.com/cloudformation/home?region=ap-east-1#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-ap-east-1.s3.ap-east-1.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=ap-south-1#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-ap-south-1.s3.ap-south-1.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=ap-northeast-3#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-ap-northeast-3.s3.ap-northeast-3.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=ap-northeast-2#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-ap-northeast-2.s3.ap-northeast-2.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=ap-southeast-1#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-ap-southeast-1.s3.ap-southeast-1.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=ap-southeast-2#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-ap-southeast-2.s3.ap-southeast-2.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=ap-northeast-1#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-ap-northeast-1.s3.ap-northeast-1.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=ca-central-1#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-ca-central-1.s3.ca-central-1.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=eu-central-1#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-eu-central-1.s3.eu-central-1.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=eu-west-1#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-eu-west-1.s3.eu-west-1.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=eu-west-2#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-eu-west-2.s3.eu-west-2.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=eu-south-1#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-eu-south-1.s3.eu-south-1.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=eu-west-3#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-eu-west-3.s3.eu-west-3.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=eu-north-1#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-eu-north-1.s3.eu-north-1.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://console.aws.amazon.com/cloudformation/home?region=me-south-1#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-me-south-1.s3.me-south-1.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4

AWS Glue User Guide

Region Launch

South America (São Paulo)

2. On the Specify template page, choose Next.

3. On the Specify stack details page, enter the Stack name. Enter additional information under
Parameters.

a. Spark UI configuration

Provide the following information:

• IP address range — The IP address range that can be used to view the Spark UI. If you
want to restrict access from a specific IP address range, you should use a custom value.

• History server port — The port for the Spark UI. You can use the default value.

• Event log directory — Choose the location where Spark event logs are stored from the
AWS Glue job or development endpoints. You must use s3a:// for the event logs path
scheme.

• Spark package location — You can use the default value.

• Keystore path — SSL/TLS keystore path for HTTPS. If you want to use a custom
keystore file, you can specify the S3 path s3://path_to_your_keystore_file here.
If you leave this parameter empty, a self-signed certificate based keystore is generated
and used.

• Keystore password — Enter a SSL/TLS keystore password for HTTPS.

b. EC2 instance configuration

Provide the following information:

• Instance type — The type of Amazon EC2 instance that hosts the Spark history server.
Because this template launches Amazon EC2 instance in your account, Amazon EC2 cost
will be charged in your account separately.

• Latest AMI ID — The AMI ID of Amazon Linux 2 for the Spark history server instance.
You can use the default value.

• VPC ID — The virtual private cloud (VPC) ID for the Spark history server instance. You
can use any of the VPCs available in your account Using a default VPC with a default

Spark and PySpark jobs 786

https://console.aws.amazon.com/cloudformation/home?region=sa-east-1#/stacks/new?templateURL=https%3A%2F%2Faws-glue-sparkui-prod-sa-east-1.s3.sa-east-1.amazonaws.com/public/cfn/glue-4_0/sparkui.yaml&stackName=spark-ui-glue4
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html#default-network-acl

AWS Glue User Guide

Network ACL is not recommended. For more information, see Default VPC and Default
Subnets and Creating a VPC in the Amazon VPC User Guide.

• Subnet ID — The ID for the Spark history server instance. You can use any of the
subnets in your VPC. You must be able to reach the network from your client to the
subnet. If you want to access via the internet, you must use a public subnet that has the
internet gateway in the route table.

c. Choose Next.

4. On the Configure stack options page, to use the current user credentials for determining how
CloudFormation can create, modify, or delete resources in the stack, choose Next. You can also
specify a role in the Permissions section to use instead of the current user permissions, and
then choose Next.

5. On the Review page, review the template.

Select I acknowledge that AWS CloudFormation might create IAM resources, and then
choose Create stack.

6. Wait for the stack to be created.

7. Open the Outputs tab.

a. Copy the URL of SparkUiPublicUrl if you are using a public subnet.

b. Copy the URL of SparkUiPrivateUrl if you are using a private subnet.

8. Open a web browser, and paste in the URL. This lets you access the server using HTTPS on the
specified port. Your browser may not recognize the server's certificate, in which case you have
to override its protection and proceed anyway.

Launching the Spark history server and viewing the Spark UI using Docker

If you prefer local access (not to have an EC2 instance for the Apache Spark history server), you
can also use Docker to start the Apache Spark history server and view the Spark UI locally. This
Dockerfile is a sample that you should modify to meet your requirements.

Prerequisites

For information about how to install Docker on your laptop see the Docker Engine community.

To start the Spark history server and view the Spark UI locally using Docker

1. Download files from GitHub.

Spark and PySpark jobs 787

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html#default-network-acl
https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#Create-VPC
https://docs.docker.com/install/

AWS Glue User Guide

Download the Dockerfile and pom.xml from AWS Glue code samples.

2. Determine if you want to use your user credentials or federated user credentials to access AWS.

• To use the current user credentials for accessing AWS, get the values to use for
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY in the docker run command. For
more information, see Managing access keys for IAM users in the IAM User Guide.

• To use SAML 2.0 federated users for accessing AWS, get the values for
AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and AWS_SESSION_TOKEN. For more
information, see Requesting temporary security credentials

3. Determine the location of your event log directory, to use in the docker run command.

4. Build the Docker image using the files in the local directory, using the name glue/sparkui,
and the tag latest.

$ docker build -t glue/sparkui:latest .

5. Create and start the docker container.

In the following commands, use the values obtained previously in steps 2 and 3.

a. To create the docker container using your user credentials, use a command similar to the
following

docker run -itd -e SPARK_HISTORY_OPTS="$SPARK_HISTORY_OPTS -
Dspark.history.fs.logDirectory=s3a://path_to_eventlog
 -Dspark.hadoop.fs.s3a.access.key=AWS_ACCESS_KEY_ID -
Dspark.hadoop.fs.s3a.secret.key=AWS_SECRET_ACCESS_KEY"
 -p 18080:18080 glue/sparkui:latest "/opt/spark/bin/spark-class
 org.apache.spark.deploy.history.HistoryServer"

b. To create the docker container using temporary credentials, use
org.apache.hadoop.fs.s3a.TemporaryAWSCredentialsProvider as the provider,
and provide the credential values obtained in step 2. For more information, see Using
Session Credentials with TemporaryAWSCredentialsProvider in the Hadoop: Integration
with Amazon Web Services documentation.

docker run -itd -e SPARK_HISTORY_OPTS="$SPARK_HISTORY_OPTS -
Dspark.history.fs.logDirectory=s3a://path_to_eventlog

Spark and PySpark jobs 788

https://github.com/aws-samples/aws-glue-samples/tree/master/utilities/Spark_UI/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://hadoop.apache.org/docs/stable/hadoop-aws/tools/hadoop-aws/index.html#Using_Session_Credentials_with_TemporaryAWSCredentialsProvider
https://hadoop.apache.org/docs/stable/hadoop-aws/tools/hadoop-aws/index.html#Using_Session_Credentials_with_TemporaryAWSCredentialsProvider

AWS Glue User Guide

 -Dspark.hadoop.fs.s3a.access.key=AWS_ACCESS_KEY_ID -
Dspark.hadoop.fs.s3a.secret.key=AWS_SECRET_ACCESS_KEY
 -Dspark.hadoop.fs.s3a.session.token=AWS_SESSION_TOKEN
 -
Dspark.hadoop.fs.s3a.aws.credentials.provider=org.apache.hadoop.fs.s3a.TemporaryAWSCredentialsProvider"
 -p 18080:18080 glue/sparkui:latest "/opt/spark/bin/spark-class
 org.apache.spark.deploy.history.HistoryServer"

Note

These configuration parameters come from the Hadoop-AWS Module. You may need
to add specific configuration based on your use case. For example: users in isolated
regions will need to configure the spark.hadoop.fs.s3a.endpoint.

6. Open http://localhost:18080 in your browser to view the Spark UI locally.

Monitoring with AWS Glue job run insights

AWS Glue job run insights is a feature in AWS Glue that simplifies job debugging and optimization
for your AWS Glue jobs. AWS Glue provides Spark UI, and CloudWatch logs and metrics for
monitoring your AWS Glue jobs. With this feature, you get this information about your AWS Glue
job's execution:

• Line number of your AWS Glue job script that had a failure.

• Spark action that executed last in the Spark query plan just before the failure of your job.

• Spark exception events related to the failure presented in a time-ordered log stream.

• Root cause analysis and recommended action (such as tuning your script) to fix the issue.

• Common Spark events (log messages relating to a Spark action) with a recommended action that
addresses the root cause.

All these insights are available to you using two new log streams in the CloudWatch logs for your
AWS Glue jobs.

Requirements

The AWS Glue job run insights feature is available for AWS Glue versions 2.0, 3.0, and 4.0. You can
follow the migration guide for your existing jobs to upgrade them from older AWS Glue versions.

Spark and PySpark jobs 789

https://hadoop.apache.org/docs/stable/hadoop-aws/tools/hadoop-aws/index.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-cloudwatch.html
https://docs.aws.amazon.com/glue/latest/dg/migrating-version-30.html

AWS Glue User Guide

Enabling job run insights for an AWS Glue ETL job

You can enable job run insights through AWS Glue Studio or the CLI.

AWS Glue Studio

When creating a job via AWS Glue Studio, you can enable or disable job run insights under the Job
Details tab. Check that the Generate job insights box is selected.

Command line

If creating a job via the CLI, you can start a job run with a single new job parameter: --enable-
job-insights = true.

By default, the job run insights log streams are created under the same default log group used
by AWS Glue continuous logging, that is, /aws-glue/jobs/logs-v2/. You may set up custom
log group name, log filters and log group configurations using the same set of arguments for
continuous logging. For more information, see Enabling Continuous Logging for AWS Glue Jobs.

Accessing the job run insights log streams in CloudWatch

With the job run insights feature enabled, there may be two log streams created when a job run
fails. When a job finishes successfully, neither of the streams are generated.

1. Exception analysis log stream: <job-run-id>-job-insights-rca-driver. This stream
provides the following:

• Line number of your AWS Glue job script that caused the failure.

• Spark action that executed last in the Spark query plan (DAG).

• Concise time-ordered events from the Spark driver and executors that are related to the
exception. You can find details such as complete error messages, the failed Spark task and
its executors ID that help you to focus on the specific executor's log stream for a deeper
investigation if needed.

Spark and PySpark jobs 790

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-continuous-logging.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-continuous-logging-enable.html

AWS Glue User Guide

2. Rule-based insights stream:

• Root cause analysis and recommendations on how to fix the errors (such as using a specific job
parameter to optimize the performance).

• Relevant Spark events serving as the basis for root cause analysis and a recommended action.

Note

The first stream will exist only if any exception Spark events are available for a failed job
run, and the second stream will exist only if any insights are available for the failed job
run. For example, if your job finishes successfully, neither of the streams will be generated;
if your job fails but there isn't a service-defined rule that can match with your failure
scenario, then only the first stream will be generated.

If the job is created from AWS Glue Studio, the links to the above streams are also available
under the job run details tab (Job run insights) as "Concise and consolidated error logs" and "Error
analysis and guidance".

Spark and PySpark jobs 791

AWS Glue User Guide

Example for AWS Glue job run insights

In this section we present an example of how the job run insights feature can help you resolve an
issue in your failed job. In this example, a user forgot to import the required module (tensorflow) in
an AWS Glue job to analyze and build a machine learning model on their data.

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
from pyspark.sql.types import *
from pyspark.sql.functions import udf,col

args = getResolvedOptions(sys.argv, ['JOB_NAME'])

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)

data_set_1 = [1, 2, 3, 4]
data_set_2 = [5, 6, 7, 8]

scoresDf = spark.createDataFrame(data_set_1, IntegerType())

def data_multiplier_func(factor, data_vector):
 import tensorflow as tf
 with tf.compat.v1.Session() as sess:
 x1 = tf.constant(factor)
 x2 = tf.constant(data_vector)
 result = tf.multiply(x1, x2)
 return sess.run(result).tolist()

data_multiplier_udf = udf(lambda x:data_multiplier_func(x, data_set_2),
 ArrayType(IntegerType(),False))
factoredDf = scoresDf.withColumn("final_value", data_multiplier_udf(col("value")))
print(factoredDf.collect())

Without the job run insights feature, as the job fails, you only see this message thrown by Spark:

Spark and PySpark jobs 792

AWS Glue User Guide

An error occurred while calling o111.collectToPython. Traceback (most
recent call last):

The message is ambiguous and limits your debugging experience. In this case, this feature provides
with you additional insights in two CloudWatch log streams:

1. The job-insights-rca-driver log stream:

• Exception events: This log stream provides you the Spark exception events related to the
failure collected from the Spark driver and different distributed workers. These events help
you understand the time-ordered propagation of the exception as faulty code executes across
Spark tasks, executors, and stages distributed across the AWS Glue workers.

• Line numbers: This log stream identifies line 21, which made the call to import the missing
Python module that caused the failure; it also identifies line 24, the call to Spark Action
collect(), as the last executed line in your script.

2. The job-insights-rule-driver log stream:

• Root cause and recommendation: In addition to the line number and last executed line number
for the fault in your script, this log stream shows the root cause analysis and recommendation
for you to follow the AWS Glue doc and set up the necessary job parameters in order to use an
additional Python module in your AWS Glue job.

• Basis event: This log stream also shows the Spark exception event that was evaluated with the
service-defined rule to infer the root cause and provide a recommendation.

Spark and PySpark jobs 793

AWS Glue User Guide

Monitoring with Amazon CloudWatch

You can monitor AWS Glue using Amazon CloudWatch, which collects and processes raw data
from AWS Glue into readable, near-real-time metrics. These statistics are recorded for a period
of two weeks so that you can access historical information for a better perspective on how your
web application or service is performing. By default, AWS Glue metrics data is sent to CloudWatch
automatically. For more information, see What Is Amazon CloudWatch? in the Amazon CloudWatch
User Guide, and AWS Glue metrics.

Continous logging

AWS Glue also supports real-time continuous logging for AWS Glue jobs. When continuous logging
is enabled for a job, you can view the real-time logs on the AWS Glue console or the CloudWatch
console dashboard. For more information, see Continuous logging for AWS Glue jobs.

Observability metrics

When Job observability metrics is enabled, additional Amazon CloudWatch metrics are generated
when the job is run. Use AWS Glue Observability metrics to generate insights into what is
happening inside your AWS Glue to improve triaging and analysis of issues.

Topics

• Monitoring AWS Glue using Amazon CloudWatch metrics

• Setting up Amazon CloudWatch alarms on AWS Glue job profiles

• Continuous logging for AWS Glue jobs

Spark and PySpark jobs 794

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html

AWS Glue User Guide

• Monitoring with AWS Glue Observability metrics

Monitoring AWS Glue using Amazon CloudWatch metrics

You can profile and monitor AWS Glue operations using AWS Glue job profiler. It collects and
processes raw data from AWS Glue jobs into readable, near real-time metrics stored in Amazon
CloudWatch. These statistics are retained and aggregated in CloudWatch so that you can access
historical information for a better perspective on how your application is performing.

Note

You may incur additional charges when you enable job metrics and CloudWatch custom
metrics are created. For more information, see Amazon CloudWatch pricing .

AWS Glue metrics overview

When you interact with AWS Glue, it sends metrics to CloudWatch. You can view these metrics
using the AWS Glue console (the preferred method), the CloudWatch console dashboard, or the
AWS Command Line Interface (AWS CLI).

To view metrics using the AWS Glue console dashboard

You can view summary or detailed graphs of metrics for a job, or detailed graphs for a job run.

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, choose Job run monitoring.

3. In Job runs choose Actions to stop a job that is currently running, view a job, or rewind job
bookmark.

4. Select a job, then choose View run details to view additional information about the job run.

To view metrics using the CloudWatch console dashboard

Metrics are grouped first by the service namespace, and then by the various dimension
combinations within each namespace.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

Spark and PySpark jobs 795

https://aws.amazon.com/cloudwatch/pricing/
https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/cloudwatch/

AWS Glue User Guide

2. In the navigation pane, choose Metrics.

3. Choose the Glue namespace.

To view metrics using the AWS CLI

• At a command prompt, use the following command.

aws cloudwatch list-metrics --namespace Glue

AWS Glue reports metrics to CloudWatch every 30 seconds, and the CloudWatch metrics
dashboards are configured to display them every minute. The AWS Glue metrics represent delta
values from the previously reported values. Where appropriate, metrics dashboards aggregate
(sum) the 30-second values to obtain a value for the entire last minute.

AWS Glue metrics behavior for Spark jobs

AWS Glue metrics are enabled at initialization of a GlueContext in a script and are generally
updated only at the end of an Apache Spark task. They represent the aggregate values across all
completed Spark tasks so far.

However, the Spark metrics that AWS Glue passes on to CloudWatch are generally absolute
values representing the current state at the time they are reported. AWS Glue reports them to
CloudWatch every 30 seconds, and the metrics dashboards generally show the average across the
data points received in the last 1 minute.

AWS Glue metrics names are all preceded by one of the following types of prefix:

• glue.driver. – Metrics whose names begin with this prefix either represent AWS Glue metrics
that are aggregated from all executors at the Spark driver, or Spark metrics corresponding to the
Spark driver.

• glue.executorId. – The executorId is the number of a specific Spark executor. It corresponds
with the executors listed in the logs.

• glue.ALL. – Metrics whose names begin with this prefix aggregate values from all Spark
executors.

Spark and PySpark jobs 796

AWS Glue User Guide

AWS Glue metrics

AWS Glue profiles and sends the following metrics to CloudWatch every 30 seconds, and the AWS
Glue Metrics Dashboard report them once a minute:

Metric Description

glue.driver.aggregate.bytes
Read

The number of bytes read from all data sources by
all completed Spark tasks running in all executors.

Valid dimensions: JobName (the name of the AWS
Glue Job), JobRunId (the JobRun ID. or ALL), and
Type (count).

Valid Statistics: SUM. This metric is a delta value
from the last reported value, so on the AWS Glue
Metrics Dashboard, a SUM statistic is used for
aggregation.

Unit: Bytes

Can be used to monitor:

• Bytes read.

• Job progress.

• JDBC data sources.

• Job Bookmark Issues.

• Variance across Job Runs.

This metric can be used the same way as the
glue.ALL.s3.filesystem.read_bytes
metric, with the difference that this metric is
updated at the end of a Spark task and captures
non-S3 data sources as well.

glue.driver.aggregate.elaps
edTime

The ETL elapsed time in milliseconds (does not
include the job bootstrap times).

Spark and PySpark jobs 797

AWS Glue User Guide

Metric Description

Valid dimensions: JobName (the name of the AWS
Glue Job), JobRunId (the JobRun ID. or ALL), and
Type (count).

Valid Statistics: SUM. This metric is a delta value
from the last reported value, so on the AWS Glue
Metrics Dashboard, a SUM statistic is used for
aggregation.

Unit: Milliseconds

Can be used to determine how long it takes a job
run to run on average.

Some ways to use the data:

• Set alarms for stragglers.

• Measure variance across job runs.

Spark and PySpark jobs 798

AWS Glue User Guide

Metric Description

glue.driver.aggregate.numCo
mpletedStages

The number of completed stages in the job.

Valid dimensions: JobName (the name of the AWS
Glue Job), JobRunId (the JobRun ID. or ALL), and
Type (count).

Valid Statistics: SUM. This metric is a delta value
from the last reported value, so on the AWS Glue
Metrics Dashboard, a SUM statistic is used for
aggregation.

Unit: Count

Can be used to monitor:

• Job progress.

• Per-stage timeline of job execution,when
correlated with other metrics.

Some ways to use the data:

• Identify demanding stages in the execution of a
job.

• Set alarms for correlated spikes (demanding
stages) across job runs.

Spark and PySpark jobs 799

AWS Glue User Guide

Metric Description

glue.driver.aggregate.numCo
mpletedTasks

The number of completed tasks in the job.

Valid dimensions: JobName (the name of the AWS
Glue Job), JobRunId (the JobRun ID. or ALL), and
Type (count).

Valid Statistics: SUM. This metric is a delta value
from the last reported value, so on the AWS Glue
Metrics Dashboard, a SUM statistic is used for
aggregation.

Unit: Count

Can be used to monitor:

• Job progress.

• Parallelism within a stage.

Spark and PySpark jobs 800

AWS Glue User Guide

Metric Description

glue.driver.aggregate.numFa
iledTasks

The number of failed tasks.

Valid dimensions: JobName (the name of the AWS
Glue Job), JobRunId (the JobRun ID. or ALL), and
Type (count).

Valid Statistics: SUM. This metric is a delta value
from the last reported value, so on the AWS Glue
Metrics Dashboard, a SUM statistic is used for
aggregation.

Unit: Count

Can be used to monitor:

• Data abnormalities that cause job tasks to fail.

• Cluster abnormalities that cause job tasks to fail.

• Script abnormalities that cause job tasks to fail.

The data can be used to set alarms for increased
failures that might suggest abnormalities in data,
cluster or scripts.

Spark and PySpark jobs 801

AWS Glue User Guide

Metric Description

glue.driver.aggregate.numKi
lledTasks

The number of tasks killed.

Valid dimensions: JobName (the name of the AWS
Glue Job), JobRunId (the JobRun ID. or ALL), and
Type (count).

Valid Statistics: SUM. This metric is a delta value
from the last reported value, so on the AWS Glue
Metrics Dashboard, a SUM statistic is used for
aggregation.

Unit: Count

Can be used to monitor:

• Abnormalities in Data Skew that result in
exceptions (OOMs) that kill tasks.

• Script abnormalities that result in exceptions
(OOMs) that kill tasks.

Some ways to use the data:

• Set alarms for increased failures indicating data
abnormalities.

• Set alarms for increased failures indicating cluster
abnormalities.

• Set alarms for increased failures indicating script
abnormalities.

Spark and PySpark jobs 802

AWS Glue User Guide

Metric Description

glue.driver.aggregate.recor
dsRead

The number of records read from all data sources by
all completed Spark tasks running in all executors.

Valid dimensions: JobName (the name of the AWS
Glue Job), JobRunId (the JobRun ID. or ALL), and
Type (count).

Valid Statistics: SUM. This metric is a delta value
from the last reported value, so on the AWS Glue
Metrics Dashboard, a SUM statistic is used for
aggregation.

Unit: Count

Can be used to monitor:

• Records read.

• Job progress.

• JDBC data sources.

• Job Bookmark Issues.

• Skew in Job Runs over days.

This metric can be used in a similar way to the
glue.ALL.s3.filesystem.read_bytes
metric, with the difference that this metric is
updated at the end of a Spark task.

Spark and PySpark jobs 803

AWS Glue User Guide

Metric Description

glue.driver.aggregate.shuff
leBytesWritten

The number of bytes written by all executors to
shuffle data between them since the previous
report (aggregated by the AWS Glue Metrics
Dashboard as the number of bytes written for this
purpose during the previous minute).

Valid dimensions: JobName (the name of the AWS
Glue Job), JobRunId (the JobRun ID. or ALL), and
Type (count).

Valid Statistics: SUM. This metric is a delta value
from the last reported value, so on the AWS Glue
Metrics Dashboard, a SUM statistic is used for
aggregation.

Unit: Bytes

Can be used to monitor: Data shuffle in jobs (large
joins, groupBy, repartition, coalesce).

Some ways to use the data:

• Repartition or decompress large input files before
further processing.

• Repartition data more uniformly to avoid hot
keys.

• Pre-filter data before joins or groupBy operations.

Spark and PySpark jobs 804

AWS Glue User Guide

Metric Description

glue.driver.aggregate.shuff
leLocalBytesRead

The number of bytes read by all executors to shuffle
data between them since the previous report
(aggregated by the AWS Glue Metrics Dashboard as
the number of bytes read for this purpose during
the previous minute).

Valid dimensions: JobName (the name of the AWS
Glue Job), JobRunId (the JobRun ID. or ALL), and
Type (count).

Valid Statistics: SUM. This metric is a delta value
from the last reported value, so on the AWS Glue
Metrics Dashboard, a SUM statistic is used for
aggregation.

Unit: Bytes

Can be used to monitor: Data shuffle in jobs (large
joins, groupBy, repartition, coalesce).

Some ways to use the data:

• Repartition or decompress large input files before
further processing.

• Repartition data more uniformly using hot keys.

• Pre-filter data before joins or groupBy operations.

Spark and PySpark jobs 805

AWS Glue User Guide

Metric Description

glue.driver.BlockManager.di
sk.diskSpaceUsed_MB

The number of megabytes of disk space used across
all executors.

Valid dimensions: JobName (the name of the AWS
Glue Job), JobRunId (the JobRun ID. or ALL), and
Type (gauge).

Valid Statistics: Average. This is a Spark metric,
reported as an absolute value.

Unit: Megabytes

Can be used to monitor:

• Disk space used for blocks that represent cached
RDD partitions.

• Disk space used for blocks that represent
intermediate shuffle outputs.

• Disk space used for blocks that represent
broadcasts.

Some ways to use the data:

• Identify job failures due to increased disk usage.

• Identify large partitions resulting in spilling or
shuffling.

• Increase provisioned DPU capacity to correct
these issues.

Spark and PySpark jobs 806

AWS Glue User Guide

Metric Description

glue.driver.ExecutorAllocat
ionManager.executors.number
AllExecutors

The number of actively running job executors.

Valid dimensions: JobName (the name of the AWS
Glue Job), JobRunId (the JobRun ID. or ALL), and
Type (gauge).

Valid Statistics: Average. This is a Spark metric,
reported as an absolute value.

Unit: Count

Can be used to monitor:

• Job activity.

• Straggling executors (with a few executors
running only)

• Current executor-level parallelism.

Some ways to use the data:

• Repartition or decompress large input files
beforehand if cluster is under-utilized.

• Identify stage or job execution delays due to
straggler scenarios.

• • Compare with numberMaxNeededExecutors to
understand backlog for provisioning more DPUs.

Spark and PySpark jobs 807

AWS Glue User Guide

Metric Description

glue.driver.ExecutorAllocat
ionManager.executors.number
MaxNeededExecutors

The number of maximum (actively running and
pending) job executors needed to satisfy the current
load.

Valid dimensions: JobName (the name of the AWS
Glue Job), JobRunId (the JobRun ID. or ALL), and
Type (gauge).

Valid Statistics: Maximum. This is a Spark metric,
reported as an absolute value.

Unit: Count

Can be used to monitor:

• Job activity.

• Current executor-level parallelism and backlog
of pending tasks not yet scheduled because of
unavailable executors due to DPU capacity or
killed/failed executors.

Some ways to use the data:

• Identify pending/backlog of scheduling queue.

• Identify stage or job execution delays due to
straggler scenarios.

• Compare with numberAllExecutors to understand
backlog for provisioning more DPUs.

• Increase provisioned DPU capacity to correct the
pending executor backlog.

Spark and PySpark jobs 808

AWS Glue User Guide

Metric Description

glue.driver.jvm.heap.usage

glue.executorId.jvm.heap.usage

glue.ALL.jvm.heap.usage

The fraction of memory used by the JVM heap for
this driver (scale: 0-1) for driver, executor identified
by executorId, or ALL executors.

Valid dimensions: JobName (the name of the AWS
Glue Job), JobRunId (the JobRun ID. or ALL), and
Type (gauge).

Valid Statistics: Average. This is a Spark metric,
reported as an absolute value.

Unit: Percentage

Can be used to monitor:

• Driver out-of-memory conditions (OOM) using
glue.driver.jvm.heap.usage .

• Executor out-of-memory conditions (OOM) using
glue.ALL.jvm.heap.usage .

Some ways to use the data:

• Identify memory-consuming executor ids and
stages.

• Identify straggling executor ids and stages.

• Identify a driver out-of-memory condition (OOM).

• Identify an executor out-of-memory condition
(OOM) and obtain the corresponding executor
ID so as to be able to get a stack trace from the
executor log.

• Identify files or partitions that may have data
skew resulting in stragglers or out-of-memory
conditions (OOMs).

Spark and PySpark jobs 809

AWS Glue User Guide

Metric Description

glue.driver.jvm.heap.used

glue.executorId.jvm.heap.used

glue.ALL.jvm.heap.used

The number of memory bytes used by the JVM heap
for the driver, the executor identified by executorId,
or ALL executors.

Valid dimensions: JobName (the name of the AWS
Glue Job), JobRunId (the JobRun ID. or ALL), and
Type (gauge).

Valid Statistics: Average. This is a Spark metric,
reported as an absolute value.

Unit: Bytes

Can be used to monitor:

• Driver out-of-memory conditions (OOM).

• Executor out-of-memory conditions (OOM).

Some ways to use the data:

• Identify memory-consuming executor ids and
stages.

• Identify straggling executor ids and stages.

• Identify a driver out-of-memory condition (OOM).

• Identify an executor out-of-memory condition
(OOM) and obtain the corresponding executor
ID so as to be able to get a stack trace from the
executor log.

• Identify files or partitions that may have data
skew resulting in stragglers or out-of-memory
conditions (OOMs).

Spark and PySpark jobs 810

AWS Glue User Guide

Metric Description

glue.driver.s3.filesystem.r
ead_bytes

glue.executorId.s3.files
ystem.read_bytes

glue.ALL.s3.filesystem.read
_bytes

The number of bytes read from Amazon S3 by the
driver, an executor identified by executorId, or ALL
executors since the previous report (aggregated by
the AWS Glue Metrics Dashboard as the number of
bytes read during the previous minute).

Valid dimensions: JobName, JobRunId, and Type
(gauge).

Valid Statistics: SUM. This metric is a delta value
from the last reported value, so on the AWS Glue
Metrics Dashboard a SUM statistic is used for
aggregation. The area under the curve on the AWS
Glue Metrics Dashboard can be used to visually
compare bytes read by two different job runs.

Unit: Bytes.

Can be used to monitor:

• ETL data movement.

• Job progress.

• Job bookmark issues (data processed, reprocess
ed, and skipped).

• Comparison of reads to ingestion rate from
external data sources.

• Variance across job runs.

Resulting data can be used for:

• DPU capacity planning.

• Setting alarms for large spikes or dips in data
read for job runs and job stages.

Spark and PySpark jobs 811

AWS Glue User Guide

Metric Description

glue.driver.s3.filesystem.w
rite_bytes

glue.executorId.s3.files
ystem.write_bytes

glue.ALL.s3.filesystem.writ
e_bytes

The number of bytes written to Amazon S3 by the
driver, an executor identified by executorId, or ALL
executors since the previous report (aggregated by
the AWS Glue Metrics Dashboard as the number of
bytes written during the previous minute).

Valid dimensions: JobName, JobRunId, and Type
(gauge).

Valid Statistics: SUM. This metric is a delta value
from the last reported value, so on the AWS Glue
Metrics Dashboard a SUM statistic is used for
aggregation. The area under the curve on the AWS
Glue Metrics Dashboard can be used to visually
compare bytes written by two different job runs.

Unit: Bytes

Can be used to monitor:

• ETL data movement.

• Job progress.

• Job bookmark issues (data processed, reprocess
ed, and skipped).

• Comparison of reads to ingestion rate from
external data sources.

• Variance across job runs.

Some ways to use the data:

• DPU capacity planning.

• Setting alarms for large spikes or dips in data
read for job runs and job stages.

Spark and PySpark jobs 812

AWS Glue User Guide

Metric Description

glue.driver.streaming.numRe
cords

The number of records that are received in a micro-
batch. This metric is only available for AWS Glue
streaming jobs with AWS Glue version 2.0 and
above.

Valid dimensions: JobName (the name of the AWS
Glue job), JobRunId (the JobRun ID. or ALL), and
Type (count).

Valid Statistics: Sum, Maximum, Minimum, Average,
Percentile

Unit: Count

Can be used to monitor:

• Records read.

• Job progress.

glue.driver.streaming.batch
ProcessingTimeInMs

The time it takes to process the batches in milliseco
nds. This metric is only available for AWS Glue
streaming jobs with AWS Glue version 2.0 and
above.

Valid dimensions: JobName (the name of the AWS
Glue job), JobRunId (the JobRun ID. or ALL), and
Type (count).

Valid Statistics: Sum, Maximum, Minimum, Average,
Percentile

Unit: Count

Can be used to monitor:

• Job progress.

• Script performance.

Spark and PySpark jobs 813

AWS Glue User Guide

Metric Description

glue.driver.system.cpuSyste
mLoad

glue.executorId.system.c
puSystemLoad

glue.ALL.system.cpuSystemLo
ad

The fraction of CPU system load used (scale: 0-1) by
the driver, an executor identified by executorId, or
ALL executors.

Valid dimensions: JobName (the name of the AWS
Glue job), JobRunId (the JobRun ID. or ALL), and
Type (gauge).

Valid Statistics: Average. This metric is reported as
an absolute value.

Unit: Percentage

Can be used to monitor:

• Driver CPU load.

• Executor CPU load.

• Detecting CPU-bound or IO-bound executors or
stages in a Job.

Some ways to use the data:

• DPU capacity Planning along with IO Metrics
(Bytes Read/Shuffle Bytes, Task Parallelism)
and the number of maximum needed executors
metric.

• Identify the CPU/IO-bound ratio. This allows
for repartitionioning and increasing provision
ed capacity for long-running jobs with splittable
datasets having lower CPU utilization.

Dimensions for AWS Glue Metrics

AWS Glue metrics use the AWS Glue namespace and provide metrics for the following dimensions:

Spark and PySpark jobs 814

AWS Glue User Guide

Dimension Description

JobName This dimension filters for metrics of all job runs of a
specific AWS Glue job.

JobRunId This dimension filters for metrics of a specific AWS
Glue job run by a JobRun ID, or ALL.

Type This dimension filters for metrics by either count
(an aggregate number) or gauge (a value at a point
in time).

For more information, see the Amazon CloudWatch User Guide.

Setting up Amazon CloudWatch alarms on AWS Glue job profiles

AWS Glue metrics are also available in Amazon CloudWatch. You can set up alarms on any AWS
Glue metric for scheduled jobs.

A few common scenarios for setting up alarms are as follows:

• Jobs running out of memory (OOM): Set an alarm when the memory usage exceeds the normal
average for either the driver or an executor for an AWS Glue job.

• Straggling executors: Set an alarm when the number of executors falls below a certain threshold
for a large duration of time in an AWS Glue job.

• Data backlog or reprocessing: Compare the metrics from individual jobs in a workflow using a
CloudWatch math expression. You can then trigger an alarm on the resulting expression value
(such as the ratio of bytes written by a job and bytes read by a following job).

For detailed instructions on setting alarms, see Create or Edit a CloudWatch Alarm in the Amazon
CloudWatch Events User Guide.

For monitoring and debugging scenarios using CloudWatch, see Job monitoring and debugging.

Spark and PySpark jobs 815

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/

AWS Glue User Guide

Continuous logging for AWS Glue jobs

AWS Glue provides real-time, continuous logging for AWS Glue jobs. You can view real-time Apache
Spark job logs in Amazon CloudWatch, including driver logs, executor logs, and an Apache Spark
job progress bar. Viewing real-time logs provides you with a better perspective on the running job.

When you start an AWS Glue job, it sends the real-time logging information to CloudWatch (every
5 seconds and before each executor termination) after the Spark application starts running. You
can view the logs on the AWS Glue console or the CloudWatch console dashboard.

The continuous logging feature includes the following capabilities:

• Continuous logging

• A custom script logger to log application-specific messages

• A console progress bar to track the running status of the current AWS Glue job

For information about how continuous logging is supported in AWS Glue version 2.0, see Running
Spark ETL Jobs with Reduced Startup Times.

You can restrict access to CloudWatch log groups or streams for IAM roles to read the logs. For
more details on restricting access, see Using identity-based policies (IAM policies) for CloudWatch
Logs in the CloudWatch documentation.

Note

You may incur additional charges when you enable continuous logging and additional
CloudWatch log events are created. For more information, see Amazon CloudWatch pricing
.

Topics

• Enabling continuous logging for AWS Glue jobs

• Viewing continuous logging for AWS Glue jobs

Enabling continuous logging for AWS Glue jobs

You can enable continuous logging using the AWS Glue console or through the AWS Command
Line Interface (AWS CLI).

Spark and PySpark jobs 816

https://docs.aws.amazon.com/glue/latest/dg/reduced-start-times-spark-etl-jobs.html
https://docs.aws.amazon.com/glue/latest/dg/reduced-start-times-spark-etl-jobs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/iam-identity-based-access-control-cwl.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/iam-identity-based-access-control-cwl.html
https://aws.amazon.com/cloudwatch/pricing/

AWS Glue User Guide

You can enable continuous logging when you create a new job, edit an existing job, or enable it
through the AWS CLI.

You can also specify custom configuration options such as the Amazon CloudWatch log group
name, CloudWatch log stream prefix before the AWS Glue job run ID driver/executor ID, and
log conversion pattern for log messages. These configurations help you to set aggregate logs in
custom CloudWatch log groups with different expiration policies, and analyze them further with
custom log stream prefixes and conversions patterns.

Topics

• Using the AWS Management Console

• Logging application-specific messages using the custom script logger

• Enabling the progress bar to show job progress

• Security configuration with continuous logging

Using the AWS Management Console

Follow these steps to use the console to enable continuous logging when creating or editing an
AWS Glue job.

To create a new AWS Glue job with continuous logging

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, choose ETL jobs.

3. Choose Visual ETL.

4. In the Job details tab, expand the Advanced properties section.

5. Under Continuous logging select Enable logs in CloudWatch.

To enable continuous logging for an existing AWS Glue job

1. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

2. In the navigation pane, choose Jobs.

3. Choose an existing job from the Jobs list.

4. Choose Action, Edit job.

5. In the Job details tab, expand the Advanced properties section.

Spark and PySpark jobs 817

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

6. Under Continuous logging select Enable logs in CloudWatch.

Using the AWS CLI

To enable continuous logging, you pass in job parameters to an AWS Glue job. Pass the following
special job parameters similar to other AWS Glue job parameters. For more information, see AWS
Glue job parameters.

'--enable-continuous-cloudwatch-log': 'true'

You can specify a custom Amazon CloudWatch log group name. If not specified, the default log
group name is /aws-glue/jobs/logs-v2/.

'--continuous-log-logGroup': 'custom_log_group_name'

You can specify a custom Amazon CloudWatch log stream prefix. If not specified, the default log
stream prefix is the job run ID.

'--continuous-log-logStreamPrefix': 'custom_log_stream_prefix'

You can specify a custom continuous logging conversion pattern. If not specified, the default
conversion pattern is %d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n. Note that the conversion
pattern only applies to driver logs and executor logs. It does not affect the AWS Glue progress bar.

'--continuous-log-conversionPattern': 'custom_log_conversion_pattern'

Logging application-specific messages using the custom script logger

You can use the AWS Glue logger to log any application-specific messages in the script that are
sent in real time to the driver log stream.

The following example shows a Python script.

from awsglue.context import GlueContext
from pyspark.context import SparkContext

sc = SparkContext()
glueContext = GlueContext(sc)
logger = glueContext.get_logger()
logger.info("info message")

Spark and PySpark jobs 818

AWS Glue User Guide

logger.warn("warn message")
logger.error("error message")

The following example shows a Scala script.

import com.amazonaws.services.glue.log.GlueLogger

object GlueApp {
 def main(sysArgs: Array[String]) {
 val logger = new GlueLogger
 logger.info("info message")
 logger.warn("warn message")
 logger.error("error message")
 }
}

Enabling the progress bar to show job progress

AWS Glue provides a real-time progress bar under the JOB_RUN_ID-progress-bar log stream
to check AWS Glue job run status. Currently it supports only jobs that initialize glueContext. If
you run a pure Spark job without initializing glueContext, the AWS Glue progress bar does not
appear.

The progress bar shows the following progress update every 5 seconds.

Stage Number (Stage Name): > (numCompletedTasks + numActiveTasks) /
 totalNumOfTasksInThisStage]

Security configuration with continuous logging

If a security configuration is enabled for CloudWatch logs, AWS Glue will create a log group named
as follows for continuous logs:

<Log-Group-Name>-<Security-Configuration-Name>

The default and custom log groups will be as follows:

• The default continuous log group will be /aws-glue/jobs/logs-v2-<Security-
Configuration-Name>

• The custom continuous log group will be <custom-log-group-name>-<Security-
Configuration-Name>

Spark and PySpark jobs 819

AWS Glue User Guide

You need to add the logs:AssociateKmsKey to your IAM role permissions, if you enable a
security configuration with CloudWatch Logs. If that permission is not included, continuous logging
will be disabled. Also, to configure the encryption for the CloudWatch Logs, follow the instructions
at Encrypt Log Data in CloudWatch Logs Using AWS Key Management Service in the Amazon
CloudWatch Logs User Guide.

For more information on creating security configurations, see Working with security configurations
on the AWS Glue console.

Viewing continuous logging for AWS Glue jobs

You can view real-time logs using the AWS Glue console or the Amazon CloudWatch console.

To view real-time logs using the AWS Glue console dashboard

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, choose Jobs.

3. Add or start an existing job. Choose Action, Run job.

When you start running a job, you navigate to a page that contains information about the
running job:

• The Logs tab shows the older aggregated application logs.

• The Continuous logging tab shows a real-time progress bar when the job is running with
glueContext initialized.

• The Continuous logging tab also contains the Driver logs, which capture real-time
Apache Spark driver logs, and application logs from the script logged using the AWS Glue
application logger when the job is running.

4. For older jobs, you can also view the real-time logs under the Job History view by choosing
Logs. This action takes you to the CloudWatch console that shows all Spark driver, executor,
and progress bar log streams for that job run.

To view real-time logs using the CloudWatch console dashboard

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log.

3. Choose the /aws-glue/jobs/logs-v2/ log group.

Spark and PySpark jobs 820

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/cloudwatch/

AWS Glue User Guide

4. In the Filter box, paste the job run ID.

You can view the driver logs, executor logs, and progress bar (if using the Standard filter).

Monitoring with AWS Glue Observability metrics

Note

AWS Glue Observability metrics is available on AWS Glue 4.0 and later versions.

Use AWS Glue Observability metrics to generate insights into what is happening inside your AWS
Glue for Apache Spark jobs to improve triaging and analysis of issues. Observability metrics are
visualized through Amazon CloudWatch dashboards and can be used to help perform root cause
analysis for errors and for diagnosing performance bottlenecks. You can reduce the time spent
debugging issues at scale so you can focus on resolving issues faster and more effectively.

AWS Glue Observability provides Amazon CloudWatch metrics categorized in following four
groups:

• Reliability (i.e., Errors Classes) – easily identify the most common failure reasons at given time
range that you may want to address.

• Performance (i.e., Skewness) – identify a performance bottleneck and apply tuning techniques.
For example, when you experience degraded performance due to job skewness, you may want to
enable Spark Adaptive Query Execution and fine-tune the skew join threshold.

• Throughput (i.e., per source/sink throughput) – monitor trends of data reads and writes. You
can also configure Amazon CloudWatch alarms for anomalies.

• Resource Utilization (i.e., workers, memory and disk utilization) – efficiently find the jobs with
low capacity utilization. You may want to enable AWS Glue auto-scaling for those jobs.

Getting started with AWS Glue Observability metrics

Note

The new metrics are enabled by default in the AWS Glue Studio console.

Spark and PySpark jobs 821

AWS Glue User Guide

To configure observability metrics in AWS Glue Studio:

1. Log in to the AWS Glue console and choose ETL jobs from the console menu.

2. Choose a job by clicking on the job name in the Your jobs section.

3. Choose the Job details tab.

4. Scroll to the bottom and choose Advanced properties, then Job observability metrics.

To enable AWS Glue Observability metrics using AWS CLI:

• Add to the --default-arguments map the following key-value in the input JSON file:

--enable-observability-metrics, true

Spark and PySpark jobs 822

AWS Glue User Guide

Using AWS Glue observability

Because the AWS Glue observability metrics is provided through Amazon CloudWatch, you can
use the Amazon CloudWatch console, AWS CLI, SDK or API to query the observability metrics
datapoints. See Using Glue Observability for monitoring resource utilization to reduce cost for an
example use case when to use AWS Glue observability metrics.

Using AWS Glue observability in the Amazon CloudWatch console

To query and visualize metrics in the Amazon CloudWatch console:

1. Open the Amazon CloudWatch console and choose All metrics.

2. Under custom namespaces, choose AWS Glue.

3. Choose Job Observability Metrics, Observability Metrics Per Source, or Observability
Metrics Per Sink .

4. Search for the specific metric name, job name, job run ID, and select them.

5. Under the Graphed metrics tab, configure your preferred statistic, period, and other options.

To query an Observability metric using AWS CLI:

1. Create a metric definition JSON file and replace your-Glue-job-nameand your-Glue-job-
run-id with yours.

$ cat multiplequeries.json
[

Spark and PySpark jobs 823

https://aws.amazon.com/blogs/big-data/enhance-monitoring-and-debugging-for-aws-glue-jobs-using-new-job-observability-metrics/

AWS Glue User Guide

 {
 "Id": "avgWorkerUtil_0",
 "MetricStat": {
 "Metric": {
 "Namespace": "Glue",
 "MetricName": "glue.driver.workerUtilization",
 "Dimensions": [
 {
 "Name": "JobName",
 "Value": "<your-Glue-job-name-A>"
 },
 {
 "Name": "JobRunId",
 "Value": "<your-Glue-job-run-id-A>"
 },
 {
 "Name": "Type",
 "Value": "gauge"
 },
 {
 "Name": "ObservabilityGroup",
 "Value": "resource_utilization"
 }
]
 },
 "Period": 1800,
 "Stat": "Minimum",
 "Unit": "None"
 }
 },
 {
 "Id": "avgWorkerUtil_1",
 "MetricStat": {
 "Metric": {
 "Namespace": "Glue",
 "MetricName": "glue.driver.workerUtilization",
 "Dimensions": [
 {
 "Name": "JobName",
 "Value": "<your-Glue-job-name-B>"
 },
 {
 "Name": "JobRunId",
 "Value": "<your-Glue-job-run-id-B>"

Spark and PySpark jobs 824

AWS Glue User Guide

 },
 {
 "Name": "Type",
 "Value": "gauge"
 },
 {
 "Name": "ObservabilityGroup",
 "Value": "resource_utilization"
 }
]
 },
 "Period": 1800,
 "Stat": "Minimum",
 "Unit": "None"
 }
 }
]

2. Run the get-metric-data command:

$ aws cloudwatch get-metric-data --metric-data-queries file: //multiplequeries.json
 \
 --start-time '2023-10-28T18: 20' \
 --end-time '2023-10-28T19: 10' \
 --region us-east-1
{
 "MetricDataResults": [
 {
 "Id": "avgWorkerUtil_0",
 "Label": "<your-label-for-A>",
 "Timestamps": [
 "2023-10-28T18:20:00+00:00"
],
 "Values": [
 0.06718750000000001
],
 "StatusCode": "Complete"
 },
 {
 "Id": "avgWorkerUtil_1",
 "Label": "<your-label-for-B>",
 "Timestamps": [

Spark and PySpark jobs 825

AWS Glue User Guide

 "2023-10-28T18:50:00+00:00"
],
 "Values": [
 0.5959183673469387
],
 "StatusCode": "Complete"
 }
],
 "Messages": []
}

Observability metrics

AWS Glue Observability profiles and sends the following metrics to Amazon CloudWatch every
30 seconds, and some of these metrics can be visible in the AWS Glue Studio Job Runs Monitoring
Page.

Metric Description Category

glue.driver.skewness.stage Metric Category: job_perfo
rmance

The spark stages execution
Skewness: this metric
captures execution skewness,
which might be caused by
input data skewness or by a
transformation (e.g., skewed
join). The values of this metric
falls into the range of [0,
infinity[, where 0 means the
ratio of the maximum to
median tasks' execution time,
among all tasks in the stage
is less than a certain stage
skewness factor. The default
stage skewness factor is `5`

job_performance

Spark and PySpark jobs 826

AWS Glue User Guide

Metric Description Category

and it be overwritten via
spark conf: spark.metrics.conf
.driver.source.glue.jobPerf
ormance.skewnessFactor

A stage skewness value of 1
means the ratio is twice the
stage skewness factor.

The value of stage skewnewss
is updated every 30 seconds
to reflect the current
skewness. The value at the
end of the stage reflects the
final stage skewnwss.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (job_perf
ormance)

Valid Statistics: Average,
Maximum, Minimum,
Percentile

Unit: Count

Spark and PySpark jobs 827

AWS Glue User Guide

Metric Description Category

glue.driver.skewness.job Metric Category: job_perfo
rmance

Job skewness is the weighted
average of the job stages
skewness. Weighted average
gives more weight to stages
that takes longer to execute.
This is to avoid the corner
case when a very skewwed
stage is actually running for
very short time relative to
other stages (and thus its
skewness is not significant for
the overall job perforamnce
and does not worth the effort
to try to address its skewness)
.

This metric is updated upon
completion of each stage, and
thus the last value reflects the
actual overall job skewness.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (job_perf
ormance)

Valid Statistics: Average,
Maximum, Minimum,
Percentile

Unit: Count

job_performance

Spark and PySpark jobs 828

AWS Glue User Guide

Metric Description Category

glue.succeed.ALL Metric Category: error

Total number of successfu
l job runs, to complete the
picture of failures categories

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (count), and
ObservabilityGroup (error)

Valid Statistics: SUM

Unit: Count

error

glue.error.ALL Metric Category: error

Total number of job run
errors, to complete the
picture of failures categories

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (count), and
ObservabilityGroup (error)

Valid Statistics: SUM

Unit: Count

error

Spark and PySpark jobs 829

AWS Glue User Guide

Metric Description Category

glue.error.[error category] Metric Category: error

This is actually a set of
metrics, that are updated
only when a job run fails.
The error categorization
helps with triaging and
debugging. When a job run
fails, the error causing the
failure is categorized and
the corresponding error
category metric is set to 1.
This helps to perform over
time failures analysis, as
well as over all jobs error
analysis to identify most
common failure categories to
start addressing them. AWS
Glue has 28 error categorie
s, including OUT_OF_ME
MORY (driver and executor)
, PERMISSION, SYNTAX and
THROTTLING error categories.
Error categories also include
COMPILATION, LAUNCH and
TIMEOUT error categories.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (count), and
ObservabilityGroup (error)

Valid Statistics: SUM

error

Spark and PySpark jobs 830

AWS Glue User Guide

Metric Description Category

Unit: Count

glue.driver.workerUtilization Metric Category: resource_
utilization

The percentage of the
allocated workers which are
actually used. If not good,
auto scaling can help.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average,
Maximum, Minimum,
Percentile

Unit: Percentage

resource_utilization

Spark and PySpark jobs 831

AWS Glue User Guide

Metric Description Category

glue.driver.memory.heap.[av
ailable | used]

Metric Category: resource_
utilization

The driver's available / used
heap memory during the job
run. This helps to understan
d memory usage trends,
especially over time, which
can help avoid potential
failures, in addition to
debugging memory related
failures.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Bytes

resource_utilization

Spark and PySpark jobs 832

AWS Glue User Guide

Metric Description Category

glue.driver.memory.heap.use
d.percentage

Metric Category: resource_
utilization

The driver's used (%) heap
memory during the job run.
This helps to understan
d memory usage trends,
especially over time, which
can help avoid potential
failures, in addition to
debugging memory related
failures.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Percentage

resource_utilization

Spark and PySpark jobs 833

AWS Glue User Guide

Metric Description Category

glue.driver.memory.non-heap
.[available | used]

Metric Category: resource_
utilization

The driver's available / used
non-heap memory during
the job run. This helps to
understand memory usage
trensd, especially over
time, which can help avoid
potential failures, in addition
to debugging memory related
failures.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Bytes

resource_utilization

Spark and PySpark jobs 834

AWS Glue User Guide

Metric Description Category

glue.driver.memory.non-heap
.used.percentage

Metric Category: resource_
utilization

The driver's used (%) non-
heap memory during the job
run. This helps to understan
d memory usage trends,
especially over time, which
can help avoid potential
failures, in addition to
debugging memory related
failures.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Percentage

resource_utilization

Spark and PySpark jobs 835

AWS Glue User Guide

Metric Description Category

glue.driver.memory.total.[a
vailable | used]

Metric Category: resource_
utilization

The driver's available / used
total memory during the job
run. This helps to understan
d memory usage trends,
especially over time, which
can help avoid potential
failures, in addition to
debugging memory related
failures.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Bytes

resource_utilization

Spark and PySpark jobs 836

AWS Glue User Guide

Metric Description Category

glue.driver.memory.total.us
ed.percentage

Metric Category: resource_
utilization

The driver's used (%) total
memory during the job run.
This helps to understan
d memory usage trends,
especially over time, which
can help avoid potential
failures, in addition to
debugging memory related
failures.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Percentage

resource_utilization

Spark and PySpark jobs 837

AWS Glue User Guide

Metric Description Category

glue.ALL.memory.heap.[avail
able | used]

Metric Category: resource_
utilization

The executors' available/used
heap memory. ALL means all
executors.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Bytes

resource_utilization

glue.ALL.memory.heap.used.p
ercentage

Metric Category: resource_
utilization

The executors' used (%)
heap memory. ALL means all
executors.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Percentage

resource_utilization

Spark and PySpark jobs 838

AWS Glue User Guide

Metric Description Category

glue.ALL.memory.non-heap.
[available | used]

Metric Category: resource_
utilization

The executors' available/
used non-heap memory. ALL
means all executors.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Bytes

resource_utilization

glue.ALL.memory.non-
heap.used.percentage

Metric Category: resource_
utilization

The executors' used (%) non-
heap memory. ALL means all
executors.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Percentage

resource_utilization

Spark and PySpark jobs 839

AWS Glue User Guide

Metric Description Category

glue.ALL.memory.total.[avai
lable | used]

Metric Category: resource_
utilization

The executors' available/used
total memory. ALL means all
executors.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Bytes

resource_utilization

glue.ALL.memory.total.used.
percentage

Metric Category: resource_
utilization

The executors' used (%)
total memory. ALL means all
executors.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Percentage

resource_utilization

Spark and PySpark jobs 840

AWS Glue User Guide

Metric Description Category

glue.driver.disk.[available_GB
| used_GB]

Metric Category: resource_
utilization

The driver's available/used
disk space during the job run.
This helps to understand disk
usage trends, especially over
time, which can help avoid
potential failures, in addition
to debugging not enought
disk space related failures.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Gigabytes

resource_utilization

Spark and PySpark jobs 841

AWS Glue User Guide

Metric Description Category

glue.driver.disk.used.perce
ntage]

Metric Category: resource_
utilization

The driver's available/used
disk space during the job run.
This helps to understand disk
usage trends, especially over
time, which can help avoid
potential failures, in addition
to debugging not enought
disk space related failures.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Percentage

resource_utilization

Spark and PySpark jobs 842

AWS Glue User Guide

Metric Description Category

glue.ALL.disk.[available_GB |
used_GB]

Metric Category: resource_
utilization

The executors' available/used
disk space. ALL means all
executors.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Gigabytes

resource_utilization

glue.ALL.disk.used.percenta
ge

Metric Category: resource_
utilization

The executors' available/
used/used(%) disk space. ALL
means all executors.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge), and
ObservabilityGroup (resource
_utilization)

Valid Statistics: Average

Unit: Percentage

resource_utilization

Spark and PySpark jobs 843

AWS Glue User Guide

Metric Description Category

glue.driver.bytesRead Metric Category: throughput

The number of bytes read
per input source in this job
run, as well as well as for ALL
sources. This helps understan
d the data volume and its
changes over time, which
helps addressing issues such
as data skewness.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge),
ObservabilityGroup (resource
_utilization), and Source
(source data location)

Valid Statistics: Average

Unit: Bytes

throughput

Spark and PySpark jobs 844

AWS Glue User Guide

Metric Description Category

glue.driver.[recordsRead |
filesRead]

Metric Category: throughput

The number of records/files
read per input source in this
job run, as well as well as
for ALL sources. This helps
understand the data volume
and its changes over time,
which helps addressing issues
such as data skewness.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge),
ObservabilityGroup (resource
_utilization), and Source
(source data location)

Valid Statistics: Average

Unit: Count

throughput

Spark and PySpark jobs 845

AWS Glue User Guide

Metric Description Category

glue.driver.partitionsRead Metric Category: throughput

The number of partitions read
per Amazon S3 input source
in this job run, as well as well
as for ALL sources.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge),
ObservabilityGroup (resource
_utilization), and Source
(source data location)

Valid Statistics: Average

Unit: Count

throughput

Spark and PySpark jobs 846

AWS Glue User Guide

Metric Description Category

glue.driver.bytesWrittten Metric Category: throughput

The number of bytes written
per output sink in this job
run, as well as well as for ALL
sinks. This helps understan
d the data volume and how
it evolves over time, which
helps addressing issues such
as processing skewness.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge),
ObservabilityGroup (resource
_utilization), and Sink (sink
data location)

Valid Statistics: Average

Unit: Bytes

throughput

Spark and PySpark jobs 847

AWS Glue User Guide

Metric Description Category

glue.driver.[recordsWritten |
filesWritten]

Metric Category: throughput

The nnumber of records/f
iles written per output sink
in this job run, as well as well
as for ALL sinks. This helps
understand the data volume
and how it evolves over time,
which helps addressing issues
such as processing skewness.

Valid dimensions: JobName
(the name of the AWS Glue
Job), JobRunId (the JobRun
ID. or ALL), Type (gauge),
ObservabilityGroup (resource
_utilization), and Sink (sink
data location)

Valid Statistics: Average

Unit: Count

throughput

Error categories

Error categories Description

COMPILATION_ERROR Errors arise during the compilation of Scala
code.

CONNECTION_ERROR Errors arise during connecting to a service/r
emote host/database service, etc.

DISK_NO_SPACE_ERROR Errors arise when there is no space left in disk
on driver/executor.

Spark and PySpark jobs 848

AWS Glue User Guide

Error categories Description

OUT_OF_MEMORY_ERROR Errors arise when there is no space left in
memory on driver/executor.

IMPORT_ERROR Errors arise when import dependencies.

INVALID_ARGUMENT_ERROR Errors arise when the input arguments are
invalid/illegal.

PERMISSION_ERROR Errors arise when lacking the permission to
service, data, etc.

RESOURCE_NOT_FOUND_ERROR Errors arise when data, location, etc does not
exit.

QUERY_ERROR Errors arise from Spark SQL query execution.

SYNTAX_ERROR Errors arise when there is syntax error in the
script.

THROTTLING_ERROR Errors arise when hitting service concurrency
limitation or execeding service quota limitaion
.

DATA_LAKE_FRAMEWORK_ERROR Errors arise from AWS Glue native-supported
data lake framework like Hudi, Iceberg, etc.

UNSUPPORTED_OPERATION_ERROR Errors arise when making unsupported
operation.

RESOURCES_ALREADY_EXISTS_ERROR Errors arise when a resource to be created or
added already exists.

GLUE_INTERNAL_SERVICE_ERROR Errors arise when there is a AWS Glue internal
service issue.

GLUE_OPERATION_TIMEOUT_ERROR Errors arise when a AWS Glue operation is
timeout.

Spark and PySpark jobs 849

AWS Glue User Guide

Error categories Description

GLUE_VALIDATION_ERROR Errors arise when a required value could not
be validated for AWS Glue job.

GLUE_JOB_BOOKMARK_VERSION_M
ISMATCH_ERROR

Errors arise when same job exon the same
source bucket and write to the same/different
destination concurrently (concurrency >1)

LAUNCH_ERROR Errors arise during the AWS Glue job launch
phase.

DYNAMODB_ERROR Generic errors arise from Amazon DynamoDB
service.

GLUE_ERROR Generic Errors arise from AWS Glue service.

LAKEFORMATION_ERROR Generic Errors arise from AWS Lake Formation
service.

REDSHIFT_ERROR Generic Errors arise from Amazon Redshift
service.

S3_ERROR Generic Errors arise from Amazon S3 service.

SYSTEM_EXIT_ERROR Generic system exit error.

TIMEOUT_ERROR Generic errors arise when job failed by
operation time out.

UNCLASSIFIED_SPARK_ERROR Generic errors arise from Spark.

UNCLASSIFIED_ERROR Default error category.

Limitations

Note

glueContext must be initialized to publish the metrics.

Spark and PySpark jobs 850

AWS Glue User Guide

In the Source Dimension, the value is either Amazon S3 path or table name, depending on the
source type. In addition, if the source is JDBC and the query option is used, the query string is
set in the source dimension. If the value is longer than 500 characters, it is trimmed within 500
characters.The following are limitations in the value:

• Non-ASCII characters will be removed.

• If the source name doesn’t contain any ASCII character, it is converted to <non-ASCII input>.

Limitations and considerations for throughput metrics

• DataFrame and DataFrame-based DynamicFrame (e.g. JDBC, reading from parquet on Amazon
S3) are supported, however, RDD-based DynamicFrame (e.g. reading csv, json on Amazon S3,
etc.) is not supported. Technically, all reads and writes visible on Spark UI are supported.

• The recordsRead metric will be emitted if the data source is catalog table and the format is
JSON, CSV, text, or Iceberg.

• glue.driver.throughput.recordsWritten, glue.driver.throughput.bytesWritten,
and glue.driver.throughput.filesWritten metrics are not available in JDBC and Iceberg
tables.

• Metrics may be delayed. If the job finishes in about one minute, there may be no throughput
metrics in Amazon CloudWatch Metrics.

Job monitoring and debugging

You can collect metrics about AWS Glue jobs and visualize them on the AWS Glue and Amazon
CloudWatch consoles to identify and fix issues. Profiling your AWS Glue jobs requires the following
steps:

1. Enable metrics:

a. Enable the Job metrics option in the job definition. You can enable profiling in the
AWS Glue console or as a parameter to the job. For more information see Defining job
properties for Spark jobs or AWS Glue job parameters.

b. Enable the AWS Glue Observability metrics option in the job definition. You can enable
Observability in the AWS Glue console or as a parameter to the job. For more information
see Monitoring with AWS Glue Observability metrics.

Spark and PySpark jobs 851

AWS Glue User Guide

2. Confirm that the job script initializes a GlueContext. For example, the following script
snippet initializes a GlueContext and shows where profiled code is placed in the script. This
general format is used in the debugging scenarios that follow.

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
import time

@params: [JOB_NAME]
args = getResolvedOptions(sys.argv, ['JOB_NAME'])

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)

...

...
code-to-profile
...
...

job.commit()

3. Run the job.

4. Visualize the metrics:

a. Visualize job metrics on the AWS Glue console and identify abnormal metrics for the
driver or an executor.

b. Check observability metrics in the Job run monitoring page, job run details page, or on
Amazon CloudWatch. For more information, see Monitoring with AWS Glue Observability
metrics.

5. Narrow down the root cause using the identified metric.

6. Optionally, confirm the root cause using the log stream of the identified driver or job executor.

Spark and PySpark jobs 852

AWS Glue User Guide

Use cases for AWS Glue observability metrics

• Debugging OOM exceptions and job abnormalities

• Debugging demanding stages and straggler tasks

• Monitoring the progress of multiple jobs

• Monitoring for DPU capacity planning

• Using AWS Glue Observability for monitoring resource utilization to reduce cost

Debugging OOM exceptions and job abnormalities

You can debug out-of-memory (OOM) exceptions and job abnormalities in AWS Glue. The
following sections describe scenarios for debugging out-of-memory exceptions of the Apache
Spark driver or a Spark executor.

• Debugging a driver OOM exception

• Debugging an executor OOM exception

Debugging a driver OOM exception

In this scenario, a Spark job is reading a large number of small files from Amazon Simple Storage
Service (Amazon S3). It converts the files to Apache Parquet format and then writes them out to
Amazon S3. The Spark driver is running out of memory. The input Amazon S3 data has more than 1
million files in different Amazon S3 partitions.

The profiled code is as follows:

data = spark.read.format("json").option("inferSchema", False).load("s3://input_path")
data.write.format("parquet").save(output_path)

Visualize the profiled metrics on the AWS Glue console

The following graph shows the memory usage as a percentage for the driver and executors. This
usage is plotted as one data point that is averaged over the values reported in the last minute. You
can see in the memory profile of the job that the driver memory crosses the safe threshold of 50
percent usage quickly. On the other hand, the average memory usage across all executors is still
less than 4 percent. This clearly shows abnormality with driver execution in this Spark job.

Spark and PySpark jobs 853

https://aws.amazon.com/blogs/big-data/enhance-monitoring-and-debugging-for-aws-glue-jobs-using-new-job-observability-metrics

AWS Glue User Guide

The job run soon fails, and the following error appears in the History tab on the AWS Glue console:
Command Failed with Exit Code 1. This error string means that the job failed due to a systemic
error—which in this case is the driver running out of memory.

On the console, choose the Error logs link on the History tab to confirm the finding about driver
OOM from the CloudWatch Logs. Search for "Error" in the job's error logs to confirm that it was
indeed an OOM exception that failed the job:

java.lang.OutOfMemoryError: Java heap space
-XX:OnOutOfMemoryError="kill -9 %p"
Executing /bin/sh -c "kill -9 12039"...

Spark and PySpark jobs 854

AWS Glue User Guide

On the History tab for the job, choose Logs. You can find the following trace of driver execution in
the CloudWatch Logs at the beginning of the job. The Spark driver tries to list all the files in all the
directories, constructs an InMemoryFileIndex, and launches one task per file. This in turn results
in the Spark driver having to maintain a large amount of state in memory to track all the tasks. It
caches the complete list of a large number of files for the in-memory index, resulting in a driver
OOM.

Fix the processing of multiple files using grouping

You can fix the processing of the multiple files by using the grouping feature in AWS Glue. Grouping
is automatically enabled when you use dynamic frames and when the input dataset has a large
number of files (more than 50,000). Grouping allows you to coalesce multiple files together into a
group, and it allows a task to process the entire group instead of a single file. As a result, the Spark
driver stores significantly less state in memory to track fewer tasks. For more information about
manually enabling grouping for your dataset, see Reading input files in larger groups.

To check the memory profile of the AWS Glue job, profile the following code with grouping
enabled:

df = glueContext.create_dynamic_frame_from_options("s3", {'paths': ["s3://input_path"],
 "recurse":True, 'groupFiles': 'inPartition'}, format="json")
datasink = glueContext.write_dynamic_frame.from_options(frame = df, connection_type
 = "s3", connection_options = {"path": output_path}, format = "parquet",
 transformation_ctx = "datasink")

You can monitor the memory profile and the ETL data movement in the AWS Glue job profile.

The driver runs below the threshold of 50 percent memory usage over the entire duration of
the AWS Glue job. The executors stream the data from Amazon S3, process it, and write it out to
Amazon S3. As a result, they consume less than 5 percent memory at any point in time.

Spark and PySpark jobs 855

AWS Glue User Guide

The data movement profile below shows the total number of Amazon S3 bytes that are read and
written in the last minute by all executors as the job progresses. Both follow a similar pattern as
the data is streamed across all the executors. The job finishes processing all one million files in less
than three hours.

Debugging an executor OOM exception

In this scenario, you can learn how to debug OOM exceptions that could occur in Apache Spark
executors. The following code uses the Spark MySQL reader to read a large table of about 34

Spark and PySpark jobs 856

AWS Glue User Guide

million rows into a Spark dataframe. It then writes it out to Amazon S3 in Parquet format. You can
provide the connection properties and use the default Spark configurations to read the table.

val connectionProperties = new Properties()
connectionProperties.put("user", user)
connectionProperties.put("password", password)
connectionProperties.put("Driver", "com.mysql.jdbc.Driver")
val sparkSession = glueContext.sparkSession
val dfSpark = sparkSession.read.jdbc(url, tableName, connectionProperties)
dfSpark.write.format("parquet").save(output_path)

Visualize the profiled metrics on the AWS Glue console

If the slope of the memory usage graph is positive and crosses 50 percent, then if the job fails
before the next metric is emitted, then memory exhaustion is a good candidate for the cause.
The following graph shows that within a minute of execution, the average memory usage across
all executors spikes up quickly above 50 percent. The usage reaches up to 92 percent and the
container running the executor is stopped by Apache Hadoop YARN.

As the following graph shows, there is always a single executor running until the job fails. This
is because a new executor is launched to replace the stopped executor. The JDBC data source
reads are not parallelized by default because it would require partitioning the table on a column
and opening multiple connections. As a result, only one executor reads in the complete table
sequentially.

Spark and PySpark jobs 857

AWS Glue User Guide

As the following graph shows, Spark tries to launch a new task four times before failing the job.
You can see the memory profile of three executors. Each executor quickly uses up all of its memory.
The fourth executor runs out of memory, and the job fails. As a result, its metric is not reported
immediately.

You can confirm from the error string on the AWS Glue console that the job failed due to OOM
exceptions, as shown in the following image.

Spark and PySpark jobs 858

AWS Glue User Guide

Job output logs: To further confirm your finding of an executor OOM exception, look at the
CloudWatch Logs. When you search for Error, you find the four executors being stopped in
roughly the same time windows as shown on the metrics dashboard. All are terminated by YARN as
they exceed their memory limits.

Executor 1

18/06/13 16:54:29 WARN YarnAllocator: Container killed by YARN for exceeding
 memory limits. 5.5 GB of 5.5 GB physical memory used. Consider boosting
 spark.yarn.executor.memoryOverhead.
18/06/13 16:54:29 WARN YarnSchedulerBackend$YarnSchedulerEndpoint: Container killed
 by YARN for exceeding memory limits. 5.5 GB of 5.5 GB physical memory used. Consider
 boosting spark.yarn.executor.memoryOverhead.
18/06/13 16:54:29 ERROR YarnClusterScheduler: Lost executor 1 on
 ip-10-1-2-175.ec2.internal: Container killed by YARN for exceeding
 memory limits. 5.5 GB of 5.5 GB physical memory used. Consider boosting
 spark.yarn.executor.memoryOverhead.
18/06/13 16:54:29 WARN TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0,
 ip-10-1-2-175.ec2.internal, executor 1): ExecutorLostFailure (executor 1
 exited caused by one of the running tasks) Reason: Container killed by YARN for
 exceeding memory limits. 5.5 GB of 5.5 GB physical memory used. Consider boosting
 spark.yarn.executor.memoryOverhead.

Executor 2

18/06/13 16:55:35 WARN YarnAllocator: Container killed by YARN for exceeding
 memory limits. 5.8 GB of 5.5 GB physical memory used. Consider boosting
 spark.yarn.executor.memoryOverhead.
18/06/13 16:55:35 WARN YarnSchedulerBackend$YarnSchedulerEndpoint: Container killed
 by YARN for exceeding memory limits. 5.8 GB of 5.5 GB physical memory used. Consider
 boosting spark.yarn.executor.memoryOverhead.
18/06/13 16:55:35 ERROR YarnClusterScheduler: Lost executor 2 on
 ip-10-1-2-16.ec2.internal: Container killed by YARN for exceeding
 memory limits. 5.8 GB of 5.5 GB physical memory used. Consider boosting
 spark.yarn.executor.memoryOverhead.
18/06/13 16:55:35 WARN TaskSetManager: Lost task 0.1 in stage 0.0 (TID 1,
 ip-10-1-2-16.ec2.internal, executor 2): ExecutorLostFailure (executor 2 exited

Spark and PySpark jobs 859

AWS Glue User Guide

 caused by one of the running tasks) Reason: Container killed by YARN for
 exceeding memory limits. 5.8 GB of 5.5 GB physical memory used. Consider boosting
 spark.yarn.executor.memoryOverhead.

Executor 3

18/06/13 16:56:37 WARN YarnAllocator: Container killed by YARN for exceeding
 memory limits. 5.8 GB of 5.5 GB physical memory used. Consider boosting
 spark.yarn.executor.memoryOverhead.
18/06/13 16:56:37 WARN YarnSchedulerBackend$YarnSchedulerEndpoint: Container killed
 by YARN for exceeding memory limits. 5.8 GB of 5.5 GB physical memory used. Consider
 boosting spark.yarn.executor.memoryOverhead.
18/06/13 16:56:37 ERROR YarnClusterScheduler: Lost executor 3 on
 ip-10-1-2-189.ec2.internal: Container killed by YARN for exceeding
 memory limits. 5.8 GB of 5.5 GB physical memory used. Consider boosting
 spark.yarn.executor.memoryOverhead.
18/06/13 16:56:37 WARN TaskSetManager: Lost task 0.2 in stage 0.0 (TID 2,
 ip-10-1-2-189.ec2.internal, executor 3): ExecutorLostFailure (executor 3
 exited caused by one of the running tasks) Reason: Container killed by YARN for
 exceeding memory limits. 5.8 GB of 5.5 GB physical memory used. Consider boosting
 spark.yarn.executor.memoryOverhead.

Executor 4

18/06/13 16:57:18 WARN YarnAllocator: Container killed by YARN for exceeding
 memory limits. 5.5 GB of 5.5 GB physical memory used. Consider boosting
 spark.yarn.executor.memoryOverhead.
18/06/13 16:57:18 WARN YarnSchedulerBackend$YarnSchedulerEndpoint: Container killed
 by YARN for exceeding memory limits. 5.5 GB of 5.5 GB physical memory used. Consider
 boosting spark.yarn.executor.memoryOverhead.
18/06/13 16:57:18 ERROR YarnClusterScheduler: Lost executor 4 on
 ip-10-1-2-96.ec2.internal: Container killed by YARN for exceeding
 memory limits. 5.5 GB of 5.5 GB physical memory used. Consider boosting
 spark.yarn.executor.memoryOverhead.
18/06/13 16:57:18 WARN TaskSetManager: Lost task 0.3 in stage 0.0 (TID 3,
 ip-10-1-2-96.ec2.internal, executor 4): ExecutorLostFailure (executor 4 exited
 caused by one of the running tasks) Reason: Container killed by YARN for
 exceeding memory limits. 5.5 GB of 5.5 GB physical memory used. Consider boosting
 spark.yarn.executor.memoryOverhead.

Spark and PySpark jobs 860

AWS Glue User Guide

Fix the fetch size setting using AWS Glue dynamic frames

The executor ran out of memory while reading the JDBC table because the default configuration
for the Spark JDBC fetch size is zero. This means that the JDBC driver on the Spark executor tries to
fetch the 34 million rows from the database together and cache them, even though Spark streams
through the rows one at a time. With Spark, you can avoid this scenario by setting the fetch size
parameter to a non-zero default value.

You can also fix this issue by using AWS Glue dynamic frames instead. By default, dynamic frames
use a fetch size of 1,000 rows that is a typically sufficient value. As a result, the executor does not
take more than 7 percent of its total memory. The AWS Glue job finishes in less than two minutes
with only a single executor. While using AWS Glue dynamic frames is the recommended approach,
it is also possible to set the fetch size using the Apache Spark fetchsize property. See the Spark
SQL, DataFrames and Datasets Guide.

val (url, database, tableName) = {
 ("jdbc_url", "db_name", "table_name")
 }
val source = glueContext.getSource(format, sourceJson)
val df = source.getDynamicFrame
glueContext.write_dynamic_frame.from_options(frame = df, connection_type = "s3",
 connection_options = {"path": output_path}, format = "parquet", transformation_ctx =
 "datasink")

Normal profiled metrics: The executor memory with AWS Glue dynamic frames never exceeds
the safe threshold, as shown in the following image. It streams in the rows from the database and
caches only 1,000 rows in the JDBC driver at any point in time. An out of memory exception does
not occur.

Spark and PySpark jobs 861

https://spark.apache.org/docs/2.2.0/sql-programming-guide.html#jdbc-to-other-databases
https://spark.apache.org/docs/2.2.0/sql-programming-guide.html#jdbc-to-other-databases

AWS Glue User Guide

Debugging demanding stages and straggler tasks

You can use AWS Glue job profiling to identify demanding stages and straggler tasks in your
extract, transform, and load (ETL) jobs. A straggler task takes much longer than the rest of the
tasks in a stage of an AWS Glue job. As a result, the stage takes longer to complete, which also
delays the total execution time of the job.

Coalescing small input files into larger output files

A straggler task can occur when there is a non-uniform distribution of work across the different
tasks, or a data skew results in one task processing more data.

You can profile the following code—a common pattern in Apache Spark—to coalesce a large
number of small files into larger output files. For this example, the input dataset is 32 GB of JSON
Gzip compressed files. The output dataset has roughly 190 GB of uncompressed JSON files.

The profiled code is as follows:

datasource0 = spark.read.format("json").load("s3://input_path")
df = datasource0.coalesce(1)
df.write.format("json").save(output_path)

Visualize the profiled metrics on the AWS Glue console

You can profile your job to examine four different sets of metrics:

Spark and PySpark jobs 862

AWS Glue User Guide

• ETL data movement

• Data shuffle across executors

• Job execution

• Memory profile

ETL data movement: In the ETL Data Movement profile, the bytes are read fairly quickly by all
the executors in the first stage that completes within the first six minutes. However, the total job
execution time is around one hour, mostly consisting of the data writes.

Data shuffle across executors: The number of bytes read and written during shuffling also shows
a spike before Stage 2 ends, as indicated by the Job Execution and Data Shuffle metrics. After the
data shuffles from all executors, the reads and writes proceed from executor number 3 only.

Spark and PySpark jobs 863

AWS Glue User Guide

Job execution: As shown in the graph below, all other executors are idle and are eventually
relinquished by the time 10:09. At that point, the total number of executors decreases to only one.
This clearly shows that executor number 3 consists of the straggler task that is taking the longest
execution time and is contributing to most of the job execution time.

Memory profile: After the first two stages, only executor number 3 is actively consuming memory
to process the data. The remaining executors are simply idle or have been relinquished shortly after
the completion of the first two stages.

Spark and PySpark jobs 864

AWS Glue User Guide

Fix straggling executors using grouping

You can avoid straggling executors by using the grouping feature in AWS Glue. Use grouping to
distribute the data uniformly across all the executors and coalesce files into larger files using all the
available executors on the cluster. For more information, see Reading input files in larger groups.

To check the ETL data movements in the AWS Glue job, profile the following code with grouping
enabled:

df = glueContext.create_dynamic_frame_from_options("s3", {'paths': ["s3://input_path"],
 "recurse":True, 'groupFiles': 'inPartition'}, format="json")
datasink = glueContext.write_dynamic_frame.from_options(frame = df, connection_type =
 "s3", connection_options = {"path": output_path}, format = "json", transformation_ctx
 = "datasink4")

ETL data movement: The data writes are now streamed in parallel with the data reads throughout
the job execution time. As a result, the job finishes within eight minutes—much faster than
previously.

Spark and PySpark jobs 865

AWS Glue User Guide

Data shuffle across executors: As the input files are coalesced during the reads using the grouping
feature, there is no costly data shuffle after the data reads.

Job execution: The job execution metrics show that the total number of active executors running
and processing data remains fairly constant. There is no single straggler in the job. All executors are
active and are not relinquished until the completion of the job. Because there is no intermediate
shuffle of data across the executors, there is only a single stage in the job.

Spark and PySpark jobs 866

AWS Glue User Guide

Memory profile: The metrics show the active memory consumption across all executors—
reconfirming that there is activity across all executors. As data is streamed in and written out in
parallel, the total memory footprint of all executors is roughly uniform and well below the safe
threshold for all executors.

Spark and PySpark jobs 867

AWS Glue User Guide

Monitoring the progress of multiple jobs

You can profile multiple AWS Glue jobs together and monitor the flow of data between them.
This is a common workflow pattern, and requires monitoring for individual job progress, data
processing backlog, data reprocessing, and job bookmarks.

Topics

• Profiled code

• Visualize the profiled metrics on the AWS Glue console

• Fix the processing of files

Profiled code

In this workflow, you have two jobs: an Input job and an Output job. The Input job is scheduled
to run every 30 minutes using a periodic trigger. The Output job is scheduled to run after each
successful run of the Input job. These scheduled jobs are controlled using job triggers.

Input job: This job reads in data from an Amazon Simple Storage Service (Amazon S3) location,
transforms it using ApplyMapping, and writes it to a staging Amazon S3 location. The following
code is profiled code for the Input job:

datasource0 = glueContext.create_dynamic_frame.from_options(connection_type="s3",
 connection_options = {"paths": ["s3://input_path"],
 "useS3ListImplementation":True,"recurse":True}, format="json")
applymapping1 = ApplyMapping.apply(frame = datasource0, mappings = [map_spec])
datasink2 = glueContext.write_dynamic_frame.from_options(frame = applymapping1,
 connection_type = "s3", connection_options = {"path": staging_path, "compression":
 "gzip"}, format = "json")

Output job: This job reads the output of the Input job from the staging location in Amazon S3,
transforms it again, and writes it to a destination:

datasource0 = glueContext.create_dynamic_frame.from_options(connection_type="s3",
 connection_options = {"paths": [staging_path],
 "useS3ListImplementation":True,"recurse":True}, format="json")

Spark and PySpark jobs 868

AWS Glue User Guide

applymapping1 = ApplyMapping.apply(frame = datasource0, mappings = [map_spec])
datasink2 = glueContext.write_dynamic_frame.from_options(frame = applymapping1,
 connection_type = "s3", connection_options = {"path": output_path}, format = "json")

Visualize the profiled metrics on the AWS Glue console

The following dashboard superimposes the Amazon S3 bytes written metric from the Input job
onto the Amazon S3 bytes read metric on the same timeline for the Output job. The timeline
shows different job runs of the Input and Output jobs. The Input job (shown in red) starts every 30
minutes. The Output Job (shown in brown) starts at the completion of the Input Job, with a Max
Concurrency of 1.

In this example, job bookmarks are not enabled. No transformation contexts are used to enable job
bookmarks in the script code.

Job History: The Input and Output jobs have multiple runs, as shown on the History tab, starting
from 12:00 PM.

The Input job on the AWS Glue console looks like this:

The following image shows the Output job:

Spark and PySpark jobs 869

https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html

AWS Glue User Guide

First job runs: As shown in the Data Bytes Read and Written graph below, the first job runs of the
Input and Output jobs between 12:00 and 12:30 show roughly the same area under the curves.
Those areas represent the Amazon S3 bytes written by the Input job and the Amazon S3 bytes read
by the Output job. This data is also confirmed by the ratio of Amazon S3 bytes written (summed
over 30 minutes – the job trigger frequency for the Input job). The data point for the ratio for the
Input job run that started at 12:00PM is also 1.

The following graph shows the data flow ratio across all the job runs:

Second job runs: In the second job run, there is a clear difference in the number of bytes read
by the Output job compared to the number of bytes written by the Input job. (Compare the area
under the curve across the two job runs for the Output job, or compare the areas in the second run
of the Input and Output jobs.) The ratio of the bytes read and written shows that the Output Job
read about 2.5x the data written by the Input job in the second span of 30 minutes from 12:30 to
13:00. This is because the Output Job reprocessed the output of the first job run of the Input job
because job bookmarks were not enabled. A ratio above 1 shows that there is an additional backlog
of data that was processed by the Output job.

Spark and PySpark jobs 870

AWS Glue User Guide

Third job runs: The Input job is fairly consistent in terms of the number of bytes written (see the
area under the red curves). However, the third job run of the Input job ran longer than expected
(see the long tail of the red curve). As a result, the third job run of the Output job started late.
The third job run processed only a fraction of the data accumulated in the staging location in the
remaining 30 minutes between 13:00 and 13:30. The ratio of the bytes flow shows that it only
processed 0.83 of data written by the third job run of the Input job (see the ratio at 13:00).

Overlap of Input and Output jobs: The fourth job run of the Input job started at 13:30 as per the
schedule, before the third job run of the Output job finished. There is a partial overlap between
these two job runs. However, the third job run of the Output job captures only the files that it listed
in the staging location of Amazon S3 when it began around 13:17. This consists of all data output
from the first job runs of the Input job. The actual ratio at 13:30 is around 2.75. The third job run of
the Output job processed about 2.75x of data written by the fourth job run of the Input job from
13:30 to 14:00.

As these images show, the Output job is reprocessing data from the staging location from all
prior job runs of the Input job. As a result, the fourth job run for the Output job is the longest and
overlaps with the entire fifth job run of the Input job.

Fix the processing of files

You should ensure that the Output job processes only the files that haven't been processed by
previous job runs of the Output job. To do this, enable job bookmarks and set the transformation
context in the Output job, as follows:

datasource0 = glueContext.create_dynamic_frame.from_options(connection_type="s3",
 connection_options = {"paths": [staging_path],
 "useS3ListImplementation":True,"recurse":True}, format="json", transformation_ctx =
 "bookmark_ctx")

With job bookmarks enabled, the Output job doesn't reprocess the data in the staging location
from all the previous job runs of the Input job. In the following image showing the data read and
written, the area under the brown curve is fairly consistent and similar with the red curves.

Spark and PySpark jobs 871

AWS Glue User Guide

The ratios of byte flow also remain roughly close to 1 because there is no additional data
processed.

A job run for the Output job starts and captures the files in the staging location before the next
Input job run starts putting more data into the staging location. As long as it continues to do this, it
processes only the files captured from the previous Input job run, and the ratio stays close to 1.

Spark and PySpark jobs 872

AWS Glue User Guide

Suppose that the Input job takes longer than expected, and as a result, the Output job captures
files in the staging location from two Input job runs. The ratio is then higher than 1 for that Output
job run. However, the following job runs of the Output job don't process any files that are already
processed by the previous job runs of the Output job.

Monitoring for DPU capacity planning

You can use job metrics in AWS Glue to estimate the number of data processing units (DPUs) that
can be used to scale out an AWS Glue job.

Note

This page is only applicable to AWS Glue versions 0.9 and 1.0. Later versions of AWS
Glue contain cost-saving features that introduce additional considerations when capacity
planning.

Topics

• Profiled code

• Visualize the profiled metrics on the AWS Glue console

• Determine the optimal DPU capacity

Spark and PySpark jobs 873

AWS Glue User Guide

Profiled code

The following script reads an Amazon Simple Storage Service (Amazon S3) partition containing
428 gzipped JSON files. The script applies a mapping to change the field names, and converts and
writes them to Amazon S3 in Apache Parquet format. You provision 10 DPUs as per the default and
run this job.

datasource0 = glueContext.create_dynamic_frame.from_options(connection_type="s3",
 connection_options = {"paths": [input_path],
 "useS3ListImplementation":True,"recurse":True}, format="json")
applymapping1 = ApplyMapping.apply(frame = datasource0, mappings = [(map_spec])
datasink2 = glueContext.write_dynamic_frame.from_options(frame = applymapping1,
 connection_type = "s3", connection_options = {"path": output_path}, format =
 "parquet")

Visualize the profiled metrics on the AWS Glue console

Job run 1: In this job run we show how to find if there are under-provisioned DPUs in the cluster.
The job execution functionality in AWS Glue shows the total number of actively running executors,
the number of completed stages, and the number of maximum needed executors.

The number of maximum needed executors is computed by adding the total number of running
tasks and pending tasks, and dividing by the tasks per executor. This result is a measure of the total
number of executors required to satisfy the current load.

In contrast, the number of actively running executors measures how many executors are running
active Apache Spark tasks. As the job progresses, the maximum needed executors can change and
typically goes down towards the end of the job as the pending task queue diminishes.

The horizontal red line in the following graph shows the number of maximum allocated executors,
which depends on the number of DPUs that you allocate for the job. In this case, you allocate 10
DPUs for the job run. One DPU is reserved for management. Nine DPUs run two executors each and
one executor is reserved for the Spark driver. The Spark driver runs inside the primary application.
So, the number of maximum allocated executors is 2*9 - 1 = 17 executors.

Spark and PySpark jobs 874

AWS Glue User Guide

As the graph shows, the number of maximum needed executors starts at 107 at the beginning of
the job, whereas the number of active executors remains 17. This is the same as the number of
maximum allocated executors with 10 DPUs. The ratio between the maximum needed executors
and maximum allocated executors (adding 1 to both for the Spark driver) gives you the under-
provisioning factor: 108/18 = 6x. You can provision 6 (under provisioning ratio) *9 (current DPU
capacity - 1) + 1 DPUs = 55 DPUs to scale out the job to run it with maximum parallelism and finish
faster.

The AWS Glue console displays the detailed job metrics as a static line representing the original
number of maximum allocated executors. The console computes the maximum allocated executors
from the job definition for the metrics. By constrast, for detailed job run metrics, the console
computes the maximum allocated executors from the job run configuration, specifically the DPUs
allocated for the job run. To view metrics for an individual job run, select the job run and choose
View run metrics.

Spark and PySpark jobs 875

AWS Glue User Guide

Looking at the Amazon S3 bytes read and written, notice that the job spends all six minutes
streaming in data from Amazon S3 and writing it out in parallel. All the cores on the allocated
DPUs are reading and writing to Amazon S3. The maximum number of needed executors being 107
also matches the number of files in the input Amazon S3 path—428. Each executor can launch four
Spark tasks to process four input files (JSON gzipped).

Determine the optimal DPU capacity

Based on the results of the previous job run, you can increase the total number of allocated DPUs
to 55, and see how the job performs. The job finishes in less than three minutes—half the time
it required previously. The job scale-out is not linear in this case because it is a short running job.
Jobs with long-lived tasks or a large number of tasks (a large number of max needed executors)
benefit from a close-to-linear DPU scale-out performance speedup.

Spark and PySpark jobs 876

AWS Glue User Guide

As the above image shows, the total number of active executors reaches the maximum allocated
—107 executors. Similarly, the maximum needed executors is never above the maximum allocated
executors. The maximum needed executors number is computed from the actively running and
pending task counts, so it might be smaller than the number of active executors. This is because
there can be executors that are partially or completely idle for a short period of time and are not
yet decommissioned.

Spark and PySpark jobs 877

AWS Glue User Guide

This job run uses 6x more executors to read and write from Amazon S3 in parallel. As a result, this
job run uses more Amazon S3 bandwidth for both reads and writes, and finishes faster.

Identify overprovisioned DPUs

Next, you can determine whether scaling out the job with 100 DPUs (99 * 2 = 198 executors)
helps to scale out any further. As the following graph shows, the job still takes three minutes to
finish. Similarly, the job does not scale out beyond 107 executors (55 DPUs configuration), and
the remaining 91 executors are overprovisioned and not used at all. This shows that increasing the
number of DPUs might not always improve performance, as evident from the maximum needed
executors.

Spark and PySpark jobs 878

AWS Glue User Guide

Compare time differences

The three job runs shown in the following table summarize the job execution times for 10 DPUs, 55
DPUs, and 100 DPUs. You can find the DPU capacity to improve the job execution time using the
estimates you established by monitoring the first job run.

Job ID Number of DPUs Execution time

jr_c894524c8ef5048a4d9... 10 6 min.

jr_1a466cf2575e7ffe6856... 55 3 min.

jr_34fa1ed4c6aa9ff0a814... 100 3 min.

Streaming ETL jobs in AWS Glue

You can create streaming extract, transform, and load (ETL) jobs that run continuously, consume
data from streaming sources like Amazon Kinesis Data Streams, Apache Kafka, and Amazon
Managed Streaming for Apache Kafka (Amazon MSK). The jobs cleanse and transform the data, and
then load the results into Amazon S3 data lakes or JDBC data stores.

Streaming ETL jobs 879

AWS Glue User Guide

Additionally, you can produce data for Amazon Kinesis Data Streams streams. This feature is only
available when writing AWS Glue scripts. For more information, see the section called “Kinesis
connections”.

By default, AWS Glue processes and writes out data in 100-second windows. This allows data to
be processed efficiently and permits aggregations to be performed on data arriving later than
expected. You can modify this window size to increase timeliness or aggregation accuracy. AWS
Glue streaming jobs use checkpoints rather than job bookmarks to track the data that has been
read.

Note

AWS Glue bills hourly for streaming ETL jobs while they are running.

This video discusses streaming ETL cost challenges, and cost-saving features in AWS Glue.

Creating a streaming ETL job involves the following steps:

1. For an Apache Kafka streaming source, create an AWS Glue connection to the Kafka source or
the Amazon MSK cluster.

2. Manually create a Data Catalog table for the streaming source.

3. Create an ETL job for the streaming data source. Define streaming-specific job properties, and
supply your own script or optionally modify the generated script.

For more information, see Streaming ETL in AWS Glue.

When creating a streaming ETL job for Amazon Kinesis Data Streams, you don't have to create
an AWS Glue connection. However, if there is a connection attached to the AWS Glue streaming
ETL job that has Kinesis Data Streams as a source, then a virtual private cloud (VPC) endpoint to
Kinesis is required. For more information, see Creating an interface endpoint in the Amazon VPC
User Guide. When specifying a Amazon Kinesis Data Streams stream in another account, you must
setup the roles and policies to allow cross-account access. For more information, see Example:
Read From a Kinesis Stream in a Different Account.

AWS Glue streaming ETL jobs can auto-detect compressed data, transparently decompress the
streaming data, perform the usual transformations on the input source, and load to the output
store.

Streaming ETL jobs 880

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/kinesisanalytics/latest/java/examples-cross.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/examples-cross.html

AWS Glue User Guide

AWS Glue supports auto-decompression for the following compression types given the input
format:

Compression
type

Avro file Avro datum JSON CSV Grok

BZIP2 Yes Yes Yes Yes Yes

GZIP No Yes Yes Yes Yes

SNAPPY Yes (raw
Snappy)

Yes (framed
Snappy)

Yes (framed
Snappy)

Yes (framed
Snappy)

Yes (framed
Snappy)

XZ Yes Yes Yes Yes Yes

ZSTD Yes No No No No

DEFLATE Yes Yes Yes Yes Yes

Topics

• Creating an AWS Glue connection for an Apache Kafka data stream

• Creating a Data Catalog table for a streaming source

• Notes and restrictions for Avro streaming sources

• Applying grok patterns to streaming sources

• Defining job properties for a streaming ETL job

• Streaming ETL notes and restrictions

Creating an AWS Glue connection for an Apache Kafka data stream

To read from an Apache Kafka stream, you must create an AWS Glue connection.

To create an AWS Glue connection for a Kafka source (Console)

1. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

2. In the navigation pane, under Data catalog, choose Connections.

3. Choose Add connection, and on the Set up your connection’s properties page, enter a
connection name.

Streaming ETL jobs 881

https://console.aws.amazon.com/glue/

AWS Glue User Guide

Note

For more information about specifying connection properties, see AWS Glue
connection properties..

4. For Connection type, choose Kafka.

5. For Kafka bootstrap servers URLs, enter the host and port number for the bootstrap brokers
for your Amazon MSK cluster or Apache Kafka cluster. Use only Transport Layer Security (TLS)
endpoints for establishing the initial connection to the Kafka cluster. Plaintext endpoints are
not supported.

The following is an example list of hostname and port number pairs for an Amazon MSK
cluster.

myserver1.kafka.us-east-1.amazonaws.com:9094,myserver2.kafka.us-
east-1.amazonaws.com:9094,
myserver3.kafka.us-east-1.amazonaws.com:9094

For more information about getting the bootstrap broker information, see Getting the
Bootstrap Brokers for an Amazon MSK Cluster in the Amazon Managed Streaming for Apache
Kafka Developer Guide.

6. If you want a secure connection to the Kafka data source, select Require SSL connection,
and for Kafka private CA certificate location, enter a valid Amazon S3 path to a custom SSL
certificate.

For an SSL connection to self-managed Kafka, the custom certificate is mandatory. It's optional
for Amazon MSK.

For more information about specifying a custom certificate for Kafka, see the section called
“SSL connection properties”.

7. Use AWS Glue Studio or the AWS CLI to specify a Kafka client authentication method. To
access AWS Glue Studio select AWS Glue from the ETL menu in the left navigation pane.

For more information about Kafka client authentication methods, see AWS Glue Kafka
connection properties for client authentication .

8. Optionally enter a description, and then choose Next.

Streaming ETL jobs 882

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-connections
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-connections
https://docs.aws.amazon.com/msk/latest/developerguide/msk-get-bootstrap-brokers.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-get-bootstrap-brokers.html

AWS Glue User Guide

9. For an Amazon MSK cluster, specify its virtual private cloud (VPC), subnet, and security group.
The VPC information is optional for self-managed Kafka.

10. Choose Next to review all connection properties, and then choose Finish.

For more information about AWS Glue connections, see Connecting to data.

AWS Glue Kafka connection properties for client authentication

SASL/GSSAPI (Kerberos) authentication

Choosing this authentication method will allow you to specify Kerberos properties.

Kerberos Keytab

Choose the location of the keytab file. A keytab stores long-term keys for one or more
principals. For more information, see MIT Kerberos Documentation: Keytab .

Kerberos krb5.conf file

Choose the krb5.conf file. This contains the default realm (a logical network, similar to a
domain, that defines a group of systems under the same KDC) and the location of the KDC
server. For more information, see MIT Kerberos Documentation: krb5.conf .

Kerberos principal and Kerberos service name

Enter the Kerberos principal and service name. For more information, see MIT Kerberos
Documentation: Kerberos principal .

SASL/SCRAM-SHA-512 authentication

Choosing this authentication method will allow you to specify authentication credentials.

AWS Secrets Manager

Search for your token in the Search box by typing the name or ARN.

Provider username and password directly

Search for your token in the Search box by typing the name or ARN.

SSL client authentication

Choosing this authentication method allows you to select the location of the Kafka client
keystore by browsing Amazon S3. Optionally, you can enter the Kafka client keystore password
and Kafka client key password.

Streaming ETL jobs 883

https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html
https://web.mit.edu/kerberos/krb5-1.12/doc/admin/conf_files/krb5_conf.html
https://web.mit.edu/kerberos/krb5-1.5/krb5-1.5.4/doc/krb5-user/What-is-a-Kerberos-Principal_003f.html
https://web.mit.edu/kerberos/krb5-1.5/krb5-1.5.4/doc/krb5-user/What-is-a-Kerberos-Principal_003f.html

AWS Glue User Guide

IAM authentication

This authentication method does not require any additional specifications and is only applicable
when the Streaming source is MSK Kafka.

SASL/PLAIN authentication

Choosing this authentication method allows you to specify authentication credentials.

Creating a Data Catalog table for a streaming source

A Data Catalog table that specifies source data stream properties, including the data schema can
be manually created for a streaming source. This table is used as the data source for the streaming
ETL job.

If you don't know the schema of the data in the source data stream, you can create the table
without a schema. Then when you create the streaming ETL job, you can turn on the AWS Glue
schema detection function. AWS Glue determines the schema from the streaming data.

Use the AWS Glue console, the AWS Command Line Interface (AWS CLI), or the AWS Glue API to
create the table. For information about creating a table manually with the AWS Glue console, see
the section called “Creating tables”.

Note

You can't use the AWS Lake Formation console to create the table; you must use the AWS
Glue console.

Also consider the following information for streaming sources in Avro format or for log data that
you can apply Grok patterns to.

• the section called “Notes and restrictions for Avro streaming sources”

• the section called “Applying grok patterns to streaming sources”

Topics

• Kinesis data source

• Kafka data source

• AWS Glue Schema Registry table source

Streaming ETL jobs 884

https://console.aws.amazon.com/glue/

AWS Glue User Guide

Kinesis data source

When creating the table, set the following streaming ETL properties (console).

Type of Source

Kinesis

For a Kinesis source in the same account:

Region

The AWS Region where the Amazon Kinesis Data Streams service resides. The Region and
Kinesis stream name are together translated to a Stream ARN.

Example: https://kinesis.us-east-1.amazonaws.com

Kinesis stream name

Stream name as described in Creating a Stream in the Amazon Kinesis Data Streams
Developer Guide.

For a Kinesis source in another account, refer to this example to set up the roles and policies to
allow cross-account access. Configure these settings:

Stream ARN

The ARN of the Kinesis data stream that the consumer is registered with. For more
information, see Amazon Resource Names (ARNs) and AWS Service Namespaces in the AWS
General Reference.

Assumed Role ARN

The Amazon Resource Name (ARN) of the role to assume.

Session name (optional)

An identifier for the assumed role session.

Use the role session name to uniquely identify a session when the same role is assumed by
different principals or for different reasons. In cross-account scenarios, the role session name
is visible to, and can be logged by the account that owns the role. The role session name
is also used in the ARN of the assumed role principal. This means that subsequent cross-
account API requests that use the temporary security credentials will expose the role session
name to the external account in their AWS CloudTrail logs.

Streaming ETL jobs 885

https://docs.aws.amazon.com/streams/latest/dev/kinesis-using-sdk-java-create-stream.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/examples-cross.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Glue User Guide

To set streaming ETL properties for Amazon Kinesis Data Streams (AWS Glue API or AWS CLI)

• To set up streaming ETL properties for a Kinesis source in the same account, specify the
streamName and endpointUrl parameters in the StorageDescriptor structure of the
CreateTable API operation or the create_table CLI command.

"StorageDescriptor": {
 "Parameters": {
 "typeOfData": "kinesis",
 "streamName": "sample-stream",
 "endpointUrl": "https://kinesis.us-east-1.amazonaws.com"
 }
 ...
}

Or, specify the streamARN.

Example

"StorageDescriptor": {
 "Parameters": {
 "typeOfData": "kinesis",
 "streamARN": "arn:aws:kinesis:us-east-1:123456789:stream/sample-stream"
 }
 ...
}

• To set up streaming ETL properties for a Kinesis source in another account, specify the
streamARN, awsSTSRoleARN and awsSTSSessionName (optional) parameters in the
StorageDescriptor structure in the CreateTable API operation or the create_table CLI
command.

"StorageDescriptor": {
 "Parameters": {
 "typeOfData": "kinesis",
 "streamARN": "arn:aws:kinesis:us-east-1:123456789:stream/sample-stream",
 "awsSTSRoleARN": "arn:aws:iam::123456789:role/sample-assume-role-arn",
 "awsSTSSessionName": "optional-session"
 }
 ...

Streaming ETL jobs 886

AWS Glue User Guide

}

Kafka data source

When creating the table, set the following streaming ETL properties (console).

Type of Source

Kafka

For a Kafka source:

Topic name

Topic name as specified in Kafka.

Connection

An AWS Glue connection that references a Kafka source, as described in the section called
“Creating a connection for a Kafka data stream”.

AWS Glue Schema Registry table source

To use AWS Glue Schema Registry for streaming jobs, follow the instructions at Use case: AWS Glue
Data Catalog to create or update a Schema Registry table.

Currently, AWS Glue Streaming supports only Glue Schema Registry Avro format with schema
inference set to false.

Notes and restrictions for Avro streaming sources

The following notes and restrictions apply for streaming sources in the Avro format:

• When schema detection is turned on, the Avro schema must be included in the payload. When
turned off, the payload should contain only data.

• Some Avro data types are not supported in dynamic frames. You can't specify these data types
when defining the schema with the Define a schema page in the create table wizard in the AWS
Glue console. During schema detection, unsupported types in the Avro schema are converted to
supported types as follows:

• EnumType => StringType

Streaming ETL jobs 887

AWS Glue User Guide

• FixedType => BinaryType

• UnionType => StructType

• If you define the table schema using the Define a schema page in the console, the implied root
element type for the schema is record. If you want a root element type other than record, for
example array or map, you can't specify the schema using the Define a schema page. Instead
you must skip that page and specify the schema either as a table property or within the ETL
script.

• To specify the schema in the table properties, complete the create table wizard, edit the table
details, and add a new key-value pair under Table properties. Use the key avroSchema, and
enter a schema JSON object for the value, as shown in the following screenshot.

• To specify the schema in the ETL script, modify the datasource0 assignment statement and
add the avroSchema key to the additional_options argument, as shown in the following
Python and Scala examples.

Streaming ETL jobs 888

AWS Glue User Guide

Python

SCHEMA_STRING = ‘{"type":"array","items":"string"}’
datasource0 = glueContext.create_data_frame.from_catalog(database =
 "database", table_name = "table_name", transformation_ctx = "datasource0",
 additional_options = {"startingPosition": "TRIM_HORIZON", "inferSchema":
 "false", "avroSchema": SCHEMA_STRING})

Scala

val SCHEMA_STRING = """{"type":"array","items":"string"}"""
val datasource0 = glueContext.getCatalogSource(database = "database", tableName
 = "table_name", redshiftTmpDir = "", transformationContext = "datasource0",
 additionalOptions = JsonOptions(s"""{"startingPosition": "TRIM_HORIZON",
 "inferSchema": "false", "avroSchema":"$SCHEMA_STRING"}""")).getDataFrame()

Applying grok patterns to streaming sources

You can create a streaming ETL job for a log data source and use Grok patterns to convert the logs
to structured data. The ETL job then processes the data as a structured data source. You specify the
Grok patterns to apply when you create the Data Catalog table for the streaming source.

For information about Grok patterns and custom pattern string values, see Writing grok custom
classifiers.

To add grok patterns to the Data Catalog table (console)

• Use the create table wizard, and create the table with the parameters specified in the section
called “Creating a Data Catalog table for a streaming source”. Specify the data format as Grok,
fill in the Grok pattern field, and optionally add custom patterns under Custom patterns
(optional).

Streaming ETL jobs 889

AWS Glue User Guide

Press Enter after each custom pattern.

To add grok patterns to the Data Catalog table (AWS Glue API or AWS CLI)

• Add the GrokPattern parameter and optionally the CustomPatterns parameter to the
CreateTable API operation or the create_table CLI command.

 "Parameters": {
...
 "grokPattern": "string",
 "grokCustomPatterns": "string",
...
},

Express grokCustomPatterns as a string and use "\n" as the separator between patterns.

The following is an example of specifying these parameters.

Streaming ETL jobs 890

AWS Glue User Guide

Example

"parameters": {
...
 "grokPattern": "%{USERNAME:username} %{DIGIT:digit:int}",
 "grokCustomPatterns": "digit \d",
...
}

Defining job properties for a streaming ETL job

When you define a streaming ETL job in the AWS Glue console, provide the following streams-
specific properties. For descriptions of additional job properties, see Defining job properties for
Spark jobs.

IAM role

Specify the AWS Identity and Access Management (IAM) role that is used for authorization to
resources that are used to run the job, access streaming sources, and access target data stores.

For access to Amazon Kinesis Data Streams, attach the AmazonKinesisFullAccess AWS
managed policy to the role, or attach a similar IAM policy that permits more fine-grained access.
For sample policies, see Controlling Access to Amazon Kinesis Data Streams Resources Using
IAM.

For more information about permissions for running jobs in AWS Glue, see Identity and access
management for AWS Glue.

Type

Choose Spark streaming.

AWS Glue version

The AWS Glue version determines the versions of Apache Spark, and Python or Scala, that are
available to the job. Choose a selection that specifies the version of Python or Scala available to
the job. AWS Glue Version 2.0 with Python 3 support is the default for streaming ETL jobs.

Maintenance window

Specifies a window where a streaming job can be restarted. See the section called “Maintenance
windows”.

Streaming ETL jobs 891

https://docs.aws.amazon.com/streams/latest/dev/controlling-access.html
https://docs.aws.amazon.com/streams/latest/dev/controlling-access.html

AWS Glue User Guide

Job timeout

Optionally enter a duration in minutes. The default value is blank.

• Streaming jobs must have a timeout value less than 7 days or 10080 minutes.

• When the value is left blank, the job will be restarted after 7 days, if you have not set up a
maintenance window. If you have set up a maintenance window, the job will be restarted
during the maintenance window after 7 days.

Data source

Specify the table that you created in the section called “Creating a Data Catalog table for a
streaming source”.

Data target

Do one of the following:

• Choose Create tables in your data target and specify the following data target properties.

Data store

Choose Amazon S3 or JDBC.

Format

Choose any format. All are supported for streaming.

• Choose Use tables in the data catalog and update your data target, and choose a table for a
JDBC data store.

Output schema definition

Do one of the following:

• Choose Automatically detect schema of each record to turn on schema detection. AWS Glue
determines the schema from the streaming data.

• Choose Specify output schema for all records to use the Apply Mapping transform to define
the output schema.

Script

Optionally supply your own script or modify the generated script to perform operations that
the Apache Spark Structured Streaming engine supports. For information on the available
operations, see Operations on streaming DataFrames/Datasets.

Streaming ETL jobs 892

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#operations-on-streaming-dataframesdatasets

AWS Glue User Guide

Streaming ETL notes and restrictions

Keep in mind the following notes and restrictions:

• Auto-decompression for AWS Glue streaming ETL jobs is only available for the supported
compression types. Also note the following:

• Framed Snappy refers to the official framing format for Snappy.

• Deflate is supported in Glue version 3.0, not Glue version 2.0.

• When using schema detection, you cannot perform joins of streaming data.

• AWS Glue streaming ETL jobs do not support the Union data type for AWS Glue Schema Registry
with Avro format.

• Your ETL script can use AWS Glue's built-in transforms and the transforms native to Apache
Spark Structured Streaming. For more information, see Operations on streaming DataFrames/
Datasets on the Apache Spark website or AWS Glue PySpark transforms reference.

• AWS Glue streaming ETL jobs use checkpoints to keep track of the data that has been read.
Therefore, a stopped and restarted job picks up where it left off in the stream. If you want to
reprocess data, you can delete the checkpoint folder referenced in the script.

• Job bookmarks aren't supported.

• To use enhanced fan-out feature of Kinesis Data Streams in your job, consult the section called
“Using enhanced fan-out in Kinesis streaming jobs”.

• If you use a Data Catalog table created from AWS Glue Schema Registry, when a new schema
version becomes available, to reflect the new schema, you need to do the following:

1. Stop the jobs associated with the table.

2. Update the schema for the Data Catalog table.

3. Restart the jobs associated with the table.

Record matching with AWS Lake Formation FindMatches

Note

Record matching is currently unavailable in the following Regions in the AWS Glue console:
Middle East (UAE), Europe (Spain) (eu-south-2), and Europe (Zurich) (eu-central-2).

Record matching with FindMatches 893

https://github.com/google/snappy/blob/main/framing_format.txt
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#operations-on-streaming-dataframesdatasets
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#operations-on-streaming-dataframesdatasets

AWS Glue User Guide

AWS Lake Formation provides machine learning capabilities to create custom transforms to cleanse
your data. There is currently one available transform named FindMatches. The FindMatches
transform enables you to identify duplicate or matching records in your dataset, even when the
records do not have a common unique identifier and no fields match exactly. This will not require
writing any code or knowing how machine learning works. FindMatches can be useful in many
different problems, such as:

• Matching customers: Linking customer records across different customer databases, even when
many customer fields do not match exactly across the databases (e.g. different name spelling,
address differences, missing or inaccurate data, etc).

• Matching products: Matching products in your catalog against other product sources, such as
product catalog against a competitor's catalog, where entries are structured differently.

• Improving fraud detection: Identifying duplicate customer accounts, determining when a newly
created account is (or might be) a match for a previously known fraudulent user.

• Other matching problems: Match addresses, movies, parts lists, etc etc. In general, if a human
being could look at your database rows and determine that they were a match, there is a really
good chance that the FindMatches transform can help you.

You can create these transforms when you create a job. The transform that you create is based on
a source data store schema and example data from the source data set that you label (we call this
process "teaching" a transform). The records that you label must be present in the source dataset.
In this process we generate a file which you label and then upload back which the transform would
in a manner learn from. After you teach your transform, you can call it from your Spark-based AWS
Glue job (PySpark or Scala Spark) and use it in other scripts with a compatible source data store.

After the transform is created, it is stored in AWS Glue. On the AWS Glue console, you can manage
the transforms that you create. In the navigation pane under Data Integration and ETL, Data
classification tools > Record Matching, you can edit and continue to teach your machine learning
transform. For more information about managing transforms on the console, see Working with
machine learning transforms on the AWS Glue console.

Note

AWS Glue version 2.0 FindMatches jobs use the Amazon S3 bucket aws-glue-temp-
<accountID>-<region> to store temporary files while the transform is processing data.

Record matching with FindMatches 894

AWS Glue User Guide

You can delete this data after the run has completed, either manually or by setting an
Amazon S3 Lifecycle rule.

Types of machine learning transforms

You can create machine learning transforms to cleanse your data. You can call these transforms
from your ETL script. Your data passes from transform to transform in a data structure called a
DynamicFrame, which is an extension to an Apache Spark SQL DataFrame. The DynamicFrame
contains your data, and you reference its schema to process your data.

The following types of machine learning transforms are available:

Find matches

Finds duplicate records in the source data. You teach this machine learning transform by
labeling example datasets to indicate which rows match. The machine learning transform learns
which rows should be matches the more you teach it with example labeled data. Depending on
how you configure the transform, the output is one of the following:

• A copy of the input table plus a match_id column filled in with values that indicate matching
sets of records. The match_id column is an arbitrary identifier. Any records which have the
same match_id have been identified as matching to each other. Records with different
match_id's do not match.

• A copy of the input table with duplicate rows removed. If multiple duplicates are found, then
the record with the lowest primary key is kept.

Find incremental matches

The Find matches transform can also be configured to find matches across the existing and
incremental frames and return as output a column containing a unique ID per match group.

For more information, see: Finding incremental matches

Using the FindMatches transform

You can use the FindMatches transform to find duplicate records in the source data. A labeling
file is generated or provided to help teach the transform.

Record matching with FindMatches 895

AWS Glue User Guide

Note

Currently, FindMatches transforms that use a custom encryption key aren't supported in
the following Regions:

• Asia Pacific (Osaka) - ap-northeast-3

To get started with the FindMatches transform, you can follow the steps below. For a more
advanced and detailed example, see the AWS Big Data Blog: Harmonize data using AWS Glue and
AWS Lake Formation FindMatches ML to build a customer 360 view .

Getting started using the Find Matches transform

Follow these steps to get started with the FindMatches transform:

1. Create a table in the AWS Glue Data Catalog for the source data that is to be cleaned. For
information about how to create a crawler, see Working with Crawlers on the AWS Glue Console.

If your source data is a text-based file such as a comma-separated values (CSV) file, consider the
following:

• Keep your input record CSV file and labeling file in separate folders. Otherwise, the AWS Glue
crawler might consider them as multiple parts of the same table and create tables in the Data
Catalog incorrectly.

• Unless your CSV file includes ASCII characters only, ensure that UTF-8 without BOM (byte
order mark) encoding is used for the CSV files. Microsoft Excel often adds a BOM in the
beginning of UTF-8 CSV files. To remove it, open the CSV file in a text editor, and resave the
file as UTF-8 without BOM.

2. On the AWS Glue console, create a job, and choose the Find matches transform type.

Important

The data source table that you choose for the job can't have more than 100 columns.

3. Tell AWS Glue to generate a labeling file by choosing Generate labeling file. AWS Glue takes the
first pass at grouping similar records for each labeling_set_id so that you can review those
groupings. You label matches in the label column.

Record matching with FindMatches 896

https://aws.amazon.com/blogs/big-data/harmonize-data-using-aws-glue-and-aws-lake-formation-findmatches-ml-to-build-a-customer-360-view/
https://aws.amazon.com/blogs/big-data/harmonize-data-using-aws-glue-and-aws-lake-formation-findmatches-ml-to-build-a-customer-360-view/
https://docs.aws.amazon.com/glue/latest/dg/console-crawlers.html

AWS Glue User Guide

• If you already have a labeling file, that is, an example of records that indicate matching rows,
upload the file to Amazon Simple Storage Service (Amazon S3). For information about the
format of the labeling file, see Labeling file format. Proceed to step 4.

4. Download the labeling file and label the file as described in the Labeling section.

5. Upload the corrected labelled file. AWS Glue runs tasks to teach the transform how to find
matches.

On the Machine learning transforms list page, choose the History tab. This page indicates
when AWS Glue performs the following tasks:

• Import labels

• Export labels

• Generate labels

• Estimate quality

6. To create a better transform, you can iteratively download, label, and upload the labelled file. In
the initial runs, a lot more records might be mismatched. But AWS Glue learns as you continue to
teach it by verifying the labeling file.

7. Evaluate and tune your transform by evaluating performance and results of finding matches. For
more information, see Tuning machine learning transforms in AWS Glue.

Labeling

When FindMatches generates a labeling file, records are selected from your source table. Based
on previous training, FindMatches identifies the most valuable records to learn from.

The act of labeling is editing a labeling file (we suggest using a spreadsheet such as Microsoft Excel)
and adding identifiers, or labels, into the label column that identifies matching and nonmatching
records. It is important to have a clear and consistent definition of a match in your source data.
FindMatches learns from which records you designate as matches (or not) and uses your decisions
to learn how to find duplicate records.

When a labeling file is generated by FindMatches, approximately 100 records are generated.
These 100 records are typically divided into 10 labeling sets, where each labeling set is identified by
a unique labeling_set_id generated by FindMatches. Each labeling set should be viewed as a
separate labeling task independent of the other labeling sets. Your task is to identify matching and
non-matching records within each labeling set.

Record matching with FindMatches 897

AWS Glue User Guide

Tips for editing labeling files in a spreadsheet

When editing the labeling file in a spreadsheet application, consider the following:

• The file might not open with column fields fully expanded. You might need to expand the
labeling_set_id and label columns to see content in those cells.

• If the primary key column is a number, such as a long data type, the spreadsheet might interpret
it as a number and change the value. This key value must be treated as text. To correct this
problem, format all the cells in the primary key column as Text data.

Labeling file format

The labeling file that is generated by AWS Glue to teach your FindMatches transform uses the
following format. If you generate your own file for AWS Glue, it must follow this format as well:

• It is a comma-separated values (CSV) file.

• It must be encoded in UTF-8. If you edit the file using Microsoft Windows, it might be encoded
with cp1252.

• It must be in an Amazon S3 location to pass it to AWS Glue.

• Use a moderate number of rows for each labeling task. 10–20 rows per task are recommended,
although 2–30 rows per task are acceptable. Tasks larger than 50 rows are not recommended
and may cause poor results or system failure.

• If you have already-labeled data consisting of pairs of records labeled as a "match" or a "no-
match", this is fine. These labeled pairs can be represented as labeling sets of size 2. In this case
label both records with, for instance, a letter "A" if they match, but label one as "A" and one as "B"
if they do not match.

Note

Because it has additional columns, the labeling file has a different schema from a file that
contains your source data. Place the labeling file in a different folder from any transform
input CSV file so that the AWS Glue crawler does not consider it when it creates tables
in the Data Catalog. Otherwise, the tables created by the AWS Glue crawler might not
correctly represent your data.

• The first two columns (labeling_set_id, label) are required by AWS Glue. The remaining
columns must match the schema of the data that is to be processed.

Record matching with FindMatches 898

AWS Glue User Guide

• For each labeling_set_id, you identify all matching records by using the same label. A label
is a unique string placed in the label column. We recommend using labels that contain simple
characters, such as A, B, C, and so on. Labels are case sensitive and are entered in the label
column.

• Rows that contain the same labeling_set_id and the same label are understood to be
labeled as a match.

• Rows that contain the same labeling_set_id and a different label are understood to be
labeled as not a match

• Rows that contain a different labeling_set_id are understood to be conveying no
information for or against matching.

The following is an example of labeling the data:

labeling_set_id label first_name last_name Birthday

ABC123 A John Doe 04/01/1980

ABC123 B Jane Smith 04/03/1980

ABC123 A Johnny Doe 04/01/1980

ABC123 A Jon Doe 04/01/1980

DEF345 A Richard Jones 12/11/1992

DEF345 A Rich Jones 11/12/1992

DEF345 B Sarah Jones 12/11/1992

DEF345 C Richie Jones Jr. 05/06/2017

DEF345 B Sarah Jones-Walker 12/11/1992

GHI678 A Robert Miller 1/3/1999

GHI678 A Bob Miller 1/3/1999

XYZABC A William Robinson 2/5/2001

Record matching with FindMatches 899

AWS Glue User Guide

labeling_set_id label first_name last_name Birthday

XYZABC B Andrew Robinson 2/5/1971

• In the above example we identify John/Johnny/Jon Doe as being a match and we teach the
system that these records do not match Jane Smith. Separately, we teach the system that
Richard and Rich Jones are the same person, but that these records are not a match to Sarah
Jones/Jones-Walker and Richie Jones Jr.

• As you can see, the scope of the labels is limited to the labeling_set_id. So labels do not
cross labeling_set_id boundaries. For example, a label "A" in labeling_set_id 1 does not
have any relation to label "A" in labeling_set_id 2.

• If a record does not have any matches within a labeling set, then assign it a unique label. For
instance, Jane Smith does not match any record in labeling set ABC123, so it is the only record in
that labeling set with the label of B.

• The labeling set "GHI678" shows that a labeling set can consist of just two records which are
given the same label to show that they match. Similarly, "XYZABC" shows two records given
different labels to show that they do not match.

• Note that sometimes a labeling set may contain no matches (that is, you give every record in
the labeling set a different label) or a labeling set might all be "the same" (you gave them all the
same label). This is okay as long as your labeling sets collectively contain examples of records
that are and are not "the same" by your criteria.

Important

Confirm that the IAM role that you pass to AWS Glue has access to the Amazon S3 bucket
that contains the labeling file. By convention, AWS Glue policies grant permission to
Amazon S3 buckets or folders whose names are prefixed with aws-glue-. If your labeling
files are in a different location, add permission to that location in the IAM role.

Tuning machine learning transforms in AWS Glue

You can tune your machine learning transforms in AWS Glue to improve the results of your data-
cleansing jobs to meet your objectives. To improve your transform, you can teach it by generating a
labeling set, adding labels, and then repeating these steps several times until you get your desired
results. You can also tune by changing some machine learning parameters.

Record matching with FindMatches 900

AWS Glue User Guide

For more information about machine learning transforms, see Record matching with AWS Lake
Formation FindMatches.

Topics

• Machine learning measurements

• Deciding between precision and recall

• Deciding Between accuracy and cost

• Estimating the quality of matches using match confidence scores

• Teaching the Find Matches transform

Machine learning measurements

To understand the measurements that are used to tune your machine learning transform, you
should be familiar with the following terminology:

True positive (TP)

A match in the data that the transform correctly found, sometimes called a hit.

True negative (TN)

A nonmatch in the data that the transform correctly rejected.

False positive (FP)

A nonmatch in the data that the transform incorrectly classified as a match, sometimes called a
false alarm.

False negative (FN)

A match in the data that the transform didn't find, sometimes called a miss.

For more information about the terminology that is used in machine learning, see Confusion matrix
in Wikipedia.

To tune your machine learning transforms, you can change the value of the following
measurements in the Advanced properties of the transform.

• Precision measures how well the transform finds true positives among the total number of
records that it identifies as positive (true positives and false positives). For more information, see
Precision and recall in Wikipedia.

Record matching with FindMatches 901

https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Precision_and_recall

AWS Glue User Guide

• Recall measures how well the transform finds true positives from the total records in the source
data. For more information, see Precision and recall in Wikipedia.

• Accuracy measures how well the transform finds true positives and true negatives. Increasing
accuracy requires more machine resources and cost. But it also results in increased recall. For
more information, see Accuracy and precision in Wikipedia.

• Cost measures how many compute resources (and thus money) are consumed to run the
transform.

Deciding between precision and recall

Each FindMatches transform contains a precision-recall parameter. You use this parameter
to specify one of the following:

• If you are more concerned about the transform falsely reporting that two records match when
they actually don't match, then you should emphasize precision.

• If you are more concerned about the transform failing to detect records that really do match,
then you should emphasize recall.

You can make this trade-off on the AWS Glue console or by using the AWS Glue machine learning
API operations.

When to favor precision

Favor precision if you are more concerned about the risk that FindMatches results in a pair of
records matching when they don't actually match. To favor precision, choose a higher precision-
recall trade-off value. With a higher value, the FindMatches transform requires more evidence to
decide that a pair of records should be matched. The transform is tuned to bias toward saying that
records do not match.

For example, suppose that you're using FindMatches to detect duplicate items in a video catalog,
and you provide a higher precision-recall value to the transform. If your transform incorrectly
detects that Star Wars: A New Hope is the same as Star Wars: The Empire Strikes Back, a customer
who wants A New Hope might be shown The Empire Strikes Back. This would be a poor customer
experience.

However, if the transform fails to detect that Star Wars: A New Hope and Star Wars: Episode IV
—A New Hope are the same item, the customer might be confused at first but might eventually
recognize them as the same. It would be a mistake, but not as bad as the previous scenario.

Record matching with FindMatches 902

https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Accuracy_and_precision#In_information_systems

AWS Glue User Guide

When to favor recall

Favor recall if you are more concerned about the risk that the FindMatches transform results
might fail to detect a pair of records that actually do match. To favor recall, choose a lower
precision-recall trade-off value. With a lower value, the FindMatches transform requires less
evidence to decide that a pair of records should be matched. The transform is tuned to bias toward
saying that records do match.

For example, this might be a priority for a security organization. Suppose that you are matching
customers against a list of known defrauders, and it is important to determine whether a customer
is a defrauder. You are using FindMatches to match the defrauder list against the customer list.
Every time FindMatches detects a match between the two lists, a human auditor is assigned to
verify that the person is, in fact, a defrauder. Your organization might prefer to choose recall over
precision. In other words, you would rather have the auditors manually review and reject some
cases when the customer is not a defrauder than fail to identify that a customer is, in fact, on the
defrauder list.

How to favor both precision and recall

The best way to improve both precision and recall is to label more data. As you label more data,
the overall accuracy of the FindMatches transform improves, thus improving both precision and
recall. Nevertheless, even with the most accurate transform, there is always a gray area where you
need to experiment with favoring precision or recall, or choose a value in the middle.

Deciding Between accuracy and cost

Each FindMatches transform contains an accuracy-cost parameter. You can use this parameter
to specify one of the following:

• If you are more concerned with the transform accurately reporting that two records match, then
you should emphasize accuracy.

• If you are more concerned about the cost or speed of running the transform, then you should
emphasize lower cost.

You can make this trade-off on the AWS Glue console or by using the AWS Glue machine learning
API operations.

When to favor accuracy

Record matching with FindMatches 903

AWS Glue User Guide

Favor accuracy if you are more concerned about the risk that the find matches results won't
contain matches. To favor accuracy, choose a higher accuracy-cost trade-off value. With a higher
value, the FindMatches transform requires more time to do a more thorough search for correctly
matching records. Note that this parameter doesn't make it less likely to falsely call a nonmatching
record pair a match. The transform is tuned to bias towards spending more time finding matches.

When to favor cost

Favor cost if you are more concerned about the cost of running the find matches transform
and less about how many matches are found. To favor cost, choose a lower accuracy-cost trade-
off value. With a lower value, the FindMatches transform requires fewer resources to run. The
transform is tuned to bias towards finding fewer matches. If the results are acceptable when
favoring lower cost, use this setting.

How to favor both accuracy and lower cost

It takes more machine time to examine more pairs of records to determine whether they might be
matches. If you want to reduce cost without reducing quality, here are some steps you can take:

• Eliminate records in your data source that you aren't concerned about matching.

• Eliminate columns from your data source that you are sure aren't useful for making a match/no-
match decision. A good way of deciding this is to eliminate columns that you don't think affect
your own decision about whether a set of records is “the same.”

Estimating the quality of matches using match confidence scores

Match confidence scores provide an estimate of the quality of matches found by FindMatches to
distinguish between matched records in which the machine learning model is highly confident,
uncertain, or unlikely. A match confidence score will be between 0 and 1, where a higher score
means higher similarity. Examining match confidence scores lets you distinguish between clusters
of matches in which the system is highly confident (which you may decide to merge), clusters
about which the system is uncertain (which you may decide to have reviewed by a human), and
clusters that the system deems to be unlikely (which you may decide to reject).

You may want to adjust your training data in situations where you see a high match confidence
score, but determine there are not matches, or where you see a low score but determine there are,
in fact, matches.

Record matching with FindMatches 904

AWS Glue User Guide

Confidence scores are particularly useful when there are large sized industrial datasets, where it is
infeasible to review every FindMatches decision.

Match confidence scores are available in AWS Glue version 2.0 or later.

Generating match confidence scores

You can generate match confidence scores by setting the Boolean value of
computeMatchConfidenceScores to True when calling the FindMatches or
FindIncrementalMatches API.

AWS Glue adds a new column match_confidence_score to the output.

Match scoring examples

For example, consider the following matched records:

Score >= 0.9

Summary of matched records:

 primary_id | match_id | match_confidence_score

3281355037663 85899345947 0.9823658302132061
1546188247619 85899345947 0.9823658302132061

Details:

From this example, we can see that two records are very similar and share display_position,
primary_name, and street name.

Score >= 0.8 and score < 0.9

Summary of matched records:

 primary_id | match_id | match_confidence_score

Record matching with FindMatches 905

AWS Glue User Guide

309237680432 85899345928 0.8309852373674638
3590592666790 85899345928 0.8309852373674638
343597390617 85899345928 0.8309852373674638
249108124906 85899345928 0.8309852373674638
463856477937 85899345928 0.8309852373674638

Details:

From this example, we can see that these records share the same primary_name, and country.

Score >= 0.6 and score < 0.7

Summary of matched records:

 primary_id | match_id | match_confidence_score

2164663519676 85899345930 0.6971099896480333
 317827595278 85899345930 0.6971099896480333
 472446424341 85899345930 0.6971099896480333
3118146262932 85899345930 0.6971099896480333
 214748380804 85899345930 0.6971099896480333

Details:

From this example, we can see that these records share only the same primary_name.

For more information, see:

• Step 5: Add and run a job with your machine learning transform

Record matching with FindMatches 906

AWS Glue User Guide

• PySpark: FindMatches class

• PySpark: FindIncrementalMatches class

• Scala: FindMatches class

• Scala: FindIncrementalMatches class

Teaching the Find Matches transform

Each FindMatches transform must be taught what should be considered a match and what
should not be considered a match. You teach your transform by adding labels to a file and
uploading your choices to AWS Glue.

You can orchestrate this labeling on the AWS Glue console or by using the AWS Glue machine
learning API operations.

How many times should I add labels? How many labels do I need?

The answers to these questions are mostly up to you. You must evaluate whether FindMatches
is delivering the level of accuracy that you need and whether you think the extra labeling effort is
worth it for you. The best way to decide this is to look at the “Precision,” “Recall,” and “Area under
the precision recall curve” metrics that you can generate when you choose Estimate quality on the
AWS Glue console. After you label more sets of tasks, rerun these metrics and verify whether they
have improved. If, after labeling a few sets of tasks, you don't see improvement on the metric that
you are focusing on, the transform quality might have reached a plateau.

Why are both true positive and true negative labels needed?

The FindMatches transform needs both positive and negative examples to learn what you think
is a match. If you are labeling FindMatches-generated training data (for example, using the I do
not have labels option), FindMatches tries to generate a set of “label set ids” for you. Within each
task, you give the same “label” to some records and different “labels” to other records. In other
words, the tasks generally are not either all the same or all different (but it's okay if a particular
task is all “the same” or all “not the same”).

If you are teaching your FindMatches transform using the Upload labels from S3 option, try
to include both examples of matching and nonmatching records. It's acceptable to have only one
type. These labels help you build a more accurate FindMatches transform, but you still need to
label some records that you generate using the Generate labeling file option.

Record matching with FindMatches 907

AWS Glue User Guide

How can I enforce that the transform matches exactly as I taught it?

The FindMatches transform learns from the labels that you provide, so it might generate records
pairs that don't respect the provided labels. To enforce that the FindMatches transform respects
your labels, select EnforceProvidedLabels in FindMatchesParameter.

What techniques can you use when an ML transform identifies items as matches that are not
true matches?

You can use the following techniques:

• Increase the precisionRecallTradeoff to a higher value. This eventually results in finding
fewer matches, but it should also break up your big cluster when it reaches a high enough value.

• Take the output rows corresponding to the incorrect results and reformat them as a labeling
set (removing the match_id column and adding a labeling_set_id and label column). If
necessary, break up (subdivide) into multiple labeling sets to ensure that the labeler can keep
each labeling set in mind while assigning labels. Then, correctly label the matching sets and
upload the label file and append it to your existing labels. This might teach your transformer
enough about what it is looking for to understand the pattern.

• (Advanced) Finally, look at that data to see if there is a pattern that you can detect that the
system is not noticing. Preprocess that data using standard AWS Glue functions to normalize the
data. Highlight what you want the algorithm to learn from by separating data that you know to
be differently important into their own columns. Or construct combined columns from columns
whose data you know to be related.

Working with machine learning transforms on the AWS Glue console

You can use AWS Glue to create custom machine learning transforms that can be used to cleanse
your data. You can use these transforms when you create a job on the AWS Glue console.

For information about how to create a machine learning transform, see Record matching with AWS
Lake Formation FindMatches.

Topics

• Transform properties

• Adding and editing machine learning transforms

• Viewing transform details

Record matching with FindMatches 908

AWS Glue User Guide

• Teach transforms using labels

Transform properties

To view an existing machine learning transform, sign in to the AWS Management Console, and
open the AWS Glue console at https://console.aws.amazon.com/glue/. In the navigation pane
under Data Integration and ETL, choose Data classification tools > Record Matching.

The properties for each transform:

Transform name

The unique name you gave the transform when you created it.

ID

A unique identifier of the transform.

Label count

The number of labels in the labeling file that was provided to help teach the transform.

Status

Indicates whether the transform is Ready or Needs training. To run a machine learning
transform successfully in a job, it must be Ready.

Created

The date the transform was created.

Modified

The date the transform was last updated.

Description

The description supplied for the transform, if one was provided.

AWS Glue version

The version of AWS Glue used.

Run ID

The unique name you gave the transform when you created it.

Record matching with FindMatches 909

https://console.aws.amazon.com/glue/

AWS Glue User Guide

Task type

The type of machine learning transform; for example, Find matching records.

Status

Indicates the status of the task run. Possible statuses include:

• Starting

• Running

• Stopping

• Stopped

• Succeeded

• Failed

• Timeout

Error

If the status is Failed, an error message is displayed describing the reason for the failure.

Adding and editing machine learning transforms

You can view, delete, set up and teach, or tune a transform on the AWS Glue console. Select the
check box next to the transform in the list, choose Action, and then choose the action that you
want to take.

Creating a new ML transform

To add a new machine learning transform, choose Create transform. Follow the instructions
in the Add job wizard. For more information, see Record matching with AWS Lake Formation
FindMatches.

Step 1. Set transform properties.

1. Enter the name and description (optional).

2. Optionally, set security configuration. See Using data encryption with machine learning
transforms.

3. Optionally, set Task execution settings. Task execution settings allow you to customize how the
task is run. Select the Worker type, number of workers, task timeout (in minutes), the number
of retries, and the AWS Glue version.

Record matching with FindMatches 910

AWS Glue User Guide

4. Optionally, set Tags. Tags are labels that you can assign to an AWS resource. Each tag consists
of a key and an optional value. Tags can be used to search and filter your resource or track
your AWS costs.

Step 2. Choose table and primary key.

1. Choose the AWS Glue Catalog database and table.

2. Choose a primary key from the selected table. The primary key column typically contains a
unique identifier for every record in the data source.

Step 3. Select tuning options.

1. For Recall vs. precision, choose the tuning value to tune the transform to favor recall
or precision. By default, Balanced is selected, but you can choose to favor recall or favor
precision, or choose Custom and enter a value between 0.0 and 1.0 (inclusive).

2. For Lower cost vs. accuracy, choose the tuning value to favor lower cost or accuracy, or choose
Custom and enter a value between 0.0 and 1.0 (inclusive).

3. For Match enforcement, choose Force output to match labels if you want to teach the ML
transform by forcing the output to match the labels used.

Step 4. Review and create.

1. Review the options for steps 1 – 3.

2. Choose Edit for any step that needs to be modified. Choose Create transform to complete the
create transform wizard.

Using data encryption with machine learning transforms

When adding a machine learning transform to AWS Glue, you can optionally specify a security
configuration that is associated with the data source or data target. If the Amazon S3 bucket used
to store the data is encrypted with a security configuration, specify the same security configuration
when creating the transform.

You can also choose to use server-side encryption with AWS KMS (SSE-KMS) to encrypt the model
and labels to prevent unauthorized persons from inspecting it. If you choose this option, you're

Record matching with FindMatches 911

AWS Glue User Guide

prompted to choose the AWS KMS key by name, or you can choose Enter a key ARN. If you choose
to enter the ARN for the KMS key, a second field appears where you can enter the KMS key ARN.

Note

Currently, ML transforms that use a custom encryption key aren't supported in the
following Regions:

• Asia Pacific (Osaka) - ap-northeast-3

Viewing transform details

Viewing transform properties

The Transform properties page includes attributes of your transform. It shows you the details
about the transform definition, including the following:

• Transform name shows the name of the transform.

• Type lists the type of the transform.

• Status displays whether the transform is ready to be used in a script or job.

• Force output to match labels displays whether the transform forces the output to match the
labels provided by the user.

• Spark version is related to the AWS Glue version you chose in the Task run properties when
adding the transform. AWS Glue 1.0 and Spark 2.4 is recommended for most customers. For
more information, see AWS Glue Versions.

History, Estimate quality and Tags tabs

Transform details include the information that you defined when you created the transform. To
view the details of a transform, select the transform in the Machine learning transforms list, and
review the information on the following tabs:

• History

• Estimate quality

• Tags

Record matching with FindMatches 912

https://docs.aws.amazon.com/glue/latest/dg/release-notes.html#release-notes-versions

AWS Glue User Guide

History

The History tab shows your transform task run history. Several types of tasks are run to teach a
transform. For each task, the run metrics include the following:

• Run ID is an identifier created by AWS Glue for each run of this task.

• Task type shows the type of task run.

• Status shows the success of each task listed with the most recent run at the top.

• Error shows the details of an error message if the run was not successful.

• Start time shows the date and time (local time) that the task started.

• End time shows the date and time (local time) that the task ended.

• Logs links to the logs written to stdout for this job run.

The Logs link takes you to Amazon CloudWatch Logs. There you can view the details about the
tables that were created in the AWS Glue Data Catalog and any errors that were encountered.
You can manage your log retention period on the CloudWatch console. The default log retention
is Never Expire. For more information about how to change the retention period, see Change
Log Data Retention in CloudWatch Logs in the Amazon CloudWatch Logs User Guide.

• Label file shows a link to Amazon S3 for a generated labeling file.

Estimate quality

The Estimate quality tab shows the metrics that you use to measure the quality of the transform.
Estimates are calculated by comparing the transform match predictions using a subset of your
labeled data against the labels you have provided. These estimates are approximate. You can
invoke an Estimate quality task run from this tab.

The Estimate quality tab shows the metrics from the last Estimate quality run including the
following properties:

• Area under the Precision-Recall curve is a single number estimating the upper bound of the
overall quality of the transform. It is independent of the choice made for the precision-recall
parameter. Higher values indicate that you have a more attractive precision-recall tradeoff.

• Precision estimates how often the transform is correct when it predicts a match.

• Recall upper limit estimates that for an actual match, how often the transform predicts the
match.

Record matching with FindMatches 913

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention

AWS Glue User Guide

• F1 estimates the transform's accuracy between 0 and 1, where 1 is the best accuracy. For more
information, see F1 score in Wikipedia.

• The Column importance table show the column names and importance score for each column.
Column importance helps you understand how columns contribute to your model, by identifying
which columns in your records are being used the most to do the matching. This data may
prompt you to add to or change your labelset to raise or lower the importance of columns.

The Importance column provides a numerical score for each column, as a decimal not greater
than 1.0.

For information about understanding quality estimates versus true quality, see Quality estimates
versus end-to-end (true) quality.

For more information about tuning your transform, see Tuning machine learning transforms in
AWS Glue.

Quality estimates versus end-to-end (true) quality

AWS Glue estimates the quality of your transform by presenting the internal machine-learned
model with a number of pairs of records that you provided matching labels for but that the model
has not seen before. These quality estimates are a function of the quality of the machine-learned
model (which is influenced by the number of records that you label to “teach” the transform). The
end-to-end, or true recall (which is not automatically calculated by the ML transform) is also
influenced by the ML transform filtering mechanism that proposes a wide variety of possible
matches to the machine-learned model.

You can tune this filtering method primarily by specifying the Lower Cost-Accuracy tuning
value. As the tuning value gets closer to favor Accuracy, the system does a more thorough and
expensive search for pairs of records that might be matches. More pairs of records are fed to your
machine-learned model, and your ML transform's end-to-end or true recall gets closer to the
estimated recall metric. As a result, changes in the end-to-end quality of your matches as a result
of changes in the cost/accuracy tradeoff for your matches will typically not be reflected in the
quality estimate.

Tags

Tags are labels that you can assign to an AWS resource. Each tag consists of a key and an optional
value. Tags can be used to search and filter your resource or track your AWS costs.

Record matching with FindMatches 914

https://en.wikipedia.org/wiki/F1_score

AWS Glue User Guide

Teach transforms using labels

You can teach your ML transform using labels (examples) by choosing Teach transform from
the ML transform details page. When you teach your machine learning algorithm by providing
examples (called labels), you can choose existing labels to use, or create a labeling file.

• Labeling – If you have labels, choose I have labels. If you do not have labels, you can still
continue with the next step in generating a labeling file.

• Generate labeling file – AWS Glue extracts records from your source data and suggest potential
matching records. You choose the Amazon S3 bucket to store the generated label file. Choose
Generate labeling file to start the process. When done, choose Download labeling file. The
downloaded file will have a column for labels where you can fill in the labels.

• Upload labels from Amazon S3 – Choose the completed labeling file from the Amazon S3
bucket where the label file is stored. Then, choose to either append the labels to your existing
labels or to overwrite your existing labels. Choose Upload labeling file from Amazon S3.

Record matching with FindMatches 915

AWS Glue User Guide

Tutorial: Creating a machine learning transform with AWS Glue

This tutorial guides you through the actions to create and manage a machine learning (ML)
transform using AWS Glue. Before using this tutorial, you should be familiar with using the AWS
Glue console to add crawlers and jobs and edit scripts. You should also be familiar with finding and
downloading files on the Amazon Simple Storage Service (Amazon S3) console.

In this example, you create a FindMatches transform to find matching records, teach it how to
identify matching and nonmatching records, and use it in an AWS Glue job. The AWS Glue job
writes a new Amazon S3 file with an additional column named match_id.

The source data used by this tutorial is a file named dblp_acm_records.csv. This file is a
modified version of academic publications (DBLP and ACM) available from the original DBLP ACM
dataset. The dblp_acm_records.csv file is a comma-separated values (CSV) file in UTF-8 format
with no byte-order mark (BOM).

A second file, dblp_acm_labels.csv, is an example labeling file that contains both matching
and nonmatching records used to teach the transform as part of the tutorial.

Topics

• Step 1: Crawl the source data

• Step 2: Add a machine learning transform

• Step 3: Teach your machine learning transform

• Step 4: Estimate the quality of your machine learning transform

• Step 5: Add and run a job with your machine learning transform

• Step 6: Verify output data from Amazon S3

Step 1: Crawl the source data

First, crawl the source Amazon S3 CSV file to create a corresponding metadata table in the Data
Catalog.

Important

To direct the crawler to create a table for only the CSV file, store the CSV source data in a
different Amazon S3 folder from other files.

Record matching with FindMatches 916

https://doi.org/10.3886/E100843V2
https://doi.org/10.3886/E100843V2

AWS Glue User Guide

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, choose Crawlers, Add crawler.

3. Follow the wizard to create and run a crawler named demo-crawl-dblp-acm with output
to database demo-db-dblp-acm. When running the wizard, create the database demo-db-
dblp-acm if it doesn't already exist. Choose an Amazon S3 include path to sample data in the
current AWS Region. For example, for us-east-1, the Amazon S3 include path to the source
file is s3://ml-transforms-public-datasets-us-east-1/dblp-acm/records/
dblp_acm_records.csv.

If successful, the crawler creates the table dblp_acm_records_csv with the following
columns: id, title, authors, venue, year, and source.

Step 2: Add a machine learning transform

Next, add a machine learning transform that is based on the schema of your data source table
created by the crawler named demo-crawl-dblp-acm.

1. On the AWS Glue console, in the navigation pane under Data Integration and ETL, choose
Data classification tools > Record Matching, then Add transform. Follow the wizard to create
a Find matches transform with the following properties.

a. For Transform name, enter demo-xform-dblp-acm. This is the name of the transform
that is used to find matches in the source data.

b. For IAM role, choose an IAM role that has permission to the Amazon S3 source data,
labeling file, and AWS Glue API operations. For more information, see Create an IAM Role
for AWS Glue in the AWS Glue Developer Guide.

c. For Data source, choose the table named dblp_acm_records_csv in database demo-db-
dblp-acm.

d. For Primary key, choose the primary key column for the table, id.

2. In the wizard, choose Finish and return to the ML transforms list.

Step 3: Teach your machine learning transform

Next, you teach your machine learning transform using the tutorial sample labeling file.

Record matching with FindMatches 917

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/
https://docs.aws.amazon.com/glue/latest/dg/create-an-iam-role.html
https://docs.aws.amazon.com/glue/latest/dg/create-an-iam-role.html

AWS Glue User Guide

You can't use a machine language transform in an extract, transform, and load (ETL) job until its
status is Ready for use. To get your transform ready, you must teach it how to identify matching
and nonmatching records by providing examples of matching and nonmatching records. To
teach your transform, you can Generate a label file, add labels, and then Upload label file. In
this tutorial, you can use the example labeling file named dblp_acm_labels.csv. For more
information about the labeling process, see Labeling.

1. On the AWS Glue console, in the navigation pane, choose Record Matching.

2. Choose the demo-xform-dblp-acm transform, and then choose Action, Teach. Follow the
wizard to teach your Find matches transform.

3. On the transform properties page, choose I have labels. Choose an Amazon S3 path to the
sample labeling file in the current AWS Region. For example, for us-east-1, upload the
provided labeling file from the Amazon S3 path s3://ml-transforms-public-datasets-
us-east-1/dblp-acm/labels/dblp_acm_labels.csv with the option to overwrite
existing labels. The labeling file must be located in Amazon S3 in the same Region as the AWS
Glue console.

When you upload a labeling file, a task is started in AWS Glue to add or overwrite the labels
used to teach the transform how to process the data source.

4. On the final page of the wizard, choose Finish, and return to the ML transforms list.

Step 4: Estimate the quality of your machine learning transform

Next, you can estimate the quality of your machine learning transform. The quality depends on
how much labeling you have done. For more information about estimating quality, see Estimate
quality.

1. On the AWS Glue console, in the navigation pane under Data Integration and ETL, choose
Data classification tools > Record Matching.

2. Choose the demo-xform-dblp-acm transform, and choose the Estimate quality tab. This tab
displays the current quality estimates, if available, for the transform.

3. Choose Estimate quality to start a task to estimate the quality of the transform. The accuracy
of the quality estimate is based on the labeling of the source data.

4. Navigate to the History tab. In this pane, task runs are listed for the transform, including the
Estimating quality task. For more details about the run, choose Logs. Check that the run
status is Succeeded when it finishes.

Record matching with FindMatches 918

AWS Glue User Guide

Step 5: Add and run a job with your machine learning transform

In this step, you use your machine learning transform to add and run a job in AWS Glue. When the
transform demo-xform-dblp-acm is Ready for use, you can use it in an ETL job.

1. On the AWS Glue console, in the navigation pane, choose Jobs.

2. Choose Add job, and follow the steps in the wizard to create an ETL Spark job with a
generated script. Choose the following property values for your transform:

a. For Name, choose the example job in this tutorial, demo-etl-dblp-acm.

b. For IAM role, choose an IAM role with permission to the Amazon S3 source data, labeling
file, and AWS Glue API operations. For more information, see Create an IAM Role for AWS
Glue in the AWS Glue Developer Guide.

c. For ETL language, choose Scala. This is the programming language in the ETL script.

d. For Script file name, choose demo-etl-dblp-acm. This is the file name of the Scala script
(same as the job name).

e. For Data source, choose dblp_acm_records_csv. The data source you choose must match
the machine learning transform data source schema.

f. For Transform type, choose Find matching records to create a job using a machine
learning transform.

g. Clear Remove duplicate records. You don't want to remove duplicate records because the
output records written have an additional match_id field added.

h. For Transform, choose demo-xform-dblp-acm, the machine learning transform used by
the job.

i. For Create tables in your data target, choose to create tables with the following
properties:

• Data store type — Amazon S3

• Format — CSV

• Compression type — None

• Target path — The Amazon S3 path where the output of the job is written (in the
current console AWS Region)

3. Choose Save job and edit script to display the script editor page.

Record matching with FindMatches 919

https://docs.aws.amazon.com/glue/latest/dg/create-an-iam-role.html
https://docs.aws.amazon.com/glue/latest/dg/create-an-iam-role.html

AWS Glue User Guide

4. Edit the script to add a statement to cause the job output to the Target path to be written to
a single partition file. Add this statement immediately following the statement that runs the
FindMatches transform. The statement is similar to the following.

val single_partition = findmatches1.repartition(1)

You must modify the .writeDynamicFrame(findmatches1) statement to write the output
as .writeDynamicFrame(single_partion).

5. After you edit the script, choose Save. The modified script looks similar to the following code,
but customized for your environment.

import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.errors.CallSite
import com.amazonaws.services.glue.ml.FindMatches
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import org.apache.spark.SparkContext
import scala.collection.JavaConverters._

object GlueApp {
 def main(sysArgs: Array[String]) {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 // @params: [JOB_NAME]
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)
 // @type: DataSource
 // @args: [database = "demo-db-dblp-acm", table_name = "dblp_acm_records_csv",
 transformation_ctx = "datasource0"]
 // @return: datasource0
 // @inputs: []
 val datasource0 = glueContext.getCatalogSource(database = "demo-db-dblp-acm",
 tableName = "dblp_acm_records_csv", redshiftTmpDir = "", transformationContext =
 "datasource0").getDynamicFrame()
 // @type: FindMatches
 // @args: [transformId = "tfm-123456789012", emitFusion = false,
 survivorComparisonField = "<primary_id>", transformation_ctx = "findmatches1"]
 // @return: findmatches1
 // @inputs: [frame = datasource0]

Record matching with FindMatches 920

AWS Glue User Guide

 val findmatches1 = FindMatches.apply(frame = datasource0, transformId
 = "tfm-123456789012", transformationContext = "findmatches1",
 computeMatchConfidenceScores = true)

 // Repartition the previous DynamicFrame into a single partition.
 val single_partition = findmatches1.repartition(1)

 // @type: DataSink
 // @args: [connection_type = "s3", connection_options = {"path": "s3://aws-
glue-ml-transforms-data/sal"}, format = "csv", transformation_ctx = "datasink2"]
 // @return: datasink2
 // @inputs: [frame = findmatches1]
 val datasink2 = glueContext.getSinkWithFormat(connectionType =
 "s3", options = JsonOptions("""{"path": "s3://aws-glue-ml-transforms-
data/sal"}"""), transformationContext = "datasink2", format =
 "csv").writeDynamicFrame(single_partition)
 Job.commit()
 }
}

6. Choose Run job to start the job run. Check the status of the job in the jobs list. When the job
finishes, in the ML transform, History tab, there is a new Run ID row added of type ETL job.

7. Navigate to the Jobs, History tab. In this pane, job runs are listed. For more details about the
run, choose Logs. Check that the run status is Succeeded when it finishes.

Step 6: Verify output data from Amazon S3

In this step, you check the output of the job run in the Amazon S3 bucket that you chose when you
added the job. You can download the output file to your local machine and verify that matching
records were identified.

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Download the target output file of the job demo-etl-dblp-acm. Open the file in a
spreadsheet application (you might need to add a file extension .csv for the file to properly
open).

The following image shows an excerpt of the output in Microsoft Excel.

Record matching with FindMatches 921

https://console.aws.amazon.com/s3/

AWS Glue User Guide

The data source and target file both have 4,911 records. However, the Find matches
transform adds another column named match_id to identify matching records in
the output. Rows with the same match_id are considered matching records. The
match_confidence_score is a number between 0 and 1 that provides an estimate of the
quality of matches found by Find matches.

3. Sort the output file by match_id to easily see which records are matches. Compare the values
in the other columns to see if you agree with the results of the Find matches transform. If
you don't, you can continue to teach the transform by adding more labels.

You can also sort the file by another field, such as title, to see if records with similar titles
have the same match_id.

Finding incremental matches

The Find matches feature allows you to identify duplicate or matching records in your dataset,
even when the records don’t have a common unique identifier and no fields match exactly. The
initial release of the Find matches transform identified matching records within a single dataset.
When you add new data to the dataset, you had to merge it with the existing clean dataset and
rerun matching against the complete merged dataset.

The incremental matching feature makes it simpler to match to incremental records against
existing matched datasets. Suppose that you want to match prospects data with existing customer
datasets. The incremental match capability provides you the flexibility to match hundreds of
thousands of new prospects with an existing database of prospects and customers by merging the
results into a single database or table. By matching only between the new and existing datasets,
the find incremental matches optimization reduces computation time, which also reduces cost.

Record matching with FindMatches 922

AWS Glue User Guide

The usage of incremental matching is similar to Find matches as described in Tutorial: Creating
a machine learning transform with AWS Glue. This topic identifies only the differences with
incremental matching.

For more information, see the blog post on Incremental data matching.

Running an incremental matching job

For the following procedure, suppose the following:

• You have crawled the existing dataset into the table first_records. The first_records dataset must
be a matched dataset, or the output of the matched job.

• You have created and trained a Find matches transform with AWS Glue version 2.0. This is the
only version of AWS Glue that supports incremental matches.

• The ETL language is Scala. Note that Python is also supported.

• The model already generated is called demo-xform.

1. Crawl the incremental dataset to the table second_records.

2. On the AWS Glue console, in the navigation pane, choose Jobs.

3. Choose Add job, and follow the steps in the wizard to create an ETL Spark job with a
generated script. Choose the following property values for your transform:

a. For Name, choose demo-etl.

b. For IAM role, choose an IAM role with permission to the Amazon S3 source data, labeling
file, and AWS Glue API operations.

c. For ETL language, choose Scala.

d. For Script file name, choose demo-etl. This is the file name of the Scala script.

e. For Data source, choose first_records. The data source you choose must match the
machine learning transform data source schema.

f. For Transform type, choose Find matching records to create a job using a machine
learning transform.

g. Select the incremental matching option, and for Data Source select the table named
second_records.

h. For Transform, choose demo-xform, the machine learning transform used by the job.

i. Choose Create tables in your data target or Use tables in the data catalog and update
your data target.

Record matching with FindMatches 923

https://aws.amazon.com/blogs/big-data/incremental-data-matching-using-aws-lake-formation/
https://docs.aws.amazon.com/glue/latest/dg/create-an-iam-role.html

AWS Glue User Guide

4. Choose Save job and edit script to display the script editor page.

5. Choose Run job to start the job run.

Using FindMatches in a visual job

To use the FindMatches transform in AWS Glue Studio, you can use the Custom Transform node
that invokes the FindMatches API. For more information on how to use a custom transform, see
Creating a custom transformation

Note

Currently, the FindMatches API only works with Glue 2.0. In order to run a job with the
Custom transform that invokes the FindMatches API, ensure the AWS Glue version is Glue
2.0 in the Job details tab. If the version of AWS Glue is not Glue 2.0, the job will fail
at runtime with the following error message: “cannot import name 'FindMatches' from
'awsglueml.transforms'”.

Prerequisites

• In order to use the Find Matches transform, open the AWS Glue Studio console at https://
console.aws.amazon.com/gluestudio/.

• Create a machine learning transform. When created, a transformId is generated. You will need
this ID for the steps below. For more information on how to create a machine learning transform,
see Adding and editing machine learning transforms.

Adding a FindMatches transform

To add a FindMatches transform:

1. In the AWS Glue Studio job editor, open the Resource panel by clicking on the cross symbol in
the upper left-hand corner of the visual job graph and choose a Data source by choosing the
Data tab. This is the data source you want to check for matches.

Record matching with FindMatches 924

https://docs.aws.amazon.com/glue/latest/ug/transforms-custom.html
https://console.aws.amazon.com/gluestudio/
https://console.aws.amazon.com/gluestudio/
https://docs.aws.amazon.com/glue/latest/dg/console-machine-learning-transforms.html#console-machine-learning-transforms-actions

AWS Glue User Guide

2. Choose the data source node, then open the Resource panel by clicking on the cross symbol in
the upper left-hand corner of the visual job graph and search for 'custom transform'. Choose
the Custom Transform node to add it to the graph. The Custom Transform is linked to the
data source node. If it is not, you can click on the Custom Transform node and choose the
Node properties tab, then under Node parents, choose the data source.

3. Click the Custom Transform node in the visual graph, then choose the Node properties tab
and name the custom transform. It is recommended that you rename the transform so that
the transform name is easily identifiable in the visual graph.

4. Choose the Transform tab, where you can edit the code block. This is where the code to invoke
the FindMatches API can be added.

Record matching with FindMatches 925

AWS Glue User Guide

The code block contains pre-populated code to get you started. Overwrite the pre-populated
code with the template below. The template has a placeholder for the transformId, which you
can provide.

def MyTransform (glueContext, dfc) -> DynamicFrameCollection:
 dynf = dfc.select(list(dfc.keys())[0])
 from awsglueml.transforms import FindMatches
 findmatches = FindMatches.apply(frame = dynf, transformId = "<your id>")
 return(DynamicFrameCollection({"FindMatches": findmatches}, glueContext))

5. Click the Custom Transform node in the visual graph, then open the Resource panel by
clicking on the cross symbol in the upper left-hand corner of the visual job graph and search
for 'Select From Collection'. There is no need to change the default selection since there is only
one DynamicFrame in the collection.

Record matching with FindMatches 926

AWS Glue User Guide

6. You can continue adding transformations or store the result, which is now enriched with the
find matches additional columns. If you want to reference those new columns in downstream
transforms, you need to add them to the transform output schema. the easiest way to do
that is to choose the Data preview tab and then in the schema tab choose “Use datapreview
schema”.

7. To customize FindMatches, you can add additional parameters to pass to the 'apply' method.
See FindMatches class.

Adding a FindMatches incrementally transformation

In the case of incremental matches, the process is the same as Adding a FindMatches
transformation with the following differences:

• Instead of a parent node for the custom transform, you need two parent nodes.

• The first parent node should be the dataset.

• The second parent node should be the incremental dataset.

Replace the transformId with your transformId in the template code block:

def MyTransform (glueContext, dfc) -> DynamicFrameCollection:
 dfs = list(dfc.values())
 dynf = dfs[0]
 inc_dynf = dfs[1]
 from awsglueml.transforms import FindIncrementalMatches
 findmatches = FindIncrementalMatches.apply(existingFrame = dynf, incrementalFrame
 = inc_dynf,
 transformId = "<your id>")
 return(DynamicFrameCollection({"FindMatches": findmatches}, glueContext))

• For optional parameters, see FindIncrementalMatches class.

Migrate Apache Spark programs to AWS Glue

Apache Spark is an open-source platform for distributed computing workloads performed on large
datasets. AWS Glue leverages Spark's capabilities to provide an optimized experience for ETL. You
can migrate Spark programs to AWS Glue to take advantage of our features. AWS Glue provides the
same performance enhancements you would expect from Apache Spark on Amazon EMR.

Migrate Spark programs 927

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-transforms-findmatches.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-transforms-findincrementalmatches.html

AWS Glue User Guide

Run Spark code

Native Spark code can be run in a AWS Glue environment out of the box. Scripts are often
developed by iteratively changing a piece of code, a workflow suited for an Interactive Session.
However, existing code is more suited to run in a AWS Glue job, which allows you to schedule and
consistently get logs and metrics for each script run. You can upload and edit an existing script
through the console.

1. Acquire the source to your script. For this example, you will use an example script from the
Apache Spark repository. Binarizer Example

2. In the AWS Glue Console, expand the left-side navigation pane and select ETL > Jobs

In the Create job panel, select Spark script editor. An Options section will appear. Under
Options, select Upload and edit an existing script.

A File upload section will appear. Under File upload, click Choose file. Your system file
chooser will appear. Navigate to the location where you saved binarizer_example.py,
select it and confirm your selection.

A Create button will appear on the header for the Create job panel. Click it.

Migrate Spark programs 928

https://github.com/apache/spark/blob/master/examples/src/main/python/ml/binarizer_example.py

AWS Glue User Guide

3. Your browser will navigate to the script editor. On the header, click the Job details tab. Set
the Name and IAM Role. For guidance around AWS Glue IAM roles, consult the section called
“Setting up IAM permissions”.

Optionally - set Requested number of workers to 2 and Number of retries to 1. These options
are valuable when running production jobs, but turning them down will streamline your
experience while testing out a feature.

In the title bar, click Save, then Run

4. Navigate to the Runs tab. You will see a panel corresponding to your job run. Wait a few
minutes and the page should automatically refresh to show Succeeded under Run status.

Migrate Spark programs 929

AWS Glue User Guide

5. You will want to examine your output to confirm that the Spark script ran as intended. This
Apache Spark sample script should write a string to the output stream. You can find that by
navigating to Output logs under Cloudwatch logs in the panel for the successful job run. Note
the job run id, a generated id under the Id label beginning with jr_.

This will open the CloudWatch console, set to visualize the contents of the default AWS Glue
log group /aws-glue/jobs/output, filtered to the contents of the log streams for the job
run id. Each worker will have generated a log stream, shown as rows under the Log streams .
One worker should have run the requested code. You will need to open all the log streams to
identify the correct worker. Once you find the right worker, you should see the output of the
script, as seen in the following image:

Migrate Spark programs 930

AWS Glue User Guide

Common procedures needed for migrating Spark programs

Assess Spark version support

AWS Glue release versions define the version of Apache Spark and Python available to the AWS
Glue job. You can find our AWS Glue versions and what they support at the section called “AWS
Glue versions”. You may need to update your Spark program to be compatible with a newer version
of Spark in order to access certain AWS Glue features.

Include third-party libraries

Many existing Spark programs will have dependencies, both on private and public artifacts. AWS
Glue supports JAR style dependencies for Scala Jobs as well as Wheel and source pure-Python
dependencies for Python jobs.

Python - For information about Python dependencies, see the section called “Python libraries”

Common Python dependencies are provided in the AWS Glue environment, including the
commonly requested Pandas library. Dependencies are included in AWS Glue Version 2.0+. For
more information about provided modules, see the section called “Python modules already
provided in AWS Glue”. If you need to supply a Job with a different version of a dependency

Migrate Spark programs 931

https://pandas.pydata.org/

AWS Glue User Guide

included by default, you can use --additional-python-modules. For information about job
arguments, see the section called “Job parameters”.

You can supply additional Python dependencies with the --extra-py-files job argument.
If you are migrating a job from a Spark program, this parameter is a good option because it is
functionally equivalent to the --py-files flag in PySpark, and is subject to the same limitations.
For more information about the --extra-py-files parameter, see the section called “Including
Python files with PySpark native features”

For new jobs, you can manage Python dependencies with the --additional-python-modules
job argument. Using this argument allows for a more thorough dependency management
experience. This parameter supports Wheel style dependencies, including those with native code
bindings compatible with Amazon Linux 2.

Scala

You can supply additional Scala dependencies with the --extra-jars Job Argument.
Dependencies must be hosted in Amazon S3 and the argument value should be a comma delimited
list of Amazon S3 paths with no spaces. You may find it easier to manage your configuration by
rebundling your dependencies before hosting and configuring them. AWS Glue JAR dependencies
contain Java bytecode, which can be generated from any JVM language. You can use other JVM
languages, such as Java, to write custom dependencies.

Manage data source credentials

Existing Spark programs may come with complex or custom configuration to pull data from their
datasources. Common datasource auth flows are supported by AWS Glue connections. For more
information about AWS Glue connections, see Connecting to data.

AWS Glue connections facilitate connecting your Job to a variety of types of data stores in
two primary ways: through method calls to our libraries and setting the Additional network
connection in the AWS console. You may also call the AWS SDK from within your job to retrieve
information from a connection.

Method calls – AWS Glue Connections are tightly integrated with the AWS Glue Data Catalog, a
service that allows you to curate information about your datasets, and the methods available to
interact with AWS Glue connections reflect that. If you have an existing auth configuration you
would like to reuse, for JDBC connections, you can access your AWS Glue connection configuration
through the extract_jdbc_conf method on the GlueContext. For more information, see the
section called “extract_jdbc_conf”

Migrate Spark programs 932

AWS Glue User Guide

Console configuration – AWS Glue Jobs use associated AWS Glue connections to configure
connections to Amazon VPC subnets. If you directly manage your security materials, you may
need to provide a NETWORK type Additional network connection in the AWS console to configure
routing. For more information about the AWS Glue connection API, see the section called
“Connections”

If your Spark programs has a custom or uncommon auth flow, you may need to manage your
security materials in a hands-on fashion. If AWS Glue connections do not seem like a good fit, you
can securely host security materials in Secrets Manager and access them through the boto3 or AWS
SDK, which are provided in the job.

Configure Apache Spark

Complex migrations often alter Spark configuration to acommodate their workloads. Modern
versions of Apache Spark allow runtime configuration to be set with the SparkSession. AWS
Glue 3.0+ Jobs are provided a SparkSession, which can be modified to set runtime configuration.
Apache Spark Configuration. Tuning Spark is complex, and AWS Glue does not guarantee support
for setting all Spark configuration. if your migration requires substantial Spark-level configuration,
contact support.

Set custom configuration

Migrated Spark programs may be designed to take custom configuration. AWS Glue allows
configuration to be set on the job and job run level, through the job arguments. For information
about job arguments, see the section called “Job parameters”. You can access job arguments
within the context of a job through our libraries. AWS Glue provides a utility function to provide
a consistent view between arguments set on the job and arguments set on the job run. See the
section called “getResolvedOptions” in Python and the section called “GlueArgParser” in Scala.

Migrate Java code

As explained in the section called “Third-party libraries”, your dependencies can contain classes
generated by JVM languages, such as Java or Scala. Your dependencies can include a main method.
You can use a main method in a dependency as the entrypoint for a AWS Glue Scala job. This
allows you to write your main method in Java, or reuse a main method packaged to your own
library standards.

To use a main method from a dependency, perform the following: Clear the contents of the
editing pane providing the default GlueApp object. Provide the fully qualified name of a class in a
dependency as a job argument with the key --class. You should then be able to trigger a Job run.

Migrate Spark programs 933

https://spark.apache.org/docs/latest/configuration.html

AWS Glue User Guide

You cannot configure the order or structure of the arguments AWS Glue passes to the main
method. If your existing code needs to read configuration set in AWS Glue, this will likely cause
incompatibility with prior code. If you use getResolvedOptions, you will also not have a good
place to call this method. Consider invoking your dependency directly from a main method
generated by AWS Glue. The following AWS Glue ETL script shows an example of this.

import com.amazonaws.services.glue.util.GlueArgParser

object GlueApp {
 def main(sysArgs: Array[String]) {
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)

 // Invoke static method from JAR. Pass some sample arguments as a String[], one
 defined inline and one taken from the job arguments, using getResolvedOptions
 com.mycompany.myproject.MyClass.myStaticPublicMethod(Array("string parameter1",
 args("JOB_NAME")))

 // Alternatively, invoke a non-static public method.
 (new com.mycompany.myproject.MyClass).someMethod()
 }
}

Working with Ray jobs in AWS Glue

This section provides information about using AWS Glue for Ray jobs. For more information about
writing AWS Glue for Ray scripts, consult the the section called “AWS Glue for Ray” section.

Topics

• Getting started with AWS Glue for Ray

• Supported Ray runtime environments

• Accounting for workers in Ray jobs

• Using job parameters in Ray jobs

• Monitoring Ray jobs with metrics

Getting started with AWS Glue for Ray

To work with AWS Glue for Ray, you use the same AWS Glue jobs and interactive sessions that
you use with AWS Glue for Spark. AWS Glue jobs are designed for running the same script on

Working with Ray jobs 934

AWS Glue User Guide

a recurring cadence, while interactive sessions are designed to let you run snippets of code
sequentially against the same provisioned resources.

AWS Glue ETL and Ray are different underneath, so in your script, you have access to different
tools, features, and configuration. As a new computation framework managed by AWS Glue,
Ray has a different architecture and uses different vocabulary to describe what it does. For more
information, see Architecture Whitepapers in the Ray documentation.

Note

AWS Glue for Ray is available in US East (N. Virginia), US East (Ohio), US West (Oregon),
Asia Pacific (Tokyo), and Europe (Ireland).

Ray jobs in the AWS Glue Studio console

On the Jobs page in the AWS Glue Studio console, you can select a new option when you're
creating a job in AWS Glue Studio—Ray script editor. Choose this option to create a Ray job in the
console. For more information about jobs and how they're used, see Building visual ETL jobs with
AWS Glue Studio.

Ray jobs in the AWS CLI and SDK

Ray jobs in the AWS CLI use the same SDK actions and parameters as other jobs. AWS Glue for Ray
introduces new values for certain parameters. For more information in the Jobs API, see the section
called “Jobs”.

Getting started with AWS Glue for Ray 935

https://docs.ray.io/en/latest/ray-contribute/whitepaper.html

AWS Glue User Guide

Supported Ray runtime environments

In Spark jobs, GlueVersion determines the versions of Apache Spark and Python available in an
AWS Glue for Spark job. The Python version indicates the version that is supported for jobs of type
Spark. This is not how Ray runtime environments are configured.

For Ray jobs, you should set GlueVersion to 4.0 or greater. However, the versions of Ray, Python,
and additional libraries that are available in your Ray job are determined by the Runtime field in
the job definition.

The Ray2.4 runtime environment will be available for a minimum of 6 months after release. As
Ray rapidly evolves, you will be able to incorporate Ray updates and improvements through future
runtime environment releases.

Valid values: Ray2.4

Runtime value Ray and Python versions

Ray2.4 (for AWS Glue 4.0+) Ray 2.4.0

Python 3.9

Additional information

• For release notes that accompany AWS Glue on Ray releases, see the section called “AWS Glue
versions”.

• For Python libraries that are provided in a runtime environment, see the section called “Modules
provided with Ray jobs”.

Accounting for workers in Ray jobs

AWS Glue runs Ray jobs on new Graviton-based EC2 worker types, which are only available for Ray
jobs. To appropriately provision these workers for the workloads Ray is designed for, we provide a
different ratio of compute resources to memory resources from most workers. In order to account
for these resources, we use the memory-optimized data processing unit (M-DPU) rather than the
standard data processing unit (DPU).

• One M-DPU corresponds to 4 vCPUs and 32 GB of memory.

Supported Ray runtime environments 936

AWS Glue User Guide

• One DPU corresponds to 4 vCPUs and 16 GB of memory. DPUs are used to account for resources
in AWS Glue with Spark jobs and corresponding workers.

Ray jobs currently have access to one worker type, Z.2X. The Z.2X worker maps to 2 M-DPUs (8
vCPUs, 64 GB of memory) and has 128 GB of disk space. A Z.2X machine provides 8 Ray workers
(one per vCPU).

The number of M-DPUs that you can use concurrently in an account is subject to a service quota.
For more information about your AWS Glue account limits, see AWS Glue endpoints and quotas.

You specify the number of worker nodes that are available to a Ray job with --number-of-
workers (NumberOfWorkers) in the job definition. For more information about Ray values in
the Jobs API, see the section called “Jobs”.

You can further specify a minimum number of workers that a Ray job must allocate with the --
min-workers job parameter. For more information about job parameters, see the section called
“Reference”.

Using job parameters in Ray jobs

You set arguments for AWS Glue Ray jobs the same way you set arguments for AWS Glue for
Spark jobs. For more information about the AWS Glue API, see the section called “Jobs”. You can
configure AWS Glue Ray jobs with different arguments, which are listed in this reference. You can
also provide your own arguments.

You can configure a job through the console, on the Job details tab, under the Job Parameters
heading. You can also configure a job through the AWS CLI by setting DefaultArguments on a
job, or setting Arguments on a job run. Default arguments and job parameters stay with the job
through multiple runs.

For example, the following is the syntax for running a job using --arguments to set a special
parameter.

$ aws glue start-job-run --job-name "CSV to CSV" --arguments='--scriptLocation="s3://
my_glue/libraries/test_lib.py",--test-environment="true"'

After you set the arguments, you can access job parameters from within your Ray job through
environment variables. This gives you a way to configure your job for each run. The name of the
environment variable will be the job argument name without the -- prefix.

Ray job parameters 937

https://docs.aws.amazon.com/general/latest/gr/glue.html

AWS Glue User Guide

For instance, in the previous example, the variable names would be scriptLocation and
test-environment. You would then retrieve the argument through methods available in the
standard library: test_environment = os.environ.get('test-environment'). For more
information about accessing environment variables with Python, see os module in the Python
documentation.

Configure how Ray jobs generate logs

By default, Ray jobs generate logs and metrics that are sent to CloudWatch and Amazon S3. You
can use the --logging_configuration parameter to alter how logs are generated, currently
you can use it to stop Ray jobs from generating various types of logs. This parameter takes a
JSON object, whose keys correspond to the logs/behaviors you would like to alter. It supports the
following keys:

• CLOUDWATCH_METRICS – Configures CloudWatch metrics series that can be used to visualize job
health. For more information about metrics, see the section called “Ray job metrics”.

• CLOUDWATCH_LOGS – Configures CloudWatch logs that provide Ray application level
details about the status the job run. For more information about logs, see the section called
“Troubleshooting Ray errors”.

• S3 – Configures what AWS Glue writes to Amazon S3, primarily similar information to
CloudWatch logs but as files rather than log streams.

To disable a Ray logging behavior, provide the value {\"IS_ENABLED\": \"False\"}. For
example, to disable CloudWatch metrics and CloudWatch logs, provide the following configuration:

"--logging_configuration": "{\"CLOUDWATCH_METRICS\": {\"IS_ENABLED\": \"False\"},
 \"CLOUDWATCH_LOGS\": {\"IS_ENABLED\": \"False\"}}"

Reference

Ray jobs recognize the following argument names that you can use to set up the script
environment for your Ray jobs and job runs:

• --logging_configuration – Used to stop the generation of various logs created by Ray jobs.
These logs are generated by default on all Ray jobs. Format: String-escaped JSON object. For
more information, see the section called “Configure how Ray jobs generate logs”.

• --min-workers – The minimum number of worker nodes that are allocated to a Ray job.
A worker node can run multiple replicas, one per virtual CPU. Format: integer. Minimum: 0.

Ray job parameters 938

https://docs.python.org/3/library/os.html

AWS Glue User Guide

Maximum: value specified in --number-of-workers (NumberOfWorkers) on the job
definition. For more information about accounting for worker nodes, see the section called
“Accounting for workers in Ray jobs”.

• --object_spilling_config – AWS Glue for Ray supports using Amazon S3 as a way of
extending the space available to Ray's object store. To enable this behavior, you can provide Ray
an object spillingJSON config object with this parameter. For more information about Ray object
spilling configuration, see Object Spilling in the Ray documentation. Format: JSON object.

AWS Glue for Ray only supports spilling to disk or spilling to Amazon S3 at once. You can provide
multiple locations for spilling, as long as they respect this limitation. When spilling to Amazon
S3, you will also need to add IAM permissions to your job for this bucket.

When providing a JSON object as configuration with the CLI, you must provide it as a string,
with the JSON object string-escaped. For example, a string value for spilling to one Amazon
S3 path would look like: "{\"type\": \"smart_open\", \"params\": {\"uri\":
\"s3path\"}}". In AWS Glue Studio, provide this parameter as a JSON object with no extra
formatting.

• --object_store_memory_head – The memory allocated to the Plasma object store on the
Ray head node. This instance runs cluster management services, as well as worker replicas. The
value represents a percentage of free memory on the instance after a warm start. You use this
parameter to tune memory intensive workloads—defaults are acceptable for most use cases.
Format: positive integer. Minimum: 1. Maximum: 100.

For more information about Plasma, see The Plasma In-Memory Object Store in the Ray
documentation.

• --object_store_memory_worker – The memory allocated to the Plasma object store on the
Ray worker nodes. These instances only run worker replicas. The value represents a percentage
of free memory on the instance after a warm start. This parameter is used to tune memory
intensive workloads—defaults are acceptable for most use cases. Format: positive integer.
Minimum: 1. Maximum: 100.

For more information about Plasma, see The Plasma In-Memory Object Store in the Ray
documentation.

• --pip-install – A set of Python packages to be installed. You
can install packages from PyPI using this argument. Format: comma-delimited
list.

Ray job parameters 939

https://docs.ray.io/en/latest/ray-core/objects/object-spilling.html
https://ray-project.github.io/2017/08/08/plasma-in-memory-object-store.html
https://ray-project.github.io/2017/08/08/plasma-in-memory-object-store.html

AWS Glue User Guide

A PyPI package entry is in the format package==version, with the PyPI name and
version of your target package. Entries use Python version matching to match the package and
version, such as ==, not the single equals =. There are other
version-matching operators. For more information, see PEP 440 on the Python website. You can
also provide custom modules with --s3-py-modules.

• --s3-py-modules – A set of Amazon S3 paths that host Python module distributions. Format:
comma-delimited list.

You can use this to distribute your own modules to your Ray job. You can also provide modules
from PyPI with --pip-install. Unlike with AWS Glue ETL, custom modules are not set up
through pip, but are passed to Ray for distribution. For more information, see the section called
“Additional Python modules for Ray jobs”.

• --working-dir – A path to a .zip file hosted in Amazon S3 that contains files to be distributed
to all nodes running your Ray job. Format: string. For more information, see the section called
“Providing files to your Ray job”.

Monitoring Ray jobs with metrics

You can monitor Ray jobs using AWS Glue Studio and Amazon CloudWatch. CloudWatch collects
and processes raw metrics from AWS Glue with Ray, which makes them available for analysis. These
metrics are visualized in the AWS Glue Studio console, so you can monitor your job as it runs.

For a general overview of how to monitor AWS Glue, see the section called “Using CloudWatch
metrics”. For a general overview of how to use CloudWatch metrics that are published by AWS
Glue, see the section called “Monitoring with CloudWatch”.

Monitoring Ray jobs in the AWS Glue console

On the details page for a job run, below the Run details section, you can view pre-built aggregated
graphs that visualize your available job metrics. AWS Glue Studio sends job metrics to CloudWatch
for every job run. With these, you can build a profile of your cluster and tasks, as well as access
detailed information about each node.

For more information about available metrics graphs, see the section called “Viewing Amazon
CloudWatch metrics for a Ray job run”.

Ray job metrics 940

https://peps.python.org/pep-0440/#version-matching

AWS Glue User Guide

Overview of Ray jobs metrics in CloudWatch

We publish Ray metrics when detailed monitoring is enabled in CloudWatch. Metrics are published
to the Glue/Ray CloudWatch namespace.

• Instance metrics

We publish metrics about the CPU, memory and disk utilization of instances assigned to a job.
These metrics are identified by features such as ExecutorId, ExecutorType and host. These
metrics are a subset of the standard Linux CloudWatch agent metrics. You can find information
about metric names and features in the CloudWatch documentation. For more information, see
Metrics collected by the CloudWatch agent.

• Ray cluster metrics

We forward metrics from the Ray processes that run your script to this namespace, then provide
those most critical for you. The metrics that are available might differ by Ray version. For more
information about which Ray version your job is running, see the section called “AWS Glue
versions”.

Ray collects metrics at the instance level. It also provides metrics for tasks and the cluster. For
more information about Ray's underlying metric strategy, see Metrics in the Ray documentation.

Note

We don't publish Ray metrics to the Glue/Job Metrics/ namespace, which is only used
for AWS Glue ETL jobs.

Configuring job properties for Python shell jobs in AWS Glue

You can use a Python shell job to run Python scripts as a shell in AWS Glue. With a Python shell job,
you can run scripts that are compatible with Python 3.6 or Python 3.9.

Topics

• Limitations

• Defining job properties for Python shell jobs

• Supported libraries for Python shell jobs

Configuring Python shell job properties 941

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/metrics-collected-by-CloudWatch-agent.html
https://docs.ray.io/en/latest/ray-observability/ray-metrics.html#system-metrics

AWS Glue User Guide

• Providing your own Python library

• Use AWS CloudFormation with Python shell jobs in AWS Glue

Limitations

Note the following limitations of Python Shell jobs:

• You can't use job bookmarks with Python shell jobs.

• You can't package any Python libraries as .egg files in Python 3.9+. Instead, use .whl.

• The --extra-files option cannot be used, because of a limitation on temporary copies of S3
data.

Defining job properties for Python shell jobs

These sections describe defining job properties in AWS Glue Studio, or using the AWS CLI.

AWS Glue Studio

When you define your Python shell job in AWS Glue Studio, you provide some of the following
properties:

IAM role

Specify the AWS Identity and Access Management (IAM) role that is used for authorization
to resources that are used to run the job and access data stores. For more information about
permissions for running jobs in AWS Glue, see Identity and access management for AWS Glue.

Type

Choose Python shell to run a Python script with the job command named pythonshell.

Python version

Choose the Python version. The default is Python 3.9. Valid versions are Python 3.6 and Python
3.9.

Load common analytics libraries (Recommended)

Choose this option to include common libraries for Python 3.9 in the Python shell.

Limitations 942

AWS Glue User Guide

If your libraries are either custom or they conflict with the pre-installed ones, you can choose
not to install common libraries. However, you can install additional libraries besides the
common libraries.

When you select this option, the library-set option is set to analytics. When you de-
select this option, the library-set option is set to none.

Script filename and Script path

The code in the script defines your job's procedural logic. You provide the script name and
location in Amazon Simple Storage Service (Amazon S3). Confirm that there isn't a file with the
same name as the script directory in the path. To learn more about using scripts, see AWS Glue
programming guide.

Script

The code in the script defines your job's procedural logic. You can code the script in Python 3.6
or Python 3.9. You can edit a script in AWS Glue Studio.

Data processing units

The maximum number of AWS Glue data processing units (DPUs) that can be allocated when
this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of
compute capacity and 16 GB of memory. For more information, see AWS Glue pricing.

You can set the value to 0.0625 or 1. The default is 0.0625. In either case, the local disk for the
instance will be 20GB.

CLI

You can also create a Python shell job using the AWS CLI, as in the following example.

 aws glue create-job --name python-job-cli --role Glue_DefaultRole
 --command '{"Name" : "pythonshell", "PythonVersion": "3.9", "ScriptLocation" :
 "s3://DOC-EXAMPLE-BUCKET/scriptname.py"}'
 --max-capacity 0.0625

Defining job properties for Python shell jobs 943

https://aws.amazon.com/glue/pricing/

AWS Glue User Guide

Note

You don't need to specify the version of AWS Glue since the parameter --glue-version
doesn't apply for AWS Glue shell jobs. Any version specified will be ignored.

Jobs that you create with the AWS CLI default to Python 3. Valid Python versions are 3
(corresponding to 3.6), and 3.9. To specify Python 3.6, add this tuple to the --command parameter:
"PythonVersion":"3"

To specify Python 3.9, add this tuple to the --command parameter: "PythonVersion":"3.9"

To set the maximum capacity used by a Python shell job, provide the --max-capacity parameter.
For Python shell jobs, the --allocated-capacity parameter can't be used.

Supported libraries for Python shell jobs

In Python shell using Python 3.9, you can choose the library set to use pre-packaged library sets
for your needs. You can use the library-set option to choose the library set. Valid values are
analytics, and none.

The environment for running a Python shell job supports the following libraries:

Python version Python 3.6 Python 3.9

Library set N/A analytics none

avro 1.11.0

awscli 116.242 1.23.5 1.23.5

awswrangler 2.15.1

botocore 1.12.232 1.24.21 1.23.5

boto3 1.9.203 1.21.21

elasticsearch 8.2.0

numpy 1.16.2 1.22.3

Supported libraries for Python shell jobs 944

AWS Glue User Guide

Python version Python 3.6 Python 3.9

pandas 0.24.2 1.4.2

psycopg2 2.9.3

pyathena 2.5.3

PyGreSQL 5.0.6

PyMySQL 1.0.2

pyodbc 4.0.32

pyorc 0.6.0

redshift-connector 2.0.907

requests 2.22.0 2.27.1

scikit-learn 0.20.3 1.0.2

scipy 1.2.1 1.8.0

SQLAlchemy 1.4.36

s3fs 2022.3.0

You can use the NumPy library in a Python shell job for scientific computing. For more information,
see NumPy. The following example shows a NumPy script that can be used in a Python shell job.
The script prints "Hello world" and the results of several mathematical calculations.

import numpy as np
print("Hello world")

a = np.array([20,30,40,50])
print(a)

b = np.arange(4)

Supported libraries for Python shell jobs 945

http://www.numpy.org

AWS Glue User Guide

print(b)

c = a-b

print(c)

d = b**2

print(d)

Providing your own Python library

Using PIP

Python shell using Python 3.9 lets you provide additional Python modules or different versions
at the job level. You can use the --additional-python-modules option with a list of comma-
separated Python modules to add a new module or change the version of an existing module. You
cannot provide custom Python modules hosted on Amazon S3 with this parameter when using
Python shell jobs.

For example to update or to add a new scikit-learn module use the following key and value:
"--additional-python-modules", "scikit-learn==0.21.3".

AWS Glue uses the Python Package Installer (pip3) to install the additional modules. You can
pass additional pip3 options inside the --additional-python-modules value. For example,
"scikit-learn==0.21.3 -i https://pypi.python.org/simple/". Any incompatibilities
or limitations from pip3 apply.

Note

To avoid incompatibilities in the future, we recommend that you use libraries built for
Python 3.9.

Using an Egg or Whl file

You might already have one or more Python libraries packaged as an .egg or a .whl file. If so,
you can specify them to your job using the AWS Command Line Interface (AWS CLI) under the "--
extra-py-files" flag, as in the following example.

Providing your own Python library 946

AWS Glue User Guide

aws glue create-job --name python-redshift-test-cli --role role --command '{"Name" :
 "pythonshell", "ScriptLocation" : "s3://MyBucket/python/library/redshift_test.py"}'
 --connections Connections=connection-name --default-arguments '{"--extra-py-
files" : ["s3://DOC-EXAMPLE-BUCKET/EGG-FILE", "s3://DOC-EXAMPLE-BUCKET/WHEEL-FILE"]}'

If you aren't sure how to create an .egg or a .whl file from a Python library, use the following
steps. This example is applicable on macOS, Linux, and Windows Subsystem for Linux (WSL).

To create a Python .egg or .whl file

1. Create an Amazon Redshift cluster in a virtual private cloud (VPC), and add some data to a
table.

2. Create an AWS Glue connection for the VPC-SecurityGroup-Subnet combination that you used
to create the cluster. Test that the connection is successful.

3. Create a directory named redshift_example, and create a file named setup.py. Paste the
following code into setup.py.

from setuptools import setup

setup(
 name="redshift_module",
 version="0.1",
 packages=['redshift_module']
)

4. In the redshift_example directory, create a redshift_module directory.
In the redshift_module directory, create the files __init__.py and
pygresql_redshift_common.py.

5. Leave the __init__.py file empty. In pygresql_redshift_common.py, paste the
following code. Replace port, db_name, user, and password_for_user with details specific
to your Amazon Redshift cluster. Replace table_name with the name of the table in Amazon
Redshift.

import pg

def get_connection(host):
 rs_conn_string = "host=%s port=%s dbname=%s user=%s password=%s" % (
 host, port, db_name, user, password_for_user)

Providing your own Python library 947

AWS Glue User Guide

 rs_conn = pg.connect(dbname=rs_conn_string)
 rs_conn.query("set statement_timeout = 1200000")
 return rs_conn

def query(con):
 statement = "Select * from table_name;"
 res = con.query(statement)
 return res

6. If you're not already there, change to the redshift_example directory.

7. Do one of the following:

• To create an .egg file, run the following command.

python setup.py bdist_egg

• To create a .whl file, run the following command.

python setup.py bdist_wheel

8. Install the dependencies that are required for the preceding command.

9. The command creates a file in the dist directory:

• If you created an egg file, it's named redshift_module-0.1-py2.7.egg.

• If you created a wheel file, it's named redshift_module-0.1-py2.7-none-any.whl.

Upload this file to Amazon S3.

In this example, the uploaded file path is either s3://DOC-EXAMPLE-BUCKET/EGG-FILE or
s3://DOC-EXAMPLE-BUCKET/WHEEL-FILE.

10. Create a Python file to be used as a script for the AWS Glue job, and add the following code to
the file.

from redshift_module import pygresql_redshift_common as rs_common

con1 = rs_common.get_connection(redshift_endpoint)
res = rs_common.query(con1)

Providing your own Python library 948

AWS Glue User Guide

print "Rows in the table cities are: "

print res

11. Upload the preceding file to Amazon S3. In this example, the uploaded file path is s3://DOC-
EXAMPLE-BUCKET/scriptname.py.

12. Create a Python shell job using this script. On the AWS Glue console, on the Job properties
page, specify the path to the .egg/.whl file in the Python library path box. If you have
multiple .egg/.whl files and Python files, provide a comma-separated list in this box.

When modifying or renaming .egg files, the file names must use the default names generated
by the "python setup.py bdist_egg" command or must adhere to the Python module naming
conventions. For more information, see the Style Guide for Python Code.

Using the AWS CLI, create a job with a command, as in the following example.

aws glue create-job --name python-redshift-test-cli --role Role --command
 '{"Name" : "pythonshell", "ScriptLocation" : "s3://DOC-EXAMPLE-BUCKET/
scriptname.py"}'
 --connections Connections="connection-name" --default-arguments '{"--extra-
py-files" : ["s3://DOC-EXAMPLE-BUCKET/EGG-FILE", "s3://DOC-EXAMPLE-BUCKET/WHEEL-
FILE"]}'

When the job runs, the script prints the rows created in the table_name table in the Amazon
Redshift cluster.

Use AWS CloudFormation with Python shell jobs in AWS Glue

You can use AWS CloudFormation with Python shell jobs in AWS Glue. The following is an example:

AWSTemplateFormatVersion: 2010-09-09
Resources:
 Python39Job:
 Type: 'AWS::Glue::Job'
 Properties:
 Command:
 Name: pythonshell
 PythonVersion: '3.9'

Use AWS CloudFormation with Python shell jobs in AWS Glue 949

https://www.python.org/dev/peps/pep-0008/

AWS Glue User Guide

 ScriptLocation: 's3://bucket/location'
 MaxRetries: 0
 Name: python-39-job
 Role: RoleName

The Amazon CloudWatch Logs group for Python shell jobs output is /aws-glue/python-jobs/
output. For errors, see the log group /aws-glue/python-jobs/error.

Monitoring AWS Glue

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS
Glue and your other AWS solutions. AWS provides monitoring tools that you can use to watch AWS
Glue, report when something is wrong, and take action automatically when appropriate:

You can use the following automated monitoring tools to watch AWS Glue and report when
something is wrong:

• Amazon CloudWatch Events delivers a near real-time stream of system events that describe
changes in AWS resources. CloudWatch Events enables automated event-driven computing. You
can write rules that watch for certain events and trigger automated actions in other AWS services
when these events occur. For more information, see the Amazon CloudWatch Events User Guide.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon
EC2 instances, AWS CloudTrail, and other sources. CloudWatch Logs can monitor information in
the log files and notify you when certain thresholds are met. You can also archive your log data
in highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts call AWS, the source IP address from which the calls are made, and when the calls
occur. For more information, see the AWS CloudTrail User Guide.

Additionally, you have access to the following insights in the AWS Glue console to help you debug
and profile jobs:

• Spark jobs – you can see a visualization of selected CloudWatch metrics series, and newer jobs
have access to the Spark UI. For more information, see the section called “Monitoring Spark
jobs”.

Monitoring 950

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

AWS Glue User Guide

• Ray jobs – you can see a visualization of selected CloudWatch metrics series. For more
information, see the section called “Ray job metrics”.

Topics

• AWS tags in AWS Glue

• Automating AWS Glue with CloudWatch Events

• AWS Glue resource monitoring

• Logging AWS Glue API calls with AWS CloudTrail

AWS tags in AWS Glue

To help you manage your AWS Glue resources, you can optionally assign your own tags to some
AWS Glue resource types. A tag is a label that you assign to an AWS resource. Each tag consists of
a key and an optional value, both of which you define. You can use tags in AWS Glue to organize
and identify your resources. Tags can be used to create cost accounting reports and restrict access
to resources. If you're using AWS Identity and Access Management, you can control which users in
your AWS account have permission to create, edit, or delete tags. In addition to the permissions to
call the tag-related APIs, you also need the glue:GetConnection permission to call tagging APIs
on connections, and the glue:GetDatabase permission to call tagging APIs on databases. For
more information, see ABAC with AWS Glue.

In AWS Glue, you can tag the following resources:

• Connection

• Database

• Crawler

• Interactive session

• Development endpoint

• Job

• Trigger

• Workflow

• Blueprint

• Machine learning transform

• Data quality ruleset

AWS tags 951

AWS Glue User Guide

• Stream schemas

• Stream schema registries

Note

As a best practice, to allow tagging of these AWS Glue resources, always include the
glue:TagResource action in your policies.

Consider the following when using tags with AWS Glue.

• A maximum of 50 tags are supported per entity.

• In AWS Glue, you specify tags as a list of key-value pairs in the format {"string":
"string" ...}

• When you create a tag on an object, the tag key is required, and the tag value is optional.

• The tag key and tag value are case sensitive.

• The tag key and the tag value must not contain the prefix aws. No operations are allowed on
such tags.

• The maximum tag key length is 128 Unicode characters in UTF-8. The tag key must not be empty
or null.

• The maximum tag value length is 256 Unicode characters in UTF-8. The tag value may be empty
or null.

Tagging support for AWS Glue connections

You can restrict CreateConnection, UpdateConnection, GetConnection and,
DeleteConnection action permission based on the resource tag. This enables you to implement
the least privilege access control on AWS Glue jobs with JDBC data sources which need to fetch
JDBC connection information from the Data Catalog.

Example usage

Create an AWS Glue connection with the tag ["connection-category", "dev-test"].

Specify the tag condition for the GetConnection action in the IAM policy.

{

AWS tags 952

AWS Glue User Guide

 "Effect": "Allow",
 "Action": [
 "glue:GetConnection"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:ResourceTag/tagKey": "dev-test"
 }
 }
 }

Examples

The following examples create a job with assigned tags.

AWS CLI

aws glue create-job --name job-test-tags --role MyJobRole --command
 Name=glueetl,ScriptLocation=S3://aws-glue-scripts//prod-job1
--tags key1=value1,key2=value2

AWS CloudFormation JSON

{
 "Description": "AWS Glue Job Test Tags",
 "Resources": {
 "MyJobRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "glue.amazonaws.com"
]
 },
 "Action": [
 "sts:AssumeRole"
]

AWS tags 953

AWS Glue User Guide

 }
]
 },
 "Path": "/",
 "Policies": [
 {
 "PolicyName": "root",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "*",
 "Resource": "*"
 }
]
 }
 }
]
 }
 },
 "MyJob": {
 "Type": "AWS::Glue::Job",
 "Properties": {
 "Command": {
 "Name": "glueetl",
 "ScriptLocation": "s3://aws-glue-scripts//prod-job1"
 },
 "DefaultArguments": {
 "--job-bookmark-option": "job-bookmark-enable"
 },
 "ExecutionProperty": {
 "MaxConcurrentRuns": 2
 },
 "MaxRetries": 0,
 "Name": "cf-job1",
 "Role": {
 "Ref": "MyJobRole",
 "Tags": {
 "key1": "value1",
 "key2": "value2"
 }
 }
 }

AWS tags 954

AWS Glue User Guide

 }
 }
}

AWS CloudFormation YAML

Description: AWS Glue Job Test Tags
Resources:
 MyJobRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - glue.amazonaws.com
 Action:
 - sts:AssumeRole
 Path: "/"
 Policies:
 - PolicyName: root
 PolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Action: "*"
 Resource: "*"
 MyJob:
 Type: AWS::Glue::Job
 Properties:
 Command:
 Name: glueetl
 ScriptLocation: s3://aws-glue-scripts//prod-job1
 DefaultArguments:
 "--job-bookmark-option": job-bookmark-enable
 ExecutionProperty:
 MaxConcurrentRuns: 2
 MaxRetries: 0
 Name: cf-job1
 Role:
 Ref: MyJobRole

AWS tags 955

AWS Glue User Guide

 Tags:
 key1: value1
 key2: value2

For more information, see AWS Tagging Strategies.

For information about how to control access using tags, see ABAC with AWS Glue.

Automating AWS Glue with CloudWatch Events

You can use Amazon CloudWatch Events to automate your AWS services and respond
automatically to system events such as application availability issues or resource changes. Events
from AWS services are delivered to CloudWatch Events in near real time. You can write simple rules
to indicate which events are of interest to you, and what automated actions to take when an event
matches a rule. The actions that can be automatically triggered include the following:

• Invoking an AWS Lambda function

• Invoking Amazon EC2 Run Command

• Relaying the event to Amazon Kinesis Data Streams

• Activating an AWS Step Functions state machine

• Notifying an Amazon SNS topic or an Amazon SQS queue

Some examples of using CloudWatch Events with AWS Glue include the following:

• Activating a Lambda function when an ETL job succeeds

• Notifying an Amazon SNS topic when an ETL job fails

The following CloudWatch Events are generated by AWS Glue.

• Events for "detail-type":"Glue Job State Change" are generated for SUCCEEDED,
FAILED, TIMEOUT, and STOPPED.

• Events for "detail-type":"Glue Job Run Status" are generated for RUNNING,
STARTING, and STOPPING job runs when they exceed the job delay notification threshold. You
must set the job delay notification threshold property to receive these events.

Only one event is generated per job run status when the job delay notification threshold is
exceeded.

Automating with CloudWatch Events 956

https://aws.amazon.com/answers/account-management/aws-tagging-strategies/

AWS Glue User Guide

• Events for "detail-type":"Glue Crawler State Change" are generated for Started,
Succeeded, and Failed.

• Events for "detail-type":"Glue Data Catalog Database State Change" are
generated for CreateDatabase, DeleteDatabase, CreateTable, DeleteTable and
BatchDeleteTable. For example, if a table is created or deleted, a notification is sent to
CloudWatch Events. Note that you cannot write a program that depends on the order or
existence of notification events, as they might be out of sequence or missing. Events are emitted
on a best effort basis. In the details of the notification:

• The typeOfChange contains the name of the API operation.

• The databaseName contains the name of the affected database.

• The changedTables contains up to 100 names of affected tables per notification. When table
names are long, multiple notifications might be created.

• Events for "detail-type":"Glue Data Catalog Table State Change" are generated
for UpdateTable, CreatePartition, BatchCreatePartition, UpdatePartition,
DeletePartition, BatchUpdatePartition and BatchDeletePartition. For example, if
a table or partition is updated, a notification is sent to CloudWatch Events. Note that you cannot
write a program that depends on the order or existence of notification events, as they might
be out of sequence or missing. Events are emitted on a best effort basis. In the details of the
notification:

• The typeOfChange contains the name of the API operation.

• The databaseName contains the name of the database that contains the affected resources.

• The tableName contains the name of the affected table.

• The changedPartitions specifies up to 100 affected partitions in one notification. When
partition names are long, multiple notifications might be created.

For example if there are two partition keys, Year and Month, then "2018,01", "2018,02"
modifies the partition where "Year=2018" and "Month=01" and the partition where
"Year=2018" and "Month=02".

{
 "version":"0",
 "id":"abcdef00-1234-5678-9abc-def012345678",
 "detail-type":"Glue Data Catalog Table State Change",
 "source":"aws.glue",
 "account":"123456789012",
 "time":"2017-09-07T18:57:21Z",

Automating with CloudWatch Events 957

AWS Glue User Guide

 "region":"us-west-2",
 "resources":["arn:aws:glue:us-west-2:123456789012:database/default/foo"],
 "detail":{
 "changedPartitions": [
 "2018,01",
 "2018,02"
],
 "databaseName": "default",
 "tableName": "foo",
 "typeOfChange": "BatchCreatePartition"
 }
}

For more information, see the Amazon CloudWatch Events User Guide. For events specific to AWS
Glue, see AWS Glue Events.

AWS Glue resource monitoring

AWS Glue has service limits to protect customers from unexpected excessive provisioning and from
malicious actions intended to increase your bill. The limits also protect the service. Logging into
the AWS Service Quota console, customers can view their current resource limits and request an
increase (where appropriate).

AWS Glue allows you to view the service's resource usage as a percentage in Amazon CloudWatch
and to configure CloudWatch alarms on it to monitor usage. Amazon CloudWatch provides
monitoring for AWS resources and the customer applications running on the Amazon
infrastructure. The metrics are free of charge to you. The following metrics are supported:

• Number of workflows per account

• Number of triggers per account

• Number of jobs per account

• Number of concurrent job runs per account

• Number of blueprints per account

• Number of interactive sessions per account

AWS Glue resource monitoring 958

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/EventTypes.html#glue-event-types

AWS Glue User Guide

Configuring and using resource metrics

To use this feature, you can go to the Amazon CloudWatch console to view the metrics and
configure alarms. The metrics are under the AWS/Glue namespace and are a percentage of the
actual resource usage count divided by the resource quota. The CloudWatch metrics are delivered
to your accounts, which will be no cost for you. For example, if you have 10 workflows created, and
your service quota allows you to have 200 workflows in maximum, then your usage is 10/200 =
5%, and in graph, you will see a datapoint of 5 as a percentage. To be more specific:

Namespace: AWS/Glue
Metric name: ResourceUsage
Type: Resource
Resource: Workflow (or Trigger, Job, JobRun, Blueprint, InteractiveSession)
Service: Glue
Class: None

To create an alarm on a metric in the CloudWatch console:

1. Once you locate the metric, go to Graphed metrics.

2. Click Create alarm under Actions.

3. Configure the alarm as needed.

We emit metrics whenever your resource usage has a change (such as an increase or decrease).
But if your resource usage doesn't change, we emit metrics hourly, so that you have a continuous

AWS Glue resource monitoring 959

AWS Glue User Guide

CloudWatch graph. To avoid having missing data points, we do not recommend you to configure a
period less than 1 hour.

You can also configure alarms using AWS CloudFormation as in the following example. In this
example, once the workflow resource usage reaches 80%, it triggers an alarm to send a message to
the existing SNS topic, where you can subscribe to it to get notifications.

{
 "Type": "AWS::CloudWatch::Alarm",
 "Properties": {
 "AlarmName": "WorkflowUsageAlarm",
 "ActionsEnabled": true,
 "OKActions": [],
 "AlarmActions": [
 "arn:aws:sns:af-south-1:085425700061:Default_CloudWatch_Alarms_Topic"
],
 "InsufficientDataActions": [],
 "MetricName": "ResourceUsage",
 "Namespace": "AWS/Glue",
 "Statistic": "Maximum",
 "Dimensions": [{
 "Name": "Type",
 "Value": "Resource"
 },
 {
 "Name": "Resource",
 "Value": "Workflow"
 },
 {
 "Name": "Service",
 "Value": "Glue"
 },
 {
 "Name": "Class",
 "Value": "None"
 }
],
 "Period": 3600,
 "EvaluationPeriods": 1,
 "DatapointsToAlarm": 1,
 "Threshold": 80,
 "ComparisonOperator": "GreaterThanThreshold",
 "TreatMissingData": "notBreaching"

AWS Glue resource monitoring 960

AWS Glue User Guide

 }
}

Logging AWS Glue API calls with AWS CloudTrail

AWS Glue is integrated with AWS CloudTrail, a service that provides a record of actions taken by a
user, role, or an AWS service in AWS Glue. CloudTrail captures all API calls for AWS Glue as events.
The calls captured include calls from the AWS Glue console and code calls to the AWS Glue API
operations. If you create a trail, you can enable continuous delivery of CloudTrail events to an
Amazon S3 bucket, including events for AWS Glue. If you don't configure a trail, you can still view
the most recent events in the CloudTrail console in Event history. Using the information collected
by CloudTrail, you can determine the request that was made to AWS Glue, the IP address from
which the request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

AWS Glue information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
AWS Glue, that activity is recorded in a CloudTrail event along with other AWS service events in
Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for AWS Glue, create a trail.
A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create
a trail in the console, the trail applies to all AWS Regions. The trail logs events from all Regions in
the AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally,
you can configure other AWS services to further analyze and act upon the event data collected in
CloudTrail logs. For more information, see the following:

• Creating a trail for your AWS account

• CloudTrail supported services and integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

Logging using CloudTrail 961

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

AWS Glue User Guide

All AWS Glue actions are logged by CloudTrail and are documented in the AWS Glue API . For
example, calls to the CreateDatabase, CreateTable and CreateScript actions generate
entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

However, CloudTrail doesn't log all information regarding calls. For example, it doesn't log certain
sensitive information, such as the ConnectionProperties used in connection requests, and it
logs a null instead of the responses returned by the following APIs:

BatchGetPartition GetCrawlers GetJobs GetTable
CreateScript GetCrawlerMetrics GetJobRun GetTables
GetCatalogImportStatus GetDatabase GetJobRuns GetTableVersions
GetClassifier GetDatabases GetMapping GetTrigger
GetClassifiers GetDataflowGraph GetObjects GetTriggers
GetConnection GetDevEndpoint GetPartition GetUserDefinedFunction
GetConnections GetDevEndpoints GetPartitions GetUserDefinedFunctions
GetCrawler GetJob GetPlan

Understanding AWS Glue log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the DeleteCrawler
action.

{
 "eventVersion": "1.05",

Logging using CloudTrail 962

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS Glue User Guide

 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAIOSFODNN7EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/johndoe",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "johndoe"
 },
 "eventTime": "2017-10-11T22:29:49Z",
 "eventSource": "glue.amazonaws.com",
 "eventName": "DeleteCrawler",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "72.21.198.64",
 "userAgent": "aws-cli/1.11.148 Python/3.6.1 Darwin/16.7.0 botocore/1.7.6",
 "requestParameters": {
 "name": "tes-alpha"
 },
 "responseElements": null,
 "requestID": "b16f4050-aed3-11e7-b0b3-75564a46954f",
 "eventID": "e73dd117-cfd1-47d1-9e2f-d1271cad838c",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

This example shows a CloudTrail log entry that demonstrates a CreateConnection action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAIOSFODNN7EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/johndoe",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "johndoe"
 },
 "eventTime": "2017-10-13T00:19:19Z",
 "eventSource": "glue.amazonaws.com",
 "eventName": "CreateConnection",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "72.21.198.66",
 "userAgent": "aws-cli/1.11.148 Python/3.6.1 Darwin/16.7.0 botocore/1.7.6",
 "requestParameters": {

Logging using CloudTrail 963

AWS Glue User Guide

 "connectionInput": {
 "name": "test-connection-alpha",
 "connectionType": "JDBC",
 "physicalConnectionRequirements": {
 "subnetId": "subnet-323232",
 "availabilityZone": "us-east-1a",
 "securityGroupIdList": [
 "sg-12121212"
]
 }
 }
 },
 "responseElements": null,
 "requestID": "27136ebc-afac-11e7-a7d6-ab217e5c3f19",
 "eventID": "e8b3baeb-c511-4597-880f-c16210c60a4a",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

AWS Glue job run statuses

You can view the status of an AWS Glue extract, transform, and load (ETL) job while it is running or
after it has stopped. You can view the status using the AWS Glue console, the AWS Command Line
Interface (AWS CLI), or the GetJobRun action in the AWS Glue API.

Possible job run statuses are STARTING, RUNNING, STOPPING, STOPPED, SUCCEEDED, FAILED,
ERROR, WAITING and TIMEOUT.

The following table lists the statuses that indicate abnormal job termination.

Job run status Description

FAILED The job exceeded its maximum allowed
concurrent runs, or terminated with an
unknown exit code.

ERROR A workflow, schedule trigger, or event trigger
attempted to run a deleted job.

TIMEOUT The job run time exceeded its specified
timeout value.

Job run statuses 964

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-runs.html#aws-glue-api-jobs-runs-GetJobRun

AWS Glue User Guide

The WAITING status indicates a job run is waiting for resources. The following table describes wait
behavior for different classes of jobs.

Job type Behavior

Spark jobs (Standard) Jobs that have not been configured to retry
based on your maxRetries configuration
may enter the WAITING state. A new job run
will be in the WAITING state if the service is
not able acquire enough resources to start the
run. This may occur due to service quotas for
your account or capacity limits in your region
encountering one of the following error cases:

• Max concurrent job runs per account
exceeded

• Max concurrent job runs per job exceeded
(includes the account level service quota as
well as the limit you specify on the job with
MaxConcurrentRuns)

• Max concurrent compute (DPU usage)
exceeded

• Resource unavailable

For more information about AWS Glue service
quotas, see AWS Glue endpoints and quotas.
The time AWS Glue will wait for resources
may differ based on circumstances. A job may
transition between non-terminal statuses as
it attempts to acquire resources. Eventually,
the job will transition to FAILED if it cannot
acquire resources. AWS Glue will retry for
a maximum of 15 minutes or 10 attempts,
whichever comes first.

Job run statuses 965

https://docs.aws.amazon.com/general/latest/gr/glue.html#limits_glue

AWS Glue User Guide

Job type Behavior

Spark jobs (Flex) A new job run will be in the WAITING state
if the service is not able acquire enough
resources to start the run, which delays the
starting of the run. The run will be in WAITING
state for a maximum of 20 minutes (timeout
controlled by the service). After 15 minutes,
the service will try to do a force start and
depending on available capacity the run may
start or fail with an appropriate error message.

Python shell jobs Same behavior as standard jobs using Spark.

The following state diagram outlines expected state transitions through the lifecycle of a AWS Glue
job. This information is applicable to all job types.

Job run statuses 966

AWS Glue User Guide

Job run statuses 967

AWS Glue User Guide

AWS Glue Streaming

AWS Glue Streaming, a component of AWS Glue, enables you to efficiently handle streaming data
in near real-time, empowering you to carry out crucial tasks such as data ingestion, processing, and
machine learning. Using the Apache Spark Streaming framework, AWS Glue Streaming provides a
serverless service that can handle streaming data at scale. AWS Glue provides various optimizations
on top of Apache Spark such as serverless infrastructure, auto-scaling, visual job development,
instant-on notebooks for streaming jobs and other performance improvements.

Use cases for streaming

Some common use cases for AWS Glue Streaming include:

Near-real-time data processing: AWS Glue Streaming allows organizations to process streaming
data in near real-time, enabling them to derive insights and make timely decisions based on the
latest information.

Fraud detection: You can utilize AWS Glue Streaming for real-time analysis of streaming data,
making it valuable for detecting fraudulent activities, such as credit card fraud, network intrusion,
or online scams. By continuously processing and analyzing incoming data, you can swiftly identify
suspicious patterns or anomalies.

Social media analytics: AWS Glue Streaming can process real-time social media data, such as
tweets, posts, or comments, enabling organizations to monitor trends, sentiment analysis, and
manage brand reputation in real-time.

Internet of Things (IoT) analytics: AWS Glue Streaming is suitable for handling and analyzing
high-velocity streams of data generated by IoT devices, sensors, and connected machinery.
It allows for real-time monitoring, anomaly detection, predictive maintenance, and other IoT
analytics use cases.

Clickstream analysis: AWS Glue Streaming can process and analyze real-time clickstream data
from websites or mobile applications. This enables businesses to gain insights into user behavior,
personalize user experiences, and optimize marketing campaigns based on real-time clickstream
data.

Log monitoring and analysis: AWS Glue Streaming can continuously process and analyze log
data from servers, applications, or network devices in real-time. This helps in detecting anomalies,
troubleshooting issues, and monitoring system health and performance.

Use cases for streaming 968

AWS Glue User Guide

Recommendation systems: AWS Glue Streaming can process user activity data in real-time
and update recommendation models dynamically. This allows for personalized and real-time
recommendations based on user behavior and preferences.

These are some examples of the diverse range of use cases where AWS Glue Streaming can be
applied. Its integration with the AWS ecosystem and managed services make it a convenient choice
for real-time stream processing and analytics in the cloud.

What are the benefits of using AWS Glue Streaming?

The benefits of using AWS Glue Streaming are as follows:

• Serverless: AWS Glue Streaming is serverless, eliminating the need to manage infrastructure.
This reduces the operational overhead and allows users to focus on data processing and analytics
tasks rather than infrastructure management.

• Autoscaling: AWS Glue Streaming provides autoscaling capabilities, dynamically adjusting
the processing capacity based on the workload. It automatically scales out or in to handle
fluctuations in data volume, ensuring optimal performance and resource utilization.

• Visual development: Streaming job development can be complex. AWS Glue Streaming
addresses this challenge by offering AWS Glue Studio, a visual authoring tool. AWS Glue Studio
simplifies the process of creating streaming workflows and enables developers to design and
manage streaming applications visually, reducing the learning curve and increasing productivity.

• Cost-effective: As a serverless service, AWS Glue Streaming offers cost efficiency by eliminating
the need for provisioning and maintaining infrastructure. Users are billed based on the resources
consumed during the execution of streaming jobs, allowing for cost optimization and scaling
based on actual usage.

• Handles complex workloads: AWS Glue Streaming is designed to handle complex streaming
workloads. It can process and analyze large volumes of real-time data, support advanced
transformations, and integrate with other AWS services, enabling sophisticated streaming data
pipelines and analytics workflows.

• No lock-in: AWS Glue Streaming provides flexibility and avoids vendor lock-in. Users can
leverage AWS Glue Streaming as part of the broader AWS ecosystem, integrating it with other
AWS services seamlessly. This allows for easy integration with existing data sources, applications,
and services without being tied to a specific technology or platform.

What are the benefits of using AWS Glue Streaming? 969

AWS Glue User Guide

When to use AWS Glue Streaming?

There are many options when it comes to streaming use cases. We recommend AWS Glue
streaming in the following scenarios.

1. If you are already using AWS Glue or Spark for batch processing, AWS Glue Streaming is
the ideal choice for you. It provides a seamless transition to building streaming jobs without
the need to learn a new language or framework. Leveraging your existing knowledge and
infrastructure, AWS Glue Streaming simplifies the job development process and allows you to
easily extend your data processing capabilities to real-time streaming scenarios.

2. If you require a unified service or product to handle batch, streaming, and event-driven
workloads, AWS Glue Streaming is the solution for you. With AWS Glue Streaming, you can
consolidate your data processing needs into a single framework, eliminating the complexity of
managing multiple systems. This enables efficient development and maintenance of diverse
data workflows while ensuring consistency and compatibility across different workload types.

3. AWS Glue Streaming is well-suited for scenarios involving extremely large streaming
data volumes and complex transformations, such as joins between streams or relational
databases. It can efficiently process and analyze massive streams of data, enabling you to tackle
demanding workloads with ease. Whether it is high-velocity data ingestion or intricate data
manipulations, AWS Glue Streaming's scalability and advanced processing capabilities ensure
optimal performance and accurate results.

4. If you prefer a visual approach to building streaming jobs, AWS Glue offers AWS Glue Studio,
with which you can visually design and manage your streaming applications, simplifying the
development process. This intuitive interface enables developers to create, configure, and
monitor streaming workflows using a visual interface, reducing the learning curve and increasing
productivity.

5. AWS Glue Streaming is an excellent choice for near-real-time use cases where there are
stringent SLAs (Service Level Agreements) greater than 10 seconds.

6. If you are building a transactional data lake using Apache Iceberg, Apache Hudi, or Delta
Lake, AWS Glue Streaming provides native support for these open table formats. This seamless
integration enables you to process streaming data directly from these transactional data lakes,
ensuring data consistency, integrity, and compatibility.

7. When needing to ingest streaming data for a variety of data targets: AWS Glue Streaming
provides native targets to a variety of data targets such as Amazon Redshift, Amazon RDS,
Amazon Aurora, Oracle, SQL Server and other targets.

When to use AWS Glue Streaming? 970

AWS Glue User Guide

Supported data sources

AWS Glue Streaming supports the following data sources:

• Amazon Kinesis

• Amazon MSK (Managed Streaming for Apache Kafka)

• Self-managed Apache Kafka

Supported data targets

AWS Glue Streaming supports a variety of data targets such as:

• Data targets supported by AWS Glue Data Catalog

• Amazon S3

• Amazon Redshift

• MySQL

• PostgreSQL

• Oracle

• Microsoft SQL Server

• Snowflake

• Any database that can be connected using JDBC

• Apache Iceberg, Delta and Apache Hudi

• AWS Glue Marketplace connectors

Tutorial: Build your first streaming workload using AWS Glue
Studio

In this tutorial, you are going to learn how to create a streaming job using AWS Glue Studio. AWS
Glue Studio is a visual interface to create AWS Glue jobs.

You can create streaming extract, transform, and load (ETL) jobs that run continuously and
consume data from streaming sources in Amazon Kinesis Data Streams, Apache Kafka, and Amazon
Managed Streaming for Apache Kafka (Amazon MSK).

Supported data sources 971

AWS Glue User Guide

Prerequisites

To follow this tutorial you'll need a user with AWS console permissions to use AWS Glue, Amazon
Kinesis, Amazon S3, Amazon Athena, AWS CloudFormation, AWS Lambda and Amazon Cognito.

Consume streaming data from Amazon Kinesis

Topics

• Generating mock data with Kinesis Data Generator

• Creating an AWS Glue streaming job with AWS Glue Studio

• Performing a transformation and storing the transformed result in Amazon S3

Generating mock data with Kinesis Data Generator

You can synthetically generate sample data in JSON format using the Kinesis Data Generator
(KDG). You can find full instructions and details in the tool documentation.

1. To get started, click

to run an AWS CloudFormation template on your AWS environment.

Note

You may encounter a CloudFormation template failure because some resources, such as
the Amazon Cognito user for Kinesis Data Generator already exist in your AWS account.
This could be because you already set that up from another tutorial or blog. To address
this, you can either try the template in a new AWS account for a fresh start, or explore
a different AWS Region. These options let you run the tutorial without conflicting with
existing resources.

The template provisions a Kinesis data stream and a Kinesis Data Generator account for you. It
also creates an Amazon S3 bucket to hold the data and a Glue Service Role with the required
permission for this tutorial.

2. Enter a Username and Password that the KDG will use to authenticate. Note the username and
password for further usage.

Prerequisites 972

https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html
https://console.aws.amazon.com/cloudformation/home?region=us-east-2#/stacks/new?templateURL=https%3A%2F%2Faws-data-analytics-workshops.s3.amazonaws.com/aws_glue/aws_glue_streaming/docs/glue-stream.yaml&stackName=glue-stream

AWS Glue User Guide

3. Select Next all the way to the last step. Acknowledge the creation of IAM resources. Check
for any errors at the top of the screen, such as the password not meeting the minimum
requirements, and deploy the template.

4. Navigate to the Outputs tab of the stack. Once the template is deployed, it will display the
generated property KinesisDataGeneratorUrl. Click that URL.

5. Enter the Username and Password you noted down.

6. Select the Region you are using and select the Kinesis Stream GlueStreamTest-
{AWS::AccountId}

7. Enter the following template:

{
 "ventilatorid": {{random.number(100)}},
 "eventtime": "{{date.now("YYYY-MM-DD HH:mm:ss")}}",
 "serialnumber": "{{random.uuid}}",
 "pressurecontrol": {{random.number(
 {
 "min":5,
 "max":30
 }
)}},
 "o2stats": {{random.number(
 {
 "min":92,
 "max":98
 }
)}},
 "minutevolume": {{random.number(
 {
 "min":5,
 "max":8
 }
)}},
 "manufacturer": "{{random.arrayElement(
 ["3M", "GE","Vyaire", "Getinge"]
)}}"
}

You can now view mock data with Test template and ingest the mock data to Kinesis with Send
data.

8. Click Send data and generate 5-10K records to Kinesis.

Consume streaming data from Amazon Kinesis 973

AWS Glue User Guide

Creating an AWS Glue streaming job with AWS Glue Studio

1. Navigate to AWS Glue in the console on the same Region.

2. Select ETL jobs under the left side navigation bar under Data Integration and ETL.

3. Create an AWS Glue Job via Visual with a blank canvas.

4. Navigate to the Job Details tab.

5. For the AWS Glue job name, enter DemoStreamingJob.

6. For IAM Role, select the role provisioned by the CloudFormation template, glue-tutorial-
role-${AWS::AccountId}.

7. For Glue version, select Glue 3.0. Leave all other options as default.

Consume streaming data from Amazon Kinesis 974

AWS Glue User Guide

8. Navigate to the Visual tab.

9. Click on the plus icon. Enter Kinesis in the search bar. Select the Amazon Kinesis data source.

Consume streaming data from Amazon Kinesis 975

AWS Glue User Guide

10.Select Stream details for Amazon Kinesis Source under the tab Data source properties -
Kinesis Stream.

11.Select Stream is located in my account for Location of data stream.

12.Select the Region you are using.

13.Select the GlueStreamTest-{AWS::AccountId} stream.

14.Keep all other settings as default.

Consume streaming data from Amazon Kinesis 976

AWS Glue User Guide

15.Navigate to the Data preview tab.

16.Click Start data preview session, which previews the mock data generated by KDG. Pick the
Glue Service Role you previously created for the AWS Glue Streaming job.

It takes 30-60 seconds for the preview data to show up. If it shows No data to display, click the
gear icon and change the Number of rows to sample to 100.

You can see the sample data as below:

Consume streaming data from Amazon Kinesis 977

AWS Glue User Guide

You can also see the inferred schema in the Output schema tab.

Consume streaming data from Amazon Kinesis 978

AWS Glue User Guide

Performing a transformation and storing the transformed result in Amazon S3

1. With the source node selected, click on the plus icon on the top left to add a Transforms step.

2. Select the Change Schema step.

3. You can rename fields and convert the data type of fields in this step. Rename the o2stats
column to OxygenSaturation and convert all long data type to int.

Consume streaming data from Amazon Kinesis 979

AWS Glue User Guide

4. Click on the plus icon to add an Amazon S3 target. Enter S3 in the search box and select the
Amazon S3 - Target transform step.

Consume streaming data from Amazon Kinesis 980

AWS Glue User Guide

5. Select Parquet as the target file format.

6. Select Snappy as the compression type.

7. Enter an S3 Target Location created by the CloudFormation template, streaming-tutorial-
s3-target-{AWS::AccountId}.

8. Select to Create a table in the Data Catalog and on subsequent runs, update the schema and
add new partitions.

9. Enter the target Database and Table name to store the schema of the Amazon S3 target table.

Consume streaming data from Amazon Kinesis 981

AWS Glue User Guide

10.Click on the Script tab to view the generated code.

11.Click Save on the top right to save the ETL code and then click Run to kick-off the AWS Glue
streaming job.

You can find the Run status in the Runs tab. Let the job run for 3-5 minutes and then stop the
job.

Consume streaming data from Amazon Kinesis 982

AWS Glue User Guide

12.Verify the new table created in Amazon Athena.

Tutorial: Build your first streaming workload using AWS Glue
Studio notebooks

In this tutorial, you will explore how to leverage AWS Glue Studio notebooks to interactively build
and refine your ETL jobs for near real-time data processing. Whether you're new to AWS Glue or
looking to enhance your skill set, this guide will walk you through the process, empowering you to
harness the full potential of AWS Glue interactive session notebooks.

Tutorial: Build your first streaming workload using AWS Glue Studio notebooks 983

AWS Glue User Guide

With AWS Glue Streaming, you can create streaming extract, transform, and load (ETL) jobs that
run continuously and consume data from streaming sources such as Amazon Kinesis Data Streams,
Apache Kafka, and Amazon Managed Streaming for Apache Kafka (Amazon MSK).

Prerequisites

To follow this tutorial you'll need a user with AWS console permissions to use AWS Glue, Amazon
Kinesis, Amazon S3, Amazon Athena, AWS CloudFormation, AWS Lambda and Amazon Cognito.

Consume streaming data from Amazon Kinesis

Topics

• Generating mock data with Kinesis Data Generator

• Creating an AWS Glue streaming job with AWS Glue Studio

• Clean up

• Conclusion

Generating mock data with Kinesis Data Generator

Note

If you have already completed our previous Tutorial: Build your first streaming workload
using AWS Glue Studio, you already have the Kinesis Data Generator installed on your
account and you can skip steps 1-8 below and move on to the section Creating an AWS
Glue streaming job with AWS Glue Studio.

You can synthetically generate sample data in JSON format using the Kinesis Data Generator
(KDG). You can find full instructions and details in the tool documentation.

1. To get started, click

to run an AWS CloudFormation template on your AWS environment.

Prerequisites 984

https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html
https://aws-data-analytics-workshops.s3.amazonaws.com/aws_glue/aws_glue_streaming/docs/glue-stream.yaml

AWS Glue User Guide

Note

You may encounter a CloudFormation template failure because some resources, such as
the Amazon Cognito user for Kinesis Data Generator already exist in your AWS account.
This could be because you already set that up from another tutorial or blog. To address
this, you can either try the template in a new AWS account for a fresh start, or explore
a different AWS Region. These options let you run the tutorial without conflicting with
existing resources.

The template provisions a Kinesis data stream and a Kinesis Data Generator account for you.

2. Enter a Username and Password that the KDG will use to authenticate. Note the username and
password for further usage.

3. Select Next all the way to the last step. Acknowledge the creation of IAM resources. Check
for any errors at the top of the screen, such as the password not meeting the minimum
requirements, and deploy the template.

4. Navigate to the Outputs tab of the stack. Once the template is deployed, it will display the
generated property KinesisDataGeneratorUrl. Click that URL.

5. Enter the Username and Password you noted down.

6. Select the Region you are using and select the Kinesis Stream GlueStreamTest-
{AWS::AccountId}

7. Enter the following template:

{
 "ventilatorid": {{random.number(100)}},
 "eventtime": "{{date.now("YYYY-MM-DD HH:mm:ss")}}",
 "serialnumber": "{{random.uuid}}",
 "pressurecontrol": {{random.number(
 {
 "min":5,
 "max":30
 }
)}},
 "o2stats": {{random.number(
 {
 "min":92,
 "max":98

Consume streaming data from Amazon Kinesis 985

AWS Glue User Guide

 }
)}},
 "minutevolume": {{random.number(
 {
 "min":5,
 "max":8
 }
)}},
 "manufacturer": "{{random.arrayElement(
 ["3M", "GE","Vyaire", "Getinge"]
)}}"
}

You can now view mock data with Test template and ingest the mock data to Kinesis with Send
data.

8. Click Send data and generate 5-10K records to Kinesis.

Creating an AWS Glue streaming job with AWS Glue Studio

AWS Glue Studio is a visual interface that simplifies the process of designing, orchestrating, and
monitoring data integration pipelines. It enables users to build data transformation pipelines
without writing extensive code. Apart from the visual job authoring experience, AWS Glue Studio
also includes a Jupyter notebook backed by AWS Glue Interactive sessions, which you will be using
in the remainder of this tutorial.

Set up the AWS Glue Streaming interactive sessions job

1. Download the provided notebook file and save it to a local directory

2. Open the AWS Glue Console and on the left pane click Notebooks > Jupyter Notebook >
Upload and edit an existing notebook. Upload the notebook from the previous step and click
Create.

Consume streaming data from Amazon Kinesis 986

https://aws-data-analytics-workshops.s3.amazonaws.com/aws_glue/aws_glue_streaming/docs/glue_streaming_tutorial_notebook.ipynb

AWS Glue User Guide

3. Provide the job a name, role and select the default Spark kernel. Next click Start notebook. For
the IAM Role, select the role provisioned by the CloudFormation template. You can see this in
the Outputs tab of CloudFormation.

The notebook has all necessary instructions to continue the tutorial. You can either run
the instructions on the notebook or follow along with this tutorial to continue with the job
development.

Consume streaming data from Amazon Kinesis 987

AWS Glue User Guide

Run the notebook cells

1. (Optional) The first code cell, %help lists all available notebook magics. You can skip this cell for
now, but feel free to explore it.

2. Start with the next code block %streaming. This magic sets the job type to streaming which
lets you develop, debug and deploy an AWS Glue streaming ETL job.

3. Run the next cell to create an AWS Glue interactive session. The output cell has a message that
confirms the session creation.

4. The next cell defines the variables. Replace the values with ones appropriate to your job and run
the cell. For example:

5. Since the data is being streamed already to Kinesis Data Streams, your next cell will consume
the results from the stream. Run the next cell. Since there are no print statements, there is no
expected output from this cell.

Consume streaming data from Amazon Kinesis 988

AWS Glue User Guide

6. In the following cell, you explore the incoming stream by taking a sample set and print its
schema and the actual data. For example:

7. Next, define the actual data transformation logic. The cell consists of the processBatch
method that is triggered during every micro-batch. Run the cell. At a high level, we do the
following to the incoming stream:

a. Select a subset of the input columns.

b. Rename a column (o2stats to oxygen_stats).

c. Derive new columns (serial_identifier, ingest_year, ingest_month and ingest_day).

d. Store the results into an Amazon S3 bucket and also create a partitioned AWS Glue catalog
table

8. In the last cell, you trigger the process batch every 10 seconds. Run the cell and wait for about
30 seconds for it to populate the Amazon S3 bucket and the AWS Glue catalog table.

9. Finally, browse the stored data using the Amazon Athena query editor. You can see the renamed
column and also the new partitions.

Consume streaming data from Amazon Kinesis 989

AWS Glue User Guide

The notebook has all necessary instructions to continue the tutorial. You can either run
the instructions on the notebook or follow along with this tutorial to continue with the job
development.

Save and run the AWS Glue job

With the development and testing of your application complete using the interactive sessions
notebook, click Save at the top of the notebook interface. Once saved you can also run the
application as a job.

Consume streaming data from Amazon Kinesis 990

AWS Glue User Guide

Clean up

To avoid incurring additional charges to your account, stop the streaming job that you started as
part of the instructions. You can do this by stopping the notebook, which will end the session.
Empty the Amazon S3 bucket and delete the AWS CloudFormation stack that you provisioned
earlier.

Conclusion

In this tutorial, we demonstrated how to do the following using the AWS Glue Studio notebook

• Author a streaming ETL job using notebooks

• Preview incoming data streams

• Code and fix issues without having to publish AWS Glue jobs

• Review the end-to-end working code, remove any debugging, and print statements or cells from
the notebook

• Publish the code as an AWS Glue job

The goal of this tutorial is to give you hands-on experience working with AWS Glue Streaming
and interactive sessions. We encourage you to use this as a reference for your individual AWS Glue
Streaming use cases. For more information, see Getting started with AWS Glue interactive sessions.

AWS Glue Streaming concepts

The following sections provide information on concepts of AWS Glue Streaming.

Topics

• Anatomy of a AWS Glue streaming job

• Kafka connections

• Kinesis connections

• AWS Glue Streaming options

Anatomy of a AWS Glue streaming job

AWS Glue streaming jobs operate on the Spark streaming paradigm and leverage structured
streaming from the Spark framework. Streaming jobs constantly poll on the streaming data source,

Streaming concepts 991

AWS Glue User Guide

at a specific interval of time, to fetch records as micro batches. The following sections examine the
different parts of a AWS Glue streaming job.

forEachBatch

The forEachBatch method is the entry point of a AWS Glue streaming job run. AWS Glue
streaming jobs uses the forEachBatch method to poll data functioning like an iterator that
remains active during the lifecycle of the streaming job and regularly polls the streaming source for
new data and processes the latest data in micro batches.

glueContext.forEachBatch(
 frame=dataFrame_AmazonKinesis_node1696872487972,
 batch_function=processBatch,
 options={
 "windowSize": "100 seconds",
 "checkpointLocation": args["TempDir"] + "/" + args["JOB_NAME"] + "/
checkpoint/",
 },
)

Anatomy of a AWS Glue streaming job 992

AWS Glue User Guide

Configure the frame property of forEachBatch to specify a streaming source. In this example,
the source node that you created in the blank canvas during job creation is populated with the
default DataFrame of the job. Set the batch_function property as the function that you
decide to invoke for each micro batch operation. You must define a function to handle the batch
transformation on the incoming data.

Source

In the first step of the processBatch function, the program verifies the record count of the
DataFrame that you defined as frame property of forEachBatch. The program appends
an ingestion time stamp to a non-empty DataFrame. The data_frame.count()>0 clause
determines whether the latest micro batch is not empty and is ready for further processing.

def processBatch(data_frame, batchId):
 if data_frame.count() >0:
 AmazonKinesis_node1696872487972 = DynamicFrame.fromDF(
 glueContext.add_ingestion_time_columns(data_frame, "hour"),
 glueContext,
 "from_data_frame",
)

Mapping

The next section of the program is to apply mapping. The Mapping.apply method on a spark
DataFrame allows you to define transformation rule around data elements. Typically you can
rename, change the data type, or apply a custom function on the source data column and map
those to the target columns.

 #Script generated for node ChangeSchema
 ChangeSchema_node16986872679326 = ApplyMapping.apply(
 frame = AmazonKinesis_node1696872487972,
 mappings = [
 ("eventtime", "string", "eventtime", "string"),
 ("manufacturer", "string", "manufacturer", "string"),
 ("minutevolume", "long", "minutevolume", "int"),
 ("o2stats", "long", "OxygenSaturation", "int"),

Anatomy of a AWS Glue streaming job 993

AWS Glue User Guide

 ("pressurecontrol", "long", "pressurecontrol", "int"),
 ("serialnumber", "string", "serialnumber", "string"),
 ("ventilatorid", "long", "ventilatorid", "long"),
 ("ingest_year", "string", "ingest_year", "string"),
 ("ingest_month", "string", "ingest_month", "string"),
 ("ingest_day", "string", "ingest_day", "string"),
 ("ingest_hour", "string", "ingest_hour", "string"),
],
 transformation_ctx="ChangeSchema_node16986872679326",
)
)

Sink

In this section, the incoming data set from the streaming source are stored at a target location.
In this example we will write the data to an Amazon S3 location. The AmazonS3_node_path
property details is pre-populated as determined by the settings you used during job creation
from the canvas. You can set the updateBehavior based on your use case and decide to either
Not update the data catalog table, or Create data catalog and update data catalog schema on
subsequent runs, or create a catalog table and not update the schema definition on subsequent
runs.

The partitionKeys property defines the storage partition option. The default behavior is to
partition the data per the ingestion_time_columns that was made available in the source
section. The compression property allows you to set the compression algorithm to be applied
during target write. You have options to set Snappy, LZO, or GZIP as the compression technique.
The enableUpdateCatalog property controls whether the AWS Glue catalog table needs to be
updated. Available options for this property are True or False.

 #Script generated for node Amazon S3
 AmazonS3_node1696872743449 = glueContext.getSink(
 path = AmazonS3_node1696872743449_path,
 connection_type = "s3",
 updateBehavior = "UPDATE_IN_DATABASE",
 partitionKeys = ["ingest_year", "ingest_month", "ingest_day", "ingest_hour"],
 compression = "snappy",
 enableUpdateCatalog = True,
 transformation_ctx = "AmazonS3_node1696872743449",
)

Anatomy of a AWS Glue streaming job 994

AWS Glue User Guide

AWS Glue Catalog sink

This section of the job controls the AWS Glue catalog table update behavior. Set
catalogDatabase and catalogTableName property per your AWS Glue Catalog database name
and the table name associated with the AWS Glue job that you are designing. You can define the
file format of the target data via the setFormat property. For this example we will store the data
in parquet format.

Once you set up and run the AWS Glue streaming job referring this tutorial, the streaming data
produced at Amazon Kinesis Data Streams will be stored at the Amazon S3 location in a parquet
format with snappy compression. On successful runs of the streaming job you will able to query
the data through Amazon Athena.

 AmazonS3_node1696872743449 = setCatalogInfo(
 catalogDatabase = "demo", catalogTableName = "demo_stream_transform_result"
)
 AmazonS3_node1696872743449.setFormat("glueparquet")
 AmazonS3_node1696872743449.writeFormat("ChangeSchema_node16986872679326")
)

Kafka connections

Designates a connection to a Kafka cluster or an Amazon Managed Streaming for Apache Kafka
cluster.

You can read and write to Kafka data streams using information stored in a Data Catalog table,
or by providing information to directly access the data stream. You can read information from
Kafka into a Spark DataFrame, then convert it to a AWS Glue DynamicFrame. You can write
DynamicFrames to Kafka in a JSON format. If you directly access the data stream, use these options
to provide the information about how to access the data stream.

If you use getCatalogSource or create_data_frame_from_catalog to consume records
from a Kafka streaming source, or getCatalogSink or write_dynamic_frame_from_catalog

Kafka connections 995

AWS Glue User Guide

to write records to Kafka, and the job has the Data Catalog database and table name information,
and can use that to obtain some basic parameters for reading from the Kafka streaming source.
If you use getSource, getCatalogSink, getSourceWithFormat, getSinkWithFormat,
createDataFrameFromOptions or create_data_frame_from_options, or
write_dynamic_frame_from_catalog, you must specify these basic parameters using the
connection options described here.

You can specify the connection options for Kafka using the following arguments for the specified
methods in the GlueContext class.

• Scala

• connectionOptions: Use with getSource, createDataFrameFromOptions, getSink

• additionalOptions: Use with getCatalogSource, getCatalogSink

• options: Use with getSourceWithFormat, getSinkWithFormat

• Python

• connection_options: Use with create_data_frame_from_options,
write_dynamic_frame_from_options

• additional_options: Use with create_data_frame_from_catalog,
write_dynamic_frame_from_catalog

• options: Use with getSource, getSink

For notes and restrictions about streaming ETL jobs, consult the section called “Streaming ETL
notes and restrictions”.

Configure Kafka

There are no AWS prerequisites to connecting to Kafka streams available through the internet.

You can create a AWS Glue Kafka connection to manage your connection credentials. For more
information, see the section called “Creating a connection for a Kafka data stream”. In your AWS
Glue job configuration, provide connectionName as an Additional network connection, then, in
your method call, provide connectionName to the connectionName parameter.

In certain cases, you will need to configure additional prerequisites:

• If using Amazon Managed Streaming for Apache Kafka with IAM authentication, you will need
appropriate IAM configuration.

Kafka connections 996

AWS Glue User Guide

• If using Amazon Managed Streaming for Apache Kafka within an Amazon VPC, you will need
appropriate Amazon VPC configuration. You will need to create a AWS Glue connection that
provides Amazon VPC connection information. You will need your job configuration to include
the AWS Glue connection as an Additional network connection.

For more information about Streaming ETL job prerequisites, consult the section called “Streaming
ETL jobs”.

Example: Reading from Kafka streams

Used in conjunction with the section called “forEachBatch”.

Example for Kafka streaming source:

kafka_options =
 { "connectionName": "ConfluentKafka",
 "topicName": "kafka-auth-topic",
 "startingOffsets": "earliest",
 "inferSchema": "true",
 "classification": "json"
 }
data_frame_datasource0 =
 glueContext.create_data_frame.from_options(connection_type="kafka",
 connection_options=kafka_options)

Example: Writing to Kafka streams

Examples for writing to Kafka:

Example with the getSink method:

data_frame_datasource0 =
glueContext.getSink(
 connectionType="kafka",
 connectionOptions={
 JsonOptions("""{
 "connectionName": "ConfluentKafka",
 "classification": "json",
 "topic": "kafka-auth-topic",
 "typeOfData": "kafka"}
 """)},

Kafka connections 997

AWS Glue User Guide

 transformationContext="dataframe_ApacheKafka_node1711729173428")
 .getDataFrame()

Example with the write_dynamic_frame.from_options method:

kafka_options =
 { "connectionName": "ConfluentKafka",
 "topicName": "kafka-auth-topic",
 "classification": "json"
 }
data_frame_datasource0 =
 glueContext.write_dynamic_frame.from_options(connection_type="kafka",
 connection_options=kafka_options)

Kafka connection option reference

When reading, use the following connection options with "connectionType": "kafka":

• "bootstrap.servers" (Required) A list of bootstrap server URLs, for example, as b-1.vpc-
test-2.o4q88o.c6.kafka.us-east-1.amazonaws.com:9094. This option must be
specified in the API call or defined in the table metadata in the Data Catalog.

• "security.protocol" (Required) The protocol used to communicate with brokers. The
possible values are "SSL" or "PLAINTEXT".

• "topicName" (Required) A comma-separated list of topics to subscribe to. You must specify one
and only one of "topicName", "assign" or "subscribePattern".

• "assign": (Required) A JSON string specifying the specific TopicPartitions to consume. You
must specify one and only one of "topicName", "assign" or "subscribePattern".

Example: '{"topicA":[0,1],"topicB":[2,4]}'

• "subscribePattern": (Required) A Java regex string that identifies the topic list to subscribe
to. You must specify one and only one of "topicName", "assign" or "subscribePattern".

Example: 'topic.*'

• "classification" (Required) The file format used by the data in the record. Required unless
provided through the Data Catalog.

• "delimiter" (Optional) The value separator used when classification is CSV. Default is
",."

Kafka connections 998

AWS Glue User Guide

• "startingOffsets": (Optional) The starting position in the Kafka topic to read data from. The
possible values are "earliest" or "latest". The default value is "latest".

• "startingTimestamp": (Optional, supported only for AWS Glue version 4.0 or later) The
Timestamp of the record in the Kafka topic to read data from. The possible value is a Timestamp
string in UTC format in the pattern yyyy-mm-ddTHH:MM:SSZ (where Z represents a UTC
timezone offset with a +/-. For example: "2023-04-04T08:00:00-04:00").

Note: Only one of 'startingOffsets' or 'startingTimestamp' can be present in the Connection
Options list of the AWS Glue streaming script, including both these properties will result in job
failure.

• "endingOffsets": (Optional) The end point when a batch query is ended. Possible values are
either "latest" or a JSON string that specifies an ending offset for each TopicPartition.

For the JSON string, the format is {"topicA":{"0":23,"1":-1},"topicB":{"0":-1}}.
The value -1 as an offset represents "latest".

• "pollTimeoutMs": (Optional) The timeout in milliseconds to poll data from Kafka in Spark job
executors. The default value is 512.

• "numRetries": (Optional) The number of times to retry before failing to fetch Kafka offsets.
The default value is 3.

• "retryIntervalMs": (Optional) The time in milliseconds to wait before retrying to fetch Kafka
offsets. The default value is 10.

• "maxOffsetsPerTrigger": (Optional) The rate limit on the maximum number of offsets that
are processed per trigger interval. The specified total number of offsets is proportionally split
across topicPartitions of different volumes. The default value is null, which means that the
consumer reads all offsets until the known latest offset.

• "minPartitions": (Optional) The desired minimum number of partitions to read from Kafka.
The default value is null, which means that the number of spark partitions is equal to the
number of Kafka partitions.

• "includeHeaders": (Optional) Whether to include the Kafka headers. When the
option is set to "true", the data output will contain an additional column named
"glue_streaming_kafka_headers" with type Array[Struct(key: String, value:
String)]. The default value is "false". This option is available in AWS Glue version 3.0 or later.

• "schema": (Required when inferSchema set to false) The schema to use to process the
payload. If classification is avro the provided schema must be in the Avro schema format. If the
classification is not avro the provided schema must be in the DDL schema format.

Kafka connections 999

AWS Glue User Guide

The following are schema examples.

Example in DDL schema format

'column1' INT, 'column2' STRING , 'column3' FLOAT

Example in Avro schema format

{
"type":"array",
"items":
{
"type":"record",
"name":"test",
"fields":
[
 {
 "name":"_id",
 "type":"string"
 },
 {
 "name":"index",
 "type":
 [
 "int",
 "string",
 "float"
]
 }
]
}
}

• "inferSchema": (Optional) The default value is 'false'. If set to 'true', the schema will be
detected at runtime from the payload within foreachbatch.

• "avroSchema": (Deprecated) Parameter used to specify a schema of Avro data when Avro
format is used. This parameter is now deprecated. Use the schema parameter.

• "addRecordTimestamp": (Optional) When this option is set to 'true', the data output will
contain an additional column named "__src_timestamp" that indicates the time when the
corresponding record received by the topic. The default value is 'false'. This option is supported
in AWS Glue version 4.0 or later.

Kafka connections 1000

AWS Glue User Guide

• "emitConsumerLagMetrics": (Optional) When the option is set to 'true', for each
batch, it will emit the metrics for the duration between the oldest record received
by the topic and the time it arrives in AWS Glue to CloudWatch. The metric's name is
"glue.driver.streaming.maxConsumerLagInMs". The default value is 'false'. This option is
supported in AWS Glue version 4.0 or later.

When writing, use the following connection options with "connectionType": "kafka":

• "connectionName" (Required) Name of the AWS Glue connection used to connect to the Kafka
cluster (similar to Kafka source).

• "topic" (Required) If a topic column exists then its value is used as the topic when writing the
given row to Kafka, unless the topic configuration option is set. That is, the topic configuration
option overrides the topic column.

• "partition" (Optional) If a valid partition number is specified, that partition will be used
when sending the record.

If no partition is specified but a key is present, a partition will be chosen using a hash of the key.

If neither key nor partition is present, a partition will be chosen based on sticky partitioning
those changes when at least batch.size bytes are produced to the partition.

• "key" (Optional) Used for partitioning if partition is null.

• "classification" (Optional) The file format used by the data in the record. We only support
JSON, CSV and Avro.

With Avro format, we can provide a custom avroSchema to serialize with, but note that this
needs to be provided on the source for deserializing as well. Else, by default it uses the Apache
AvroSchema for serializing.

Additionally, you can fine-tune the Kafka sink as required by updating the Kafka producer
configuration parameters. Note that there is no allow listing on connection options, all the key-
value pairs are persisted on the sink as is.

However, there is a small deny list of options that will not take effect. For more information, see
Kafka specific configurations.

Kinesis connections

Kinesis connections 1001

https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#producerconfigs
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html

AWS Glue User Guide

You can read and write to Amazon Kinesis data streams using information stored in a Data Catalog
table, or by providing information to directly access the data stream. You can read information
from Kinesis into a Spark DataFrame, then convert it to a AWS Glue DynamicFrame. You can write
DynamicFrames to Kinesis in a JSON format. If you directly access the data stream, use these
options to provide the information about how to access the data stream.

If you use getCatalogSource or create_data_frame_from_catalog to consume
records from a Kinesis streaming source, the job has the Data Catalog database and
table name information, and can use that to obtain some basic parameters for reading
from the Kinesis streaming source. If you use getSource, getSourceWithFormat,
createDataFrameFromOptions or create_data_frame_from_options, you must specify
these basic parameters using the connection options described here.

You can specify the connection options for Kinesis using the following arguments for the specified
methods in the GlueContext class.

• Scala

• connectionOptions: Use with getSource, createDataFrameFromOptions, getSink

• additionalOptions: Use with getCatalogSource, getCatalogSink

• options: Use with getSourceWithFormat, getSinkWithFormat

• Python

• connection_options: Use with create_data_frame_from_options,
write_dynamic_frame_from_options

• additional_options: Use with create_data_frame_from_catalog,
write_dynamic_frame_from_catalog

• options: Use with getSource, getSink

For notes and restrictions about Streaming ETL jobs, consult the section called “Streaming ETL
notes and restrictions”.

Configure Kinesis

To connect to a Kinesis data stream in an AWS Glue Spark job, you will need some prerequisites:

• If reading, the AWS Glue job must have Read access level IAM permissions to the Kinesis data
stream.

Kinesis connections 1002

AWS Glue User Guide

• If writing, the AWS Glue job must have Write access level IAM permissions to the Kinesis data
stream.

In certain cases, you will need to configure additional prerequisites:

• If your AWS Glue job is configured with Additional network connections (typically to connect
to other datasets) and one of those connections provides Amazon VPC Network options,
this will direct your job to communicate over Amazon VPC. In this case you will also need to
configure your Kinesis data stream to communicate over Amazon VPC. You can do this by
creating an interface VPC endpoint between your Amazon VPC and Kinesis data stream. For more
information, see Using Kinesis Data Streams with Interface VPC Endpoints.

• When specifying Amazon Kinesis Data Streams in another account, you must setup the roles and
policies to allow cross-account access. For more information, see Example: Read From a Kinesis
Stream in a Different Account.

For more information about Streaming ETL job prerequisites, consult the section called “Streaming
ETL jobs”.

Read from Kinesis

Example: Reading from Kinesis streams

Used in conjunction with the section called “forEachBatch”.

Example for Amazon Kinesis streaming source:

kinesis_options =
 { "streamARN": "arn:aws:kinesis:us-east-2:777788889999:stream/fromOptionsStream",
 "startingPosition": "TRIM_HORIZON",
 "inferSchema": "true",
 "classification": "json"
 }
data_frame_datasource0 =
 glueContext.create_data_frame.from_options(connection_type="kinesis",
 connection_options=kinesis_options)

Kinesis connections 1003

https://docs.aws.amazon.com/streams/latest/dev/vpc.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/examples-cross.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/examples-cross.html

AWS Glue User Guide

Write to Kinesis

Example: Writing to Kinesis streams

Used in conjunction with the section called “forEachBatch”. Your DynamicFrame will be written
to the stream in a JSON format. If the job cannot write after several retries, it will fail. By default,
each DynamicFrame record will be sent to the Kinesis stream individually. You can configure this
behavior using aggregationEnabled and associated parameters.

Example writing to Amazon Kinesis from a streaming job:

Python

glueContext.write_dynamic_frame.from_options(
 frame=frameToWrite
 connection_type="kinesis",
 connection_options={
 "partitionKey": "part1",
 "streamARN": "arn:aws:kinesis:us-east-1:111122223333:stream/streamName",
 }
)

Scala

glueContext.getSinkWithFormat(
 connectionType="kinesis",
 options=JsonOptions("""{
 "streamARN": "arn:aws:kinesis:us-
east-1:111122223333:stream/streamName",
 "partitionKey": "part1"
 }"""),
)
 .writeDynamicFrame(frameToWrite)

Kinesis connection parameters

Designates connection options for Amazon Kinesis Data Streams.

Use the following connection options for Kinesis streaming data sources:

• "streamARN" (Required) Used for Read/Write. The ARN of the Kinesis data stream.

Kinesis connections 1004

AWS Glue User Guide

• "classification" (Required for read) Used for Read. The file format used by the data in the
record. Required unless provided through the Data Catalog.

• "streamName" – (Optional) Used for Read. The name of a Kinesis data stream to read from.
Used with endpointUrl.

• "endpointUrl" – (Optional) Used for Read. Default: "https://kinesis.us-
east-1.amazonaws.com". The AWS endpoint of the Kinesis stream. You do not need to change
this unless you are connecting to a special region.

• "partitionKey" – (Optional) Used for Write. The Kinesis partition key used when producing
records.

• "delimiter" (Optional) Used for Read. The value separator used when classification is
CSV. Default is ",."

• "startingPosition": (Optional) Used for Read. The starting position in the Kinesis data
stream to read data from. The possible values are "latest", "trim_horizon", "earliest",
or a Timestamp string in UTC format in the pattern yyyy-mm-ddTHH:MM:SSZ (where Z
represents a UTC timezone offset with a +/-. For example "2023-04-04T08:00:00-04:00").
The default value is "latest". Note: the Timestamp string in UTC Format for
"startingPosition" is supported only for AWS Glue version 4.0 or later.

• "failOnDataLoss": (Optional) Fail the job if any active shard is missing or expired. The default
value is "false".

• "awsSTSRoleARN": (Optional) Used for Read/Write. The Amazon Resource Name (ARN)
of the role to assume using AWS Security Token Service (AWS STS). This role must have
permissions for describe or read record operations for the Kinesis data stream. You must use
this parameter when accessing a data stream in a different account. Used in conjunction with
"awsSTSSessionName".

• "awsSTSSessionName": (Optional) Used for Read/Write. An identifier for the session assuming
the role using AWS STS. You must use this parameter when accessing a data stream in a different
account. Used in conjunction with "awsSTSRoleARN".

• "awsSTSEndpoint": (Optional) The AWS STS endpoint to use when connecting to Kinesis with
an assumed role. This allows using the regional AWS STS endpoint in a VPC, which is not possible
with the default global endpoint.

• "maxFetchTimeInMs": (Optional) Used for Read. The maximum time spent for the job executor
to read records for the current batch from the Kinesis data stream, specified in milliseconds (ms).
Multiple GetRecords API calls may be made within this time. The default value is 1000.

Kinesis connections 1005

AWS Glue User Guide

• "maxFetchRecordsPerShard": (Optional) Used for Read. The maximum number of records
to fetch per shard in the Kinesis data stream per microbatch. Note: The client can exceed this
limit if the streaming job has already read extra records from Kinesis (in the same get-records
call). If maxFetchRecordsPerShard needs to be strict then it needs to be a multiple of
maxRecordPerRead. The default value is 100000.

• "maxRecordPerRead": (Optional) Used for Read. The maximum number of records to fetch
from the Kinesis data stream in each getRecords operation. The default value is 10000.

• "addIdleTimeBetweenReads": (Optional) Used for Read. Adds a time delay between
two consecutive getRecords operations. The default value is "False". This option is only
configurable for Glue version 2.0 and above.

• "idleTimeBetweenReadsInMs": (Optional) Used for Read. The minimum time delay between
two consecutive getRecords operations, specified in ms. The default value is 1000. This option
is only configurable for Glue version 2.0 and above.

• "describeShardInterval": (Optional) Used for Read. The minimum time interval between
two ListShards API calls for your script to consider resharding. For more information, see
Strategies for Resharding in Amazon Kinesis Data Streams Developer Guide. The default value is
1s.

• "numRetries": (Optional) Used for Read. The maximum number of retries for Kinesis Data
Streams API requests. The default value is 3.

• "retryIntervalMs": (Optional) Used for Read. The cool-off time period (specified in ms)
before retrying the Kinesis Data Streams API call. The default value is 1000.

• "maxRetryIntervalMs": (Optional) Used for Read. The maximum cool-off time period
(specified in ms) between two retries of a Kinesis Data Streams API call. The default value is
10000.

• "avoidEmptyBatches": (Optional) Used for Read. Avoids creating an empty microbatch job by
checking for unread data in the Kinesis data stream before the batch is started. The default value
is "False".

• "schema": (Required when inferSchema set to false) Used for Read. The schema to use to
process the payload. If classification is avro the provided schema must be in the Avro schema
format. If the classification is not avro the provided schema must be in the DDL schema format.

The following are schema examples.

Kinesis connections 1006

https://docs.aws.amazon.com/streams/latest/dev/kinesis-using-sdk-java-resharding-strategies.html

AWS Glue User Guide

Example in DDL schema format

`column1` INT, `column2` STRING , `column3` FLOAT

Example in Avro schema format

{
 "type":"array",
 "items":
 {
 "type":"record",
 "name":"test",
 "fields":
 [
 {
 "name":"_id",
 "type":"string"
 },
 {
 "name":"index",
 "type":
 [
 "int",
 "string",
 "float"
]
 }
]
 }
}

• "inferSchema": (Optional) Used for Read. The default value is 'false'. If set to 'true', the schema
will be detected at runtime from the payload within foreachbatch.

• "avroSchema": (Deprecated) Used for Read. Parameter used to specify a schema of Avro data
when Avro format is used. This parameter is now deprecated. Use the schema parameter.

• "addRecordTimestamp": (Optional) Used for Read. When this option is set to 'true', the data
output will contain an additional column named "__src_timestamp" that indicates the time
when the corresponding record received by the stream. The default value is 'false'. This option is
supported in AWS Glue version 4.0 or later.

Kinesis connections 1007

AWS Glue User Guide

• "emitConsumerLagMetrics": (Optional) Used for Read. When the option is set to 'true',
for each batch, it will emit the metrics for the duration between the oldest record received
by the stream and the time it arrives in AWS Glue to CloudWatch. The metric's name is
"glue.driver.streaming.maxConsumerLagInMs". The default value is 'false'. This option is
supported in AWS Glue version 4.0 or later.

• "fanoutConsumerARN": (Optional) Used for Read. The ARN of a Kinesis stream consumer for
the stream specified in streamARN. Used to enable enhanced fan-out mode for your Kinesis
connection. For more information on consuming a Kinesis stream with enhanced fan-out, see the
section called “Using enhanced fan-out in Kinesis streaming jobs”.

• "recordMaxBufferedTime" – (Optional) Used for Write. Default: 1000 (ms). Maximum time a
record is buffered while waiting to be written.

• "aggregationEnabled" – (Optional) Used for Write. Default: true. Specifies if records should
be aggregated before sending them to Kinesis.

• "aggregationMaxSize" – (Optional) Used for Write. Default: 51200 (bytes). If a record is
larger than this limit, it will bypass the aggregator. Note Kinesis enforces a limit of 50KB on
record size. If you set this beyond 50KB, oversize records will be rejected by Kinesis.

• "aggregationMaxCount" – (Optional) Used for Write. Default: 4294967295. Maximum
number of items to pack into an aggregated record.

• "producerRateLimit" – (Optional) Used for Write. Default: 150 (%). Limits per-shard
throughput sent from a single producer (such as your job), as a percentage of the backend limit.

• "collectionMaxCount" – (Optional) Used for Write. Default: 500. Maximum number of items
to pack into an PutRecords request.

• "collectionMaxSize" – (Optional) Used for Write. Default: 5242880 (bytes). Maximum
amount of data to send with a PutRecords request.

AWS Glue Streaming options

Designates a connection to a Kafka cluster or an Amazon Managed Streaming for Apache Kafka
cluster.

You can read and write to Kafka data streams using information stored in a Data Catalog table,
or by providing information to directly access the data stream. You can read information from
Kafka into a Spark DataFrame, then convert it to a AWS Glue DynamicFrame. You can write
DynamicFrames to Kafka in a JSON format. If you directly access the data stream, use these options
to provide the information about how to access the data stream.

Streaming options 1008

AWS Glue User Guide

If you use getCatalogSource or create_data_frame_from_catalog to consume records
from a Kafka streaming source, or getCatalogSink or write_dynamic_frame_from_catalog
to write records to Kafka, and the job has the Data Catalog database and table name information,
and can use that to obtain some basic parameters for reading from the Kafka streaming source.
If you use getSource, getCatalogSink, getSourceWithFormat, getSinkWithFormat,
createDataFrameFromOptions or create_data_frame_from_options, or
write_dynamic_frame_from_catalog, you must specify these basic parameters using the
connection options described here.

You can specify the connection options for Kafka using the following arguments for the specified
methods in the GlueContext class.

• Scala

• connectionOptions: Use with getSource, createDataFrameFromOptions, getSink

• additionalOptions: Use with getCatalogSource, getCatalogSink

• options: Use with getSourceWithFormat, getSinkWithFormat

• Python

• connection_options: Use with create_data_frame_from_options,
write_dynamic_frame_from_options

• additional_options: Use with create_data_frame_from_catalog,
write_dynamic_frame_from_catalog

• options: Use with getSource, getSink

For notes and restrictions about streaming ETL jobs, consult the section called “Streaming ETL
notes and restrictions”.

AWS Glue streaming autoscaling

The following sections provide information on AWS Glue streaming autoscaling

Enabling Auto Scaling in AWS Glue Studio

On the Job details tab in AWS Glue Studio, choose the type as Spark or Spark Streaming, and
Glue version as Glue 3.0 or Glue 4.0. Then a check box will show up below Worker type.

• Select the Automatically scale the number of workers option.

AWS Glue streaming autoscaling 1009

AWS Glue User Guide

• Set the Maximum number of workers to define the maximum number of workers that can be
vended to the job run.

Enabling Auto Scaling with the AWS CLI or SDK

To enable Auto Scaling From the AWS CLI for your job run, run start-job-run with the following
configuration:

{
 "JobName": "<your job name>",

Enabling Auto Scaling with the AWS CLI or SDK 1010

AWS Glue User Guide

 "Arguments": {
 "--enable-auto-scaling": "true"
 },
 "WorkerType": "G.2X", // G.1X and G.2X are allowed for Auto Scaling Jobs
 "NumberOfWorkers": 20, // represents Maximum number of workers
 ...other job run configurations...
}

Once at ETL job run is finished, you can also call get-job-run to check the actual resource usage
of the job run in DPU-seconds. Note: the new field DPUSeconds will only show up for your batch
jobs on AWS Glue 3.0 or later enabled with Auto Scaling. This field is not supported for streaming
jobs.

$ aws glue get-job-run --job-name your-job-name --run-id jr_xx --endpoint https://
glue.us-east-1.amazonaws.com --region us-east-1
{
 "JobRun": {
 ...
 "GlueVersion": "3.0",
 "DPUSeconds": 386.0
 }
}

You can also configure job runs with Auto Scaling using the AWS Glue SDK with the same
configuration.

How it works

Scaling across microbatch

The following example is used to describe how autoscaling works.

• You have a AWS Glue job that starts with 50 DPUs.

• Autoscaling is enabled.

In this example, AWS Glue looks at the “batchProcessingTimeInMs“ metric for a few micro batches
and determines if your jobs are completing within the window size that you have established. If
your jobs are completing sooner and depending on how soon they complete, AWS Glue may scale
down. This metric, plotted with ”numberAllExecutors“ can be monitored in Amazon CloudWatch to
see how autoscaling works.

How it works 1011

https://docs.aws.amazon.com/glue/latest/webapi/API_StartJobRun.html

AWS Glue User Guide

The number of executors exponentially scales up or down only after each micro batch completes.
As you can see from the Amazon CloudWatch Monitoring log, AWS Glue looks at the number of
needed executors (Orange Line) and scales the executors (blue line) to match that automatically.

Once AWS Glue scales down the number of executors and observes that data volumes increase,
consequently increasing the micro batch processing time, AWS Glue will scale up to 50 DPUs, which
is the specified upper limit.

Scaling within microbatch

In the above example, the system monitors a few completed micro-batches to make a decision
on whether to scale up or down. Longer windows require autoscaling to respond more quickly
within the microbatch, rather than waiting for a few micro batches. For these cases, you can use an
additional configuration --auto-scaIe-within-microbatch to true. You can add this to the
AWS Glue job properties in AWS Glue Studio as shown below.

How it works 1012

AWS Glue User Guide

Maintenance windows for AWS Glue Streaming

AWS Glue periodically performs maintenance activities. During these maintenance windows, AWS
Glue will need to restart your streaming jobs. You can control when the jobs are restarted by
specifying maintenance windows. In this section, we outline where you can setup the maintenance
window and specific behaviors you should consider.

Topics

• Setting up a maintenance window

• Maintenance window behavior

• Job monitoring

• Data loss handling

Setting up a maintenance window

You can set up a maintenance window using AWS Glue Studio or APIs.

Setting up a maintenance windows in AWS Glue Studio

You can specify a maintenance window in the Job Details page of your AWS Glue Streaming job.
You can specify the day and time in GMT. AWS Glue will restart your job within the specified time
window.

Setting up a maintenance windows in the API

You can alternatively set up the maintenance window in the Create Job API. Here is an example of
configuring a maintenance windows via the API.

Maintenance windows 1013

AWS Glue User Guide

aws glue create-job —name jobName —role roleArnForTheJob —command
 Name=gluestreaming,ScriptLocation=s3-path-to-the-script --maintenance-window="Sun:10"

An example command is as follows:

aws glue create-job —name testMaintenance —role arn:aws:iam::012345678901:role/
Glue_DefaultRole —command Name=gluestreaming,ScriptLocation=s3://glue-example-test/
example.py —maintenance-window="Sun:10

Maintenance window behavior

AWS Glue goes through a series of steps to decide when to restart a job:

1. When a new streaming job is initiated, AWS Glue first checks if there is a timeout associated with
the job run. A timeout allows you to configure the end time of the job. If the timeout is less than
7 days, then the job will not be restarted.

2. If the timeout is greater than 7 days, then AWS Glue checks if the maintenance window is
configured for the job. If it is then that window is picked up and the window gets assigned to the
job run. AWS Glue will restart the job within 3 hours of the specified maintenance window. For
instance, if you set up the maintenance window for Monday at 10:00AM GMT, your jobs will be
restarted between 10:00AM GMT to 1:00PM GMT.

3. If the maintenance window is not configured, AWS Glue automatically sets the restart time to
7 days past job run initiation time. For instance, if you initiated your job on 7/1/2024 12:00AM
GMT and you did not specify maintenance windows, your job will be set to restart on 7/8/2024
at 12:00 AM GMT.

Note

If you are already running streaming jobs, this change will impact you starting July 1,
2024. You will have time until June 30th to configure your maintenance windows. After
July 1st, any streaming jobs that you start will be restarted per this documentation. If
you require any additional support, you can reach out to AWS Support.

4. Sometimes, AWS Glue may not be able to restart the job, especially when the ongoing micro-
batch is not processed. In these instances, the job will not be interrupted. In these instances,
AWS Glue will restart the job after 14 days, and in this case, the maintenance window is not
honored.

Maintenance window behavior 1014

AWS Glue User Guide

Job monitoring

You can monitor the jobs in the AWS Glue Studio Monitoring page.

To see the expected next restart time of streaming jobs, show the column on the Job runs table on
the Monitoring page.

1. Click the Gear icon in the top right of the table.

2. Scroll down, and turn on the Expected restart time column. Both UTC and Local time options
are available.

Job monitoring 1015

AWS Glue User Guide

3. You can then view the columns in the table.

Job monitoring 1016

AWS Glue User Guide

The original job will have an "EXPIRED" status and the new job instance will have a "RUNNING"
status. The new job run that was restarted will have a job run ID as a concatenation of initial job
run ID plus the prefix "restart_" representing the restart count. For example, if the initial job run ID
is jr_1234, then the restarted job run will have the ID jr1234_restart_1 for the first restart.
The second restart will be jr1234_restart_2 for the second restart and so on.

Your retry attempt will not be impacted because of the restarts. If a run fails and a new run is
started due to an automatic retry, the counter of restart will start from 1 again . For example, if
a run fails at jr_1234_attempt_3_restart_5, then an automatic retry will start new run with
ID: jr_id1_attempt_4 and when this attempt is restarted after 7 days, the new run ID will be
jr_id1_attempt_4_restart_1.

Data loss handling

During maintenance restarts, AWS Glue Streaming follows a process that ensures data integrity
and consistency between the previous job run and the restarted job run. Note that AWS Glue does
not guarantee data integrity and consistency between job restarts and we recommend architecture
considerations to handle duplicated data within streaming jobs.

1. Detecting maintenance restart conditions: AWS Glue Streaming monitors conditions that
indicate when a maintenance restart should be triggered, such as when a maintenance window
is reached after 7 days or a hard restart is necessary after 14 days.

2. Invoking a graceful termination: When the maintenance restart conditions are met, AWS Glue
Streaming initiates a graceful termination process for the currently running job. This process
involves the following steps:

a. Stopping the ingestion of new data: The streaming job stops consuming new data from the
input sources (for example, Kafka topics, Kinesis streams, or files).

b. Processing pending data: The job continues to process any data that is already present in its
internal buffers or queues.

c. Committing offsets and checkpoints: The job commits the latest offsets or checkpoints to
external systems (for example, Kafka, Kinesis, or Amazon S3) to ensure that the restarted job
can pick up from where the previous job left off.

3. Restarting the job: After the graceful termination process is complete, AWS Glue Streaming
restarts the job using the preserved state and checkpoints. The restarted job picks up processing
from the last committed offset or checkpoint, ensuring that no data is lost or duplicated.

Data loss handling 1017

AWS Glue User Guide

4. Resuming data processing: The restarted job resumes data processing from the point where the
previous job left off. It continues ingesting new data from the input sources, starting from the
last committed offset or checkpoint, and processes the data according to the defined ETL logic.

Advanced AWS Glue streaming concepts

In contemporary data-driven applications, the significance of data diminishes over time and its
value transitions from being predictive to reactive. As a result, customers want to process data in
real-time for making faster decisions. When dealing with real-time data feeds, such as from IoT
sensors, the data may arrive unordered or experience delays in processing due to network latency
and other source-related failures during ingestion. As part of the AWS Glue platform, AWS Glue
Streaming builds on these capabilities to provide scalable, serverless streaming ETL, powered by
Apache Spark structured streaming, empowering users with real-time data processing.

In this topic, we will explore advanced streaming concepts and capabilities of AWS Glue Streaming.

Time considerations when processing streams

There are four notions of time when processing streams:

• Event-time – The time at which the event occurred. In most cases, this field is embedded into the
event-data itself, at the source.

• Event-time-window – The time frame between two event-times. As shown in the above
diagram, W1 is an event-time-window from 17:00 to 17:10. Each event-time-window is a
grouping of multiple events.

• Trigger-time – The trigger time controls how often the processing of data and updating of
results occurs. This is the time when the micro-batch processing started.

• Ingestion-time – The time when the stream-data was ingested into the streaming service. If
event-time is not embedded into the event itself, this time can be used for windowing in some
cases.

Advanced AWS Glue streaming concepts 1018

AWS Glue User Guide

Windowing

Windowing is a technique where you group and aggregate multiple events by event-time-window.
We will explore the benefits of windowing and when you would use it in the following examples.

Depending on the business use case, there are three types of time windows supported by spark.

• Tumbling window – a series of non-overlapping fixed size event-time-windows over which you
aggregate.

• Sliding window – similar to the tumbling windows from the point of being “fixed-sized”, but
windows can overlap or slide as long as the duration of slide is smaller than the duration of
window itself.

• Session window – starts with an input data event and continues to expands itself as long as
it receives input within a gap or duration of inactivity. A session window can have a static or
dynamic size of the window length, depending on the inputs.

Tumbling window

Tumbling window is a series of non-overlapping fixed size event-time-windows over which you
aggregate. Lets understand this with a real world example.

Company ABC Auto wants to do a marketing campaign for a new brand of sports car. They want to
pick a city where they have biggest sports car fans. To achieve this goal, they showcase a short 15
second advertisement introducing the car on their website. All the “clicks“ and the corresponding
”city“ are recorded and streamed to Amazon Kinesis Data Streams. We want to count the number
of clicks in a 10 minute window and group it by city to see which city has the highest demand. The
following is the output of the aggregation.

window_start_time window_end_time city total_clicks

2023-07-10 17:00:00 2023-07-10 17:10:00 Dallas 75

Windowing 1019

AWS Glue User Guide

window_start_time window_end_time city total_clicks

2023-07-10 17:00:00 2023-07-10 17:10:00 Chicago 10

2023-07-10 17:20:00 2023-07-10 17:30:00 Dallas 20

2023-07-10 17:20:00 2023-07-10 17:30:00 Chicago 50

As explained above, these event-time-windows are different from trigger-time intervals. For
example, even if your trigger time is every minute, the output results will only show 10 minute
non-overlapping aggregation windows. For optimization, its better to have the trigger interval
aligned with the event-time-window.

In the table above, Dallas saw 75 clicks in the 17:00-17:10 window, while Chicago had 10 clicks.
Also, there is no data for the 17:10 - 17:20 window for any city, so this window is omitted.

Now you can run further analysis on this data in the downstream analytics application to
determine the most exclusive city to run the marketing campaign.

Using tumbling windows in AWS Glue

1. Create a Amazon Kinesis Data Streams DataFrame and read from it. Example:

parsed_df = kinesis_raw_df \
 .selectExpr('CAST(data AS STRING)') \
 .select(from_json("data", ticker_schema).alias("data")) \
 .select('data.event_time','data.ticker','data.trade','data.volume',
 'data.price')

2. Process data in a tumbling window. In the example below, data is grouped based on the input
field “event_time” in 10 minute tumbling windows and writing the output to an Amazon S3
data lake.

grouped_df = parsed_df \
 .groupBy(window("event_time", "10 minutes"), "city") \
 .agg(sum("clicks").alias("total_clicks"))

summary_df = grouped_df \
 .withColumn("window_start_time", col("window.start")) \

Windowing 1020

AWS Glue User Guide

 .withColumn("window_end_time", col("window.end")) \
 .withColumn("year", year("window_start_time")) \
 .withColumn("month", month("window_start_time")) \
 .withColumn("day", dayofmonth("window_start_time")) \
 .withColumn("hour", hour("window_start_time")) \
 .withColumn("minute", minute("window_start_time")) \
 .drop("window")

write_result = summary_df \
 .writeStream \
 .format("parquet") \
 .trigger(processingTime="10 seconds") \
 .option("checkpointLocation", "s3a://bucket-stock-stream/stock-
stream-catalog-job/checkpoint/") \
 .option("path", "s3a://bucket-stock-stream/stock-stream-catalog-
job/summary_output/") \
 .partitionBy("year", "month", "day") \
 .start()

Sliding window

Sliding windows are similar to the tumbling windows from the point of being “fixed-sized”, but
windows can overlap or slide as long as the duration of slide is smaller than the duration of
window itself. Due to the nature of sliding, an input can be bound to the multiple windows.

To better understand, lets consider the example of a bank that want to detect potential credit
card fraud. A streaming application could monitor a continuous stream of credit card transactions.
These transactions could be aggregated into windows of 10 minutes duration and every 5 minutes,
the window would slide forward, eliminating the oldest 5 minutes of data and adding the latest 5
minutes of new data. Within each window, the transactions could be grouped by country checking
for suspicious patterns, such as a transaction in the US immediately followed by another in

Windowing 1021

AWS Glue User Guide

Australia. For simplicity, lets us categorize such transactions as fraud when the total transactions
amount is greater than $100. If such a pattern is detected, it signals potential fraud and the card
could be frozen.

The credit card processing system is sending a steam of transaction events to kinesis for each
card-id along with the country. An AWS Glue job runs the analysis and produces the following
aggregated output.

window_st
art_time

window_en
d_time

card_last_four country total_amount

2023-07-10
17:00:00

2023-07-10
17:10:00

6544 US 85

2023-07-10
17:00:00

2023-07-10
17:10:00

6544 Australia 10

2023-07-10
17:05:45

2023-07-10
17:15:45

6544 US 50

2023-07-10
17:10:45

2023-07-10
17:20:45

6544 US 50

2023-07-10
17:10:45

2023-07-10
17:20:45

6544 Australia 150

Based on the above aggregation, you can see the 10 minute window sliding every 5
minutes,summed by transaction amount. The anomaly is detected in the 17:10 - 17:20 window
where there is an outlier, which is a transaction for $150 in Australia. AWS Glue can detect this
anomaly and push an alarm-event with the offending key to an SNS topic using boto3. Further a
Lambda function can subscribe to this topic and take action.

Process data in a sliding window

The group-by clause and the window function is used to implement the sliding window as shown
below.

grouped_df = parsed_df \

Windowing 1022

AWS Glue User Guide

 .groupBy(window(col("event_time"), "10 minute", "5 min"), "country",
 "card_last_four") \
 .agg(sum("tx_amount").alias("total_amount"))

Session window

Unlike the above two windows that have a fixed-size, session window can have a static or dynamic
size of the window length, depending on the inputs. A session window starts with an input data
event and continues to expands itself as long as it receives input within a gap or duration of
inactivity.

Lets take an example. Company ABC hotel wants to find out when is the busiest time in a week and
provide better deals for their guests. As soon as a guest checks-in, a session window is started and
spark maintains a state with aggregation for that event-time-window. Every time a guests checks
in, an event is generated and sent to Amazon Kinesis Data Streams. The hotel makes a decision
that if there is no check-ins for a period of 15 minutes, the event-time-window can be closed. The
next event-time-window will start again when there is a new check-in. The output looks as follows.

window_start_time window_end_time city total_checkins

2023-07-10 17:02:00 2023-07-10 17:30:00 Dallas 50

2023-07-10 17:02:00 2023-07-10 17:30:00 Chicago 25

2023-07-10 17:40:00 2023-07-10 18:20:00 Dallas 75

2023-07-10 18:50:45 2023-07-10 19:15:45 Dallas 20

The first check-in occurred at event_time=17:02. The aggregation event-time-window will start at
17:02. This aggregation will continue as long as we receive events within 15 minute duration. In

Windowing 1023

AWS Glue User Guide

the above example, the last event we received was at 17:15 and then for the next 15 minutes there
were no events. As a result, Spark closed that event-time-window at 17:15+15min = 17:30 and set
it as 17:02 - 17:30. It started a new event-time-window at 17:47 when it received a new check-in
data event.

Process data in a session window

The group-by clause and the window function is used to implement the sliding window.

grouped_df = parsed_df \
 .groupBy(session_window(col("event_time"), "10 minute"), "city") \
 .agg(count("check_in").alias("total_checkins"))

Output modes

Output mode is the mode in which the results from the unbounded table are written to the
external sink. There are three modes available. In the following example you are counting
occurrences of a word as lines of data are being streamed and processed in each micro batch.

• Complete mode – The whole result table will be written to the sink after every micro batch
processing even though the word count was not updated in the current event-time-window.

• Append mode – This is the default mode, where only the new words and or rows added to the
result table since the last trigger will be written to the sink. This mode is good for stateless
streaming for queries like map, flatMap, filter, etc.

• Update mode – Only the words and or rows in the Result Table that were updated or added since
the last trigger will be written to the sink.

Note

Output mode = "update" is not supported for session windows.

Handling late data and watermarks

When working with real-time data there could be delays in the arrival of data due to network
latency and upstream failures and we need a mechanism to perform the aggregation again on
the missed event-time-window. However, to do this, state needs to be maintained. At the same

Handling late data and watermarks 1024

AWS Glue User Guide

time, the older data needs to be cleaned up to limit the size of the state. Spark version 2.1 added
support for a feature called watermarking which maintains state and allows the user to specify the
threshold for late data.

With reference to our stock ticker example above, lets consider the allowed threshold for the late
data as no more than 10 minutes. To keep it simple we will assume tumbling window, ticker as
AMZ, trade as BUY.

In the above diagram, we are calculating the total volume over a tumbling 10 minute window.
We have the trigger at 17:00, 17:10 and 17:20. Above the timeline arrow, we have the input data
stream and below is the unbounded results table.

In the first 10 minute tumbling window we aggregated based on event_time and the total_volume
was calculated as 30. In the second event-time-window, spark got the first data event with
event_time=17:02. Since this is the max event_time seen thus far by spark, the watermark
threshold is set 10 minutes back (that is, watermark_event_time=16:52). Any data event with
an event_time after 16:52 will be considered for time bound aggregation and any data event
before that will be dropped. This allows spark to maintain an intermediate state for additional 10
minutes to accommodate late data. Around wall clock time 17:08 Spark received an event with an
event_time=16:54 which was within threshold. Hence spark recalculated the “16:50 - 17:00“ event-
time-window and the total volume was updated from 30 to 60.

However, at the trigger time 17:20, when spark received event with event_time=17:15 it set the
watermark_event_time=17:05. Hence the late data event with event_time=17:03 was considered
“too late” and ignored.

Watermark Boundary = Max(Event Time) - Watermark Threshold

Handling late data and watermarks 1025

AWS Glue User Guide

Using watermarks in AWS Glue

Spark will not emit or write the data to the external sink until the watermark boundary is passed.
To implement a watermark in AWS Glue, see the example below.

grouped_df = parsed_df \
 .withWatermark("event_time", "10 minutes") \
 .groupBy(window("event_time", "5 minutes"), "ticker") \
 .agg(sum("volume").alias("total_volume"))

Monitoring AWS Glue streaming jobs

Monitoring your streaming job is a critical part of building your ETL pipeline. Apart from using the
Spark UI, you can also use Amazon CloudWatch to monitor the metrics. Below is a list of streaming
metrics emitted by the AWS Glue framework. For a complete list of all the AWS Glue metrics, see
Monitoring AWS Glue using Amazon CloudWatch metrics.

AWS Glue uses a structured streaming framework to process the input events. You can either use
the Spark API directly in your code or leverage the ForEachBatch provided by GlueContext,
which publishes these metrics. To understand these metrics, we need to first understand
windowSize.

windowSize: windowSize is the micro-batch interval that you provide. If you specify a window
size of 60 seconds, the AWS Glue streaming job will wait for 60 seconds (or more if the previous
batch hasn’t completed by then) before it will read data in a batch from the streaming source
and apply the transformations provided in ForEachBatch. This is also referred to as the trigger
interval.

Lets review the metrics in greater detail to understand the health and performance characteristics.

Note

The metrics are emitted every 30 seconds. If your windowSize is less than 30 seconds then
the reported metrics are an aggregation. For example say your windowSize is 10 seconds
and you are steadily processing 20 records per micro-batch. In this scenario, the emitted
metric value for numRecords would be 60.
A metric is not emitted if there is no data available for it. Also, in case of the consumer lag
metric, you have to enable the feature to get metrics for it.

Monitoring AWS Glue streaming jobs 1026

https://docs.aws.amazon.com/glue/latest/dg/monitoring-awsglue-with-cloudwatch-metrics.html

AWS Glue User Guide

Visualizing metrics

To plot visual metrics:

1. Go to Metrics in the Amazon CloudWatch console and then choose the Browse tab. Then choose
Glue under "Custom namespaces".

2. Choose Job Metrics to show you the metrics for all your jobs.

3. Filter the metrics based on your JobName=glue-feb-monitoring and then JobRunId=ALL. You
can click on the "+" sign as shown in the figure below to add it to the search filter.

4. Select the checkbox for the metrics that you are interested in. In the below figure we have
selected numberAllExecutors and numberMaxNeededExecutors.

5. Once you have selected these metrics, you can go to the Graphed metrics tab and apply your
statistics.

6. Since the metrics are emitted every min, you can apply the "average" over a minute for
batchProcessingTimeInMs and maxConsumerLagInMs. For the numRecords you can apply
the "sum" over every minute.

7. You can add a horizontal windowSize annotation to your graph using the Options tab.

Visualizing metrics 1027

AWS Glue User Guide

8. Once you have your metrics selected, create a dashboard and add it. Here is a sample dashboard.

Metrics deep dive

This section describes each of the metrics and how they co-relate with each other.

Number of records (metric: streaming.numRecords)

This metric indicates how many records are being processed.

Metrics deep dive 1028

AWS Glue User Guide

This streaming metric provides visibility into the number of records you are processing in a window.
Along with the number of records being processed, it will also help you understand the behavior of
the input traffic.

• Indicator #1 shows an example of stable traffic without any bursts. Typically this will be
applications like IoT sensors that are collecting data at regular intervals and sending it to the
streaming source.

• Indicator #2 shows an example of a sudden burst in traffic on an otherwise stable load. This
could happen in a clickstream application when there is a marketing event like Black Friday and
there is a burst in the number of clicks

• Indicator #3 shows an example of unpredictable traffic. Unpredictable traffic doesn't mean
there is a problem. It is just the nature of the input data. Going back to the IoT sensor example,
you can think of hundreds of sensors that are sending weather change events to the streaming
source. As the weather change is not predictable, neither is the data. Understanding the
traffic pattern is key to sizing your executors. If the input is very spiky, you may consider using
autoscaling (more on that later).

Metrics deep dive 1029

AWS Glue User Guide

You can combine this metric with the Kinesis PutRecords metric to make sure the number of events
being ingested and the number of records being read are nearly the same. This is especially useful
when you are trying to understand lag. As the ingestion rate increases, so do the numRecords read
by AWS Glue.

Batch processing time (metric: streaming.batchProcessingTimeInMs)

The batch processing time metric helps you determine if the cluster is underprovisioned or
overprovisioned.

This metric indicates the number of milliseconds that it took to process each micro-batch of
records. The main goal here is to monitor this time to make sure it less than the windowSize
interval. It is okay if the batchProcessingTimeInMs goes over temporarily as long as it
recovers in the following window interval. Indicator #1 shows a more or less stable time taken
to process the job. However if the number of input records are increasing, the time it takes to
process the job will increase as well as shown by indicator #2. If the numRecords is not going

Metrics deep dive 1030

AWS Glue User Guide

up, but the processing time is going up, then you would need to take a deeper look into the
job processing on the executors. It is a good practice to set a threshold and alarm to make sure
the batchProcessingTimeInMs doesn't stay over 120% for more than 10 minutes. For more
information on setting alarms, see Using Amazon CloudWatch alarms.

Consumer lag (metric: streaming.maxConsumerLagInMs)

The consumer lag metric helps you understand if there is a lag in processing events. If
your lag is too high, then you could miss the processing SLA that your business depends
on, even though you have a correct windowSize. You have to explicitly enable this metrics
using the emitConsumerLagMetrics connection option. For more information, see
KinesisStreamingSourceOptions.

Derived metrics

To gain deeper insights, you can create derived metrics to understand more about your streaming
jobs in Amazon CloudWatch.

Metrics deep dive 1031

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/glue/latest/webapi/API_KinesisStreamingSourceOptions.html

AWS Glue User Guide

You can build a graph with derived metrics to decide if you need to use more DPUs. While
autoscaling helps you do this automatically, you can use derived metrics to determine if
autoscaling is working effectively.

• InputRecordsPerSecond indicates the rate at which you are getting input records. It is derived as
follows: number of input records (glue.driver.streaming.numRecords)/ WindowSize.

• ProcessingRecordsPerSecond indicates the rate at which your records are being processed.
It is derived as follows: number of input records (glue.driver.streaming.numRecords)/
batchProcessingTimeInMs.

If the input rate is higher than the processing rate, then you may need to add more capacity to
process your job or increase the parallelism.

Autoscaling metrics

When your input traffic is spiky, then you should consider enabling autoscaling and specify
the max workers. With that you get two additional metrics, numberAllExecutors and
numberMaxNeededExecutors.

• numberAllExecutors is the number of actively running job executors

Metrics deep dive 1032

AWS Glue User Guide

• numberMaxNeededExecutors is the number of maximum (actively running and pending) job
executors needed to satisfy the current load.

These two metrics will help you understand if your autoscaling is working correctly.

AWS Glue will monitor the batchProcessingTimeInMs metric over a few micro-batches and do
one of two things. It will scale-out the executors, if batchProcessingTimeInMs is closer to the
windowSize, or scale-in the executors, if batchProcessingTimeInMs is comparatively lower
than windowSize. Also, it will use an algorithm for step-scaling the executors.

• indicator #1 shows you how the active executors scaled up to catch up with the max needed
executors so as to process the load.

• indicator #2 shows you how the active executers scaled in since the
batchProcessingTimeInMs was low.

You can use these metrics to monitor current executor-level parallelism and adjust the number of
max workers in your auto-scaling configuration accordingly.

How to get the best performance

Spark will try to create one task per shard, to read from, in the Amazon Kinesis stream. The data
in each shard becomes a partition. It will then distribute these tasks across the executors/workers,
depending of the number of cores on each worker (the number of cores per worker depends on
the worker type you select G.025X, G.1X, etc). However it is non-deterministic how the tasks are

How to get the best performance 1033

AWS Glue User Guide

distributed. All tasks are executed in parallel on their respective cores. If there are more shards than
the number of available executor cores, the tasks are queued up.

You can use a combination of the above metrics and the number of shards, to provision your
executors for a stable load with some room for bursts. It is recommend that you run a few
iterations of your job in order to determine the approximate number of workers. For an unstable/
spiky workload you can do the same by setting up autoscaling and max workers.

Set the windowSize as per the SLA requirement of your business. For example, if your
business requires that the processed data cannot be more than 120 seconds stale, then set your
windowSize to at least 60 seconds such that your average consumer lag is less than 120 seconds
(refer to the section on consumer lag above). From there depending on the numRecords and
number of shards, plan for the capacity in DPUs making sure your batchProcessingTimeInMs is
less than 70% of your windowSize most of the time.

Note

Hot shards can cause data skew which means that some shards/partitions are much bigger
than the others. This may cause some tasks that are running in parallel to take longer
time causing straggler tasks. As a result, the next batch can't start until all tasks from the
previous one complete, this will impact the batchProcessingTimeInMillis and the
max lag.

How to get the best performance 1034

AWS Glue User Guide

AWS Glue Data Quality

AWS Glue Data Quality allows you to measure and monitor the quality of your data so that you
can make good business decisions. Built on top of the open-source DeeQu framework, AWS Glue
Data Quality provides a managed, serverless experience. AWS Glue Data Quality works with Data
Quality Definition Language (DQDL), which is a domain specific language that you use to define
data quality rules. To learn more about DQDL and supported rule types, see Data Quality Definition
Language (DQDL) reference.

For additional product details and pricing, see the service page for AWS Glue Data Quality.

Benefits and key features

Benefits and key features of AWS Glue Data Quality include:

• Serverless – there is no installation, patching or maintenance.

• Get started quickly – AWS Glue Data Quality quickly analyzes your data and creates data quality
rules for you. You can get started with two clicks: “Create Data Quality Rules → Recommend
rules”.

• Detect data quality issues – Use machine learning (ML) to detect anomalies and hard-to-detect
data quality issues.

• Improvise your rules – with 25+ out-of-the-box DQ rules to start from, you can create rules that
suit your specific needs.

• Evaluate quality and make confident business decisions – Once you evaluate the rules, you get
a Data Quality score that provides an overview of the health of your data. Use Data Quality score
to make confident business decisions.

• Zero in on bad data – AWS Glue Data Quality helps you identify the exact records that caused
your quality scores to go down. Easily identify them, quarantine and fix them.

• Pay as you go – There are no annual licenses you need to use AWS Glue Data Quality.

• No lock-in – AWS Glue Data Quality is built on open source DeeQu, allowing you to keep the
rules you are authoring in an open language.

• Data quality checks – AWS Glue Data Quality You can enforce data quality checks on Data
Catalog and AWS Glue ETL pipelines allowing you to manage data quality at rest and in transit.

• ML-based data quality detection – Use machine learning (ML) to detect anomalies and hard-to-
detect data quality issues.

Benefits and key features 1035

https://aws.amazon.com/glue/features/data-quality

AWS Glue User Guide

How it works

There are two entry points for AWS Glue Data Quality: the AWS Glue Data Catalog and AWS Glue
ETL jobs. This section provides an overview of the use cases and AWS Glue features that each entry
point supports.

Data quality for the AWS Glue Data Catalog

AWS Glue Data Quality evaluates objects that are stored in the AWS Glue Data Catalog It offers
non-coders an easy way to set up data quality rules. These personas include data stewards and
business analysts.

You might choose this option for the following use cases:

• You want to perform data quality tasks on data sets that you've already cataloged in the AWS
Glue Data Catalog.

• You work on data governance and need to identify or evaluate data quality issues in your data
lake on an ongoing basis.

You can manage data quality for the Data Catalog using the following interfaces:

• The AWS Glue management console

• AWS Glue APIs

To get started with AWS Glue Data Quality for the AWS Glue Data Catalog see Getting started with
AWS Glue Data Quality for the Data Catalog.

Data quality for AWS Glue ETL jobs

AWS Glue Data Quality for AWS Glue ETL jobs lets you perform proactive data quality tasks.
Proactive tasks help you identify and filter out bad data before you load a data set into your data
lake.

Video: Introducing AWS Glue Data Quality for ETL Pipelines

You might choose data quality for ETL jobs for the following use cases:

• You want to incorporate data quality tasks into your ETL jobs

How it works 1036

https://www.youtube.com/watch?v=m4OKjfgsZ00

AWS Glue User Guide

• You want to write code that defines data quality tasks in ETL scripts

• You want to manage the quality of data that flows in your visual data pipelines

You can manage data quality for ETL jobs using the following interfaces:

• AWS Glue Studio, AWS Glue Studio notebooks, and AWS Glue interactive sessions

• AWS Glue libraries for ETL scripting

• AWS Glue APIs

To get started with data quality for ETL jobs, see Tutorial: Getting started with Data Quality in the
AWS Glue Studio User Guide.

Comparing data quality for the Data Catalog to data quality for ETL
jobs

This table provides an overview of features that each entry point for AWS Glue Data Quality
supports.

Feature Data quality for the Data
Catalog

Data quality for ETL jobs

Data sources Amazon S3, Amazon Redshift,
JDBC sources compatibl
e with the Data Catalog,
and transactional data lake
formats such as Apache
Iceberg, Apache Hudi, and
Delta Lake. Note that if tables
are AWS Lake Formation
managed, Iceberg, Delta
and HUDI tables are not
supported. Amazon Athena
views that are cataloged in
AWS Glue Data Catalog are
not supported.

All data sources supported by
AWS Glue, including custom
connectors and third-party
connectors.

Comparing AWS Glue Data Quality entry points 1037

https://docs.aws.amazon.com/glue/latest/ug/gs-data-quality-chapter.html

AWS Glue User Guide

Feature Data quality for the Data
Catalog

Data quality for ETL jobs

Data Quality rule recommend
ations

Supported Not supported

Author and run DQDL rules Supported Supported

Auto scaling Not supported Supported

AWS Glue Flex support Not supported Supported

Scheduling Supported when evaluatin
g Data Quality rules and via
Step Functions.

Supported when using Step
Functions and workflows.

Identifying records that failed
data quality checks

Not supported Supported

Integration with Amazon
Eventbridge

Supported Supported

Integration with AWS
Cloudwatch

Supported Supported

Writing data quality results to
Amazon S3

Supported Supported

Incremental data quality Supported via pushdown
predicates

Supported via AWS Glue
bookmarks

AWS CloudFormation support Supported Supported

ML-based anomaly detection Not supported Preview

Dynamic rules Not supported Supported

Comparing AWS Glue Data Quality entry points 1038

AWS Glue User Guide

Considerations

Consider the following items before you use AWS Glue Data Quality:

• Data quality rules can't evaluate nested or list-type data sources. See Flatten nested structs.

Terminology

The following list defines terms that are related to AWS Glue Data Quality.

Data Quality Definition Language (DQDL)

A domain-specific language that you can use to write AWS Glue Data Quality rules.

To learn more about DQDL, see the Data Quality Definition Language (DQDL) reference guide.

data quality

Describes how well a dataset serves its specific purpose. AWS Glue Data Quality evaluates rules
against a dataset to measure data quality. Each rule checks for particular characteristics like
data freshness or integrity. To quantify data quality, you can use a data quality score.

data quality score

The percentage of data quality rules that pass (result in true) when you evaluate a ruleset with
AWS Glue Data Quality.

rule

A DQDL expression that checks your data for a specific characteristic and returns a Boolean
value. For more information, see Rule structure.

analyzer

A DQDL expression that gathers data statistics. An analyzer gathers data statistics that can be
used by ML algorithms to detect anomalies and hard-to-detect data quality issues over time.

ruleset

An AWS Glue resource that comprises a set of data quality rules. A ruleset must be associated
with a table in the AWS Glue Data Catalog. When you save a ruleset, AWS Glue assigns an
Amazon Resource Name (ARN) to the ruleset.

Considerations 1039

AWS Glue User Guide

data quality score

The percentage of data quality rules that pass (result in true) when you evaluate a ruleset with
AWS Glue Data Quality.

observation

An unconfirmed insight generated by AWS Glue by analyzing data statistics gathered from rules
and analyzers over time.

Limits

AWS Glue Data Quality service limits:

• You can have 2000 rules in a ruleset. If your rulesets are larger, we recommend splitting into
multiple rulesets.

• The size of the ruleset is 65KB. If your rulesets are larger, we recommend splitting into multiple
rulesets.

Release notes for AWS Glue Data Quality

This topic describes features introduced in AWS Glue Data Quality.

General availability: new features

The following new features are available with the general availability of AWS Glue Data Quality:

• The ability to identify which records failed data quality checks is now supported in AWS Glue
Studio

• New data quality ruletypes such as validating referential integrity of data between two data sets,
comparing data between two datasets, and data type checks

• Improved user experience in the AWS Glue Data Catalog

• Support for Apache Iceberg, Apache Hudi and Delta Lake

• Support for Amazon Redshift

• Simplified notification with Amazon EventBridge

• AWS CloudFormation support for creating rulesets

Limits 1040

AWS Glue User Guide

• Performance improvements: caching option in ETL and AWS Glue Studio for faster performance
when evaluating data quality

Nov 27, 2023 (Preview)

• ML-powered anomaly detection capabilities are now available in AWS Glue ETL and AWS Glue
Studio. With this, you can now detect anomalies and hard-to-detect data quality issues.

• Dynamic Rules allows you to provide dynamic thresholds (ex: RowCount> avg(last(10))).

Mar 12, 2024

• DQDL improvements

• Support for Keywords like NULL, BLANKS, WHITESPACES_ONLY

• Options to specify how AWS Glue Data Quality must handle Composite rules

• ColumnValues rule type will not allow NULL values to pass during comparisons

• Support for NOT operator in DQDL

June 26, 2024

• DQDL improvements

• DQDL now supports where clause so that you can filter data before applying DQ rules

Anomaly detection in AWS Glue Data Quality

Note

AWS Glue Data Quality is available in preview in the following regions:

• US East (Ohio, N. Virginia)

• US West (Oregon)

• Asia Pacific (Tokyo)

• Europe (Ireland)

Nov 27, 2023 (Preview) 1041

https://docs.aws.amazon.com/glue/latest/dg/dqdl.html#dqdl-dynamic-rules

AWS Glue User Guide

AWS Glue Data Quality anomaly detection applies machine learning (ML) algorithms on data
statistics over time to detect abnormal patterns and hidden data quality issues that are hard to
detect through rules. At present, anomaly detection is only available for AWS Glue 4.0. This feature
is currently available only in AWS Glue Studio Visual ETL and AWS Glue ETL. This capability doesn't
work on AWS Glue Studio Notebooks, AWS Glue Data Catalog, AWS Glue Interactive Sessions, and
AWS Glue Data Previews.

How it works

When evaluating Data Quality rules, AWS Glue captures data statistics needed to determine
whether the data conforms with the rules. For example, Data Quality will compute the number of
distinct values in a dataset, and then compare that value to the expectation.

The Data Quality rule engine compares the statistic value with the defined thresholds, and
evaluates your quality requirements. As these statistics are collected over time, you can enable
anomaly detection on your ETL pipelines to let AWS Glue learn from past statistics and report
hidden patterns as Observations. Observations are unconfirmed insights that AWS Glue's ML
algorithm identifies. They come with recommended Data Quality rules that you can apply to your
ruleset for monitoring of the discovered pattern. We recommend running jobs at a regular schedule
(for example, hourly and daily). Irregular runs might produce poor insights.

How it works 1042

AWS Glue User Guide

Using analyzers to inspect your data

Sometimes, you might not have the time to author data quality rules. This is where analyzers come
in handy. Analyzers are part of your ruleset and are very simple to configure. For example, you can
write this in your ruleset:

Analyzers = [
 RowCount,
 Completeness “AllColumns”
]

This will gather the following statistics:

• Row Count for the entire dataset

• Completeness of every column in your dataset

We recommend using Analyzers because you won't have to worry about the thresholds. You
can run your data pipelines and after three runs, AWS Glue Data Quality will start generating
observations and rule recommendations when it notices any anomalies. You can review the
observations, associated statistics and can easily incorporate the rule recommendations in your
ruleset. To get started see Configuring Anomaly detection and generating insights . Note that
Analyzers will not impact your data quality scores. They generate statistics that can be analyzed
over time to generate observations.

Using the DetectAnomaly Rule

Sometimes, you want your jobs to fail when it detects anomalies. To enforce a constraint, you must
configure a rule. Analyzers won’t stop a job. Instead, they will gather statistics and analyze the
data. Configuring the DetectAnomaly rule in the rules section of the ruleset will confirm that the
DQ scan reports the job has failed to pass all the rules in the scan.

Benefits and use cases of Anomaly Detection

Engineers may manage hundreds of data pipelines at any given time. Each pipeline can extract
data from different sources and load it into the data lake. Since each pipeline might extract data
from a different source and load it into data lake, it is difficult to get immediate feedback on the
data – whether its shape has changed significantly, or it has diverged from existing trends.

Using analyzers to inspect your data 1043

AWS Glue User Guide

In the past, upstream data sources have changed without warning to data engineering teams,
introducing hard-to-track “data bugs” into this process. By adding Data Quality nodes to jobs, this
makes life much easier, as jobs fail when issues are spotted. However, this doesn't remove all the
failure modes that data teams are worried about, which keeps the door open for other data bugs to
come in.

One failure mode is around data volume. As a company’s data store grows over time, the number
of records produced by data pipelines may grow exponentially. Every week, data teams may need
to manually update ETL jobs to increase each Data Quality rule that sets a limit to the number of
rows ingested.

Another failure mode is that some of the data quality rule limits are very wide to accommodate
the fact that transaction volume varies by day of the week. On weekends, there are almost
no transactions, and on Mondays there are about three times more transaction than on other
weekdays. Data teams have two options - either implement logic to change the ruleset on the fly
depending on the day, or set a very wide expectation.

Finally, data teams are also concerned with less well-defined data bugs. Models have been trained
on data with specific characteristics, and if these start skewing in unexpected ways, the team wants
to know. For example, in February a company may expand to Montana, and so transactions started
containing the “MT” code appear more frequently. This may break the ML inference, and as a result
the models falsely predicted that every single Montana transaction was fraudulent.

This is where Data quality anomaly detection can help solve these problems. Some of the benefits
of Data Quality anomaly detection include:

• Scanning of data on a scheduled, event-driven, or manual basis.

• Detection of anomalies that can be indicative of an unintended event, seasonality, or statistical
abnormality.

• Offer Rule Recommendations to take action on observations found by Data Quality anomaly
detection.

This is useful if you:

• want to detect anomalies on your data automatically without the need to write data quality
rules.

• want to catch potential problems in your data that data quality rules alone can't find.

Benefits and use cases of Anomaly Detection 1044

AWS Glue User Guide

• want to automate some tasks that evolve over time, such as limiting the number of rows
ingested for data quality monitoring.

Configure IAM permissions for AWS Glue Data Quality

This topic provides information to help you understand the actions and resources that you an IAM
administrator can use in an AWS Identity and Access Management (IAM) policy for AWS Glue Data
Quality. It also includes sample IAM policies with the minimum permissions you need to use AWS
Glue Data Quality with the AWS Glue Data Catalog.

For additional information about security in AWS Glue, see Security in AWS Glue.

IAM permissions for AWS Glue Data Quality

The following table lists the permissions that a user needs in order to perform specific AWS Glue
Data Quality operations. To set fine-grained authorization for AWS Glue Data Quality, you can
specify these actions in the Action element of an IAM policy statement.

AWS Glue Data Quality actions

Action Description Resource types

glue:CreateDataQua
lityRuleset

Grants permission to create a
data quality ruleset.

::dataQualityRules
et/<name>

glue:DeleteDataQua
lityRuleset

Grants permission to delete a
data quality ruleset.

::dataQualityRules
et/<name>

glue:GetDataQualit
yRuleset

Grants permission to retrieve
a data quality ruleset.

::dataQualityRules
et/<name>

glue:ListDataQuali
tyRulesets

Grants permission to retrieve
all data quality rulesets.

::dataQualityRules
et/*

glue:UpdateDataQua
lityRuleset

Grants permission to update a
data quality ruleset.

::dataQualityRules
et/<name>

glue:GetDataQualit
yResult

Grants permission to retrieve
a data quality task run result.

::dataQualityRules
et/<name>

IAM permissions for AWS Glue Data Quality 1045

AWS Glue User Guide

Action Description Resource types

glue:ListDataQuali
tyResults

Grants permission to retrieve
all data quality task run
results.

::dataQualityRules
et/*

glue:CancelDataQua
lityRuleRecommenda
tionRun

Grants permission to stop
an in-progress data quality
recommendation task run.

::dataQualityRules
et/*

glue:GetDataQualit
yRuleRecommendatio
nRun

Grants permission to retrieve
a data quality recommend
ation task run.

::dataQualityRules
et/*

glue:ListDataQuali
tyRuleRecommendati
onRuns

Grants permission to retrieve
all data quality recommend
ation task runs.

::dataQualityRules
et/*

glue:StartDataQual
ityRuleRecommendat
ionRun

Grants permission to start a
data quality recommendation
task run.

::dataQualityRules
et/*

glue:CancelDataQua
lityRulesetEvaluat
ionRun

Grants permission to stop an
in-progress data quality task
run.

::dataQualityRules
et/*

glue:GetDataQualit
yRulesetEvaluation
Run

Grants permission to retrieve
a data quality task run.

::dataQualityRules
et/*

glue:ListDataQuali
tyRulesetEvaluatio
nRuns

Grants permission to retrieve
all data quality task runs.

::dataQualityRules
et/*

glue:StartDataQual
ityRulesetEvaluati
onRun

Grants permission to start a
data quality task run.

::dataQualityRules
et/<name>

IAM permissions 1046

AWS Glue User Guide

Action Description Resource types

glue:PublishDataQu
ality

Grants permission to publish
data quality results

::dataQualityRules
et/<name>

IAM setup required for scheduling evaluation runs

IAM permissions

To run scheduled Data Quality evaluation runs, you must add the IAM:PassRole action to the
permissions policy.

AWS EventBridge Scheduler required permissions

Action Description Resource types

iam:PassRole Grants permission for IAM
to allow the user to pass the
approved roles.

ARN of the role used to call
StartDataQualityRu
lesetEvaluationRun

Without these permissions the following error occurs:

"errorCode": "AccessDenied"
"errorMessage": "User: arn:aws:sts::account_id:assumed-role/AWSGlueServiceRole is not
authorized to perform: iam:PassRole on resource: arn:aws:iam::account_id:role/service-
role/AWSGlueServiceRole
because no identity-based policy allows the iam:PassRole action"

IAM trusted entities

The AWS Glue and AWS EventBridge Scheduler services need to be listed in the trusted entities in
order to create and run a scheduled StartDataQualityEvaluationRun.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {

IAM setup required for scheduling evaluation runs 1047

AWS Glue User Guide

 "Service": "glue.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "scheduler.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Example IAM policies

An IAM role for AWS Glue Data Quality needs the following types of permissions:

• Permissions for AWS Glue Data Quality operations so that you can get recommended data
quality rules and run a data quality task against a table in the AWS Glue Data Catalog. The
example IAM policies in this section include the minimum permissions required for AWS Glue
Data Quality operations.

• Permissions that grant access to your Data Catalog table and the underlying data. These
permissions vary depending on your use case. For example, for data that you catalog in Amazon
S3, the permissions should include access to Amazon S3.

Note

You must configure Amazon S3 permissions in addition to the permissions described in
this section.

Minimum permissions to get recommended data quality rules

This example policy includes the permissions you need in order to generate recommended data
quality rules.

{
 "Version": "2012-10-17",
 "Statement": [

Example IAM policies 1048

AWS Glue User Guide

 {
 "Sid": "AllowGlueRuleRecommendationRunActions",
 "Effect": "Allow",
 "Action": [
 "glue:GetDataQualityRuleRecommendationRun",
 "glue:PublishDataQuality",
 "glue:CreateDataQualityRuleset"
],
 "Resource": "arn:aws:glue:us-east-1:111122223333:dataQualityRuleset/*"
 },
 {
 "Sid": "AllowCatalogPermissions",
 "Effect": "Allow",
 "Action": [
 "glue:GetPartitions",
 "glue:GetTable"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "AllowS3GetObjectToRunRuleRecommendationTask",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::aws-glue-*"
 },
 { // Optional for Logs
 "Sid": "AllowPublishingCloudwatchLogs",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:PutLogEvents"
],
 "Resource": "*"
 },
]
}

Example IAM policies 1049

AWS Glue User Guide

Minimum permissions to run a data quality task

This example policy includes the permissions you need in order to run a data quality evaluation
task.

The following policy statements are optional, depending on your use case:

• AllowCloudWatchPutMetricDataToPublishTaskMetrics - Required if you want to publish
data quality run metrics to Amazon CloudWatch.

• AllowS3PutObjectToWriteTaskResults - Required if you want to write data quality run
results to Amazon S3.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowGlueGetDataQualityRuleset",
 "Effect": "Allow",
 "Action": [
 "glue:GetDataQualityRuleset"
],
 "Resource": "arn:aws:glue:us-east-1:111122223333:dataQualityRuleset/<YOUR-
RULESET-NAME>"
 },
 {
 "Sid": "AllowGlueRulesetEvaluationRunActions",
 "Effect": "Allow",
 "Action": [
 "glue:GetDataQualityRulesetEvaluationRun",
 "glue:PublishDataQuality"
],
 "Resource": "arn:aws:glue:us-east-1:111122223333:dataQualityRuleset/*"
 },
 {
 "Sid": "AllowCatalogPermissions",
 "Effect": "Allow",
 "Action": [
 "glue:GetPartitions",
 "glue:GetTable"
],
 "Resource": [
 "*"

Example IAM policies 1050

AWS Glue User Guide

]
 },
 {
 "Sid": "AllowS3GetObjectForRulesetEvaluationRun",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::aws-glue-*"
 },
 {
 "Sid": "AllowCloudWatchPutMetricDataToPublishTaskMetrics",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "cloudwatch:namespace": "Glue Data Quality"
 }
 }
 },
 {
 "Sid": "AllowS3PutObjectToWriteTaskResults",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject*"
],
 "Resource": "arn:aws:s3:::<YOUR-BUCKET-NAME>/*"
 }
]
}

Getting started with AWS Glue Data Quality for the Data
Catalog

This getting started section provides instructions to help you get started with AWS Glue Data
Quality on the AWS Glue console. You'll learn how to complete essential tasks such as generating
data quality rule recommendations and evaluating a ruleset against your data.

Topics

Getting started with AWS Glue Data Quality for the Data Catalog 1051

AWS Glue User Guide

• Prerequisites

• Step-by-step example

• Generating rule recommendations

• Monitoring rule recommendations

• Editing recommended rulesets

• Creating a new ruleset

• Running a ruleset to evaluate data quality

• Viewing the data quality score and results

• Related topics

Prerequisites

Before you use AWS Glue Data Quality, you should be familiar with using the Data Catalog and
crawlers in AWS Glue. With AWS Glue Data Quality, you can evaluate quality for tables in a Data
Catalog database. You also need the following:

• A table in the Data Catalog to evaluate your data quality ruleset against.

• An IAM role for AWS Glue that you supply when you generate rule recommendations or run a
data quality task. This role must have permission to access resources that various AWS Glue Data
Quality processes require to run on your behalf. These resources include AWS Glue, Amazon S3,
and CloudWatch. To view example policies that include the minimum permissions for AWS Glue
Data Quality, see Example IAM policies.

To learn more about IAM roles for AWS Glue, see Create an IAM policy for the AWS Glue service
and Create an IAM role for the AWS Glue service. You can also view a list of all AWS Glue
permissions that are specific to data quality in Authorization for AWS Glue Data Quality actions.

• A database with at least one table that contains a variety of data. The table used in this tutorial
is named yyz-tickets, with the table tickets. This data is a collection of publicly available
information from the City of Toronto for parking citations. If you create your own table, make
sure that it's populated with a variety of valid data to get the best set of recommended rules.

Step-by-step example

For a step-by-step example with sample datasets, see the AWS Glue Data Quality blog post.

Prerequisites 1052

https://docs.aws.amazon.com/glue/latest/dg/create-service-policy.html
https://docs.aws.amazon.com/glue/latest/dg/create-an-iam-role.html
https://docs.aws.amazon.com/glue/latest/dg/data-quality-authorization.html
https://aws.amazon.com/blogs/big-data/getting-started-with-aws-glue-data-quality-from-the-aws-glue-data-catalog/

AWS Glue User Guide

Generating rule recommendations

Rule recommendations make it easy to get started with data quality without writing code. With
AWS Glue Data Quality, you can analyze your data, identify rules, and create a ruleset that you can
evaluate in a data quality task. Recommendation runs are automatically deleted after 90 days.

To generate data quality rule recommendations

1. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

2. Choose Tables in the navigation pane. Then choose the table that you want to generate data
quality rule recommendations for.

3. On the table details page, select the Data quality tab to access AWS Glue Data Quality rules
and settings for your table.

4. On the Data quality tab, choose Add rules and monitor data quality.

5. On the Ruleset builder page, an alert at the top of the page will prompt you to start a
recommendation task if there are no rule recommendation runs.

6. Choose Recommend rules to open the modal and input your parameters for the
recommendation task.

7. Choose an IAM role with access to AWS Glue. This role must have permission to access
resources that various AWS Glue Data Quality processes require to run on your behalf.

8. After the fields are completed according to your preferences, choose Recommend rules to
start the recommendation task run. If recommendation runs are in progress or completed,
you can manage your runs in this alert. You might need to refresh the alert to view the status
change. Completed and in-progress recommendation task runs appear in the Run history page
that lists all recommendation runs for the past 90 days.

What the recommended rules mean

AWS Glue Data Quality generates rules based on the data from each column of the input
table. It uses the rules to identify potential boundaries where data can be filtered to maintain
quality requirements. The following list of generated rules includes examples that are useful for
understanding what the rules mean and what they might do when applied to your data.

For a full list of the generated Data Quality Definition Language (DQDL) rule types, see DQDL rule
type reference.

Generating rule recommendations 1053

https://console.aws.amazon.com/glue/
https://docs.aws.amazon.com/glue/latest/dg/dqdl.html#dqdl-rule-types
https://docs.aws.amazon.com/glue/latest/dg/dqdl.html#dqdl-rule-types

AWS Glue User Guide

• IsComplete "SET_FINE_AMOUNT" –The IsComplete rule verifies that the column is filled in
for any given row. Use this rule to tag columns as non-optional in data.

• Uniqueness "TICKET_NUMBER" > 0.95 – The Uniqueness rule verifies that the data within
the column meets some threshold of uniqueness. In this example, the data that populates any
given row for "TICKET_NUMBER" was determined to be at most 95% identical in content to all
other rows, which suggests this rule.

• ColumnValues "PROVINCE" in ["ON", "QC", "AB", "NY",...] – The ColumnValues
rule defines valid values for the column, based on existing column contents. In this example, the
data for each row is a 2-letter license code plate for a state or province.

• ColumnLength "INFRACTION_DESCRIPTION" between 15 and 31 – The ColumnLength
rule enforces a length restriction on a column's data. This rule is generated from the sample data
based on the minimum and maximum recorded lengths for a column of strings.

Monitoring rule recommendations

When data quality rule recommendations are running, the Add rules and monitor data quality
page displays information and additional actions that you can take in the top bar.

When rule recommendations are in progress, you can choose Stop run before the recommendation
task is complete. While the task is in progress, you will see the status, in progress, and the date and
time when the run started.

When the rule recommendations are complete, the rule recommendation bar displays the number
of rules recommended, the status of the last recommendation run, and the date and timestamp
when it finished.

You can add the recommended rules by choosing Insert Rule Recommendation. To view previously
recommended rules, select a specific date. To run a new recommendation, choose More actions,
and then choose Recommended rules.

Set default settings by choosing Manage user settings. You can set the default path for Amazon
S3 to store rulesets or to set up a default role to run the Data Catalog.

Editing recommended rulesets

Because AWS Glue Data Quality generates rules based on existing data that you have available,
you might see some unexpected or undesirable rules in the automated suggestions. In order to get
the most out of the recommended rulesets, you need to evaluate and modify them. For this step

Monitoring rule recommendations 1054

AWS Glue User Guide

of the tutorial, you take the rules generated in the previous step and adjust them to enforce more
restrictive qualities on some data. You also relax other rules to ensure that correct, unique data can
be added later.

Edit a suggested ruleset

1. In the AWS Glue console, choose Data Catalog, and then choose Databases tables in the
navigation pane. Choose the table tickets.

2. On the table details page, choose the Data quality tab to access AWS Glue Data Quality rules
and settings for the table.

3. In the Rulesets section, select the ruleset generated in Generating rule recommendations.

4. Choose Actions, and then choose Edit in the console window. The ruleset editor loads in the
console. It includes an editing pane for your rules and a quick reference for DQDL.

5. Remove line 2 of the script. This relaxes the requirement that the database size is constrained
within a certain number of rows. After the edit, your file should contain the following on lines
1–3:

Rules = [
 IsComplete "TAG_NUMBER_MASKED",
 ColumnLength "TAG_NUMBER_MASKED" between 6 and 9,

6. Remove line 25 of the script. This relaxes the requirement that 96% of recorded provinces are
ON. After the edit, your file should contain the following from line 24 to the end of the ruleset:

ColumnValues "PROVINCE" in ["ON", "QC", "AB", "NY", "AZ", "NS", "BC", "MI", "PQ",
 "MB", "PA", "FL", "SK", "NJ", "OH", "NB", "IL", "MA", "CA",
 "VA", "TX", "NF", "MD", "PE", "CT", "NC", "GA", "IN", "OR", "MN", "TN", "WI",
 "KY", "MO", "WA", "NH", "SC", "CO", "OK", "VT", "RI", "ME", "AL",
 "YT", "IA", "DE", "AR", "LA", "XX", "WV", "MT", "KS", "NT", "DC", "NV", "NE",
 "UT", "MS", "NM", "ID", "SD", "ND", "AK", "NU", "GO", "WY", "HI"],
ColumnLength "PROVINCE" = 2
]

7. Change line 14 to the following:

IsComplete "TIME_OF_INFRACTION",

This strengthens the requirement on the column by limiting the database to only tickets that
contain a recorded time of infraction. You should always consider tickets without a recorded

Editing recommended rulesets 1055

AWS Glue User Guide

time of infraction to be invalid data in this dataset. This is different than situations where
partitioning or transformation might be more appropriate for further data use or inspection to
determine a quality rule.

8. Choose Update Rulesetat the bottom of the console page.

Creating a new ruleset

A ruleset is a group of data quality rules that you evaluate against your data. In the AWS Glue
console, you can author custom rulesets using Data Quality Definition Language (DQDL).

To create a data quality ruleset

1. In the AWS Glue console, choose Data Catalog, choose Databases, and then choose Tables in
the navigation pane. Select the table tickets.

2. Open the Data quality tab.

3. In the Rulesets section, choose Create ruleset. The DQDL editor launches in the console. It has
a text area for direct editing, and a quick reference for DQDL rules and the table schema.

4. Start adding rules to the text area of the DQDL editor. You can either write rules directly from
this tutorial, or use the DQDL rule builder feature of the data quality rules editor.

Note

How to use the DQDL rule builder

1. Select a rule type from the list, and select the plus sign to insert example syntax
into the editor pane.

2. Exchange the placeholder column names with your own column names. Column
names from the table are available in the Schema tab.

3. Update the expression parameter as you see fit. For a full list of expressions that
DQDL supports, see Expressions.

As an example, the following rules are constraints for data validation of the ticket_number
column in the tickets table. To add the following rules, use the DQDL rule builder or directly
edit your ruleset:

Creating a new ruleset 1056

AWS Glue User Guide

IsComplete "ticket_number",
IsUnique "ticket_number",
ColumnValues "ticket_number" > 9000000000

5. Provide a name for your new ruleset in the Ruleset name field.

6. Choose Save ruleset.

Evaluating data quality across multiple datasets

You can set up data quality rules across multiple datasets using ReferentialIntegrity and
DatasetMatch rulesets. ReferentialIntegrity checks to see if data in the primary dataset is present in
other datasets.

To add a reference dataset, choose the Schema tab and then choose Update reference tables.
You will be prompted to select a database and a table. You can add the table and then set up data
quality rules. Rule types like AggregateMatch, RowCountMatch, ReferentialIntegrity, SchemaMatch,
and DatasetMatch support the ability to perform data quality checks across multiple datasets.

Running a ruleset to evaluate data quality

When you run a data quality task, AWS Glue Data Quality evaluates a ruleset against your data
and calculates a data quality score. This score represents the percentage of data quality rules that
passed for the input.

To run a data quality task

1. In the AWS Glue console, choose Data Catalog, choose Databases, and then choose Tables in
the navigation pane. Select the table tickets.

2. Choose the Data quality tab.

3. In the Rulesets list, select the ruleset that you want to evaluate against the table. For this step,
we recommend using a ruleset that you've written or modified already rather than generated
rules. Choose Run.

4. In the modal, choose your IAM role. This role must have permission to access resources that
various AWS Glue Data Quality processes require to run on your behalf. You can save the IAM
role as the default or modify it by going to the Default Setting page.

5. Under Data quality actions, choose whether you want to Publish metrics to Amazon
CloudWatch. When this option is selected, AWS Glue Data Quality publishes metrics that

Running a ruleset to evaluate data quality 1057

AWS Glue User Guide

indicate the number of rules that passed and the number of rules that failed. To take action
on metrics stored this way, you can use CloudWatch alarms. Key metrics are also published
to Amazon EventBridge for you to set up alerts. For more information, see Setting up alerts,
deployments, and scheduling.

6. In Run Frequency, choose run on demand or schedule the ruleset. When you schedule a
ruleset, you're prompted for a task name. The schedule will be created in Amazon EventBridge.
You can edit your schedule in Amazon EventBridge.

7. To save the data quality results in Amazon S3, select a Data quality results location. The IAM
role that you previously selected for this task must have write access to this location.

8. Under Additional Configurations, enter the Requested number of workers that you want
AWS Glue to allocate for your data quality task.

9. You can optionally set up a filter at the data source. This helps you reduce the data that
you're reading. You can also use a filter to run incremental validations by selecting partition
information and passing them as parameters via API calls. To improve performance, you can
provide a partition predicate.

10. Choose Run. You should see your new task in the Data quality task runs list. When the Run
status column for the task shows as Completed, you can view the quality score results. You
might need to refresh your console window for the status to update correctly.

11. To view the column for the data quality result details, choose the “+” icon to expand the
ruleset. The results show you the rules that passed and failed in the evaluation, and what
triggered the rule failure.

Viewing the data quality score and results

To see the latest run on all created rulesets

1. In the AWS Glue console, choose Tables in the navigation pane. Then choose the table that
you want to run a data quality task for.

2. Choose the Data quality tab.

3. The Data quality snapshot shows a general trend of runs over time. The last 10 runs over all
rulesets are displayed by default. To filter by ruleset, select the desired one from the dropdown
list. If there are less than 10 runs, all the completed runs that are available are displayed.

4. In the Data quality table, each ruleset with its latest run (if there is one) is shown, along with
the score. Expanding the ruleset displays the rules that are in that ruleset, along with the rule
results for that run.

Viewing the data quality score and results 1058

https://docs.aws.amazon.com/glue/latest/dg/data-quality-alerts.html
https://docs.aws.amazon.com/glue/latest/dg/data-quality-alerts.html

AWS Glue User Guide

To see the latest run on a particular ruleset

1. In the AWS Glue console, choose Tables in the navigation pane. Then choose the table that
you want to run a data quality task for.

2. Choose the Data quality tab.

3. In the Data quality table, choose on a specific ruleset.

4. On the Ruleset details page, choose the Run history tab.

All of the evaluation runs for this particular ruleset are listed in the table within this tab. You
can see the history of the scores and the status of the runs.

5. To see more information about a particular run, choose the Run ID to go to the Evaluation
run details page. On this page, you can see specifics about the run and more details about the
status of individual rule results.

Related topics

• DQDL rule type reference

• Data Quality Definition Language (DQDL) reference

Evaluating data quality with AWS Glue Studio

AWS Glue Data Quality evaluates and monitors the quality of your data based on rules that you
define. This makes it easy to identify the data that needs action. In AWS Glue Studio, you can add
data quality nodes to your visual job to create data quality rules on tables in your Data Catalog.
You can then monitor and evaluate changes to your datasets as they evolve over time. For an
overview of how to work with AWS Glue Data Quality in AWS Glue Studio, see the following video.

The following are the high-level steps for how you work with AWS Glue Data Quality:

1. Create data quality rules – Build a set of data quality rules using the DQDL builder by choosing
built-in rulesets that you configure.

2. Configure a data quality job – Define actions based on the data quality results and output
options.

3. Save and run a data quality job – Create and run a job. Saving the job will save the rulesets that
you created for the job.

Related topics 1059

AWS Glue User Guide

4. Monitor and review the data quality results – Review the data quality results after the job run
is complete. Optionally, schedule the job for a future date.

Benefits

Data analysts, data engineers, and data scientists can use the Evaluate Data Quality node in AWS
Glue Studio to analyze, configure, monitor, and improve the quality of data from the visual job
editor. The benefits of using the data quality node include the following:

• You can detect data quality issues - You can check for issues by creating rules that check
characteristics of your datasets.

• It's easy to get started - You can start with pre-built rules and actions.

• Tight integration - You can use data quality nodes in AWS Glue Studio because AWS Glue Data
Quality runs on top of the AWS Glue Data Catalog.

Evaluating data quality for ETL jobs in AWS Glue Studio

In this tutorial, you get started with AWS Glue Data Quality in AWS Glue Studio. You will learn how
to:

• Create rules using the Data Quality Definition Language (DQDL) rule builder.

• Specify data quality actions, data to output, and the output location of the data quality results.

• Review data quality results.

To practice with an example, review the blog post Getting started with AWS Glue Data Quality
for ETL pipelines.

Step 1: Add the Evaluate Data Quality transform node to the visual job

In this step, you add the Evaluate Data Quality node to the visual job editor.

To add the data quality node

1. In the AWS Glue Studio console, choose Visual with a source and target from the Create job
section, and then choose Create.

2. Choose a node that you want to apply the data quality transform to. Typically, this will be a
transform node or a data source.

Benefits 1060

https://aws.amazon.com/blogs/big-data/getting-started-with-aws-glue-data-quality-for-etl-pipelines/
https://aws.amazon.com/blogs/big-data/getting-started-with-aws-glue-data-quality-for-etl-pipelines/

AWS Glue User Guide

3. Open the resource panel on the left by choosing the "+" icon. Then search for Evaluate Data
Quality in the search bar and choose Evaluate Data Quality from the search results.

4. The visual job editor showsthe Evaluate Data Quality transform node branching from the
node you selected. On the right side of the console, the Transform tab is automatically
opened. If you need to change the parent node, choose the Node properties tab, and then
choose the node parent from the dropdown menu.

When you choose a new node parent, a new connection is made between the parent node and
the Evaluate Data Quality node. Remove any unwanted parent nodes. Only one parent node
can be connected to one Evaluate Data Quality node.

5. The Evaluate Data Quality transform supports multiple parents so you can validate
data quality rules across multiple datasets. Rules that support multiple datasets include
ReferentialIntegrity, DatasetMatch, SchemaMatch, RowCountMatch, and AggregateMatch.

When you add multiple inputs to the Evaluate Data Quality transform, you need to select your
“primary” input. Your primary input is the dataset that you want to validate data quality for.
All other nodes or inputs are treated as references.

You can use the Evaluate Data Quality transform to identify specific records that failed data
quality checks. We recommend that you choose your primary dataset because new columns
that flag bad records are added to the primary dataset.

6. You can specify aliases for input data sources. Aliases provide another way to reference the
input source when you're using the ReferentialIntegrity rule. Becauseonly one data source can
be designated as the primary source, each additional data source that you add will require an
alias.

In the following example, the ReferentialIntegrity rule specifies the input data source by the
alias name and performs a one-to-one comparison to the primary data source.

Rules = [
 ReferentialIntegrity “Aliasname.name” = 1
]

Evaluating data quality for ETL jobs in AWS Glue Studio 1061

AWS Glue User Guide

Step 2: Create a rule using DQDL

In this step, you create a rule using DQDL. For this tutorial, you create a single rule using the
Completeness rule type. This rule type checks the percentage of complete (non-null) values in a
column against a given expression. For more information about using DQDL, see DQDL.

1. On the Transform tab, add a Rule type by choosing the Insert button. This adds the rule type
to the rule editor, where you can enter the parameters for the rule.

Note

When you're editing rules, ensure that the rules are within the brackets and that the
rules are separated by commas. For example, a complete rule expression will look like
the following:

Rules= [
 Completeness "year">0.8, Completeness "month">0.8
]

This example specifies the parameter for completeness for the columns named 'year'
and 'month'. For the rule to pass, these columns must be greater than 80% 'complete',
or must have data in over 80% of instances for each respective column.

In this example, search for and insert the Completeness rule type. This adds the rule type
to the rule editor. This rule type has the following syntax: Completeness <COL_NAME>
<EXPRESSION>.

Most rule types require that you provide an expression as a parameter in order to create
a Boolean response. For more information on supported DQDL expressions, see DQDL
expressions. Next, you'll add the column name.

2. In the DQDL rule builder, choose the Schema tab. Use the search bar to locate the column
name in the input schema. The input schema displays the column name and data type.

3. In the rule editor, click to the right of the rule type to insert the cursor where the column will
be inserted. Alternately, you can enter in the name of the column in the rule.

Evaluating data quality for ETL jobs in AWS Glue Studio 1062

https://docs.aws.amazon.com/glue/latest/dg/dqdl.html
https://docs.aws.amazon.com/glue/latest/dg/dqdl.html#dqdl-syntax
https://docs.aws.amazon.com/glue/latest/dg/dqdl.html#dqdl-syntax

AWS Glue User Guide

For example, from the list of columns in the input schema list, choose the Insert button next
to the column (in this example, year). This adds the column to the rule.

4. Then, in the rule editor, add an expression to evaluate the rule. Because the Completeness
rule type checks the percentage of complete (non-null) values in a column against a given
expression, enter an expression such as > 0.8. This rule checks the column if it's greater than
80% complete (non-null) values.

Step 3: Configure data quality outputs

After creating data quality rules, you can select additional options to specify data quality node
output.

1. In Data quality transform output, choose from the following options:

• Original data – Choose to output original input data. When you choose this option, a new
child node “rowLevelOutcomes” is added to the job. The schema matches the schema of the
primary dataset that was passed as input to the transform. This option is useful if you just
want to pass the data through and fail the job when quality issues occur.

Another use case is when you want to detect bad records that failed data quality checks. To
detect bad records, choose the option Add new columns to indicate data quality errors.
This action adds four new columns to the schema of the “rowLevelOutcomes” transform.

• DataQualityRulesPass (string array) – Provides an array of rules that passed data quality
checks.

• DataQualityRulesFail (string array) – Provides an array of rules that failed data quality
checks.

• DataQualityRulesSkip (string array) – Provides an array of rules that were skipped. The
following rules cannot identify error records because they're applied at the dataset level.

• AggregateMatch

• ColumnCount

• ColumnExists

• ColumnNamesMatchPattern

• CustomSql

• RowCount

• RowCountMatch

Evaluating data quality for ETL jobs in AWS Glue Studio 1063

AWS Glue User Guide

• StandardDeviation

• Mean

• ColumnCorrelation

• DataQualityEvaluationResult – Provides “Passed” or “Failed” status at the row level. Note
that your overall results can be FAIL, but a certain record might pass. For example, the
RowCount rule might have failed, but all other rules might have been successful. In such
instances, this field status is 'Passed'.

2. Data quality results – Choose to output configured rules and their pass or fail status. This
option is useful if you want to write your results to Amazon S3 or other databases.

3. Data quality output settings (Optional) – Choose Data quality output settings to reveal the
Data quality result location field. Then, choose Browse to search for an Amazon S3 location
to set as the data quality output target.

Step 4. Configure data quality actions

You can use actions to publish metrics to CloudWatch or to stop jobs based on specific criteria.
Actions are only available after you create a rule. When you choose this option, the same metrics
are also published to Amazon EventBridge. You can use these options to create alerts for
notification.

• On ruleset failure – You can choose what to do if a ruleset fails while the job is running. If you
want the job to fail if data quality fails, choose when the job should fail by selecting one of the
following options. By default, this action is not selected, and the job completes its run even if
data quality rules fail.

• None – If you choose None (default), the job does not fail and continues to run despite ruleset
failures.

• Fail job after loading data to target – The job fails and no data is saved. In order to save the
results, choose an Amazon S3 location where the data quality results will be saved.

• Fail job without loading to target data – This option fails the job immediately when a data
quality error occurs. It does not load any data targets, including the results from the data
quality transform.

Step 5: View data quality results

After running the job, view the data quality results by choosing the Data quality tab.

Evaluating data quality for ETL jobs in AWS Glue Studio 1064

https://docs.aws.amazon.com/glue/latest/dg/data-quality-alerts.html
https://docs.aws.amazon.com/glue/latest/dg/data-quality-alerts.html

AWS Glue User Guide

1. For each job run, view the data quality results. Each node displays a data quality status and
status detail. Choose a node to view all rules and the status of each rule.

2. Choose Download results to download a CSV file that contains information about the job run
and data quality results.

3. If you have more than one job run with data quality results, you can filter the results by date
and time range. Choose Filter by a date and time range to expand the filter window.

4. Choose a relative range or absolute range. For absolute ranges, use the calendar to select a
date, and enter values for start time and end time. When you're done, choose Apply.

Data Quality rule builder

With the Data Quality Definition Language (DQDL) rule builder, you can create data quality rules
to evaluate your data. Start by selecting a rule type, and then specify the parameters in the rule
editor. The rule editor also shows you any errors and warnings as you create rules.

The DQDL guide provides comprehensive documentation on how to construct rules using the DQDL
syntax, built-in rule types, and examples.

Evaluate Data Quality node

When you're working with the Evaluate Data Quality transform node and the DQDL rule builder,
you can expand the working space.

• To expand the Transform tab to fill the entire screen, choose the expand icon in the upper-right
hand corner of the node details panel.

• To expand the DQDL rule editor, choose the << icon to expand the rule editor and collapse the
Rule types and Schema tabs.

Data Quality rule builder 1065

https://docs.aws.amazon.com/glue/latest/dg/dqdl.html

AWS Glue User Guide

Components

There are 26 rule types that are built into AWS Glue Studio. Each rule type has a description and
examples of how they can be used.

Data quality rule types

AWS Glue Studio provides built-in rule types for ease in creating a rule. For more information on
rule types, see DQDL rule type reference.

Schema

The Schema tab displays the column names and data type from the parent node. Schemas from
multiple nodes are displayed. You can view the input schema, search by column name, and insert
the column into the rule editor.

Data Quality rule builder 1066

https://docs.aws.amazon.com/glue/latest/dg/dqdl.html#dqdl-rule-types

AWS Glue User Guide

Rule editor

The rule editor is a text editor where you can write and edit rules. If you select a rule type from the
DQDL rule builder, the rule type is added to the rule editor. You can then specify parameters, add
rules, and edit rules as needed by modifying the text. AWS Glue Studio validates the rules in the
rule editor and displays errors and warnings if there are any.

Errors and warnings

Data Quality rule builder 1067

AWS Glue User Guide

If a rule doesn't follow the DQDL rule syntax, the rule editor shows several visual indicators that
there is an error:

• The rule editor displays an error icon and red color on the line with the error.

• The rule editor displays the number of errors next to the red error icon.

• When you choose the line with the error, descriptions of the error and location (line and column)
are displayed at the bottom of the rule editor.

Data Quality rule builder 1068

AWS Glue User Guide

Data quality actions

By default, this action is not selected and the job will complete its run even if the data quality rules
fail.

Choose between the following actions. You can use actions to publish results to CloudWatch or
stop jobs based on specific criteria. Actions are only available after you create a rule.

Data Quality rule builder 1069

AWS Glue User Guide

• Publish results to CloudWatch – When you run a job, add the results to CloudWatch.

• Fail job when data quality fails – If data quality rules fail, the job will also fail as a result.

Data quality transform output

• Original data – Choose to output original input data. This option is ideal if you want to stop the
job when quality issues are detected.

• Data quality metrics – Choose to output configured rules and their pass or fail status. This
option is useful if you want to take a custom action.

Data quality output settings

Set the data quality result location by specifying the Amazon S3 location as the data quality output
target.

Configuring Anomaly detection and generating insights

AWS Glue Data Quality (DQ) evaluates your data based on the data quality rules that you write
and provides insights and observations about your data over time so that you can take immediate
action. Since DQ scans your data, DQ computes statistical metrics such as row count, maximum or
minimum, and then compares them against threshold expressions.

Some of the benfits of Data Quality anomaly detection include:

• continuous automated scanning of data

• detection of anomalies that can be indicative of an unintended event or statistical abnormality

• offer Rule Recommendations to take action on observations found by Data Quality anomaly
detection

This is useful if you:

• want to detect anomalies on your data automatically, without the need to write data quality

• want to profile your data and view visual representations of what the data looks like

• want to track how your data changes over time

What observations can I view about my data?

Configuring Anomaly detection and generating insights 1070

AWS Glue User Guide

DQ identifies outliers in the data statistics gathered, changes in data formats, data drifts and
schema changes. Based on observations, DQ recommends data quality rules that users can easily
operationalize. Statistics include Completeness, Uniqueness, Mean, Sum, StandardDeviation,
Entropy, DistinctValuesCount, and UniqueValueRatio.

Enabling anomaly detection in AWS Glue Studio

To enable anomaly detection, you can open a AWS Glue Studio job and toggle on “Enable Anomaly
Detection”. Turning this on enables anomaly detection on your data by analyzing your data over
time and providing data statistics about your data and observations that you can act on.

To enable anomaly detection in AWS Glue Studio:

1. Choose the Data Quality node in your job, then choose the Anomaly detection tab. Toggle on
‘Enable Anomaly Detection’.

2. Define the data to monitor for anomalies by choosing Add analyzer. There are two fields you
can populate: Statistics and Data.

Statistics are information about your data’s shape and other properties. You can choose one or
more statistics at a time, or choose All statistics. Statistics include: Completeness, Uniqueness,
Mean, Sum, StandardDeviation, Entropy, DistinctValuesCount, and UniqueValueRatio.

Data is the columns in your data set. You can choose all columns or individual columns.

Configuring Anomaly detection and generating insights 1071

AWS Glue User Guide

3. Choose Add anomaly detection scope to save your changes. When you’ve created analyzers,
you can see them in the Anomaly detection scope section.

You can also use the Actions menu to edit your analyzers, or choose the Ruleset editor tab
and edit the analyzer directly in the ruleset editor notepad. You will see the analyzers you
saved just below any rules you’ve created.

Rules = [
]

Analyzers = [
 Completeness “id”
]

With the updated ruleset along with analyzers, Data Quality continuously monitors incoming
data, signaling anomalies through alerts or job stops based on your settings.

Configuring Anomaly detection and generating insights 1072

AWS Glue User Guide

Note

Observations are generated when a minimum of three values per data statistics are
observed in your data set. If there are no observations visible, Data quality does not have
enough data to generate an observation. After several job runs, Data quality can provide
insights into your data and will display them in the Observations section.

Analyzers generate observations by detecting anomalies in your data and provide you
recommendations to progressively build rules. You can view the observations by choosing the
Data Quality tab. Observations are specific to each job run. You can view the specific Data Quality
node and job run at the top of the Observations section. Choose a new node or job run to view
observations specific to that node and job.

Observation – each insight is based for a specific job run configured by the rulesets and analyzers
you specified.

Related metrics – When observations are generated, the Related metrics column shows you the
rule and actual and expected values, as well as lower and upper limits.

Rule recommendations – AWS Glue then also recommends rules to address this. Each rule that
is recommended can be copied by clicking the copy icon. You can copy all recommended rules by
clicking the copy icon next to each rule and then clicking Apply copied rules.

Configuring Anomaly detection and generating insights 1073

AWS Glue User Guide

Monitored data – The Monitored data column provides the column or row that was monitored and
triggered the observation.

Applying a recommend rule to your Data quality node

After an observation has been generated and a recommended rule is provided, you can apply that
rule to your data quality node. To do this:

1. Click the copy icon next to each rule recommendation. This will add the rule recommendation
to a notepad that you can retrieve later.

2. Click Apply rule recommendations. This opens the notepad where you can view the rules you
previously copied.

3. Choose Copy rules.

4. Choose Apply to ruleset editor. This opens the ruleset editor where you can paste the copied
rules.

5. Paste the copied rules to the ruleset editor.

Data Quality for ETL jobs in AWS Glue Studio notebooks

In this tutorial, you learn how to use AWS Glue Data Quality for extract, transform, and load (ETL)
jobs in AWS Glue Studio notebooks.

You can use notebooks in AWS Glue Studio to edit job scripts and view the output without having
to run a full job. You can also add markdown and save notebooks as .ipynb files and job scripts.
Note that you can start a notebook without installing software locally or managing servers. When
you're satisfied with your code, you can use AWS Glue Studio to easily convert your notebook to an
AWS Glue job.

The dataset that you use in this example consists of Medicare Provider payment data that was
downloaded from two Data.CMS.gov datasets: "Inpatient Prospective Payment System Provider
Summary for the Top 100 Diagnosis-Related Groups - FY2011" and "Inpatient Charge Data FY
2011".

After downloading the data, we modified the dataset to introduce a couple of erroneous records at
the end of the file. This modified file is located in a public Amazon S3 bucket at s3://awsglue-
datasets/examples/medicare/Medicare_Hospital_Provider.csv.

Data Quality for ETL jobs in AWS Glue Studio notebooks 1074

AWS Glue User Guide

Prerequisites

• AWS Glue role with Amazon S3 permission to write to your destination Amazon S3 bucket

• A new notebook (see Getting started with notebooks in AWS Glue Studio)

Creating an ETL job in AWS Glue Studio

To create an ETL job

1. Change the session version to AWS Glue 3.0.

To do this, remove all boilerplate code cells with the following magic and run the cell. Note
that this boilerplate code is automatically provided in the first cell when a new notebook is
created.

%glue_version 3.0

2. Copy the following code and run it in the cell.

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)

3. In the next cell, import the EvaluateDataQuality class that evaluatesAWS Glue Data
Quality.

from awsgluedq.transforms import EvaluateDataQuality

4. In the next cell, read in the source data by using the .csv file that's stored in the public Amazon
S3 bucket.

Prerequisites 1075

https://docs.aws.amazon.com/glue/latest/ug/notebook-getting-started.html

AWS Glue User Guide

medicare = spark.read.format(
"csv").option(
"header", "true").option(
"inferSchema", "true").load(
's3://awsglue-datasets/examples/medicare/Medicare_Hospital_Provider.csv')
medicare.printSchema()

5. Convert the data to an AWS Glue DynamicFrame.

from awsglue.dynamicframe import DynamicFrame
medicare_dyf = DynamicFrame.fromDF(medicare,glueContext,"medicare_dyf")

6. Create the ruleset using Data Quality Definition Language (DQDL).

EvaluateDataQuality_ruleset = """
 Rules = [
 ColumnExists "Provider Id",
 IsComplete "Provider Id",
 ColumnValues " Total Discharges " > 15
]
]
"""

7. Validate the dataset against the ruleset.

EvaluateDataQualityMultiframe = EvaluateDataQuality().process_rows(
 frame=medicare_dyf,
 ruleset=EvaluateDataQuality_ruleset,
 publishing_options={
 "dataQualityEvaluationContext": "EvaluateDataQualityMultiframe",
 "enableDataQualityCloudWatchMetrics": False,
 "enableDataQualityResultsPublishing": False,
 },
 additional_options={"performanceTuning.caching": "CACHE_NOTHING"},
)

8. Review the results.

Creating an ETL job in AWS Glue Studio 1076

AWS Glue User Guide

ruleOutcomes = SelectFromCollection.apply(
 dfc=EvaluateDataQualityMultiframe,
 key="ruleOutcomes",
 transformation_ctx="ruleOutcomes",
)

ruleOutcomes.toDF().show(truncate=False)

Output:

--------------------------------------+-------
+---
+---+
|Rule |Outcome|FailureReason
 |EvaluatedMetrics |
+--------------------------------------+-------
+---
+---+
|ColumnExists "Provider Id" |Passed |null
 |{} |
|IsComplete "Provider Id" |Passed |null
 |{Column.Provider Id.Completeness -> 1.0} |
|ColumnValues " Total Discharges " > 15|Failed |Value: 11.0 does not meet the
 constraint requirement!|{Column. Total Discharges .Minimum -> 11.0}|
+--------------------------------------+-------
+---
+---+

9. Filter passed rows and review the failed rows from the Data Quality row-level results.

owLevelOutcomes = SelectFromCollection.apply(
dfc=EvaluateDataQualityMultiframe,
key="rowLevelOutcomes",
transformation_ctx="rowLevelOutcomes",
)

rowLevelOutcomes_df = rowLevelOutcomes.toDF() # Convert Glue DynamicFrame to
 SparkSQL DataFrame

Creating an ETL job in AWS Glue Studio 1077

AWS Glue User Guide

rowLevelOutcomes_df_passed =
 rowLevelOutcomes_df.filter(rowLevelOutcomes_df.DataQualityEvaluationResult ==
 "Passed") # Filter only the Passed records.
rowLevelOutcomes_df.filter(rowLevelOutcomes_df.DataQualityEvaluationResult ==
 "Failed").show(5, truncate=False) # Review the Failed records

Output:

+--+-----------
+-------------------------------------+--------------------------+-------------
+--------------+-----------------+------------------------------------
+------------------+-------------------------+------------------------
+-------------------------+--------------------------
+--+----------------------------
+---------------------------+
|DRG Definition |Provider Id|Provider Name
 |Provider Street Address |Provider City|Provider State|Provider Zip
 Code|Hospital Referral Region Description| Total Discharges | Average Covered
 Charges | Average Total Payments |Average Medicare Payments|DataQualityRulesPass
 |DataQualityRulesFail |DataQualityRulesSkip |
DataQualityEvaluationResult|
+--+-----------
+-------------------------------------+--------------------------+-------------
+--------------+-----------------+------------------------------------
+------------------+-------------------------+------------------------
+-------------------------+--------------------------
+--+----------------------------
+---------------------------+
|039 - EXTRACRANIAL PROCEDURES W/O CC/MCC|10005 |MARSHALL MEDICAL CENTER SOUTH
 |2505 U S HIGHWAY 431 NORTH|BOAZ |AL |35957
 |AL - Birmingham |14 |$15131.85
 |$5787.57 |$4976.71 |[IsComplete "Provider Id"]|
[ColumnValues " Total Discharges " > 15]|[ColumnExists "Provider Id"]|Failed
 |
|039 - EXTRACRANIAL PROCEDURES W/O CC/MCC|10046 |RIVERVIEW REGIONAL MEDICAL
 CENTER |600 SOUTH THIRD STREET |GADSDEN |AL |35901
 |AL - Birmingham |14 |$67327.92
 |$5461.57 |$4493.57 |[IsComplete "Provider Id"]|
[ColumnValues " Total Discharges " > 15]|[ColumnExists "Provider Id"]|Failed
 |
|039 - EXTRACRANIAL PROCEDURES W/O CC/MCC|10083 |SOUTH BALDWIN REGIONAL
 MEDICAL CENTER|1613 NORTH MCKENZIE STREET|FOLEY |AL |36535

Creating an ETL job in AWS Glue Studio 1078

AWS Glue User Guide

 |AL - Mobile |15 |$25411.33
 |$5282.93 |$4383.73 |[IsComplete "Provider
 Id"]|[ColumnValues " Total Discharges " > 15]|[ColumnExists "Provider Id"]|Failed
 |
|039 - EXTRACRANIAL PROCEDURES W/O CC/MCC|30002 |BANNER GOOD SAMARITAN MEDICAL
 CENTER |1111 EAST MCDOWELL ROAD |PHOENIX |AZ |85006
 |AZ - Phoenix |11 |$34803.81
 |$7768.90 |$6951.45 |[IsComplete "Provider Id"]|
[ColumnValues " Total Discharges " > 15]|[ColumnExists "Provider Id"]|Failed
 |
|039 - EXTRACRANIAL PROCEDURES W/O CC/MCC|30010 |CARONDELET ST MARYS HOSPITAL
 |1601 WEST ST MARY'S ROAD |TUCSON |AZ |85745
 |AZ - Tucson |12 |$35968.50
 |$6506.50 |$5379.83 |[IsComplete "Provider Id"]|
[ColumnValues " Total Discharges " > 15]|[ColumnExists "Provider Id"]|Failed
 |
+--+-----------
+-------------------------------------+--------------------------+-------------
+--------------+-----------------+------------------------------------
+------------------+-------------------------+------------------------
+-------------------------+--------------------------
+--+----------------------------
+---------------------------+
only showing top 5 rows

Note that AWS Glue Data Quality added four new columns (DataQualityRulesPass,
DataQualityRulesFail, DataQualityRulesSkip, and DataQualityEvaluationResult). This indicates
the records that passed, the records that failed, rules skipped for row-level evaluation, and the
overall row-level results.

10. Write the output to an Amazon S3 bucket to analyze the data and visualize the results.

#Write the Passed records to the destination.

glueContext.write_dynamic_frame.from_options(
 frame = rowLevelOutcomes_df_passed,
 connection_type = "s3",
 connection_options = {"path": "s3://glue-sample-target/output-dir/
medicare_parquet"},
 format = "parquet")

Creating an ETL job in AWS Glue Studio 1079

AWS Glue User Guide

Data Quality Definition Language (DQDL) reference

Data Quality Definition Language (DQDL) is a domain specific language that you use to define rules
for AWS Glue Data Quality.

This guide introduces key DQDL concepts to help you understand the language. It also provides a
reference for DQDL rule types with syntax and examples. Before you use this guide, we recommend
that you have familiarity with AWS Glue Data Quality. For more information, see AWS Glue Data
Quality.

Note

DynamicRules are only supported in AWS Glue ETL.

Contents

• DQDL syntax

• Rule structure

• Composite rules

• How Composite rules work

• Expressions

• Keywords for NULL, EMPTY and WHITESPACES_ONLY

• Filtering with Where Clause

• Dynamic rules

• Analyzers

• Comments

• DQDL rule type reference

• AggregateMatch

• ColumnCorrelation

• ColumnCount

• ColumnDataType

• ColumnExists

• ColumnLength

• ColumnNamesMatchPattern

Data Quality Definition Language (DQDL) reference 1080

AWS Glue User Guide

• ColumnValues

• Completeness

• CustomSQL

• DataFreshness

• DatasetMatch

• DistinctValuesCount

• Entropy

• IsComplete

• IsPrimaryKey

• IsUnique

• Mean

• ReferentialIntegrity

• RowCount

• RowCountMatch

• StandardDeviation

• Sum

• SchemaMatch

• Uniqueness

• UniqueValueRatio

• DetectAnomalies

DQDL syntax

A DQDL document is case sensitive and contains a ruleset, which groups individual data quality
rules together. To construct a ruleset, you must create a list named Rules (capitalized), delimited
by a pair of square brackets. The list should contain one or more comma-separated DQDL rules like
the following example.

Rules = [
 IsComplete "order-id",
 IsUnique "order-id"
]

Syntax 1081

AWS Glue User Guide

Rule structure

The structure of a DQDL rule depends on the rule type. However, DQDL rules generally fit the
following format.

<RuleType> <Parameter> <Parameter> <Expression>

RuleType is the case-sensitive name of the rule type that you want to configure. For example,
IsComplete, IsUnique, or CustomSql. Rule parameters differ for each rule type. For a complete
reference of DQDL rule types and their parameters, see DQDL rule type reference.

Composite rules

DQDL supports the following logical operators that you can use to combine rules. These rules are
called Composite Rules.

and

The logical and operator results in true if and only if the rules that it connects are true.
Otherwise, the combined rule results in false. Each rule that you connect with the and
operator must be surrounded by parentheses.

The following example uses the and operator to combine two DQDL rules.

(IsComplete "id") and (IsUnique "id")

or

The logical or operator results in true if and only if one or more of the rules that it connects
are true. Each rule that you connect with the or operator must be surrounded by parentheses.

The following example uses the or operator to combine two DQDL rules.

(RowCount "id" > 100) or (IsPrimaryKey "id")

You can use the same operator to connect multiple rules, so the following rule combination is
allowed.

(Mean "Star_Rating" > 3) and (Mean "Order_Total" > 500) and (IsComplete "Order_Id")

Syntax 1082

AWS Glue User Guide

However, you can't combine the logical operators into a single expression. For example, the
following combination is not allowed.

(Mean "Star_Rating" > 3) and (Mean "Order_Total" > 500) or (IsComplete "Order_Id")

How Composite rules work

By default, Composite Rules are evaluated as individual rules across the entire dataset or table and
then the results are combined. In other words, it evaluates the entire column first and then applies
the operator. This default behaviour is explained below with an example:

Dataset

+------+------+
|myCol1|myCol2|
+------+------+
| 2| 1|
| 0| 3|
+------+------+

Overall outcome

+--+-------+
|Rule |Outcome|
+--+-------+
|(ColumnValues "myCol1" > 1) OR (ColumnValues "myCol2" > 2)|Failed |
+--+-------+

In the above example, AWS Glue Data Quality first evaluates (ColumnValues "myCol1" > 1)
which will result in a failure. Then it will evaluate (ColumnValues "myCol2" > 2) which will
also fail. The combination of both results will be noted as FAILED.

However, if you prefer an SQL like behaviour, where you need the entire row to be evaluated, you
have to explicitly set the ruleEvaluation.scope parameter as shown in additionalOptions
in the code snippet below.

object GlueApp {
 val datasource = glueContext.getCatalogSource(
 database="<db>",
 tableName="<table>",
 transformationContext="datasource"

Syntax 1083

AWS Glue User Guide

).getDynamicFrame()

 val ruleset = """
 Rules = [
 (ColumnValues "age" >= 26) OR (ColumnLength "name" >= 4)
]
 """

 val dq_results = EvaluateDataQuality.processRows(
 frame=datasource,
 ruleset=ruleset,
 additionalOptions=JsonOptions("""
 {
 "compositeRuleEvaluation.method":"ROW"
 }
 """
)
)
}

In AWS Glue Studio and AWS Glue Data Catalog, you can easily setup this option in the user
interface as shown below.

Once set, the composite rules will behave as a single rule evaluating the entire row. The following
example illustrates this behaviour.

Syntax 1084

AWS Glue User Guide

Row Level outcome

+------+------+--
+---------------------------+
|myCol1|myCol2|DataQualityRulesPass |
DataQualityEvaluationResult|
+------+------+--
+---------------------------+
|2 |1 |[(ColumnValues "myCol1" > 1) OR (ColumnValues "myCol2" > 2)]|Passed
 |
|0 |3 |[(ColumnValues "myCol1" > 1) OR (ColumnValues "myCol2" > 2)]|Passed
 |
+------+------+--
+---------------------------+

Some rules cannot be supported in this feature because their overall outcome rely on thresholds or
ratios. They are listed below.

Rules relying on ratios:

• Completeness

• DatasetMatch

• ReferentialIntegrity

• Uniqueness

Rules dependent on thresholds:

When the following rules include with threshold, they are not supported. However, rules that do
not involve with threshold remain supported.

• ColumnDataType

• ColumnValues

• CustomSQL

Syntax 1085

AWS Glue User Guide

Expressions

If a rule type doesn't produce a Boolean response, you must provide an expression as a parameter
in order to create a Boolean response. For example, the following rule checks the mean (average)
of all the values in a column against an expression to return a true or false result.

Mean "colA" between 80 and 100

Some rule types such as IsUnique and IsComplete already return a Boolean response.

The following table lists expressions that you can use in DQDL rules.

Supported DQDL expressions

Expression Description Example

=x Resolves to true if the rule
type response is equal to x.

Completeness "colA" =
 "1.0",
ColumnValues "colA" =
 "2022-06-30"

!=x x Resolves to true if the rule
type response is not equal to
x.

ColumnValues "colA" != "a",
ColumnValues "colA" !=
 "2022-06-30"

> x Resolves to true if the rule
type response is greater than
x.

ColumnValues "colA" > 10

< x Resolves to true if the rule
type response is less than x.

ColumnValues "colA" < 1000,
ColumnValues "colA" <
 "2022-06-30"

>= x Resolves to true if the rule
type response is greater than
or equal to x.

ColumnValues "colA" >= 10

Syntax 1086

AWS Glue User Guide

Expression Description Example

<= x Resolves to true if the rule
type response is less than or
equal to x.

ColumnValues "colA" <= 1000

between x and y Resolves to true if the
rule type response falls in a
specified range (exclusive).
Only use this expression type
for numeric and date types.

Mean "colA" between 8 and
 100,
ColumnValues "colA" between
 "2022-05-31" and "2022-06-
30"

not between x and y Resolves to true if the rule
type response does not fall
in a specified range (inclusiv
e). You should only use this
expression type for numeric
and date types.

ColumnValues "colA" not
 between "2022-05-31" and
 "2022-06-30"

in [a, b, c, ...] Resolves to true if the
rule type response is in the
specified set.

ColumnValues "colA" in [1,
 2, 3],
ColumnValues "colA" in
 ["a", "b", "c"]

not in [a, b, c, ...] Resolves to true if the rule
type response is not in the
specified set.

ColumnValues "colA" not in
 [1, 2, 3],
ColumnValues "colA" not in
 ["a", "b", "c"]

matches /ab+c/i Resolves to true if the rule
type response matches a
regular expression.

ColumnValues "colA" matches
 "[a-zA-Z]*"

not matches /ab+c/i Resolves to true if the rule
type response does not
match a regular expression.

ColumnValues "colA" not
 matches "[a-zA-Z]*"

Syntax 1087

AWS Glue User Guide

Expression Description Example

now() Works only with the
ColumnValues rule type
to create a date expression.

ColumnValues "load_date" >
 (now() - 3 days)

matches/in […]/not
matches/not in [...] with
threshold

Specifies the percentage
of values that match the
rule conditions. Works only
with the ColumnValues ,
ColumnDataType , and
CustomSQL rule types.

ColumnValues "colA" in
 ["A", "B"] with threshold >
 0.8,
ColumnValues "colA" matches
 "[a-zA-Z]*" with threshold
 between 0.2 and 0.9
ColumnDataType "colA" =
 "Timestamp" with threshold
 > 0.9

Keywords for NULL, EMPTY and WHITESPACES_ONLY

If you want to validate if a string column has a null, empty or a string with only whitespaces you
can use the following keywords:

• NULL / null – This keyword resolves to true for a null value in a string column.

ColumnValues "colA" != NULL with threshold > 0.5 would return true if more than
50% of your data does not have null values.

(ColumnValues "colA" = NULL) or (ColumnLength "colA" > 5) would return true
for all rows which either have a null value or have length >5. Note that this will require the use of
the “compositeRuleEvaluation.method” = “ROW” option.

• EMPTY / empty – This keyword resolves to true for an empty string (“”) value in a string column.
Some data formats transform nulls in a string column to empty strings. This keyword helps filter
out empty strings in your data.

(ColumnValues "colA" = EMPTY) or (ColumnValues "colA" in ["a", "b"])
would return true if a row is either empty, “a” or “b”. Note that this requires the use of the
“compositeRuleEvaluation.method” = “ROW” option.

• WHITESPACES_ONLY / whitespaces_only – This keyword resolves to true for a string with only
whitespaces (“ ”) value in a string column.

Syntax 1088

AWS Glue User Guide

ColumnValues "colA" not in ["a", "b", WHITESPACES_ONLY] would return true if a
row is neither “a” or “b” nor just whitespaces.

Supported rules:

• ColumnValues

For a numeric or date based expression, if you want to validate if a column has a null you can use
the following keywords.

• NULL / null – This keyword resolves to true for a null value in a string column.

ColumnValues "colA" in [NULL, "2023-01-01"] would return true if a dates in your
column are either 2023-01-01 or null.

(ColumnValues "colA" = NULL) or (ColumnValues "colA" between 1 and 9)
would return true for all rows which either have a null value or have values between 1 and 9.
Note that this will require the use of the “compositeRuleEvaluation.method” = “ROW” option.

Supported rules:

• ColumnValues

Filtering with Where Clause

You can filter your data when authoring rules. This is helpful when you want to apply conditional
rules.

<DQDL Rule> where "<valid SparkSQL where clause> "

The filter must be specified with the where keyword, followed by a valid SparkSQL statement that
is enclosed in quotes ("").

If the rule you wish to add the where clause to a rule with a threshold, the where clause should be
specified before the threshold condition.

<DQDL Rule> where "valid SparkSQL statement>" with threshold <threshold condition>

With this syntax you can write rules like the following.

Syntax 1089

https://docs.aws.amazon.com/glue/latest/dg/dqdl.html#dqdl-rule-types-ColumnValues
https://docs.aws.amazon.com/glue/latest/dg/dqdl.html#dqdl-rule-types-ColumnValues

AWS Glue User Guide

Completeness "colA" > 0.5 where "colB = 10"
ColumnValues "colB" in ["A", "B"] where "colC is not null" with threshold > 0.9
ColumnLength "colC" > 10 where "colD != Concat(colE, colF)"

We will validate that the SparkSQL statement provided is valid. If invalid, the rule evaluation will
fail and we will throw the an IllegalArgumentException with the following format:

Rule <DQDL Rule> where "<invalid SparkSQL>" has provided an invalid where clause :
<SparkSQL Error>

Where clause behaviour when Row level error record identification is turned on

With AWS Glue Data Quality, you can identify specific records that failed. When applying a where
clause to rules that support row level results, we will label the rows that are filtered out by the
where clause as Passed.

If you prefer to separately label the filtered out rows as SKIPPED, you can set the following
additionalOptions for the ETL job.

object GlueApp {
 val datasource = glueContext.getCatalogSource(
 database="<db>",
 tableName="<table>",
 transformationContext="datasource"
).getDynamicFrame()

 val ruleset = """
 Rules = [
 IsComplete "att2" where "att1 = 'a'"
]
 """

 val dq_results = EvaluateDataQuality.processRows(
 frame=datasource,
 ruleset=ruleset,
 additionalOptions=JsonOptions("""
 {
 "rowLevelConfiguration.filteredRowLabel":"SKIPPED"
 }
 """
)

Syntax 1090

AWS Glue User Guide

)
}

As an example, refer to the following rule and dataframe:

IsComplete att2 where "att1 = 'a'"

id att1 att2 Row-level
Results
(Default)

Row Level
Results
(Skipped
Option)

Comments

1 a f PASSED PASSED

2 b d PASSED SKIPPED Row is
filtered out,
since att1 is
not "a"

3 a null FAILED FAILED

4 a f PASSED PASSED

5 b null PASSED SKIPPED Row is
filtered out,
since att1 is
not "a"

6 a f PASSED PASSED

Dynamic rules

You can now author dynamic rules to compare current metrics produced by your rules with their
historical values. These historical comparisons are enabled by using the last() operator in
expressions. For example, the rule RowCount > last() will succeed when the number of rows in
the current run is greater than the most recent prior row count for the same dataset. last() takes
an optional natural number argument describing how many prior metrics to consider; last(k)
where k >= 1 will reference the last k metrics.

Syntax 1091

AWS Glue User Guide

• If no data points are available, last(k) will return the default value 0.0.

• If fewer than k metrics are available, last(k) will return all prior metrics.

To form valid expressions use last(k), where k > 1 requires an aggregation function to reduce
multiple historical results to a single number. For example, RowCount > avg(last(5)) will
check whether the current dataset’s row count is strictly greater than the average of the last five
row counts for the same dataset. RowCount > last(5) will produce an error because the current
dataset row count can't be meaningfully compared to a list.

Supported aggregation functions:

• avg

• median

• max

• min

• sum

• std (standard deviation)

• abs (absolute value)

• index(last(k), i) will allow for selecting the ith most recent value out of the last
k. i is zero-indexed, so index(last(3), 0) will return the most recent datapoint and
index(last(3), 3) will result in an error as there are only three datapoints and we attempt
to index the 4th most recent one.

Sample expressions

ColumnCorrelation

• ColumnCorrelation "colA" "colB" < avg(last(10))

DistinctValuesCount

• DistinctValuesCount "colA" between min(last(10))-1 and max(last(10))+1

Most rule types with numeric conditions or thresholds support dynamic rules; see the provided
table, Analyzers and Rules, to determine whether dynamic rules are supported for your rule type.

Syntax 1092

AWS Glue User Guide

Analyzers

Note

Analyzers are not supported in AWS Glue Data Catalog.

DQDL rules use functions called analyzers to gather information about your data. This information
is employed by a rule’s Boolean expression to determine whether the rule should succeed or fail.
For example, the RowCount rule RowCount > 5 will use a row count analyzer to discover the
number of rows in your dataset, and compare that count with the expression > 5 to check whether
more than five rows exist in the current dataset.

Sometimes, instead of authoring rules, we recommend creating analyzers and then have them
generate statistics that can be used to detect anomalies. For such instances, you can create
analyzers. Analyzers differ from rules in the following ways.

Characteristic Analyzers Rules

Part of ruleset Yes Yes

Generates statistics Yes Yes

Generates observations Yes Yes

Can evaluate and assert a
condition

No Yes

You can configure actions
such as stop the jobs on
failure, continue processing
job

No Yes

Analyzers can independently exist without rules, so you can quickly configure them and
progressively build data quality rules.

Some rule types can be input in the Analyzers block of your ruleset to run the rules required for
analyzers and gather information without applying checks for any condition. Some analyzers aren't

Syntax 1093

AWS Glue User Guide

associated with rules and can only be input in the Analyzers block. The following table indicates
whether each item is supported as a rule or a standalone analyzer, along with additional details for
each rule type.

Example Ruleset with Analyzer

The following ruleset uses:

• a dynamic rule to check whether a dataset is growing over its trailing average for the last three
job runs

• a DistinctValuesCount analyzer to record the number of distinct values in the dataset's Name
column

• a ColumnLength analyzer to track minimum and maximum Name size over time

Analyzer metric results can be viewed in the Data Quality tab for your job run.

Rules = [
 RowCount > avg(last(3))
]
Analyzers = [
 DistinctValuesCount "Name",
 ColumnLength "Name"
]

Comments

You can use the '#' character to add a comment to your DQDL document. Anything after the '#'
character and until the end of the line is ignored by DQDL.

Rules = [
 # More items should generally mean a higher price, so correlation should be
 positive
 ColumnCorrelation "price" "num_items" > 0
]

DQDL rule type reference

This section provides a reference for each rule type that AWS Glue Data Quality supports.

Rule type reference 1094

AWS Glue User Guide

Note

• DQDL doesn't currently support nested or list-type column data.

• Bracketed values in the below table will be replaced with the information provided in
rule arguments.

• Rules typically require an additional argument for expression.

Ruletype Descripti
on

ArgumentsReported
Metrics

Supported
as
Rule?

Supported
as
Analyzer?

Returns
row-
level
Results?

Dynamic
rule
support?

Generates
Observati
ons

Supports
Where
Clause
Syntax?

Aggregate
Match

Checks
if two
datasets
match
by
comparing
summary
metrics
like
total
sales
amount.
Useful
for
financial
instituti
ons to
compare
if all
data is
ingested
from

One or
more
aggregati
ons

When
first
and
second
aggregati
on
column
names
match:

Column.
[C
olumn].Ag
gregateMa
tch

When
first
and
second
aggregati
on
column

Yes No No No No No

Rule type reference 1095

AWS Glue User Guide

Ruletype Descripti
on

ArgumentsReported
Metrics

Supported
as
Rule?

Supported
as
Analyzer?

Returns
row-
level
Results?

Dynamic
rule
support?

Generates
Observati
ons

Supports
Where
Clause
Syntax?

source
systems.

names
different
:

Column.
[C
olumn1,Co
lumn2].Ag
gregateMa
tch

Rule type reference 1096

AWS Glue User Guide

Ruletype Descripti
on

ArgumentsReported
Metrics

Supported
as
Rule?

Supported
as
Analyzer?

Returns
row-
level
Results?

Dynamic
rule
support?

Generates
Observati
ons

Supports
Where
Clause
Syntax?

AllStatis
tics

Standalon
e
analyzer
to
gather
multiple
metrics
for the
provided
column,
or all
columns
in a
dataset.

A
single
column
name,
OR
"AllColum
ns"

For
columns
of all
types:

Dataset.*
.RowCount

Column.
[C
olumn].Co
mpletenes
s

Column.
[C
olumn].Un
iqueness

Additiona
l
metrics
for
string-
valued
columns:

ColumnLen
gth
metrics

No Yes No No No No

Rule type reference 1097

AWS Glue User Guide

Ruletype Descripti
on

ArgumentsReported
Metrics

Supported
as
Rule?

Supported
as
Analyzer?

Returns
row-
level
Results?

Dynamic
rule
support?

Generates
Observati
ons

Supports
Where
Clause
Syntax?

Additiona
l
metrics
for
numeric-
valued
columns:

ColumnVal
ues
metrics

ColumnCor
relation

Checks
how
well
two
columns
are
corelated
.

Exactly
two
column
names

Multicolu
mn.
[Colum
n1],
[Colu
mn2].Colu
mnCorrela
tion

Yes Yes No Yes No Yes

ColumnCou
nt

Checks
if any
columns
are
dropped.

None Dataset.*
.ColumnCo
unt

Yes No No Yes Yes No

Rule type reference 1098

AWS Glue User Guide

Ruletype Descripti
on

ArgumentsReported
Metrics

Supported
as
Rule?

Supported
as
Analyzer?

Returns
row-
level
Results?

Dynamic
rule
support?

Generates
Observati
ons

Supports
Where
Clause
Syntax?

ColumnDat
aType

Checks
if a
column
is
compliant
with a
datatype.

Exactly
one
column
name

Column.
[C
olumn].Co
lumnDataT
ype.Compl
iance

Yes No No Yes, in
row-
level
threshold
expressio
n

No Yes

ColumnExi
sts

Checks
if
columns
exist
in a
dataset.
This
allows
customers
building
self
service
data
platforms
to
ensure
certain
columns
are
made
available
.

Exactly
one
column
name

N/A Yes No No No No No

Rule type reference 1099

AWS Glue User Guide

Ruletype Descripti
on

ArgumentsReported
Metrics

Supported
as
Rule?

Supported
as
Analyzer?

Returns
row-
level
Results?

Dynamic
rule
support?

Generates
Observati
ons

Supports
Where
Clause
Syntax?

ColumnLen
gth

Checks
if
length
of
data is
consisten
t.

Exactly
one
column
name

Column.
[C
olumn].Ma
ximumLeng
th

Column.
[C
olumn].Mi
nimumLeng
th

Additiona
l
metric
when
row-
level
threshold
provided:

Column.
[C
olumn].Co
lumnValue
s.Complia
nce

Yes Yes Yes,
when
row-
level
threshold
provided

No Yes.
Only
generates
observati
ons by
analyzing
Minimum
and
Maximum
length

Yes

Rule type reference 1100

AWS Glue User Guide

Ruletype Descripti
on

ArgumentsReported
Metrics

Supported
as
Rule?

Supported
as
Analyzer?

Returns
row-
level
Results?

Dynamic
rule
support?

Generates
Observati
ons

Supports
Where
Clause
Syntax?

ColumnNam
esMatchPa
ttern

Checks
if
column
names
match
defined
patterns.
Useful
for
governanc
e
teams
to
enforce
column
name
consisten
cy.

A
regex
for
column
names

Dataset.*
.ColumnNa
mesPatter
nMatchRat
io

Yes No No No No No

Rule type reference 1101

AWS Glue User Guide

Ruletype Descripti
on

ArgumentsReported
Metrics

Supported
as
Rule?

Supported
as
Analyzer?

Returns
row-
level
Results?

Dynamic
rule
support?

Generates
Observati
ons

Supports
Where
Clause
Syntax?

ColumnVal
ues

Checks
if data
is
consisten
t per
defined
values.
This
rule
supports
regular
expressio
ns.

Exactly
one
column
name

Column.
[C
olumn].Ma
ximum

Column.
[C
olumn].Mi
nimum

Additiona
l
metric
when
row-
level
threshold
provided:

Column.
[C
olumn].Co
lumnValue
s.Complia
nce

Yes Yes Yes,
when
row-
level
threshold
provided

No Yes.
Only
generates
observati
ons by
analyzing
Minimum
and
Maximum
values

Yes

Rule type reference 1102

AWS Glue User Guide

Ruletype Descripti
on

ArgumentsReported
Metrics

Supported
as
Rule?

Supported
as
Analyzer?

Returns
row-
level
Results?

Dynamic
rule
support?

Generates
Observati
ons

Supports
Where
Clause
Syntax?

Completen
ess

Checks
for any
blank
or
NULLs
in
data.

Exactly
one
column
name

Column.
[C
olumn].Co
mpletenes
s

Yes Yes Yes Yes Yes Yes

CustomSqlCustomers
can
implement
almost
any
type
of
data
quality
checks
in
SQL.

A SQL
statement

(Optional
) A
row-
level
threshold

Dataset.*
.CustomSQ
L

Additiona
l
metric
when
row-
level
threshold
provided:

Dataset.*
.CustomSQ
L.Complia
nce

Yes No Yes,
when
row-
level
threshold
provided

Yes No No

DataFresh
ness

Checks
if data
is
fresh.

Exactly
one
column
name

Column.
[C
olumn].Da
taFreshne
ss.Compli
ance

Yes No Yes No No Yes

Rule type reference 1103

AWS Glue User Guide

Ruletype Descripti
on

ArgumentsReported
Metrics

Supported
as
Rule?

Supported
as
Analyzer?

Returns
row-
level
Results?

Dynamic
rule
support?

Generates
Observati
ons

Supports
Where
Clause
Syntax?

DatasetMa
tch

Compares
two
datasets
and
identifie
s if
they
are in
synch.

Name
of a
reference
dataset

A
column
mapping

(Optional
)
Columns
to
check
for
matches

Dataset.
[
Reference
DatasetAl
ias].Data
setMatch

Yes No Yes Yes No No

DistinctV
aluesCoun
t

Checks
for
duplicate
values.

Exactly
one
column
name

Column.
[C
olumn].Di
stinctVal
uesCount

Yes Yes Yes Yes Yes Yes

DetectAno
malies

Checks
for
anomalies
in
another
rule
type's
reported
metrics.

A rule
type

Metric(s)
reported
by the
rule
type
argument

Yes No No No No No

Rule type reference 1104

AWS Glue User Guide

Ruletype Descripti
on

ArgumentsReported
Metrics

Supported
as
Rule?

Supported
as
Analyzer?

Returns
row-
level
Results?

Dynamic
rule
support?

Generates
Observati
ons

Supports
Where
Clause
Syntax?

Entropy Checks
for
entropy
of the
data.

Exactly
one
column
name

Column.
[C
olumn].En
tropy

Yes Yes No Yes No Yes

IsComplet
e

Checks
if
100%
of the
data is
complete.

Exactly
one
column
name

Column.
[C
olumn].Co
mpletenes
s

Yes No Yes No No Yes

IsPrimary
Key

Checks
if a
column
is a
primary
key
(not
NULL
and
unique).

Exactly
one
column
name

For
single
column:

Column.
[C
olumn].Un
iqueness

For
multiple
columns:

Multicolu
mn[CommaD
elimitedC
olumns].U
niqueness

Yes No Yes No No Yes

Rule type reference 1105

AWS Glue User Guide

Ruletype Descripti
on

ArgumentsReported
Metrics

Supported
as
Rule?

Supported
as
Analyzer?

Returns
row-
level
Results?

Dynamic
rule
support?

Generates
Observati
ons

Supports
Where
Clause
Syntax?

IsUnique Checks
if
100%
of the
data is
unique.

Exactly
one
column
name

Column.
[C
olumn].Un
iqueness

Yes No Yes No No Yes

Mean Checks
if the
mean
matches
the set
threshold
.

Exactly
one
column
name

Column.
[C
olumn].Me
an

Yes Yes Yes Yes No Yes

Referenti
alIntegri
ty

Checks
if two
datasets
have
referenti
al
integrity
.

One or
more
column
names
from
dataset

One or
more
columb
names
from
reference
dataset

Column.
[R
eferenceD
atasetAli
as].Refer
entialInt
egrity

Yes No Yes Yes No No

Rule type reference 1106

AWS Glue User Guide

Ruletype Descripti
on

ArgumentsReported
Metrics

Supported
as
Rule?

Supported
as
Analyzer?

Returns
row-
level
Results?

Dynamic
rule
support?

Generates
Observati
ons

Supports
Where
Clause
Syntax?

RowCountChecks
if
record
counts
match
a
threshold
.

None Dataset.*
.RowCount

Yes Yes No Yes Yes Yes

RowCountM
atch

Checks
if
record
counts
between
two
datasets
match.

Reference
dataset
alias

Dataset.
[
Reference
DatasetAl
ias].RowC
ountMatch

Yes No No Yes No No

StandardD
eviation

Checks
if
standard
deviation
matches
the
threshold
.

Exactly
one
column
name

Column.
[C
olumn].St
andardDev
iation

Yes Yes Yes Yes No Yes

Rule type reference 1107

AWS Glue User Guide

Ruletype Descripti
on

ArgumentsReported
Metrics

Supported
as
Rule?

Supported
as
Analyzer?

Returns
row-
level
Results?

Dynamic
rule
support?

Generates
Observati
ons

Supports
Where
Clause
Syntax?

SchemaMat
ch

Checks
if
schema
between
two
datasets
match.

Reference
dataset
alias

Dataset.
[
Reference
DatasetAl
ias].Sche
maMatch

Yes No No Yes No No

Sum Checks
if sum
matches
a set
threshold
.

Exactly
one
column
name

Column.
[C
olumn].Su
m

Yes Yes No Yes No Yes

Uniquenes
s

Checks
if
uniquenes
s of
dataset
matches
threshold
.

Exactly
one
column
name

Column.
[C
olumn].Un
iqueness

Yes Yes Yes Yes No Yes

UniqueVal
ueRatio

Checks
if the
unique
value
ration
matches
threshold
.

Exactly
one
column
name

Column.
[C
olumn].Un
iqueValue
Ratio

Yes Yes Yes Yes No Yes

Rule type reference 1108

AWS Glue User Guide

Topics

• AggregateMatch

• ColumnCorrelation

• ColumnCount

• ColumnDataType

• ColumnExists

• ColumnLength

• ColumnNamesMatchPattern

• ColumnValues

• Completeness

• CustomSQL

• DataFreshness

• DatasetMatch

• DistinctValuesCount

• Entropy

• IsComplete

• IsPrimaryKey

• IsUnique

• Mean

• ReferentialIntegrity

• RowCount

• RowCountMatch

• StandardDeviation

• Sum

• SchemaMatch

• Uniqueness

• UniqueValueRatio

• DetectAnomalies

Rule type reference 1109

AWS Glue User Guide

AggregateMatch

Checks the ratio of two column aggregations against a given expression. This ruletype works on
multiple datasets. The two column aggregations are evaluated and a ratio is produced by dividing
the result of the first column aggregation with the result of the second column aggregation. The
ratio is checked against the provided expression to produce a boolean response.

Syntax

Column aggregation

ColumnExists <AGG_OPERATION> (<OPTIONAL_REFERENCE_ALIAS>.<COL_NAME>)

• AGG_OPERATION – The operation to use for the aggregation. Currently, sum and avg are
supported.

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

• OPTIONAL_REFERENCE_ALIAS – This parameter needs to be provided if the
column is from a reference dataset and not the primary dataset. If you are using
this rule in the AWS Glue Data Catalog, your reference alias must follow the format
"<database_name>.<table_name>.<column_name>

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

• COL_NAME – The name of the column to aggregate.

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

Example: Average

"avg(rating)"

Example: Sum

"sum(amount)"

Example: Average of column in reference dataset

"avg(reference.rating)"

Rule type reference 1110

AWS Glue User Guide

Rule

AggregateMatch <AGG_EXP_1> <AGG_EXP_2> <EXPRESSION>

• AGG_EXP_1 – The first column aggregation.

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

• AGG_EXP_2 – The second column aggregation.

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Aggregate Match using sum

The following example rule checks whether the sum of the values in the amount column is exactly
equal to the sum of the values in the total_amount column.

AggregateMatch "sum(amount)" "sum(total_amount)" = 1.0

Example: Aggregate Match using average

The following example rule checks whether the average of the values in the ratings column
is equal to at least 90% of the average of the values in the ratings column in the reference
dataset. The reference dataset is provided as an additional data source in the ETL or Data Catalog
experience.

In AWS Glue ETL, you can use:

AggregateMatch "avg(ratings)" "avg(reference.ratings)" >= 0.9

In the AWS Glue Data Catalog, you can use:

AggregateMatch "avg(ratings)" "avg(database_name.tablename.ratings)" >= 0.9

Rule type reference 1111

AWS Glue User Guide

Null behavior

The AggregateMatch rule will ignore rows with NULL values in the calculation of the aggregation
methods (sum/mean). For example:

+---+-----------+
|id |units |
+---+-----------+
100	0
101	null
102	20
103	null
104	40
+---+-----------+

The mean of column units will be (0 + 20 + 40) / 3 = 20. Rows 101 and 103 are not considered in
this calculation.

ColumnCorrelation

Checks the correlation between two columns against a given expression. AWS Glue Data Quality
uses the Pearson correlation coefficient to measure the linear correlation between two columns.
The result is a number between -1 and 1 that measures the strength and direction of the
relationship.

Syntax

ColumnCorrelation <COL_1_NAME> <COL_2_NAME> <EXPRESSION>

• COL_1_NAME – The name of the first column that you want to evaluate the data quality rule
against.

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

• COL_2_NAME – The name of the second column that you want to evaluate the data quality rule
against.

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Rule type reference 1112

AWS Glue User Guide

Example: Column correlation

The following example rule checks whether the correlation coefficient between the columns
height and weight has a strong positive correlation (a coefficient value greater than 0.8).

ColumnCorrelation "height" "weight" > 0.8

ColumnCorrelation "weightinkgs" "Salary" > 0.8 where "weightinkgs > 40"

Sample dynamic rules

• ColumnCorrelation "colA" "colB" between min(last(10)) and max(last(10))

• ColumnCorrelation "colA" "colB" < avg(last(5)) + std(last(5))

Null behavior

The ColumnCorrelation rule will ignore rows with NULL values in the calculation of the
correlation. For example:

+---+-----------+
|id |units |
+---+-----------+
100	0
101	null
102	20
103	null
104	40
+---+-----------+

Rows 101 and 103 will be ignored, and the ColumnCorrelation will be 1.0.

ColumnCount

Checks the column count of the primary dataset against a given expression. In the expression, you
can specify the number of columns or a range of columns using operators like > and <.

Syntax

ColumnCount <EXPRESSION>

Rule type reference 1113

AWS Glue User Guide

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Column count numeric check

The following example rule checks whether the column count is within a given range.

ColumnCount between 10 and 20

Sample dynamic rules

• ColumnCount >= avg(last(10))

• ColumnCount between min(last(10))-1 and max(last(10))+1

ColumnDataType

Checks the inherent data type of the values in a given column against the provided expected type.
Accepts a with threshold expression to check for a subset of the values in the column.

Syntax

ColumnDataType <COL_NAME> = <EXPECTED_TYPE>
 ColumnDataType <COL_NAME> = <EXPECTED_TYPE> with threshold <EXPRESSION>

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Supported column types: String type

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

• EXPECTED_TYPE – The expected type of the values in the column.

Supported values: Boolean, Date, Timestamp, Integer, Double, Float, Long

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

• EXPRESSION – An optional expression to specify the percentage of values that should be of the
expected type.

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

Rule type reference 1114

AWS Glue User Guide

Example: Column data type integers as strings

The following example rule checks whether the values in the given column, which is of type string,
are actually integers.

ColumnDataType "colA" = "INTEGER"

Example: Column data type integers as strings check for a subset of the values

The following example rule checks whether more than 90% of the values in the given column,
which is of type string, are actually integers.

ColumnDataType "colA" = "INTEGER" with threshold > 0.9

ColumnExists

Checks whether a column exists.

Syntax

ColumnExists <COL_NAME>

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Supported column types: Any column type

Example: Column exists

The following example rule checks whether the column named Middle_Name exists.

ColumnExists "Middle_Name"

ColumnLength

Checks whether the length of each row in a column conforms to a given expression.

Syntax

ColumnLength <COL_NAME><EXPRESSION>

Rule type reference 1115

AWS Glue User Guide

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Supported column types: String

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Column row length

The following example rule checks whether the value in each row in the column named
Postal_Code is 5 characters long.

ColumnLength "Postal_Code" = 5
ColumnLength "weightinkgs" = 2 where "weightinkgs > 10"

Null behavior

The ColumnLength rule treats NULLs as 0 length strings. For a NULL row:

ColumnLength "Postal_Code" > 4 # this will fail

ColumnLength "Postal_Code" < 6 # this will succeed

The following example compound rule provides a way to explicitly fail NULL values:

(ColumnLength "Postal_Code" > 4) AND (ColumnValues != NULL)

ColumnNamesMatchPattern

Checks whether the names of all columns in the primary dataset match the given regular
expression.

Syntax

ColumnNamesMatchPattern <PATTERN>

• PATTERN – The pattern you want to evaluate the data quality rule against.

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

Rule type reference 1116

AWS Glue User Guide

Example: Column names match pattern

The following example rule checks whether all columns start with the prefix "aws_"

ColumnNamesMatchPattern "aws_.*"
ColumnNamesMatchPattern "aws_.*" where "weightinkgs > 10"

ColumnValues

Runs an expression against the values in a column.

Syntax

ColumnValues <COL_NAME> <EXPRESSION>

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Supported column types: Any column type

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Allowed values

The following example rule checks whether each value in the specified column is in a set of allowed
values (including null, empty, and strings with only whitespaces).

ColumnValues "Country" in ["US", "CA", "UK", NULL, EMPTY, WHITESPACES_ONLY]
ColumnValues "gender" in ["F", "M"] where "weightinkgs < 10"

Example: Regular expression

The following example rule checks the values in a column against a regular expression.

ColumnValues "First_Name" matches "[a-zA-Z]*"

Example: Date values

The following example rule checks the values in a date column against a date expression.

Rule type reference 1117

AWS Glue User Guide

ColumnValues "Load_Date" > (now() - 3 days)

Example: Numeric values

The following example rule checks whether the column values match a certain numeric constraint.

ColumnValues "Customer_ID" between 1 and 2000

Null behavior

For all ColumnValues rules (other than != and NOT IN), NULL rows will fail the rule. If the rule
fails due to a null value, the failure reason will display the following:

Value: NULL does not meet the constraint requirement!

The following example compound rule provides a way to explicitly allow for NULL values:

(ColumnValues "Age" > 21) OR (ColumnValues "Age" = NULL)

Negated ColumnValues rules using the != and not in syntax will pass for NULL rows. For
example:

ColumnValues "Age" != 21

ColumnValues "Age" not in [21, 22, 23]

The following examples provide a way to explicitly fail NULL values

(ColumnValues "Age" != 21) AND (ColumnValues "Age" != NULL)

ColumnValues "Age" not in [21, 22, 23, NULL]

Completeness

Checks the percentage of complete (non-null) values in a column against a given expression.

Syntax

Rule type reference 1118

AWS Glue User Guide

Completeness <COL_NAME> <EXPRESSION>

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Supported column types: Any column type

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Null value percentage

The following example rules check if more than 95 percent of the values in a column are complete.

Completeness "First_Name" > 0.95
Completeness "First_Name" > 0.95 where "weightinkgs > 10"

Sample dynamic rules

• Completeness "colA" between min(last(5)) - 1 and max(last(5)) + 1

• Completeness "colA" <= avg(last(10))

Null behavior

Note on CSV Data Formats: Blank rows on CSV columns can display multiple behaviors.

• If a column is of String type, the blank row will be recognized as an empty string and will not
fail the Completeness rule.

• If a column is of another data type like Int, the blank row will be recognized as NULL and will
fail the Completeness rule.

CustomSQL

This rule type has been extended to support two use cases:

• Run a custom SQL statement against a dataset and checks the return value against a given
expression.

• Run a custom SQL statement where you specify a column name in your SELECT statement
against which you compare with some condition to get row-level results.

Rule type reference 1119

AWS Glue User Guide

Syntax

CustomSql <SQL_STATEMENT> <EXPRESSION>

• SQL_STATEMENT – A SQL statement that returns a single numeric value, surrounded by double
quotes.

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Custom SQL to retrieve an overall rule outcome

This example rule uses a SQL statement to retrieve the record count for a data set. The rule then
checks that the record count is between 10 and 20.

CustomSql "select count(*) from primary" between 10 and 20

Example: Custom SQL to retrieve row-level results

This example rule uses a SQL statement wherein you specify a column name in your SELECT
statement against which you compare with some condition to get row level results. A threshold
condition expression defines a threshold of how many records should fail for the entire rule to fail.
Note that a rule may not contain both a condition and keyword together.

CustomSql "select Name from primary where Age > 18"

or

CustomSql "select Name from primary where Age > 18" with threshold > 3

Important

The primary alias stands in for the name of the data set that you want to evaluate.
When you work with visual ETL jobs on the console, primary always represents the
DynamicFrame being passed to the EvaluateDataQuality.apply() transform. When
you use the AWS Glue Data Catalog to run data quality tasks against a table, primary
represents the table.

Rule type reference 1120

AWS Glue User Guide

If you are in AWS Glue Data Catalog, you can also use the actual table names:

CustomSql "select count(*) from database.table" between 10 and 20

You can also join multiple tables to compare different data elements:

CustomSql "select count(*) from database.table inner join database.table2 on id1 = id2"
 between 10 and 20

In AWS Glue ETL, CustomSQL can identify records that failed the data quality checks. For this to
work, you will need to return records that are part of the primary table that you are evaluating
data quality. Records that are returned as part of the query are considered successful and records
that are not returned are considered failed.

The following rule will ensure that records with age < 100 are identified as successful and records
that are above are marked as failed.

CustomSql "select id from primary where age < 100"

This CustomSQL rule will pass when 50% of the records have age > 10 and will also identify
records that failed. The records returned by this CustomSQL will be considered passed while the
ones not returned will be considered failed.

CustomSQL "select ID, CustomerID from primary where age > 10" with threshold > 0.5

Note: CustomSQL rule will fail if you return records that are not available in the dataset.

DataFreshness

Checks the freshness of data in a column by evaluating the difference between the current time
and the values of a date column. You can specify a time-based expression for this rule type to make
sure that column values are up to date.

Syntax

DataFreshness <COL_NAME> <EXPRESSION>

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Supported column types: Date

Rule type reference 1121

AWS Glue User Guide

• EXPRESSION – A numeric expression in hours or days. You must specify the time unit in your
expression.

Example: Data freshness

The following example rules check for data freshness.

DataFreshness "Order_Date" <= 24 hours
DataFreshness "Order_Date" between 2 days and 5 days

Null behavior

The DataFreshness rules will fail for rows with NULL values. If the rule fails due to a null value,
the failure reason will display the following:

80.00 % of rows passed the threshold

where 20% of the rows that failed include the rows with NULL.

The following example compound rule provides a way to explicitly allow for NULL values:

(DataFreshness "Order_Date" <= 24 hours) OR (ColumnValues "Order_Date" = NULL)

Data Freshness for Amazon S3 objects

Sometimes you will need to validate the freshness of data based on the Amazon S3 file creating
time. To do this, you can use the following code to get the timestamp and add it to your
dataframe, and then apply Data Freshness checks.

df = glueContext.create_data_frame.from_catalog(database = "default", table_name =
 "mytable")
df = df.withColumn("file_ts", df["_metadata.file_modification_time"])

Rules = [
 DataFreshness "file_ts" < 24 hours
]

DatasetMatch

Checks if the data in the primary dataset matches the data in a reference dataset. The two
datasets are joined using the provided key column mappings. Additional column mappings can be

Rule type reference 1122

AWS Glue User Guide

provided should you wish to check for the equality of the data in only those columns. Note that
for DataSetMatch to work, your join keys should be unique and should not be NULL (must be a
primary key). If you don’t satisfy these conditions, you will get the error message, “Provided key
map not suitable for given data frames”. In cases where you can’t have joined keys that are unique,
consider using other ruletypes such as AggregateMatch to match on summary data.

Syntax

DatasetMatch <REFERENCE_DATASET_ALIAS> <JOIN CONDITION WITH
 MAPPING> <OPTIONAL_MATCH_COLUMN_MAPPINGS> <EXPRESSION>

• REFERENCE_DATASET_ALIAS – The alias of the reference dataset with which you compare data
from the primary dataset.

• KEY_COLUMN_MAPPINGS – A comma-separated list of column names that form a key in the
datasets. If the column names are not the same in both datasets, you must separated them with
a ->

• OPTIONAL_MATCH_COLUMN_MAPPINGS – You can supply this parameter if you want to
check for matching data only in certain columns. It uses the same syntax as the key column
mappings. If this parameter is not provided, we will match the data in all remaining columns. The
remaining, non-key columns must have the same names in both datasets.

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Match set datasets using ID column

The following example rule checks that more than 90% of the primary dataset matches the
reference dataset, using the "ID" column to join the two datasets. It compares all columns in this
case.

DatasetMatch "reference" "ID" >= 0.9

Example: Match set datasets using multiple key columns

In the following example, the primary dataset and the reference dataset have different names for
the key columns. ID_1 and ID_2 together form a composite key in the primary dataset. ID_ref1
and ID_ref2 together forms a composite key in the reference dataset. In this scenario, you can use
the special syntax to supply the column names.

Rule type reference 1123

AWS Glue User Guide

DatasetMatch "reference" "ID_1->ID_ref1,ID_ref2->ID_ref2" >= 0.9

Example: Match set datasets using multiple key columns and check that specific column
matches

This example builds on the previous example. We want to check that only the column containing
the amounts match. This column is named Amount1 in the primary dataset and Amount2 in the
reference dataset. You want an exact match.

DatasetMatch "reference" "ID_1->ID_ref1,ID_ref2->ID_ref2" "Amount1->Amount2" >= 0.9

DistinctValuesCount

Checks the number of distinct values in a column against a given expression.

Syntax

DistinctValuesCount <COL_NAME> <EXPRESSION>

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Supported column types: Any column type

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Distinct column value count

The following example rule checks that the column named State contains more than 3 distinct
values.

DistinctValuesCount "State" > 3
DistinctValuesCount "Customer_ID" < 6 where "Customer_ID < 10"

Sample dynamic rules

• DistinctValuesCount "colA" between avg(last(10))-1 and avg(last(10))+1

• DistinctValuesCount "colA" <= index(last(10),2) + std(last(5))

Rule type reference 1124

AWS Glue User Guide

Entropy

Checks whether the entropy value of a column matches a given expression. Entropy measures the
level of information that's contained in a message. Given the probability distribution over values in
a column, entropy describes how many bits are required to identify a value.

Syntax

Entropy <COL_NAME> <EXPRESSION>

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Supported column types: Any column type

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Column entropy

The following example rule checks that the column named Feedback has an entropy value greater
than one.

Entropy "Star_Rating" > 1
Entropy "First_Name" > 1 where "Customer_ID < 10"

Sample dynamic rules

• Entropy "colA" < max(last(10))

• Entropy "colA" between min(last(10)) and max(last(10))

IsComplete

Checks whether all of the values in a column are complete (non-null).

Syntax

IsComplete <COL_NAME>

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Rule type reference 1125

AWS Glue User Guide

Supported column types: Any column type

Example: Null values

The following example checks whether all of the values in a column named email are non-null.

IsComplete "email"
IsComplete "Email" where "Customer_ID between 1 and 50"
IsComplete "Customer_ID" where "Customer_ID < 16 and Customer_ID != 12"
IsComplete "passenger_count" where "payment_type<>0"

Null behavior

Note on CSV Data Formats: Blank rows on CSV columns can display multiple behaviors.

• If a column is of String type, the blank row will be recognized as an empty string and will not
fail the Completeness rule.

• If a column is of another data type like Int, the blank row will be recognized as NULL and will
fail the Completeness rule.

IsPrimaryKey

Checks whether a column contains a primary key. A column contains a primary key if all of the
values in the column are unique and complete (non-null).

Syntax

IsPrimaryKey <COL_NAME>

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Supported column types: Any column type

Example: Primary key

The following example rule checks whether the column named Customer_ID contains a primary
key.

Rule type reference 1126

AWS Glue User Guide

IsPrimaryKey "Customer_ID"
IsPrimaryKey "Customer_ID" where "Customer_ID < 10"

Example: Primary key with multiple columns. Any of the following examples are valid.

IsPrimaryKey "colA" "colB"
IsPrimaryKey "colA" "colB" "colC"
IsPrimaryKey colA "colB" "colC"

IsUnique

Checks whether all of the values in a column are unique, and returns a Boolean value.

Syntax

IsUnique <COL_NAME>

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Supported column types: Any column type

Example: Unique column values

The following example rule checks whether all of the values in a column named email are unique.

IsUnique "email"
IsUnique "Customer_ID" where "Customer_ID < 10"]

Mean

Checks whether the mean (average) of all the values in a column matches a given expression.

Syntax

Mean <COL_NAME> <EXPRESSION>

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Rule type reference 1127

AWS Glue User Guide

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Average value

The following example rule checks whether the average of all of the values in a column exceeds a
threshold.

Mean "Star_Rating" > 3
Mean "Salary" < 6200 where "Customer_ID < 10"

Sample dynamic rules

• Mean "colA" > avg(last(10)) + std(last(2))

• Mean "colA" between min(last(5)) - 1 and max(last(5)) + 1

Null behavior

The Mean rule will ignore rows with NULL values in the calculation of the mean. For example:

+---+-----------+
|id |units |
+---+-----------+
100	0
101	null
102	20
103	null
104	40
+---+-----------+

The mean of column units will be (0 + 20 + 40) / 3 = 20. Rows 101 and 103 are not considered in
this calculation.

ReferentialIntegrity

Checks to what extent the values of a set of columns in the primary dataset are a subset of the
values of a set of columns in a reference dataset.

Rule type reference 1128

AWS Glue User Guide

Syntax

ReferentialIntegrity <PRIMARY_COLS> <REFERENCE_DATASET_COLS> <EXPRESSION>

• PRIMARY_COLS – A comma-separated list of column names in the primary dataset.

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

• REFERENCE_DATASET_COLS – This parameter contains two parts separated by a period. The
first part is the alias of the reference dataset. The second part is the comma-separated list of
column names in the reference dataset enclosed in braces.

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Check the referential integrity of a zip code column

The following example rule checks that more than 90% of the values in the zipcode column in
the primary dataset, are present in the zipcode column in the reference dataset.

ReferentialIntegrity "zipcode" "reference.zipcode" >= 0.9

Example: Check the referential integrity of the city and state columns

In the following example, columns containing city and state information exist in the primary
dataset and the reference dataset. The names of the columns are different in both datasets. The
rule checks if the set of values of the columns in the primary dataset is exactly equal to the set of
values of the columns in the reference dataset.

ReferentialIntegrity "city,state" "reference.{ref_city,ref_state}" = 1.0

Sample dynamic rules

• ReferentialIntegrity "city,state" "reference.{ref_city,ref_state}" >
avg(last(10))

• ReferentialIntegrity "city,state" "reference.{ref_city,ref_state}"
between min(last(10)) - 1 and max(last(10)) + 1

Rule type reference 1129

AWS Glue User Guide

RowCount

Checks the row count of a dataset against a given expression. In the expression, you can specify the
number of rows or a range of rows using operators like > and <.

Syntax

RowCount <EXPRESSION>

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Row count numeric check

The following example rule checks whether the row count is within a given range.

RowCount between 10 and 100
RowCount between 1 and 50 where "Customer_ID < 10"

Sample dynamic rules

RowCount > avg(lats(10)) *0.8

RowCountMatch

Checks the ratio of the row count of the primary dataset and the row count of a reference dataset
against the given expression.

Syntax

RowCountMatch <REFERENCE_DATASET_ALIAS> <EXPRESSION>

• REFERENCE_DATASET_ALIAS – The alias of the reference dataset against which to compare row
counts.

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Rule type reference 1130

AWS Glue User Guide

Example: Row count check against a reference dataset

The following example rule checks whether the row count of the primary dataset is at least 90% of
the row count of the reference dataset.

RowCountMatch "reference" >= 0.9

StandardDeviation

Checks the standard deviation of all of the values in a column against a given expression.

Syntax

StandardDeviation <COL_NAME> <EXPRESSION>

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Standard deviation

The following example rule checks whether the standard deviation of the values in a column
named colA is less than a specified value.

StandardDeviation "Star_Rating" < 1.5
StandardDeviation "Salary" < 3500 where "Customer_ID < 10"

Sample dynamic rules

• StandardDeviation "colA" > avg(last(10) + 0.1

• StandardDeviation "colA" between min(last(10)) - 1 and max(last(10)) + 1

Null behavior

The StandardDeviation rule will ignore rows with NULL values in the calculation of standard
deviation. For example:

Rule type reference 1131

AWS Glue User Guide

+---+-----------+-----------+
|id |units1 |units2 |
+---+-----------+-----------+
100	0	0
101	null	0
102	20	20
103	null	0
104	40	40
+---+-----------+-----------+

The standard deviation of column units1 will not consider rows 101 and 103 and result to 16.33.
The standard deviation for column units2 will result in 16.

Sum

Checks the sum of all the values in a column against a given expression.

Syntax

Sum <COL_NAME> <EXPRESSION>

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Sum

The following example rule checks whether the sum of all of the values in a column exceeds a
given threshold.

Sum "transaction_total" > 500000
Sum "Salary" < 55600 where "Customer_ID < 10"

Sample dynamic rules

• Sum "ColA" > avg(last(10))

• Sum "colA" between min(last(10)) - 1 and max(last(10)) + 1

Rule type reference 1132

AWS Glue User Guide

Null behavior

The Sum rule will ignore rows with NULL values in the calculation of sum. For example:

+---+-----------+
|id |units |
+---+-----------+
100	0
101	null
102	20
103	null
104	40
+---+-----------+

The sum of column units will not consider rows 101 and 103 and result to (0 + 20 + 40) = 60.

SchemaMatch

Checks if the schema of the primary dataset matches the schema of a reference dataset. The
schema check is done column by column. The schema of two columns match if the names are
identical and the types are identical. The order of the columns does not matter.

Syntax

SchemaMatch <REFERENCE_DATASET_ALIAS> <EXPRESSION>

• REFERENCE_DATASET_ALIAS – The alias of the reference dataset against which to compare
schemas.

Supported column types: Byte, Decimal, Double, Float, Integer, Long, Short

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: SchemaMatch

The following example rule checks whether the schema of the primary dataset exactly matches the
schema of a reference dataset.

SchemaMatch "reference" = 1.0

Rule type reference 1133

AWS Glue User Guide

Uniqueness

Checks the percentage of unique values in a column against a given expression. Unique values
occur exactly once.

Syntax

Uniqueness <COL_NAME> <EXPRESSION>

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Supported column types: Any column type

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Uniqueness percentage

The following example rule checks whether the percentage of unique values in a column matches
certain numeric criteria.

Uniqueness "email" = 1.0
Uniqueness "Customer_ID" != 1.0 where "Customer_ID < 10"

Sample dynamic rules

• Uniqueness "colA" between min(last(10)) and max(last(10))

• Uniqueness "colA" >= avg(last(10))

UniqueValueRatio

Checks the unique value ratio of a column against a given expression. A unique value ratio is the
fraction of unique values divided by the number of all distinct values in a column. Unique values
occur exactly one time, while distinct values occur at least once.

For example, the set [a, a, b] contains one unique value (b) and two distinct values (a and b).
So the unique value ratio of the set is ½ = 0.5.

Syntax

Rule type reference 1134

AWS Glue User Guide

UniqueValueRatio <COL_NAME> <EXPRESSION>

• COL_NAME – The name of the column that you want to evaluate the data quality rule against.

Supported column types: Any column type

• EXPRESSION – An expression to run against the rule type response in order to produce a
Boolean value. For more information, see Expressions.

Example: Unique value ratio

This example checks the unique value ratio of a column against a range of values.

UniqueValueRatio "test_score" between 0 and 0.5
UniqueValueRatio "Customer_ID" between 0 and 0.9 where "Customer_ID < 10"

Sample dynamic rules

• UniqueValueRatio "colA" > avg(last(10))

• UniqueValueRatio "colA" <= index(last(10),2) + std(last(5))

DetectAnomalies

Detects anomalies for a given data quality rule. Every execution of DetectAnomalies rule result in
saving evaluated value for the given rule. When there is enough data gathered, anomaly detection
algorithm takes all historical data for that given rule and runs anomaly detection. DetectAnomalies
rule fails when anomaly is detected. More info about what anomaly was detected can be obtained
from Observations.

Syntax

 DetectAnomalies <RULE_NAME> <RULE_PARAMETERS>

RULE_NAME – The name of the rule that you want to evaluate and detect anomalies for. Supported
rules:

Rule type reference 1135

AWS Glue User Guide

• "RowCount"

• "Completeness"

• "Uniqueness"

• "Mean"

• "Sum"

• "StandardDeviation"

• "Entropy"

• "DistinctValuesCount"

• "UniqueValueRatio"

• "ColumnLength"

• "ColumnValues"

• "ColumnCorrelation"

RULE_PARAMETERS – some rules require additional parameters to run. Refer to the given rule
documentation to see required parameters.

Example: Anomalies for RowCount

For example, if we want to detect RowCount anomalies, we provide RowCount as a rule name.

DetectAnomalies "RowCount"

Example: Anomalies for ColumnLength

For example, if we want to detect ColumnLength anomalies, we provide ColumnLength as a rule
name and the column name.

DetectAnomalies "ColumnLength" "id"

Using APIs to measure and manage data quality

This topic describes how to use APIs to measure and manage data quality.

Contents

Using APIs to measure and manage data quality 1136

AWS Glue User Guide

• Prerequisites

• Working with AWS Glue Data Quality recommendations

• Working with AWS Glue Data Quality rulesets

• Working with AWS Glue Data Quality runs

• Working with AWS Glue Data Quality results

Prerequisites

• Make sure your boto3 version is up to date so that it includes the latest AWS Glue Data Quality
API.

• Make sure your AWS CLI version is up to date, so as to include the latest CLI.

If you’re using an AWS Glue job to run these APIs, you can use the following option to update the
boto3 library to the latest version:

—additional-python-modules boto3==<version>

Working with AWS Glue Data Quality recommendations

To start an AWS Glue Data Quality recommendation run:

class GlueWrapper:
 """Encapsulates AWS Glue actions."""
 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 Glue client.
 """
 self.glue_client = glue_client

 def start_data_quality_rule_recommendation_run(self, database_name, table_name,
 role_arn):
 """
 Starts a recommendation run that is used to generate rules when you don't
 know what rules to write. AWS Glue Data Quality analyzes the data and comes up with
 recommendations for a potential ruleset. You can then triage the ruleset and modify
 the generated ruleset to your liking.

Prerequisites 1137

AWS Glue User Guide

 :param database_name: The name of the AWS Glue database which contains the
 dataset.
 :param table_name: The name of the AWS Glue table against which we want a
 recommendation
 :param role_arn: The Amazon Resource Name (ARN) of an AWS Identity and Access
 Management (IAM) role that grants permission to let AWS Glue access the resources it
 needs.

 """
 try:
 response = self.client.start_data_quality_rule_recommendation_run(
 DataSource={
 'GlueTable': {
 'DatabaseName': database_name,
 'TableName': table_name
 }
 },
 Role=role_arn
)
 except ClientError as err:
 logger.error(
 "Couldn't start data quality recommendation run %s. Here's why: %s:
 %s", name,
 err.response['Error']['Code'], err.response['Error']['Message'])
 raise
 else:
 return response['RunId']

For a recommendation run, you are able to use your pushDownPredicates or
catalogPartitionPredicates to improve performance and run recommendations only on
specific partitions of your catalog sources.

client.start_data_quality_rule_recommendation_run(
 DataSource={
 'GlueTable': {
 'DatabaseName': database_name,
 'TableName': table_name,
 'AdditionalOptions': {
 'pushDownPredicate': "year=2022"
 }
 }
 },
 Role=role_arn,

Working with AWS Glue Data Quality recommendations 1138

AWS Glue User Guide

 NumberOfWorkers=2,
 CreatedRulesetName='<rule_set_name>'
)

To get results of an AWS Glue Data Quality recommendation run:

class GlueWrapper:
 """Encapsulates AWS Glue actions."""
 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 AWS Glue client.
 """
 self.glue_client = glue_client

 def get_data_quality_rule_recommendation_run(self, run_id):
 """
 Gets the specified recommendation run that was used to generate rules.

 :param run_id: The id of the data quality recommendation run

 """
 try:
 response =
 self.client.get_data_quality_rule_recommendation_run(RunId=run_id)
 except ClientError as err:
 logger.error(
 "Couldn't get data quality recommendation run %. Here's why: %s: %s",
 run_id,
 err.response['Error']['Code'], err.response['Error']['Message'])
 raise
 else:
 return response

From the above response object, you can extract the RuleSet that was recommended by the run, to
use in further steps:

print(response['RecommendedRuleset'])

Rules = [
 RowCount between 2000 and 8000,
 IsComplete "col1",
 IsComplete "col2",
 StandardDeviation "col3" between 58138330.8 and 64258155.09,

Working with AWS Glue Data Quality recommendations 1139

AWS Glue User Guide

 ColumnValues "col4" between 1000042965 and 1214474826,
 IsComplete "col5"
]

To get a list of all your recommendation runs that can be filtered and listed:

response = client.list_data_quality_rule_recommendation_runs(
 Filter={
 'DataSource': {
 'GlueTable': {
 'DatabaseName': '<database_name>',
 'TableName': '<table_name>'
 }
 }
)

To cancel existing AWS Glue Data Quality recommendation tasks:

response = client.cancel_data_quality_rule_recommendation_run(
 RunId='dqrun-d4b6b01957fdd79e59866365bf9cb0e40fxxxxxxx'
)

Working with AWS Glue Data Quality rulesets

To create an AWS Glue Data Quality ruleset:

response = client.create_data_quality_ruleset(
 Name='<ruleset_name>',
 Ruleset='Rules = [IsComplete "col1", IsPrimaryKey "col2", RowCount between 2000 and
 8000]',
 TargetTable={
 'TableName': '<table_name>',
 'DatabaseName': '<database_name>'
 }
)

To get a data quality ruleset:

response = client.get_data_quality_ruleset(
 Name='<ruleset_name>'

Working with AWS Glue Data Quality rulesets 1140

AWS Glue User Guide

)
print(response)

You can use this API to then extract the rule set:

print(response['Ruleset'])

To list all the data quality rulesets for a table:

response = client.list_data_quality_rulesets()

You can use the filter condition within the API to filter all rulesets attached to a specific database
or table:

response = client.list_data_quality_rulesets(
 Filter={
 'TargetTable': {
 'TableName': '<table_name>',
 'DatabaseName': '<database_name>'
 }
 },
)

To update a data quality ruleset:

class GlueWrapper:
 """Encapsulates AWS Glue actions."""
 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 AWS Glue client.
 """
 self.glue_client = glue_client

 def update_data_quality_ruleset(self, ruleset_name, ruleset_string):
 """
 Update an AWS Glue Data Quality Ruleset

 :param ruleset_name: The name of the AWS Glue Data Quality ruleset to update
 :param ruleset_string: The DQDL ruleset string to update the ruleset with

 """

Working with AWS Glue Data Quality rulesets 1141

AWS Glue User Guide

 try:
 response = self.client.update_data_quality_ruleset(
 Name=ruleset_name,
 Ruleset=ruleset_string
)
 except ClientError as err:
 logger.error(
 "Couldn't update the AWS Glue Data Quality ruleset. Here's why: %s:
 %s",
 err.response['Error']['Code'], err.response['Error']['Message'])
 raise
 else:
 return response

To delete a data quality ruleset:

class GlueWrapper:
 """Encapsulates AWS Glue actions."""
 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 AWS Glue client.
 """
 self.glue_client = glue_client

 def delete_data_quality_ruleset(self, ruleset_name):
 """
 Delete a AWS Glue Data Quality Ruleset

 :param ruleset_name: The name of the AWS Glue Data Quality ruleset to delete

 """
 try:
 response = self.client.delete_data_quality_ruleset(
 Name=ruleset_name
)
 except ClientError as err:
 logger.error(
 "Couldn't delete the AWS Glue Data Quality ruleset. Here's why: %s:
 %s",
 err.response['Error']['Code'], err.response['Error']['Message'])
 raise
 else:
 return response

Working with AWS Glue Data Quality rulesets 1142

AWS Glue User Guide

Working with AWS Glue Data Quality runs

To start an AWS Glue Data Quality run:

class GlueWrapper:
 """Encapsulates AWS Glue actions."""
 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 AWS Glue client.
 """
 self.glue_client = glue_client

 def start_data_quality_ruleset_evaluation_run(self, database_name, table_name,
 role_name, ruleset_list):
 """
 Start an AWS Glue Data Quality evaluation run

 :param database_name: The name of the AWS Glue database which contains the
 dataset.
 :param table_name: The name of the AWS Glue table against which we want to
 evaluate.
 :param role_arn: The Amazon Resource Name (ARN) of an AWS Identity and Access
 Management (IAM) role that grants permission to let AWS Glue access the resources it
 needs.
 :param ruleset_list: The list of AWS Glue Data Quality ruleset names to
 evaluate.

 """
 try:
 response = client.start_data_quality_ruleset_evaluation_run(
 DataSource={
 'GlueTable': {
 'DatabaseName': database_name,
 'TableName': table_name
 }
 },
 Role=role_name,
 RulesetNames=ruleset_list
)
 except ClientError as err:
 logger.error(
 "Couldn't start the AWS Glue Data Quality Run. Here's why: %s: %s",
 err.response['Error']['Code'], err.response['Error']['Message'])

Working with AWS Glue Data Quality runs 1143

AWS Glue User Guide

 raise
 else:
 return response['RunId']

Remember that you can pass a pushDownPredicate or catalogPartitionPredicate
parameter to ensure your data quality run only targets a specific set of partition within your
catalog table. For example:

response = client.start_data_quality_ruleset_evaluation_run(
 DataSource={
 'GlueTable': {
 'DatabaseName': '<database_name>',
 'TableName': '<table_name>',
 'AdditionalOptions': {
 'pushDownPredicate': 'year=2023'
 }
 }
 },
 Role='<role_name>',
 NumberOfWorkers=5,
 Timeout=123,
 AdditionalRunOptions={
 'CloudWatchMetricsEnabled': False
 },
 RulesetNames=[
 '<ruleset_name>',
]
)

To get information about an AWS Glue Data Quality run:

class GlueWrapper:
 """Encapsulates AWS Glue actions."""
 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 AWS Glue client.
 """
 self.glue_client = glue_client

 def get_data_quality_ruleset_evaluation_run(self, run_id):
 """
 Get details about an AWS Glue Data Quality Run

Working with AWS Glue Data Quality runs 1144

AWS Glue User Guide

 :param run_id: The AWS Glue Data Quality run ID to look up

 """
 try:
 response = self.client.get_data_quality_ruleset_evaluation_run(
 RunId=run_id
)
 except ClientError as err:
 logger.error(
 "Couldn't look up the AWS Glue Data Quality run ID. Here's why: %s:
 %s",
 err.response['Error']['Code'], err.response['Error']['Message'])
 raise
 else:
 return response

To get the results from an AWS Glue Data Quality run:

For a given AWS Glue Data Quality run, you can extract the results of the run's evaluation using the
following method:

response = client.get_data_quality_ruleset_evaluation_run(
 RunId='d4b6b01957fdd79e59866365bf9cb0e40fxxxxxxx'
)

resultID = response['ResultIds'][0]

response = client.get_data_quality_result(
 ResultId=resultID
)

print(response['RuleResults'])

To list all your AWS Glue Data Quality runs:

class GlueWrapper:
 """Encapsulates AWS Glue actions."""
 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 AWS Glue client.
 """
 self.glue_client = glue_client

Working with AWS Glue Data Quality runs 1145

AWS Glue User Guide

 def list_data_quality_ruleset_evaluation_runs(self, database_name, table_name):
 """
 Lists all the AWS Glue Data Quality runs against a given table

 :param database_name: The name of the database where the data quality runs
 :param table_name: The name of the table against which the data quality runs
 were created

 """
 try:
 response = self.client.list_data_quality_ruleset_evaluation_runs(
 Filter={
 'DataSource': {
 'GlueTable': {
 'DatabaseName': database_name,
 'TableName': table_name
 }
 }
 }
)
 except ClientError as err:
 logger.error(
 "Couldn't list the AWS Glue Quality runs. Here's why: %s: %s",
 err.response['Error']['Code'], err.response['Error']['Message'])
 raise
 else:
 return response

You can modify the filter clause to only show results between specific times or running against
specific tables.

To stop an ongoing AWS Glue Data Quality run:

class GlueWrapper:
 """Encapsulates AWS Glue actions."""
 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 AWS Glue client.
 """
 self.glue_client = glue_client

 def cancel_data_quality_ruleset_evaluation_run(self, result_id):

Working with AWS Glue Data Quality runs 1146

AWS Glue User Guide

 """
 Cancels a given AWS Glue Data Quality run

 :param result_id: The result id of a AWS Glue Data Quality run to cancel

 """
 try:
 response = self.client.cancel_data_quality_ruleset_evaluation_run(
 ResultId=result_id
)
 except ClientError as err:
 logger.error(
 "Couldn't cancel the AWS Glue Data Quality run. Here's why: %s: %s",
 err.response['Error']['Code'], err.response['Error']['Message'])
 raise
 else:
 return response

Working with AWS Glue Data Quality results

To get your AWS Glue Data Quality run results:

class GlueWrapper:
 """Encapsulates AWS Glue actions."""
 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 AWS Glue client.
 """
 self.glue_client = glue_client

 def get_data_quality_result(self, result_id):
 """
 Outputs the result of an AWS Glue Data Quality Result

 :param result_id: The result id of an AWS Glue Data Quality run

 """
 try:
 response = self.client.get_data_quality_result(
 ResultId=result_id
)
 except ClientError as err:
 logger.error(

Working with AWS Glue Data Quality results 1147

AWS Glue User Guide

 "Couldn't get the AWS Glue Data Quality result. Here's why: %s: %s",
 err.response['Error']['Code'], err.response['Error']['Message'])
 raise
 else:
 return response

To cancel existing AWS Glue Data Quality recommendation tasks:

Given an AWS Glue Data Quality run ID, you can extract the result ID to then get the actual results,
as shown below:

response = client.get_data_quality_ruleset_evaluation_run(
 RunId='dqrun-abca77ee126abe1378c1da1ae0750xxxxxxxx'
)

resultID = response['ResultIds'][0]

response = client.get_data_quality_result(
 ResultId=resultID
)

print(resp['RuleResults'])

Setting up alerts, deployments, and scheduling

This topic describes how to set up alerts, deployments, and scheduling for AWS Glue Data Quality.

Contents

• Setting up alerts and notifications in Amazon EventBridge integration

• Additional configuration options for the event pattern

• Formatting notifications as emails

• Set up alerts and notifications in CloudWatch integration

• Querying data quality results to build dashboards

• Deploying data quality rules using AWS CloudFormation

• Scheduling data quality rules

Setting up alerts, deployments, and scheduling 1148

AWS Glue User Guide

Setting up alerts and notifications in Amazon EventBridge integration

AWS Glue Data Quality supports the publishing of EventBridge events, which are emitted upon
completion of a Data Quality ruleset evaluation run. With this, you can easily setup alerts when
data quality rules fail.

Here is a sample event when you evaluate data quality rulesets in the Data Catalog. With this
information, you can review the data that is made available with Amazon EventBridge. You can
issue additional API calls to get more details. For example, call the get_data_quality_result
API with the result ID to get the details of a particular execution.

{
 "version":"0",
 "id":"abcdef00-1234-5678-9abc-def012345678",
 "detail-type":"Data Quality Evaluation Results Available",
 "source":"aws.glue-dataquality",
 "account":"123456789012",
 "time":"2017-09-07T18:57:21Z",
 "region":"us-west-2",
 "resources":[],
 "detail":{
 "context": {
 "contextType": "GLUE_DATA_CATALOG",
 "runId":"dqrun-12334567890",
 "databaseName": "db-123",
 "tableName": "table-123",
 "catalogId": "123456789012"
 },
 "resultID": "dqresult-12334567890",
 "rulesetNames": ["rulset1"],
 "state":"SUCCEEDED",
 "score": 1.00,
 "rulesSucceeded": 100,
 "rulesFailed": 0,
 "rulesSkipped": 0
 }
}

Here is a sample event that gets published when you evaluate data quality rulesets in AWS Glue
ETL or AWS Glue Studio notebooks.

{

Setting up alerts and notifications in Amazon EventBridge integration 1149

AWS Glue User Guide

 "version":"0",
 "id":"abcdef00-1234-5678-9abc-def012345678",
 "detail-type":"Data Quality Evaluation Results Available",
 "source":"aws.glue-dataquality",
 "account":"123456789012",
 "time":"2017-09-07T18:57:21Z",
 "region":"us-west-2",
 "resources":[],
 "detail":{
 "context": {
 "contextType": "GLUE_JOB",
 "jobId": "jr-12334567890",
 "jobName": "dq-eval-job-1234",
 "evaluationContext": "",
 }
 "resultID": "dqresult-12334567890",
 "rulesetNames": ["rulset1"],
 "state":"SUCCEEDED",
 "score": 1.00
 "rulesSucceeded": 100,
 "rulesFailed": 0,
 "rulesSkipped": 0
 }
}

For Data Quality evaluation runs both in the Data Catalog and in ETL jobs, the Publish metrics to
Amazon CloudWatch option, which is selected by default, must remain selected for EventBridge
publishing to work.

Setting up EventBridge notifications

To receive the emitted events and define targets, you must configure Amazon EventBridge rules. To
create rules:

Setting up alerts and notifications in Amazon EventBridge integration 1150

AWS Glue User Guide

1. Open the Amazon EventBridge console.

2. Choose Rules under the Buses section of the navigation bar.

3. Choose Create Rule.

4. On Define Rule Detail:

a. For Name, enter myDQRule.

b. Enter the description (optional).

c. For event bus, select your event bus. If you don’t have one, leave it as default.

d. For Rule type select Rule with an event pattern then choose Next.

5. On Build Event Pattern:

a. For event source select AWS events or EventBridge partner events.

b. Skip the sample event section.

c. For creation method select Use pattern form.

d. For event pattern:

i. Select AWS services for Event source.

ii. Select Glue Data Quality for AWS service.

iii. Select Data Quality Evaluation Results Available for Event type.

iv. Select FAILED for Specific state(s). Then you see an event pattern similar to the following:

{
 "source": ["aws.glue-dataquality"],
 "detail-type": ["Data Quality Evaluation Results Available"],
 "detail": {
 "state": ["FAILED"]
 }
}

v. For more configuration options see Additional configuration options for the event pattern.

6. On Select Target(s):

a. For Target Types select AWS service.

b. Use the Select a target dropdown to choose your desired AWS service to connect to (SNS,
Lambda, SQS, etc.), then choose Next.

7. On Configure tag(s) click Add new tags to add optional tags then choose Next.

8. You see a summary page of all the selections. Choose Create rule at the bottom.Setting up alerts and notifications in Amazon EventBridge integration 1151

AWS Glue User Guide

Additional configuration options for the event pattern

In addition to filtering your event on success or failure, you may want to further filter events on
different parameters.

To do this, go to the Event Pattern section, and select Edit pattern to specify additional
parameters. Note that fields in the event pattern are case sensitive. The following are examples of
configuring the event pattern.

To capture events from a particular table evaluating specific rulesets use this type of pattern:

{
 "source": ["aws.glue-dataquality"],
 "detail-type": ["Data Quality Evaluation Results Available"],
 "detail": {
 "context": {
 "contextType": ["GLUE_DATA_CATALOG"],
 "databaseName": "db-123",
 "tableName": "table-123",
 },
 "rulesetNames": ["ruleset1", "ruleset2"]
 "state": ["FAILED"]
 }
}

To capture events from specific jobs in the ETL experience use this type of pattern:

{
 "source": ["aws.glue-dataquality"],
 "detail-type": ["Data Quality Evaluation Results Available"],
 "detail": {
 "context": {
 "contextType": ["GLUE_JOB"],
 "jobName": ["dq_evaluation_job1", "dq_evaluation_job2"]
 },
 "state": ["FAILED"]
 }
}

To capture events with a score under a specific threshold (e.g. 70%):

{

Setting up alerts and notifications in Amazon EventBridge integration 1152

AWS Glue User Guide

 "source": ["aws.glue-dataquality"],
 "detail-type": ["Data Quality Evaluation Results Available"],
 "detail": {
 "score": [{
 "numeric": ["<=", 0.7]
 }]
 }
}

Formatting notifications as emails

Sometimes you need to send a well-formatted email notification to your business teams. You can
use Amazon EventBridge and AWS Lambda to achieve this.

The following sample code can be used to format your data quality notifications to generate
emails.

Setting up alerts and notifications in Amazon EventBridge integration 1153

AWS Glue User Guide

import boto3
import json
from datetime import datetime

sns_client = boto3.client('sns')
glue_client = boto3.client('glue')

sns_topic_arn = 'arn:aws:sns:<region-code>:<account-id>:<sns-topic-name>'

def lambda_handler(event, context):
 log_metadata = {}
 message_text = ""
 subject_text = ""

 if event['detail']['context']['contextType'] == 'GLUE_DATA_CATALOG':
 log_metadata['ruleset_name'] = str(event['detail']['rulesetNames'][0])
 log_metadata['tableName'] = str(event['detail']['context']['tableName'])
 log_metadata['databaseName'] = str(event['detail']['context']['databaseName'])
 log_metadata['runId'] = str(event['detail']['context']['runId'])
 log_metadata['resultId'] = str(event['detail']['resultId'])
 log_metadata['state'] = str(event['detail']['state'])
 log_metadata['score'] = str(event['detail']['score'])
 log_metadata['numRulesSucceeded'] = str(event['detail']['numRulesSucceeded'])
 log_metadata['numRulesFailed'] = str(event['detail']['numRulesFailed'])
 log_metadata['numRulesSkipped'] = str(event['detail']['numRulesSkipped'])

 message_text += "Glue Data Quality run details:\n"
 message_text += "ruleset_name: {}\n".format(log_metadata['ruleset_name'])
 message_text += "glue_table_name: {}\n".format(log_metadata['tableName'])
 message_text += "glue_database_name: {}\n".format(log_metadata['databaseName'])
 message_text += "run_id: {}\n".format(log_metadata['runId'])
 message_text += "result_id: {}\n".format(log_metadata['resultId'])
 message_text += "state: {}\n".format(log_metadata['state'])
 message_text += "score: {}\n".format(log_metadata['score'])
 message_text += "numRulesSucceeded:
 {}\n".format(log_metadata['numRulesSucceeded'])
 message_text += "numRulesFailed: {}\n".format(log_metadata['numRulesFailed'])
 message_text += "numRulesSkipped: {}\n".format(log_metadata['numRulesSkipped'])

 subject_text = "Glue Data Quality ruleset {} run
 details".format(log_metadata['ruleset_name'])

Setting up alerts and notifications in Amazon EventBridge integration 1154

AWS Glue User Guide

 else:
 log_metadata['ruleset_name'] = str(event['detail']['rulesetNames'][0])
 log_metadata['jobName'] = str(event['detail']['context']['jobName'])
 log_metadata['jobId'] = str(event['detail']['context']['jobId'])
 log_metadata['resultId'] = str(event['detail']['resultId'])
 log_metadata['state'] = str(event['detail']['state'])
 log_metadata['score'] = str(event['detail']['score'])

 log_metadata['numRulesSucceeded'] = str(event['detail']['numRulesSucceeded'])
 log_metadata['numRulesFailed'] = str(event['detail']['numRulesFailed'])
 log_metadata['numRulesSkipped'] = str(event['detail']['numRulesSkipped'])

 message_text += "Glue Data Quality run details:\n"
 message_text += "ruleset_name: {}\n".format(log_metadata['ruleset_name'])
 message_text += "glue_job_name: {}\n".format(log_metadata['jobName'])
 message_text += "job_id: {}\n".format(log_metadata['jobId'])
 message_text += "result_id: {}\n".format(log_metadata['resultId'])
 message_text += "state: {}\n".format(log_metadata['state'])
 message_text += "score: {}\n".format(log_metadata['score'])
 message_text += "numRulesSucceeded:
 {}\n".format(log_metadata['numRulesSucceeded'])
 message_text += "numRulesFailed: {}\n".format(log_metadata['numRulesFailed'])
 message_text += "numRulesSkipped: {}\n".format(log_metadata['numRulesSkipped'])

 subject_text = "Glue Data Quality ruleset {} run
 details".format(log_metadata['ruleset_name'])

 resultID = str(event['detail']['resultId'])
 response = glue_client.get_data_quality_result(ResultId=resultID)
 RuleResults = response['RuleResults']
 message_text += "\n\nruleset details evaluation steps results:\n\n"
 subresult_info = []

 for dic in RuleResults:
 subresult = "Name: {}\t\tResult: {}\t\tDescription: \t{}".format(dic['Name'],
 dic['Result'], dic['Description'])
 if 'EvaluationMessage' in dic:
 subresult += "\t\tEvaluationMessage: {}".format(dic['EvaluationMessage'])
 subresult_info.append({
 'Name': dic['Name'],
 'Result': dic['Result'],
 'Description': dic['Description'],
 'EvaluationMessage': dic.get('EvaluationMessage', '')

Setting up alerts and notifications in Amazon EventBridge integration 1155

AWS Glue User Guide

 })
 message_text += "\n" + subresult

 log_metadata['resultrun'] = subresult_info

 sns_client.publish(
 TopicArn=sns_topic_arn,
 Message=message_text,
 Subject=subject_text
)

 return {
 'statusCode': 200,
 'body': json.dumps('Message published to SNS topic')
 }

Set up alerts and notifications in CloudWatch integration

Our recommended approach is to set up data quality alerts using Amazon EventBridge, because
Amazon EventBridge requires a one-time setup to alert customers. However, some customers
prefer Amazon CloudWatch due to familiarity. For such customers, we offer integration with
Amazon CloudWatch.

Each AWS Glue Data Quality evaluation emits a pair of metrics named
glue.data.quality.rules.passed (indicating a number of rules that passed) and
glue.data.quality.rules.failed (indicating the number of failed rules) per data quality
run. You can use this emitted metric to create alarms to alert users if a given data quality run falls
below a threshold. To get started with setting up an alarm that would send an email via an Amazon
SNS notification, follow the steps below:

To get started with setting up an alarm that would send an email via an Amazon SNS notification,
follow the steps below:

1. Open the Amazon CloudWatch console.

2. Choose All metrics under Metrics. You will see an additional namespace under Custom
namespaces titled Glue Data Quality.

Set up alerts and notifications in CloudWatch integration 1156

AWS Glue User Guide

Note

When starting an AWS Glue Data Quality run, make sure the Publish metrics to Amazon
CloudWatch checkbox is enabled. Otherwise, metrics for that particular run will not be
published to Amazon CloudWatch.

Under the Glue Data Quality namespace, you can see metrics being emitted per table, per
ruleset. For the purpose of this topic, we will use the glue.data.quality.rules.failed
rule and alarm if this value goes over 1 (indicating that, if we see a number of failed rule
evaluations greater than 1, we want to be notified).

3. To create the alarm, choose All alarms under Alarms.

4. Choose Create alarm.

5. Choose Select metric.

6. Select the glue.data.quality.rules.failed metric corresponding to the table you've
created, then choose Select metric.

7. Under the Specify metric and conditions tab, under the Metrics section:

a. For Statistic, choose Sum.

b. For Period, choose 1 minute.

8. Under the Conditions section:

a. For Threshold type, choose Static.

b. For Whenever glue.data.quality.rules.failed is..., select Greater/Equal.

c. For than..., enter 1 as the threshold value.

These selections imply that if the glue.data.quality.rules.failed metric emits a value
greater than or equal to 1, we will trigger an alarm. However, if there is no data, we will treat it
as acceptable.

9. Choose Next.

10.On Configure actions:

a. For the Alarm state trigger section, choose In alarm.

b. For Send a notification to the following SNS topic section, choose Create a new topic to
send a notification via a new SNS topic.

Set up alerts and notifications in CloudWatch integration 1157

AWS Glue User Guide

c. For Email endpoints that will receive the notification enter your email address. Then click
Create Topic.

d. Choose Next.

11.For Alarm name, enter myFirstDQAlarm, then choose Next.

12.You see a summary page of all the selections. Choose Create alarm at the bottom.

You can now see the alarm being created from the Amazon CloudWatch alarms dashboard.

Querying data quality results to build dashboards

You may want to build a dashboard to display your data quality results. There are two ways to do
this:

Set up Amazon EventBridge with the following code to write the data to Amazon S3:

import boto3
import json
from datetime import datetime

s3_client = boto3.client('s3')
glue_client = boto3.client('glue')

s3_bucket = 's3-bucket-name'

def write_logs(log_metadata):
 try:
 filename = datetime.now().strftime("%m%d%Y%H%M%S") + ".json"
 key_opts = {
 'year': datetime.now().year,
 'month': "{:02d}".format(datetime.now().month),
 'day': "{:02d}".format(datetime.now().day),
 'filename': filename
 }
 s3key = "gluedataqualitylogs/year={year}/month={month}/day={day}/
{filename}".format(**key_opts)
 s3_client.put_object(Bucket=s3_bucket, Key=s3key,
 Body=json.dumps(log_metadata))
 except Exception as e:
 print(f'Error writing logs to S3: {e}')

Querying data quality results 1158

AWS Glue User Guide

def lambda_handler(event, context):
 log_metadata = {}
 message_text = ""
 subject_text = ""

 if event['detail']['context']['contextType'] == 'GLUE_DATA_CATALOG':
 log_metadata['ruleset_name'] = str(event['detail']['rulesetNames'][0])
 log_metadata['tableName'] = str(event['detail']['context']['tableName'])
 log_metadata['databaseName'] = str(event['detail']['context']['databaseName'])
 log_metadata['runId'] = str(event['detail']['context']['runId'])
 log_metadata['resultId'] = str(event['detail']['resultId'])
 log_metadata['state'] = str(event['detail']['state'])
 log_metadata['score'] = str(event['detail']['score'])
 log_metadata['numRulesSucceeded'] = str(event['detail']['numRulesSucceeded'])
 log_metadata['numRulesFailed'] = str(event['detail']['numRulesFailed'])
 log_metadata['numRulesSkipped'] = str(event['detail']['numRulesSkipped'])

 message_text += "Glue Data Quality run details:\n"
 message_text += "ruleset_name: {}\n".format(log_metadata['ruleset_name'])
 message_text += "glue_table_name: {}\n".format(log_metadata['tableName'])
 message_text += "glue_database_name: {}\n".format(log_metadata['databaseName'])
 message_text += "run_id: {}\n".format(log_metadata['runId'])
 message_text += "result_id: {}\n".format(log_metadata['resultId'])
 message_text += "state: {}\n".format(log_metadata['state'])
 message_text += "score: {}\n".format(log_metadata['score'])
 message_text += "numRulesSucceeded:
 {}\n".format(log_metadata['numRulesSucceeded'])
 message_text += "numRulesFailed: {}\n".format(log_metadata['numRulesFailed'])
 message_text += "numRulesSkipped: {}\n".format(log_metadata['numRulesSkipped'])

 subject_text = "Glue Data Quality ruleset {} run
 details".format(log_metadata['ruleset_name'])

 else:
 log_metadata['ruleset_name'] = str(event['detail']['rulesetNames'][0])
 log_metadata['jobName'] = str(event['detail']['context']['jobName'])
 log_metadata['jobId'] = str(event['detail']['context']['jobId'])
 log_metadata['resultId'] = str(event['detail']['resultId'])
 log_metadata['state'] = str(event['detail']['state'])
 log_metadata['score'] = str(event['detail']['score'])

 log_metadata['numRulesSucceeded'] = str(event['detail']['numRulesSucceeded'])

Querying data quality results 1159

AWS Glue User Guide

 log_metadata['numRulesFailed'] = str(event['detail']['numRulesFailed'])
 log_metadata['numRulesSkipped'] = str(event['detail']['numRulesSkipped'])

 message_text += "Glue Data Quality run details:\n"
 message_text += "ruleset_name: {}\n".format(log_metadata['ruleset_name'])
 message_text += "glue_job_name: {}\n".format(log_metadata['jobName'])
 message_text += "job_id: {}\n".format(log_metadata['jobId'])
 message_text += "result_id: {}\n".format(log_metadata['resultId'])
 message_text += "state: {}\n".format(log_metadata['state'])
 message_text += "score: {}\n".format(log_metadata['score'])
 message_text += "numRulesSucceeded:
 {}\n".format(log_metadata['numRulesSucceeded'])
 message_text += "numRulesFailed: {}\n".format(log_metadata['numRulesFailed'])
 message_text += "numRulesSkipped: {}\n".format(log_metadata['numRulesSkipped'])

 subject_text = "Glue Data Quality ruleset {} run
 details".format(log_metadata['ruleset_name'])

 resultID = str(event['detail']['resultId'])
 response = glue_client.get_data_quality_result(ResultId=resultID)
 RuleResults = response['RuleResults']
 message_text += "\n\nruleset details evaluation steps results:\n\n"
 subresult_info = []

 for dic in RuleResults:
 subresult = "Name: {}\t\tResult: {}\t\tDescription: \t{}".format(dic['Name'],
 dic['Result'], dic['Description'])
 if 'EvaluationMessage' in dic:
 subresult += "\t\tEvaluationMessage: {}".format(dic['EvaluationMessage'])
 subresult_info.append({
 'Name': dic['Name'],
 'Result': dic['Result'],
 'Description': dic['Description'],
 'EvaluationMessage': dic.get('EvaluationMessage', '')
 })
 message_text += "\n" + subresult

 log_metadata['resultrun'] = subresult_info

 write_logs(log_metadata)

 return {
 'statusCode': 200,

Querying data quality results 1160

AWS Glue User Guide

 'body': json.dumps('Message published to SNS topic')
 }

After writing to Amazon S3, you can use AWS Glue crawlers to register to Athena and query the
tables.

Configure an Amazon S3 location during a data quality evaluation::

When running data quality tasks in the AWS Glue Data Catalog or AWS Glue ETL, you can provide
an Amazon S3 location to write the data quality results to Amazon S3. You can use the syntax
below to create a table by referencing the target to read the data quality results.

Note that you must run the CREATE EXTERNAL TABLE and MSCK REPAIR TABLE queries
separately.

CREATE EXTERNAL TABLE <my_table_name>(
 catalogid string,
 databasename string,
 tablename string,
 dqrunid string,
 evaluationstartedon timestamp,
 evaluationcompletedon timestamp,
 rule string,
 outcome string,
 failurereason string,
 evaluatedmetrics string)
PARTITIONED BY (
 `year` string,
 `month` string,
 `day` string)
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
WITH SERDEPROPERTIES (

 'paths'='catalogId,databaseName,dqRunId,evaluatedMetrics,evaluationCompletedOn,evaluationStartedOn,failureReason,outcome,rule,tableName')
STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 's3://glue-s3-dq-bucket-us-east-2-results/'
TBLPROPERTIES (
 'classification'='json',
 'compressionType'='none',
 'typeOfData'='file');

Querying data quality results 1161

AWS Glue User Guide

MSCK REPAIR TABLE <my_table_name>;

Once you create the above table, you can run analytical queries using Amazon Athena.

Deploying data quality rules using AWS CloudFormation

You can use AWS CloudFormation to create data quality rules. For more information, see AWS
CloudFormation for AWS Glue.

Scheduling data quality rules

You can schedule data quality rules using the following methods:

• Schedule data quality rules from the Data Catalog: no code users can use this option to easily
schedule their data quality scans. AWS Glue Data Quality will create the schedule in Amazon
EventBridge. To schedule data quality rules:

• Navigate to the ruleset and click Run.

• In the Run frequency, select the desired schedule and provide a Task Name. This Task Name is
the name of your schedule in EventBridge.

• Use Amazon EventBridge and AWS Step Functions to orchestrate evaluations and
recommendations for data quality rules.

Troubleshooting AWS Glue Data Quality errors

If you encounter errors in AWS Glue Data Quality, use the following solutions to help you find the
source of the problems and fix them.

Contents

• Error: missing AWS Glue Data Quality module

• Error: insufficient AWS Lake Formation permissions

• Error: rulesets are not uniquely named

• Error: tables with special characters

• Error: overflow error with a large ruleset

• Error: overall rule status is failed

• AnalysisException: Unable to verify existence of default database

Deploying data quality rules 1162

https://docs.aws.amazon.com/glue/latest/dg/populate-with-cloudformation-templates.html
https://docs.aws.amazon.com/glue/latest/dg/populate-with-cloudformation-templates.html

AWS Glue User Guide

• Error Message: Provided key map not suitable for given data frames

• Exception in User Class: java.lang.RuntimeException : Failed to fetch data. Check the logs in
CloudWatch to get more details

• LAUNCH ERROR: Error downloading from S3 for bucket

• InvalidInputException (status: 400): DataQuality rules cannot be parsed

• Error: Eventbridge is not triggering Glue DQ jobs based on the schedule I setup

• CustomSQL errors

• Dynamic Rules

• Exception in User Class: org.apache.spark.sql.AnalysisException:
org.apache.hadoop.hive.ql.metadata.HiveException

• UNCLASSIFIED_ERROR; IllegalArgumentException: Parsing Error: No rules or analyzers provided.,
no viable alternative at input

Error: missing AWS Glue Data Quality module

Error message: No module named 'awsgluedq'.

Resolution: This error occurs when you run AWS Glue Data Quality in an unsupported version. AWS
Glue Data Quality is supported only in Glue version 3.0 and later.

Error: insufficient AWS Lake Formation permissions

Error message: Exception in User Class:
com.amazonaws.services.glue.model.AccessDeniedException: Insufficient Lake
Formation permission(s) on impact_sdg_involvement (Service: AWS Glue; Status Code: 400; Error
Code: AccessDeniedException; Request ID: 465ae693-b7ba-4df0-a4e4-6b17xxxxxxxx; Proxy: null).

Resolution: You must provide sufficient permissions in AWS Lake Formation.

Error: rulesets are not uniquely named

Error message: Exception in User Class: ...services.glue.model.AlreadyExistsException: Another
ruleset with the same name already exists.

Resolution: Rulesets are global and must be unique.

Error: missing module 1163

AWS Glue User Guide

Error: tables with special characters

Error message: Exception in User Class: org.apache.spark.sql.AnalysisException: cannot resolve
''C'' given input columns: [primary.data_end_time, primary.data_start_time, primary.end_time,
primary.last_updated, primary.message, primary.process_date, primary.rowhash, primary.run_by,
primary.run_id, primary.start_time, primary.status]; line 1 pos 44;.

Resolution: There is a current limitation that AWS Glue Data Quality cannot be executed on tables
that have special characters such as ".".

Error: overflow error with a large ruleset

Error message: Exception in User Class: java.lang.StackOverflowError.

Resolution: If you have a large ruleset of greater than 2K rules, you may encounter this issue. Break
your rules into multiple rulesets.

Error: overall rule status is failed

Error condition: My Ruleset is successful, but my overall rule status is failed.

Resolution: This error most likely occurred because you chose the option to publish metrics to
Amazon CloudWatch while publishing. If your dataset is in a VPC, your VPC may not allow AWS
Glue to publish metrics to Amazon CloudWatch. In this case, you >must set up an endpoint for your
VPC to access Amazon CloudWatch.

AnalysisException: Unable to verify existence of default database

Error condition: AnalysisException: Unable to verify existence of default database:
com.amazonaws.services.glue.model.AccessDeniedException: Insufficient Lake Formation
permission(s) on default (Service: AWS Glue; Status Code: 400; Error Code: AccessDeniedException;
Request ID: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX; Proxy: null)

Resolution: In AWS Glue job’s catalog integration, AWS Glue always tries to check whether default
database exists or not using AWS Glue GetDatabase API. When the DESCRIBE Lake Formation
permission is not granted, or GetDatabase IAM permission is granted, then the job fails when
verifying existence of the default database.

To resolve:

1. Add the DESCRIBE permission in Lake Formation for the default database.

Error: tables with special characters 1164

AWS Glue User Guide

2. Configure the IAM role attached to the AWS Glue job as Database Creator in Lake Formation.
This will automatically create a default database and grant required Lake Formation
permissions for the role.

3. Disable --enable-data-catalog option. (It is shown as Use Data Catalog as the Hive
metastore in AWS Glue Studio).

If you do not need Spark SQL Data Catalog integration in the job, you can disable it.

Error Message: Provided key map not suitable for given data frames

Error condition: Provided key map not suitable for given data frames.

Resolution: You are using DataSetMatch ruletype and the join keys have duplicates. Your join keys
must be unique and must not be NULL. In cases where you can’t have join keys that are unique,
consider using other ruletypes such as AggregateMatch to match on summary data.

Exception in User Class: java.lang.RuntimeException : Failed to fetch
data. Check the logs in CloudWatch to get more details

Error condition: Exception in User Class: java.lang.RuntimeException : Failed to fetch data. Check
the logs in CloudWatch to get more details.

Resolution: This happens when you are creating DQ rules on an Amazon S3-based table that
compares against Amazon RDS or Amazon Redshift. In these cases, AWS Glue cannot load the
connection. Instead, try to set up DQ rule on the Amazon Redshift or Amazon RDS dataset. This is a
known bug.

LAUNCH ERROR: Error downloading from S3 for bucket

Error condition: LAUNCH ERROR: Error downloading from S3 for bucket: aws-glue-ml-data-
quality-assets-us-east-1, key: jars/aws-glue-ml-data-quality-etl.jar.Access
Denied (Service: Amazon S3; Status Code: 403; Please refer logs for
details) .

Resolution: The permissions in the role passed to AWS Glue Data Quality must permit reading from
the preceding Amazon S3 location. This IAM policy should be attached to the role:

{

Provided key map not suitable for given data frames 1165

AWS Glue User Guide

 "Sid": "allowS3",
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::aws-glue-ml-data-quality-assets-<region>/*"
}

Refer to Data Quality authorization for detailed permissions. These libraries are required to
evaluate data quality for your datasets.

InvalidInputException (status: 400): DataQuality rules cannot be parsed

Error condition: InvalidInputException (status: 400): DataQuality rules cannot be parsed.

Resolution: There are many possibilities for this error. One possibility is that your rules may have
single quotes. Verify that they are in double quotes. For example:

Rules = [
ColumnValues "tipo_vinculo" in ["CODO", "DOCO", "COCO", "DODO"] AND "categoria" = 'ES"
 AND "cod_bandera" = 'CEP'

Change this to:

Rules = [
(ColumnValues "tipovinculo" in ["CODO", "DOCO", "COCO", "DODO"]) AND (ColumnValues
 "categoria" = "ES")
 AND (ColumnValues "codbandera" = "CEP")
]

Error: Eventbridge is not triggering Glue DQ jobs based on the schedule
I setup

Error condition: Eventbridge is not triggering AWS Glue Data Quality jobs based on the schedule I
setup.

Resolution: The role triggering the job may not have the right permissions. Make sure that the
role that you are using to start the jobs has the permissions mentioned in IAM setup required for
scheduling evaluation runs .

InvalidInputException (status: 400): DataQuality rules cannot be parsed 1166

https://docs.aws.amazon.com/glue/latest/dg/data-quality-authorization.html
https://docs.aws.amazon.com/glue/latest/dg/data-quality-authorization.html#data-quality-iam-setup-evaluation-runs
https://docs.aws.amazon.com/glue/latest/dg/data-quality-authorization.html#data-quality-iam-setup-evaluation-runs

AWS Glue User Guide

CustomSQL errors

Error condition: The output from CustomSQL must contain at least one column
that matches the input dataset for AWS Glue Data Quality to provide row
level results. The SQL query is a valid query but no columns from the SQL
result are present in the Input Dataset. Ensure that matching columns are
returned from the SQL.

Resolution: The SQL query is valid but verify that you’re selecting only columns from the primary
table. Selecting aggregate functions like sum, count on the columns from the primary can result in
this error.

Error condition: There was a problem when executing your SQL statement: cannot
resolve "Col".

Resolution: This column is not present in the primary table.

Error condition: The columns that are returned from the SQL statement should
only belong to the primary table. "In this case, some columns (Col)
belong to reference table".

Resolution: In SQL queries when you’re joining the primary table with other reference tables, verify
that your select statement has only column names from your primary table to generate row level
results for the primary table.

Dynamic Rules

Error condition: Dynamic rules require job context, and cannot be evaluated in
interactive session or data preview..

Cause: This error message might appear in your data preview results, or in other interactive
sessions, when dynamic DQ rules are present in your ruleset. Dynamic rules reference historical
metrics associated with a particular job name and evaluation context, so they can't be evaluated in
interactive sessions.

Resolution: Running your AWS Glue job will produce historical metrics, which can be referenced in
later job runs for the same job.

CustomSQL errors 1167

AWS Glue User Guide

Error condition:

• [RuleType] rule only supports simple atomic operands in thresholds..

• Function last not yet implemented for [RuleType] rule.

Resolution: Dynamic rules are generally supported for all DQDL ruletypes in numeric expressions
(see DQDL Reference). However, some rules that produce multiple metrics, ColumnValues and
ColumnLength, are not yet supported.

Error condition: Binary expression operands must resolve to a single number..

Cause: Dynamic rules support binary expressions, like RowCount > avg(last(5)) * 0.9.
Here, the binary expression is avg(last(5)) * 0.9. This rule is valid because both operands
avg(last(5)) and 0.9 resolve to a single number. An incorrect example is RowCount >
last(5) * 0.9, because last(5) will produce a list that can't be meaningfully compared to the
current row count.

Resolution: Use aggregation functions to reduce a list-valued operand to a single number.

Error condition:

• Rule threshold results in list, and a single value is expected.
Use aggregation functions to produce a single value. Valid example:
sum(last(10)), avg(last(10)).

• Rule threshold results in empty list, and a single value is expected.

Cause: Dynamic rules can be used to compare some feature of your dataset with its historical
values. The last function allows for the retrieval of multiple historical values, if a positive integer
argument is provided. For example, last(5) will retrieve the last five most recent values observed
in job runs for your rule.

Resolution: An aggregation function must be used to reduce these values to a single number to
make a meaningful comparison with the value observed in the current job run.

Valid examples:

• RowCount >= avg(last(5))

• RowCount > last(1)

Dynamic Rules 1168

AWS Glue User Guide

• RowCount < last()

Invalid example: RowCount > last(5).

Error condition:

• Function index used in threshold requires positive integer argument.

• Index argument must be an integer. Valid syntax example: RowCount >
index(last(10, 2)), which means RowCount must be greater than third most
recent execution from last 10 job runs.

Resolution: When authoring dynamic rules, you can use the index aggregation function to select
one historical value from a list. For example, RowCount > index(last(5), 1) will check whether
the row count observed in the current job is strictly greater than the second most recent row count
observed for your job. index is zero-indexed.

Error condition: IllegalArgumentException: Parsing Error: Rule Type:
DetectAnomalies is not valid.

Resolution: Anomaly detection is only available in AWS Glue 4.0.

Error condition: IllegalArgumentException: Parsing Error: Unexpected condition
for rule of type ... no viable alternative at input

Note: ... is dynamic. Example: IllegalArgumentException: Parsing Error:
Unexpected condition for rule of type RowCount with number return type,
line 4:19 no viable alternative at input '>last'.

Resolution: Anomaly detection is only available in AWS Glue 4.0.

Exception in User Class: org.apache.spark.sql.AnalysisException:
org.apache.hadoop.hive.ql.metadata.HiveException

Error condition: Exception in User Class:
org.apache.spark.sql.AnalysisException:
org.apache.hadoop.hive.ql.metadata.HiveException: Unable to fetch table
mailpiece_submitted. StorageDescriptor#InputFormat cannot be null for
table: mailpiece_submitted (Service: null; Status Code: 0; Error Code:
null; Request ID: null; Proxy: null)

Exception in User Class: org.apache.spark.sql.AnalysisException:
org.apache.hadoop.hive.ql.metadata.HiveException

1169

AWS Glue User Guide

Cause: You are using Apache Iceberg in AWS Glue Data Catalog and the Input Format attribute in
AWS Glue Data Catalog is empty.

Resolution: This issue occurs when you are using CustomSQL ruletype in your DQ rule. One way to
fix this is to use “primary“ or add catalog name glue_catalog. to <database>.<table> in
Custom ruletype .

UNCLASSIFIED_ERROR; IllegalArgumentException: Parsing Error: No
rules or analyzers provided., no viable alternative at input

Error condition: UNCLASSIFIED_ERROR; IllegalArgumentException: Parsing Error:
No rules or analyzers provided., no viable alternative at input

Resolution: DQDL is not parsable. There are a few instances where this can occur. If you are using
composite rules, makes sure they have right parenthesis.

(RowCount >= avg(last(10)) * 0.6) and (RowCount <= avg(last(10)) * 1.4) instead of
 RowCount >= avg(last(10)) * 0.6 and RowCount <= avg(last(10)) * 1.4

UNCLASSIFIED_ERROR; IllegalArgumentException: Parsing Error: No rules or analyzers provided., no
viable alternative at input

1170

AWS Glue User Guide

Amazon Q data integration in AWS Glue

Amazon Q data integration in AWS Glue is a new generative AI capability of AWS Glue that enables
data engineers and ETL developers to build data integration jobs using natural language. Engineers
and developers can ask Amazon Q to author jobs, troubleshoot issues, and answer questions about
AWS Glue and data integration.

What is Amazon Q?

Note

Powered by Amazon Bedrock: AWS implements automated abuse detection. Because
Amazon Q data integration is built on Amazon Bedrock, users can take full advantage
of the controls implemented in Amazon Bedrock to enforce safety, security, and the
responsible use of artificial intelligence (AI).

Amazon Q is a generative artificial intelligence (AI) powered conversational assistant that can help
you understand, build, extend, and operate AWS applications. The model that powers Amazon Q
has been augmented with high quality AWS content to get you more complete, actionable, and
referenced answers to accelerate your building on AWS. For more information, see What is Amazon
Q?

What is Amazon Q data integration in AWS Glue?

Amazon Q data integration in AWS Glue includes the following capabilities:

• Chat – Amazon Q data integration in AWS Glue can answer natural language questions in
English about AWS Glue and data integration domains like AWS Glue source and destination
connectors, AWS Glue ETL jobs, Data Catalog, crawlers and AWS Lake Formation, and other
feature documentation, and best practices. Amazon Q data integration in AWS Glue responds
with step-by-step instructions, and includes references to its information sources.

• Data integration code generation – Amazon Q data integration in AWS Glue can answer
questions about AWS Glue ETL scripts, and generate new code given a natural language question
in English.

What is Amazon Q? 1171

https://docs.aws.amazon.com/bedrock/latest/userguide/abuse-detection.html
https://docs.aws.amazon.com/amazonq/latest/aws-builder-use-ug/what-is.html
https://docs.aws.amazon.com/amazonq/latest/aws-builder-use-ug/what-is.html

AWS Glue User Guide

• Troubleshoot – Amazon Q data integration in AWS Glue is purpose built to help you understand
errors in AWS Glue jobs and provides step-by-step instructions, to root cause and resolve your
issues.

Note

Amazon Q data integration in AWS Glue does not use the context of your conversation
to inform future responses for the duration of your conversation. Each conversation
with Amazon Q data integration in AWS Glue is independent of your prior or future
conversations.

Working with Amazon Q data integration in AWS Glue?

In the Amazon Q panel you can request Amazon Q generate code for an AWS Glue ETL script,
or answer a question on AWS Glue features or troubleshooting an error. The response is an ETL
script in PySpark with step-by-step instructions to customize the script, review and execute it.
For questions, the response is generated based on the data integration knowledge base with a
summary and source URL for references.

For example, you can ask Amazon Q to "Please provide a Glue script that reads from Snowflake,
renames the fields, and writes to Redshift" and in response, Amazon Q data integration in AWS
Glue will return an AWS Glue job script that can perform the requested action. You can review the
generated code to ensure that it fulfills the requested intent. If satisfied, you can deploy it as an
AWS Glue job in production. You can troubleshoot jobs by asking the integration to explain errors
and failures, and to propose solutions. Amazon Q can answer questions about AWS Glue or data
integration best practices.

Working with Amazon Q data integration 1172

AWS Glue User Guide

The following are example questions that demonstrate how Amazon Q data integration in AWS
Glue can help you build on AWS Glue:

AWS Glue ETL code generation:

• Write an AWS Glue script that reads JSON from S3, transforms fields using apply mapping and
writes to Amazon Redshift

• How do I write an AWS Glue script for reading from DynamoDB, applying the DropNullFields
transform and writing to S3 as Parquet?

• Give me an AWS Glue script that reads from MySQL, drops some fields based on my business
logic, and writes to Snowflake

• Write an AWS Glue job to read from DynamoDB and write to S3 as JSON

• Help me develop an AWS Glue script for AWS Glue Data Catalog to S3

• Write an AWS Glue job to read JSON from S3, drop nulls and write to Redshift

AWS Glue feature explanations:

• How do I use AWS Glue Data Quality?

• How to use AWS Glue job bookmarks?

• How do I enable AWS Glue autoscaling?

Working with Amazon Q data integration 1173

AWS Glue User Guide

• What is the difference between AWS Glue dynamic frames and Spark data frames?

• What are the different types of connections supported by AWS Glue?

AWS Glue troubleshooting:

• How to troubleshoot Out Of Memory (OOM) errors on AWS Glue jobs?

• What are some error messages you may see when setting up AWS Glue Data Quality and how
can you fix them?

• How do I fix an AWS Glue job with the error Amazon S3 access denied?

• How do I resolve issues with data shuffle on AWS Glue jobs?

Best practices for interacting with Amazon Q data integration

The following are best practices for interacting with Amazon Q data integration:

• When interacting with Amazon Q data integration, ask specific questions, iterate when you have
complex requests, and verify the answers for accuracy.

• When providing data integration prompts in natural language, be as specific as possible to help
the assistant understand exactly what you need. Instead of asking "extract data from S3," provide
more details like “write an AWS Glue script that extracts JSON files from S3.”

• Review the generated script before running it to ensure accuracy. If the generated script has
errors or does not match your intent, provide instructions to the assistant on how to correct it.

• Generative AI technology is new and there can be mistakes, sometimes called hallucinations,
in the responses. Test and review all code for errors and vulnerabilities before using it in your
environment or workload.

Amazon Q data integration in AWS Glue service improvement

To help Amazon Q data integration in AWS Glue provide the most relevant information about AWS
services, we may use certain content from Amazon Q, such as questions that you ask Amazon Q
and its responses, for service improvement.

For information about what content we use and how to opt out, see Amazon Q Developer service
improvement in the Amazon Q Developer User Guide.

Best practices 1174

https://docs.aws.amazon.com/amazonq/latest/qdeveloper-ug/service-improvement.html
https://docs.aws.amazon.com/amazonq/latest/qdeveloper-ug/service-improvement.html

AWS Glue User Guide

Considerations

Consider the following items before you use Amazon Q data integration in AWS Glue:

• Currently, the code generation only works with PySpark kernel. The generated code is for AWS
Glue jobs based on Python Spark.

• For information about the supported combinations of code generation abilities of Amazon Q
data integration in AWS Glue, see Supported code generation abilities.

Setting up Amazon Q data integration in AWS Glue

The following sections provide information setting up Amazon Q data integration in AWS Glue.

Topics

• Configuring IAM permissions

Configuring IAM permissions

This topic describes the IAM permissions that you configure for the Amazon Q chat experience, and
the AWS Glue Studio notebook experience.

Topics

• Configuring IAM permissions for Amazon Q chat

• Configuring IAM permissions for AWS Glue Studio notebooks

Configuring IAM permissions for Amazon Q chat

Granting permissions to the APIs used by Amazon Q data integration in AWS Glue requires
appropriate AWS Identity and Access Management (IAM) permissions. You can obtain permissions
by attaching the following custom AWS policy to your IAM identity (such as a user, role, or group):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Considerations 1175

AWS Glue User Guide

 "Action": [
 "glue:StartCompletion",
 "glue:GetCompletion"
],
 "Resource": [
 "arn:aws:glue:*:*:completion/*"
]
 }
]
}

Configuring IAM permissions for AWS Glue Studio notebooks

To enable Amazon Q data integration in AWS Glue Studio notebooks, ensure the following
permission is attached to the notebook IAM role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:StartCompletion",
 "glue:GetCompletion"
],
 "Resource": [
 "arn:aws:glue:*:*:completion/*"
]
 },
 {
 "Sid": "CodeWhispererPermissions",
 "Effect": "Allow",
 "Action": [
 "codewhisperer:GenerateRecommendations"
],
 "Resource": "*"
 }
]
}

Configuring IAM permissions 1176

AWS Glue User Guide

Note

Amazon Q data integration in AWS Glue does not have APIs available through the AWS SDK
that you can use programmatically. The following two APIs are used in the IAM policy for
enabling this experience through the Amazon Q chat panel or AWS Glue Studio notebooks:
StartCompletion and GetCompletion.

Assigning permissions

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center: Create a permission set. Follow the instructions in
Create a permission set in the AWS IAM Identity Center User Guide.

• Users managed in IAM through an identity provider: Create a role for identity federation. Follow
the instructions in Creating a role for a third-party identity provider (federation) in the IAM User
Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Supported code generation abilities

The following are the combinations of the code generation abilities of Amazon Q data integration
in AWS Glue.

Source Transformation Target

S3 with the following format
types: json, csv, parquet,
 hudi, delta

ApplyMapping S3 with the following format
types: json, csv, avro, orc, par
quet, hudi, delta

Glue Data Catalog RenameField Glue Data Catalog

Amazon Redshift DropFields Amazon Redshift

Supported code generation 1177

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS Glue User Guide

Source Transformation Target

MySQL SelectFields MySQL

Postgres DropNullFields Postgres

Oracle Filter Oracle

SQL Server Spigot SQL Server

DynamoDB Custom SQL Code DynamoDB

Snowflake Aggregate Snowflake

MongoDB DropDuplicates MongoDB

Custom JDBC Connector Join Custom JDBC Connector

Custom Spark Connector Union Custom Spark Connector

Google BigQuery Google BigQuery

Teradata Teradata

Amazon OpenSearch Service Amazon OpenSearch Service

Vertica Vertica

Azure SQL Azure DQL

SAP HANA SAP HANA

Azure Cosmos Azure Cosmos

Example interactions

Amazon Q data integration in AWS Glue allows you enter your question in the Amazon Q panel.
You can enter a question regarding data integration functionality provided by AWS Glue. A detailed
answer, together with reference documents, will be returned.

Example interactions 1178

AWS Glue User Guide

Another use case is generating AWS Glue ETL job scripts. You can ask a question regarding how to
perform a data extract, transform, load job. A generated PySpark script will be returned.

Topics

• Amazon Q chat interactions

• AWS Glue Studio notebook interactions

Amazon Q chat interactions

On the AWS Glue console, start authoring a new job, and ask Amazon Q: "Please provide a Glue
script that reads from Snowflake, renames the fields, and writes to Redshift."

You will notice that the code is generated. With this response, you can learn and understand
how you can author AWS Glue code for your purpose. You can copy/paste the generated code
to the script editor and configure placeholders. After you configure an AWS Identity and Access
Management (IAM) role and AWS Glue connections on the job, save and run the job. When the job
is complete, you can start querying the table exported from Snowflake in Amazon Redshift.

The following prompt reads data from two different sources, filters and projects them individually,
joins on a common key, and writes the output to a third target. Ask Amazon Q: “I want to read
data from S3 in Parquet format, and select some fields. I also want to read data from DynamoDB,

Amazon Q chat interactions 1179

AWS Glue User Guide

select some fields, and filter some rows. I want to union these two datasets and write the results to
OpenSearch.

The code is generated. When the job is complete, your index is available in OpenSearch and can be
used by your downstream workloads.

AWS Glue Studio notebook interactions

Add a new cell and enter your comment to describe what you want to achieve. After you press Tab
and Enter, the recommended code is shown.

First intent is to extract the data: "Give me code that reads a Glue Data Catalog table", followed
by "Give me code to apply a filter transform with star_rating>3" and "Give me code that writes the
frame into S3 as Parquet".

AWS Glue Studio notebook interactions 1180

AWS Glue User Guide

AWS Glue Studio notebook interactions 1181

AWS Glue User Guide

Similar to the Amazon Q chat experience, the code is recommended. If you press Tab, then the
recommended code is chosen.

You can run each cell by filling in the appropriate options for your sources in the generated code.
At any point in the runs, you can also preview a sample of your dataset by using the show()
method.

Complex prompts

You can generate a full script with a single complex prompt. "I have JSON data in S3 and data in
Oracle that needs combining. Please provide a Glue script that reads from both sources, does a join,
and then writes results to Redshift."

AWS Glue Studio notebook interactions 1182

AWS Glue User Guide

You may notice that, on the notebook, Amazon Q data integration in AWS Glue generated the
same code snippet that was generated in the Amazon Q chat.

You can run the notebook as a job, either by choosing Run or programmatically.

AWS Glue Studio notebook interactions 1183

AWS Glue User Guide

Orchestration in AWS Glue

The following sections provide information on orchestration of jobs in AWS Glue.

Topics

• Starting jobs and crawlers using triggers

• Performing complex ETL activities using blueprints and workflows in AWS Glue

• Developing blueprints in AWS Glue

Starting jobs and crawlers using triggers

In AWS Glue, you can create Data Catalog objects called triggers, which you can use to either
manually or automatically start one or more crawlers or extract, transform, and load (ETL) jobs.
Using triggers, you can design a chain of dependent jobs and crawlers.

Note

You can accomplish the same thing by defining workflows. Workflows are preferred for
creating complex multi-job ETL operations. For more information, see the section called
“Performing complex ETL activities using blueprints and workflows”.

Topics

• AWS Glue triggers

• Adding triggers

• Activating and deactivating triggers

AWS Glue triggers

When fired, a trigger can start specified jobs and crawlers. A trigger fires on demand, based on a
schedule, or based on a combination of events.

Starting jobs and crawlers using triggers 1184

AWS Glue User Guide

Note

Only two crawlers can be activated by a single trigger. If you want to crawl multiple
data stores, use multiple sources for each crawler instead of running multiple crawlers
simultaneously.

A trigger can exist in one of several states. A trigger is either CREATED, ACTIVATED, or
DEACTIVATED. There are also transitional states, such as ACTIVATING. To temporarily stop a
trigger from firing, you can deactivate it. You can then reactivate it later.

There are three types of triggers:

Scheduled

A time-based trigger based on cron.

You can create a trigger for a set of jobs or crawlers based on a schedule. You can specify
constraints, such as the frequency that the jobs or crawlers run, which days of the week they
run, and at what time. These constraints are based on cron. When you're setting up a schedule
for a trigger, consider the features and limitations of cron. For example, if you choose to run
your crawler on day 31 each month, keep in mind that some months don't have 31 days. For
more information about cron, see Time-based schedules for jobs and crawlers.

Conditional

A trigger that fires when a previous job or crawler or multiple jobs or crawlers satisfy a list of
conditions.

When you create a conditional trigger, you specify a list of jobs and a list of crawlers to watch.
For each watched job or crawler, you specify a status to watch for, such as succeeded, failed,
timed out, and so on. The trigger fires if the watched jobs or crawlers end with the specified
statuses. You can configure the trigger to fire when any or all of the watched events occur.

For example, you could configure a trigger T1 to start job J3 when both job J1 and job J2
successfully complete, and another trigger T2 to start job J4 if either job J1 or job J2 fails.

The following table lists the job and crawler completion states (events) that triggers watch for.

AWS Glue triggers 1185

AWS Glue User Guide

Job completion states Crawler completion states

• SUCCEEDED

• STOPPED

• FAILED

• TIMEOUT

• SUCCEEDED

• FAILED

• CANCELLED

On-demand

A trigger that fires when you activate it. On-demand triggers never enter the ACTIVATED or
DEACTIVATED state. They always remain in the CREATED state.

So that they are ready to fire as soon as they exist, you can set a flag to activate scheduled and
conditional triggers when you create them.

Important

Jobs or crawlers that run as a result of other jobs or crawlers completing are referred to as
dependent. Dependent jobs or crawlers are only started if the job or crawler that completes
was started by a trigger. All jobs or crawlers in a dependency chain must be descendants of
a single scheduled or on-demand trigger.

Passing job parameters with triggers

A trigger can pass parameters to the jobs that it starts. Parameters include job arguments, timeout
value, security configuration, and more. If the trigger starts multiple jobs, the parameters are
passed to each job.

The following are the rules for job arguments passed by a trigger:

• If the key in the key-value pair matches a default job argument, the passed argument overrides
the default argument. If the key doesn’t match a default argument, then the argument is passed
as an additional argument to the job.

• If the key in the key-value pair matches a non-overridable argument, the passed argument is
ignored.

AWS Glue triggers 1186

AWS Glue User Guide

For more information, see the section called “Triggers” in the AWS Glue API.

Adding triggers

You can add a trigger using the AWS Glue console, the AWS Command Line Interface (AWS CLI), or
the AWS Glue API.

Note

Currently, the AWS Glue console supports only jobs, not crawlers, when working with
triggers. You can use the AWS CLI or AWS Glue API to configure triggers with both jobs and
crawlers.

To add a trigger (console)

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, under ETL, choose Triggers. Then choose Add trigger.

3. Provide the following properties:

Name

Give your trigger a unique name.

Trigger type

Specify one of the following:

• Schedule: The trigger fires at a specific frequency and time.

• Job events: A conditional trigger. The trigger fires when any or all jobs in the list
match their designated statuses. For the trigger to fire, the watched jobs must have
been started by triggers. For any job you choose, you can only watch one job event
(completion status).

• On-demand: The trigger fires when it is activated.

4. Complete the trigger wizard. On the Review page, you can activate Schedule and Job events
(conditional) triggers immediately by selecting Enable trigger on creation.

Adding triggers 1187

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

To add a trigger (AWS CLI)

• Enter a command similar to the following.

aws glue create-trigger --name MyTrigger --type SCHEDULED --schedule "cron(0 12 *
 * ? *)" --actions CrawlerName=MyCrawler --start-on-creation

This command creates a schedule trigger named MyTrigger, which runs every day at
12:00pm UTC and starts a crawler named MyCrawler. The trigger is created in the activated
state.

For more information, see the section called “AWS Glue triggers”.

Time-based schedules for jobs and crawlers

You can define a time-based schedule for your crawlers and jobs in AWS Glue. The definition of
these schedules uses the Unix-like cron syntax. You specify time in Coordinated Universal Time
(UTC), and the minimum precision for a schedule is 5 minutes.

To learn more about configuring jobs and crawlers to run using a schedule, see Starting jobs and
crawlers using triggers.

Cron expressions

Cron expressions have six required fields, which are separated by white space.

Syntax

cron(Minutes Hours Day-of-month Month Day-of-week Year)

Fields Values Wildcards

Minutes 0–59 , - * /

Hours 0–23 , - * /

Day-of-month 1–31 , - * ? / L W

Month 1–12 or JAN-DEC , - * /

Adding triggers 1188

http://en.wikipedia.org/wiki/Cron
http://en.wikipedia.org/wiki/Coordinated_Universal_Time
http://en.wikipedia.org/wiki/Coordinated_Universal_Time

AWS Glue User Guide

Fields Values Wildcards

Day-of-week 1–7 or SUN-SAT , - * ? / L

Year 1970–2199 , - * /

Wildcards

• The , (comma) wildcard includes additional values. In the Month field, JAN,FEB,MAR would
include January, February, and March.

• The - (dash) wildcard specifies ranges. In the Day field, 1–15 would include days 1 through 15 of
the specified month.

• The * (asterisk) wildcard includes all values in the field. In the Hours field, * would include every
hour.

• The / (forward slash) wildcard specifies increments. In the Minutes field, you could enter 1/10
to specify every 10th minute, starting from the first minute of the hour (for example, the 11th,
21st, and 31st minute).

• The ? (question mark) wildcard specifies one or another. In the Day-of-month field you could
enter 7, and if you didn't care what day of the week the seventh was, you could enter ? in the
Day-of-week field.

• The L wildcard in the Day-of-month or Day-of-week fields specifies the last day of the month
or week.

• The W wildcard in the Day-of-month field specifies a weekday. In the Day-of-month field, 3W
specifies the day closest to the third weekday of the month.

Limits

• You can't specify the Day-of-month and Day-of-week fields in the same cron expression. If
you specify a value in one of the fields, you must use a ? (question mark) in the other.

• Cron expressions that lead to rates faster than 5 minutes are not supported.

Examples

When creating a schedule, you can use the following sample cron strings.

Adding triggers 1189

AWS Glue User Guide

Minutes Hours Day of
month

Month Day of
week

Year Meaning

0 10 * * ? * Run at
10:00
am (UTC)
every day

15 12 * * ? * Run at
12:15
pm (UTC)
every day

0 18 ? * MON-FRI * Run at
6:00 pm
(UTC)
every
Monday
through
Friday

0 8 1 * ? * Run at
8:00 am
(UTC)
every first
day of the
month

0/15 * * * ? * Run every
15 minutes

0/10 * ? * MON-FRI * Run every
10 minutes
Monday
through
Friday

Adding triggers 1190

AWS Glue User Guide

Minutes Hours Day of
month

Month Day of
week

Year Meaning

0/5 8–17 ? * MON-FRI * Run every
5 minutes
Monday
through
Friday
between
8:00 am
and 5:55
pm (UTC)

For example to run on a schedule of every day at 12:15 UTC, specify:

cron(15 12 * * ? *)

Activating and deactivating triggers

You can activate or deactivate a trigger using the AWS Glue console, the AWS Command Line
Interface (AWS CLI), or the AWS Glue API.

To activate or deactivate a trigger (console)

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, under ETL, choose Triggers.

3. Select the check box next to the desired trigger, and on the Action menu choose Enable
trigger to activate the trigger or Disable trigger to deactivate the trigger.

To activate or deactivate a trigger (AWS CLI)

• Enter one of the following commands.

aws glue start-trigger --name MyTrigger

Activating and deactivating triggers 1191

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

aws glue stop-trigger --name MyTrigger

Starting a trigger activates it, and stopping a trigger deactivates it. When you activate an on-
demand trigger, it fires immediately.

For more information, see the section called “AWS Glue triggers”.

Performing complex ETL activities using blueprints and
workflows in AWS Glue

Some of your organization's complex extract, transform, and load (ETL) processes might best
be implemented by using multiple, dependent AWS Glue jobs and crawlers. Using AWS Glue
workflows, you can design a complex multi-job, multi-crawler ETL process that AWS Glue can run
and track as single entity. After you create a workflow and specify the jobs, crawlers, and triggers in
the workflow, you can run the workflow on demand or on a schedule.

Topics

• Overview of workflows in AWS Glue

• Creating and building out a workflow manually in AWS Glue

• Starting an AWS Glue workflow with an Amazon EventBridge event

• Viewing the EventBridge events that started a workflow

• Running and monitoring a workflow in AWS Glue

• Stopping a workflow run

• Repairing and resuming a workflow run

• Getting and setting workflow run properties in AWS Glue

• Querying workflows using the AWS Glue API

• Blueprint and workflow restrictions in AWS Glue

• Troubleshooting blueprint errors in AWS Glue

• Permissions for personas and roles for AWS Glue blueprints

Overview of workflows in AWS Glue

In AWS Glue, you can use workflows to create and visualize complex extract, transform, and
load (ETL) activities involving multiple crawlers, jobs, and triggers. Each workflow manages the

Performing complex ETL activities using blueprints and workflows 1192

AWS Glue User Guide

execution and monitoring of all its jobs and crawlers. As a workflow runs each component, it
records execution progress and status. This provides you with an overview of the larger task and
the details of each step. The AWS Glue console provides a visual representation of a workflow as a
graph.

You can create a workflow from an AWS Glue blueprint, or you can manually build a workflow
a component at a time using the AWS Management Console or the AWS Glue API. For more
information about blueprints, see the section called “Overview of blueprints”.

Triggers within workflows can start both jobs and crawlers and can be fired when jobs or crawlers
complete. By using triggers, you can create large chains of interdependent jobs and crawlers. In
addition to triggers within a workflow that define job and crawler dependencies, each workflow
has a start trigger. There are three types of start triggers:

• Schedule – The workflow is started according to a schedule that you define. The schedule can be
daily, weekly, monthly, and so on, or can be a custom schedule based on a cron expression.

• On demand – The workflow is started manually from the AWS Glue console, API, or AWS CLI.

• EventBridge event – The workflow is started upon the occurrence of a single Amazon
EventBridge event or a batch of Amazon EventBridge events. With this trigger type, AWS Glue
can be an event consumer in an event-driven architecture. Any EventBridge event type can start
a workflow. A common use case is the arrival of a new object in an Amazon S3 bucket (the S3
PutObject operation).

Starting a workflow with a batch of events means waiting until a specified number of events
have been received or until a specified amount of time has passed. When you create the
EventBridge event trigger, you can optionally specify batch conditions. If you specify batch
conditions, you must specify the batch size (number of events), and can optionally specify a
batch window (number of seconds). The default and maximum batch window is 900 seconds
(15 minutes). The batch condition that is met first starts the workflow. The batch window starts
when the first event arrives. If you don't specify batch conditions when creating a trigger, the
batch size defaults to 1.

When the workflow starts, the batch conditions are reset and the event trigger begins watching
for the next batch condition to be met to start the workflow again.

The following table shows how batch size and batch window operate together to trigger a
workflow.

Overview of workflows 1193

AWS Glue User Guide

Batch size Batch window Resulting triggering condition

10 The workflow is triggered upon the arrival of 10
EventBridge events, or 15 minutes after the arrival of
the first event, whichever occurs first. (If windows size
isn't specified, it defaults to 15 minutes.)

10 2 mins The workflow is triggered upon the arrival of 10
EventBridge events, or 2 minutes after the arrival of
the first event, whichever occurs first.

1 The workflow is triggered upon the arrival of the
first event. Window size is irrelevant. The batch size
defaults to 1 if you don't specify batch conditions
when you create the EventBridge event trigger.

The GetWorkflowRun API operation returns the batch condition that triggered the workflow.

Regardless of how a workflow is started, you can specify the maximum number of concurrent
workflow runs when you create the workflow.

If an event or batch of events starts a workflow run that eventually fails, that event or batch of
events is no longer considered for starting a workflow run. A new workflow run is started only
when the next event or batch of events arrives.

Important

Limit the total number of jobs, crawlers, and triggers within a workflow to 100 or less. If
you include more than 100, you might get errors when trying to resume or stop workflow
runs.

A workflow run will not be started if it would exceed the concurrency limit set for the workflow,
even though the event condition is met. It's advisable to adjust workflow concurrency limits based
on the expected event volume. AWS Glue does not retry workflow runs that fail due to exceeded

Overview of workflows 1194

AWS Glue User Guide

concurrency limits. Likewise, it's advisable to adjust concurrency limits for jobs and crawlers within
workflows based on expected event volume.

Workflow run properties

To share and manage state throughout a workflow run, you can define default workflow run
properties. These properties, which are name/value pairs, are available to all the jobs in the
workflow. Using the AWS Glue API, jobs can retrieve the workflow run properties and modify them
for jobs that come later in the workflow.

Workflow graph

The following image shows the graph of a very basic workflow on the AWS Glue console. Your
workflow could have dozens of components.

This workflow is started by a schedule trigger, Month-close1, which starts two jobs, De-
duplicate and Fix phone numbers. Upon successful completion of both jobs, an event trigger,
Fix/De-dupe succeeded, starts a crawler, Update schema.

Static and dynamic workflow views

Overview of workflows 1195

AWS Glue User Guide

For each workflow, there is the notion of static view and dynamic view. The static view indicates
the design of the workflow. The dynamic view is a runtime view that includes the latest run
information for each of the jobs and crawlers. Run information includes success status and error
details.

When a workflow is running, the console displays the dynamic view, graphically indicating the jobs
that have completed and that are yet to be run. You can also retrieve a dynamic view of a running
workflow using the AWS Glue API. For more information, see Querying workflows using the AWS
Glue API.

See also

• the section called “Creating a workflow from a blueprint”

• the section called “Creating and building out a workflow manually”

• Workflows (for the workflows API)

Creating and building out a workflow manually in AWS Glue

You can use the AWS Glue console to manually create and build out a workflow one node at a time.

A workflow contains jobs, crawlers, and triggers. Before manually creating a workflow, create the
jobs and crawlers that the workflow is to include. It's best to specify run-on-demand crawlers for
workflows. You can create new triggers while you are building out your workflow, or you can clone
existing triggers into the workflow. When you clone a trigger, all the catalog objects associated
with the trigger—the jobs or crawlers that fire it and the jobs or crawlers that it starts—are added
to the workflow.

Important

Limit the total number of jobs, crawlers, and triggers within a workflow to 100 or less. If
you include more than 100, you might get errors when trying to resume or stop workflow
runs.

You build out your workflow by adding triggers to the workflow graph, and defining the watched
events and actions for each trigger. You begin with a start trigger, which can be either an on-
demand or schedule trigger, and complete the graph by adding event (conditional) triggers.

Creating and building out a workflow manually 1196

AWS Glue User Guide

Step 1: Create the workflow

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, under ETL, choose Workflows.

3. Choose Add workflow and complete the Add a new ETL workflow form.

Any optional default run properties that you add are made available as arguments to all jobs in
the workflow. For more information, see Getting and setting workflow run properties in AWS
Glue.

4. Choose Add workflow.

The new workflow appears in the list on the Workflows page.

Step 2: Add a start trigger

1. On the Workflows page, select your new workflow. Then, at the bottom of the page, ensure
that the Graph tab is selected.

2. Choose Add trigger, and in the Add trigger dialog box, do one of the following:

• Choose Clone existing, and choose a trigger to clone. Then choose Add.

The trigger appears on the graph, along with the jobs and crawlers that it watches and the
jobs and crawlers that it starts.

If you mistakenly selected the wrong trigger, select the trigger on the graph, and then
choose Remove.

• Choose Add new, and complete the Add trigger form.

1. For Trigger type, select Schedule, On demand, or EventBridge event.

For trigger type Schedule, choose one of the Frequency options. Choose Custom to enter
a cron expression.

For trigger type EventBridge event, enter Number of events (batch size), and optionally
enter Time delay (batch window). If you omit Time delay, the batch window defaults to
15 minutes. For more information, see Overview of workflows in AWS Glue.

2. Choose Add.
Creating and building out a workflow manually 1197

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

The trigger appears on the graph, along with a placeholder node (labeled Add node). In the
example below, the start trigger is a schedule trigger named Month-close1.

At this point, the trigger isn't saved yet.

3. If you added a new trigger, complete these steps:

a. Do one of the following:

• Choose the placeholder node (Add node).

• Ensure that the start trigger is selected, and on the Action menu above the graph,
choose Add jobs/crawlers to trigger.

b. In the Add jobs(s) and crawler(s) to trigger dialog box, select one or more jobs or
crawlers, and then choose Add.

The trigger is saved, and the selected jobs or crawlers appear on the graph with
connectors from the trigger.

If you mistakenly added the wrong jobs or crawlers, you can select either the trigger or a
connector and choose Remove.

Creating and building out a workflow manually 1198

AWS Glue User Guide

Step 3: Add more triggers

Continue to build out your workflow by adding more triggers of type Event. To zoom in or out or to
enlarge the graph canvas, use the icons to the right of the graph. For each trigger to add, complete
the following steps:

Note

There is no action to save the workflow. After you add your last trigger and assign actions
to the trigger, the workflow is complete and saved. You can always come back later and add
more nodes.

1. Do one of the following:

• To clone an existing trigger, ensure that no node on the graph is selected, and on the Action
menu, choose Add trigger.

• To add a new trigger that watches a particular job or crawler on the graph, select the job or
crawler node, and then choose the Add trigger placeholder node.

You can add more jobs or crawlers to watch for this trigger in a later step.

2. In the Add trigger dialog box, do one of the following:

• Choose Add new, and complete the Add trigger form. Then choose Add.

The trigger appears on the graph. You will complete the trigger in a later step.

• Choose Clone existing, and choose a trigger to clone. Then choose Add.

The trigger appears on the graph, along with the jobs and crawlers that it watches and the
jobs and crawlers that it starts.

If you mistakenly chose the wrong trigger, select the trigger on the graph, and then choose
Remove.

3. If you added a new trigger, complete these steps:

a. Select the new trigger.

As the following graph shows, the trigger De-dupe/fix succeeded is selected, and
placeholder nodes appear for (1) events to watch and (2) actions.

Creating and building out a workflow manually 1199

AWS Glue User Guide

b. (Optional if the trigger already watches an event and you want to add more jobs or
crawlers to watch.) Choose the events-to-watch placeholder node, and in the Add job(s)
and crawler(s) to watch dialog box, select one or more jobs or crawlers. Choose an event
to watch (SUCCEEDED, FAILED, etc.), and choose Add.

c. Ensure that the trigger is selected, and choose the actions placeholder node.

d. In the Add job(s) and crawler(s) to watch dialog box, select one or more jobs or crawlers,
and choose Add.

The selected jobs and crawlers appear on the graph, with connectors from the trigger.

For more information on workflows and blueprints, see the following topics.

• Overview of workflows in AWS Glue

• Running and monitoring a workflow in AWS Glue

• Creating a workflow from a blueprint in AWS Glue

Starting an AWS Glue workflow with an Amazon EventBridge event

Amazon EventBridge, also known as CloudWatch Events, enables you to automate your AWS
services and respond automatically to system events such as application availability issues or
resource changes. Events from AWS services are delivered to EventBridge in near real time. You can

Starting a workflow with an EventBridge event 1200

AWS Glue User Guide

write simple rules to indicate which events are of interest to you, and what automated actions to
take when an event matches a rule.

With EventBridge support, AWS Glue can serve as an event producer and consumer in an event-
driven architecture. For workflows, AWS Glue supports any type of EventBridge event as a
consumer. The likely most common use case is the arrival of a new object in an Amazon S3 bucket.
If you have data arriving in irregular or undefined intervals, you can process this data as close to its
arrival as possible.

Note

AWS Glue does not provide guaranteed delivery of EventBridge messages. AWS Glue
performs no deduplication if EventBridge delivers duplicate messages. You must manage
idempotency based on your use case.
Be sure to configure EventBridge rules correctly to avoid sending unwanted events.

Before you begin

If you want to start a workflow with Amazon S3 data events, you must ensure that events for the
S3 bucket of interest are logged to AWS CloudTrail and EventBridge. To do so, you must create a
CloudTrail trail. For more information, see Creating a trail for your AWS account.

To start a workflow with an EventBridge event

Note

In the following commands, replace:

• <workflow-name> with the name to assign to the workflow.

• <trigger-name> with the name to assign to the trigger.

• <bucket-name> with the name of the Amazon S3 bucket.

• <account-id> with a valid AWS account ID.

• <region> with the name of the Region (for example, us-east-1).

• <rule-name> with the name to assign to the EventBridge rule.

Starting a workflow with an EventBridge event 1201

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html

AWS Glue User Guide

1. Ensure that you have AWS Identity and Access Management (IAM) permissions to create and
view EventBridge rules and targets. The following is a sample policy that you can attach. You
might want to scope it down to put limits on the operations and resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "events:PutRule",
 "events:DisableRule",
 "events:DeleteRule",
 "events:PutTargets",
 "events:RemoveTargets",
 "events:EnableRule",
 "events:List*",
 "events:Describe*"
],
 "Resource": "*"
 }
]
}

2. Create an IAM role that the EventBridge service can assume when passing an event to AWS
Glue.

a. On the Create role page of the IAM console, choose AWS Service. Then choose the service
CloudWatch Events.

b. Complete the Create role wizard. The wizard automatically attaches
the CloudWatchEventsBuiltInTargetExecutionAccess and
CloudWatchEventsInvocationAccess policies.

c. Attach the following inline policy to the role. This policy allows the EventBridge service to
direct events to AWS Glue.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

Starting a workflow with an EventBridge event 1202

AWS Glue User Guide

 "glue:notifyEvent"
],
 "Resource": [
 "arn:aws:glue:<region>:<account-id>:workflow/<workflow-name>"
]
 }
]
}

3. Enter the following command to create the workflow.

See create-workflow in the AWS CLI Command Reference for information about additional
optional command-line parameters.

aws glue create-workflow --name <workflow-name>

4. Enter the following command to create an EventBridge event trigger for the workflow. This
will be the start trigger for the workflow. Replace <actions> with the actions to perform (the
jobs and crawlers to start).

See create-trigger in the AWS CLI Command Reference for information about how to code the
actions argument.

aws glue create-trigger --workflow-name <workflow-name> --type EVENT --
name <trigger-name> --actions <actions>

If you want the workflow to be triggered by a batch of events instead of a single EventBridge
event, enter the following command instead.

aws glue create-trigger --workflow-name <workflow-name> --type EVENT
 --name <trigger-name> --event-batching-condition BatchSize=<number-of-
events>,BatchWindow=<seconds> --actions <actions>

For the event-batching-condition argument, BatchSize is required and BatchWindow
is optional. If BatchWindow is omitted, the window defaults to 900 seconds, which is the
maximum window size.

Starting a workflow with an EventBridge event 1203

https://docs.aws.amazon.com/cli/latest/reference/glue/create-workflow.html
https://docs.aws.amazon.com/cli/latest/reference/glue/create-trigger.html

AWS Glue User Guide

Example

The following example creates a trigger that starts the eventtest workflow after three
EventBridge events have arrived, or five minutes after the first event arrives, whichever comes
first.

aws glue create-trigger --workflow-name eventtest --type EVENT --name objectArrival
 --event-batching-condition BatchSize=3,BatchWindow=300 --actions JobName=test1

5. Create a rule in Amazon EventBridge.

a. Create the JSON object for the rule details in your preferred text editor.

The following example specifies Amazon S3 as the event source, PutObject as the event
name, and the bucket name as a request parameter. This rule starts a workflow when a
new object arrives in the bucket.

{
 "source": [
 "aws.s3"
],
 "detail-type": [
 "AWS API Call via CloudTrail"
],
 "detail": {
 "eventSource": [
 "s3.amazonaws.com"
],
 "eventName": [
 "PutObject"
],
 "requestParameters": {
 "bucketName": [
 "<bucket-name>"
]
 }
 }
}

To start the workflow when a new object arrives in a folder within the bucket, you can
substitute the following code for requestParameters.

Starting a workflow with an EventBridge event 1204

AWS Glue User Guide

 "requestParameters": {
 "bucketName": [
 "<bucket-name>"
]
 "key" : [{ "prefix" : "<folder1>/<folder2>/*"}}]
 }

b. Use your preferred tool to convert the rule JSON object to an escaped string.

{\n \"source\": [\n \"aws.s3\"\n],\n \"detail-type\": [\n \"AWS API
 Call via CloudTrail\"\n],\n \"detail\": {\n \"eventSource\": [\n
 \"s3.amazonaws.com\"\n],\n \"eventName\": [\n \"PutObject\"\n
],\n \"requestParameters\": {\n \"bucketName\": [\n \"<bucket-
name>\"\n]\n }\n }\n}

c. Run the following command to create a JSON parameter template that you can edit to
specify input parameters to a subsequent put-rule command. Save the output in a file.
In this example, the file is called ruleCommand.

aws events put-rule --name <rule-name> --generate-cli-skeleton >ruleCommand

For more information about the --generate-cli-skeleton parameter, see Generating
AWS CLI skeleton and input parameters from a JSON or YAML input file in the AWS
Command Line Interface User Guide.

The output file should look like the following.

{
 "Name": "",
 "ScheduleExpression": "",
 "EventPattern": "",
 "State": "ENABLED",
 "Description": "",
 "RoleArn": "",
 "Tags": [
 {
 "Key": "",
 "Value": ""
 }
],
 "EventBusName": ""

Starting a workflow with an EventBridge event 1205

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-skeleton.html

AWS Glue User Guide

}

d. Edit the file to optionally remove parameters and to specify at a minimum the Name,
EventPattern, and State parameters. For the EventPattern parameter, provide the
escaped string for the rule details that you created in a previous step.

{
 "Name": "<rule-name>",
 "EventPattern": "{\n \"source\": [\n \"aws.s3\"\n],\n \"detail-
type\": [\n \"AWS API Call via CloudTrail\"\n],\n \"detail\": {\n
 \"eventSource\": [\n \"s3.amazonaws.com\"\n],\n \"eventName\": [\n
 \"PutObject\"\n],\n \"requestParameters\": {\n \"bucketName
\": [\n \"<bucket-name>\"\n]\n }\n }\n}",
 "State": "DISABLED",
 "Description": "Start an AWS Glue workflow upon new file arrival in an
 Amazon S3 bucket"
}

Note

It is best to leave the rule disabled until you finish building out the workflow.

e. Enter the following put-rule command, which reads input parameters from the file
ruleCommand.

aws events put-rule --name <rule-name> --cli-input-json file://ruleCommand

The following output indicates success.

{
 "RuleArn": "<rule-arn>"
}

6. Enter the following command to attach the rule to a target. The target is the workflow in AWS
Glue. Replace <role-name> with the role that you created at the beginning of this procedure.

aws events put-targets --rule <rule-name> --targets
 "Id"="1","Arn"="arn:aws:glue:<region>:<account-id>:workflow/<workflow-
name>","RoleArn"="arn:aws:iam::<account-id>:role/<role-name>" --region <region>

Starting a workflow with an EventBridge event 1206

AWS Glue User Guide

The following output indicates success.

{
 "FailedEntryCount": 0,
 "FailedEntries": []
}

7. Confirm successful connection of the rule and target by entering the following command.

aws events list-rule-names-by-target --target-arn arn:aws:glue:<region>:<account-
id>:workflow/<workflow-name>

The following output indicates success, where <rule-name> is the name of the rule that you
created.

{
 "RuleNames": [
 "<rule-name>"
]
}

8. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

9. Select the workflow, and verify that the start trigger and its actions—the jobs or crawlers that
it starts— appear on the workflow graph. Then continue with the procedure in Step 3: Add
more triggers. Or add more components to the workflow by using the AWS Glue API or AWS
Command Line Interface.

10. When the workflow is completely specified, enable the rule.

aws events enable-rule --name <rule-name>

The workflow is now ready to be started by an EventBridge event or event batch.

See also

• Amazon EventBridge User Guide

• Overview of workflows in AWS Glue

Starting a workflow with an EventBridge event 1207

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html

AWS Glue User Guide

• Creating and building out a workflow manually in AWS Glue

Viewing the EventBridge events that started a workflow

You can view the event ID of the Amazon EventBridge event that started your workflow. If your
workflow was started by a batch of events, you can view the event IDs of all events in the batch.

For workflows with a batch size greater than one, you can also see which batch condition started
the workflow: the arrival of the number of events in the batch size, or the expiration of the batch
window.

To view the EventBridge events that started a workflow (console)

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane, choose Workflows.

3. Select the workflow. Then at the bottom, choose the History tab.

4. Select a workflow run, and then choose View run details.

5. On the run details page, locate the Run properties field, and look for the aws:eventIds key.

The value for that key is a list of EventBridge event IDs.

To view the EventBridge events that started a workflow (AWS API)

• Include the following code in your Python script.

workflow_params =
 glue_client.get_workflow_run_properties(Name=workflow_name,RunId=workflow_run_id)
batched_events = workflow_params['aws:eventIds']

batched_events will be a list of strings, where each string is an event ID.

See also

• Amazon EventBridge User Guide

Viewing the EventBridge events that started a workflow 1208

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html

AWS Glue User Guide

• the section called “Overview of workflows”

Running and monitoring a workflow in AWS Glue

If the start trigger for a workflow is an on-demand trigger, you can start the workflow from the
AWS Glue console. Complete the following steps to run and monitor a workflow. If the workflow
fails, you can view the run graph to determine the node that failed. To help troubleshoot, if
the workflow was created from a blueprint, you can view the blueprint run to see the blueprint
parameter values that were used to create the workflow. For more information, see the section
called “Viewing blueprint runs”.

You can run and monitor a workflow by using the AWS Glue console, API, or AWS Command Line
Interface (AWS CLI).

To run and monitor a workflow (console)

1. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

2. In the navigation pane, under ETL, choose Workflows.

3. Select a workflow. On the Actions menu, choose Run.

4. Check the Last run status column in the workflows list. Choose the refresh button to view
ongoing workflow status.

5. While the workflow is running or after it has completed (or failed), view the run details by
completing the following steps.

a. Ensure that the workflow is selected, and choose the History tab.

b. Choose the current or most recent workflow run, and then choose View run details.

The workflow runtime graph shows the current run status.

c. Choose any node in the graph to view details and status of the node.

Running and monitoring a workflow 1209

https://console.aws.amazon.com/glue/

AWS Glue User Guide

To run and monitor a workflow (AWS CLI)

1. Enter the following command. Replace <workflow-name> with the workflow to run.

aws glue start-workflow-run --name <workflow-name>

If the workflow is successfully started, the command returns the run ID.

2. View workflow run status by using the get-workflow-run command. Supply the workflow
name and run ID.

aws glue get-workflow-run --name myWorkflow --run-id
 wr_d2af14217e8eae775ba7b1fc6fc7a42c795aed3cbcd8763f9415452e2dbc8705

The following is sample command output.

{
 "Run": {
 "Name": "myWorkflow",
 "WorkflowRunId":
 "wr_d2af14217e8eae775ba7b1fc6fc7a42c795aed3cbcd8763f9415452e2dbc8705",
 "WorkflowRunProperties": {
 "run_state": "COMPLETED",
 "unique_id": "fee63f30-c512-4742-a9b1-7c8183bdaae2"
 },
 "StartedOn": 1578556843.049,
 "CompletedOn": 1578558649.928,
 "Status": "COMPLETED",

Running and monitoring a workflow 1210

AWS Glue User Guide

 "Statistics": {
 "TotalActions": 11,
 "TimeoutActions": 0,
 "FailedActions": 0,
 "StoppedActions": 0,
 "SucceededActions": 9,
 "RunningActions": 0,
 "ErroredActions": 0
 }
 }
}

See also:

• the section called “Overview of workflows”

• the section called “Overview of blueprints”

Stopping a workflow run

You can use the AWS Glue console, AWS Command Line Interface (AWS CLI) or AWS Glue API to
stop a workflow run. When you stop a workflow run, all running jobs and crawlers are immediately
terminated, and jobs and crawlers that are not yet started never start. It might take up to a minute
for all running jobs and crawlers to stop. The workflow run status goes from Running to Stopping,
and when the workflow run is completely stopped, the status goes to Stopped.

After the workflow run is stopped, you can view the run graph to see which jobs and crawlers
completed and which never started. You can then determine if you must perform any steps to
ensure data integrity. Stopping a workflow run causes no automatic rollback operations to be
performed.

To stop a workflow run (console)

1. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

2. In the navigation pane, under ETL, choose Workflows.

3. Choose a running workflow, and then choose the History tab.

4. Choose the workflow run, and then choose Stop run.

Stopping a workflow run 1211

https://console.aws.amazon.com/glue/

AWS Glue User Guide

The run status changes to Stopping.

5. (Optional) Choose the workflow run, choose View run details, and review the run graph.

To stop a workflow run (AWS CLI)

• Enter the following command. Replace <workflow-name> with the name of the workflow
and <run-id> with the run ID of the workflow run to stop.

aws glue stop-workflow-run --name <workflow-name> --run-id <run-id>

The following is an example of the stop-workflow-run command.

aws glue stop-workflow-run --name my-workflow --run-id
 wr_137b88917411d128081069901e4a80595d97f719282094b7f271d09576770354

Repairing and resuming a workflow run

If one or more nodes (jobs or crawlers) in a workflow do not successfully complete, this means
that the workflow only partially ran. After you find the root causes and make corrections, you can
select one or more nodes to resume the workflow run from, and then resume the workflow run.
The selected nodes and all nodes that are downstream from those nodes are then run.

Topics

• Resuming a workflow run: How it works

• Resuming a workflow run

• Notes and limitations for resuming workflow runs

Resuming a workflow run: How it works

Consider the workflow W1 in the following diagram.

Repairing and resuming a workflow run 1212

AWS Glue User Guide

The workflow run proceeds as follows:

1. Trigger T1 starts job J1.

2. Successful completion of J1 fires triggers T2 and T3, which run jobs J2 and J3, respectively.

3. Jobs J2 and J3 fail.

4. Triggers T4 and T5 depend on the successful completion of J2 and J3, so they don't fire, and jobs
J4 and J5 don't run. Workflow W1 is only partially run.

Now assume that the issues that caused J2 and J3 to fail are corrected. J2 and J3 are selected as
the starting points to resume the workflow run from.

The workflow run resumes as follows:

1. Jobs J2 and J3 run successfully.

2. Triggers T4 and T5 fire.

3. Jobs J4 and J5 run successfully.

The resumed workflow run is tracked as a separate workflow run with a new run ID. When you view
the workflow history, you can view the previous run ID for any workflow run. In the example in the
following screenshot, the workflow run with run ID wr_c7a22... (the second row) had a node
that did not complete. The user fixed the problem and resumed the workflow run, which resulted
in run ID wr_a07e55... (the first row).

Repairing and resuming a workflow run 1213

AWS Glue User Guide

Note

For the rest of this discussion, the term "resumed workflow run" refers to the workflow run
that was created when the previous workflow run was resumed. The "original workflow run"
refers to the workflow run that only partially ran and that needed to be resumed.

Resumed workflow run graph

In a resumed workflow run, although only a subset of nodes are run, the run graph is a complete
graph. That is, the nodes that didn't run in the resumed workflow are copied from the run graph
of the original workflow run. Copied job and crawler nodes that ran in the original workflow run
include run details.

Consider again the workflow W1 in the previous diagram. When the workflow run is resumed
starting with J2 and J3, the run graph for the resumed workflow run shows all jobs, J1 though J5,
and all triggers, T1 through T5. The run details for J1 are copied from the original workflow run.

Workflow run snapshots

When a workflow run is started, AWS Glue takes a snapshot of the workflow design graph at that
point in time. That snapshot is used for the duration of the workflow run. If you make changes to
any triggers after the run starts, those changes don't affect the current workflow run. Snapshots
ensure that workflow runs proceed in a consistent manner.

Snapshots make only triggers immutable. Changes that you make to downstream jobs and crawlers
during the workflow run take effect for the current run.

Resuming a workflow run

Follow these steps to resume a workflow run. You can resume a workflow run by using the AWS
Glue console, API, or AWS Command Line Interface (AWS CLI).

Repairing and resuming a workflow run 1214

AWS Glue User Guide

To resume a workflow run (console)

1. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

Sign in as a user who has permissions to view workflows and resume workflow runs.

Note

To resume workflow runs, you need the glue:ResumeWorkflowRun AWS Identity and
Access Management (IAM) permission.

2. In the navigation pane, choose Workflows.

3. Select a workflow, and then choose the History tab.

4. Select the workflow run that only partially ran, and then choose View run details.

5. In the run graph, select the first (or only) node that you want to restart and that you want to
resume the workflow run from.

6. In the details pane to the right of the graph, select the Resume check box.

The node changes color and shows a small resume icon at the upper right.

Repairing and resuming a workflow run 1215

https://console.aws.amazon.com/glue/

AWS Glue User Guide

7. Complete the previous two steps for any additional nodes to restart.

8. Choose Resume run.

To resume a workflow run (AWS CLI)

1. Ensure that you have the glue:ResumeWorkflowRun IAM permission.

2. Retrieve the node IDs for the nodes that you want to restart.

a. Run the get-workflow-run command for the original workflow run. Supply the
workflow name and run ID, and add the --include-graph option, as shown in the
following example. Get the run ID from the History tab on the console, or by running the
get-workflow command.

aws glue get-workflow-run --name cloudtrailtest1 --run-id
 wr_a07e55f2087afdd415a404403f644a4265278f68b13ba3da08c71924ebe3c3a8 --include-
graph

The command returns the nodes and edges of the graph as a large JSON object.

b. Locate the nodes of interest by the Type and Name properties of the node objects.

The following is an example node object from the output.

{
 "Type": "JOB",
 "Name": "test1_post_failure_4592978",
 "UniqueId":
 "wnode_d1b2563c503078b153142ee76ce545fe5ceef66e053628a786ddd74a05da86fd",

Repairing and resuming a workflow run 1216

AWS Glue User Guide

 "JobDetails": {
 "JobRuns": [
 {
 "Id":
 "jr_690b9f7fc5cb399204bc542c6c956f39934496a5d665a42de891e5b01f59e613",
 "Attempt": 0,
 "TriggerName": "test1_aggregate_failure_649b2432",
 "JobName": "test1_post_failure_4592978",
 "StartedOn": 1595358275.375,
 "LastModifiedOn": 1595358298.785,
 "CompletedOn": 1595358298.785,
 "JobRunState": "FAILED",
 "PredecessorRuns": [],
 "AllocatedCapacity": 0,
 "ExecutionTime": 16,
 "Timeout": 2880,
 "MaxCapacity": 0.0625,
 "LogGroupName": "/aws-glue/python-jobs"
 }
]
 }
}

c. Get the node ID from the UniqueId property of the node object.

3. Run the resume-workflow-run command. Provide the workflow name, run ID, and list of
node IDs separated by spaces, as shown in the following example.

aws glue resume-workflow-run --name cloudtrailtest1 --run-id
 wr_a07e55f2087afdd415a404403f644a4265278f68b13ba3da08c71924ebe3c3a8 --node-
ids wnode_ca1f63e918fb855e063aed2f42ec5762ccf71b80082ae2eb5daeb8052442f2f3
 wnode_d1b2563c503078b153142ee76ce545fe5ceef66e053628a786ddd74a05da86fd

The command outputs the run ID of the resumed (new) workflow run and a list of nodes that
will be started.

{
 "RunId": "wr_2ada0d3209a262fc1156e4291134b3bd643491bcfb0ceead30bd3e4efac24de9",
 "NodeIds": [
 "wnode_ca1f63e918fb855e063aed2f42ec5762ccf71b80082ae2eb5daeb8052442f2f3"
]
}

Repairing and resuming a workflow run 1217

AWS Glue User Guide

Note that although the example resume-workflow-run command listed two nodes to
restart, the example output indicated that only one node would be restarted. This is because
one node was downstream of the other node, and the downstream node would be restarted
anyway by the normal flow of the workflow.

Notes and limitations for resuming workflow runs

Keep the following notes and limitations in mind when resuming workflow runs.

• You can resume a workflow run only if it's in the COMPLETED state.

Note

Even if one ore more nodes in a workflow run don't complete, the workflow run state is
shown as COMPLETED. Be sure to check the run graph to discover any nodes that didn't
successfully complete.

• You can resume a workflow run from any job or crawler node that the original workflow run
attempted to run. You can't resume a workflow run from a trigger node.

• Restarting a node does not reset its state. Any data that was partially processed is not rolled
back.

• You can resume the same workflow run multiple times. If a resumed workflow run only partially
runs, you can address the issue and resume the resumed run.

• If you select two nodes to restart and they're dependent upon each other, the upstream node is
run before the downstream node. In fact, selecting the downstream node is redundant, because
it will be run according to the normal flow of the workflow.

Getting and setting workflow run properties in AWS Glue

Use workflow run properties to share and manage state among the jobs in your AWS Glue
workflow. You can set default run properties when you create the workflow. Then, as your jobs
run, they can retrieve the run property values and optionally modify them for input to jobs that
are later in the workflow. When a job modifies a run property, the new value exists only for the
workflow run. The default run properties aren't affected.

If your AWS Glue job is not part of a workflow, these properties will not be set.

Getting and setting workflow run properties 1218

AWS Glue User Guide

The following sample Python code from an extract, transform, and load (ETL) job demonstrates
how to get the workflow run properties.

import sys
import boto3
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from awsglue.context import GlueContext
from pyspark.context import SparkContext

glue_client = boto3.client("glue")
args = getResolvedOptions(sys.argv, ['JOB_NAME','WORKFLOW_NAME', 'WORKFLOW_RUN_ID'])
workflow_name = args['WORKFLOW_NAME']
workflow_run_id = args['WORKFLOW_RUN_ID']
workflow_params = glue_client.get_workflow_run_properties(Name=workflow_name,
 RunId=workflow_run_id)["RunProperties"]

target_database = workflow_params['target_database']
target_s3_location = workflow_params['target_s3_location']

The following code continues by setting the target_format run property to 'csv'.

workflow_params['target_format'] = 'csv'
glue_client.put_workflow_run_properties(Name=workflow_name, RunId=workflow_run_id,
 RunProperties=workflow_params)

For more information, see the following:

• GetWorkflowRunProperties action (Python: get_workflow_run_properties)

• PutWorkflowRunProperties action (Python: put_workflow_run_properties)

Querying workflows using the AWS Glue API

AWS Glue provides a rich API for managing workflows. You can retrieve a static view of a workflow
or a dynamic view of a running workflow using the AWS Glue API. For more information, see
Workflows.

Topics

• Querying static views

• Querying dynamic views

Querying workflows using the AWS Glue API 1219

AWS Glue User Guide

Querying static views

Use the GetWorkflow API operation to get a static view that indicates the design of a workflow.
This operation returns a directed graph consisting of nodes and edges, where a node represents a
trigger, a job, or a crawler. Edges define the relationships between nodes. They are represented by
connectors (arrows) on the graph in the AWS Glue console.

You can also use this operation with popular graph-processing libraries such as NetworkX, igraph,
JGraphT, and the Java Universal Network/Graph (JUNG) Framework. Because all these libraries
represent graphs similarly, minimal transformations are needed.

The static view returned by this API is the most up-to-date view according to the latest definition
of triggers associated with the workflow.

Graph definition

A workflow graph G is an ordered pair (N, E), where N is a set of nodes and E a set of edges. Node
is a vertex in the graph identified by a unique number. A node can be of type trigger, job, or
crawler. For example: {name:T1, type:Trigger, uniqueId:1}, {name:J1, type:Job,
uniqueId:2}.

Edge is a 2-tuple of the form (src, dest), where src and dest are nodes and there is a directed
edge from src to dest.

Example of querying a static view

Consider a conditional trigger T, which triggers job J2 upon completion of job J1.

J1 ---> T ---> J2

Nodes: J1, T, J2

Edges: (J1, T), (T, J2)

Querying dynamic views

Use the GetWorkflowRun API operation to get a dynamic view of a running workflow. This
operation returns the same static view of the graph along with metadata related to the workflow
run.

Querying workflows using the AWS Glue API 1220

AWS Glue User Guide

For run, nodes representing jobs in the GetWorkflowRun call have a list of job runs initiated as
part of the latest run of the workflow. You can use this list to display the run status of each job in
the graph itself. For downstream dependencies that are not yet run, this field is set to null. The
graphed information makes you aware of the current state of any workflow at any point of time.

The dynamic view returned by this API is based on the static view that was present when the
workflow run was started.

Runtime nodes example: {name:T1, type: Trigger, uniqueId:1}, {name:J1, type:Job,
uniqueId:2, jobDetails:{jobRuns}}, {name:C1, type:Crawler, uniqueId:3,
crawlerDetails:{crawls}}

Example 1: Dynamic view

The following example illustrates a simple two-trigger workflow.

• Nodes: t1, j1, t2, j2

• Edges: (t1, j1), (j1, t2), (t2, j2)

The GetWorkflow response contains the following.

{
 Nodes : [
 {
 "type" : Trigger,
 "name" : "t1",
 "uniqueId" : 1
 },
 {
 "type" : Job,
 "name" : "j1",
 "uniqueId" : 2
 },
 {
 "type" : Trigger,
 "name" : "t2",
 "uniqueId" : 3
 },
 {
 "type" : Job,
 "name" : "j2",

Querying workflows using the AWS Glue API 1221

AWS Glue User Guide

 "uniqueId" : 4
 }
],
 Edges : [
 {
 "sourceId" : 1,
 "destinationId" : 2
 },
 {
 "sourceId" : 2,
 "destinationId" : 3
 },
 {
 "sourceId" : 3,
 "destinationId" : 4
 }
}

The GetWorkflowRun response contains the following.

{
 Nodes : [
 {
 "type" : Trigger,
 "name" : "t1",
 "uniqueId" : 1,
 "jobDetails" : null,
 "crawlerDetails" : null
 },
 {
 "type" : Job,
 "name" : "j1",
 "uniqueId" : 2,
 "jobDetails" : [
 {
 "id" : "jr_12334",
 "jobRunState" : "SUCCEEDED",
 "errorMessage" : "error string"
 }
],
 "crawlerDetails" : null
 },
 {

Querying workflows using the AWS Glue API 1222

AWS Glue User Guide

 "type" : Trigger,
 "name" : "t2",
 "uniqueId" : 3,
 "jobDetails" : null,
 "crawlerDetails" : null
 },
 {
 "type" : Job,
 "name" : "j2",
 "uniqueId" : 4,
 "jobDetails" : [
 {
 "id" : "jr_1233sdf4",
 "jobRunState" : "SUCCEEDED",
 "errorMessage" : "error string"
 }
],
 "crawlerDetails" : null
 }
],
 Edges : [
 {
 "sourceId" : 1,
 "destinationId" : 2
 },
 {
 "sourceId" : 2,
 "destinationId" : 3
 },
 {
 "sourceId" : 3,
 "destinationId" : 4
 }
}

Example 2: Multiple jobs with a conditional trigger

The following example shows a workflow with multiple jobs and a conditional trigger (t3).

Consider Flow:
T(t1) ---> J(j1) ---> T(t2) ---> J(j2)
 | |
 | |
 >+------> T(t3) <-----+

Querying workflows using the AWS Glue API 1223

AWS Glue User Guide

 |
 |
 J(j3)

Graph generated:
Nodes: t1, t2, t3, j1, j2, j3
Edges: (t1, j1), (j1, t2), (t2, j2), (j1, t3), (j2, t3), (t3, j3)

Blueprint and workflow restrictions in AWS Glue

The following are restrictions for blueprints and workflows.

Blueprint restrictions

Keep the following blueprint restrictions in mind:

• The blueprint must be registered in the same AWS Region where the Amazon S3 bucket resides
in.

• To share blueprints across AWS accounts you must give the read permissions on the blueprint
ZIP archive in Amazon S3. Customers who have read permission on a blueprint ZIP archive can
register the blueprint in their AWS account and use it.

• The set of blueprint parameters is stored as a single JSON object. The maximum length of this
object is 128 KB.

• The maximum uncompressed size of the blueprint ZIP archive is 5 MB. The maximum compressed
size is 1 MB.

• Limit the total number of jobs, crawlers, and triggers within a workflow to 100 or less. If you
include more than 100, you might get errors when trying to resume or stop workflow runs.

Workflow restrictions

Keep the following workflow restrictions in mind. Some of these comments are directed more at a
user creating workflows manually.

• The maximum batch size for an Amazon EventBridge event trigger is 100. The maximum window
size is 900 seconds (15 minutes).

• A trigger can be associated with only one workflow.

• Only one starting trigger (on-demand or schedule) is permitted.

Blueprint and workflow restrictions 1224

AWS Glue User Guide

• If a job or crawler in a workflow is started by a trigger that is outside the workflow, any triggers
inside the workflow that depend on job or crawler completion (succeeded or otherwise) do not
fire.

• Similarly, if a job or crawler in a workflow has triggers that depend on job or crawler completion
(succeeded or otherwise) both within the workflow and outside the workflow, and if the job or
crawler is started from within a workflow, only the triggers inside the workflow fire upon job or
crawler completion.

Troubleshooting blueprint errors in AWS Glue

If you encounter errors when using AWS Glue blueprints, use the following solutions to help you
find the source of the problems and fix them.

Topics

• Error: missing PySpark module

• Error: missing blueprint config file

• Error: missing imported file

• Error: not authorized to perform iamPassRole on resource

• Error: invalid cron schedule

• Error: a trigger with the same name already exists

• Error: workflow with name: foo already exists.

• Error: module not found in specified layoutGenerator path

• Error: validation error in Connections field

Error: missing PySpark module

AWS Glue returns the error "Unknown error executing layout generator function
ModuleNotFoundError: No module named 'pyspark'".

When you unzip the blueprint archive it could be like either of the following:

$ unzip compaction.zip
Archive: compaction.zip
 creating: compaction/
 inflating: compaction/blueprint.cfg
 inflating: compaction/layout.py

Troubleshooting blueprint errors 1225

AWS Glue User Guide

 inflating: compaction/README.md
 inflating: compaction/compaction.py

$ unzip compaction.zip
Archive: compaction.zip
 inflating: blueprint.cfg
 inflating: compaction.py
 inflating: layout.py
 inflating: README.md

In the first case, all the files related to the blueprint were placed under a folder named compaction
and it was then converted into a zip file named compaction.zip.

In the second case, all the files required for the blueprint were not included into a folder and were
added as root files under the zip file compaction.zip.

Creating a file in either of the above formats is allowed. However make sure that blueprint.cfg
has the correct path to the name of the function in the script that generates the layout.

Examples

In case 1: blueprint.cfg should have layoutGenerator as the following:

layoutGenerator": "compaction.layout.generate_layout"

In case 2: blueprint.cfg should have layoutGenerator as the following

layoutGenerator": "layout.generate_layout"

If this path is not included correctly, you could see an error as indicated. For example, if you have
the folder structure as mentioned in case 2 and you have the layoutGenerator indicated as in
case 1, you can see the above error.

Error: missing blueprint config file

AWS Glue returns the error "Unknown error executing layout generator function
FileNotFoundError: [Errno 2] No such file or directory: '/tmp/compaction/blueprint.cfg'".

The blueprint.cfg should be placed at the root level of the ZIP archive or within a folder which has
the same name as the ZIP archive.

Troubleshooting blueprint errors 1226

AWS Glue User Guide

When we extract the blueprint ZIP archive, blueprint.cfg is expected to be found in one of the
following paths. If it is not found in one of the following paths, you can see the above error.

$ unzip compaction.zip
Archive: compaction.zip
 creating: compaction/
 inflating: compaction/blueprint.cfg

$ unzip compaction.zip
Archive: compaction.zip
 inflating: blueprint.cfg

Error: missing imported file

AWS Glue returns the error "Unknown error executing layout generator function
FileNotFoundError: [Errno 2] No such file or directory:* *'demo-project/foo.py'".

If your layout generation script has functionality to read other files, make sure you give a full path
for the file to be imported. For example, the Conversion.py script may be referenced in Layout.py.
For more information, see Sample blueprint Project.

Error: not authorized to perform iamPassRole on resource

AWS Glue returns the error "User: arn:aws:sts::123456789012:assumed-role/
AWSGlueServiceRole/GlueSession is not authorized to perform: iam:PassRole on resource:
arn:aws:iam::123456789012:role/AWSGlueServiceRole"

If the jobs and crawlers in the workflow assume the same role as the role passed to create
workflow from the blueprint, then the blueprint role needs to include the iam:PassRole
permission on itself.

If the jobs and crawlers in the workflow assume a role other than the role passed to create
the entities of the workflow from the blueprint, then the blueprint role needs to include the
iam:PassRole permission on that other role instead of on the blueprint role.

For more information, see Permissions for blueprint Roles.

Error: invalid cron schedule

AWS Glue returns the error "The schedule cron(0 0 * * * *) is invalid."

Troubleshooting blueprint errors 1227

https://docs.aws.amazon.com/glue/latest/dg/developing-blueprints-sample.html
https://docs.aws.amazon.com/glue/latest/dg/blueprints-personas-permissions.html#blueprints-role-permissions

AWS Glue User Guide

Provide a valid cron expression. For more information, see Time-Based Schedules for Jobs and
Crawlers.

Error: a trigger with the same name already exists

AWS Glue returns the error "Trigger with name 'foo_starting_trigger' already submitted with
different configuration".

A blueprint does not require you to define triggers in the layout script for workflow creation.
Trigger creation is managed by the blueprint library based on the dependencies defined between
two actions.

The naming for the triggers is as follows:

• For the starting trigger in the workflow the naming is <workflow_name>_starting_trigger.

• For a node(job/crawler) in the workflow that depends on the completion of
either one or multiple upstream nodes; AWS Glue defines a trigger with the name
<workflow_name>_<node_name>_trigger

This error means a trigger with same name already exists. You can delete the existing trigger and
re-run the workflow creation.

Note

Deleting a workflow doesn’t delete the nodes within the workflow. It is possible that
though the workflow is deleted, triggers are left behind. Due to this, you may not receive
a 'workflow already exists' error, but you may receive a 'trigger already exists' error in a
case where you create a workflow, delete it and then try to re-create it with the same name
from same blueprint.

Error: workflow with name: foo already exists.

The workflow name should be unique. Please try with a different name.

Error: module not found in specified layoutGenerator path

AWS Glue returns the error "Unknown error executing layout generator function
ModuleNotFoundError: No module named 'crawl_s3_locations'".

Troubleshooting blueprint errors 1228

https://en.wikipedia.org/wiki/Cron
https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html

AWS Glue User Guide

layoutGenerator": "crawl_s3_locations.layout.generate_layout"

For example, if you have the above layoutGenerator path, then when you unzip the blueprint
archive, it needs to look like the following:

$ unzip crawl_s3_locations.zip
Archive: crawl_s3_locations.zip
 creating: crawl_s3_locations/
 inflating: crawl_s3_locations/blueprint.cfg
 inflating: crawl_s3_locations/layout.py
 inflating: crawl_s3_locations/README.md

When you unzip the archive, if the blueprint archive looks like the following, then you can get the
above error.

$ unzip crawl_s3_locations.zip
Archive: crawl_s3_locations.zip
 inflating: blueprint.cfg
 inflating: layout.py
 inflating: README.md

You can see that there is no folder named crawl_s3_locations and when the
layoutGenerator path refers to the layout file via the module crawl_s3_locations, you can
get the above error.

Error: validation error in Connections field

AWS Glue returns the error "Unknown error executing layout generator function TypeError: Value
['foo'] for key Connections should be of type <class 'dict'>!".

This is a validation error. The Connections field in the Job class is expecting a dictionary and
instead a list of values are provided causing the error.

User input was list of values
Connections= ['string']

Should be a dict like the following
Connections*=*{'Connections': ['string']}

Troubleshooting blueprint errors 1229

AWS Glue User Guide

To avoid these run time errors while creating a workflow from a blueprint, you can validate the
workflow, job and crawler definitions as outlined in Testing a blueprint.

Refer to the syntax in AWS Glue blueprint Classes Reference for defining the AWS Glue job, crawler
and workflow in the layout script.

Permissions for personas and roles for AWS Glue blueprints

The following are the typical personas and suggested AWS Identity and Access Management (IAM)
permissions policies for personas and roles for AWS Glue blueprints.

Topics

• Blueprint personas

• Permissions for blueprint personas

• Permissions for blueprint roles

Blueprint personas

The following are the personas typically involved in the lifecycle of AWS Glue blueprints.

Persona Description

AWS Glue developer Develops, tests, and publishes blueprints.

AWS Glue administrator Registers, maintains, and grants permissions on
blueprints.

Data analyst Runs blueprints to create workflows.

For more information, see the section called “Overview of blueprints”.

Permissions for blueprint personas

The following are the suggested permissions for each blueprint persona.

AWS Glue developer permissions for blueprints

The AWS Glue developer must have write permissions on the Amazon S3 bucket that is used
to publish the blueprint. Often, the developer registers the blueprint after uploading it. In that

Permissions for blueprint personas and roles 1230

https://docs.aws.amazon.com/glue/latest/dg/developing-blueprints-testing.html
https://docs.aws.amazon.com/glue/latest/dg/developing-blueprints-code-classes.html

AWS Glue User Guide

case, the developer needs the permissions listed in the section called “AWS Glue administrator
permissions for blueprints”. Additionally, if the developer wishes to test the blueprint after
its registered, he or she also needs the permissions listed in the section called “Data analyst
permissions for blueprints”.

AWS Glue administrator permissions for blueprints

The following policy grants permissions to register, view, and maintain AWS Glue blueprints.

Important

In the following policy, replace <s3-bucket-name> and <prefix> with the Amazon S3
path to uploaded blueprint ZIP archives to register.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateBlueprint",
 "glue:UpdateBlueprint",
 "glue:DeleteBlueprint",
 "glue:GetBlueprint",
 "glue:ListBlueprints",
 "glue:BatchGetBlueprints"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::<s3-bucket-name>/<prefix>/*"
 }
]
}

Permissions for blueprint personas and roles 1231

AWS Glue User Guide

Data analyst permissions for blueprints

The following policy grants permissions to run blueprints and to view the resulting workflow and
workflow components. It also grants PassRole on the role that AWS Glue assumes to create the
workflow and workflow components.

The policy grants permissions on any resource. If you want to configure fine-grained access to
individual blueprints, use the following format for blueprint ARNs:

arn:aws:glue:<region>:<account-id>:blueprint/<blueprint-name>

Important

In the following policy, replace <account-id> with a valid AWS account and replace
<role-name> with the name of the role used to run a blueprint. See the section called
“Permissions for blueprint roles” for the permissions that this role requires.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:ListBlueprints",
 "glue:GetBlueprint",
 "glue:StartBlueprintRun",
 "glue:GetBlueprintRun",
 "glue:GetBlueprintRuns",
 "glue:GetCrawler",
 "glue:ListTriggers",
 "glue:ListJobs",
 "glue:BatchGetCrawlers",
 "glue:GetTrigger",
 "glue:BatchGetWorkflows",
 "glue:BatchGetTriggers",
 "glue:BatchGetJobs",
 "glue:BatchGetBlueprints",
 "glue:GetWorkflowRun",
 "glue:GetWorkflowRuns",
 "glue:ListCrawlers",

Permissions for blueprint personas and roles 1232

AWS Glue User Guide

 "glue:ListWorkflows",
 "glue:GetJob",
 "glue:GetWorkflow",
 "glue:StartWorkflowRun"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::<account-id>:role/<role-name>"
 }
]
}

Permissions for blueprint roles

The following are the suggested permissions for the IAM role used to create a workflow from a
blueprint. The role has to have a trust relationship with glue.amazonaws.com.

Important

In the following policy, replace <account-id> with a valid AWS account, and replace
<role-name> with the name of the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateJob",
 "glue:GetCrawler",
 "glue:GetTrigger",
 "glue:DeleteCrawler",
 "glue:CreateTrigger",
 "glue:DeleteTrigger",
 "glue:DeleteJob",
 "glue:CreateWorkflow",
 "glue:DeleteWorkflow",
 "glue:GetJob",

Permissions for blueprint personas and roles 1233

AWS Glue User Guide

 "glue:GetWorkflow",
 "glue:CreateCrawler"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::<account-id>:role/<role-name>"
 }
]
}

Note

If the jobs and crawlers in the workflow assume a role other than this role, this policy must
include the iam:PassRole permission on that other role instead of on the blueprint role.

Developing blueprints in AWS Glue

Your organization might have a set of similar ETL use cases that could benefit from being able to
parametrize a single workflow to handle them all. To address this need, AWS Glue enables you to
define blueprints, which you can use to generate workflows. A blueprint accepts parameters, so
that from a single blueprint, a data analyst can create different workflows to handle similar ETL use
cases. After you create a blueprint, you can reuse it for different departments, teams, and projects.

Topics

• Overview of blueprints in AWS Glue

• Developing blueprints in AWS Glue

• Registering a blueprint in AWS Glue

• Viewing blueprints in AWS Glue

• Updating a blueprint in AWS Glue

• Creating a workflow from a blueprint in AWS Glue

• Viewing blueprint runs in AWS Glue

Developing blueprints 1234

AWS Glue User Guide

Overview of blueprints in AWS Glue

Note

The blueprints feature is currently unavailable in the following Regions in the AWS Glue
console: Asia Pacific (Jakarta) and Middle East (UAE).

AWS Glue blueprints provide a way to create and share AWS Glue workflows. When there is a
complex ETL process that could be used for similar use cases, rather than creating an AWS Glue
workflow for each use case, you can create a single blueprint.

The blueprint specifies the jobs and crawlers to include in a workflow, and specifies parameters
that the workflow user supplies when they run the blueprint to create a workflow. The use of
parameters enables a single blueprint to generate workflows for the various similar use cases. For
more information about workflows, see Overview of workflows in AWS Glue.

The following are example use cases for blueprints:

• You want to partition an existing dataset. The input parameters to the blueprint are Amazon
Simple Storage Service (Amazon S3) source and target paths and a list of partition columns.

• You want to snapshot an Amazon DynamoDB table into a SQL data store like Amazon Redshift.
The input parameters to the blueprint are the DynamoDB table name and an AWS Glue
connection, which designates an Amazon Redshift cluster and destination database.

• You want to convert CSV data in multiple Amazon S3 paths to Parquet. You want the AWS Glue
workflow to include a separate crawler and job for each path. The input parameters are the
destination database in the AWS Glue Data Catalog and a comma-delimited list of Amazon
S3 paths. Note that in this case, the number of crawlers and jobs that the workflow creates is
variable.

Blueprint components

A blueprint is a ZIP archive that contains the following components:

• A Python layout generator script

Contains a function that specifies the workflow layout—the crawlers and jobs to create for the
workflow, the job and crawler properties, and the dependencies between the jobs and crawlers.

Overview of blueprints 1235

AWS Glue User Guide

The function accepts blueprint parameters and returns a workflow structure (JSON object)
that AWS Glue uses to generate the workflow. Because you use a Python script to generate the
workflow, you can add your own logic that is suitable for your use cases.

• A configuration file

Specifies the fully qualified name of the Python function that generates the workflow layout.
Also specifies the names, data types, and other properties of all blueprint parameters used by
the script.

• (Optional) ETL scripts and supporting files

As an advanced use case, you can parameterize the location of the ETL scripts that your jobs
use. You can include job script files in the ZIP archive and specify a blueprint parameter for an
Amazon S3 location where the scripts are to be copied to. The layout generator script can copy
the ETL scripts to the designated location and specify that location as the job script location
property. You can also include any libraries or other supporting files, provided that your script
handles them.

Blueprint runs

When you create a workflow from a blueprint, AWS Glue runs the blueprint, which starts an
asynchronous process to create the workflow and the jobs, crawlers, and triggers that the workflow
encapsulates. AWS Glue uses the blueprint run to orchestrate the creation of the workflow and its
components. You view the status of the creation process by viewing the blueprint run status. The
blueprint run also stores the values that you supplied for the blueprint parameters.

Overview of blueprints 1236

AWS Glue User Guide

You can view blueprint runs using the AWS Glue console or AWS Command Line Interface (AWS
CLI). When viewing or troubleshooting a workflow, you can always return to the blueprint run to
view the blueprint parameter values that were used to create the workflow.

Lifecycle of a blueprint

blueprints are developed, tested, registered with AWS Glue, and run to create workflows. There are
typically three personas involved in the blueprint lifecycle.

Persona Tasks

AWS Glue developer • Writes the workflow layout script and creates the
configuration file.

• Tests the blueprint locally using libraries provided by
the AWS Glue service.

• Creates a ZIP archive of the script, configuration file,
and supporting files and publishes the archive to a
location in Amazon S3.

• Adds a bucket policy to the Amazon S3 bucket that
grants read permissions on bucket objects to the AWS
Glue administrator's AWS account.

• Grants IAM read permissions on the ZIP archive in
Amazon S3 to the AWS Glue administrator.

AWS Glue administrator • Registers the blueprint with AWS Glue. AWS Glue
makes a copy of the ZIP archive into a reserved
Amazon S3 location.

Overview of blueprints 1237

AWS Glue User Guide

Persona Tasks

• Grants IAM permissions on the blueprint to data
analysts.

Data analyst • Runs the blueprint to create a workflow, and provides
blueprint parameter values. Checks the blueprint
run status to ensure that the workflow and workflow
components were successfully generated.

• Runs and troubleshoots the workflow. Before running
the workflow, can verify the workflow by viewing the
workflow design graph on the AWS Glue console.

See also

• Developing blueprints in AWS Glue

• Creating a workflow from a blueprint in AWS Glue

• Permissions for personas and roles for AWS Glue blueprints

Developing blueprints in AWS Glue

As an AWS Glue developer, you can create and publish blueprints that data analysts can use to
generate workflows.

Topics

• Overview of developing blueprints

• Prerequisites for developing blueprints

• Writing the blueprint code

• Sample blueprint project

• Testing a blueprint

• Publishing a blueprint

• AWS Glue blueprint classes reference

• Blueprint samples

Developing blueprints 1238

AWS Glue User Guide

See also

• Overview of blueprints in AWS Glue

Overview of developing blueprints

The first step in your development process is to identify a common use case that would benefit
from a blueprint. A typical use case involves a recurring ETL problem that you believe should be
solved in a general manner. Next, design a blueprint that implements the generalized use case,
and define the blueprint input parameters that together can define a specific use case from the
generalized use case.

A blueprint consists of a project that contains a blueprint parameter configuration file and a script
that defines the layout of the workflow to generate. The layout defines the jobs and crawlers (or
entities in blueprint script terminology) to create.

You do not directly specify any triggers in the layout script. Instead you write code to specify the
dependencies between the jobs and crawlers that the script creates. AWS Glue generates the
triggers based on your dependency specifications. The output of the layout script is a workflow
object, which contains specifications for all workflow entities.

You build your workflow object using the following AWS Glue blueprint libraries:

• awsglue.blueprint.base_resource – A library of base resources used by the libraries.

• awsglue.blueprint.workflow – A library for defining a Workflow class.

• awsglue.blueprint.job – A library for defining a Job class.

• awsglue.blueprint.crawler – A library for defining a Crawler class.

The only other libraries that are supported for layout generation are those libraries that are
available for the Python shell.

Before publishing your blueprint, you can use methods defined in the blueprint libraries to test the
blueprint locally.

When you're ready to make the blueprint available to data analysts, you package the script, the
parameter configuration file, and any supporting files, such as additional scripts and libraries, into

Developing blueprints 1239

AWS Glue User Guide

a single deployable asset. You then upload the asset to Amazon S3 and ask an administrator to
register it with AWS Glue.

For information about more sample blueprint projects, see Sample blueprint project and Blueprint
samples.

Prerequisites for developing blueprints

To develop blueprints, you should be familiar with using AWS Glue and writing scripts for Apache
Spark ETL jobs or Python shell jobs. In addition, you must complete the following setup tasks.

• Download four AWS Python libraries to use in your blueprint layout scripts.

• Set up the AWS SDKs.

• Set up the AWS CLI.

Download the Python libraries

Download the following libraries from GitHub, and install them into your project:

• https://github.com/awslabs/aws-glue-blueprint-libs/tree/master/awsglue/blueprint/
base_resource.py

• https://github.com/awslabs/aws-glue-blueprint-libs/tree/master/awsglue/blueprint/
workflow.py

• https://github.com/awslabs/aws-glue-blueprint-libs/tree/master/awsglue/blueprint/crawler.py

• https://github.com/awslabs/aws-glue-blueprint-libs/tree/master/awsglue/blueprint/job.py

Set up the AWS Java SDK

For the AWS Java SDK, you must add a jar file that includes the API for blueprints.

1. If you haven't already done so, set up the AWS SDK for Java.

• For Java 1.x, follow the instructions in Set up the AWS SDK for Java in the AWS SDK for Java
Developer Guide.

• For Java 2.x, follow the instructions in Setting up the AWS SDK for Java 2.x in the AWS SDK
for Java 2.x Developer Guide.

2. Download the client jar file that has access to the APIs for blueprints.

Developing blueprints 1240

https://github.com/awslabs/aws-glue-blueprint-libs/tree/master/awsglue/blueprint/base_resource.py
https://github.com/awslabs/aws-glue-blueprint-libs/tree/master/awsglue/blueprint/base_resource.py
https://github.com/awslabs/aws-glue-blueprint-libs/tree/master/awsglue/blueprint/workflow.py
https://github.com/awslabs/aws-glue-blueprint-libs/tree/master/awsglue/blueprint/workflow.py
https://github.com/awslabs/aws-glue-blueprint-libs/tree/master/awsglue/blueprint/crawler.py
https://github.com/awslabs/aws-glue-blueprint-libs/tree/master/awsglue/blueprint/job.py
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-install.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html

AWS Glue User Guide

• For Java 1.x: s3://awsglue-custom-blueprints-preview-artifacts/awsglue-java-sdk-preview/
AWSGlueJavaClient-1.11.x.jar

• For Java 2.x: s3://awsglue-custom-blueprints-preview-artifacts/awsglue-java-sdk-v2-
preview/AwsJavaSdk-Glue-2.0.jar

3. Add the client jar to the front of the Java classpath to override the AWS Glue client provided
by the AWS Java SDK.

export CLASSPATH=<path-to-preview-client-jar>:$CLASSPATH

4. (Optional) Test the SDK with the following Java application. The application should output an
empty list.

Replace accessKey and secretKey with your credentials, and replace us-east-1 with your
Region.

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.AWSCredentialsProvider;
import com.amazonaws.auth.AWSStaticCredentialsProvider;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.glue.AWSGlue;
import com.amazonaws.services.glue.AWSGlueClientBuilder;
import com.amazonaws.services.glue.model.ListBlueprintsRequest;

public class App{
 public static void main(String[] args) {
 AWSCredentials credentials = new BasicAWSCredentials("accessKey",
 "secretKey");
 AWSCredentialsProvider provider = new
 AWSStaticCredentialsProvider(credentials);
 AWSGlue glue = AWSGlueClientBuilder.standard().withCredentials(provider)
 .withRegion("us-east-1").build();
 ListBlueprintsRequest request = new
 ListBlueprintsRequest().withMaxResults(2);
 System.out.println(glue.listBlueprints(request));
 }
}

Developing blueprints 1241

AWS Glue User Guide

Set up the AWS Python SDK

The following steps assume that you have Python version 2.7 or later, or version 3.6 or later
installed on your computer.

1. Download the following boto3 wheel file. If prompted to open or save, save the file. s3://
awsglue-custom-blueprints-preview-artifacts/aws-python-sdk-preview/boto3-1.17.31-
py2.py3-none-any.whl

2. Download the following botocore wheel file: s3://awsglue-custom-blueprints-preview-
artifacts/aws-python-sdk-preview/botocore-1.20.31-py2.py3-none-any.whl

3. Check your Python version.

python --version

4. Depending on your Python version, enter the following commands (for Linux):

• For Python 2.7 or later.

python3 -m pip install --user virtualenv
source env/bin/activate

• For Python 3.6 or later.

python3 -m venv python-sdk-test
source python-sdk-test/bin/activate

5. Install the botocore wheel file.

python3 -m pip install <download-directory>/botocore-1.20.31-py2.py3-none-any.whl

6. Install the boto3 wheel file.

python3 -m pip install <download-directory>/boto3-1.17.31-py2.py3-none-any.whl

7. Configure your credentials and default region in the ~/.aws/credentials and ~/.aws/
config files. For more information, see Configuring the AWS CLI in the AWS Command Line
Interface User Guide.

8. (Optional) Test your setup. The following commands should return an empty list.

Replace us-east-1 with your Region.

Developing blueprints 1242

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

AWS Glue User Guide

$ python
>>> import boto3
>>> glue = boto3.client('glue', 'us-east-1')
>>> glue.list_blueprints()

Set up the preview AWS CLI

1. If you haven't already done so, install and/or update the AWS Command Line Interface (AWS
CLI) on your computer. The easiest way to do this is with pip, the Python installer utility:

pip install awscli --upgrade --user

You can find complete installation instructions for the AWS CLI here: Installing the AWS
Command Line Interface.

2. Download the AWS CLI wheel file from: s3://awsglue-custom-blueprints-preview-artifacts/
awscli-preview-build/awscli-1.19.31-py2.py3-none-any.whl

3. Install the AWS CLI wheel file.

python3 -m pip install awscli-1.19.31-py2.py3-none-any.whl

4. Run the aws configure command. Configure your AWS credentials (including access key,
and secret key) and AWS Region. You can find information on configuring the AWS CLI here:
Configuring the AWS CLI.

5. Test the AWS CLI. The following command should return an empty list.

Replace us-east-1 with your Region.

aws glue list-blueprints --region us-east-1

Writing the blueprint code

Each blueprint project that you create must contain at a minimum the following files:

• A Python layout script that defines the workflow. The script contains a function that defines the
entities (jobs and crawlers) in a workflow, and the dependencies between them.

• A configuration file, blueprint.cfg, which defines:

Developing blueprints 1243

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

AWS Glue User Guide

• The full path of the workflow layout definition function.

• The parameters that the blueprint accepts.

Topics

• Creating the blueprint layout script

• Creating the configuration file

• Specifying blueprint parameters

Creating the blueprint layout script

The blueprint layout script must include a function that generates the entities in your workflow.
You can name this function whatever you like. AWS Glue uses the configuration file to determine
the fully qualified name of the function.

Your layout function does the following:

• (Optional) Instantiates the Job class to create Job objects, and passes arguments such as
Command and Role. These are job properties that you would specify if you were creating the job
using the AWS Glue console or API.

• (Optional) Instantiates the Crawler class to create Crawler objects, and passes name, role, and
target arguments.

• To indicate dependencies between the objects (workflow entities), passes the DependsOn and
WaitForDependencies additional arguments to Job() and Crawler(). These arguments are
explained later in this section.

• Instantiates the Workflow class to create the workflow object that is returned to AWS Glue,
passing a Name argument, an Entities argument, and an optional OnSchedule argument. The
Entities argument specifies all of the jobs and crawlers to include in the workflow. To see how
to construct an Entities object, see the sample project later in this section.

• Returns the Workflow object.

For definitions of the Job, Crawler, and Workflow classes, see AWS Glue blueprint classes
reference.

The layout function must accept the following input arguments.

Developing blueprints 1244

AWS Glue User Guide

Argument Description

user_params Python dictionary of blueprint parameter names and values. For more
information, see Specifying blueprint parameters.

system_params Python dictionary containing two properties: region and accountId
.

Here is a sample layout generator script in a file named Layout.py:

import argparse
import sys
import os
import json
from awsglue.blueprint.workflow import *
from awsglue.blueprint.job import *
from awsglue.blueprint.crawler import *

def generate_layout(user_params, system_params):

 etl_job = Job(Name="{}_etl_job".format(user_params['WorkflowName']),
 Command={
 "Name": "glueetl",
 "ScriptLocation": user_params['ScriptLocation'],
 "PythonVersion": "2"
 },
 Role=user_params['PassRole'])
 post_process_job = Job(Name="{}_post_process".format(user_params['WorkflowName']),
 Command={
 "Name": "pythonshell",
 "ScriptLocation": user_params['ScriptLocation'],
 "PythonVersion": "2"
 },
 Role=user_params['PassRole'],
 DependsOn={
 etl_job: "SUCCEEDED"
 },
 WaitForDependencies="AND")
 sample_workflow = Workflow(Name=user_params['WorkflowName'],
 Entities=Entities(Jobs=[etl_job, post_process_job]))

Developing blueprints 1245

AWS Glue User Guide

 return sample_workflow

The sample script imports the required blueprint libraries and includes a generate_layout
function that generates a workflow with two jobs. This is a very simple script. A more complex
script could employ additional logic and parameters to generate a workflow with many jobs and
crawlers, or even a variable number of jobs and crawlers.

Using the DependsOn argument

The DependsOn argument is a dictionary representation of a dependency that this entity has on
other entities within the workflow. It has the following form.

DependsOn = {dependency1 : state, dependency2 : state, ...}

The keys in this dictionary represent the object reference, not the name, of the entity, while the
values are strings that correspond to the state to watch for. AWS Glue infers the proper triggers.
For the valid states, see Condition Structure.

For example, a job might depend on the successful completion of a crawler. If you define a crawler
object named crawler2 as follows:

crawler2 = Crawler(Name="my_crawler", ...)

Then an object depending on crawler2 would include a constructor argument such as:

DependsOn = {crawler2 : "SUCCEEDED"}

For example:

job1 = Job(Name="Job1", ..., DependsOn = {crawler2 : "SUCCEEDED", ...})

If DependsOn is omitted for an entity, that entity depends on the workflow start trigger.

Using the WaitForDependencies argument

The WaitForDependencies argument defines whether a job or crawler entity should wait until
all entities on which it depends complete or until any completes.

Developing blueprints 1246

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-trigger.html#aws-glue-api-jobs-trigger-Condition

AWS Glue User Guide

The allowable values are "AND" or "ANY".

Using the OnSchedule argument

The OnSchedule argument for the Workflow class constructor is a cron expression that defines
the starting trigger definition for a workflow.

If this argument is specified, AWS Glue creates a schedule trigger with the corresponding schedule.
If it isn't specified, the starting trigger for the workflow is an on-demand trigger.

Creating the configuration file

The blueprint configuration file is a required file that defines the script entry point for
generating the workflow, and the parameters that the blueprint accepts. The file must be named
blueprint.cfg.

Here is a sample configuration file.

{
 "layoutGenerator": "DemoBlueprintProject.Layout.generate_layout",
 "parameterSpec" : {
 "WorkflowName" : {
 "type": "String",
 "collection": false
 },
 "WorkerType" : {
 "type": "String",
 "collection": false,
 "allowedValues": ["G1.X", "G2.X"],
 "defaultValue": "G1.X"
 },
 "Dpu" : {
 "type" : "Integer",
 "allowedValues" : [2, 4, 6],
 "defaultValue" : 2
 },
 "DynamoDBTableName": {
 "type": "String",
 "collection" : false
 },
 "ScriptLocation" : {
 "type": "String",
 "collection": false

Developing blueprints 1247

AWS Glue User Guide

 }
 }
}

The layoutGenerator property specifies the fully qualified name of the function in the script
that generates the layout.

The parameterSpec property specifies the parameters that this blueprint accepts. For more
information, see Specifying blueprint parameters.

Important

Your configuration file must include the workflow name as a blueprint parameter, or you
must generate a unique workflow name in your layout script.

Specifying blueprint parameters

The configuration file contains blueprint parameter specifications in a parameterSpec JSON
object. parameterSpec contains one or more parameter objects.

"parameterSpec": {
 "<parameter_name>": {
 "type": "<parameter-type>",
 "collection": true|false,
 "description": "<parameter-description>",
 "defaultValue": "<default value for the parameter if value not specified>"
 "allowedValues": "<list of allowed values>"
 },
 "<parameter_name>": {
 ...
 }
 }

The following are the rules for coding each parameter object:

• The parameter name and type are mandatory. All other properties are optional.

• If you specify the defaultValue property, the parameter is optional. Otherwise the parameter
is mandatory and the data analyst who is creating a workflow from the blueprint must provide a
value for it.

Developing blueprints 1248

AWS Glue User Guide

• If you set the collection property to true, the parameter can take a collection of values.
Collections can be of any data type.

• If you specify allowedValues, the AWS Glue console displays a dropdown list of values for the
data analyst to choose from when creating a workflow from the blueprint.

The following are the permitted values for type:

Parameter data type Notes

String -

Integer -

Double -

Boolean Possible values are true and false. Generates a check box on the
Create a workflow from <blueprint> page on the AWS Glue console.

S3Uri Complete Amazon S3 path, beginning with s3://. Generates a text
field and Browse button on the Create a workflow from <blueprint>
page.

S3Bucket Amazon S3 bucket name only. Generates a bucket picker on the Create
a workflow from <blueprint> page.

IAMRoleArn Amazon Resource Name (ARN) of an AWS Identity and Access
Management (IAM) role. Generates a role picker on the Create a
workflow from <blueprint> page.

IAMRoleName Name of an IAM role. Generates a role picker on the Create a workflow
from <blueprint> page.

Sample blueprint project

Data format conversion is a frequent extract, transform, and load (ETL) use case. In typical analytic
workloads, column-based file formats like Parquet or ORC are preferred over text formats like CSV
or JSON. This sample blueprint enables you to convert data from CSV/JSON/etc. into Parquet for
files on Amazon S3.

Developing blueprints 1249

AWS Glue User Guide

This blueprint takes a list of S3 paths defined by a blueprint parameter, converts the data to
Parquet format, and writes it to the S3 location specified by another blueprint parameter. The
layout script creates a crawler and job for each path. The layout script also uploads the ETL script in
Conversion.py to an S3 bucket specified by another blueprint parameter. The layout script then
specifies the uploaded script as the ETL script for each job. The ZIP archive for the project contains
the layout script, the ETL script, and the blueprint configuration file.

For information about more sample blueprint projects, see Blueprint samples.

The following is the layout script, in the file Layout.py.

from awsglue.blueprint.workflow import *
from awsglue.blueprint.job import *
from awsglue.blueprint.crawler import *
import boto3

s3_client = boto3.client('s3')

Ingesting all the S3 paths as Glue table in parquet format
def generate_layout(user_params, system_params):
 #Always give the full path for the file
 with open("ConversionBlueprint/Conversion.py", "rb") as f:
 s3_client.upload_fileobj(f, user_params['ScriptsBucket'], "Conversion.py")
 etlScriptLocation = "s3://{}/Conversion.py".format(user_params['ScriptsBucket'])

 crawlers = []
 jobs = []
 workflowName = user_params['WorkflowName']
 for path in user_params['S3Paths']:
 tablePrefix = "source_"
 crawler = Crawler(Name="{}_crawler".format(workflowName),
 Role=user_params['PassRole'],
 DatabaseName=user_params['TargetDatabase'],
 TablePrefix=tablePrefix,
 Targets= {"S3Targets": [{"Path": path}]})
 crawlers.append(crawler)
 transform_job = Job(Name="{}_transform_job".format(workflowName),
 Command={"Name": "glueetl",
 "ScriptLocation": etlScriptLocation,
 "PythonVersion": "3"},
 Role=user_params['PassRole'],
 DefaultArguments={"--database_name":
 user_params['TargetDatabase'],

Developing blueprints 1250

AWS Glue User Guide

 "--table_prefix": tablePrefix,
 "--region_name": system_params['region'],
 "--output_path":
 user_params['TargetS3Location']},
 DependsOn={crawler: "SUCCEEDED"},
 WaitForDependencies="AND")
 jobs.append(transform_job)
 conversion_workflow = Workflow(Name=workflowName, Entities=Entities(Jobs=jobs,
 Crawlers=crawlers))
 return conversion_workflow

The following is the corresponding blueprint configuration file blueprint.cfg.

{
 "layoutGenerator": "ConversionBlueprint.Layout.generate_layout",
 "parameterSpec" : {
 "WorkflowName" : {
 "type": "String",
 "collection": false,
 "description": "Name for the workflow."
 },
 "S3Paths" : {
 "type": "S3Uri",
 "collection": true,
 "description": "List of Amazon S3 paths for data ingestion."
 },
 "PassRole" : {
 "type": "IAMRoleName",
 "collection": false,
 "description": "Choose an IAM role to be used in running the job/crawler"
 },
 "TargetDatabase": {
 "type": "String",
 "collection" : false,
 "description": "Choose a database in the Data Catalog."
 },
 "TargetS3Location": {
 "type": "S3Uri",
 "collection" : false,
 "description": "Choose an Amazon S3 output path: ex:s3://<target_path>/."
 },
 "ScriptsBucket": {
 "type": "S3Bucket",

Developing blueprints 1251

AWS Glue User Guide

 "collection": false,
 "description": "Provide an S3 bucket name(in the same AWS Region) to store
 the scripts."
 }
 }
}

The following script in the file Conversion.py is the uploaded ETL script. Note that it preserves
the partitioning scheme during conversion.

import sys
from pyspark.sql.functions import *
from pyspark.context import SparkContext
from awsglue.transforms import *
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.utils import getResolvedOptions
import boto3

args = getResolvedOptions(sys.argv, [
 'JOB_NAME',
 'region_name',
 'database_name',
 'table_prefix',
 'output_path'])
databaseName = args['database_name']
tablePrefix = args['table_prefix']
outputPath = args['output_path']

glue = boto3.client('glue', region_name=args['region_name'])

glue_context = GlueContext(SparkContext.getOrCreate())
spark = glue_context.spark_session
job = Job(glue_context)
job.init(args['JOB_NAME'], args)

def get_tables(database_name, table_prefix):
 tables = []
 paginator = glue.get_paginator('get_tables')
 for page in paginator.paginate(DatabaseName=database_name, Expression=table_prefix
+"*"):
 tables.extend(page['TableList'])
 return tables

Developing blueprints 1252

AWS Glue User Guide

for table in get_tables(databaseName, tablePrefix):
 tableName = table['Name']
 partitionList = table['PartitionKeys']
 partitionKeys = []
 for partition in partitionList:
 partitionKeys.append(partition['Name'])

 # Create DynamicFrame from Catalog
 dyf = glue_context.create_dynamic_frame.from_catalog(
 name_space=databaseName,
 table_name=tableName,
 additional_options={
 'useS3ListImplementation': True
 },
 transformation_ctx='dyf'
)

 # Resolve choice type with make_struct
 dyf = ResolveChoice.apply(
 frame=dyf,
 choice='make_struct',
 transformation_ctx='resolvechoice_' + tableName
)

 # Drop null fields
 dyf = DropNullFields.apply(
 frame=dyf,
 transformation_ctx="dropnullfields_" + tableName
)

 # Write DynamicFrame to S3 in glueparquet
 sink = glue_context.getSink(
 connection_type="s3",
 path=outputPath,
 enableUpdateCatalog=True,
 partitionKeys=partitionKeys
)
 sink.setFormat("glueparquet")

 sink.setCatalogInfo(
 catalogDatabase=databaseName,
 catalogTableName=tableName[len(tablePrefix):]
)

Developing blueprints 1253

AWS Glue User Guide

 sink.writeFrame(dyf)

job.commit()

Note

Only two Amazon S3 paths can be supplied as an input to the sample blueprint. This is
because AWS Glue triggers are limited to invoking only two crawler actions.

Testing a blueprint

While you develop your code, you should perform local testing to verify that the workflow layout is
correct.

Local testing doesn't generate AWS Glue jobs, crawlers, or triggers. Instead, you run the layout
script locally and use the to_json() and validate() methods to print objects and find errors.
These methods are available in all three classes defined in the libraries.

There are two ways to handle the user_params and system_params arguments that AWS Glue
passes to your layout function. Your test-bench code can create a dictionary of sample blueprint
parameter values and pass that to the layout function as the user_params argument. Or, you can
remove the references to user_params and replace them with hardcoded strings.

If your code makes use of the region and accountId properties in the system_params
argument, you can pass in your own dictionary for system_params.

To test a blueprint

1. Start a Python interpreter in a directory with the libraries, or load the blueprint files and the
supplied libraries into your preferred integrated development environment (IDE).

2. Ensure that your code imports the supplied libraries.

3. Add code to your layout function to call validate() or to_json() on any entity or on the
Workflow object. For example, if your code creates a Crawler object named mycrawler, you
can call validate() as follows.

mycrawler.validate()

You can print mycrawler as follows:

Developing blueprints 1254

AWS Glue User Guide

print(mycrawler.to_json())

If you call to_json on an object, there is no need to also call validate(), because
to_json() calls validate().

It is most useful to call these methods on the workflow object. Assuming that your script
names the workflow object my_workflow, validate and print the workflow object as follows.

print(my_workflow.to_json())

For more information about to_json() and validate(), see Class methods.

You can also import pprint and pretty-print the workflow object, as shown in the example
later in this section.

4. Run the code, fix errors, and finally remove any calls to validate() or to_json().

Example

The following example shows how to construct a dictionary of sample blueprint parameters and
pass it in as the user_params argument to layout function generate_compaction_workflow.
It also shows how to pretty-print the generated workflow object.

from pprint import pprint
from awsglue.blueprint.workflow import *
from awsglue.blueprint.job import *
from awsglue.blueprint.crawler import *

USER_PARAMS = {"WorkflowName": "compaction_workflow",
 "ScriptLocation": "s3://awsexamplebucket1/scripts/threaded-
compaction.py",
 "PassRole": "arn:aws:iam::111122223333:role/GlueRole-ETL",
 "DatabaseName": "cloudtrial",
 "TableName": "ct_cloudtrail",
 "CoalesceFactor": 4,
 "MaxThreadWorkers": 200}

def generate_compaction_workflow(user_params: dict, system_params: dict) -> Workflow:
 compaction_job = Job(Name=f"{user_params['WorkflowName']}_etl_job",

Developing blueprints 1255

AWS Glue User Guide

 Command={"Name": "glueetl",
 "ScriptLocation": user_params['ScriptLocation'],
 "PythonVersion": "3"},
 Role="arn:aws:iam::111122223333:role/
AWSGlueServiceRoleDefault",
 DefaultArguments={"DatabaseName": user_params['DatabaseName'],
 "TableName": user_params['TableName'],
 "CoalesceFactor":
 user_params['CoalesceFactor'],
 "max_thread_workers":
 user_params['MaxThreadWorkers']})

 catalog_target = {"CatalogTargets": [{"DatabaseName": user_params['DatabaseName'],
 "Tables": [user_params['TableName']]}]}

 compacted_files_crawler = Crawler(Name=f"{user_params['WorkflowName']}_post_crawl",
 Targets = catalog_target,
 Role=user_params['PassRole'],
 DependsOn={compaction_job: "SUCCEEDED"},
 WaitForDependencies="AND",
 SchemaChangePolicy={"DeleteBehavior": "LOG"})

 compaction_workflow = Workflow(Name=user_params['WorkflowName'],
 Entities=Entities(Jobs=[compaction_job],

 Crawlers=[compacted_files_crawler]))
 return compaction_workflow

generated = generate_compaction_workflow(user_params=USER_PARAMS, system_params={})
gen_dict = generated.to_json()

pprint(gen_dict)

Publishing a blueprint

After you develop a blueprint, you must upload it to Amazon S3. You must have write permissions
on the Amazon S3 bucket that you use to publish the blueprint. You must also make sure that the
AWS Glue administrator, who will register the blueprint, has read access to the Amazon S3 bucket.
For the suggested AWS Identity and Access Management (IAM) permissions policies for personas
and roles for AWS Glue blueprints, see Permissions for personas and roles for AWS Glue blueprints.

Developing blueprints 1256

AWS Glue User Guide

To publish a blueprint

1. Create the necessary scripts, resources, and blueprint configuration file.

2. Add all files to a ZIP archive and upload the ZIP file to Amazon S3. Use an S3 bucket that is in
the same Region as the Region in which users will register and run the blueprint.

You can create a ZIP file from the command line using the following command.

zip -r folder.zip folder

3. Add a bucket policy that grants read permissions to the AWS desired account. The following is
a sample policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::my-blueprints/*"
 }
]
}

4. Grant the IAM s3:GetObject permission on the Amazon S3 bucket to the AWS Glue
administrator or to whoever will be registering blueprints. For a sample policy to grant to
administrators, see AWS Glue administrator permissions for blueprints.

After you have completed local testing of your blueprint, you may also want to test a blueprint
on AWS Glue. To test a blueprint on AWS Glue, it must be registered. You can limit who sees the
registered blueprint using IAM authorization, or by using separate testing accounts.

See also:

• Registering a blueprint in AWS Glue

Developing blueprints 1257

AWS Glue User Guide

AWS Glue blueprint classes reference

The libraries for AWS Glue blueprints define three classes that you use in your workflow layout
script: Job, Crawler, and Workflow.

Topics

• Job class

• Crawler class

• Workflow class

• Class methods

Job class

The Job class represents an AWS Glue ETL job.

Mandatory constructor arguments

The following are mandatory constructor arguments for the Job class.

Argument name Type Description

Name str Name to assign to the job. AWS Glue adds
a randomly generated suffix to the name to
distinguish the job from those created by other
blueprint runs.

Role str Amazon Resource Name (ARN) of the role that
the job should assume while executing.

Command dict Job command, as specified in the JobCommand
structure in the API documentation.

Optional constructor arguments

The following are optional constructor arguments for the Job class.

Developing blueprints 1258

AWS Glue User Guide

Argument name Type Description

DependsOn dict List of workflow entities that the job depends
on. For more information, see Using the
DependsOn argument.

WaitForDependencie
s

str Indicates whether the job should wait until all
entities on which it depends complete before
executing or until any completes. For more
information, see Using the WaitForDependencie
s argument. Omit if the job depends on only
one entity.

(Job properties) - Any of the job properties listed in Job structure
 in the AWS Glue API documentation (except
CreatedOn and LastModifiedOn).

Crawler class

The Crawler class represents an AWS Glue crawler.

Mandatory constructor arguments

The following are mandatory constructor arguments for the Crawler class.

Argument name Type Description

Name str Name to assign to the crawler. AWS Glue adds
a randomly generated suffix to the name to
distinguish the crawler from those created by
other blueprint runs.

Role str ARN of the role that the crawler should assume
while running.

Targets dict Collection of targets to crawl. Targets class
constructor arguments are defined in the
CrawlerTargets structure in the API documenta

Developing blueprints 1259

AWS Glue User Guide

Argument name Type Description

tion. All Targets constructor arguments are
optional, but you must pass at least one.

Optional constructor arguments

The following are optional constructor arguments for the Crawler class.

Argument name Type Description

DependsOn dict List of workflow entities that the crawler
depends on. For more information, see Using
the DependsOn argument.

WaitForDependencie
s

str Indicates whether the crawler should wait
until all entities on which it depends complete
before running or until any completes. For
more information, see Using the WaitForDe
pendencies argument. Omit if the crawler
depends on only one entity.

(Crawler properties) - Any of the crawler properties listed in Crawler
structure in the AWS Glue API documentation,
with the following exceptions:

• State

• CrawlElapsedTime

• CreationTime

• LastUpdated

• LastCrawl

• Version

Developing blueprints 1260

AWS Glue User Guide

Workflow class

The Workflow class represents an AWS Glue workflow. The workflow layout script returns a
Workflow object. AWS Glue creates a workflow based on this object.

Mandatory constructor arguments

The following are mandatory constructor arguments for the Workflow class.

Argument name Type Description

Name str Name to assign to the workflow.

Entities Entities A collection of entities (jobs and crawlers)
to include in the workflow. The Entities
class constructor accepts a Jobs argument,
 which is a list of Job objects, and a Crawlers
argument, which is a list of Crawler objects.

Optional constructor arguments

The following are optional constructor arguments for the Workflow class.

Argument name Type Description

Description str See Workflow structure.

DefaultRunProperti
es

dict See Workflow structure.

OnSchedule str A cron expression.

Class methods

All three classes include the following methods.

Developing blueprints 1261

AWS Glue User Guide

validate()

Validates the properties of the object and if errors are found, outputs a message and exits.
Generates no output if there are no errors. For the Workflow class, calls itself on every entity in
the workflow.

to_json()

Serializes the object to JSON. Also calls validate(). For the Workflow class, the JSON
object includes job and crawler lists, and a list of triggers generated by the job and crawler
dependency specifications.

Blueprint samples

There are a number of sample blueprint projects available on the AWS Glue blueprint Github
repository. These samples are for reference only and are not intended for production use.

The titles of the sample projects are:

• Compaction: this blueprint creates a job that compacts input files into larger chunks based on
desired file size.

• Conversion: this blueprint converts input files in various standard file formats into Apache
Parquet format, which is optimized for analytic workloads.

• Crawling Amazon S3 locations: this blueprint crawls multiple Amazon S3 locations to add
metadata tables to the Data Catalog.

• Custom connection to Data Catalog: this blueprint accesses data stores using AWS Glue custom
connectors, reads the records, and populates the table definitions in the AWS Glue Data Catalog
based on the record schema.

• Encoding: this blueprint converts your non-UTF files into UTF encoded files.

• Partitioning: this blueprint creates a partitioning job that places output files into partitions based
on specific partition keys.

• Importing Amazon S3 data into a DynamoDB table: this blueprint imports data from Amazon S3
into a DynamoDB table.

• Standard table to governed: this blueprint imports an AWS Glue Data Catalog table into a Lake
Formation table.

Developing blueprints 1262

https://github.com/awslabs/aws-glue-blueprint-libs/tree/master/samples
https://github.com/awslabs/aws-glue-blueprint-libs/tree/master/samples

AWS Glue User Guide

Registering a blueprint in AWS Glue

After the AWS Glue developer has coded the blueprint and uploaded a ZIP archive to Amazon
Simple Storage Service (Amazon S3), an AWS Glue administrator must register the blueprint.
Registering the blueprint makes it available for use.

When you register a blueprint, AWS Glue copies the blueprint archive to a reserved Amazon S3
location. You can then delete the archive from the upload location.

To register a blueprint, you need read permissions on the Amazon S3 location that contains the
uploaded archive. You also need the AWS Identity and Access Management (IAM) permission
glue:CreateBlueprint. For the suggested permissions for an AWS Glue administrator
who must register, view, and maintain blueprints, see AWS Glue administrator permissions for
blueprints.

You can register a blueprint by using the AWS Glue console, AWS Glue API, or AWS Command Line
Interface (AWS CLI).

To register a blueprint (console)

1. Ensure that you have read permissions (s3:GetObject) on the blueprint ZIP archive in
Amazon S3.

2. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

Sign in as a user that has permissions to register a blueprint. Switch to the same AWS Region
as the Amazon S3 bucket that contains the blueprint ZIP archive.

3. In the navigation pane, choose blueprints. Then on the blueprints page, choose Add
blueprint.

4. Enter a blueprint name and optional description.

5. For ZIP archive location (S3), enter the Amazon S3 path of the uploaded blueprint ZIP archive.
Include the archive file name in the path and begin the path with s3://.

6. (Optional) Add tag one or more tags.

7. Choose Add blueprint.

The blueprints page returns and shows that the blueprint status is CREATING. Choose the
refresh button until the status changes to ACTIVE or FAILED.

8. If the status is FAILED, select the blueprint, and on the Actions menu, choose View.

Registering a blueprint 1263

https://console.aws.amazon.com/glue/

AWS Glue User Guide

The detail page shows the reason for the failure. If the error message is "Unable to access
object at location..." or "Access denied on object at location...", review the following
requirements:

• The user that you are signed in as must have read permission on the blueprint ZIP archive in
Amazon S3.

• The Amazon S3 bucket that contains the ZIP archive must have a bucket policy that grants
read permission on the object to your AWS account ID. For more information, see Developing
blueprints in AWS Glue.

• The Amazon S3 bucket that you're using must be in the same Region as the Region that
you're signed into on the console.

9. Ensure that data analysts have permissions on the blueprint.

The suggested IAM policy for data analysts is shown in Data analyst permissions for blueprints.
This policy grants glue:GetBlueprint on any resource. If your policy is more fine-grained at
the resource level, then grant data analysts permissions on this newly created resource.

To register a blueprint (AWS CLI)

1. Enter the following command.

aws glue create-blueprint --name <blueprint-name> [--description <description>] --
blueprint-location s3://<s3-path>/<archive-filename>

2. Enter the following command to check the blueprint status. Repeat the command until the
status goes to ACTIVE or FAILED.

aws glue get-blueprint --name <blueprint-name>

If the status is FAILED and the error message is "Unable to access object at location..." or
"Access denied on object at location...", review the following requirements:

• The user that you are signed in as must have read permission on the blueprint ZIP archive in
Amazon S3.

• The Amazon S3 bucket containing the ZIP archive must have a bucket policy that grants read
permission on the object to your AWS account ID. For more information, see Publishing a
blueprint.

Registering a blueprint 1264

AWS Glue User Guide

• The Amazon S3 bucket that you're using must be in the same Region as the Region that
you're signed into on the console.

See also:

• Overview of blueprints in AWS Glue

Viewing blueprints in AWS Glue

View a blueprint to review the blueprint description, status, and parameter specifications, and to
download the blueprint ZIP archive.

You can view a blueprint by using the AWS Glue console, AWS Glue API, or AWS Command Line
Interface (AWS CLI).

To view a blueprint (console)

1. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

2. In the navigation pane, choose blueprints.

3. On the blueprints page, select a blueprint. Then on the Actions menu, choose View.

To view a blueprint (AWS CLI)

• Enter the following command to view just the blueprint name, description, and status. Replace
<blueprint-name> with the name of the blueprint to view.

aws glue get-blueprint --name <blueprint-name>

The command output looks something like the following.

{
 "Blueprint": {
 "Name": "myDemoBP",
 "CreatedOn": 1587414516.92,
 "LastModifiedOn": 1587428838.671,
 "BlueprintLocation": "s3://awsexamplebucket1/demo/
DemoBlueprintProject.zip",

Viewing blueprints 1265

https://console.aws.amazon.com/glue/

AWS Glue User Guide

 "Status": "ACTIVE"
 }
}

Enter the following command to also view the parameter specifications.

aws glue get-blueprint --name <blueprint-name> --include-parameter-spec

The command output looks something like the following.

{
 "Blueprint": {
 "Name": "myDemoBP",
 "CreatedOn": 1587414516.92,
 "LastModifiedOn": 1587428838.671,
 "ParameterSpec": "{\"WorkflowName\":{\"type\":\"String\",\"collection
\":false,\"description\":null,\"defaultValue\":null,\"allowedValues\":null},
\"PassRole\":{\"type\":\"String\",\"collection\":false,\"description\":null,
\"defaultValue\":null,\"allowedValues\":null},\"DynamoDBTableName\":{\"type
\":\"String\",\"collection\":false,\"description\":null,\"defaultValue\":null,
\"allowedValues\":null},\"ScriptLocation\":{\"type\":\"String\",\"collection
\":false,\"description\":null,\"defaultValue\":null,\"allowedValues\":null}}",
 "BlueprintLocation": "s3://awsexamplebucket1/demo/
DemoBlueprintProject.zip",
 "Status": "ACTIVE"
 }
}

Add the --include-blueprint argument to include a URL in the output that you can paste
into your browser to download the blueprint ZIP archive that AWS Glue stored.

See also:

• Overview of blueprints in AWS Glue

Viewing blueprints 1266

AWS Glue User Guide

Updating a blueprint in AWS Glue

You can update a blueprint if you have a revised layout script, a revised set of blueprint parameters,
or revised supporting files. Updating a blueprint creates a new version.

Updating a blueprint doesn't affect existing workflows created from the blueprint.

You can update a blueprint by using the AWS Glue console, AWS Glue API, or AWS Command Line
Interface (AWS CLI).

The following procedure assumes that the AWS Glue developer has created and uploaded an
updated blueprint ZIP archive to Amazon S3.

To update a blueprint (console)

1. Ensure that you have read permissions (s3:GetObject) on the blueprint ZIP archive in
Amazon S3.

2. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

Sign in as a user that has permissions to update a blueprint. Switch to the same AWS Region as
the Amazon S3 bucket that contains the blueprint ZIP archive.

3. In the navigation pane, choose blueprints.

4. On the blueprints page, select a blueprint, and on the Actions menu, choose Edit.

5. On the Edit a blueprint page, update the blueprint Description or ZIP archive location (S3).
Be sure to include the archive file name in the path.

6. Choose Save.

The blueprints page returns and shows that the blueprint status is UPDATING. Choose the
refresh button until the status changes to ACTIVE or FAILED.

7. If the status is FAILED, select the blueprint, and on the Actions menu, choose View.

The detail page shows the reason for the failure. If the error message is "Unable to access
object at location..." or "Access denied on object at location...", review the following
requirements:

• The user that you are signed in as must have read permission on the blueprint ZIP archive in
Amazon S3.

Updating a blueprint 1267

https://console.aws.amazon.com/glue/

AWS Glue User Guide

• The Amazon S3 bucket that contains the ZIP archive must have a bucket policy that grants
read permission on the object to your AWS account ID. For more information, see Publishing
a blueprint.

• The Amazon S3 bucket that you're using must be in the same Region as the Region that
you're signed into on the console.

Note

If the update fails, the next blueprint run uses the latest version of the blueprint that
was successfully registered or updated.

To update a blueprint (AWS CLI)

1. Enter the following command.

aws glue update-blueprint --name <blueprint-name> [--description <description>] --
blueprint-location s3://<s3-path>/<archive-filename>

2. Enter the following command to check the blueprint status. Repeat the command until the
status goes to ACTIVE or FAILED.

aws glue get-blueprint --name <blueprint-name>

If the status is FAILED and the error message is "Unable to access object at location..." or
"Access denied on object at location...", review the following requirements:

• The user that you are signed in as must have read permission on the blueprint ZIP archive in
Amazon S3.

• The Amazon S3 bucket containing the ZIP archive must have a bucket policy that grants read
permission on the object to your AWS account ID. For more information, see Publishing a
blueprint.

• The Amazon S3 bucket that you're using must be in the same Region as the Region that
you're signed into on the console.

Updating a blueprint 1268

AWS Glue User Guide

See also

• Overview of blueprints in AWS Glue

Creating a workflow from a blueprint in AWS Glue

You can create an AWS Glue workflow manually, adding one component at a time, or you can
create a workflow from an AWS Glue blueprint. AWS Glue includes blueprints for common use
cases. Your AWS Glue developers can create additional blueprints.

Important

Limit the total number of jobs, crawlers, and triggers within a workflow to 100 or less. If
you include more than 100, you might get errors when trying to resume or stop workflow
runs.

When you use a blueprint, you can quickly generate a workflow for a specific use case based on
the generalized use case defined by the blueprint. You define the specific use case by providing
values for the blueprint parameters. For example, a blueprint that partitions a dataset could have
the Amazon S3 source and target paths as parameters.

AWS Glue creates a workflow from a blueprint by running the blueprint. The blueprint run saves
the parameter values that you supplied, and is used to track the progress and outcome of the
creation of the workflow and its components. When troubleshooting a workflow, you can view the
blueprint run to determine the blueprint parameter values that were used to create a workflow.

To create and view workflows, you require certain IAM permissions. For a suggested IAM policy, see
Data analyst permissions for blueprints.

You can create a workflow from a blueprint by using the AWS Glue console, AWS Glue API, or AWS
Command Line Interface (AWS CLI).

To create a workflow from a blueprint (console)

1. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

Sign in as a user that has permissions to create a workflow.

Creating a workflow from a blueprint 1269

https://console.aws.amazon.com/glue/

AWS Glue User Guide

2. In the navigation pane, choose blueprints.

3. Select a blueprint, and on the Actions menu, choose Create workflow.

4. On the Create a workflow from <blueprint-name> page, enter the following information:

Blueprint parameters

These vary depending on the blueprint design. For questions about the parameters, see the
developer. blueprints typically include a parameter for the workflow name.

IAM role

The role that AWS Glue assumes to create the workflow and its components. The role
must have permissions to create and delete workflows, jobs, crawlers, and triggers. For a
suggested policy for the role, see Permissions for blueprint roles.

5. Choose Submit.

The Blueprint Details page appears, showing a list of blueprint runs at the bottom.

6. In the blueprint runs list, check the topmost blueprint run for workflow creation status.

The initial status is RUNNING. Choose the refresh button until the status goes to SUCCEEDED or
FAILED.

7. Do one of the following:

• If the completion status is SUCCEEDED, you can go to the Workflows page, select the newly
created workflow, and run it. Before running the workflow, you can review the design graph.

• If the completion status is FAILED, select the blueprint run, and on the Actions menu,
choose View to see the error message.

For more information on workflows and blueprints, see the following topics.

• Overview of workflows in AWS Glue

• Updating a blueprint in AWS Glue

• Creating and building out a workflow manually in AWS Glue

Viewing blueprint runs in AWS Glue

View a blueprint run to see the following information:

Viewing blueprint runs 1270

AWS Glue User Guide

• Name of the workflow that was created.

• blueprint parameter values that were used to create the workflow.

• Status of the workflow creation operation.

You can view a blueprint run by using the AWS Glue console, AWS Glue API, or AWS Command Line
Interface (AWS CLI).

To view a blueprint run (console)

1. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

2. In the navigation pane, choose blueprints.

3. On the blueprints page, select a blueprint. Then on the Actions menu, choose View.

4. At the bottom of the Blueprint Details page, select a blueprint run, and on the Actions menu,
choose View.

To view a blueprint run (AWS CLI)

• Enter the following command. Replace <blueprint-name> with the name of the blueprint.
Replace <blueprint-run-id> with the blueprint run ID.

aws glue get-blueprint-run --blueprint-name <blueprint-name> --run-id <blueprint-
run-id>

See also:

• Overview of blueprints in AWS Glue

Viewing blueprint runs 1271

https://console.aws.amazon.com/glue/

AWS Glue User Guide

AWS CloudFormation for AWS Glue

AWS CloudFormation is a service that can create many AWS resources. AWS Glue provides API
operations to create objects in the AWS Glue Data Catalog. However, it might be more convenient
to define and create AWS Glue objects and other related AWS resource objects in an AWS
CloudFormation template file. Then you can automate the process of creating the objects.

AWS CloudFormation provides a simplified syntax—either JSON (JavaScript Object Notation) or
YAML (YAML Ain't Markup Language)—to express the creation of AWS resources. You can use AWS
CloudFormation templates to define Data Catalog objects such as databases, tables, partitions,
crawlers, classifiers, and connections. You can also define ETL objects such as jobs, triggers, and
development endpoints. You create a template that describes all the AWS resources you want, and
AWS CloudFormation takes care of provisioning and configuring those resources for you.

For more information, see What Is AWS CloudFormation? and Working with AWS CloudFormation
Templates in the AWS CloudFormation User Guide.

If you plan to use AWS CloudFormation templates that are compatible with AWS Glue, as an
administrator, you must grant access to AWS CloudFormation and to the AWS services and actions
on which it depends. To grant permissions to create AWS CloudFormation resources, attach the
following policy to users that work with AWS CloudFormation:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:*"
],
 "Resource": "*"
 }
]
}

The following table contains the actions that an AWS CloudFormation template can perform on
your behalf. It includes links to information about the AWS resource types and their property types
that you can add to an AWS CloudFormation template.

1272

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html

AWS Glue User Guide

AWS Glue resource AWS CloudFormation
template

AWS Glue samples

Classifier AWS::Glue::Classifier Grok classifier, JSON classifie
r, XML classifier

Connection AWS::Glue::Connection MySQL connection

Crawler AWS::Glue::Crawler Amazon S3 crawler, MySQL
crawler

Database AWS::Glue::Database Empty database, Database
with tables

Development endpoint AWS::Glue::DevEndpoint Development endpoint

Job AWS::Glue::Job Amazon S3 job, JDBC job

Machine learning transform AWS::Glue::MLTransform Machine learning transform

Data quality ruleset AWS::Glue::DataQualityRules
et

Data quality ruleset, Data
quality ruleset with EventBrid
ge scheduler

Partition AWS::Glue::Partition Partitions of a table

Table AWS::Glue::Table Table in a database

Trigger AWS::Glue::Trigger On-demand trigger,
Scheduled trigger, Condition
al trigger

To get started, use the following sample templates and customize them with your own metadata.
Then use the AWS CloudFormation console to create an AWS CloudFormation stack to add objects
to AWS Glue and any associated services. Many fields in an AWS Glue object are optional. These
templates illustrate the fields that are required or are necessary for a working and functional AWS
Glue object.

1273

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-glue-classifier.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-glue-connection.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-glue-crawler.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-glue-database.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-glue-devendpoint.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-glue-job.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-glue-mltransform.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-glue-dataqualityruleset.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-glue-dataqualityruleset.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-glue-partition.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-glue-table.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-glue-trigger.html

AWS Glue User Guide

An AWS CloudFormation template can be in either JSON or YAML format. In these examples, YAML
is used for easier readability. The examples contain comments (#) to describe the values that are
defined in the templates.

AWS CloudFormation templates can include a Parameters section. This section can be changed in
the sample text or when the YAML file is submitted to the AWS CloudFormation console to create
a stack. The Resources section of the template contains the definition of AWS Glue and related
objects. AWS CloudFormation template syntax definitions might contain properties that include
more detailed property syntax. Not all properties might be required to create an AWS Glue object.
These samples show example values for common properties to create an AWS Glue object.

Sample AWS CloudFormation template for an AWS Glue
database

An AWS Glue database in the Data Catalog contains metadata tables. The database consists of very
few properties and can be created in the Data Catalog with an AWS CloudFormation template.
The following sample template is provided to get you started and to illustrate the use of AWS
CloudFormation stacks with AWS Glue. The only resource created by the sample template is a
database named cfn-mysampledatabase. You can change it by editing the text of the sample or
changing the value on the AWS CloudFormation console when you submit the YAML.

The following shows example values for common properties to create an AWS Glue database.
For more information about the AWS CloudFormation database template for AWS Glue, see
AWS::Glue::Database.

AWSTemplateFormatVersion: '2010-09-09'
Sample CloudFormation template in YAML to demonstrate creating a database named
 mysampledatabase
The metadata created in the Data Catalog points to the flights public S3 bucket
#
Parameters section contains names that are substituted in the Resources section
These parameters are the names the resources created in the Data Catalog
Parameters:
 CFNDatabaseName:
 Type: String
 Default: cfn-mysampledatabse

Resources section defines metadata for the Data Catalog

Sample database 1274

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-glue-database.html

AWS Glue User Guide

Resources:
Create an AWS Glue database
 CFNDatabaseFlights:
 Type: AWS::Glue::Database
 Properties:
 # The database is created in the Data Catalog for your account
 CatalogId: !Ref AWS::AccountId
 DatabaseInput:
 # The name of the database is defined in the Parameters section above
 Name: !Ref CFNDatabaseName
 Description: Database to hold tables for flights data
 LocationUri: s3://crawler-public-us-east-1/flight/2016/csv/
 #Parameters: Leave AWS database parameters blank

Sample AWS CloudFormation template for an AWS Glue
database, table, and partition

An AWS Glue table contains the metadata that defines the structure and location of data that you
want to process with your ETL scripts. Within a table, you can define partitions to parallelize the
processing of your data. A partition is a chunk of data that you defined with a key. For example,
using month as a key, all the data for January is contained in the same partition. In AWS Glue,
databases can contain tables, and tables can contain partitions.

The following sample shows how to populate a database, a table, and partitions using an AWS
CloudFormation template. The base data format is csv and delimited by a comma (,). Because a
database must exist before it can contain a table, and a table must exist before partitions can be
created, the template uses the DependsOn statement to define the dependency of these objects
when they are created.

The values in this sample define a table that contains flight data from a publicly available Amazon
S3 bucket. For illustration, only a few columns of the data and one partitioning key are defined.
Four partitions are also defined in the Data Catalog. Some fields to describe the storage of the base
data are also shown in the StorageDescriptor fields.

AWSTemplateFormatVersion: '2010-09-09'
Sample CloudFormation template in YAML to demonstrate creating a database, a table,
 and partitions
The metadata created in the Data Catalog points to the flights public S3 bucket

Sample database, table, partitions 1275

AWS Glue User Guide

#
Parameters substituted in the Resources section
These parameters are names of the resources created in the Data Catalog
Parameters:
 CFNDatabaseName:
 Type: String
 Default: cfn-database-flights-1
 CFNTableName1:
 Type: String
 Default: cfn-manual-table-flights-1
Resources to create metadata in the Data Catalog
Resources:
###
Create an AWS Glue database
 CFNDatabaseFlights:
 Type: AWS::Glue::Database
 Properties:
 CatalogId: !Ref AWS::AccountId
 DatabaseInput:
 Name: !Ref CFNDatabaseName
 Description: Database to hold tables for flights data
###
Create an AWS Glue table
 CFNTableFlights:
 # Creating the table waits for the database to be created
 DependsOn: CFNDatabaseFlights
 Type: AWS::Glue::Table
 Properties:
 CatalogId: !Ref AWS::AccountId
 DatabaseName: !Ref CFNDatabaseName
 TableInput:
 Name: !Ref CFNTableName1
 Description: Define the first few columns of the flights table
 TableType: EXTERNAL_TABLE
 Parameters: {
 "classification": "csv"
 }
ViewExpandedText: String
 PartitionKeys:
 # Data is partitioned by month
 - Name: mon
 Type: bigint
 StorageDescriptor:
 OutputFormat: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Sample database, table, partitions 1276

AWS Glue User Guide

 Columns:
 - Name: year
 Type: bigint
 - Name: quarter
 Type: bigint
 - Name: month
 Type: bigint
 - Name: day_of_month
 Type: bigint
 InputFormat: org.apache.hadoop.mapred.TextInputFormat
 Location: s3://crawler-public-us-east-1/flight/2016/csv/
 SerdeInfo:
 Parameters:
 field.delim: ","
 SerializationLibrary: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Partition 1
Create an AWS Glue partition
 CFNPartitionMon1:
 DependsOn: CFNTableFlights
 Type: AWS::Glue::Partition
 Properties:
 CatalogId: !Ref AWS::AccountId
 DatabaseName: !Ref CFNDatabaseName
 TableName: !Ref CFNTableName1
 PartitionInput:
 Values:
 - 1
 StorageDescriptor:
 OutputFormat: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
 Columns:
 - Name: mon
 Type: bigint
 InputFormat: org.apache.hadoop.mapred.TextInputFormat
 Location: s3://crawler-public-us-east-1/flight/2016/csv/mon=1/
 SerdeInfo:
 Parameters:
 field.delim: ","
 SerializationLibrary: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Partition 2
Create an AWS Glue partition
 CFNPartitionMon2:
 DependsOn: CFNTableFlights
 Type: AWS::Glue::Partition
 Properties:

Sample database, table, partitions 1277

AWS Glue User Guide

 CatalogId: !Ref AWS::AccountId
 DatabaseName: !Ref CFNDatabaseName
 TableName: !Ref CFNTableName1
 PartitionInput:
 Values:
 - 2
 StorageDescriptor:
 OutputFormat: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
 Columns:
 - Name: mon
 Type: bigint
 InputFormat: org.apache.hadoop.mapred.TextInputFormat
 Location: s3://crawler-public-us-east-1/flight/2016/csv/mon=2/
 SerdeInfo:
 Parameters:
 field.delim: ","
 SerializationLibrary: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Partition 3
Create an AWS Glue partition
 CFNPartitionMon3:
 DependsOn: CFNTableFlights
 Type: AWS::Glue::Partition
 Properties:
 CatalogId: !Ref AWS::AccountId
 DatabaseName: !Ref CFNDatabaseName
 TableName: !Ref CFNTableName1
 PartitionInput:
 Values:
 - 3
 StorageDescriptor:
 OutputFormat: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
 Columns:
 - Name: mon
 Type: bigint
 InputFormat: org.apache.hadoop.mapred.TextInputFormat
 Location: s3://crawler-public-us-east-1/flight/2016/csv/mon=3/
 SerdeInfo:
 Parameters:
 field.delim: ","
 SerializationLibrary: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Partition 4
Create an AWS Glue partition
 CFNPartitionMon4:
 DependsOn: CFNTableFlights

Sample database, table, partitions 1278

AWS Glue User Guide

 Type: AWS::Glue::Partition
 Properties:
 CatalogId: !Ref AWS::AccountId
 DatabaseName: !Ref CFNDatabaseName
 TableName: !Ref CFNTableName1
 PartitionInput:
 Values:
 - 4
 StorageDescriptor:
 OutputFormat: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
 Columns:
 - Name: mon
 Type: bigint
 InputFormat: org.apache.hadoop.mapred.TextInputFormat
 Location: s3://crawler-public-us-east-1/flight/2016/csv/mon=4/
 SerdeInfo:
 Parameters:
 field.delim: ","
 SerializationLibrary: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

Sample AWS CloudFormation template for an AWS Glue grok
classifier

An AWS Glue classifier determines the schema of your data. One type of custom classifier uses a
grok pattern to match your data. If the pattern matches, then the custom classifier is used to create
your table's schema and set the classification to the value set in the classifier definition.

This sample creates a classifier that creates a schema with one column named message and sets
the classification to greedy.

AWSTemplateFormatVersion: '2010-09-09'
Sample CFN YAML to demonstrate creating a classifier
#
Parameters section contains names that are substituted in the Resources section
These parameters are the names the resources created in the Data Catalog
Parameters:

The name of the classifier to be created
 CFNClassifierName:

Sample grok classifier 1279

AWS Glue User Guide

 Type: String
 Default: cfn-classifier-grok-one-column-1

#
#
Resources section defines metadata for the Data Catalog
Resources:
Create classifier that uses grok pattern to put all data in one column and classifies
 it as "greedy".
 CFNClassifierFlights:
 Type: AWS::Glue::Classifier
 Properties:
 GrokClassifier:
 #Grok classifier that puts all data in one column
 Name: !Ref CFNClassifierName
 Classification: greedy

 GrokPattern: "%{GREEDYDATA:message}"
 #CustomPatterns: none

Sample AWS CloudFormation template for an AWS Glue JSON
classifier

An AWS Glue classifier determines the schema of your data. One type of custom classifier uses a
JsonPath string defining the JSON data for the classifier to classify. AWS Glue supports a subset
of the operators for JsonPath, as described in Writing JsonPath Custom Classifiers.

If the pattern matches, then the custom classifier is used to create your table's schema.

This sample creates a classifier that creates a schema with each record in the Records3 array in an
object.

AWSTemplateFormatVersion: '2010-09-09'
Sample CFN YAML to demonstrate creating a JSON classifier
#
Parameters section contains names that are substituted in the Resources section
These parameters are the names the resources created in the Data Catalog
Parameters:

The name of the classifier to be created

Sample JSON classifier 1280

https://docs.aws.amazon.com/glue/latest/dg/custom-classifier.html#custom-classifier-json

AWS Glue User Guide

 CFNClassifierName:
 Type: String
 Default: cfn-classifier-json-one-column-1

#
#
Resources section defines metadata for the Data Catalog
Resources:
Create classifier that uses a JSON pattern.
 CFNClassifierFlights:
 Type: AWS::Glue::Classifier
 Properties:
 JSONClassifier:
 #JSON classifier
 Name: !Ref CFNClassifierName
 JsonPath: $.Records3[*]

Sample AWS CloudFormation template for an AWS Glue XML
classifier

An AWS Glue classifier determines the schema of your data. One type of custom classifier specifies
an XML tag to designate the element that contains each record in an XML document that is being
parsed. If the pattern matches, then the custom classifier is used to create your table's schema and
set the classification to the value set in the classifier definition.

This sample creates a classifier that creates a schema with each record in the Record tag and sets
the classification to XML.

AWSTemplateFormatVersion: '2010-09-09'
Sample CFN YAML to demonstrate creating an XML classifier
#
Parameters section contains names that are substituted in the Resources section
These parameters are the names the resources created in the Data Catalog
Parameters:

The name of the classifier to be created
 CFNClassifierName:
 Type: String

Sample XML classifier 1281

AWS Glue User Guide

 Default: cfn-classifier-xml-one-column-1

#
#
Resources section defines metadata for the Data Catalog
Resources:
Create classifier that uses the XML pattern and classifies it as "XML".
 CFNClassifierFlights:
 Type: AWS::Glue::Classifier
 Properties:
 XMLClassifier:
 #XML classifier
 Name: !Ref CFNClassifierName
 Classification: XML
 RowTag: <Records>

Sample AWS CloudFormation template for an AWS Glue
crawler for Amazon S3

An AWS Glue crawler creates metadata tables in your Data Catalog that correspond to your data.
You can then use these table definitions as sources and targets in your ETL jobs.

This sample creates a crawler, the required IAM role, and an AWS Glue database in the Data
Catalog. When this crawler is run, it assumes the IAM role and creates a table in the database for
the public flights data. The table is created with the prefix "cfn_sample_1_". The IAM role created
by this template allows global permissions; you might want to create a custom role. No custom
classifiers are defined by this classifier. AWS Glue built-in classifiers are used by default.

When you submit this sample to the AWS CloudFormation console, you must confirm that you
want to create the IAM role.

AWSTemplateFormatVersion: '2010-09-09'
Sample CFN YAML to demonstrate creating a crawler
#
Parameters section contains names that are substituted in the Resources section
These parameters are the names the resources created in the Data Catalog
Parameters:

The name of the crawler to be created

Sample Amazon S3 crawler 1282

AWS Glue User Guide

 CFNCrawlerName:
 Type: String
 Default: cfn-crawler-flights-1
 CFNDatabaseName:
 Type: String
 Default: cfn-database-flights-1
 CFNTablePrefixName:
 Type: String
 Default: cfn_sample_1_
#
#
Resources section defines metadata for the Data Catalog
Resources:
#Create IAM Role assumed by the crawler. For demonstration, this role is given all
 permissions.
 CFNRoleFlights:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Effect: "Allow"
 Principal:
 Service:
 - "glue.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/"
 Policies:
 -
 PolicyName: "root"
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Effect: "Allow"
 Action: "*"
 Resource: "*"
 # Create a database to contain tables created by the crawler
 CFNDatabaseFlights:
 Type: AWS::Glue::Database
 Properties:
 CatalogId: !Ref AWS::AccountId

Sample Amazon S3 crawler 1283

AWS Glue User Guide

 DatabaseInput:
 Name: !Ref CFNDatabaseName
 Description: "AWS Glue container to hold metadata tables for the flights
 crawler"
 #Create a crawler to crawl the flights data on a public S3 bucket
 CFNCrawlerFlights:
 Type: AWS::Glue::Crawler
 Properties:
 Name: !Ref CFNCrawlerName
 Role: !GetAtt CFNRoleFlights.Arn
 #Classifiers: none, use the default classifier
 Description: AWS Glue crawler to crawl flights data
 #Schedule: none, use default run-on-demand
 DatabaseName: !Ref CFNDatabaseName
 Targets:
 S3Targets:
 # Public S3 bucket with the flights data
 - Path: "s3://crawler-public-us-east-1/flight/2016/csv"
 TablePrefix: !Ref CFNTablePrefixName
 SchemaChangePolicy:
 UpdateBehavior: "UPDATE_IN_DATABASE"
 DeleteBehavior: "LOG"
 Configuration: "{\"Version\":1.0,\"CrawlerOutput\":{\"Partitions\":
{\"AddOrUpdateBehavior\":\"InheritFromTable\"},\"Tables\":{\"AddOrUpdateBehavior\":
\"MergeNewColumns\"}}}"

Sample AWS CloudFormation template for an AWS Glue
connection

An AWS Glue connection in the Data Catalog contains the JDBC and network information that
is required to connect to a JDBC database. This information is used when you connect to a JDBC
database to crawl or run ETL jobs.

This sample creates a connection to an Amazon RDS MySQL database named devdb. When this
connection is used, an IAM role, database credentials, and network connection values must also be
supplied. See the details of necessary fields in the template.

AWSTemplateFormatVersion: '2010-09-09'
Sample CFN YAML to demonstrate creating a connection

Sample connection 1284

AWS Glue User Guide

#
Parameters section contains names that are substituted in the Resources section
These parameters are the names the resources created in the Data Catalog
Parameters:

The name of the connection to be created
 CFNConnectionName:
 Type: String
 Default: cfn-connection-mysql-flights-1
 CFNJDBCString:
 Type: String
 Default: "jdbc:mysql://xxx-mysql.yyyyyyyyyyyyyy.us-east-1.rds.amazonaws.com:3306/
devdb"
 CFNJDBCUser:
 Type: String
 Default: "master"
 CFNJDBCPassword:
 Type: String
 Default: "12345678"
 NoEcho: true
#
#
Resources section defines metadata for the Data Catalog
Resources:
 CFNConnectionMySQL:
 Type: AWS::Glue::Connection
 Properties:
 CatalogId: !Ref AWS::AccountId
 ConnectionInput:
 Description: "Connect to MySQL database."
 ConnectionType: "JDBC"
 #MatchCriteria: none
 PhysicalConnectionRequirements:
 AvailabilityZone: "us-east-1d"
 SecurityGroupIdList:
 - "sg-7d52b812"
 SubnetId: "subnet-84f326ee"
 ConnectionProperties: {
 "JDBC_CONNECTION_URL": !Ref CFNJDBCString,
 "USERNAME": !Ref CFNJDBCUser,
 "PASSWORD": !Ref CFNJDBCPassword
 }
 Name: !Ref CFNConnectionName

Sample connection 1285

AWS Glue User Guide

Sample AWS CloudFormation template for an AWS Glue
crawler for JDBC

An AWS Glue crawler creates metadata tables in your Data Catalog that correspond to your data.
You can then use these table definitions as sources and targets in your ETL jobs.

This sample creates a crawler, required IAM role, and an AWS Glue database in the Data Catalog.
When this crawler is run, it assumes the IAM role and creates a table in the database for the
public flights data that has been stored in a MySQL database. The table is created with the prefix
"cfn_jdbc_1_". The IAM role created by this template allows global permissions; you might want
to create a custom role. No custom classifiers can be defined for JDBC data. AWS Glue built-in
classifiers are used by default.

When you submit this sample to the AWS CloudFormation console, you must confirm that you
want to create the IAM role.

AWSTemplateFormatVersion: '2010-09-09'
Sample CFN YAML to demonstrate creating a crawler
#
Parameters section contains names that are substituted in the Resources section
These parameters are the names the resources created in the Data Catalog
Parameters:

The name of the crawler to be created
 CFNCrawlerName:
 Type: String
 Default: cfn-crawler-jdbc-flights-1
The name of the database to be created to contain tables
 CFNDatabaseName:
 Type: String
 Default: cfn-database-jdbc-flights-1
The prefix for all tables crawled and created
 CFNTablePrefixName:
 Type: String
 Default: cfn_jdbc_1_
The name of the existing connection to the MySQL database
 CFNConnectionName:
 Type: String
 Default: cfn-connection-mysql-flights-1

Sample JDBC crawler 1286

AWS Glue User Guide

The name of the JDBC path (database/schema/table) with wildcard (%) to crawl
 CFNJDBCPath:
 Type: String
 Default: saldev/%
#
#
Resources section defines metadata for the Data Catalog
Resources:
#Create IAM Role assumed by the crawler. For demonstration, this role is given all
 permissions.
 CFNRoleFlights:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Effect: "Allow"
 Principal:
 Service:
 - "glue.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/"
 Policies:
 -
 PolicyName: "root"
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Effect: "Allow"
 Action: "*"
 Resource: "*"
 # Create a database to contain tables created by the crawler
 CFNDatabaseFlights:
 Type: AWS::Glue::Database
 Properties:
 CatalogId: !Ref AWS::AccountId
 DatabaseInput:
 Name: !Ref CFNDatabaseName
 Description: "AWS Glue container to hold metadata tables for the flights
 crawler"
 #Create a crawler to crawl the flights data in MySQL database

Sample JDBC crawler 1287

AWS Glue User Guide

 CFNCrawlerFlights:
 Type: AWS::Glue::Crawler
 Properties:
 Name: !Ref CFNCrawlerName
 Role: !GetAtt CFNRoleFlights.Arn
 #Classifiers: none, use the default classifier
 Description: AWS Glue crawler to crawl flights data
 #Schedule: none, use default run-on-demand
 DatabaseName: !Ref CFNDatabaseName
 Targets:
 JdbcTargets:
 # JDBC MySQL database with the flights data
 - ConnectionName: !Ref CFNConnectionName
 Path: !Ref CFNJDBCPath
 #Exclusions: none
 TablePrefix: !Ref CFNTablePrefixName
 SchemaChangePolicy:
 UpdateBehavior: "UPDATE_IN_DATABASE"
 DeleteBehavior: "LOG"
 Configuration: "{\"Version\":1.0,\"CrawlerOutput\":{\"Partitions\":
{\"AddOrUpdateBehavior\":\"InheritFromTable\"},\"Tables\":{\"AddOrUpdateBehavior\":
\"MergeNewColumns\"}}}"

Sample AWS CloudFormation template for an AWS Glue job for
Amazon S3 to Amazon S3

An AWS Glue job in the Data Catalog contains the parameter values that are required to run a
script in AWS Glue.

This sample creates a job that reads flight data from an Amazon S3 bucket in csv format and
writes it to an Amazon S3 Parquet file. The script that is run by this job must already exist. You can
generate an ETL script for your environment with the AWS Glue console. When this job is run, an
IAM role with the correct permissions must also be supplied.

Common parameter values are shown in the template. For example, AllocatedCapacity (DPUs)
defaults to 5.

AWSTemplateFormatVersion: '2010-09-09'

Sample job for Amazon S3 to Amazon S3 1288

AWS Glue User Guide

Sample CFN YAML to demonstrate creating a job using the public flights S3 table in a
 public bucket
#
Parameters section contains names that are substituted in the Resources section
These parameters are the names the resources created in the Data Catalog
Parameters:

The name of the job to be created
 CFNJobName:
 Type: String
 Default: cfn-job-S3-to-S3-2
The name of the IAM role that the job assumes. It must have access to data, script,
 temporary directory
 CFNIAMRoleName:
 Type: String
 Default: AWSGlueServiceRoleGA
The S3 path where the script for this job is located
 CFNScriptLocation:
 Type: String
 Default: s3://aws-glue-scripts-123456789012-us-east-1/myid/sal-job-test2
#
#
Resources section defines metadata for the Data Catalog
Resources:
Create job to run script which accesses flightscsv table and write to S3 file as
 parquet.
The script already exists and is called by this job
 CFNJobFlights:
 Type: AWS::Glue::Job
 Properties:
 Role: !Ref CFNIAMRoleName
 #DefaultArguments: JSON object
 # If script written in Scala, then set DefaultArguments={'--job-language';
 'scala', '--class': 'your scala class'}
 #Connections: No connection needed for S3 to S3 job
 # ConnectionsList
 #MaxRetries: Double
 Description: Job created with CloudFormation
 #LogUri: String
 Command:
 Name: glueetl
 ScriptLocation: !Ref CFNScriptLocation
 # for access to directories use proper IAM role with permission to buckets
 and folders that begin with "aws-glue-"

Sample job for Amazon S3 to Amazon S3 1289

AWS Glue User Guide

 # script uses temp directory from job definition if required (temp
 directory not used S3 to S3)
 # script defines target for output as s3://aws-glue-target/sal
 AllocatedCapacity: 5
 ExecutionProperty:
 MaxConcurrentRuns: 1
 Name: !Ref CFNJobName

Sample AWS CloudFormation template for an AWS Glue job for
JDBC to Amazon S3

An AWS Glue job in the Data Catalog contains the parameter values that are required to run a
script in AWS Glue.

This sample creates a job that reads flight data from a MySQL JDBC database as defined by
the connection named cfn-connection-mysql-flights-1 and writes it to an Amazon S3
Parquet file. The script that is run by this job must already exist. You can generate an ETL script for
your environment with the AWS Glue console. When this job is run, an IAM role with the correct
permissions must also be supplied.

Common parameter values are shown in the template. For example, AllocatedCapacity (DPUs)
defaults to 5.

AWSTemplateFormatVersion: '2010-09-09'
Sample CFN YAML to demonstrate creating a job using a MySQL JDBC DB with the flights
 data to an S3 file
#
Parameters section contains names that are substituted in the Resources section
These parameters are the names the resources created in the Data Catalog
Parameters:

The name of the job to be created
 CFNJobName:
 Type: String
 Default: cfn-job-JDBC-to-S3-1
The name of the IAM role that the job assumes. It must have access to data, script,
 temporary directory
 CFNIAMRoleName:
 Type: String

Sample job for JDBC to Amazon S3 1290

AWS Glue User Guide

 Default: AWSGlueServiceRoleGA
The S3 path where the script for this job is located
 CFNScriptLocation:
 Type: String
 Default: s3://aws-glue-scripts-123456789012-us-east-1/myid/sal-job-dec4a
The name of the connection used for JDBC data source
 CFNConnectionName:
 Type: String
 Default: cfn-connection-mysql-flights-1
#
#
Resources section defines metadata for the Data Catalog
Resources:
Create job to run script which accesses JDBC flights table via a connection and write
 to S3 file as parquet.
The script already exists and is called by this job
 CFNJobFlights:
 Type: AWS::Glue::Job
 Properties:
 Role: !Ref CFNIAMRoleName
 #DefaultArguments: JSON object
 # For example, if required by script, set temporary directory as
 DefaultArguments={'--TempDir'; 's3://aws-glue-temporary-xyc/sal'}
 Connections:
 Connections:
 - !Ref CFNConnectionName
 #MaxRetries: Double
 Description: Job created with CloudFormation using existing script
 #LogUri: String
 Command:
 Name: glueetl
 ScriptLocation: !Ref CFNScriptLocation
 # for access to directories use proper IAM role with permission to buckets
 and folders that begin with "aws-glue-"
 # if required, script defines temp directory as argument TempDir and used
 in script like redshift_tmp_dir = args["TempDir"]
 # script defines target for output as s3://aws-glue-target/sal
 AllocatedCapacity: 5
 ExecutionProperty:
 MaxConcurrentRuns: 1
 Name: !Ref CFNJobName

Sample job for JDBC to Amazon S3 1291

AWS Glue User Guide

Sample AWS CloudFormation template for an AWS Glue on-
demand trigger

An AWS Glue trigger in the Data Catalog contains the parameter values that are required to start a
job run when the trigger fires. An on-demand trigger fires when you enable it.

This sample creates an on-demand trigger that starts one job named cfn-job-S3-to-S3-1.

AWSTemplateFormatVersion: '2010-09-09'
Sample CFN YAML to demonstrate creating an on-demand trigger
#
Parameters section contains names that are substituted in the Resources section
These parameters are the names the resources created in the Data Catalog
Parameters:
 # The existing job to be started by this trigger
 CFNJobName:
 Type: String
 Default: cfn-job-S3-to-S3-1
 # The name of the trigger to be created
 CFNTriggerName:
 Type: String
 Default: cfn-trigger-ondemand-flights-1
#
Resources section defines metadata for the Data Catalog
Sample CFN YAML to demonstrate creating an on-demand trigger for a job
Resources:
Create trigger to run an existing job (CFNJobName) on an on-demand schedule.
 CFNTriggerSample:
 Type: AWS::Glue::Trigger
 Properties:
 Name:
 Ref: CFNTriggerName
 Description: Trigger created with CloudFormation
 Type: ON_DEMAND
 Actions:
 - JobName: !Ref CFNJobName
 # Arguments: JSON object
 #Schedule:
 #Predicate:

Sample On-Demand trigger 1292

AWS Glue User Guide

Sample AWS CloudFormation template for an AWS Glue
scheduled trigger

An AWS Glue trigger in the Data Catalog contains the parameter values that are required to start a
job run when the trigger fires. A scheduled trigger fires when it is enabled and the cron timer pops.

This sample creates a scheduled trigger that starts one job named cfn-job-S3-to-S3-1. The
timer is a cron expression to run the job every 10 minutes on weekdays.

AWSTemplateFormatVersion: '2010-09-09'
Sample CFN YAML to demonstrate creating a scheduled trigger
#
Parameters section contains names that are substituted in the Resources section
These parameters are the names the resources created in the Data Catalog
Parameters:
 # The existing job to be started by this trigger
 CFNJobName:
 Type: String
 Default: cfn-job-S3-to-S3-1
 # The name of the trigger to be created
 CFNTriggerName:
 Type: String
 Default: cfn-trigger-scheduled-flights-1
#
Resources section defines metadata for the Data Catalog
Sample CFN YAML to demonstrate creating a scheduled trigger for a job

Resources:
Create trigger to run an existing job (CFNJobName) on a cron schedule.
 TriggerSample1CFN:
 Type: AWS::Glue::Trigger
 Properties:
 Name:
 Ref: CFNTriggerName
 Description: Trigger created with CloudFormation
 Type: SCHEDULED
 Actions:
 - JobName: !Ref CFNJobName
 # Arguments: JSON object
 # # Run the trigger every 10 minutes on Monday to Friday

Sample scheduled trigger 1293

AWS Glue User Guide

 Schedule: cron(0/10 * ? * MON-FRI *)
 #Predicate:

Sample AWS CloudFormation template for an AWS Glue
conditional trigger

An AWS Glue trigger in the Data Catalog contains the parameter values that are required to start a
job run when the trigger fires. A conditional trigger fires when it is enabled and its conditions are
met, such as a job completing successfully.

This sample creates a conditional trigger that starts one job named cfn-job-S3-to-S3-1. This
job starts when the job named cfn-job-S3-to-S3-2 completes successfully.

AWSTemplateFormatVersion: '2010-09-09'
Sample CFN YAML to demonstrate creating a conditional trigger for a job, which starts
 when another job completes
#
Parameters section contains names that are substituted in the Resources section
These parameters are the names the resources created in the Data Catalog
Parameters:
 # The existing job to be started by this trigger
 CFNJobName:
 Type: String
 Default: cfn-job-S3-to-S3-1
 # The existing job that when it finishes causes trigger to fire
 CFNJobName2:
 Type: String
 Default: cfn-job-S3-to-S3-2
 # The name of the trigger to be created
 CFNTriggerName:
 Type: String
 Default: cfn-trigger-conditional-1

Resources:
Create trigger to run an existing job (CFNJobName) when another job completes
 (CFNJobName2).
 CFNTriggerSample:
 Type: AWS::Glue::Trigger
 Properties:

Sample conditional trigger 1294

AWS Glue User Guide

 Name:
 Ref: CFNTriggerName
 Description: Trigger created with CloudFormation
 Type: CONDITIONAL
 Actions:
 - JobName: !Ref CFNJobName
 # Arguments: JSON object
 #Schedule: none
 Predicate:
 #Value for Logical is required if more than 1 job listed in Conditions
 Logical: AND
 Conditions:
 - LogicalOperator: EQUALS
 JobName: !Ref CFNJobName2
 State: SUCCEEDED

Sample AWS CloudFormation template for an AWS Glue
development endpoint

An AWS Glue machine learning transform is a custom transform to cleanse your data. There is
currently one available transform named FindMatches. The FindMatches transform enables you
to identify duplicate or matching records in your dataset, even when the records do not have a
common unique identifier and no fields match exactly.

This sample creates a machine learning transform. For more information about the parameters
that you need to create a machine learning transform, see Record matching with AWS Lake
Formation FindMatches.

AWSTemplateFormatVersion: '2010-09-09'
Sample CFN YAML to demonstrate creating a machine learning transform
#
Resources section defines metadata for the machine learning transform
Resources:
 MyMLTransform:
 Type: "AWS::Glue::MLTransform"
 Condition: "isGlueMLGARegion"
 Properties:
 Name: !Sub "MyTransform"
 Description: "The bestest transform ever"

Sample machine learning transform 1295

AWS Glue User Guide

 Role: !ImportValue MyMLTransformUserRole
 GlueVersion: "1.0"
 WorkerType: "Standard"
 NumberOfWorkers: 5
 Timeout: 120
 MaxRetries: 1
 InputRecordTables:
 GlueTables:
 - DatabaseName: !ImportValue MyMLTransformDatabase
 TableName: !ImportValue MyMLTransformTable
 TransformParameters:
 TransformType: "FIND_MATCHES"
 FindMatchesParameters:
 PrimaryKeyColumnName: "testcolumn"
 PrecisionRecallTradeoff: 0.5
 AccuracyCostTradeoff: 0.5
 EnforceProvidedLabels: True
 Tags:
 key1: "value1"
 key2: "value2"
 TransformEncryption:
 TaskRunSecurityConfigurationName: !ImportValue
 MyMLTransformSecurityConfiguration
 MLUserDataEncryption:
 MLUserDataEncryptionMode: "SSE-KMS"
 KmsKeyId: !ImportValue MyMLTransformEncryptionKey

Sample AWS CloudFormation template for an AWS Glue Data
Quality ruleset

An AWS Glue Data Quality ruleset contains rules that can be evaluated on a table within the Data
Catalog. Once the ruleset is placed on your targeted table you can go into the Data Catalog and
run an evaluation which runs your data against those rules within the ruleset. These rules can vary
from evaluating the row count to evaluating referential integrity on your data.

The following sample is a CloudFormation template which creates a ruleset with a variety of rules
on the specified target table.

AWSTemplateFormatVersion: '2010-09-09'
Sample CFN YAML to demonstrate creating a DataQualityRuleset
#

Sample data quality ruleset 1296

AWS Glue User Guide

Parameters section contains names that are substituted in the Resources section
These parameters are the names the resources created in the Data Catalog
Parameters:

 # The name of the ruleset to be created
 RulesetName:
 Type: String
 Default: "CFNRulesetName"
 RulesetDescription:
 Type: String
 Default: "CFN DataQualityRuleset"
 # Rules that will be associated with this ruleset
 Rules:
 Type: String
 Default: 'Rules = [
 RowCount > 100,
 IsUnique "id",
 IsComplete "nametype"
]'
 # Name of database and table within Data Catalog which the ruleset will
 # be applied too
 DatabaseName:
 Type: String
 Default: "ExampleDatabaseName"
 TableName:
 Type: String
 Default: "ExampleTableName"

Resources section defines metadata for the Data Catalog
Resources:
 # Creates a Data Quality ruleset under specified rules
 DQRuleset:
 Type: AWS::Glue::DataQualityRuleset
 Properties:
 Name: !Ref RulesetName
 Description: !Ref RulesetDescription
 # The String within rules must be formatted in DQDL, a language
 # used specifically to make rules
 Ruleset: !Ref Rules
 # The targeted table must exist within Data Catalog alongside
 # the correct database
 TargetTable:
 DatabaseName: !Ref DatabaseName

Sample data quality ruleset 1297

AWS Glue User Guide

 TableName: !Ref TableName

Sample AWS CloudFormation template for an AWS Glue Data
Quality ruleset with EventBridge scheduler

An AWS Glue Data Quality ruleset contains rules that can be evaluated on a table within the Data
Catalog. Once the ruleset is placed on your targeted table you can go into the Data Catalog and
run an evaluation which runs your data against those rules within the ruleset. Instead of having
to manually go into the Data Catalog to evaluate the ruleset, you can also add an EventBridge
Scheduler within our CloudFormation template to schedule these ruleset evaluations for you on a
timed interval.

The following sample is a CloudFormation template which creates a Data Quality ruleset and a
EventBridge Scheduler to evaluate the aforementioned ruleset every five minutes.

AWSTemplateFormatVersion: '2010-09-09'
Sample CFN YAML to demonstrate creating a DataQualityRuleset
#
Parameters section contains names that are substituted in the Resources section
These parameters are the names the resources created in the Data Catalog
Parameters:

 # The name of the ruleset to be created
 RulesetName:
 Type: String
 Default: "CFNRulesetName"
 # Rules that will be associated with this Ruleset
 Rules:
 Type: String
 Default: 'Rules = [
 RowCount > 100,
 IsUnique "id",
 IsComplete "nametype"
]'
 # The name of the Schedule to be created
 ScheduleName:
 Type: String
 Default: "ScheduleDQRulsetEvaluation"
 # This expression determines the rate at which the Schedule will evaluate
 # your data using the above ruleset
 ScheduleRate:

Sample data quality ruleset with EventBridge scheduler 1298

AWS Glue User Guide

 Type: String
 Default: "rate(5 minutes)"
 # The Request that being sent must match the details of the Data Quality Ruleset
 ScheduleRequest:
 Type: String
 Default: '
 { "DataSource": { "GlueTable": { "DatabaseName": "ExampleDatabaseName",
 "TableName": "ExampleTableName" } },
 "Role": "role/AWSGlueServiceRoleDefault",
 "RulesetNames": [""CFNRulesetName""] }
 '

Resources section defines metadata for the Data Catalog
Resources:
 # Creates a Data Quality ruleset under specified rules
 DQRuleset:
 Type: AWS::Glue::DataQualityRuleset
 Properties:
 Name: !Ref RulesetName
 Description: "CFN DataQualityRuleset"
 # The String within rules must be formatted in DQDL, a language
 # used specifically to make rules
 Ruleset: !Ref Rules
 # The targeted table must exist within Data Catalog alongside
 # the correct database
 TargetTable:
 DatabaseName: "ExampleDatabaseName"
 TableName: "ExampleTableName"
 # Create a Scheduler to schedule evaluation runs on the above ruleset
 ScheduleDQEval:
 Type: AWS::Scheduler::Schedule
 Properties:
 Name: !Ref ScheduleName
 Description: "Schedule DataQualityRuleset Evaluations"
 FlexibleTimeWindow:
 Mode: "OFF"
 ScheduleExpression: !Ref ScheduleRate
 ScheduleExpressionTimezone: "America/New_York"
 State: "ENABLED"
 Target:
 # The ARN is the API that will be run, since we want to evaluate our ruleset
 # we want this specific ARN
 Arn: "arn:aws:scheduler:::aws-sdk:glue:startDataQualityRulesetEvaluationRun"
 # Your RoleArn must have approval to schedule

Sample data quality ruleset with EventBridge scheduler 1299

AWS Glue User Guide

 RoleArn: "arn:aws:iam::123456789012:role/AWSGlueServiceRoleDefault"
 # This is the Request that is being sent to the Arn
 Input: '
 { "DataSource": { "GlueTable": { "DatabaseName": "sampledb", "TableName":
 "meteorite" } },
 "Role": "role/AWSGlueServiceRoleDefault",
 "RulesetNames": ["TestCFN"] }
 '

Sample AWS CloudFormation template for an AWS Glue
development endpoint

An AWS Glue development endpoint is an environment that you can use to develop and test your
AWS Glue scripts.

This sample creates a development endpoint with the minimal network parameter values required
to successfully create it. For more information about the parameters that you need to set up a
development endpoint, see Setting up networking for development for AWS Glue.

You provide an existing IAM role ARN (Amazon Resource Name) to create the development
endpoint. Supply a valid RSA public key and keep the corresponding private key available if you
plan to create a notebook server on the development endpoint.

Note

For any notebook server that you create that is associated with a development endpoint,
you manage it. Therefore, if you delete the development endpoint, to delete the notebook
server, you must delete the AWS CloudFormation stack on the AWS CloudFormation
console.

AWSTemplateFormatVersion: '2010-09-09'
Sample CFN YAML to demonstrate creating a development endpoint
#
Parameters section contains names that are substituted in the Resources section
These parameters are the names the resources created in the Data Catalog
Parameters:

Sample development endpoint 1300

AWS Glue User Guide

The name of the crawler to be created
 CFNEndpointName:
 Type: String
 Default: cfn-devendpoint-1
 CFNIAMRoleArn:
 Type: String
 Default: arn:aws:iam::123456789012/role/AWSGlueServiceRoleGA
#
#
Resources section defines metadata for the Data Catalog
Resources:
 CFNDevEndpoint:
 Type: AWS::Glue::DevEndpoint
 Properties:
 EndpointName: !Ref CFNEndpointName
 #ExtraJarsS3Path: String
 #ExtraPythonLibsS3Path: String
 NumberOfNodes: 5
 PublicKey: ssh-rsa public.....key myuserid-key
 RoleArn: !Ref CFNIAMRoleArn
 SecurityGroupIds:
 - sg-64986c0b
 SubnetId: subnet-c67cccac

Sample development endpoint 1301

AWS Glue User Guide

AWS Glue programming guide

A script contains the code that extracts data from sources, transforms it, and loads it into targets.
AWS Glue runs a script when it starts a job.

AWS Glue ETL scripts are coded in Python or Scala. While all job types can be written in Python,
AWS Glue for Spark jobs can be written in Scala as well. When you automatically generate the
source code logic for your job in AWS Glue Studio, a script is created. You can edit this script, or you
can provide your own script to process your ETL work.

Providing your own custom scripts

Scripts perform the extract, transform, and load (ETL) work in AWS Glue. A script is created when
you automatically generate the source code logic for a job. You can either edit this generated
script, or you can provide your own custom script.

To provide your own custom script in AWS Glue, follow these general steps:

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. Choose the ETL Jobs tab, and then view the Create job section. Choose a script editor option.

3. Under This job runs, choose one of the following:

• Create a new script with boilerplate code

• Upload and edit an existing script

4. On the Job details page, choose the IAM role that is required for your custom script to run. For
more information, see Identity and access management for AWS Glue.

5. Choose any connections that your script references. These objects are needed to connect to
the necessary JDBC data stores.

An elastic network interface is a virtual network interface that you can attach to an instance in
a virtual private cloud (VPC). Choose the elastic network interface that is required to connect
to the data store that's used in the script.

6. Provide additional configuration, including parameters, specific to your job type. For more
information about configuration for your job type, see the Building visual ETL jobs with AWS
Glue Studio section.

Providing your own custom scripts 1302

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

7. On the Script tab, paste or write your custom script.

Use the content in this section to guide the process of writing your custom script.

For more information about adding jobs in AWS Glue, see Building visual ETL jobs with AWS Glue
Studio.

For step-by-step guidance, see the Add job tutorial in the AWS Glue console.

Programming Spark scripts

AWS Glue makes it easy to write or autogenerate extract, transform, and load (ETL) scripts, in
addition to testing and running them. This section describes the extensions to Apache Spark that
AWS Glue has introduced, and provides examples of how to code and run ETL scripts in Python and
Scala.

Important

Different versions of AWS Glue support different versions of Apache Spark. Your custom
script must be compatible with the supported Apache Spark version. For information about
AWS Glue versions, see the Glue version job property.

Topics

• Tutorial: Writing an AWS Glue for Spark script

• Program AWS Glue ETL scripts in PySpark

• Programming AWS Glue ETL scripts in Scala

• Features and optimizations for programming AWS Glue for Spark ETL scripts

Tutorial: Writing an AWS Glue for Spark script

This tutorial introduces you to the process of writing AWS Glue scripts. You can run scripts on a
schedule with jobs, or interactively with interactive sessions. For more information about jobs, see
Building visual ETL jobs with AWS Glue Studio. For more information about interactive sessions, see
the section called “Overview of AWS Glue interactive sessions”.

AWS Glue for Spark 1303

AWS Glue User Guide

The AWS Glue Studio visual editor offers a graphical, no-code interface for building AWS Glue jobs.
AWS Glue scripts back visual jobs. They give you access to the expanded set of tools available to
work with Apache Spark programs. You can access native Spark APIs, as well as AWS Glue libraries
that facilitate extract, transform, and load (ETL) workflows from within an AWS Glue script.

In this tutorial, you extract, transform, and load a dataset of parking tickets. The script that does
this work is identical in form and function to the one generated in Making ETL easier with AWS
Glue Studio on the AWS Big Data Blog, which introduces the AWS Glue Studio visual editor. By
running this script in a job, you can compare it to visual jobs and see how AWS Glue ETL scripts
work. This prepares you to use additional functionalities that aren't yet available in visual jobs.

You use the Python language and libraries in this tutorial. Similar functionality is available in Scala.
After going through this tutorial, you should be able to generate and inspect a sample Scala script
to understand how to perform the Scala AWS Glue ETL script writing process.

Prerequisites

This tutorial has the following prerequisites:

• The same prerequisites as the AWS Glue Studio blog post, which instructs you to run a AWS
CloudFormation template.

This template uses the AWS Glue Data Catalog to manage the parking ticket dataset available
in s3://aws-bigdata-blog/artifacts/gluestudio/. It creates the following resources
which will be referenced:

• AWS Glue StudioRole – IAM role to run AWS Gluejobs

• AWS Glue StudioAmazon S3Bucket – Name of the Amazon S3 bucket to store blog-related files

• AWS Glue StudioTicketsYYZDB – AWS Glue Data Catalog database

• AWS Glue StudioTableTickets – Data Catalog table to use as a source

• AWS Glue StudioTableTrials – Data Catalog table to use as a source

• AWS Glue StudioParkingTicketCount – Data Catalog table to use as the destination

• The script generated in the AWS Glue Studio blog post. If the blog post changes, the script is also
available in the following text.

Generate a sample script

You can use the AWS Glue Studio visual editor as a powerful code generation tool to create a
scaffold for the script you want to write. You will use this tool to create a sample script.

Tutorial: Writing a Spark script 1304

https://aws.amazon.com/blogs/big-data/making-etl-easier-with-aws-glue-studio/
https://aws.amazon.com/blogs/big-data/making-etl-easier-with-aws-glue-studio/

AWS Glue User Guide

If you want to skip these steps, the script is provided.

Tutorial sample script

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

args = getResolvedOptions(sys.argv, ["JOB_NAME"])
sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args["JOB_NAME"], args)

Script generated for node S3 bucket
S3bucket_node1 = glueContext.create_dynamic_frame.from_catalog(
 database="yyz-tickets", table_name="tickets", transformation_ctx="S3bucket_node1"
)

Script generated for node ApplyMapping
ApplyMapping_node2 = ApplyMapping.apply(
 frame=S3bucket_node1,
 mappings=[
 ("tag_number_masked", "string", "tag_number_masked", "string"),
 ("date_of_infraction", "string", "date_of_infraction", "string"),
 ("ticket_date", "string", "ticket_date", "string"),
 ("ticket_number", "decimal", "ticket_number", "float"),
 ("officer", "decimal", "officer_name", "decimal"),
 ("infraction_code", "decimal", "infraction_code", "decimal"),
 ("infraction_description", "string", "infraction_description", "string"),
 ("set_fine_amount", "decimal", "set_fine_amount", "float"),
 ("time_of_infraction", "decimal", "time_of_infraction", "decimal"),
],
 transformation_ctx="ApplyMapping_node2",
)

Script generated for node S3 bucket
S3bucket_node3 = glueContext.write_dynamic_frame.from_options(
 frame=ApplyMapping_node2,
 connection_type="s3",

Tutorial: Writing a Spark script 1305

AWS Glue User Guide

 format="glueparquet",
 connection_options={"path": "s3://DOC-EXAMPLE-BUCKET", "partitionKeys": []},
 format_options={"compression": "gzip"},
 transformation_ctx="S3bucket_node3",
)

job.commit()

To generate a sample script

1. Complete the AWS Glue Studio tutorial. To complete this tutorial, see Creating a job in AWS
Glue Studio from an example job.

2. Navigate to the Script tab on the job page, as shown in the following screenshot:

3. Copy the complete contents of the Script tab. By setting the script language in Job details,
you can switch back and forth between generating Python or Scala code.

Tutorial: Writing a Spark script 1306

https://docs.aws.amazon.com/glue/latest/dg/edit-nodes-chapter.html#create-jobs-start.html
https://docs.aws.amazon.com/glue/latest/dg/edit-nodes-chapter.html#create-jobs-start.html

AWS Glue User Guide

Step 1. Create a job and paste your script

In this step, you create an AWS Glue job in the AWS Management Console. This sets up a
configuration that allows AWS Glue to run your script. It also creates a place for you to store and
edit your script.

To create a job

1. In the AWS Management Console, navigate to the AWS Glue landing page.

2. In the side navigation pane, choose Jobs.

3. Choose Spark script editor in Create job, and then choose Create.

4. Optional - Paste the full text of your script into the Script pane. Alternatively, you can follow
along with the tutorial.

Step 2. Import AWS Glue libraries

You need to set your script up to interact with code and configuration that are defined outside of
the script. This work is done behind the scenes in AWS Glue Studio.

In this step, you perform the following actions.

• Import and initialize a GlueContext object. This is the most important import, from the script
writing perspective. This exposes standard methods for defining source and target datasets,
which is the starting point for any ETL script. To learn more about the GlueContext class, see
GlueContext class.

• Initialize a SparkContext and SparkSession. These allow you to configure the Spark engine
available inside the AWS Glue job. You won't need to use them directly within introductory AWS
Glue scripts.

• Call getResolvedOptions to prepare your job arguments for use within the script. For more
information about resolving job parameters, see the section called “getResolvedOptions”.

• Initialize a Job. The Job object sets configuration and tracks the state of various optional AWS
Glue features. Your script can run without a Job object, but the best practice is to initialize it so
that you don't encounter confusion if those features are later integrated.

One of these features is job bookmarks, which you can optionally configure in this tutorial. You
can learn about job bookmarks in the following section, the section called “Optional - Enable job
bookmarks”.

Tutorial: Writing a Spark script 1307

AWS Glue User Guide

In this procedure, you write the following code. This code is a portion of the generated sample
script.

from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

args = getResolvedOptions(sys.argv, ["JOB_NAME"])
sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args["JOB_NAME"], args)

To import AWS Glue libraries

• Copy this section of code and paste it into the Script editor.

Note

You might consider copying code to be a bad engineering practice. In this tutorial, we
suggest this to encourage you to consistently name your core variables across all AWS
Glue ETL scripts.

Step 3. Extract data from a source

In any ETL process, you first need to define a source dataset that you want to change. In the AWS
Glue Studio visual editor, you provide this information by creating a Source node.

In this step, you provide the create_dynamic_frame.from_catalog method a database and
table_name to extract data from a source configured in the AWS Glue Data Catalog.

In the previous step, you initialized a GlueContext object. You use this object to find methods
that are used to configure sources, such as create_dynamic_frame.from_catalog.

In this procedure, you write the following code using create_dynamic_frame.from_catalog.
This code is a portion of the generated sample script.

Tutorial: Writing a Spark script 1308

AWS Glue User Guide

S3bucket_node1 = glueContext.create_dynamic_frame.from_catalog(
 database="yyz-tickets", table_name="tickets", transformation_ctx="S3bucket_node1"
)

To extract data from a source

1. Examine the documentation to find a method on GlueContext to extract data from a source
defined in the AWS Glue Data Catalog. These methods are documented in the section called
“GlueContext”. Choose the create_dynamic_frame.from_catalog method. Call this method on
glueContext.

2. Examine the documentation for create_dynamic_frame.from_catalog. This method
requires database and table_name parameters. Provide the necessary parameters to
create_dynamic_frame.from_catalog.

The AWS Glue Data Catalog stores information about the location and format of your source
data, and was set up in the prerequisite section. You don't have to directly provide your script
with that information.

3. Optional – Provide the transformation_ctx parameter to the method in order to support
job bookmarks. You can learn about job bookmarks in the following section, the section called
“Optional - Enable job bookmarks”.

Note

Common methods for extracting data
the section called “create_dynamic_frame_from_catalog” is used to connect to tables in the
AWS Glue Data Catalog.
If you need to directly provide your job with configuration that describes the structure and
location of your source, see the the section called “create_dynamic_frame_from_options”
method. You will need to provide more detailed parameters describing your data than
when using create_dynamic_frame.from_catalog.
Refer to the supplemental documentation about format_options and
connection_parameters to identify your required parameters. For an explanation of
how to provide your script information about your source data format, see the section
called “Data format options”. For an explanation of how to provide your script information
about your source data location, see the section called “Connection parameters”.

Tutorial: Writing a Spark script 1309

AWS Glue User Guide

If you're reading information from a streaming source, you provide your job with source
information through the the section called “create_data_frame_from_catalog” or the
section called “create_data_frame_from_options” methods. Note that these methods
return Apache Spark DataFrames.
Our generated code calls create_dynamic_frame.from_catalog while the reference
documentation refers to create_dynamic_frame_from_catalog. These methods
ultimately call the same code, and are included so you can write cleaner code. You can
verify this by viewing the source for our Python wrapper, available at aws-glue-libs.

Step 4. Transform data with AWS Glue

After extracting source data in an ETL process, you need to describe how you want to change your
data. You provide this information by creating a Transform node in the AWS Glue Studio visual
editor.

In this step, you provide the ApplyMapping method with a map of current and desired field names
and types to transform your DynamicFrame.

You perform the following transformations.

• Drop the four location and province keys.

• Change the name of officer to officer_name.

• Change the type of ticket_number and set_fine_amount to float.

create_dynamic_frame.from_catalog provides you with a DynamicFrame object. A
DynamicFrame represents a dataset in AWS Glue. AWS Glue transforms are operations that
change DynamicFrames.

Note

What is a DynamicFrame?
A DynamicFrame is an abstraction that allows you to connect a dataset with a description
of the names and types of entries in the data. In Apache Spark, a similar abstraction exists
called a DataFrame. For an explanation of DataFrames, see Spark SQL Guide.
With DynamicFrames, you can describe dataset schemas dynamically. Consider a dataset
with a price column, where some entries store price as a string, and others store price as

Tutorial: Writing a Spark script 1310

https://github.com/awslabs/aws-glue-libs/blob/master/awsglue/context.py
https://spark.apache.org/docs/latest/sql-programming-guide.html

AWS Glue User Guide

a double. AWS Glue computes a schema on-the-fly—it creates a self-describing record for
each row.
Inconsistent fields (like price) are explicitly represented with a type (ChoiceType) in the
schema for the frame. You can address your inconsistent fields by dropping them with
DropFields or resolving them with ResolveChoice. These are transforms that are
available on the DynamicFrame. You can then write your data back to your data lake with
writeDynamicFrame.
You can call many of the same transforms from methods on the DynamicFrame class,
which can lead to more readable scripts. For more information about DynamicFrame, see
the section called “DynamicFrame”.

In this procedure, you write the following code using ApplyMapping. This code is a portion of the
generated sample script.

ApplyMapping_node2 = ApplyMapping.apply(
 frame=S3bucket_node1,
 mappings=[
 ("tag_number_masked", "string", "tag_number_masked", "string"),
 ("date_of_infraction", "string", "date_of_infraction", "string"),
 ("ticket_date", "string", "ticket_date", "string"),
 ("ticket_number", "decimal", "ticket_number", "float"),
 ("officer", "decimal", "officer_name", "decimal"),
 ("infraction_code", "decimal", "infraction_code", "decimal"),
 ("infraction_description", "string", "infraction_description", "string"),
 ("set_fine_amount", "decimal", "set_fine_amount", "float"),
 ("time_of_infraction", "decimal", "time_of_infraction", "decimal"),
],
 transformation_ctx="ApplyMapping_node2",
)

To transform data with AWS Glue

1. Examine the documentation to identify a transform to change and drop fields. For details,
see the section called “GlueTransform”. Choose the ApplyMapping transform. For more
information about ApplyMapping, see the section called “ApplyMapping”. Call apply on the
ApplyMapping transform object.

Tutorial: Writing a Spark script 1311

AWS Glue User Guide

Note

What is ApplyMapping?
ApplyMapping takes a DynamicFrame and transforms it. It takes a list of tuples that
represent transformations on fields—a "mapping". The first two tuple elements, a field
name and type, are used to identify a field in the frame. The second two parameters
are also a field name and type.
ApplyMapping converts the source field to the target name and type in a new
DynamicFrame, which it returns. Fields that aren't provided are dropped in the return
value.
Rather than calling apply, you can call the same transform with the apply_mapping
method on the DynamicFrame to create more fluent, readable code. For more
information, see the section called “apply_mapping”.

2. Examine the documentation for ApplyMapping to identify required parameters. See the
section called “ApplyMapping”. You will find that this method requires frame and mappings
parameters. Provide the necessary parameters to ApplyMapping.

3. Optional – Provide transformation_ctx to the method to support job bookmarks. You can
learn about job bookmarks in the following section, the section called “Optional - Enable job
bookmarks”.

Note

Apache Spark functionality
We provide transforms to streamline ETL workflows within your job. You also have access
to the libraries that are available in a Spark program in your job, built for more general
purposes. In order to use them, you convert between DynamicFrame and DataFrame.
You can create a DataFrame with the section called “toDF”. Then, you can use methods
available on the DataFrame to transform your dataset. For more information on these
methods, see DataFrame. You can then convert backwards with the section called “fromDF”
to use AWS Glue operations for loading your frame to a target.

Tutorial: Writing a Spark script 1312

https://spark.apache.org/docs/3.1.1/api/python/reference/api/pyspark.sql.DataFrame.html

AWS Glue User Guide

Step 5. Load data into a target

After you transform your data, you typically store the transformed data in a different place from
the source. You perform this operation by creating a target node in the AWS Glue Studio visual
editor.

In this step, you provide the write_dynamic_frame.from_options method a
connection_type, connection_options, format, and format_options to load data into a
target bucket in Amazon S3.

In Step 1, you initialized a GlueContext object. In AWS Glue, this is where you will find methods
that are used to configure targets, much like sources.

In this procedure, you write the following code using write_dynamic_frame.from_options.
This code is a portion of the generated sample script.

S3bucket_node3 = glueContext.write_dynamic_frame.from_options(
 frame=ApplyMapping_node2,
 connection_type="s3",
 format="glueparquet",
 connection_options={"path": "s3://DOC-EXAMPLE-BUCKET", "partitionKeys": []},
 format_options={"compression": "gzip"},
 transformation_ctx="S3bucket_node3",
)

To load data into a target

1. Examine the documentation to find a method to load data into a target Amazon S3 bucket.
These methods are documented in the section called “GlueContext”. Choose the the section
called “write_dynamic_frame_from_options” method. Call this method on glueContext.

Note

Common methods for loading data
write_dynamic_frame.from_options is the most common method used to load
data. It supports all targets that are available in AWS Glue.
If you're writing to a JDBC target defined in an AWS Glue connection, use the the
section called “write_dynamic_frame_from_jdbc_conf” method. AWS Glue connections
store information about how to connect to a data source. This removes the need to

Tutorial: Writing a Spark script 1313

AWS Glue User Guide

provide that information in connection_options. However, you still need to use
connection_options to provide dbtable.
write_dynamic_frame.from_catalog is not a common method for loading data.
This method updates the AWS Glue Data Catalog without updating the underlying
dataset, and is used in combination with other processes that change the underlying
dataset. For more information, see the section called “Updating the schema and
adding new partitions”.

2. Examine the documentation for the section called “write_dynamic_frame_from_options”.
This method requires frame, connection_type, format, connection_options, and
format_options. Call this method on glueContext.

a. Refer to the supplemental documentation about format_options and format to
identify the parameters you need. For an explanation of data formats, see the section
called “Data format options”.

b. Refer to the supplemental documentation about connection_type and
connection_options to identify the parameters you need. For an explanation of
connections, see the section called “Connection parameters”.

c. Provide the necessary parameters to write_dynamic_frame.from_options. This
method has a similar configuration to create_dynamic_frame.from_options.

3. Optional – Provide transformation_ctx to write_dynamic_frame.from_options
to support job bookmarks. You can learn about job bookmarks in the following section, the
section called “Optional - Enable job bookmarks”.

Step 6. Commit the Job object

You initialized a Job object in Step 1. You need to manually conclude its lifecycle at the end of your
script. Certain optional features need this to function properly. This work is done behind the scenes
in AWS Glue Studio.

In this step, call the commit method on the Job object.

In this procedure, you write the following code. This code is a portion of the generated sample
script.

job.commit()

Tutorial: Writing a Spark script 1314

AWS Glue User Guide

To commit the Job object

1. If you have not yet done this, perform the optional steps outlined in previous sections to
include transformation_ctx.

2. Call commit.

Optional - Enable job bookmarks

In every prior step, you have been instructed to set transformation_ctx parameters. This is
related to a feature called job bookmarks.

With job bookmarks, you can save time and money with jobs that run on a recurring basis, against
datasets where previous work can easily be tracked. Job bookmarks track the progress of an
AWS Glue transform across a dataset from previous runs. By tracking where previous runs ended,
AWS Glue can limit its work to rows it hasn't processed before. For more information about job
bookmarks, see the section called “Tracking processed data using job bookmarks”.

To enable job bookmarks, first add the transformation_ctx statements into our provided
functions, as described in the previous examples. Job bookmark state is persisted across runs.
transformation_ctx parameters are keys used to access that state. On their own, these
statements will do nothing. You also need to activate the feature in the configuration for your job.

In this procedure, you enable job bookmarks using the AWS Management Console.

To enable job bookmarks

1. Navigate to the Job details section of your corresponding job.

2. Set Job bookmark to Enable.

Step 7. Run your code as a job

In this step, you run your job to verify that you successfully completed this tutorial. This is done
with the click of a button, as in the AWS Glue Studio visual editor.

To run your code as a job

1. Choose Untitled job on the title bar to edit and set your job name.

Tutorial: Writing a Spark script 1315

AWS Glue User Guide

2. Navigate to the Job details tab. Assign your job an IAM Role. You can use the one created by
the AWS CloudFormation template in the prerequisites for the AWS Glue Studio tutorial. If you
have completed that tutorial, it should be available as AWS Glue StudioRole.

3. Choose Save to save your script.

4. Choose Run to run your job.

5. Navigate to the Runs tab to verify that your job completes.

6. Navigate to DOC-EXAMPLE-BUCKET, the target for write_dynamic_frame.from_options.
Confirm that the output matches your expectations.

For more information about configuring and managing jobs, see the section called “Providing your
own custom scripts”.

More information

Apache Spark libraries and methods are available in AWS Glue scripts. You can look at the Spark
documentation to understand what you can do with those included libraries. For more information,
see the examples section of the Spark source repository.

AWS Glue 2.0+ includes several common Python libraries by default. There are also mechanisms
for loading your own dependencies into an AWS Glue job in a Scala or Python environment. For
information about Python dependencies, see the section called “Python libraries”.

For more examples of how to use AWS Glue features in Python, see the section called “Python
samples”. Scala and Python jobs have feature parity, so our Python examples should give you some
thoughts about how to perform similar work in Scala.

Program AWS Glue ETL scripts in PySpark

You can find Python code examples and utilities for AWS Glue in the AWS Glue samples repository
on the GitHub website.

Using Python with AWS Glue

AWS Glue supports an extension of the PySpark Python dialect for scripting extract, transform, and
load (ETL) jobs. This section describes how to use Python in ETL scripts and with the AWS Glue API.

• Setting up to use Python with AWS Glue

ETL in PySpark 1316

https://github.com/apache/spark/tree/master/examples/src/main/python
https://github.com/awslabs/aws-glue-samples

AWS Glue User Guide

• Calling AWS Glue APIs in Python

• Using Python libraries with AWS Glue

• AWS Glue Python code samples

AWS Glue PySpark extensions

AWS Glue has created the following extensions to the PySpark Python dialect.

• Accessing parameters using getResolvedOptions

• PySpark extension types

• DynamicFrame class

• DynamicFrameCollection class

• DynamicFrameWriter class

• DynamicFrameReader class

• GlueContext class

AWS Glue PySpark transforms

AWS Glue has created the following transform Classes to use in PySpark ETL operations.

• GlueTransform base class

• ApplyMapping class

• DropFields class

• DropNullFields class

• ErrorsAsDynamicFrame class

• FillMissingValues class

• Filter class

• FindIncrementalMatches class

• FindMatches class

• FlatMap class

• Join class

• Map class

ETL in PySpark 1317

AWS Glue User Guide

• MapToCollection class

• mergeDynamicFrame

• Relationalize class

• RenameField class

• ResolveChoice class

• SelectFields class

• SelectFromCollection class

• Spigot class

• SplitFields class

• SplitRows class

• Unbox class

• UnnestFrame class

Setting up to use Python with AWS Glue

Use Python to develop your ETL scripts for Spark jobs. The supported Python versions for ETL jobs
depend on the AWS Glue version of the job. For more information on AWS Glue versions, see the
Glue version job property.

To set up your system for using Python with AWS Glue

Follow these steps to install Python and to be able to invoke the AWS Glue APIs.

1. If you don't already have Python installed, download and install it from the Python.org
download page.

2. Install the AWS Command Line Interface (AWS CLI) as documented in the AWS CLI
documentation.

The AWS CLI is not directly necessary for using Python. However, installing and configuring it is
a convenient way to set up AWS with your account credentials and verify that they work.

3. Install the AWS SDK for Python (Boto 3), as documented in the Boto3 Quickstart .

Boto 3 resource APIs are not yet available for AWS Glue. Currently, only the Boto 3 client APIs
can be used.

For more information about Boto 3, see AWS SDK for Python (Boto3) Getting Started.

ETL in PySpark 1318

https://www.python.org/downloads/
https://www.python.org/downloads/
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

AWS Glue User Guide

You can find Python code examples and utilities for AWS Glue in the AWS Glue samples repository
on the GitHub website.

Calling AWS Glue APIs in Python

Note that Boto 3 resource APIs are not yet available for AWS Glue. Currently, only the Boto 3 client
APIs can be used.

AWS Glue API names in Python

AWS Glue API names in Java and other programming languages are generally CamelCased.
However, when called from Python, these generic names are changed to lowercase, with the parts
of the name separated by underscore characters to make them more "Pythonic". In the AWS Glue
API reference documentation, these Pythonic names are listed in parentheses after the generic
CamelCased names.

However, although the AWS Glue API names themselves are transformed to lowercase, their
parameter names remain capitalized. It is important to remember this, because parameters should
be passed by name when calling AWS Glue APIs, as described in the following section.

Passing and accessing Python parameters in AWS Glue

In Python calls to AWS Glue APIs, it's best to pass parameters explicitly by name. For example:

job = glue.create_job(Name='sample', Role='Glue_DefaultRole',
 Command={'Name': 'glueetl',
 'ScriptLocation': 's3://my_script_bucket/scripts/
my_etl_script.py'})

It is helpful to understand that Python creates a dictionary of the name/value tuples that you
specify as arguments to an ETL script in a Job structure or JobRun structure. Boto 3 then passes
them to AWS Glue in JSON format by way of a REST API call. This means that you cannot rely on
the order of the arguments when you access them in your script.

For example, suppose that you're starting a JobRun in a Python Lambda handler function, and you
want to specify several parameters. Your code might look something like the following:

from datetime import datetime, timedelta

client = boto3.client('glue')

ETL in PySpark 1319

https://github.com/awslabs/aws-glue-samples

AWS Glue User Guide

def lambda_handler(event, context):
 last_hour_date_time = datetime.now() - timedelta(hours = 1)
 day_partition_value = last_hour_date_time.strftime("%Y-%m-%d")
 hour_partition_value = last_hour_date_time.strftime("%-H")

 response = client.start_job_run(
 JobName = 'my_test_Job',
 Arguments = {
 '--day_partition_key': 'partition_0',
 '--hour_partition_key': 'partition_1',
 '--day_partition_value': day_partition_value,
 '--hour_partition_value': hour_partition_value })

To access these parameters reliably in your ETL script, specify them by name using AWS Glue's
getResolvedOptions function and then access them from the resulting dictionary:

import sys
from awsglue.utils import getResolvedOptions

args = getResolvedOptions(sys.argv,
 ['JOB_NAME',
 'day_partition_key',
 'hour_partition_key',
 'day_partition_value',
 'hour_partition_value'])
print "The day partition key is: ", args['day_partition_key']
print "and the day partition value is: ", args['day_partition_value']

If you want to pass an argument that is a nested JSON string, to preserve the parameter value as it
gets passed to your AWS Glue ETL job, you must encode the parameter string before starting the
job run, and then decode the parameter string before referencing it your job script. For example,
consider the following argument string:

glue_client.start_job_run(JobName = "gluejobname", Arguments={
"--my_curly_braces_string": '{"a": {"b": {"c": [{"d": {"e": 42}}]}}}'
})

To pass this parameter correctly, you should encode the argument as a Base64 encoded string.

import base64
...

ETL in PySpark 1320

AWS Glue User Guide

sample_string='{"a": {"b": {"c": [{"d": {"e": 42}}]}}}'
sample_string_bytes = sample_string.encode("ascii")

base64_bytes = base64.b64encode(sample_string_bytes)
base64_string = base64_bytes.decode("ascii")
...
glue_client.start_job_run(JobName = "gluejobname", Arguments={
"--my_curly_braces_string": base64_bytes})
...
sample_string_bytes = base64.b64decode(base64_bytes)
sample_string = sample_string_bytes.decode("ascii")
print(f"Decoded string: {sample_string}")
...

Example: Create and run a job

The following example shows how call the AWS Glue APIs using Python, to create and run an ETL
job.

To create and run a job

1. Create an instance of the AWS Glue client:

import boto3
glue = boto3.client(service_name='glue', region_name='us-east-1',
 endpoint_url='https://glue.us-east-1.amazonaws.com')

2. Create a job. You must use glueetl as the name for the ETL command, as shown in the
following code:

myJob = glue.create_job(Name='sample', Role='Glue_DefaultRole',
 Command={'Name': 'glueetl',
 'ScriptLocation': 's3://my_script_bucket/
scripts/my_etl_script.py'})

3. Start a new run of the job that you created in the previous step:

myNewJobRun = glue.start_job_run(JobName=myJob['Name'])

4. Get the job status:

status = glue.get_job_run(JobName=myJob['Name'], RunId=myNewJobRun['JobRunId'])

ETL in PySpark 1321

AWS Glue User Guide

5. Print the current state of the job run:

print(status['JobRun']['JobRunState'])

Using Python libraries with AWS Glue

AWS Glue lets you install additional Python modules and libraries for use with AWS Glue ETL.

Topics

• Installing additional Python modules with pip in AWS Glue 2.0+

• Including Python files with PySpark native features

• Programming scripts that use visual transforms

• Python modules already provided in AWS Glue

• Zipping libraries for inclusion

• Loading Python libraries in AWS Glue Studio notebooks

• Loading Python libraries in a development endpoint

• Using Python libraries in a job or JobRun

Installing additional Python modules with pip in AWS Glue 2.0+

AWS Glue uses the Python Package Installer (pip3) to install additional modules to be used by AWS
Glue ETL. You can use the --additional-python-modules parameter with a list of comma-
separated Python modules to add a new module or change the version of an existing module.
You can install custom distributions of a library by uploading the distribution to Amazon S3, then
include the path to the Amazon S3 object in your list of modules.

You can pass additional options to pip3 with the --python-modules-installer-option
parameter. For example, you could pass "--upgrade" to upgrade the packages specified by "--
additional-python-modules". For more examples, see Building Python modules from a wheel
for Spark ETL workloads using AWS Glue 2.0 .

If your Python dependencies transitively depend on native, compiled code, you may run against
the following limitation: AWS Glue does not support compiling native code in the job environment.
However, AWS Glue jobs run within an Amazon Linux 2 environment. You may be able to provide
your native dependencies in a compiled form through a Wheel distributable.

ETL in PySpark 1322

https://aws.amazon.com/blogs/big-data/building-python-modules-from-a-wheel-for-spark-etl-workloads-using-aws-glue-2-0/
https://aws.amazon.com/blogs/big-data/building-python-modules-from-a-wheel-for-spark-etl-workloads-using-aws-glue-2-0/

AWS Glue User Guide

For example to update or to add a new scikit-learn module use the following key/value: "--
additional-python-modules", "scikit-learn==0.21.3".

Also, within the --additional-python-modules option you can specify an Amazon S3 path to
a Python wheel module. For example:

--additional-python-modules s3://aws-glue-native-spark/tests/j4.2/ephem-3.7.7.1-cp37-
cp37m-linux_x86_64.whl,s3://aws-glue-native-spark/tests/j4.2/fbprophet-0.6-py3-none-
any.whl,scikit-learn==0.21.3

You specify the --additional-python-modules in the Job parameters field of the AWS Glue
console or by altering the job arguments in the AWS SDK. For more information about setting job
parameters, see the section called “Job parameters”.

Including Python files with PySpark native features

AWS Glue uses PySpark to include Python files in AWS Glue ETL jobs. You will want to use --
additional-python-modules to manage your dependencies when available. You can use the --
extra-py-files job parameter to include Python files. Dependencies must be hosted in Amazon
S3 and the argument value should be a comma delimited list of Amazon S3 paths with no spaces.
This functionality behaves like the Python dependency management you would use with Spark.
For more information on Python dependency management in Spark, see Using PySpark Native
Features page in Apache Spark documentation. --extra-py-files is useful in cases where your
additional code is not packaged, or when you are migrating a Spark program with an existing
toolchain for managing dependencies. For your dependency tooling to be maintainable, you will
have to bundle your dependencies before submitting.

Programming scripts that use visual transforms

When you create a AWS Glue job using the AWS Glue Studio visual interface, you can transform
your data with managed data transform nodes and custom visual transforms. For more information
about managed data transform nodes, see the section called “Editing AWS Glue managed data
transform nodes”. For more information about custom visual transforms, see the section called “
Custom visual transforms ”. Scripts using visual transforms can only be generated when when your
job Language is set to use Python.

When generating a AWS Glue job using visual transforms, AWS Glue Studio will include these
transforms in the runtime environment using the --extra-py-files parameter in the job
configuration. For more information about job parameters, see the section called “Job parameters”.

ETL in PySpark 1323

https://spark.apache.org/docs/latest/api/python/user_guide/python_packaging.html#using-pyspark-native-features
https://spark.apache.org/docs/latest/api/python/user_guide/python_packaging.html#using-pyspark-native-features

AWS Glue User Guide

When making changes to a generated script or runtime environment, you will need to preserve this
job configuration for your script to run successfully.

Python modules already provided in AWS Glue

To change the version of these provided modules, provide new versions with the --additional-
python-modules job parameter.

AWS Glue version 2.0

AWS Glue version 2.0 includes the following Python modules out of the box:

• avro-python3==1.10.0

• awscli==1.27.60

• boto3==1.12.4

• botocore==1.15.4

• certifi==2019.11.28

• chardet==3.0.4

• click==8.1.3

• colorama==0.4.4

• cycler==0.10.0

• Cython==0.29.15

• docutils==0.15.2

• enum34==1.1.9

• fsspec==0.6.2

• idna==2.9

• importlib-metadata==6.0.0

• jmespath==0.9.4

• joblib==0.14.1

• kiwisolver==1.1.0

• matplotlib==3.1.3

• mpmath==1.1.0

• nltk==3.5

ETL in PySpark 1324

AWS Glue User Guide

• numpy==1.18.1

• pandas==1.0.1

• patsy==0.5.1

• pmdarima==1.5.3

• ptvsd==4.3.2

• pyarrow==0.16.0

• pyasn1==0.4.8

• pydevd==1.9.0

• pyhocon==0.3.54

• PyMySQL==0.9.3

• pyparsing==2.4.6

• python-dateutil==2.8.1

• pytz==2019.3

• PyYAML==5.3.1

• regex==2022.10.31

• requests==2.23.0

• rsa==4.7.2

• s3fs==0.4.0

• s3transfer==0.3.3

• scikit-learn==0.22.1

• scipy==1.4.1

• setuptools==45.2.0

• six==1.14.0

• Spark==1.0

• statsmodels==0.11.1

• subprocess32==3.5.4

• sympy==1.5.1

• tbats==1.0.9

• tqdm==4.64.1

ETL in PySpark 1325

AWS Glue User Guide

• typing-extensions==4.4.0

• urllib3==1.25.8

• wheel==0.35.1

• zipp==3.12.0

AWS Glue version 3.0

AWS Glue version 3.0 includes the following Python modules out of the box:,

• aiobotocore==1.4.2

• aiohttp==3.8.3

• aioitertools==0.11.0

• aiosignal==1.3.1

• async-timeout==4.0.2

• asynctest==0.13.0

• attrs==22.2.0

• avro-python3==1.10.2

• boto3==1.18.50

• botocore==1.21.50

• certifi==2021.5.30

• chardet==3.0.4

• charset-normalizer==2.1.1

• click==8.1.3

• cycler==0.10.0

• Cython==0.29.4

• docutils==0.17.1

• enum34==1.1.10

• frozenlist==1.3.3

• fsspec==2021.8.1

• idna==2.10

• importlib-metadata==6.0.0

ETL in PySpark 1326

AWS Glue User Guide

• jmespath==0.10.0

• joblib==1.0.1

• kiwisolver==1.3.2

• matplotlib==3.4.3

• mpmath==1.2.1

• multidict==6.0.4

• nltk==3.6.3

• numpy==1.19.5

• packaging==23.0

• pandas==1.3.2

• patsy==0.5.1

• Pillow==9.4.0

• pip==23.0

• pmdarima==1.8.2

• ptvsd==4.3.2

• pyarrow==5.0.0

• pydevd==2.5.0

• pyhocon==0.3.58

• PyMySQL==1.0.2

• pyparsing==2.4.7

• python-dateutil==2.8.2

• pytz==2021.1

• PyYAML==5.4.1

• regex==2022.10.31

• requests==2.23.0

• s3fs==2021.8.1

• s3transfer==0.5.0

• scikit-learn==0.24.2

• scipy==1.7.1

ETL in PySpark 1327

AWS Glue User Guide

• six==1.16.0

• Spark==1.0

• statsmodels==0.12.2

• subprocess32==3.5.4

• sympy==1.8

• tbats==1.1.0

• threadpoolctl==3.1.0

• tqdm==4.64.1

• typing_extensions==4.4.0

• urllib3==1.25.11

• wheel==0.37.0

• wrapt==1.14.1

• yarl==1.8.2

• zipp==3.12.0

AWS Glue version 4.0

AWS Glue version 4.0 includes the following Python modules out of the box:

• aiobotocore==2.4.1

• aiohttp==3.8.3

• aioitertools==0.11.0

• aiosignal==1.3.1

• async-timeout==4.0.2

• asynctest==0.13.0

• attrs==22.2.0

• avro-python3==1.10.2

• boto3==1.24.70

• botocore==1.27.59

• certifi==2021.5.30

• chardet==3.0.4

ETL in PySpark 1328

AWS Glue User Guide

• charset-normalizer==2.1.1

• click==8.1.3

• cycler==0.10.0

• Cython==0.29.32

• docutils==0.17.1

• enum34==1.1.10

• frozenlist==1.3.3

• fsspec==2021.8.1

• idna==2.10

• importlib-metadata==5.0.0

• jmespath==0.10.0

• joblib==1.0.1

• kaleido==0.2.1

• kiwisolver==1.4.4

• matplotlib==3.4.3

• mpmath==1.2.1

• multidict==6.0.4

• nltk==3.7

• numpy==1.23.5

• packaging==23.0

• pandas==1.5.1

• patsy==0.5.1

• Pillow==9.4.0

• pip==23.0.1

• plotly==5.16.0

• pmdarima==2.0.1

• ptvsd==4.3.2

• pyarrow==10.0.0

• pydevd==2.5.0

• pyhocon==0.3.58

ETL in PySpark 1329

AWS Glue User Guide

• PyMySQL==1.0.2

• pyparsing==2.4.7

• python-dateutil==2.8.2

• pytz==2021.1

• PyYAML==6.0.1

• regex==2022.10.31

• requests==2.23.0

• s3fs==2022.11.0

• s3transfer==0.6.0

• scikit-learn==1.1.3

• scipy==1.9.3

• setuptools==49.1.3

• six==1.16.0

• statsmodels==0.13.5

• subprocess32==3.5.4

• sympy==1.8

• tbats==1.1.0

• threadpoolctl==3.1.0

• tqdm==4.64.1

• typing_extensions==4.4.0

• urllib3==1.25.11

• wheel==0.37.0

• wrapt==1.14.1

• yarl==1.8.2

• zipp==3.10.0

Zipping libraries for inclusion

Unless a library is contained in a single .py file, it should be packaged in a .zip archive. The
package directory should be at the root of the archive, and must contain an __init__.py file for
the package. Python will then be able to import the package in the normal way.

ETL in PySpark 1330

AWS Glue User Guide

If your library only consists of a single Python module in one .py file, you do not need to place it in
a .zip file.

Loading Python libraries in AWS Glue Studio notebooks

To specify Python libraries in AWS Glue Studio notebooks, see Installing additional Python
modules .

Loading Python libraries in a development endpoint

If you are using different library sets for different ETL scripts, you can either set up a separate
development endpoint for each set, or you can overwrite the library .zip file(s) that your
development endpoint loads every time you switch scripts.

You can use the console to specify one or more library .zip files for a development endpoint when
you create it. After assigning a name and an IAM role, choose Script Libraries and job parameters
(optional) and enter the full Amazon S3 path to your library .zip file in the Python library path
box. For example:

s3://bucket/prefix/site-packages.zip

If you want, you can specify multiple full paths to files, separating them with commas but no
spaces, like this:

s3://bucket/prefix/lib_A.zip,s3://bucket_B/prefix/lib_X.zip

If you update these .zip files later, you can use the console to re-import them into your
development endpoint. Navigate to the developer endpoint in question, check the box beside it,
and choose Update ETL libraries from the Action menu.

In a similar way, you can specify library files using the AWS Glue APIs. When you create a
development endpoint by calling CreateDevEndpoint action (Python: create_dev_endpoint), you
can specify one or more full paths to libraries in the ExtraPythonLibsS3Path parameter, in a
call that looks this:

dep = glue.create_dev_endpoint(
 EndpointName="testDevEndpoint",
 RoleArn="arn:aws:iam::123456789012",

ETL in PySpark 1331

https://docs.aws.amazon.com/glue/latest/dg/manage-notebook-sessions.html#specify-default-modules
https://docs.aws.amazon.com/glue/latest/dg/manage-notebook-sessions.html#specify-default-modules

AWS Glue User Guide

 SecurityGroupIds="sg-7f5ad1ff",
 SubnetId="subnet-c12fdba4",
 PublicKey="ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCtp04H/y...",
 NumberOfNodes=3,
 ExtraPythonLibsS3Path="s3://bucket/prefix/lib_A.zip,s3://bucket_B/prefix/
lib_X.zip")

When you update a development endpoint, you can also update the libraries it loads using a
DevEndpointCustomLibraries object and setting the UpdateEtlLibraries parameter to True
when calling UpdateDevEndpoint (update_dev_endpoint).

Using Python libraries in a job or JobRun

When you are creating a new Job on the console, you can specify one or more library .zip files by
choosing Script Libraries and job parameters (optional) and entering the full Amazon S3 library
path(s) in the same way you would when creating a development endpoint:

s3://bucket/prefix/lib_A.zip,s3://bucket_B/prefix/lib_X.zip

If you are calling CreateJob (create_job), you can specify one or more full paths to default libraries
using the --extra-py-files default parameter, like this:

job = glue.create_job(Name='sampleJob',
 Role='Glue_DefaultRole',
 Command={'Name': 'glueetl',
 'ScriptLocation': 's3://my_script_bucket/scripts/
my_etl_script.py'},
 DefaultArguments={'--extra-py-files': 's3://bucket/prefix/
lib_A.zip,s3://bucket_B/prefix/lib_X.zip'})

Then when you are starting a JobRun, you can override the default library setting with a different
one:

runId = glue.start_job_run(JobName='sampleJob',
 Arguments={'--extra-py-files': 's3://bucket/prefix/
lib_B.zip'})

AWS Glue Python code samples

• Code example: Joining and relationalizing data

ETL in PySpark 1332

AWS Glue User Guide

• Code example: Data preparation using ResolveChoice, Lambda, and ApplyMapping

Code example: Joining and relationalizing data

This example uses a dataset that was downloaded from http://everypolitician.org/ to the sample-
dataset bucket in Amazon Simple Storage Service (Amazon S3): s3://awsglue-datasets/
examples/us-legislators/all. The dataset contains data in JSON format about United States
legislators and the seats that they have held in the US House of Representatives and Senate, and
has been modified slightly and made available in a public Amazon S3 bucket for purposes of this
tutorial.

You can find the source code for this example in the join_and_relationalize.py file in the
AWS Glue samples repository on the GitHub website.

Using this data, this tutorial shows you how to do the following:

• Use an AWS Glue crawler to classify objects that are stored in a public Amazon S3 bucket and
save their schemas into the AWS Glue Data Catalog.

• Examine the table metadata and schemas that result from the crawl.

• Write a Python extract, transfer, and load (ETL) script that uses the metadata in the Data Catalog
to do the following:

• Join the data in the different source files together into a single data table (that is, denormalize
the data).

• Filter the joined table into separate tables by type of legislator.

• Write out the resulting data to separate Apache Parquet files for later analysis.

The preferred way to debug Python or PySpark scripts while running on AWS is to use Notebooks
on AWS Glue Studio.

Step 1: Crawl the data in the Amazon S3 bucket

1. Sign in to the AWS Management Console, and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. Following the steps in Configuring a crawler, create a new crawler that can crawl the s3://
awsglue-datasets/examples/us-legislators/all dataset into a database named
legislators in the AWS Glue Data Catalog. The example data is already in this public
Amazon S3 bucket.

ETL in PySpark 1333

http://everypolitician.org/
https://github.com/awslabs/aws-glue-samples
https://docs.aws.amazon.com/glue/latest/ug/notebooks-chapter.html
https://docs.aws.amazon.com/glue/latest/ug/notebooks-chapter.html
https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

3. Run the new crawler, and then check the legislators database.

The crawler creates the following metadata tables:

• persons_json

• memberships_json

• organizations_json

• events_json

• areas_json

• countries_r_json

This is a semi-normalized collection of tables containing legislators and their histories.

Step 2: Add boilerplate script to the development endpoint notebook

Paste the following boilerplate script into the development endpoint notebook to import the AWS
Glue libraries that you need, and set up a single GlueContext:

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

glueContext = GlueContext(SparkContext.getOrCreate())

Step 3: Examine the schemas from the data in the Data Catalog

Next, you can easily create examine a DynamicFrame from the AWS Glue Data Catalog, and
examine the schemas of the data. For example, to see the schema of the persons_json table, add
the following in your notebook:

persons = glueContext.create_dynamic_frame.from_catalog(
 database="legislators",
 table_name="persons_json")
print "Count: ", persons.count()

ETL in PySpark 1334

AWS Glue User Guide

persons.printSchema()

Here's the output from the print calls:

Count: 1961
root
|-- family_name: string
|-- name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- gender: string
|-- image: string
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- other_names: array
| |-- element: struct
| | |-- note: string
| | |-- name: string
| | |-- lang: string
|-- sort_name: string
|-- images: array
| |-- element: struct
| | |-- url: string
|-- given_name: string
|-- birth_date: string
|-- id: string
|-- contact_details: array
| |-- element: struct
| | |-- type: string
| | |-- value: string
|-- death_date: string

Each person in the table is a member of some US congressional body.

To view the schema of the memberships_json table, type the following:

memberships = glueContext.create_dynamic_frame.from_catalog(

ETL in PySpark 1335

AWS Glue User Guide

 database="legislators",
 table_name="memberships_json")
print "Count: ", memberships.count()
memberships.printSchema()

The output is as follows:

Count: 10439
root
|-- area_id: string
|-- on_behalf_of_id: string
|-- organization_id: string
|-- role: string
|-- person_id: string
|-- legislative_period_id: string
|-- start_date: string
|-- end_date: string

The organizations are parties and the two chambers of Congress, the Senate and House of
Representatives. To view the schema of the organizations_json table, type the following:

orgs = glueContext.create_dynamic_frame.from_catalog(
 database="legislators",
 table_name="organizations_json")
print "Count: ", orgs.count()
orgs.printSchema()

The output is as follows:

Count: 13
root
|-- classification: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- image: string
|-- identifiers: array
| |-- element: struct

ETL in PySpark 1336

AWS Glue User Guide

| | |-- scheme: string
| | |-- identifier: string
|-- other_names: array
| |-- element: struct
| | |-- lang: string
| | |-- note: string
| | |-- name: string
|-- id: string
|-- name: string
|-- seats: int
|-- type: string

Step 4: Filter the data

Next, keep only the fields that you want, and rename id to org_id. The dataset is small enough
that you can view the whole thing.

The toDF() converts a DynamicFrame to an Apache Spark DataFrame, so you can apply the
transforms that already exist in Apache Spark SQL:

orgs = orgs.drop_fields(['other_names',
 'identifiers']).rename_field(
 'id', 'org_id').rename_field(
 'name', 'org_name')
orgs.toDF().show()

The following shows the output:

+--------------+--------------------+--------------------+--------------------+-----
+-----------+--------------------+
|classification| org_id| org_name| links|seats|
 type| image|
+--------------+--------------------+--------------------+--------------------+-----
+-----------+--------------------+
| party| party/al| AL| null| null|
 null| null|
| party| party/democrat| Democrat|[[website,http://...| null|
 null|https://upload.wi...|
| party|party/democrat-li...| Democrat-Liberal|[[website,http://...| null|
 null| null|

ETL in PySpark 1337

AWS Glue User Guide

| legislature|d56acebe-8fdc-47b...|House of Represen...| null| 435|
lower house| null|
| party| party/independent| Independent| null| null|
 null| null|
| party|party/new_progres...| New Progressive|[[website,http://...| null|
 null|https://upload.wi...|
| party|party/popular_dem...| Popular Democrat|[[website,http://...| null|
 null| null|
| party| party/republican| Republican|[[website,http://...| null|
 null|https://upload.wi...|
| party|party/republican-...|Republican-Conser...|[[website,http://...| null|
 null| null|
| party| party/democrat| Democrat|[[website,http://...| null|
 null|https://upload.wi...|
| party| party/independent| Independent| null| null|
 null| null|
| party| party/republican| Republican|[[website,http://...| null|
 null|https://upload.wi...|
| legislature|8fa6c3d2-71dc-478...| Senate| null| 100|
upper house| null|
+--------------+--------------------+--------------------+--------------------+-----
+-----------+--------------------+

Type the following to view the organizations that appear in memberships:

memberships.select_fields(['organization_id']).toDF().distinct().show()

The following shows the output:

+--------------------+
| organization_id|
+--------------------+
|d56acebe-8fdc-47b...|
|8fa6c3d2-71dc-478...|
+--------------------+

Step 5: Put it all together

Now, use AWS Glue to join these relational tables and create one full history table of legislator
memberships and their corresponding organizations.

ETL in PySpark 1338

AWS Glue User Guide

1. First, join persons and memberships on id and person_id.

2. Next, join the result with orgs on org_id and organization_id.

3. Then, drop the redundant fields, person_id and org_id.

You can do all these operations in one (extended) line of code:

l_history = Join.apply(orgs,
 Join.apply(persons, memberships, 'id', 'person_id'),
 'org_id', 'organization_id').drop_fields(['person_id',
 'org_id'])
print "Count: ", l_history.count()
l_history.printSchema()

The output is as follows:

Count: 10439
root
|-- role: string
|-- seats: int
|-- org_name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- type: string
|-- sort_name: string
|-- area_id: string
|-- images: array
| |-- element: struct
| | |-- url: string
|-- on_behalf_of_id: string
|-- other_names: array
| |-- element: struct
| | |-- note: string
| | |-- name: string
| | |-- lang: string
|-- contact_details: array
| |-- element: struct
| | |-- type: string

ETL in PySpark 1339

AWS Glue User Guide

| | |-- value: string
|-- name: string
|-- birth_date: string
|-- organization_id: string
|-- gender: string
|-- classification: string
|-- death_date: string
|-- legislative_period_id: string
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- image: string
|-- given_name: string
|-- family_name: string
|-- id: string
|-- start_date: string
|-- end_date: string

You now have the final table that you can use for analysis. You can write it out in a compact,
efficient format for analytics—namely Parquet—that you can run SQL over in AWS Glue, Amazon
Athena, or Amazon Redshift Spectrum.

The following call writes the table across multiple files to support fast parallel reads when doing
analysis later:

glueContext.write_dynamic_frame.from_options(frame = l_history,
 connection_type = "s3",
 connection_options = {"path": "s3://glue-sample-target/output-dir/
legislator_history"},
 format = "parquet")

To put all the history data into a single file, you must convert it to a data frame, repartition it, and
write it out:

s_history = l_history.toDF().repartition(1)
s_history.write.parquet('s3://glue-sample-target/output-dir/legislator_single')

Or, if you want to separate it by the Senate and the House:

ETL in PySpark 1340

AWS Glue User Guide

l_history.toDF().write.parquet('s3://glue-sample-target/output-dir/legislator_part',
 partitionBy=['org_name'])

Step 6: Transform the data for relational databases

AWS Glue makes it easy to write the data to relational databases like Amazon Redshift, even with
semi-structured data. It offers a transform relationalize, which flattens DynamicFrames no
matter how complex the objects in the frame might be.

Using the l_history DynamicFrame in this example, pass in the name of a root
table (hist_root) and a temporary working path to relationalize. This returns a
DynamicFrameCollection. You can then list the names of the DynamicFrames in that
collection:

dfc = l_history.relationalize("hist_root", "s3://glue-sample-target/temp-dir/")
dfc.keys()

The following is the output of the keys call:

[u'hist_root', u'hist_root_contact_details', u'hist_root_links',
 u'hist_root_other_names', u'hist_root_images', u'hist_root_identifiers']

Relationalize broke the history table out into six new tables: a root table that contains a
record for each object in the DynamicFrame, and auxiliary tables for the arrays. Array handling in
relational databases is often suboptimal, especially as those arrays become large. Separating the
arrays into different tables makes the queries go much faster.

Next, look at the separation by examining contact_details:

l_history.select_fields('contact_details').printSchema()
dfc.select('hist_root_contact_details').toDF().where("id = 10 or id =
 75").orderBy(['id','index']).show()

The following is the output of the show call:

ETL in PySpark 1341

AWS Glue User Guide

root
|-- contact_details: array
| |-- element: struct
| | |-- type: string
| | |-- value: string
+---+-----+------------------------+-------------------------+
| id|index|contact_details.val.type|contact_details.val.value|
+---+-----+------------------------+-------------------------+
10	0	fax	
10	1		202-225-1314
10	2	phone	
10	3		202-225-3772
10	4	twitter	
10	5		MikeRossUpdates
75	0	fax	
75	1		202-225-7856
75	2	phone	
75	3		202-225-2711
75	4	twitter	
75	5		SenCapito
+---+-----+------------------------+-------------------------+

The contact_details field was an array of structs in the original DynamicFrame. Each element
of those arrays is a separate row in the auxiliary table, indexed by index. The id here is a foreign
key into the hist_root table with the key contact_details:

dfc.select('hist_root').toDF().where(
 "contact_details = 10 or contact_details = 75").select(
 ['id', 'given_name', 'family_name', 'contact_details']).show()

The following is the output:

+--------------------+----------+-----------+---------------+
| id|given_name|family_name|contact_details|
+--------------------+----------+-----------+---------------+
|f4fc30ee-7b42-432...| Mike| Ross| 10|
|e3c60f34-7d1b-4c0...| Shelley| Capito| 75|
+--------------------+----------+-----------+---------------+

ETL in PySpark 1342

AWS Glue User Guide

Notice in these commands that toDF() and then a where expression are used to filter for the rows
that you want to see.

So, joining the hist_root table with the auxiliary tables lets you do the following:

• Load data into databases without array support.

• Query each individual item in an array using SQL.

Safely store and access your Amazon Redshift credentials with a AWS Glue connection. For
information about how to create your own connection, see Connecting to data.

You are now ready to write your data to a connection by cycling through the DynamicFrames one
at a time:

for df_name in dfc.keys():
 m_df = dfc.select(df_name)
 print "Writing to table: ", df_name
 glueContext.write_dynamic_frame.from_jdbc_conf(frame = m_df, connection settings
 here)

Your connection settings will differ based on your type of relational database:

• For instructions on writing to Amazon Redshift consult the section called “Redshift connections”.

• For other databases, consult Connection types and options for ETL in AWS Glue for Spark.

Conclusion

Overall, AWS Glue is very flexible. It lets you accomplish, in a few lines of code, what normally
would take days to write. You can find the entire source-to-target ETL scripts in the Python file
join_and_relationalize.py in the AWS Glue samples on GitHub.

Code example: Data preparation using ResolveChoice, Lambda, and ApplyMapping

The dataset that is used in this example consists of Medicare Provider payment data that was
downloaded from two Data.CMS.gov data sets: "Inpatient Prospective Payment System Provider
Summary for the Top 100 Diagnosis-Related Groups - FY2011" and "Inpatient Charge Data FY
2011". After downloading the data, we modified the dataset to introduce a couple of erroneous

ETL in PySpark 1343

https://github.com/awslabs/aws-glue-samples
https://data.cms.gov

AWS Glue User Guide

records at the end of the file. This modified file is located in a public Amazon S3 bucket at s3://
awsglue-datasets/examples/medicare/Medicare_Hospital_Provider.csv.

You can find the source code for this example in the data_cleaning_and_lambda.py file in the
AWS Glue examples GitHub repository.

The preferred way to debug Python or PySpark scripts while running on AWS is to use Notebooks
on AWS Glue Studio.

Step 1: Crawl the data in the Amazon S3 bucket

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. Following the process described in Configuring a crawler, create a new crawler
that can crawl the s3://awsglue-datasets/examples/medicare/
Medicare_Hospital_Provider.csv file, and can place the resulting metadata into a
database named payments in the AWS Glue Data Catalog.

3. Run the new crawler, and then check the payments database. You should find that the crawler
has created a metadata table named medicare in the database after reading the beginning of
the file to determine its format and delimiter.

The schema of the new medicare table is as follows:

Column name Data type
==
drg definition string
provider id bigint
provider name string
provider street address string
provider city string
provider state string
provider zip code bigint
hospital referral region description string
total discharges bigint
average covered charges string
average total payments string
average medicare payments string

ETL in PySpark 1344

https://github.com/awslabs/aws-glue-samples
https://docs.aws.amazon.com/glue/latest/ug/notebooks-chapter.html
https://docs.aws.amazon.com/glue/latest/ug/notebooks-chapter.html
https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

Step 2: Add boilerplate script to the development endpoint notebook

Paste the following boilerplate script into the development endpoint notebook to import the AWS
Glue libraries that you need, and set up a single GlueContext:

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

glueContext = GlueContext(SparkContext.getOrCreate())

Step 3: Compare different schema parsings

Next, you can see if the schema that was recognized by an Apache Spark DataFrame is the same as
the one that your AWS Glue crawler recorded. Run this code:

medicare = spark.read.format(
 "com.databricks.spark.csv").option(
 "header", "true").option(
 "inferSchema", "true").load(
 's3://awsglue-datasets/examples/medicare/Medicare_Hospital_Provider.csv')
medicare.printSchema()

Here's the output from the printSchema call:

root
 |-- DRG Definition: string (nullable = true)
 |-- Provider Id: string (nullable = true)
 |-- Provider Name: string (nullable = true)
 |-- Provider Street Address: string (nullable = true)
 |-- Provider City: string (nullable = true)
 |-- Provider State: string (nullable = true)
 |-- Provider Zip Code: integer (nullable = true)
 |-- Hospital Referral Region Description: string (nullable = true)
 |-- Total Discharges : integer (nullable = true)
 |-- Average Covered Charges : string (nullable = true)
 |-- Average Total Payments : string (nullable = true)

ETL in PySpark 1345

AWS Glue User Guide

 |-- Average Medicare Payments: string (nullable = true)

Next, look at the schema that an AWS Glue DynamicFrame generates:

medicare_dynamicframe = glueContext.create_dynamic_frame.from_catalog(
 database = "payments",
 table_name = "medicare")
medicare_dynamicframe.printSchema()

The output from printSchema is as follows:

root
 |-- drg definition: string
 |-- provider id: choice
 | |-- long
 | |-- string
 |-- provider name: string
 |-- provider street address: string
 |-- provider city: string
 |-- provider state: string
 |-- provider zip code: long
 |-- hospital referral region description: string
 |-- total discharges: long
 |-- average covered charges: string
 |-- average total payments: string
 |-- average medicare payments: string

The DynamicFrame generates a schema in which provider id could be either a long or a
string type. The DataFrame schema lists Provider Id as being a string type, and the Data
Catalog lists provider id as being a bigint type.

Which one is correct? There are two records at the end of the file (out of 160,000 records) with
string values in that column. These are the erroneous records that were introduced to illustrate a
problem.

To address this kind of problem, the AWS Glue DynamicFrame introduces the concept of a choice
type. In this case, the DynamicFrame shows that both long and string values can appear in
that column. The AWS Glue crawler missed the string values because it considered only a 2 MB
prefix of the data. The Apache Spark DataFrame considered the whole dataset, but it was forced

ETL in PySpark 1346

AWS Glue User Guide

to assign the most general type to the column, namely string. In fact, Spark often resorts to the
most general case when there are complex types or variations with which it is unfamiliar.

To query the provider id column, resolve the choice type first. You can use the resolveChoice
transform method in your DynamicFrame to convert those string values to long values with a
cast:long option:

medicare_res = medicare_dynamicframe.resolveChoice(specs = [('provider
 id','cast:long')])
medicare_res.printSchema()

The printSchema output is now:

root
 |-- drg definition: string
 |-- provider id: long
 |-- provider name: string
 |-- provider street address: string
 |-- provider city: string
 |-- provider state: string
 |-- provider zip code: long
 |-- hospital referral region description: string
 |-- total discharges: long
 |-- average covered charges: string
 |-- average total payments: string
 |-- average medicare payments: string

Where the value was a string that could not be cast, AWS Glue inserted a null.

Another option is to convert the choice type to a struct, which keeps values of both types.

Next, look at the rows that were anomalous:

medicare_res.toDF().where("'provider id' is NULL").show()

You see the following:

ETL in PySpark 1347

AWS Glue User Guide

+--------------------+-----------+---------------+-----------------------+-------------
+--------------+-----------------+------------------------------------+----------------
+-----------------------+----------------------+-------------------------+
| drg definition|provider id| provider name|provider street address|provider
 city|provider state|provider zip code|hospital referral region description|total
 discharges|average covered charges|average total payments|average medicare payments|
+--------------------+-----------+---------------+-----------------------+-------------
+--------------+-----------------+------------------------------------+----------------
+-----------------------+----------------------+-------------------------+
|948 - SIGNS & SYM...| null| INC| 1050 DIVISION ST|
 MAUSTON| WI| 53948| WI - Madison|
 12| $11961.41| $4619.00| $3775.33|
|948 - SIGNS & SYM...| null| INC- ST JOSEPH| 5000 W CHAMBERS ST|
 MILWAUKEE| WI| 53210| WI - Milwaukee|
 14| $10514.28| $5562.50| $4522.78|
+--------------------+-----------+---------------+-----------------------+-------------
+--------------+-----------------+------------------------------------+----------------
+-----------------------+----------------------+-------------------------+

Now remove the two malformed records, as follows:

medicare_dataframe = medicare_res.toDF()
medicare_dataframe = medicare_dataframe.where("'provider id' is NOT NULL")

Step 4: Map the data and use Apache Spark Lambda functions

AWS Glue does not yet directly support Lambda functions, also known as user-defined functions.
But you can always convert a DynamicFrame to and from an Apache Spark DataFrame to take
advantage of Spark functionality in addition to the special features of DynamicFrames.

Next, turn the payment information into numbers, so analytic engines like Amazon Redshift or
Amazon Athena can do their number crunching faster:

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

chop_f = udf(lambda x: x[1:], StringType())
medicare_dataframe = medicare_dataframe.withColumn(
 "ACC", chop_f(
 medicare_dataframe["average covered charges"])).withColumn(
 "ATP", chop_f(
 medicare_dataframe["average total payments"])).withColumn(
 "AMP", chop_f(

ETL in PySpark 1348

AWS Glue User Guide

 medicare_dataframe["average medicare payments"]))
medicare_dataframe.select(['ACC', 'ATP', 'AMP']).show()

The output from the show call is as follows:

+--------+-------+-------+
| ACC| ATP| AMP|
+--------+-------+-------+
32963.07	5777.24	4763.73
15131.85	5787.57	4976.71
37560.37	5434.95	4453.79
13998.28	5417.56	4129.16
31633.27	5658.33	4851.44
16920.79	6653.80	5374.14
11977.13	5834.74	4761.41
35841.09	8031.12	5858.50
28523.39	6113.38	5228.40
75233.38	5541.05	4386.94
67327.92	5461.57	4493.57
39607.28	5356.28	4408.20
22862.23	5374.65	4186.02
31110.85	5366.23	4376.23
25411.33	5282.93	4383.73
9234.51	5676.55	4509.11
15895.85	5930.11	3972.85
19721.16	6192.54	5179.38
10710.88	4968.00	3898.88
51343.75	5996.00	4962.45
+--------+-------+-------+
only showing top 20 rows

These are all still strings in the data. We can use the powerful apply_mapping transform method
to drop, rename, cast, and nest the data so that other data programming languages and systems
can easily access it:

from awsglue.dynamicframe import DynamicFrame
medicare_tmp_dyf = DynamicFrame.fromDF(medicare_dataframe, glueContext, "nested")
medicare_nest_dyf = medicare_tmp_dyf.apply_mapping([('drg definition', 'string', 'drg',
 'string'),
 ('provider id', 'long', 'provider.id', 'long'),
 ('provider name', 'string', 'provider.name', 'string'),
 ('provider city', 'string', 'provider.city', 'string'),

ETL in PySpark 1349

AWS Glue User Guide

 ('provider state', 'string', 'provider.state', 'string'),
 ('provider zip code', 'long', 'provider.zip', 'long'),
 ('hospital referral region description', 'string','rr', 'string'),
 ('ACC', 'string', 'charges.covered', 'double'),
 ('ATP', 'string', 'charges.total_pay', 'double'),
 ('AMP', 'string', 'charges.medicare_pay', 'double')])
medicare_nest_dyf.printSchema()

The printSchema output is as follows:

root
 |-- drg: string
 |-- provider: struct
 | |-- id: long
 | |-- name: string
 | |-- city: string
 | |-- state: string
 | |-- zip: long
 |-- rr: string
 |-- charges: struct
 | |-- covered: double
 | |-- total_pay: double
 | |-- medicare_pay: double

Turning the data back into a Spark DataFrame, you can show what it looks like now:

medicare_nest_dyf.toDF().show()

The output is as follows:

+--------------------+--------------------+---------------+--------------------+
| drg| provider| rr| charges|
+--------------------+--------------------+---------------+--------------------+
039 - EXTRACRANIA...	[10001,SOUTHEAST ...	AL - Dothan	[32963.07,5777.24...
039 - EXTRACRANIA...	[10005,MARSHALL M...	AL - Birmingham	[15131.85,5787.57...
039 - EXTRACRANIA...	[10006,ELIZA COFF...	AL - Birmingham	[37560.37,5434.95...
039 - EXTRACRANIA...	[10011,ST VINCENT...	AL - Birmingham	[13998.28,5417.56...
039 - EXTRACRANIA...	[10016,SHELBY BAP...	AL - Birmingham	[31633.27,5658.33...
039 - EXTRACRANIA...	[10023,BAPTIST ME...	AL - Montgomery	[16920.79,6653.8,...
039 - EXTRACRANIA...	[10029,EAST ALABA...	AL - Birmingham	[11977.13,5834.74...
039 - EXTRACRANIA...	[10033,UNIVERSITY...	AL - Birmingham	[35841.09,8031.12...
039 - EXTRACRANIA...	[10039,HUNTSVILLE...	AL - Huntsville	[28523.39,6113.38...

ETL in PySpark 1350

AWS Glue User Guide

039 - EXTRACRANIA...	[10040,GADSDEN RE...	AL - Birmingham	[75233.38,5541.05...
039 - EXTRACRANIA...	[10046,RIVERVIEW ...	AL - Birmingham	[67327.92,5461.57...
039 - EXTRACRANIA...	[10055,FLOWERS HO...	AL - Dothan	[39607.28,5356.28...
039 - EXTRACRANIA...	[10056,ST VINCENT...	AL - Birmingham	[22862.23,5374.65...
039 - EXTRACRANIA...	[10078,NORTHEAST ...	AL - Birmingham	[31110.85,5366.23...
039 - EXTRACRANIA...	[10083,SOUTH BALD...	AL - Mobile	[25411.33,5282.93...
039 - EXTRACRANIA...	[10085,DECATUR GE...	AL - Huntsville	[9234.51,5676.55,...
039 - EXTRACRANIA...	[10090,PROVIDENCE...	AL - Mobile	[15895.85,5930.11...
039 - EXTRACRANIA...	[10092,D C H REGI...	AL - Tuscaloosa	[19721.16,6192.54...
039 - EXTRACRANIA...	[10100,THOMAS HOS...	AL - Mobile	[10710.88,4968.0,...
039 - EXTRACRANIA...	[10103,BAPTIST ME...	AL - Birmingham	[51343.75,5996.0,...
+--------------------+--------------------+---------------+--------------------+
only showing top 20 rows

Step 5: Write the data to Apache Parquet

AWS Glue makes it easy to write the data in a format such as Apache Parquet that relational
databases can effectively consume:

glueContext.write_dynamic_frame.from_options(
 frame = medicare_nest_dyf,
 connection_type = "s3",
 connection_options = {"path": "s3://glue-sample-target/output-dir/
medicare_parquet"},
 format = "parquet")

AWS Glue PySpark extensions reference

AWS Glue has created the following extensions to the PySpark Python dialect.

• Accessing parameters using getResolvedOptions

• PySpark extension types

• DynamicFrame class

• DynamicFrameCollection class

• DynamicFrameWriter class

• DynamicFrameReader class

• GlueContext class

ETL in PySpark 1351

AWS Glue User Guide

Accessing parameters using getResolvedOptions

The AWS Glue getResolvedOptions(args, options) utility function gives you access to
the arguments that are passed to your script when you run a job. To use this function, start by
importing it from the AWS Glue utils module, along with the sys module:

import sys
from awsglue.utils import getResolvedOptions

getResolvedOptions(args, options)

• args – The list of arguments contained in sys.argv.

• options – A Python array of the argument names that you want to retrieve.

Example Retrieving arguments passed to a JobRun

Suppose that you created a JobRun in a script, perhaps within a Lambda function:

response = client.start_job_run(
 JobName = 'my_test_Job',
 Arguments = {
 '--day_partition_key': 'partition_0',
 '--hour_partition_key': 'partition_1',
 '--day_partition_value': day_partition_value,
 '--hour_partition_value': hour_partition_value })

To retrieve the arguments that are passed, you can use the getResolvedOptions function as
follows:

import sys
from awsglue.utils import getResolvedOptions

args = getResolvedOptions(sys.argv,
 ['JOB_NAME',
 'day_partition_key',
 'hour_partition_key',
 'day_partition_value',
 'hour_partition_value'])
print "The day-partition key is: ", args['day_partition_key']
print "and the day-partition value is: ", args['day_partition_value']

ETL in PySpark 1352

AWS Glue User Guide

Note that each of the arguments are defined as beginning with two hyphens, then referenced in
the script without the hyphens. The arguments use only underscores, not hyphens. Your arguments
need to follow this convention to be resolved.

PySpark extension types

The types that are used by the AWS Glue PySpark extensions.

DataType

The base class for the other AWS Glue types.

__init__(properties={})

• properties – Properties of the data type (optional).

typeName(cls)

Returns the type of the AWS Glue type class (that is, the class name with "Type" removed from the
end).

• cls – An AWS Glue class instance derived from DataType.

jsonValue()

Returns a JSON object that contains the data type and properties of the class:

 {
 "dataType": typeName,
 "properties": properties
 }

AtomicType and simple derivatives

Inherits from and extends the DataType class, and serves as the base class for all the AWS Glue
atomic data types.

fromJsonValue(cls, json_value)

Initializes a class instance with values from a JSON object.

ETL in PySpark 1353

AWS Glue User Guide

• cls – An AWS Glue type class instance to initialize.

• json_value – The JSON object to load key-value pairs from.

The following types are simple derivatives of the AtomicType class:

• BinaryType – Binary data.

• BooleanType – Boolean values.

• ByteType – A byte value.

• DateType – A datetime value.

• DoubleType – A floating-point double value.

• IntegerType – An integer value.

• LongType – A long integer value.

• NullType – A null value.

• ShortType – A short integer value.

• StringType – A text string.

• TimestampType – A timestamp value (typically in seconds from 1/1/1970).

• UnknownType – A value of unidentified type.

DecimalType(AtomicType)

Inherits from and extends the AtomicType class to represent a decimal number (a number
expressed in decimal digits, as opposed to binary base-2 numbers).

__init__(precision=10, scale=2, properties={})

• precision – The number of digits in the decimal number (optional; the default is 10).

• scale – The number of digits to the right of the decimal point (optional; the default is 2).

• properties – The properties of the decimal number (optional).

EnumType(AtomicType)

Inherits from and extends the AtomicType class to represent an enumeration of valid options.

ETL in PySpark 1354

AWS Glue User Guide

__init__(options)

• options – A list of the options being enumerated.

 collection types

• ArrayType(DataType)

• ChoiceType(DataType)

• MapType(DataType)

• Field(Object)

• StructType(DataType)

• EntityType(DataType)

ArrayType(DataType)

__init__(elementType=UnknownType(), properties={})

• elementType – The type of elements in the array (optional; the default is UnknownType).

• properties – Properties of the array (optional).

ChoiceType(DataType)

__init__(choices=[], properties={})

• choices – A list of possible choices (optional).

• properties – Properties of these choices (optional).

add(new_choice)

Adds a new choice to the list of possible choices.

• new_choice – The choice to add to the list of possible choices.

merge(new_choices)

Merges a list of new choices with the existing list of choices.

ETL in PySpark 1355

AWS Glue User Guide

• new_choices – A list of new choices to merge with existing choices.

MapType(DataType)

__init__(valueType=UnknownType, properties={})

• valueType – The type of values in the map (optional; the default is UnknownType).

• properties – Properties of the map (optional).

Field(Object)

Creates a field object out of an object that derives from DataType.

__init__(name, dataType, properties={})

• name – The name to be assigned to the field.

• dataType – The object to create a field from.

• properties – Properties of the field (optional).

StructType(DataType)

Defines a data structure (struct).

__init__(fields=[], properties={})

• fields – A list of the fields (of type Field) to include in the structure (optional).

• properties – Properties of the structure (optional).

add(field)

• field – An object of type Field to add to the structure.

hasField(field)

Returns True if this structure has a field of the same name, or False if not.

ETL in PySpark 1356

AWS Glue User Guide

• field – A field name, or an object of type Field whose name is used.

getField(field)

• field – A field name or an object of type Field whose name is used. If the structure has a field
of the same name, it is returned.

EntityType(DataType)

__init__(entity, base_type, properties)

This class is not yet implemented.

 other types

• DataSource(object)

• DataSink(object)

DataSource(object)

__init__(j_source, sql_ctx, name)

• j_source – The data source.

• sql_ctx – The SQL context.

• name – The data-source name.

setFormat(format, **options)

• format – The format to set for the data source.

• options – A collection of options to set for the data source. For more information about format
options, see the section called “Data format options”.

getFrame()

Returns a DynamicFrame for the data source.

ETL in PySpark 1357

AWS Glue User Guide

DataSink(object)

__init__(j_sink, sql_ctx)

• j_sink – The sink to create.

• sql_ctx – The SQL context for the data sink.

setFormat(format, **options)

• format – The format to set for the data sink.

• options – A collection of options to set for the data sink. For more information about format
options, see the section called “Data format options”.

setAccumulableSize(size)

• size – The accumulable size to set, in bytes.

writeFrame(dynamic_frame, info="")

• dynamic_frame – The DynamicFrame to write.

• info – Information about the DynamicFrame (optional).

write(dynamic_frame_or_dfc, info="")

Writes a DynamicFrame or a DynamicFrameCollection.

• dynamic_frame_or_dfc – Either a DynamicFrame object or a DynamicFrameCollection
object to be written.

• info – Information about the DynamicFrame or DynamicFrames to be written (optional).

DynamicFrame class

One of the major abstractions in Apache Spark is the SparkSQL DataFrame, which is similar
to the DataFrame construct found in R and Pandas. A DataFrame is similar to a table and

ETL in PySpark 1358

AWS Glue User Guide

supports functional-style (map/reduce/filter/etc.) operations and SQL operations (select, project,
aggregate).

DataFrames are powerful and widely used, but they have limitations with respect to extract,
transform, and load (ETL) operations. Most significantly, they require a schema to be specified
before any data is loaded. SparkSQL addresses this by making two passes over the data—the
first to infer the schema, and the second to load the data. However, this inference is limited and
doesn't address the realities of messy data. For example, the same field might be of a different
type in different records. Apache Spark often gives up and reports the type as string using the
original field text. This might not be correct, and you might want finer control over how schema
discrepancies are resolved. And for large datasets, an additional pass over the source data might be
prohibitively expensive.

To address these limitations, AWS Glue introduces the DynamicFrame. A DynamicFrame is similar
to a DataFrame, except that each record is self-describing, so no schema is required initially.
Instead, AWS Glue computes a schema on-the-fly when required, and explicitly encodes schema
inconsistencies using a choice (or union) type. You can resolve these inconsistencies to make your
datasets compatible with data stores that require a fixed schema.

Similarly, a DynamicRecord represents a logical record within a DynamicFrame. It is like a row
in a Spark DataFrame, except that it is self-describing and can be used for data that does not
conform to a fixed schema. When using AWS Glue with PySpark, you do not typically manipulate
independent DynamicRecords. Rather, you will transform the dataset together through its
DynamicFrame.

You can convert DynamicFrames to and from DataFrames after you resolve any schema
inconsistencies.

 — construction —

• __init__

• fromDF

• toDF

__init__

__init__(jdf, glue_ctx, name)

• jdf – A reference to the data frame in the Java Virtual Machine (JVM).

ETL in PySpark 1359

AWS Glue User Guide

• glue_ctx – A GlueContext class object.

• name – An optional name string, empty by default.

fromDF

fromDF(dataframe, glue_ctx, name)

Converts a DataFrame to a DynamicFrame by converting DataFrame fields to DynamicRecord
fields. Returns the new DynamicFrame.

A DynamicRecord represents a logical record in a DynamicFrame. It is similar to a row in a Spark
DataFrame, except that it is self-describing and can be used for data that does not conform to a
fixed schema.

This function expects columns with duplicated names in your DataFrame to have already been
resolved.

• dataframe – The Apache Spark SQL DataFrame to convert (required).

• glue_ctx – The GlueContext class object that specifies the context for this transform (required).

• name – The name of the resulting DynamicFrame (optional since AWS Glue 3.0).

toDF

toDF(options)

Converts a DynamicFrame to an Apache Spark DataFrame by converting DynamicRecords into
DataFrame fields. Returns the new DataFrame.

A DynamicRecord represents a logical record in a DynamicFrame. It is similar to a row in a Spark
DataFrame, except that it is self-describing and can be used for data that does not conform to a
fixed schema.

• options – A list of options. Specify the target type if you choose the Project and Cast action
type. Examples include the following.

>>>toDF([ResolveOption("a.b.c", "KeepAsStruct")])
>>>toDF([ResolveOption("a.b.c", "Project", DoubleType())])

ETL in PySpark 1360

AWS Glue User Guide

 — information —

• count

• schema

• printSchema

• show

• repartition

• coalesce

count

count() – Returns the number of rows in the underlying DataFrame.

schema

schema() – Returns the schema of this DynamicFrame, or if that is not available, the schema of
the underlying DataFrame.

For more information about the DynamicFrame types that make up this schema, see the section
called “Types”.

printSchema

printSchema() – Prints the schema of the underlying DataFrame.

show

show(num_rows) – Prints a specified number of rows from the underlying DataFrame.

repartition

repartition(numPartitions) – Returns a new DynamicFrame with numPartitions
partitions.

coalesce

coalesce(numPartitions) – Returns a new DynamicFrame with numPartitions partitions.

 — transforms —

• apply_mapping

ETL in PySpark 1361

AWS Glue User Guide

• drop_fields

• filter

• join

• map

• mergeDynamicFrame

• relationalize

• rename_field

• resolveChoice

• select_fields

• spigot

• split_fields

• split_rows

• unbox

• the section called “union”

• unnest

• unnest_ddb_json

• write

apply_mapping

apply_mapping(mappings, transformation_ctx="", info="", stageThreshold=0,
totalThreshold=0)

Applies a declarative mapping to a DynamicFrame and returns a new DynamicFrame with those
mappings applied to the fields that you specify. Unspecified fields are omitted from the new
DynamicFrame.

• mappings – A list of mapping tuples (required). Each consists of: (source column, source type,
target column, target type).

If the source column has a dot "." in the name, you must place backticks "``" around it. For
example, to map this.old.name (string) to thisNewName, you would use the following tuple:

("`this.old.name`", "string", "thisNewName", "string")

ETL in PySpark 1362

AWS Glue User Guide

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string to be associated with error reporting for this transformation (optional).

• stageThreshold – The number of errors encountered during this transformation at which the
process should error out (optional). The default is zero, which indicates that the process should
not error out.

• totalThreshold – The number of errors encountered up to and including this transformation
at which the process should error out (optional). The default is zero, which indicates that the
process should not error out.

Example: Use apply_mapping to rename fields and change field types

The following code example shows how to use the apply_mapping method to rename selected
fields and change field types.

Note

To access the dataset that is used in this example, see Code example: Joining and
relationalizing data and follow the instructions in Step 1: Crawl the data in the Amazon S3
bucket.

Example: Use apply_mapping to reshape source data into
the desired column names and types as a new DynamicFrame

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

Create a DynamicFrame and view its schema
persons = glueContext.create_dynamic_frame.from_catalog(
 database="legislators", table_name="persons_json"
)
print("Schema for the persons DynamicFrame:")
persons.printSchema()

Select and rename fields, change field type

ETL in PySpark 1363

AWS Glue User Guide

print("Schema for the persons_mapped DynamicFrame, created with apply_mapping:")
persons_mapped = persons.apply_mapping(
 [
 ("family_name", "String", "last_name", "String"),
 ("name", "String", "first_name", "String"),
 ("birth_date", "String", "date_of_birth", "Date"),
]
)
persons_mapped.printSchema()

Output

Schema for the persons DynamicFrame:
root
|-- family_name: string
|-- name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- gender: string
|-- image: string
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- other_names: array
| |-- element: struct
| | |-- lang: string
| | |-- note: string
| | |-- name: string
|-- sort_name: string
|-- images: array
| |-- element: struct
| | |-- url: string
|-- given_name: string
|-- birth_date: string
|-- id: string
|-- contact_details: array
| |-- element: struct
| | |-- type: string
| | |-- value: string

ETL in PySpark 1364

AWS Glue User Guide

|-- death_date: string

Schema for the persons_mapped DynamicFrame, created with apply_mapping:
root
|-- last_name: string
|-- first_name: string
|-- date_of_birth: date

drop_fields

drop_fields(paths, transformation_ctx="", info="", stageThreshold=0,
totalThreshold=0)

Calls the FlatMap class transform to remove fields from a DynamicFrame. Returns a new
DynamicFrame with the specified fields dropped.

• paths – A list of strings. Each contains the full path to a field node that you want to drop. You
can use dot notation to specify nested fields. For example, if field first is a child of field name
in the tree, you specify "name.first" for the path.

If a field node has a literal . in the name, you must enclose the name in backticks (`).

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string to be associated with error reporting for this transformation (optional).

• stageThreshold – The number of errors encountered during this transformation at which the
process should error out (optional). The default is zero, which indicates that the process should
not error out.

• totalThreshold – The number of errors encountered up to and including this transformation
at which the process should error out (optional). The default is zero, which indicates that the
process should not error out.

Example: Use drop_fields to remove fields from a DynamicFrame

This code example uses the drop_fields method to remove selected top-level and nested fields
from a DynamicFrame.

Example dataset

ETL in PySpark 1365

AWS Glue User Guide

The example uses the following dataset that is represented by the EXAMPLE-FRIENDS-DATA table
in the code:

{"name": "Sally", "age": 23, "location": {"state": "WY", "county": "Fremont"},
 "friends": []}
{"name": "Varun", "age": 34, "location": {"state": "NE", "county": "Douglas"},
 "friends": [{"name": "Arjun", "age": 3}]}
{"name": "George", "age": 52, "location": {"state": "NY"}, "friends": [{"name":
 "Fred"}, {"name": "Amy", "age": 15}]}
{"name": "Haruki", "age": 21, "location": {"state": "AK", "county": "Denali"}}
{"name": "Sheila", "age": 63, "friends": [{"name": "Nancy", "age": 22}]}

Example code

Example: Use drop_fields to remove top-level and nested fields from a DynamicFrame.
Replace MY-EXAMPLE-DATABASE with your Glue Data Catalog database name.
Replace EXAMPLE-FRIENDS-DATA with your table name.

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

Create a DynamicFrame from Glue Data Catalog
glue_source_database = "MY-EXAMPLE-DATABASE"
glue_source_table = "EXAMPLE-FRIENDS-DATA"

friends = glueContext.create_dynamic_frame.from_catalog(
 database=glue_source_database, table_name=glue_source_table
)
print("Schema for friends DynamicFrame before calling drop_fields:")
friends.printSchema()

Remove location.county, remove friends.age, remove age
friends = friends.drop_fields(paths=["age", "location.county", "friends.age"])
print("Schema for friends DynamicFrame after removing age, county, and friend age:")
friends.printSchema()

ETL in PySpark 1366

AWS Glue User Guide

Output

Schema for friends DynamicFrame before calling drop_fields:
root
|-- name: string
|-- age: int
|-- location: struct
| |-- state: string
| |-- county: string
|-- friends: array
| |-- element: struct
| | |-- name: string
| | |-- age: int

Schema for friends DynamicFrame after removing age, county, and friend age:
root
|-- name: string
|-- location: struct
| |-- state: string
|-- friends: array
| |-- element: struct
| | |-- name: string

filter

filter(f, transformation_ctx="", info="", stageThreshold=0,
totalThreshold=0)

Returns a new DynamicFrame that contains all DynamicRecords within the input
DynamicFrame that satisfy the specified predicate function f.

• f – The predicate function to apply to the DynamicFrame. The function must take a
DynamicRecord as an argument and return True if the DynamicRecord meets the filter
requirements, or False if not (required).

A DynamicRecord represents a logical record in a DynamicFrame. It's similar to a row in a
Spark DataFrame, except that it is self-describing and can be used for data that doesn't conform
to a fixed schema.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string to be associated with error reporting for this transformation (optional).

ETL in PySpark 1367

AWS Glue User Guide

• stageThreshold – The number of errors encountered during this transformation at which the
process should error out (optional). The default is zero, which indicates that the process should
not error out.

• totalThreshold – The number of errors encountered up to and including this transformation
at which the process should error out (optional). The default is zero, which indicates that the
process should not error out.

Example: Use filter to get a filtered selection of fields

This example uses the filter method to create a new DynamicFrame that includes a filtered
selection of another DynamicFrame's fields.

Like the map method, filter takes a function as an argument that gets applied to each record in
the original DynamicFrame. The function takes a record as an input and returns a Boolean value.
If the return value is true, the record gets included in the resulting DynamicFrame. If it's false, the
record is left out.

Note

To access the dataset that is used in this example, see Code example: Data preparation
using ResolveChoice, Lambda, and ApplyMapping and follow the instructions in Step 1:
Crawl the data in the Amazon S3 bucket.

Example: Use filter to create a new DynamicFrame
with a filtered selection of records

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

Create DynamicFrame from Glue Data Catalog
medicare = glueContext.create_dynamic_frame.from_options(
 "s3",
 {
 "paths": [
 "s3://awsglue-datasets/examples/medicare/Medicare_Hospital_Provider.csv"

ETL in PySpark 1368

AWS Glue User Guide

]
 },
 "csv",
 {"withHeader": True},
)

Create filtered DynamicFrame with custom lambda
to filter records by Provider State and Provider City
sac_or_mon = medicare.filter(
 f=lambda x: x["Provider State"] in ["CA", "AL"]
 and x["Provider City"] in ["SACRAMENTO", "MONTGOMERY"]
)

Compare record counts
print("Unfiltered record count: ", medicare.count())
print("Filtered record count: ", sac_or_mon.count())

Output

Unfiltered record count: 163065
Filtered record count: 564

join

join(paths1, paths2, frame2, transformation_ctx="", info="",
stageThreshold=0, totalThreshold=0)

Performs an equality join with another DynamicFrame and returns the resulting DynamicFrame.

• paths1 – A list of the keys in this frame to join.

• paths2 – A list of the keys in the other frame to join.

• frame2 – The other DynamicFrame to join.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string to be associated with error reporting for this transformation (optional).

• stageThreshold – The number of errors encountered during this transformation at which the
process should error out (optional). The default is zero, which indicates that the process should
not error out.

• totalThreshold – The number of errors encountered up to and including this transformation
at which the process should error out (optional). The default is zero, which indicates that the
process should not error out.

ETL in PySpark 1369

AWS Glue User Guide

Example: Use join to combine DynamicFrames

This example uses the join method to perform a join on three DynamicFrames. AWS Glue
performs the join based on the field keys that you provide. The resulting DynamicFrame contains
rows from the two original frames where the specified keys match.

Note that the join transform keeps all fields intact. This means that the fields that you specify to
match appear in the resulting DynamicFrame, even if they're redundant and contain the same keys.
In this example, we use drop_fields to remove these redundant keys after the join.

Note

To access the dataset that is used in this example, see Code example: Joining and
relationalizing data and follow the instructions in Step 1: Crawl the data in the Amazon S3
bucket.

Example: Use join to combine data from three DynamicFrames

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

Load DynamicFrames from Glue Data Catalog
persons = glueContext.create_dynamic_frame.from_catalog(
 database="legislators", table_name="persons_json"
)
memberships = glueContext.create_dynamic_frame.from_catalog(
 database="legislators", table_name="memberships_json"
)
orgs = glueContext.create_dynamic_frame.from_catalog(
 database="legislators", table_name="organizations_json"
)
print("Schema for the persons DynamicFrame:")
persons.printSchema()
print("Schema for the memberships DynamicFrame:")
memberships.printSchema()
print("Schema for the orgs DynamicFrame:")
orgs.printSchema()

ETL in PySpark 1370

AWS Glue User Guide

Join persons and memberships by ID
persons_memberships = persons.join(
 paths1=["id"], paths2=["person_id"], frame2=memberships
)

Rename and drop fields from orgs
to prevent field name collisions with persons_memberships
orgs = (
 orgs.drop_fields(["other_names", "identifiers"])
 .rename_field("id", "org_id")
 .rename_field("name", "org_name")
)

Create final join of all three DynamicFrames
legislators_combined = orgs.join(
 paths1=["org_id"], paths2=["organization_id"], frame2=persons_memberships
).drop_fields(["person_id", "org_id"])

Inspect the schema for the joined data
print("Schema for the new legislators_combined DynamicFrame:")
legislators_combined.printSchema()

Output

Schema for the persons DynamicFrame:
root
|-- family_name: string
|-- name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- gender: string
|-- image: string
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- other_names: array
| |-- element: struct
| | |-- lang: string
| | |-- note: string

ETL in PySpark 1371

AWS Glue User Guide

| | |-- name: string
|-- sort_name: string
|-- images: array
| |-- element: struct
| | |-- url: string
|-- given_name: string
|-- birth_date: string
|-- id: string
|-- contact_details: array
| |-- element: struct
| | |-- type: string
| | |-- value: string
|-- death_date: string

Schema for the memberships DynamicFrame:
root
|-- area_id: string
|-- on_behalf_of_id: string
|-- organization_id: string
|-- role: string
|-- person_id: string
|-- legislative_period_id: string
|-- start_date: string
|-- end_date: string

Schema for the orgs DynamicFrame:
root
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- other_names: array
| |-- element: struct
| | |-- lang: string
| | |-- note: string
| | |-- name: string
|-- id: string
|-- classification: string
|-- name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- image: string

ETL in PySpark 1372

AWS Glue User Guide

|-- seats: int
|-- type: string

Schema for the new legislators_combined DynamicFrame:
root
|-- role: string
|-- seats: int
|-- org_name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- type: string
|-- sort_name: string
|-- area_id: string
|-- images: array
| |-- element: struct
| | |-- url: string
|-- on_behalf_of_id: string
|-- other_names: array
| |-- element: struct
| | |-- note: string
| | |-- name: string
| | |-- lang: string
|-- contact_details: array
| |-- element: struct
| | |-- type: string
| | |-- value: string
|-- name: string
|-- birth_date: string
|-- organization_id: string
|-- gender: string
|-- classification: string
|-- legislative_period_id: string
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- image: string
|-- given_name: string
|-- start_date: string
|-- family_name: string
|-- id: string
|-- death_date: string

ETL in PySpark 1373

AWS Glue User Guide

|-- end_date: string

map

map(f, transformation_ctx="", info="", stageThreshold=0, totalThreshold=0)

Returns a new DynamicFrame that results from applying the specified mapping function to all
records in the original DynamicFrame.

• f – The mapping function to apply to all records in the DynamicFrame. The function must take a
DynamicRecord as an argument and return a new DynamicRecord (required).

A DynamicRecord represents a logical record in a DynamicFrame. It's similar to a row in an
Apache Spark DataFrame, except that it is self-describing and can be used for data that doesn't
conform to a fixed schema.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string that is associated with errors in the transformation (optional).

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out (optional). The default is zero.

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out (optional). The default is zero.

Example: Use map to apply a function to every record in a DynamicFrame

This example shows how to use the map method to apply a function to every record of a
DynamicFrame. Specifically, this example applies a function called MergeAddress to each record
in order to merge several address fields into a single struct type.

Note

To access the dataset that is used in this example, see Code example: Data preparation
using ResolveChoice, Lambda, and ApplyMapping and follow the instructions in Step 1:
Crawl the data in the Amazon S3 bucket.

Example: Use map to combine fields in all records
of a DynamicFrame

ETL in PySpark 1374

AWS Glue User Guide

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

Create a DynamicFrame and view its schema
medicare = glueContext.create_dynamic_frame.from_options(
 "s3",
 {"paths": ["s3://awsglue-datasets/examples/medicare/
Medicare_Hospital_Provider.csv"]},
 "csv",
 {"withHeader": True})
print("Schema for medicare DynamicFrame:")
medicare.printSchema()

Define a function to supply to the map transform
that merges address fields into a single field
def MergeAddress(rec):
 rec["Address"] = {}
 rec["Address"]["Street"] = rec["Provider Street Address"]
 rec["Address"]["City"] = rec["Provider City"]
 rec["Address"]["State"] = rec["Provider State"]
 rec["Address"]["Zip.Code"] = rec["Provider Zip Code"]
 rec["Address"]["Array"] = [rec["Provider Street Address"], rec["Provider City"],
 rec["Provider State"], rec["Provider Zip Code"]]
 del rec["Provider Street Address"]
 del rec["Provider City"]
 del rec["Provider State"]
 del rec["Provider Zip Code"]
 return rec

Use map to apply MergeAddress to every record
mapped_medicare = medicare.map(f = MergeAddress)
print("Schema for mapped_medicare DynamicFrame:")
mapped_medicare.printSchema()

Output

Schema for medicare DynamicFrame:
root

ETL in PySpark 1375

AWS Glue User Guide

|-- DRG Definition: string
|-- Provider Id: string
|-- Provider Name: string
|-- Provider Street Address: string
|-- Provider City: string
|-- Provider State: string
|-- Provider Zip Code: string
|-- Hospital Referral Region Description: string
|-- Total Discharges: string
|-- Average Covered Charges: string
|-- Average Total Payments: string
|-- Average Medicare Payments: string

Schema for mapped_medicare DynamicFrame:
root
|-- Average Total Payments: string
|-- Average Covered Charges: string
|-- DRG Definition: string
|-- Average Medicare Payments: string
|-- Hospital Referral Region Description: string
|-- Address: struct
| |-- Zip.Code: string
| |-- City: string
| |-- Array: array
| | |-- element: string
| |-- State: string
| |-- Street: string
|-- Provider Id: string
|-- Total Discharges: string
|-- Provider Name: string

mergeDynamicFrame

mergeDynamicFrame(stage_dynamic_frame, primary_keys, transformation_ctx =
"", options = {}, info = "", stageThreshold = 0, totalThreshold = 0)

Merges this DynamicFrame with a staging DynamicFrame based on the specified primary keys
to identify records. Duplicate records (records with the same primary keys) are not deduplicated.
If there is no matching record in the staging frame, all records (including duplicates) are retained
from the source. If the staging frame has matching records, the records from the staging frame
overwrite the records in the source in AWS Glue.

• stage_dynamic_frame – The staging DynamicFrame to merge.

ETL in PySpark 1376

AWS Glue User Guide

• primary_keys – The list of primary key fields to match records from the source and staging
dynamic frames.

• transformation_ctx – A unique string that is used to retrieve metadata about the current
transformation (optional).

• options – A string of JSON name-value pairs that provide additional information for this
transformation. This argument is not currently used.

• info – A String. Any string to be associated with errors in this transformation.

• stageThreshold – A Long. The number of errors in the given transformation for which the
processing needs to error out.

• totalThreshold – A Long. The total number of errors up to and including this transformation
for which the processing needs to error out.

This method returns a new DynamicFrame that is obtained by merging this DynamicFrame with
the staging DynamicFrame.

The returned DynamicFrame contains record A in these cases:

• If A exists in both the source frame and the staging frame, then A in the staging frame is
returned.

• If A is in the source table and A.primaryKeys is not in the stagingDynamicFrame, A is not
updated in the staging table.

The source frame and staging frame don't need to have the same schema.

Example: Use mergeDynamicFrame to merge two DynamicFrames based on a primary key

The following code example shows how to use the mergeDynamicFrame method to merge a
DynamicFrame with a "staging" DynamicFrame, based on the primary key id.

Example dataset

The example uses two DynamicFrames from a DynamicFrameCollection called
split_rows_collection. The following is the list of keys in split_rows_collection.

dict_keys(['high', 'low'])

Example code

ETL in PySpark 1377

AWS Glue User Guide

Example: Use mergeDynamicFrame to merge DynamicFrames
based on a set of specified primary keys

from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.transforms import SelectFromCollection

Inspect the original DynamicFrames
frame_low = SelectFromCollection.apply(dfc=split_rows_collection, key="low")
print("Inspect the DynamicFrame that contains rows where ID < 10")
frame_low.toDF().show()

frame_high = SelectFromCollection.apply(dfc=split_rows_collection, key="high")
print("Inspect the DynamicFrame that contains rows where ID > 10")
frame_high.toDF().show()

Merge the DynamicFrames based on the "id" primary key
merged_high_low = frame_high.mergeDynamicFrame(
 stage_dynamic_frame=frame_low, primary_keys=["id"]
)

View the results where the ID is 1 or 20
print("Inspect the merged DynamicFrame that contains the combined rows")
merged_high_low.toDF().where("id = 1 or id= 20").orderBy("id").show()

Output

Inspect the DynamicFrame that contains rows where ID < 10
+---+-----+------------------------+-------------------------+
| id|index|contact_details.val.type|contact_details.val.value|
+---+-----+------------------------+-------------------------+
1	0	fax	202-225-3307
1	1	phone	202-225-5731
2	0	fax	202-225-3307
2	1	phone	202-225-5731
3	0	fax	202-225-3307
3	1	phone	202-225-5731
4	0	fax	202-225-3307
4	1	phone	202-225-5731
5	0	fax	202-225-3307
5	1	phone	202-225-5731
6	0	fax	202-225-3307
6	1	phone	202-225-5731

ETL in PySpark 1378

AWS Glue User Guide

7	0	fax	202-225-3307
7	1	phone	202-225-5731
8	0	fax	202-225-3307
8	1	phone	202-225-5731
9	0	fax	202-225-3307
9	1	phone	202-225-5731
10	0	fax	202-225-6328
10	1	phone	202-225-4576
+---+-----+------------------------+-------------------------+
only showing top 20 rows

Inspect the DynamicFrame that contains rows where ID > 10
+---+-----+------------------------+-------------------------+
| id|index|contact_details.val.type|contact_details.val.value|
+---+-----+------------------------+-------------------------+
11	0	fax	202-225-6328
11	1	phone	202-225-4576
11	2	twitter	RepTrentFranks
12	0	fax	202-225-6328
12	1	phone	202-225-4576
12	2	twitter	RepTrentFranks
13	0	fax	202-225-6328
13	1	phone	202-225-4576
13	2	twitter	RepTrentFranks
14	0	fax	202-225-6328
14	1	phone	202-225-4576
14	2	twitter	RepTrentFranks
15	0	fax	202-225-6328
15	1	phone	202-225-4576
15	2	twitter	RepTrentFranks
16	0	fax	202-225-6328
16	1	phone	202-225-4576
16	2	twitter	RepTrentFranks
17	0	fax	202-225-6328
17	1	phone	202-225-4576
+---+-----+------------------------+-------------------------+
only showing top 20 rows

Inspect the merged DynamicFrame that contains the combined rows
+---+-----+------------------------+-------------------------+
| id|index|contact_details.val.type|contact_details.val.value|
+---+-----+------------------------+-------------------------+
| 1| 0| fax| 202-225-3307|
| 1| 1| phone| 202-225-5731|

ETL in PySpark 1379

AWS Glue User Guide

20	0	fax	202-225-5604
20	1	phone	202-225-6536
20	2	twitter	USRepLong
+---+-----+------------------------+-------------------------+

relationalize

relationalize(root_table_name, staging_path, options,
transformation_ctx="", info="", stageThreshold=0, totalThreshold=0)

Converts a DynamicFrame into a form that fits within a relational database. Relationalizing a
DynamicFrame is especially useful when you want to move data from a NoSQL environment like
DynamoDB into a relational database like MySQL.

The transform generates a list of frames by unnesting nested columns and pivoting array columns.
You can join the pivoted array columns to the root table by using the join key that is generated
during the unnest phase.

• root_table_name – The name for the root table.

• staging_path – The path where the method can store partitions of pivoted tables in CSV
format (optional). Pivoted tables are read back from this path.

• options – A dictionary of optional parameters.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string to be associated with error reporting for this transformation (optional).

• stageThreshold – The number of errors encountered during this transformation at which the
process should error out (optional). The default is zero, which indicates that the process should
not error out.

• totalThreshold – The number of errors encountered up to and including this transformation
at which the process should error out (optional). The default is zero, which indicates that the
process should not error out.

Example: Use relationalize to flatten a nested schema in a DynamicFrame

This code example uses the relationalize method to flatten a nested schema into a form that
fits into a relational database.

Example dataset

ETL in PySpark 1380

AWS Glue User Guide

The example uses a DynamicFrame called legislators_combined with the following
schema. legislators_combined has multiple nested fields such as links, images, and
contact_details, which will be flattened by the relationalize transform.

root
|-- role: string
|-- seats: int
|-- org_name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- type: string
|-- sort_name: string
|-- area_id: string
|-- images: array
| |-- element: struct
| | |-- url: string
|-- on_behalf_of_id: string
|-- other_names: array
| |-- element: struct
| | |-- note: string
| | |-- name: string
| | |-- lang: string
|-- contact_details: array
| |-- element: struct
| | |-- type: string
| | |-- value: string
|-- name: string
|-- birth_date: string
|-- organization_id: string
|-- gender: string
|-- classification: string
|-- legislative_period_id: string
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- image: string
|-- given_name: string
|-- start_date: string
|-- family_name: string
|-- id: string

ETL in PySpark 1381

AWS Glue User Guide

|-- death_date: string
|-- end_date: string

Example code

Example: Use relationalize to flatten
a nested schema into a format that fits
into a relational database.
Replace DOC-EXAMPLE-S3-BUCKET/tmpDir with your own location.

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

Apply relationalize and inspect new tables
legislators_relationalized = legislators_combined.relationalize(
 "l_root", "s3://DOC-EXAMPLE-BUCKET/tmpDir"
)
legislators_relationalized.keys()

Compare the schema of the contact_details
nested field to the new relationalized table that
represents it
legislators_combined.select_fields("contact_details").printSchema()
legislators_relationalized.select("l_root_contact_details").toDF().where(
 "id = 10 or id = 75"
).orderBy(["id", "index"]).show()

Output

The following output lets you compare the schema of the nested field called contact_details
to the table that the relationalize transform created. Notice that the table records link back to
the main table using a foreign key called id and an index column that represents the positions of
the array.

dict_keys(['l_root', 'l_root_images', 'l_root_links', 'l_root_other_names',
 'l_root_contact_details', 'l_root_identifiers'])

root

ETL in PySpark 1382

AWS Glue User Guide

|-- contact_details: array
| |-- element: struct
| | |-- type: string
| | |-- value: string

+---+-----+------------------------+-------------------------+
| id|index|contact_details.val.type|contact_details.val.value|
+---+-----+------------------------+-------------------------+
10	0	fax	202-225-4160
10	1	phone	202-225-3436
75	0	fax	202-225-6791
75	1	phone	202-225-2861
75	2	twitter	RepSamFarr
+---+-----+------------------------+-------------------------+

rename_field

rename_field(oldName, newName, transformation_ctx="", info="",
stageThreshold=0, totalThreshold=0)

Renames a field in this DynamicFrame and returns a new DynamicFrame with the field renamed.

• oldName – The full path to the node you want to rename.

If the old name has dots in it, RenameField doesn't work unless you place backticks around it
(`). For example, to replace this.old.name with thisNewName, you would call rename_field as
follows.

newDyF = oldDyF.rename_field("`this.old.name`", "thisNewName")

• newName – The new name, as a full path.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string to be associated with error reporting for this transformation (optional).

• stageThreshold – The number of errors encountered during this transformation at which the
process should error out (optional). The default is zero, which indicates that the process should
not error out.

• totalThreshold – The number of errors encountered up to and including this transformation
at which the process should error out (optional). The default is zero, which indicates that the
process should not error out.

ETL in PySpark 1383

AWS Glue User Guide

Example: Use rename_field to rename fields in a DynamicFrame

This code example uses the rename_field method to rename fields in a DynamicFrame. Notice
that the example uses method chaining to rename multiple fields at the same time.

Note

To access the dataset that is used in this example, see Code example: Joining and
relationalizing data and follow the instructions in Step 1: Crawl the data in the Amazon S3
bucket.

Example code

Example: Use rename_field to rename fields
in a DynamicFrame

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

Inspect the original orgs schema
orgs = glueContext.create_dynamic_frame.from_catalog(
 database="legislators", table_name="organizations_json"
)
print("Original orgs schema: ")
orgs.printSchema()

Rename fields and view the new schema
orgs = orgs.rename_field("id", "org_id").rename_field("name", "org_name")
print("New orgs schema with renamed fields: ")
orgs.printSchema()

Output

Original orgs schema:
root
|-- identifiers: array
| |-- element: struct

ETL in PySpark 1384

AWS Glue User Guide

| | |-- scheme: string
| | |-- identifier: string
|-- other_names: array
| |-- element: struct
| | |-- lang: string
| | |-- note: string
| | |-- name: string
|-- id: string
|-- classification: string
|-- name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- image: string
|-- seats: int
|-- type: string

New orgs schema with renamed fields:
root
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- other_names: array
| |-- element: struct
| | |-- lang: string
| | |-- note: string
| | |-- name: string
|-- classification: string
|-- org_id: string
|-- org_name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- image: string
|-- seats: int
|-- type: string

ETL in PySpark 1385

AWS Glue User Guide

resolveChoice

resolveChoice(specs = None, choice = "" , database = None , table_name =
None , transformation_ctx="", info="", stageThreshold=0, totalThreshold=0,
catalog_id = None)

Resolves a choice type within this DynamicFrame and returns the new DynamicFrame.

• specs – A list of specific ambiguities to resolve, each in the form of a tuple: (field_path,
action).

There are two ways to use resolveChoice. The first is to use the specs argument to specify a
sequence of specific fields and how to resolve them. The other mode for resolveChoice is to
use the choice argument to specify a single resolution for all ChoiceTypes.

Values for specs are specified as tuples made up of (field_path, action) pairs. The
field_path value identifies a specific ambiguous element, and the action value identifies the
corresponding resolution. The following are the possible actions:

• cast:type – Attempts to cast all values to the specified type. For example: cast:int.

• make_cols – Converts each distinct type to a column with the name columnName_type. It
resolves a potential ambiguity by flattening the data. For example, if columnA could be an
int or a string, the resolution would be to produce two columns named columnA_int and
columnA_string in the resulting DynamicFrame.

• make_struct – Resolves a potential ambiguity by using a struct to represent the data. For
example, if data in a column could be an int or a string, the make_struct action produces
a column of structures in the resulting DynamicFrame. Each structure contains both an int
and a string.

• project:type – Resolves a potential ambiguity by projecting all the data to one of the
possible data types. For example, if data in a column could be an int or a string, using a
project:string action produces a column in the resulting DynamicFrame where all the
int values have been converted to strings.

If the field_path identifies an array, place empty square brackets after the name of the array
to avoid ambiguity. For example, suppose you are working with data structured as follows:

"myList": [
 { "price": 100.00 },
 { "price": "$100.00" }

ETL in PySpark 1386

AWS Glue User Guide

]

You can select the numeric rather than the string version of the price by setting the field_path
to "myList[].price", and setting the action to "cast:double".

Note

You can only use one of the specs and choice parameters. If the specs parameter
is not None, then the choice parameter must be an empty string. Conversely, if the
choice is not an empty string, then the specs parameter must be None.

• choice – Specifies a single resolution for all ChoiceTypes. You can use this in cases where
the complete list of ChoiceTypes is unknown before runtime. In addition to the actions listed
previously for specs, this argument also supports the following action:

• match_catalog – Attempts to cast each ChoiceType to the corresponding type in the
specified Data Catalog table.

• database – The Data Catalog database to use with the match_catalog action.

• table_name – The Data Catalog table to use with the match_catalog action.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string to be associated with error reporting for this transformation (optional).

• stageThreshold – The number of errors encountered during this transformation at which the
process should error out (optional). The default is zero, which indicates that the process should
not error out.

• totalThreshold – The number of errors encountered up to and including this transformation
at which the process should error out (optional).The default is zero, which indicates that the
process should not error out.

• catalog_id – The catalog ID of the Data Catalog being accessed (the account ID of the Data
Catalog). When set to None (default value), it uses the catalog ID of the calling account.

Example: Use resolveChoice to handle a column that contains multiple types

This code example uses the resolveChoice method to specify how to handle a DynamicFrame
column that contains values of multiple types. The example demonstrates two common ways to
handle a column with different types:

• Cast the column to a single data type.

ETL in PySpark 1387

AWS Glue User Guide

• Retain all types in separate columns.

Example dataset

Note

To access the dataset that is used in this example, see Code example: Data preparation
using ResolveChoice, Lambda, and ApplyMapping and follow the instructions in Step 1:
Crawl the data in the Amazon S3 bucket.

The example uses a DynamicFrame called medicare with the following schema:

root
|-- drg definition: string
|-- provider id: choice
| |-- long
| |-- string
|-- provider name: string
|-- provider street address: string
|-- provider city: string
|-- provider state: string
|-- provider zip code: long
|-- hospital referral region description: string
|-- total discharges: long
|-- average covered charges: string
|-- average total payments: string
|-- average medicare payments: string

Example code

Example: Use resolveChoice to handle
a column that contains multiple types

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

ETL in PySpark 1388

AWS Glue User Guide

Load the input data and inspect the "provider id" column
medicare = glueContext.create_dynamic_frame.from_catalog(
 database="payments", table_name="medicare_hospital_provider_csv"
)
print("Inspect the provider id column:")
medicare.toDF().select("provider id").show()

Cast provider id to type long
medicare_resolved_long = medicare.resolveChoice(specs=[("provider id", "cast:long")])
print("Schema after casting provider id to type long:")
medicare_resolved_long.printSchema()
medicare_resolved_long.toDF().select("provider id").show()

Create separate columns
for each provider id type
medicare_resolved_cols = medicare.resolveChoice(choice="make_cols")
print("Schema after creating separate columns for each type:")
medicare_resolved_cols.printSchema()
medicare_resolved_cols.toDF().select("provider id_long", "provider id_string").show()

Output

Inspect the 'provider id' column:
+-----------+
|provider id|
+-----------+
| [10001,]|
| [10005,]|
| [10006,]|
| [10011,]|
| [10016,]|
| [10023,]|
| [10029,]|
| [10033,]|
| [10039,]|
| [10040,]|
| [10046,]|
| [10055,]|
| [10056,]|
| [10078,]|
| [10083,]|
| [10085,]|
| [10090,]|

ETL in PySpark 1389

AWS Glue User Guide

| [10092,]|
| [10100,]|
| [10103,]|
+-----------+
only showing top 20 rows

Schema after casting 'provider id' to type long:
root
|-- drg definition: string
|-- provider id: long
|-- provider name: string
|-- provider street address: string
|-- provider city: string
|-- provider state: string
|-- provider zip code: long
|-- hospital referral region description: string
|-- total discharges: long
|-- average covered charges: string
|-- average total payments: string
|-- average medicare payments: string

+-----------+
|provider id|
+-----------+
| 10001|
| 10005|
| 10006|
| 10011|
| 10016|
| 10023|
| 10029|
| 10033|
| 10039|
| 10040|
| 10046|
| 10055|
| 10056|
| 10078|
| 10083|
| 10085|
| 10090|
| 10092|
| 10100|
| 10103|

ETL in PySpark 1390

AWS Glue User Guide

+-----------+
only showing top 20 rows

Schema after creating separate columns for each type:
root
|-- drg definition: string
|-- provider id_string: string
|-- provider id_long: long
|-- provider name: string
|-- provider street address: string
|-- provider city: string
|-- provider state: string
|-- provider zip code: long
|-- hospital referral region description: string
|-- total discharges: long
|-- average covered charges: string
|-- average total payments: string
|-- average medicare payments: string

+----------------+------------------+
|provider id_long|provider id_string|
+----------------+------------------+
10001	null
10005	null
10006	null
10011	null
10016	null
10023	null
10029	null
10033	null
10039	null
10040	null
10046	null
10055	null
10056	null
10078	null
10083	null
10085	null
10090	null
10092	null
10100	null
10103	null
+----------------+------------------+
only showing top 20 rows

ETL in PySpark 1391

AWS Glue User Guide

select_fields

select_fields(paths, transformation_ctx="", info="", stageThreshold=0,
totalThreshold=0)

Returns a new DynamicFrame that contains the selected fields.

• paths – A list of strings. Each string is a path to a top-level node that you want to select.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string to be associated with error reporting for this transformation (optional).

• stageThreshold – The number of errors encountered during this transformation at which the
process should error out (optional). The default is zero, which indicates that the process should
not error out.

• totalThreshold – The number of errors encountered up to and including this transformation
at which the process should error out (optional). The default is zero, which indicates that the
process should not error out.

Example: Use select_fields to create a new DynamicFrame with chosen fields

The following code example shows how to use the select_fields method to create a new
DynamicFrame with a chosen list of fields from an existing DynamicFrame.

Note

To access the dataset that is used in this example, see Code example: Joining and
relationalizing data and follow the instructions in Step 1: Crawl the data in the Amazon S3
bucket.

Example: Use select_fields to select specific fields from a DynamicFrame

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Create GlueContext
sc = SparkContext.getOrCreate()

ETL in PySpark 1392

AWS Glue User Guide

glueContext = GlueContext(sc)

Create a DynamicFrame and view its schema
persons = glueContext.create_dynamic_frame.from_catalog(
 database="legislators", table_name="persons_json"
)
print("Schema for the persons DynamicFrame:")
persons.printSchema()

Create a new DynamicFrame with chosen fields
names = persons.select_fields(paths=["family_name", "given_name"])
print("Schema for the names DynamicFrame, created with select_fields:")
names.printSchema()
names.toDF().show()

Output

Schema for the persons DynamicFrame:
root
|-- family_name: string
|-- name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- gender: string
|-- image: string
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- other_names: array
| |-- element: struct
| | |-- lang: string
| | |-- note: string
| | |-- name: string
|-- sort_name: string
|-- images: array
| |-- element: struct
| | |-- url: string
|-- given_name: string
|-- birth_date: string
|-- id: string

ETL in PySpark 1393

AWS Glue User Guide

|-- contact_details: array
| |-- element: struct
| | |-- type: string
| | |-- value: string
|-- death_date: string

Schema for the names DynamicFrame:
root
|-- family_name: string
|-- given_name: string

+-----------+----------+
|family_name|given_name|
+-----------+----------+
Collins	Michael
Huizenga	Bill
Clawson	Curtis
Solomon	Gerald
Rigell	Edward
Crapo	Michael
Hutto	Earl
Ertel	Allen
Minish	Joseph
Andrews	Robert
Walden	Greg
Kazen	Abraham
Turner	Michael
Kolbe	James
Lowenthal	Alan
Capuano	Michael
Schrader	Kurt
Nadler	Jerrold
Graves	Tom
McMillan	John
+-----------+----------+
only showing top 20 rows

simplify_ddb_json

simplify_ddb_json(): DynamicFrame

Simplifies nested columns in a DynamicFrame that are specifically in the DynamoDB JSON
structure, and returns a new simplified DynamicFrame. If there’re multiple types or Map type

ETL in PySpark 1394

AWS Glue User Guide

in a List type, the elements in the List will not be simplified. Note that this is a specific type of
transform that behaves differently from the regular unnest transform and requires the data to
already be in the DynamoDB JSON structure. For more information, see DynamoDB JSON.

For example, the schema of a reading an export with the DynamoDB JSON structure might look
like the following:

root
|-- Item: struct
| |-- parentMap: struct
| | |-- M: struct
| | | |-- childMap: struct
| | | | |-- M: struct
| | | | | |-- appName: struct
| | | | | | |-- S: string
| | | | | |-- packageName: struct
| | | | | | |-- S: string
| | | | | |-- updatedAt: struct
| | | | | | |-- N: string
| |-- strings: struct
| | |-- SS: array
| | | |-- element: string
| |-- numbers: struct
| | |-- NS: array
| | | |-- element: string
| |-- binaries: struct
| | |-- BS: array
| | | |-- element: string
| |-- isDDBJson: struct
| | |-- BOOL: boolean
| |-- nullValue: struct
| | |-- NULL: boolean

The simplify_ddb_json() transform would convert this to:

root
|-- parentMap: struct
| |-- childMap: struct
| | |-- appName: string
| | |-- packageName: string
| | |-- updatedAt: string
|-- strings: array

ETL in PySpark 1395

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataExport.Output.html#DataExport.Output.Data

AWS Glue User Guide

| |-- element: string
|-- numbers: array
| |-- element: string
|-- binaries: array
| |-- element: string
|-- isDDBJson: boolean
|-- nullValue: null

Example: Use simplify_ddb_json to invoke a DynamoDB JSON simplify

This code example uses the simplify_ddb_json method to use the AWS Glue DynamoDB export
connector, invoke a DynamoDB JSON simplify, and print the number of partitions.

Example code

from pyspark.context import SparkContext
from awsglue.context import GlueContext

sc = SparkContext()
glueContext = GlueContext(sc)

dynamicFrame = glueContext.create_dynamic_frame.from_options(
 connection_type = "dynamodb",
 connection_options = {
 'dynamodb.export': 'ddb',
 'dynamodb.tableArn': '<table arn>',
 'dynamodb.s3.bucket': '<bucket name>',
 'dynamodb.s3.prefix': '<bucket prefix>',
 'dynamodb.s3.bucketOwner': '<account_id of bucket>'
 }
)
simplified = dynamicFrame.simplify_ddb_json()
print(simplified.getNumPartitions())

spigot

spigot(path, options={})

Writes sample records to a specified destination to help you verify the transformations performed
by your job.

• path – The path of the destination to write to (required).

ETL in PySpark 1396

AWS Glue User Guide

• options – Key-value pairs that specify options (optional). The "topk" option specifies that the
first k records should be written. The "prob" option specifies the probability (as a decimal) of
choosing any given record. You can use it in selecting records to write.

• transformation_ctx – A unique string that is used to identify state information (optional).

Example: Use spigot to write sample fields from a DynamicFrame to Amazon S3

This code example uses the spigot method to write sample records to an Amazon S3 bucket after
applying the select_fields transform.

Example dataset

Note

To access the dataset that is used in this example, see Code example: Joining and
relationalizing data and follow the instructions in Step 1: Crawl the data in the Amazon S3
bucket.

The example uses a DynamicFrame called persons with the following schema:

root
|-- family_name: string
|-- name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- gender: string
|-- image: string
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- other_names: array
| |-- element: struct
| | |-- lang: string
| | |-- note: string
| | |-- name: string
|-- sort_name: string
|-- images: array

ETL in PySpark 1397

AWS Glue User Guide

| |-- element: struct
| | |-- url: string
|-- given_name: string
|-- birth_date: string
|-- id: string
|-- contact_details: array
| |-- element: struct
| | |-- type: string
| | |-- value: string
|-- death_date: string

Example code

Example: Use spigot to write sample records
to a destination during a transformation
from pyspark.context import SparkContext.
Replace DOC-EXAMPLE-BUCKET with your own location.

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

Load table data into a DynamicFrame
persons = glueContext.create_dynamic_frame.from_catalog(
 database="legislators", table_name="persons_json"
)

Perform the select_fields on the DynamicFrame
persons = persons.select_fields(paths=["family_name", "given_name", "birth_date"])

Use spigot to write a sample of the transformed data
(the first 10 records)
spigot_output = persons.spigot(
 path="s3://DOC-EXAMPLE-BUCKET", options={"topk": 10}
)

Output

The following is an example of the data that spigot writes to Amazon S3. Because the example
code specified options={"topk": 10}, the sample data contains the first 10 records.

ETL in PySpark 1398

AWS Glue User Guide

{"family_name":"Collins","given_name":"Michael","birth_date":"1944-10-15"}
{"family_name":"Huizenga","given_name":"Bill","birth_date":"1969-01-31"}
{"family_name":"Clawson","given_name":"Curtis","birth_date":"1959-09-28"}
{"family_name":"Solomon","given_name":"Gerald","birth_date":"1930-08-14"}
{"family_name":"Rigell","given_name":"Edward","birth_date":"1960-05-28"}
{"family_name":"Crapo","given_name":"Michael","birth_date":"1951-05-20"}
{"family_name":"Hutto","given_name":"Earl","birth_date":"1926-05-12"}
{"family_name":"Ertel","given_name":"Allen","birth_date":"1937-11-07"}
{"family_name":"Minish","given_name":"Joseph","birth_date":"1916-09-01"}
{"family_name":"Andrews","given_name":"Robert","birth_date":"1957-08-04"}

split_fields

split_fields(paths, name1, name2, transformation_ctx="", info="",
stageThreshold=0, totalThreshold=0)

Returns a new DynamicFrameCollection that contains two DynamicFrames. The first
DynamicFrame contains all the nodes that have been split off, and the second contains the nodes
that remain.

• paths – A list of strings, each of which is a full path to a node that you want to split into a new
DynamicFrame.

• name1 – A name string for the DynamicFrame that is split off.

• name2 – A name string for the DynamicFrame that remains after the specified nodes have been
split off.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string to be associated with error reporting for this transformation (optional).

• stageThreshold – The number of errors encountered during this transformation at which the
process should error out (optional). The default is zero, which indicates that the process should
not error out.

• totalThreshold – The number of errors encountered up to and including this transformation
at which the process should error out (optional). The default is zero, which indicates that the
process should not error out.

ETL in PySpark 1399

AWS Glue User Guide

Example: Use split_fields to split selected fields into a separate DynamicFrame

This code example uses the split_fields method to split a list of specified fields into a separate
DynamicFrame.

Example dataset

The example uses a DynamicFrame called l_root_contact_details that is from a collection
named legislators_relationalized.

l_root_contact_details has the following schema and entries.

root
|-- id: long
|-- index: int
|-- contact_details.val.type: string
|-- contact_details.val.value: string

+---+-----+------------------------+-------------------------+
| id|index|contact_details.val.type|contact_details.val.value|
+---+-----+------------------------+-------------------------+
1	0	phone	202-225-5265
1	1	twitter	kathyhochul
2	0	phone	202-225-3252
2	1	twitter	repjackyrosen
3	0	fax	202-225-1314
3	1	phone	202-225-3772
...

Example code

Example: Use split_fields to split selected
fields into a separate DynamicFrame

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

Load the input DynamicFrame and inspect its schema
frame_to_split = legislators_relationalized.select("l_root_contact_details")

ETL in PySpark 1400

AWS Glue User Guide

print("Inspect the input DynamicFrame schema:")
frame_to_split.printSchema()

Split id and index fields into a separate DynamicFrame
split_fields_collection = frame_to_split.split_fields(["id", "index"], "left", "right")

Inspect the resulting DynamicFrames
print("Inspect the schemas of the DynamicFrames created with split_fields:")
split_fields_collection.select("left").printSchema()
split_fields_collection.select("right").printSchema()

Output

Inspect the input DynamicFrame's schema:
root
|-- id: long
|-- index: int
|-- contact_details.val.type: string
|-- contact_details.val.value: string

Inspect the schemas of the DynamicFrames created with split_fields:
root
|-- id: long
|-- index: int

root
|-- contact_details.val.type: string
|-- contact_details.val.value: string

split_rows

split_rows(comparison_dict, name1, name2, transformation_ctx="", info="",
stageThreshold=0, totalThreshold=0)

Splits one or more rows in a DynamicFrame off into a new DynamicFrame.

The method returns a new DynamicFrameCollection that contains two DynamicFrames. The
first DynamicFrame contains all the rows that have been split off, and the second contains the
rows that remain.

• comparison_dict – A dictionary where the key is a path to a column, and the value is another
dictionary for mapping comparators to values that the column values are compared to. For

ETL in PySpark 1401

AWS Glue User Guide

example, {"age": {">": 10, "<": 20}} splits off all rows whose value in the age column is
greater than 10 and less than 20.

• name1 – A name string for the DynamicFrame that is split off.

• name2 – A name string for the DynamicFrame that remains after the specified nodes have been
split off.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string to be associated with error reporting for this transformation (optional).

• stageThreshold – The number of errors encountered during this transformation at which the
process should error out (optional). The default is zero, which indicates that the process should
not error out.

• totalThreshold – The number of errors encountered up to and including this transformation
at which the process should error out (optional). The default is zero, which indicates that the
process should not error out.

Example: Use split_rows to split rows in a DynamicFrame

This code example uses the split_rows method to split rows in a DynamicFrame based on the
id field value.

Example dataset

The example uses a DynamicFrame called l_root_contact_details that is selected from a
collection named legislators_relationalized.

l_root_contact_details has the following schema and entries.

root
|-- id: long
|-- index: int
|-- contact_details.val.type: string
|-- contact_details.val.value: string

+---+-----+------------------------+-------------------------+
| id|index|contact_details.val.type|contact_details.val.value|
+---+-----+------------------------+-------------------------+
| 1| 0| phone| 202-225-5265|
| 1| 1| twitter| kathyhochul|

ETL in PySpark 1402

AWS Glue User Guide

2	0	phone	202-225-3252
2	1	twitter	repjackyrosen
3	0	fax	202-225-1314
3	1	phone	202-225-3772
3	2	twitter	MikeRossUpdates
4	0	fax	202-225-1314
4	1	phone	202-225-3772
4	2	twitter	MikeRossUpdates
5	0	fax	202-225-1314
5	1	phone	202-225-3772
5	2	twitter	MikeRossUpdates
6	0	fax	202-225-1314
6	1	phone	202-225-3772
6	2	twitter	MikeRossUpdates
7	0	fax	202-225-1314
7	1	phone	202-225-3772
7	2	twitter	MikeRossUpdates
8	0	fax	202-225-1314
+---+-----+------------------------+-------------------------+

Example code

Example: Use split_rows to split up
rows in a DynamicFrame based on value

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

Retrieve the DynamicFrame to split
frame_to_split = legislators_relationalized.select("l_root_contact_details")

Split up rows by ID
split_rows_collection = frame_to_split.split_rows({"id": {">": 10}}, "high", "low")

Inspect the resulting DynamicFrames
print("Inspect the DynamicFrame that contains IDs < 10")
split_rows_collection.select("low").toDF().show()
print("Inspect the DynamicFrame that contains IDs > 10")
split_rows_collection.select("high").toDF().show()

ETL in PySpark 1403

AWS Glue User Guide

Output

Inspect the DynamicFrame that contains IDs < 10
+---+-----+------------------------+-------------------------+
| id|index|contact_details.val.type|contact_details.val.value|
+---+-----+------------------------+-------------------------+
1	0	phone	202-225-5265
1	1	twitter	kathyhochul
2	0	phone	202-225-3252
2	1	twitter	repjackyrosen
3	0	fax	202-225-1314
3	1	phone	202-225-3772
3	2	twitter	MikeRossUpdates
4	0	fax	202-225-1314
4	1	phone	202-225-3772
4	2	twitter	MikeRossUpdates
5	0	fax	202-225-1314
5	1	phone	202-225-3772
5	2	twitter	MikeRossUpdates
6	0	fax	202-225-1314
6	1	phone	202-225-3772
6	2	twitter	MikeRossUpdates
7	0	fax	202-225-1314
7	1	phone	202-225-3772
7	2	twitter	MikeRossUpdates
8	0	fax	202-225-1314
+---+-----+------------------------+-------------------------+
only showing top 20 rows

Inspect the DynamicFrame that contains IDs > 10
+---+-----+------------------------+-------------------------+
| id|index|contact_details.val.type|contact_details.val.value|
+---+-----+------------------------+-------------------------+
11	0	phone	202-225-5476
11	1	twitter	RepDavidYoung
12	0	phone	202-225-4035
12	1	twitter	RepStephMurphy
13	0	fax	202-226-0774
13	1	phone	202-225-6335
14	0	fax	202-226-0774
14	1	phone	202-225-6335
15	0	fax	202-226-0774
15	1	phone	202-225-6335
16	0	fax	202-226-0774

ETL in PySpark 1404

AWS Glue User Guide

16	1	phone	202-225-6335
17	0	fax	202-226-0774
17	1	phone	202-225-6335
18	0	fax	202-226-0774
18	1	phone	202-225-6335
19	0	fax	202-226-0774
19	1	phone	202-225-6335
20	0	fax	202-226-0774
20	1	phone	202-225-6335
+---+-----+------------------------+-------------------------+
only showing top 20 rows

unbox

unbox(path, format, transformation_ctx="", info="", stageThreshold=0,
totalThreshold=0, **options)

Unboxes (reformats) a string field in a DynamicFrame and returns a new DynamicFrame that
contains the unboxed DynamicRecords.

A DynamicRecord represents a logical record in a DynamicFrame. It's similar to a row in an
Apache Spark DataFrame, except that it is self-describing and can be used for data that doesn't
conform to a fixed schema.

• path – A full path to the string node you want to unbox.

• format – A format specification (optional). You use this for an Amazon S3 or AWS Glue
connection that supports multiple formats. For the formats that are supported, see Data format
options for inputs and outputs in AWS Glue for Spark.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string to be associated with error reporting for this transformation (optional).

• stageThreshold – The number of errors encountered during this transformation at which the
process should error out (optional). The default is zero, which indicates that the process should
not error out.

• totalThreshold – The number of errors encountered up to and including this transformation
at which the process should error out (optional). The default is zero, which indicates that the
process should not error out.

• options – One or more of the following:

ETL in PySpark 1405

AWS Glue User Guide

• separator – A string that contains the separator character.

• escaper – A string that contains the escape character.

• skipFirst – A Boolean value that indicates whether to skip the first instance.

• withSchema – A string containing a JSON representation of the node's schema. The format of
a schema's JSON representation is defined by the output of StructType.json().

• withHeader – A Boolean value that indicates whether a header is included.

Example: Use unbox to unbox a string field into a struct

This code example uses the unbox method to unbox, or reformat, a string field in a DynamicFrame
into a field of type struct.

Example dataset

The example uses a DynamicFrame called mapped_with_string with the following schema and
entries.

Notice the field named AddressString. This is the field that the example unboxes into a struct.

root
|-- Average Total Payments: string
|-- AddressString: string
|-- Average Covered Charges: string
|-- DRG Definition: string
|-- Average Medicare Payments: string
|-- Hospital Referral Region Description: string
|-- Address: struct
| |-- Zip.Code: string
| |-- City: string
| |-- Array: array
| | |-- element: string
| |-- State: string
| |-- Street: string
|-- Provider Id: string
|-- Total Discharges: string
|-- Provider Name: string

+----------------------+--------------------+-----------------------
+--------------------+-------------------------+------------------------------------
+--------------------+-----------+----------------+--------------------+

ETL in PySpark 1406

AWS Glue User Guide

|Average Total Payments| AddressString|Average Covered Charges| DRG
 Definition|Average Medicare Payments|Hospital Referral Region Description|
 Address|Provider Id|Total Discharges| Provider Name|
+----------------------+--------------------+-----------------------
+--------------------+-------------------------+------------------------------------
+--------------------+-----------+----------------+--------------------+
| $5777.24|{"Street": "1108 ...| $32963.07|039 -
 EXTRACRANIA...| $4763.73| AL - Dothan|[36301,
 DOTHAN, [...| 10001| 91|SOUTHEAST ALABAMA...|
| $5787.57|{"Street": "2505 ...| $15131.85|039 -
 EXTRACRANIA...| $4976.71| AL - Birmingham|[35957,
 BOAZ, [25...| 10005| 14|MARSHALL MEDICAL ...|
| $5434.95|{"Street": "205 M...| $37560.37|039 -
 EXTRACRANIA...| $4453.79| AL - Birmingham|[35631,
 FLORENCE,...| 10006| 24|ELIZA COFFEE MEMO...|
| $5417.56|{"Street": "50 ME...| $13998.28|039 -
 EXTRACRANIA...| $4129.16| AL - Birmingham|[35235,
 BIRMINGHA...| 10011| 25| ST VINCENT'S EAST|
...

Example code

Example: Use unbox to unbox a string field
into a struct in a DynamicFrame

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

unboxed = mapped_with_string.unbox("AddressString", "json")
unboxed.printSchema()
unboxed.toDF().show()

Output

root
|-- Average Total Payments: string
|-- AddressString: struct
| |-- Street: string

ETL in PySpark 1407

AWS Glue User Guide

| |-- City: string
| |-- State: string
| |-- Zip.Code: string
| |-- Array: array
| | |-- element: string
|-- Average Covered Charges: string
|-- DRG Definition: string
|-- Average Medicare Payments: string
|-- Hospital Referral Region Description: string
|-- Address: struct
| |-- Zip.Code: string
| |-- City: string
| |-- Array: array
| | |-- element: string
| |-- State: string
| |-- Street: string
|-- Provider Id: string
|-- Total Discharges: string
|-- Provider Name: string

+----------------------+--------------------+-----------------------
+--------------------+-------------------------+------------------------------------
+--------------------+-----------+----------------+--------------------+
|Average Total Payments| AddressString|Average Covered Charges| DRG
 Definition|Average Medicare Payments|Hospital Referral Region Description|
 Address|Provider Id|Total Discharges| Provider Name|
+----------------------+--------------------+-----------------------
+--------------------+-------------------------+------------------------------------
+--------------------+-----------+----------------+--------------------+
| $5777.24|[1108 ROSS CLARK ...| $32963.07|039 -
 EXTRACRANIA...| $4763.73| AL - Dothan|[36301,
 DOTHAN, [...| 10001| 91|SOUTHEAST ALABAMA...|
| $5787.57|[2505 U S HIGHWAY...| $15131.85|039 -
 EXTRACRANIA...| $4976.71| AL - Birmingham|[35957,
 BOAZ, [25...| 10005| 14|MARSHALL MEDICAL ...|
| $5434.95|[205 MARENGO STRE...| $37560.37|039 -
 EXTRACRANIA...| $4453.79| AL - Birmingham|[35631,
 FLORENCE,...| 10006| 24|ELIZA COFFEE MEMO...|
| $5417.56|[50 MEDICAL PARK ...| $13998.28|039 -
 EXTRACRANIA...| $4129.16| AL - Birmingham|[35235,
 BIRMINGHA...| 10011| 25| ST VINCENT'S EAST|
| $5658.33|[1000 FIRST STREE...| $31633.27|039 -
 EXTRACRANIA...| $4851.44| AL - Birmingham|[35007,
 ALABASTER...| 10016| 18|SHELBY BAPTIST ME...|

ETL in PySpark 1408

AWS Glue User Guide

| $6653.80|[2105 EAST SOUTH ...| $16920.79|039 -
 EXTRACRANIA...| $5374.14| AL - Montgomery|[36116,
 MONTGOMER...| 10023| 67|BAPTIST MEDICAL C...|
| $5834.74|[2000 PEPPERELL P...| $11977.13|039 -
 EXTRACRANIA...| $4761.41| AL - Birmingham|[36801,
 OPELIKA, ...| 10029| 51|EAST ALABAMA MEDI...|
| $8031.12|[619 SOUTH 19TH S...| $35841.09|039 -
 EXTRACRANIA...| $5858.50| AL - Birmingham|[35233,
 BIRMINGHA...| 10033| 32|UNIVERSITY OF ALA...|
| $6113.38|[101 SIVLEY RD, H...| $28523.39|039 -
 EXTRACRANIA...| $5228.40| AL - Huntsville|[35801,
 HUNTSVILL...| 10039| 135| HUNTSVILLE HOSPITAL|
| $5541.05|[1007 GOODYEAR AV...| $75233.38|039 -
 EXTRACRANIA...| $4386.94| AL - Birmingham|[35903,
 GADSDEN, ...| 10040| 34|GADSDEN REGIONAL ...|
| $5461.57|[600 SOUTH THIRD ...| $67327.92|039 -
 EXTRACRANIA...| $4493.57| AL - Birmingham|[35901,
 GADSDEN, ...| 10046| 14|RIVERVIEW REGIONA...|
| $5356.28|[4370 WEST MAIN S...| $39607.28|039 -
 EXTRACRANIA...| $4408.20| AL - Dothan|[36305,
 DOTHAN, [...| 10055| 45| FLOWERS HOSPITAL|
| $5374.65|[810 ST VINCENT'S...| $22862.23|039 -
 EXTRACRANIA...| $4186.02| AL - Birmingham|[35205,
 BIRMINGHA...| 10056| 43|ST VINCENT'S BIRM...|
| $5366.23|[400 EAST 10TH ST...| $31110.85|039 -
 EXTRACRANIA...| $4376.23| AL - Birmingham|[36207,
 ANNISTON,...| 10078| 21|NORTHEAST ALABAMA...|
| $5282.93|[1613 NORTH MCKEN...| $25411.33|039 -
 EXTRACRANIA...| $4383.73| AL - Mobile|[36535,
 FOLEY, [1...| 10083| 15|SOUTH BALDWIN REG...|
| $5676.55|[1201 7TH STREET ...| $9234.51|039 -
 EXTRACRANIA...| $4509.11| AL - Huntsville|[35609,
 DECATUR, ...| 10085| 27|DECATUR GENERAL H...|
| $5930.11|[6801 AIRPORT BOU...| $15895.85|039 -
 EXTRACRANIA...| $3972.85| AL - Mobile|[36608,
 MOBILE, [...| 10090| 27| PROVIDENCE HOSPITAL|
| $6192.54|[809 UNIVERSITY B...| $19721.16|039 -
 EXTRACRANIA...| $5179.38| AL - Tuscaloosa|[35401,
 TUSCALOOS...| 10092| 31|D C H REGIONAL ME...|
| $4968.00|[750 MORPHY AVENU...| $10710.88|039 -
 EXTRACRANIA...| $3898.88| AL - Mobile|[36532,
 FAIRHOPE,...| 10100| 18| THOMAS HOSPITAL|

ETL in PySpark 1409

AWS Glue User Guide

| $5996.00|[701 PRINCETON AV...| $51343.75|039 -
 EXTRACRANIA...| $4962.45| AL - Birmingham|[35211,
 BIRMINGHA...| 10103| 33|BAPTIST MEDICAL C...|
+----------------------+--------------------+-----------------------
+--------------------+-------------------------+------------------------------------
+--------------------+-----------+----------------+--------------------+
only showing top 20 rows

union

union(frame1, frame2, transformation_ctx = "", info = "", stageThreshold =
0, totalThreshold = 0)

Union two DynamicFrames. Returns DynamicFrame containing all records from both input
DynamicFrames. This transform may return different results from the union of two DataFrames
with equivalent data. If you need the Spark DataFrame union behavior, consider using toDF.

• frame1 – First DynamicFrame to union.

• frame2 – Second DynamicFrame to union.

• transformation_ctx – (optional) A unique string that is used to identify stats / state
information

• info – (optional) Any string to be associated with errors in the transformation

• stageThreshold – (optional) Max number of errors in the transformation until processing will
error out

• totalThreshold – (optional) Max number of errors total until processing will error out.

unnest

unnest(transformation_ctx="", info="", stageThreshold=0, totalThreshold=0)

Unnests nested objects in a DynamicFrame, which makes them top-level objects, and returns a
new unnested DynamicFrame.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string to be associated with error reporting for this transformation (optional).

ETL in PySpark 1410

AWS Glue User Guide

• stageThreshold – The number of errors encountered during this transformation at which the
process should error out (optional). The default is zero, which indicates that the process should
not error out.

• totalThreshold – The number of errors encountered up to and including this transformation
at which the process should error out (optional). The default is zero, which indicates that the
process should not error out.

Example: Use unnest to turn nested fields into top-level fields

This code example uses the unnest method to flatten all of the nested fields in a DynamicFrame
into top-level fields.

Example dataset

The example uses a DynamicFrame called mapped_medicare with the following schema. Notice
that the Address field is the only field that contains nested data.

root
|-- Average Total Payments: string
|-- Average Covered Charges: string
|-- DRG Definition: string
|-- Average Medicare Payments: string
|-- Hospital Referral Region Description: string
|-- Address: struct
| |-- Zip.Code: string
| |-- City: string
| |-- Array: array
| | |-- element: string
| |-- State: string
| |-- Street: string
|-- Provider Id: string
|-- Total Discharges: string
|-- Provider Name: string

Example code

Example: Use unnest to unnest nested
objects in a DynamicFrame

from pyspark.context import SparkContext
from awsglue.context import GlueContext

ETL in PySpark 1411

AWS Glue User Guide

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

Unnest all nested fields
unnested = mapped_medicare.unnest()
unnested.printSchema()

Output

root
|-- Average Total Payments: string
|-- Average Covered Charges: string
|-- DRG Definition: string
|-- Average Medicare Payments: string
|-- Hospital Referral Region Description: string
|-- Address.Zip.Code: string
|-- Address.City: string
|-- Address.Array: array
| |-- element: string
|-- Address.State: string
|-- Address.Street: string
|-- Provider Id: string
|-- Total Discharges: string
|-- Provider Name: string

unnest_ddb_json

Unnests nested columns in a DynamicFrame that are specifically in the DynamoDB JSON structure,
and returns a new unnested DynamicFrame. Columns that are of an array of struct types will
not be unnested. Note that this is a specific type of unnesting transform that behaves differently
from the regular unnest transform and requires the data to already be in the DynamoDB JSON
structure. For more information, see DynamoDB JSON.

unnest_ddb_json(transformation_ctx="", info="", stageThreshold=0,
totalThreshold=0)

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string to be associated with error reporting for this transformation (optional).

ETL in PySpark 1412

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataExport.Output.html#DataExport.Output.Data

AWS Glue User Guide

• stageThreshold – The number of errors encountered during this transformation at which the
process should error out (optional: zero by default, indicating that the process should not error
out).

• totalThreshold – The number of errors encountered up to and including this transformation
at which the process should error out (optional: zero by default, indicating that the process
should not error out).

For example, the schema of a reading an export with the DynamoDB JSON structure might look
like the following:

root
|-- Item: struct
| |-- ColA: struct
| | |-- S: string
| |-- ColB: struct
| | |-- S: string
| |-- ColC: struct
| | |-- N: string
| |-- ColD: struct
| | |-- L: array
| | | |-- element: null

The unnest_ddb_json() transform would convert this to:

root
|-- ColA: string
|-- ColB: string
|-- ColC: string
|-- ColD: array
| |-- element: null

The following code example shows how to use the AWS Glue DynamoDB export connector, invoke
a DynamoDB JSON unnest, and print the number of partitions:

import sys
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.utils import getResolvedOptions

ETL in PySpark 1413

AWS Glue User Guide

args = getResolvedOptions(sys.argv, ["JOB_NAME"])
glue_context= GlueContext(SparkContext.getOrCreate())
job = Job(glue_context)
job.init(args["JOB_NAME"], args)

dynamicFrame = glue_context.create_dynamic_frame.from_options(
 connection_type="dynamodb",
 connection_options={
 "dynamodb.export": "ddb",
 "dynamodb.tableArn": "<test_source>",
 "dynamodb.s3.bucket": "<bucket name>",
 "dynamodb.s3.prefix": "<bucket prefix>",
 "dynamodb.s3.bucketOwner": "<account_id>",
 }
)
unnested = dynamicFrame.unnest_ddb_json()
print(unnested.getNumPartitions())

job.commit()

write

write(connection_type, connection_options, format, format_options,
accumulator_size)

Gets a DataSink(object) of the specified connection type from the GlueContext class of this
DynamicFrame, and uses it to format and write the contents of this DynamicFrame. Returns the
new DynamicFrame formatted and written as specified.

• connection_type – The connection type to use. Valid values include s3, mysql, postgresql,
redshift, sqlserver, and oracle.

• connection_options – The connection option to use (optional). For a connection_type of
s3, an Amazon S3 path is defined.

connection_options = {"path": "s3://aws-glue-target/temp"}

For JDBC connections, several properties must be defined. Note that the database name must be
part of the URL. It can optionally be included in the connection options.

ETL in PySpark 1414

AWS Glue User Guide

Warning

Storing passwords in your script is not recommended. Consider using boto3 to retrieve
them from AWS Secrets Manager or the AWS Glue Data Catalog.

connection_options = {"url": "jdbc-url/database", "user": "username",
 "password": passwordVariable,"dbtable": "table-name", "redshiftTmpDir": "s3-tempdir-
path"}

• format – A format specification (optional). This is used for an Amazon Simple Storage Service
(Amazon S3) or an AWS Glue connection that supports multiple formats. See Data format
options for inputs and outputs in AWS Glue for Spark for the formats that are supported.

• format_options – Format options for the specified format. See Data format options for inputs
and outputs in AWS Glue for Spark for the formats that are supported.

• accumulator_size – The accumulable size to use, in bytes (optional).

 — errors —

• assertErrorThreshold

• errorsAsDynamicFrame

• errorsCount

• stageErrorsCount

assertErrorThreshold

assertErrorThreshold() – An assert for errors in the transformations that created this
DynamicFrame. Returns an Exception from the underlying DataFrame.

errorsAsDynamicFrame

errorsAsDynamicFrame() – Returns a DynamicFrame that has error records nested inside.

Example: Use errorsAsDynamicFrame to view error records

The following code example shows how to use the errorsAsDynamicFrame method to view an
error record for a DynamicFrame.

ETL in PySpark 1415

AWS Glue User Guide

Example dataset

The example uses the following dataset that you can upload to Amazon S3 as JSON. Notice
that the second record is malformed. Malformed data typically breaks file parsing when you use
SparkSQL. However, DynamicFrame recognizes malformation issues and turns malformed lines
into error records that you can handle individually.

{"id": 1, "name": "george", "surname": "washington", "height": 178}
{"id": 2, "name": "benjamin", "surname": "franklin",
{"id": 3, "name": "alexander", "surname": "hamilton", "height": 171}
{"id": 4, "name": "john", "surname": "jay", "height": 190}

Example code

Example: Use errorsAsDynamicFrame to view error records.
Replace s3://DOC-EXAMPLE-S3-BUCKET/error_data.json with your location.

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

Create errors DynamicFrame, view schema
errors = glueContext.create_dynamic_frame.from_options(
 "s3", {"paths": ["s3://DOC-EXAMPLE-S3-BUCKET/error_data.json"]}, "json"
)
print("Schema of errors DynamicFrame:")
errors.printSchema()

Show that errors only contains valid entries from the dataset
print("errors contains only valid records from the input dataset (2 of 4 records)")
errors.toDF().show()

View errors
print("Errors count:", str(errors.errorsCount()))
print("Errors:")
errors.errorsAsDynamicFrame().toDF().show()

View error fields and error data
error_record = errors.errorsAsDynamicFrame().toDF().head()

ETL in PySpark 1416

AWS Glue User Guide

error_fields = error_record["error"]
print("Error fields: ")
print(error_fields.asDict().keys())

print("\nError record data:")
for key in error_fields.asDict().keys():
 print("\n", key, ": ", str(error_fields[key]))

Output

Schema of errors DynamicFrame:
root
|-- id: int
|-- name: string
|-- surname: string
|-- height: int

errors contains only valid records from the input dataset (2 of 4 records)
+---+------+----------+------+
| id| name| surname|height|
+---+------+----------+------+
| 1|george|washington| 178|
| 4| john| jay| 190|
+---+------+----------+------+

Errors count: 1
Errors:
+--------------------+
| error|
+--------------------+
|[[File "/tmp/20...|
+--------------------+

Error fields:
dict_keys(['callsite', 'msg', 'stackTrace', 'input', 'bytesread', 'source',
 'dynamicRecord'])

Error record data:

 callsite : Row(site=' File "/tmp/2060612586885849088", line 549, in <module>\n
 sys.exit(main())\n File "/tmp/2060612586885849088", line 523, in main\n response
 = handler(content)\n File "/tmp/2060612586885849088", line 197, in execute_request
\n result = node.execute()\n File "/tmp/2060612586885849088", line 103, in

ETL in PySpark 1417

AWS Glue User Guide

 execute\n exec(code, global_dict)\n File "<stdin>", line 10, in <module>\n
 File "/opt/amazon/lib/python3.6/site-packages/awsglue/dynamicframe.py", line 625, in
 from_options\n format_options, transformation_ctx, push_down_predicate, **kwargs)\n
 File "/opt/amazon/lib/python3.6/site-packages/awsglue/context.py", line 233, in
 create_dynamic_frame_from_options\n source.setFormat(format, **format_options)\n',
 info='')

 msg : error in jackson reader

 stackTrace : com.fasterxml.jackson.core.JsonParseException: Unexpected character
 ('{' (code 123)): was expecting either valid name character (for unquoted name) or
 double-quote (for quoted) to start field name
 at [Source: com.amazonaws.services.glue.readers.BufferedStream@73492578; line: 3,
 column: 2]
 at com.fasterxml.jackson.core.JsonParser._constructError(JsonParser.java:1581)
 at
 com.fasterxml.jackson.core.base.ParserMinimalBase._reportError(ParserMinimalBase.java:533)
 at
 com.fasterxml.jackson.core.base.ParserMinimalBase._reportUnexpectedChar(ParserMinimalBase.java:462)
 at
 com.fasterxml.jackson.core.json.UTF8StreamJsonParser._handleOddName(UTF8StreamJsonParser.java:2012)
 at
 com.fasterxml.jackson.core.json.UTF8StreamJsonParser._parseName(UTF8StreamJsonParser.java:1650)
 at
 com.fasterxml.jackson.core.json.UTF8StreamJsonParser.nextToken(UTF8StreamJsonParser.java:740)
 at com.amazonaws.services.glue.readers.JacksonReader$$anonfun$hasNextGoodToken
$1.apply(JacksonReader.scala:57)
 at com.amazonaws.services.glue.readers.JacksonReader$$anonfun$hasNextGoodToken
$1.apply(JacksonReader.scala:57)
 at scala.collection.Iterator$$anon$9.next(Iterator.scala:162)
 at scala.collection.Iterator$$anon$16.hasNext(Iterator.scala:599)
 at scala.collection.Iterator$$anon$16.hasNext(Iterator.scala:598)
 at scala.collection.Iterator$class.foreach(Iterator.scala:891)
 at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
 at com.amazonaws.services.glue.readers.JacksonReader$$anonfun
$1.apply(JacksonReader.scala:120)
 at com.amazonaws.services.glue.readers.JacksonReader$$anonfun
$1.apply(JacksonReader.scala:116)
 at
 com.amazonaws.services.glue.DynamicRecordBuilder.handleErr(DynamicRecordBuilder.scala:209)
 at
 com.amazonaws.services.glue.DynamicRecordBuilder.handleErrorWithException(DynamicRecordBuilder.scala:202)
 at
 com.amazonaws.services.glue.readers.JacksonReader.nextFailSafe(JacksonReader.scala:116)

ETL in PySpark 1418

AWS Glue User Guide

 at com.amazonaws.services.glue.readers.JacksonReader.next(JacksonReader.scala:109)
 at com.amazonaws.services.glue.readers.JSONReader.next(JSONReader.scala:247)
 at
 com.amazonaws.services.glue.hadoop.TapeHadoopRecordReaderSplittable.nextKeyValue(TapeHadoopRecordReaderSplittable.scala:103)
 at org.apache.spark.rdd.NewHadoopRDD$$anon$1.hasNext(NewHadoopRDD.scala:230)
 at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
 at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
 at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
 at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:462)
 at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
 at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
 at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:462)
 at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
 at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
 at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
 at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
 at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply
$24.apply(RDD.scala:836)
 at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply
$24.apply(RDD.scala:836)
 at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
 at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
 at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
 at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
 at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
 at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
 at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
 at org.apache.spark.scheduler.Task.run(Task.scala:121)
 at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
 at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
 at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
 at java.lang.Thread.run(Thread.java:750)

 input :

 bytesread : 252

 source :

 dynamicRecord : Row(id=2, name='benjamin', surname='franklin')

ETL in PySpark 1419

AWS Glue User Guide

errorsCount

errorsCount() – Returns the total number of errors in a DynamicFrame.

stageErrorsCount

stageErrorsCount – Returns the number of errors that occurred in the process of generating this
DynamicFrame.

DynamicFrameCollection class

A DynamicFrameCollection is a dictionary of DynamicFrame class objects, in which the keys are
the names of the DynamicFrames and the values are the DynamicFrame objects.

__init__

__init__(dynamic_frames, glue_ctx)

• dynamic_frames – A dictionary of DynamicFrame class objects.

• glue_ctx – A GlueContext class object.

Keys

keys() – Returns a list of the keys in this collection, which generally consists of the names of the
corresponding DynamicFrame values.

Values

values(key) – Returns a list of the DynamicFrame values in this collection.

Select

select(key)

Returns the DynamicFrame that corresponds to the specfied key (which is generally the name of
the DynamicFrame).

• key – A key in the DynamicFrameCollection, which usually represents the name of a
DynamicFrame.

ETL in PySpark 1420

AWS Glue User Guide

Map

map(callable, transformation_ctx="")

Uses a passed-in function to create and return a new DynamicFrameCollection based on the
DynamicFrames in this collection.

• callable – A function that takes a DynamicFrame and the specified transformation context as
parameters and returns a DynamicFrame.

• transformation_ctx – A transformation context to be used by the callable (optional).

Flatmap

flatmap(f, transformation_ctx="")

Uses a passed-in function to create and return a new DynamicFrameCollection based on the
DynamicFrames in this collection.

• f – A function that takes a DynamicFrame as a parameter and returns a DynamicFrame or
DynamicFrameCollection.

• transformation_ctx – A transformation context to be used by the function (optional).

DynamicFrameWriter class

 methods

• __init__

• from_options

• from_catalog

• from_jdbc_conf

__init__

__init__(glue_context)

• glue_context – The GlueContext class to use.

ETL in PySpark 1421

AWS Glue User Guide

from_options

from_options(frame, connection_type, connection_options={}, format=None,
format_options={}, transformation_ctx="")

Writes a DynamicFrame using the specified connection and format.

• frame – The DynamicFrame to write.

• connection_type – The connection type. Valid values include s3, mysql, postgresql,
redshift, sqlserver, and oracle.

• connection_options – Connection options, such as path and database table (optional). For a
connection_type of s3, an Amazon S3 path is defined.

connection_options = {"path": "s3://aws-glue-target/temp"}

For JDBC connections, several properties must be defined. Note that the database name must be
part of the URL. It can optionally be included in the connection options.

Warning

Storing passwords in your script is not recommended. Consider using boto3 to retrieve
them from AWS Secrets Manager or the AWS Glue Data Catalog.

connection_options = {"url": "jdbc-url/database", "user": "username",
 "password": passwordVariable,"dbtable": "table-name", "redshiftTmpDir": "s3-tempdir-
path"}

The dbtable property is the name of the JDBC table. For JDBC data stores that support schemas
within a database, specify schema.table-name. If a schema is not provided, then the default
"public" schema is used.

For more information, see Connection types and options for ETL in AWS Glue for Spark.

• format – A format specification (optional). This is used for an Amazon Simple Storage Service
(Amazon S3) or an AWS Glue connection that supports multiple formats. See Data format
options for inputs and outputs in AWS Glue for Spark for the formats that are supported.

ETL in PySpark 1422

AWS Glue User Guide

• format_options – Format options for the specified format. See Data format options for inputs
and outputs in AWS Glue for Spark for the formats that are supported.

• transformation_ctx – A transformation context to use (optional).

from_catalog

from_catalog(frame, name_space, table_name, redshift_tmp_dir="",
transformation_ctx="")

Writes a DynamicFrame using the specified catalog database and table name.

• frame – The DynamicFrame to write.

• name_space – The database to use.

• table_name – The table_name to use.

• redshift_tmp_dir – An Amazon Redshift temporary directory to use (optional).

• transformation_ctx – A transformation context to use (optional).

• additional_options – Additional options provided to AWS Glue.

To write to Lake Formation governed tables, you can use these additional options:

• transactionId – (String) The transaction ID at which to do the write to the Governed table.
This transaction can not be already committed or aborted, or the write will fail.

• callDeleteObjectsOnCancel – (Boolean, optional) If set to true (default), AWS Glue
automatically calls the DeleteObjectsOnCancel API after the object is written to Amazon
S3. For more information, see DeleteObjectsOnCancel in the AWS Lake Formation Developer
Guide.

Example Example: Writing to a governed table in Lake Formation

txId = glueContext.start_transaction(read_only=False)
glueContext.write_dynamic_frame.from_catalog(
 frame=dyf,
 database = db,
 table_name = tbl,
 transformation_ctx = "datasource0",
 additional_options={"transactionId":txId})
...
glueContext.commit_transaction(txId)

ETL in PySpark 1423

https://docs.aws.amazon.com/lake-formation/latest/dg/aws-lake-formation-api-transactions-api.html#aws-lake-formation-api-transactions-api-DeleteObjectsOnCancel

AWS Glue User Guide

from_jdbc_conf

from_jdbc_conf(frame, catalog_connection, connection_options={},
redshift_tmp_dir = "", transformation_ctx="")

Writes a DynamicFrame using the specified JDBC connection information.

• frame – The DynamicFrame to write.

• catalog_connection – A catalog connection to use.

• connection_options – Connection options, such as path and database table (optional).

• redshift_tmp_dir – An Amazon Redshift temporary directory to use (optional).

• transformation_ctx – A transformation context to use (optional).

Example for write_dynamic_frame

This example writes the output locally using a connection_type of S3 with a POSIX path
argument in connection_options, which allows writing to local storage.

glueContext.write_dynamic_frame.from_options(\
frame = dyf_splitFields,\
connection_options = {'path': '/home/glue/GlueLocalOutput/'},\
connection_type = 's3',\
format = 'json')

DynamicFrameReader class

 — methods —

• __init__

• from_rdd

• from_options

• from_catalog

__init__

__init__(glue_context)

• glue_context – The GlueContext class to use.

ETL in PySpark 1424

AWS Glue User Guide

from_rdd

from_rdd(data, name, schema=None, sampleRatio=None)

Reads a DynamicFrame from a Resilient Distributed Dataset (RDD).

• data – The dataset to read from.

• name – The name to read from.

• schema – The schema to read (optional).

• sampleRatio – The sample ratio (optional).

from_options

from_options(connection_type, connection_options={}, format=None,
format_options={}, transformation_ctx="")

Reads a DynamicFrame using the specified connection and format.

• connection_type – The connection type. Valid values include s3, mysql, postgresql,
redshift, sqlserver, oracle, dynamodb, and snowflake.

• connection_options – Connection options, such as path and database table (optional). For
more information, see Connection types and options for ETL in AWS Glue for Spark . For a
connection_type of s3, Amazon S3 paths are defined in an array.

connection_options = {"paths": ["s3://mybucket/object_a", "s3://mybucket/object_b"]}

For JDBC connections, several properties must be defined. Note that the database name must be
part of the URL. It can optionally be included in the connection options.

Warning

Storing passwords in your script is not recommended. Consider using boto3 to retrieve
them from AWS Secrets Manager or the AWS Glue Data Catalog.

connection_options = {"url": "jdbc-url/database", "user": "username",
 "password": passwordVariable,"dbtable": "table-name", "redshiftTmpDir": "s3-tempdir-
path"}

ETL in PySpark 1425

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html

AWS Glue User Guide

For a JDBC connection that performs parallel reads, you can set the hashfield option. For
example:

connection_options = {"url": "jdbc-url/database", "user": "username",
 "password": passwordVariable,"dbtable": "table-name", "redshiftTmpDir": "s3-tempdir-
path" , "hashfield": "month"}

For more information, see Reading from JDBC tables in parallel.

• format – A format specification (optional). This is used for an Amazon Simple Storage Service
(Amazon S3) or an AWS Glue connection that supports multiple formats. See Data format
options for inputs and outputs in AWS Glue for Spark for the formats that are supported.

• format_options – Format options for the specified format. See Data format options for inputs
and outputs in AWS Glue for Spark for the formats that are supported.

• transformation_ctx – The transformation context to use (optional).

• push_down_predicate – Filters partitions without having to list and read all the files in your
dataset. For more information, see Pre-Filtering Using Pushdown Predicates.

from_catalog

from_catalog(database, table_name, redshift_tmp_dir="",
transformation_ctx="", push_down_predicate="", additional_options={})

Reads a DynamicFrame using the specified catalog namespace and table name.

• database – The database to read from.

• table_name – The name of the table to read from.

• redshift_tmp_dir – An Amazon Redshift temporary directory to use (optional if not reading
data from Redshift).

• transformation_ctx – The transformation context to use (optional).

• push_down_predicate – Filters partitions without having to list and read all the files in your
dataset. For more information, see Pre-filtering using pushdown predicates.

• additional_options – Additional options provided to AWS Glue.

• To use a JDBC connection that performs parallel reads, you can set the hashfield,
hashexpression, or hashpartitions options. For example:

ETL in PySpark 1426

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-pushdowns

AWS Glue User Guide

additional_options = {"hashfield": "month"}

For more information, see Reading from JDBC tables in parallel.

• To pass a catalog expression to filter based on the index columns, you can see the
catalogPartitionPredicate option.

catalogPartitionPredicate — You can pass a catalog expression to filter based
on the index columns. This pushes down the filtering to the server side. For more
information, see AWS Glue Partition Indexes. Note that push_down_predicate and
catalogPartitionPredicate use different syntaxes. The former one uses Spark SQL
standard syntax and the later one uses JSQL parser.

For more information, see Managing partitions for ETL output in AWS Glue.

GlueContext class

Wraps the Apache Spark SparkContext object, and thereby provides mechanisms for interacting
with the Apache Spark platform.

__init__

__init__(sparkContext)

• sparkContext – The Apache Spark context to use.

Creating

• __init__

• getSource

• create_dynamic_frame_from_rdd

• create_dynamic_frame_from_catalog

• create_dynamic_frame_from_options

• create_sample_dynamic_frame_from_catalog

• create_sample_dynamic_frame_from_options

• add_ingestion_time_columns

ETL in PySpark 1427

https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html

AWS Glue User Guide

• create_data_frame_from_catalog

• create_data_frame_from_options

• forEachBatch

getSource

getSource(connection_type, transformation_ctx = "", **options)

Creates a DataSource object that can be used to read DynamicFrames from external sources.

• connection_type – The connection type to use, such as Amazon Simple Storage Service
(Amazon S3), Amazon Redshift, and JDBC. Valid values include s3, mysql, postgresql,
redshift, sqlserver, oracle, and dynamodb.

• transformation_ctx – The transformation context to use (optional).

• options – A collection of optional name-value pairs. For more information, see Connection
types and options for ETL in AWS Glue for Spark.

The following is an example of using getSource.

>>> data_source = context.getSource("file", paths=["/in/path"])
>>> data_source.setFormat("json")
>>> myFrame = data_source.getFrame()

create_dynamic_frame_from_rdd

create_dynamic_frame_from_rdd(data, name, schema=None, sample_ratio=None,
transformation_ctx="")

Returns a DynamicFrame that is created from an Apache Spark Resilient Distributed Dataset
(RDD).

• data – The data source to use.

• name – The name of the data to use.

• schema – The schema to use (optional).

• sample_ratio – The sample ratio to use (optional).

• transformation_ctx – The transformation context to use (optional).

ETL in PySpark 1428

AWS Glue User Guide

create_dynamic_frame_from_catalog

create_dynamic_frame_from_catalog(database, table_name, redshift_tmp_dir,
transformation_ctx = "", push_down_predicate= "", additional_options = {},
catalog_id = None)

Returns a DynamicFrame that is created using a Data Catalog database and table name. When
using this method, you provide format_options through table properties on the specified AWS
Glue Data Catalog table and other options through the additional_options argument.

• Database – The database to read from.

• table_name – The name of the table to read from.

• redshift_tmp_dir – An Amazon Redshift temporary directory to use (optional).

• transformation_ctx – The transformation context to use (optional).

• push_down_predicate – Filters partitions without having to list and read all the files in your
dataset. For supported sources and limitations, see Optimizing reads with pushdown in AWS
Glue ETL. For more information, see Pre-filtering using pushdown predicates.

• additional_options – A collection of optional name-value pairs. The possible options
include those listed in Connection types and options for ETL in AWS Glue for Spark
except for endpointUrl, streamName, bootstrap.servers, security.protocol,
topicName, classification, and delimiter. Another supported option is
catalogPartitionPredicate:

catalogPartitionPredicate — You can pass a catalog expression to filter based on the
index columns. This pushes down the filtering to the server side. For more information, see AWS
Glue Partition Indexes. Note that push_down_predicate and catalogPartitionPredicate
use different syntaxes. The former one uses Spark SQL standard syntax and the later one uses
JSQL parser.

• catalog_id — The catalog ID (account ID) of the Data Catalog being accessed. When None, the
default account ID of the caller is used.

create_dynamic_frame_from_options

create_dynamic_frame_from_options(connection_type, connection_options={},
format=None, format_options={}, transformation_ctx = "")

Returns a DynamicFrame created with the specified connection and format.

ETL in PySpark 1429

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-pushdown.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-pushdown.html
https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html

AWS Glue User Guide

• connection_type – The connection type, such as Amazon S3, Amazon Redshift, and JDBC.
Valid values include s3, mysql, postgresql, redshift, sqlserver, oracle, and dynamodb.

• connection_options – Connection options, such as paths and database table (optional). For a
connection_type of s3, a list of Amazon S3 paths is defined.

connection_options = {"paths": ["s3://aws-glue-target/temp"]}

For JDBC connections, several properties must be defined. Note that the database name must be
part of the URL. It can optionally be included in the connection options.

Warning

Storing passwords in your script is not recommended. Consider using boto3 to retrieve
them from AWS Secrets Manager or the AWS Glue Data Catalog.

connection_options = {"url": "jdbc-url/database", "user": "username",
 "password": passwordVariable,"dbtable": "table-name", "redshiftTmpDir": "s3-tempdir-
path"}

The dbtable property is the name of the JDBC table. For JDBC data stores that support schemas
within a database, specify schema.table-name. If a schema is not provided, then the default
"public" schema is used.

For more information, see Connection types and options for ETL in AWS Glue for Spark.

• format – A format specification. This is used for an Amazon S3 or an AWS Glue connection that
supports multiple formats. See Data format options for inputs and outputs in AWS Glue for
Spark for the formats that are supported.

• format_options – Format options for the specified format. See Data format options for inputs
and outputs in AWS Glue for Spark for the formats that are supported.

• transformation_ctx – The transformation context to use (optional).

• push_down_predicate – Filters partitions without having to list and read all the files in your
dataset. For supported sources and limitations, see Optimizing reads with pushdown in AWS
Glue ETL. For more information, see Pre-Filtering Using Pushdown Predicates.

ETL in PySpark 1430

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-pushdown.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-pushdown.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-pushdowns

AWS Glue User Guide

create_sample_dynamic_frame_from_catalog

create_sample_dynamic_frame_from_catalog(database, table_name, num,
redshift_tmp_dir, transformation_ctx = "", push_down_predicate= "",
additional_options = {}, sample_options = {}, catalog_id = None)

Returns a sample DynamicFrame that is created using a Data Catalog database and table name.
The DynamicFrame only contains first num records from a datasource.

• database – The database to read from.

• table_name – The name of the table to read from.

• num – The maximum number of records in the returned sample dynamic frame.

• redshift_tmp_dir – An Amazon Redshift temporary directory to use (optional).

• transformation_ctx – The transformation context to use (optional).

• push_down_predicate – Filters partitions without having to list and read all the files in your
dataset. For more information, see Pre-filtering using pushdown predicates.

• additional_options – A collection of optional name-value pairs. The possible options
include those listed in Connection types and options for ETL in AWS Glue for Spark except for
endpointUrl, streamName, bootstrap.servers, security.protocol, topicName,
classification, and delimiter.

• sample_options – Parameters to control sampling behavior (optional). Current available
parameters for Amazon S3 sources:

• maxSamplePartitions – The maximum number of partitions the sampling will read. Default
value is 10

• maxSampleFilesPerPartition – The maximum number of files the sampling will read in
one partition. Default value is 10.

These parameters help to reduce the time consumed by file listing. For example, suppose the
dataset has 1000 partitions, and each partition has 10 files. If you set maxSamplePartitions
= 10, and maxSampleFilesPerPartition = 10, instead of listing all 10,000 files, the
sampling will only list and read the first 10 partitions with the first 10 files in each: 10*10 =
100 files in total.

• catalog_id – The catalog ID of the Data Catalog being accessed (the account ID of the Data
Catalog). Set to None by default. None defaults to the catalog ID of the calling account in the
service.

ETL in PySpark 1431

AWS Glue User Guide

create_sample_dynamic_frame_from_options

create_sample_dynamic_frame_from_options(connection_type,
connection_options={}, num, sample_options={}, format=None,
format_options={}, transformation_ctx = "")

Returns a sample DynamicFrame created with the specified connection and format. The
DynamicFrame only contains first num records from a datasource.

• connection_type – The connection type, such as Amazon S3, Amazon Redshift, and JDBC.
Valid values include s3, mysql, postgresql, redshift, sqlserver, oracle, and dynamodb.

• connection_options – Connection options, such as paths and database table (optional). For
more information, see Connection types and options for ETL in AWS Glue for Spark.

• num – The maximum number of records in the returned sample dynamic frame.

• sample_options – Parameters to control sampling behavior (optional). Current available
parameters for Amazon S3 sources:

• maxSamplePartitions – The maximum number of partitions the sampling will read. Default
value is 10

• maxSampleFilesPerPartition – The maximum number of files the sampling will read in
one partition. Default value is 10.

These parameters help to reduce the time consumed by file listing. For example, suppose the
dataset has 1000 partitions, and each partition has 10 files. If you set maxSamplePartitions
= 10, and maxSampleFilesPerPartition = 10, instead of listing all 10,000 files, the
sampling will only list and read the first 10 partitions with the first 10 files in each: 10*10 =
100 files in total.

• format – A format specification. This is used for an Amazon S3 or an AWS Glue connection that
supports multiple formats. See Data format options for inputs and outputs in AWS Glue for
Spark for the formats that are supported.

• format_options – Format options for the specified format. See Data format options for inputs
and outputs in AWS Glue for Spark for the formats that are supported.

• transformation_ctx – The transformation context to use (optional).

• push_down_predicate – Filters partitions without having to list and read all the files in your
dataset. For more information, see Pre-filtering using pushdown predicates.

ETL in PySpark 1432

AWS Glue User Guide

add_ingestion_time_columns

add_ingestion_time_columns(dataFrame, timeGranularity = "")

Appends ingestion time columns like ingest_year, ingest_month, ingest_day,
ingest_hour, ingest_minute to the input DataFrame. This function is automatically generated
in the script generated by the AWS Glue when you specify a Data Catalog table with Amazon S3 as
the target. This function automatically updates the partition with ingestion time columns on the
output table. This allows the output data to be automatically partitioned on ingestion time without
requiring explicit ingestion time columns in the input data.

• dataFrame – The dataFrame to append the ingestion time columns to.

• timeGranularity – The granularity of the time columns. Valid values are "day", "hour" and
"minute". For example, if "hour" is passed in to the function, the original dataFrame will
have "ingest_year", "ingest_month", "ingest_day", and "ingest_hour" time columns
appended.

Returns the data frame after appending the time granularity columns.

Example:

dynamic_frame = DynamicFrame.fromDF(glueContext.add_ingestion_time_columns(dataFrame,
 "hour"))

create_data_frame_from_catalog

create_data_frame_from_catalog(database, table_name, transformation_ctx =
"", additional_options = {})

Returns a DataFrame that is created using information from a Data Catalog table.

• database – The Data Catalog database to read from.

• table_name – The name of the Data Catalog table to read from.

• transformation_ctx – The transformation context to use (optional).

• additional_options – A collection of optional name-value pairs. The possible options include
those listed in Connection types and options for ETL in AWS Glue for Spark for streaming
sources, such as startingPosition, maxFetchTimeInMs, and startingOffsets.

ETL in PySpark 1433

AWS Glue User Guide

• useSparkDataSource – When set to true, forces AWS Glue to use the native Spark Data
Source API to read the table. The Spark Data Source API supports the following formats: AVRO,
binary, CSV, JSON, ORC, Parquet, and text. In a Data Catalog table, you specify the format
using the classification property. To learn more about the Spark Data Source API, see the
official Apache Spark documentation.

Using create_data_frame_from_catalog with useSparkDataSource has the following
benefits:

• Directly returns a DataFrame and provides an alternative to
create_dynamic_frame.from_catalog().toDF().

• Supports AWS Lake Formation table-level permission control for native formats.

• Supports reading data lake formats without AWS Lake Formation table-level permission
control. For more information, see Using data lake frameworks with AWS Glue ETL jobs.

When you enable useSparkDataSource, you can also add any of the Spark Data Source
options in additional_options as needed. AWS Glue passes these options directly to the
Spark reader.

• useCatalogSchema – When set to true, AWS Glue applies the Data Catalog schema to the
resulting DataFrame. Otherwise, the reader infers the schema from the data. When you
enable useCatalogSchema, you must also set useSparkDataSource to true.

Limitations

Consider the following limitations when you use the useSparkDataSource option:

• When you use useSparkDataSource, AWS Glue creates a new DataFrame in a separate Spark
session that is different from the original Spark session.

• Spark DataFrame partition filtering doesn't work with the following AWS Glue features.

• Job bookmarks

• Excluding Amazon S3 storage classes

• Catalog partition predicates

To use partition filtering with these features, you can use the AWS Glue pushdown predicate.
For more information, see Pre-filtering using pushdown predicates. Filtering on non-partitioned
columns is not affected.

ETL in PySpark 1434

https://spark.apache.org/docs/latest/sql-data-sources-load-save-functions.html
https://spark.apache.org/docs/latest/sql-data-sources.html
https://spark.apache.org/docs/latest/sql-data-sources.html

AWS Glue User Guide

The following example script demonstrates the incorrect way to perform partition filtering with
the excludeStorageClasses option.

// Incorrect partition filtering using Spark filter with excludeStorageClasses
read_df = glueContext.create_data_frame.from_catalog(
 database=database_name,
 table_name=table_name,
 additional_options = {
 "useSparkDataSource": True,
 "excludeStorageClasses" : ["GLACIER", "DEEP_ARCHIVE"]
 }
)

// Suppose year and month are partition keys.
// Filtering on year and month won't work, the filtered_df will still
// contain data with other year/month values.
filtered_df = read_df.filter("year == '2017 and month == '04' and 'state == 'CA'")

The following example script demonstrates the correct way to use a pushdown predicate in order
to perform partition filtering with the excludeStorageClasses option.

// Correct partition filtering using the AWS Glue pushdown predicate
// with excludeStorageClasses
read_df = glueContext.create_data_frame.from_catalog(
 database=database_name,
 table_name=table_name,
 // Use AWS Glue pushdown predicate to perform partition filtering
 push_down_predicate = "(year=='2017' and month=='04')"
 additional_options = {
 "useSparkDataSource": True,
 "excludeStorageClasses" : ["GLACIER", "DEEP_ARCHIVE"]
 }
)

// Use Spark filter only on non-partitioned columns
filtered_df = read_df.filter("state == 'CA'")

Example: Creating a CSV table using the Spark data source reader

// Read a CSV table with '\t' as separator

ETL in PySpark 1435

AWS Glue User Guide

read_df = glueContext.create_data_frame.from_catalog(
 database=<database_name>,
 table_name=<table_name>,
 additional_options = {"useSparkDataSource": True, "sep": '\t'}
)

create_data_frame_from_options

create_data_frame_from_options(connection_type, connection_options={},
format=None, format_options={}, transformation_ctx = "")

This API is now deprecated. Instead use the getSource() API. Returns a DataFrame created with
the specified connection and format. Use this function only with AWS Glue streaming sources.

• connection_type – The streaming connection type. Valid values include kinesis and kafka.

• connection_options – Connection options, which are different for Kinesis and Kafka. You can
find the list of all connection options for each streaming data source at Connection types and
options for ETL in AWS Glue for Spark. Note the following differences in streaming connection
options:

• Kinesis streaming sources require streamARN, startingPosition, inferSchema, and
classification.

• Kafka streaming sources require connectionName, topicName, startingOffsets,
inferSchema, and classification.

• format – A format specification. This is used for an Amazon S3 or an AWS Glue connection
that supports multiple formats. For information about the supported formats, see Data format
options for inputs and outputs in AWS Glue for Spark.

• format_options – Format options for the specified format. For information about the
supported format options, see Data format options for inputs and outputs in AWS Glue for
Spark.

• transformation_ctx – The transformation context to use (optional).

Example for Amazon Kinesis streaming source:

kinesis_options =
 { "streamARN": "arn:aws:kinesis:us-east-2:777788889999:stream/fromOptionsStream",
 "startingPosition": "TRIM_HORIZON",
 "inferSchema": "true",
 "classification": "json"

ETL in PySpark 1436

AWS Glue User Guide

 }
data_frame_datasource0 =
 glueContext.create_data_frame.from_options(connection_type="kinesis",
 connection_options=kinesis_options)

Example for Kafka streaming source:

kafka_options =
 { "connectionName": "ConfluentKafka",
 "topicName": "kafka-auth-topic",
 "startingOffsets": "earliest",
 "inferSchema": "true",
 "classification": "json"
 }
data_frame_datasource0 =
 glueContext.create_data_frame.from_options(connection_type="kafka",
 connection_options=kafka_options)

forEachBatch

forEachBatch(frame, batch_function, options)

Applies the batch_function passed in to every micro batch that is read from the Streaming
source.

• frame – The DataFrame containing the current micro batch.

• batch_function – A function that will be applied for every micro batch.

• options – A collection of key-value pairs that holds information about how to process micro
batches. The following options are required:

• windowSize – The amount of time to spend processing each batch.

• checkpointLocation – The location where checkpoints are stored for the streaming ETL job.

• batchMaxRetries – The maximum number of times to retry the batch if it fails. The default
value is 3. This option is only configurable for Glue version 2.0 and above.

Example:

glueContext.forEachBatch(
 frame = data_frame_datasource0,
 batch_function = processBatch,

ETL in PySpark 1437

AWS Glue User Guide

 options = {
 "windowSize": "100 seconds",
 "checkpointLocation": "s3://kafka-auth-dataplane/confluent-test/output/
checkpoint/"
 }
)

def processBatch(data_frame, batchId):
 if (data_frame.count() > 0):
 datasource0 = DynamicFrame.fromDF(
 glueContext.add_ingestion_time_columns(data_frame, "hour"),
 glueContext, "from_data_frame"
)
 additionalOptions_datasink1 = {"enableUpdateCatalog": True}
 additionalOptions_datasink1["partitionKeys"] = ["ingest_yr", "ingest_mo",
 "ingest_day"]
 datasink1 = glueContext.write_dynamic_frame.from_catalog(
 frame = datasource0,
 database = "tempdb",
 table_name = "kafka-auth-table-output",
 transformation_ctx = "datasink1",
 additional_options = additionalOptions_datasink1
)

Working with datasets in Amazon S3

• purge_table

• purge_s3_path

• transition_table

• transition_s3_path

purge_table

purge_table(catalog_id=None, database="", table_name="", options={},
transformation_ctx="")

Deletes files from Amazon S3 for the specified catalog's database and table. If all files in a partition
are deleted, that partition is also deleted from the catalog.

If you want to be able to recover deleted objects, you can turn on object versioning on the Amazon
S3 bucket. When an object is deleted from a bucket that doesn't have object versioning enabled,

ETL in PySpark 1438

https://docs.aws.amazon.com/AmazonS3/latest/dev/ObjectVersioning.html

AWS Glue User Guide

the object can't be recovered. For more information about how to recover deleted objects in a
version-enabled bucket, see How can I retrieve an Amazon S3 object that was deleted? in the AWS
Support Knowledge Center.

• catalog_id – The catalog ID of the Data Catalog being accessed (the account ID of the Data
Catalog). Set to None by default. None defaults to the catalog ID of the calling account in the
service.

• database – The database to use.

• table_name – The name of the table to use.

• options – Options to filter files to be deleted and for manifest file generation.

• retentionPeriod – Specifies a period in number of hours to retain files. Files newer than the
retention period are retained. Set to 168 hours (7 days) by default.

• partitionPredicate – Partitions satisfying this predicate are deleted. Files within the
retention period in these partitions are not deleted. Set to "" – empty by default.

• excludeStorageClasses – Files with storage class in the excludeStorageClasses set are
not deleted. The default is Set() – an empty set.

• manifestFilePath – An optional path for manifest file generation. All files that were
successfully purged are recorded in Success.csv, and those that failed in Failed.csv

• transformation_ctx – The transformation context to use (optional). Used in the manifest file
path.

Example

glueContext.purge_table("database", "table", {"partitionPredicate": "(month=='march')",
 "retentionPeriod": 1, "excludeStorageClasses": ["STANDARD_IA"], "manifestFilePath":
 "s3://bucketmanifest/"})

purge_s3_path

purge_s3_path(s3_path, options={}, transformation_ctx="")

Deletes files from the specified Amazon S3 path recursively.

If you want to be able to recover deleted objects, you can turn on object versioning on the Amazon
S3 bucket. When an object is deleted from a bucket that doesn't have object versioning turned
on, the object can't be recovered. For more information about how to recover deleted objects in a

ETL in PySpark 1439

https://aws.amazon.com/premiumsupport/knowledge-center/s3-undelete-configuration/
https://docs.aws.amazon.com/AmazonS3/latest/dev/ObjectVersioning.html

AWS Glue User Guide

bucket with versioning, see How can I retrieve an Amazon S3 object that was deleted? in the AWS
Support Knowledge Center.

• s3_path – The path in Amazon S3 of the files to be deleted in the format s3://<bucket>/
<prefix>/

• options – Options to filter files to be deleted and for manifest file generation.

• retentionPeriod – Specifies a period in number of hours to retain files. Files newer than the
retention period are retained. Set to 168 hours (7 days) by default.

• excludeStorageClasses – Files with storage class in the excludeStorageClasses set are
not deleted. The default is Set() – an empty set.

• manifestFilePath – An optional path for manifest file generation. All files that were
successfully purged are recorded in Success.csv, and those that failed in Failed.csv

• transformation_ctx – The transformation context to use (optional). Used in the manifest file
path.

Example

glueContext.purge_s3_path("s3://bucket/path/", {"retentionPeriod": 1,
 "excludeStorageClasses": ["STANDARD_IA"], "manifestFilePath": "s3://bucketmanifest/"})

transition_table

transition_table(database, table_name, transition_to, options={},
transformation_ctx="", catalog_id=None)

Transitions the storage class of the files stored on Amazon S3 for the specified catalog's database
and table.

You can transition between any two storage classes. For the GLACIER and DEEP_ARCHIVE storage
classes, you can transition to these classes. However, you would use an S3 RESTORE to transition
from GLACIER and DEEP_ARCHIVE storage classes.

If you're running AWS Glue ETL jobs that read files or partitions from Amazon S3, you can exclude
some Amazon S3 storage class types. For more information, see Excluding Amazon S3 Storage
Classes.

• database – The database to use.

• table_name – The name of the table to use.

ETL in PySpark 1440

https://aws.amazon.com/premiumsupport/knowledge-center/s3-undelete-configuration/
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-storage-classes.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-storage-classes.html

AWS Glue User Guide

• transition_to – The Amazon S3 storage class to transition to.

• options – Options to filter files to be deleted and for manifest file generation.

• retentionPeriod – Specifies a period in number of hours to retain files. Files newer than the
retention period are retained. Set to 168 hours (7 days) by default.

• partitionPredicate – Partitions satisfying this predicate are transitioned. Files within the
retention period in these partitions are not transitioned. Set to "" – empty by default.

• excludeStorageClasses – Files with storage class in the excludeStorageClasses set are
not transitioned. The default is Set() – an empty set.

• manifestFilePath – An optional path for manifest file generation. All files that were
successfully transitioned are recorded in Success.csv, and those that failed in Failed.csv

• accountId – The Amazon Web Services account ID to run the transition transform. Mandatory
for this transform.

• roleArn – The AWS role to run the transition transform. Mandatory for this transform.

• transformation_ctx – The transformation context to use (optional). Used in the manifest file
path.

• catalog_id – The catalog ID of the Data Catalog being accessed (the account ID of the Data
Catalog). Set to None by default. None defaults to the catalog ID of the calling account in the
service.

Example

glueContext.transition_table("database", "table", "STANDARD_IA", {"retentionPeriod": 1,
 "excludeStorageClasses": ["STANDARD_IA"], "manifestFilePath": "s3://bucketmanifest/",
 "accountId": "12345678901", "roleArn": "arn:aws:iam::123456789012:user/example-
username"})

transition_s3_path

transition_s3_path(s3_path, transition_to, options={},
transformation_ctx="")

Transitions the storage class of the files in the specified Amazon S3 path recursively.

You can transition between any two storage classes. For the GLACIER and DEEP_ARCHIVE storage
classes, you can transition to these classes. However, you would use an S3 RESTORE to transition
from GLACIER and DEEP_ARCHIVE storage classes.

ETL in PySpark 1441

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/s3/model/StorageClass.html

AWS Glue User Guide

If you're running AWS Glue ETL jobs that read files or partitions from Amazon S3, you can exclude
some Amazon S3 storage class types. For more information, see Excluding Amazon S3 Storage
Classes.

• s3_path – The path in Amazon S3 of the files to be transitioned in the format s3://
<bucket>/<prefix>/

• transition_to – The Amazon S3 storage class to transition to.

• options – Options to filter files to be deleted and for manifest file generation.

• retentionPeriod – Specifies a period in number of hours to retain files. Files newer than the
retention period are retained. Set to 168 hours (7 days) by default.

• partitionPredicate – Partitions satisfying this predicate are transitioned. Files within the
retention period in these partitions are not transitioned. Set to "" – empty by default.

• excludeStorageClasses – Files with storage class in the excludeStorageClasses set are
not transitioned. The default is Set() – an empty set.

• manifestFilePath – An optional path for manifest file generation. All files that were
successfully transitioned are recorded in Success.csv, and those that failed in Failed.csv

• accountId – The Amazon Web Services account ID to run the transition transform. Mandatory
for this transform.

• roleArn – The AWS role to run the transition transform. Mandatory for this transform.

• transformation_ctx – The transformation context to use (optional). Used in the manifest file
path.

Example

glueContext.transition_s3_path("s3://bucket/prefix/", "STANDARD_IA",
 {"retentionPeriod": 1, "excludeStorageClasses": ["STANDARD_IA"],
 "manifestFilePath": "s3://bucketmanifest/", "accountId": "12345678901", "roleArn":
 "arn:aws:iam::123456789012:user/example-username"})

Extracting

• extract_jdbc_conf

ETL in PySpark 1442

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-storage-classes.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-storage-classes.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/s3/model/StorageClass.html

AWS Glue User Guide

extract_jdbc_conf

extract_jdbc_conf(connection_name, catalog_id = None)

Returns a dict with keys with the configuration properties from the AWS Glue connection object
in the Data Catalog.

• user – The database user name.

• password – The database password.

• vendor – Specifies a vendor (mysql, postgresql, oracle, sqlserver, etc.).

• enforceSSL – A boolean string indicating if a secure connection is required.

• customJDBCCert – Use a specific client certificate from the Amazon S3 path indicated.

• skipCustomJDBCCertValidation – A boolean string indicating if the customJDBCCert must
be validated by a CA.

• customJDBCCertString – Additional information about the custom certificate, specific for the
driver type.

• url – (Deprecated) JDBC URL with only protocol, server and port.

• fullUrl – JDBC URL as entered when the connection was created (Available in AWS Glue
version 3.0 or later).

Example retrieving JDBC configurations:

jdbc_conf = glueContext.extract_jdbc_conf(connection_name="your_glue_connection_name")
print(jdbc_conf)
>>> {'enforceSSL': 'false', 'skipCustomJDBCCertValidation': 'false', 'url':
 'jdbc:mysql://myserver:3306', 'fullUrl': 'jdbc:mysql://myserver:3306/mydb',
 'customJDBCCertString': '', 'user': 'admin', 'customJDBCCert': '', 'password': '1234',
 'vendor': 'mysql'}

Transactions

• start_transaction

• commit_transaction

• cancel_transaction

ETL in PySpark 1443

AWS Glue User Guide

start_transaction

start_transaction(read_only)

Start a new transaction. Internally calls the Lake Formation startTransaction API.

• read_only – (Boolean) Indicates whether this transaction should be read only or read and write.
Writes made using a read-only transaction ID will be rejected. Read-only transactions do not
need to be committed.

Returns the transaction ID.

commit_transaction

commit_transaction(transaction_id, wait_for_commit = True)

Attempts to commit the specified transaction. commit_transaction may return before the
transaction has finished committing. Internally calls the Lake Formation commitTransaction API.

• transaction_id – (String) The transaction to commit.

• wait_for_commit – (Boolean) Determines whether the commit_transaction returns
immediately. The default value is true. If false, commit_transaction polls and waits until the
transaction is committed. The amount of wait time is restricted to 1 minute using exponential
backoff with a maximum of 6 retry attempts.

Returns a Boolean to indicate whether the commit is done or not.

cancel_transaction

cancel_transaction(transaction_id)

Attempts to cancel the specified transaction. Returns a TransactionCommittedException
exception if the transaction was previously committed. Internally calls the Lake Formation
CancelTransaction API.

• transaction_id – (String) The transaction to cancel.

Writing

• getSink

ETL in PySpark 1444

https://docs.aws.amazon.com/lake-formation/latest/dg/aws-lake-formation-api-aws-lake-formation-api-transactions.html#aws-lake-formation-api-aws-lake-formation-api-transactions-StartTransaction
https://docs.aws.amazon.com/lake-formation/latest/dg/aws-lake-formation-api-aws-lake-formation-api-transactions.html#aws-lake-formation-api-aws-lake-formation-api-transactions-CommitTransaction
https://docs.aws.amazon.com/lake-formation/latest/dg/aws-lake-formation-api-aws-lake-formation-api-transactions.html#aws-lake-formation-api-aws-lake-formation-api-transactions-CancelTransaction

AWS Glue User Guide

• write_dynamic_frame_from_options

• write_from_options

• write_dynamic_frame_from_catalog

• write_data_frame_from_catalog

• write_dynamic_frame_from_jdbc_conf

• write_from_jdbc_conf

getSink

getSink(connection_type, format = None, transformation_ctx = "", **options)

Gets a DataSink object that can be used to write DynamicFrames to external sources. Check the
SparkSQL format first to be sure to get the expected sink.

• connection_type – The connection type to use, such as Amazon S3, Amazon Redshift, and
JDBC. Valid values include s3, mysql, postgresql, redshift, sqlserver, oracle, kinesis,
and kafka.

• format – The SparkSQL format to use (optional).

• transformation_ctx – The transformation context to use (optional).

• options – A collection of name-value pairs used to specify the connection options. Some of the
possible values are:

• user and password: For authorization

• url: The endpoint for the data store

• dbtable: The name of the target table

• bulkSize: Degree of parallelism for insert operations

The options that you can specify depends on the connection type. See Connection types and
options for ETL in AWS Glue for Spark for additional values and examples.

Example:

>>> data_sink = context.getSink("s3")
>>> data_sink.setFormat("json"),
>>> data_sink.writeFrame(myFrame)

ETL in PySpark 1445

AWS Glue User Guide

write_dynamic_frame_from_options

write_dynamic_frame_from_options(frame, connection_type,
connection_options={}, format=None, format_options={}, transformation_ctx =
"")

Writes and returns a DynamicFrame using the specified connection and format.

• frame – The DynamicFrame to write.

• connection_type – The connection type, such as Amazon S3, Amazon Redshift, and JDBC.
Valid values include s3, mysql, postgresql, redshift, sqlserver, oracle, kinesis, and
kafka.

• connection_options – Connection options, such as path and database table (optional). For a
connection_type of s3, an Amazon S3 path is defined.

connection_options = {"path": "s3://aws-glue-target/temp"}

For JDBC connections, several properties must be defined. Note that the database name must be
part of the URL. It can optionally be included in the connection options.

Warning

Storing passwords in your script is not recommended. Consider using boto3 to retrieve
them from AWS Secrets Manager or the AWS Glue Data Catalog.

connection_options = {"url": "jdbc-url/database", "user": "username",
 "password": passwordVariable,"dbtable": "table-name", "redshiftTmpDir": "s3-tempdir-
path"}

The dbtable property is the name of the JDBC table. For JDBC data stores that support schemas
within a database, specify schema.table-name. If a schema is not provided, then the default
"public" schema is used.

For more information, see Connection types and options for ETL in AWS Glue for Spark.

• format – A format specification. This is used for an Amazon S3 or an AWS Glue connection that
supports multiple formats. See Data format options for inputs and outputs in AWS Glue for
Spark for the formats that are supported.

ETL in PySpark 1446

AWS Glue User Guide

• format_options – Format options for the specified format. See Data format options for inputs
and outputs in AWS Glue for Spark for the formats that are supported.

• transformation_ctx – A transformation context to use (optional).

write_from_options

write_from_options(frame_or_dfc, connection_type, connection_options={},
format={}, format_options={}, transformation_ctx = "")

Writes and returns a DynamicFrame or DynamicFrameCollection that is created with the
specified connection and format information.

• frame_or_dfc – The DynamicFrame or DynamicFrameCollection to write.

• connection_type – The connection type, such as Amazon S3, Amazon Redshift, and JDBC.
Valid values include s3, mysql, postgresql, redshift, sqlserver, and oracle.

• connection_options – Connection options, such as path and database table (optional). For a
connection_type of s3, an Amazon S3 path is defined.

connection_options = {"path": "s3://aws-glue-target/temp"}

For JDBC connections, several properties must be defined. Note that the database name must be
part of the URL. It can optionally be included in the connection options.

Warning

Storing passwords in your script is not recommended. Consider using boto3 to retrieve
them from AWS Secrets Manager or the AWS Glue Data Catalog.

connection_options = {"url": "jdbc-url/database", "user": "username",
 "password": passwordVariable,"dbtable": "table-name", "redshiftTmpDir": "s3-tempdir-
path"}

The dbtable property is the name of the JDBC table. For JDBC data stores that support schemas
within a database, specify schema.table-name. If a schema is not provided, then the default
"public" schema is used.

ETL in PySpark 1447

AWS Glue User Guide

For more information, see Connection types and options for ETL in AWS Glue for Spark.

• format – A format specification. This is used for an Amazon S3 or an AWS Glue connection that
supports multiple formats. See Data format options for inputs and outputs in AWS Glue for
Spark for the formats that are supported.

• format_options – Format options for the specified format. See Data format options for inputs
and outputs in AWS Glue for Spark for the formats that are supported.

• transformation_ctx – A transformation context to use (optional).

write_dynamic_frame_from_catalog

write_dynamic_frame_from_catalog(frame, database, table_name,
redshift_tmp_dir, transformation_ctx = "", additional_options = {},
catalog_id = None)

Writes and returns a DynamicFrame using information from a Data Catalog database and table.

• frame – The DynamicFrame to write.

• Database – The Data Catalog database that contains the table.

• table_name – The name of the Data Catalog table associated with the target.

• redshift_tmp_dir – An Amazon Redshift temporary directory to use (optional).

• transformation_ctx – The transformation context to use (optional).

• additional_options – A collection of optional name-value pairs.

• catalog_id — The catalog ID (account ID) of the Data Catalog being accessed. When None, the
default account ID of the caller is used.

write_data_frame_from_catalog

write_data_frame_from_catalog(frame, database, table_name,
redshift_tmp_dir, transformation_ctx = "", additional_options = {},
catalog_id = None)

Writes and returns a DataFrame using information from a Data Catalog database and table.
This method supports writing to data lake formats (Hudi, Iceberg, and Delta Lake). For more
information, see Using data lake frameworks with AWS Glue ETL jobs.

ETL in PySpark 1448

AWS Glue User Guide

• frame – The DataFrame to write.

• Database – The Data Catalog database that contains the table.

• table_name – The name of the Data Catalog table that is associated with the target.

• redshift_tmp_dir – An Amazon Redshift temporary directory to use (optional).

• transformation_ctx – The transformation context to use (optional).

• additional_options – A collection of optional name-value pairs.

• useSparkDataSink – When set to true, forces AWS Glue to use the native Spark Data Sink
API to write to the table. When you enable this option, you can add any Spark Data Source
options to additional_options as needed. AWS Glue passes these options directly to the
Spark writer.

• catalog_id – The catalog ID (account ID) of the Data Catalog being accessed. When you don't
specify a value, the default account ID of the caller is used.

Limitations

Consider the following limitations when you use the useSparkDataSink option:

• The enableUpdateCatalog option isn't supported when you use the useSparkDataSink
option.

Example: Writing to a Hudi table using the Spark Data Source writer

hudi_options = {
 'useSparkDataSink': True,
 'hoodie.table.name': <table_name>,
 'hoodie.datasource.write.storage.type': 'COPY_ON_WRITE',
 'hoodie.datasource.write.recordkey.field': 'product_id',
 'hoodie.datasource.write.table.name': <table_name>,
 'hoodie.datasource.write.operation': 'upsert',
 'hoodie.datasource.write.precombine.field': 'updated_at',
 'hoodie.datasource.write.hive_style_partitioning': 'true',
 'hoodie.upsert.shuffle.parallelism': 2,
 'hoodie.insert.shuffle.parallelism': 2,
 'hoodie.datasource.hive_sync.enable': 'true',
 'hoodie.datasource.hive_sync.database': <database_name>,
 'hoodie.datasource.hive_sync.table': <table_name>,
 'hoodie.datasource.hive_sync.use_jdbc': 'false',
 'hoodie.datasource.hive_sync.mode': 'hms'}

ETL in PySpark 1449

https://spark.apache.org/docs/latest/sql-data-sources.html
https://spark.apache.org/docs/latest/sql-data-sources.html

AWS Glue User Guide

glueContext.write_data_frame.from_catalog(
 frame = <df_product_inserts>,
 database = <database_name>,
 table_name = <table_name>,
 additional_options = hudi_options
)

write_dynamic_frame_from_jdbc_conf

write_dynamic_frame_from_jdbc_conf(frame, catalog_connection,
connection_options={}, redshift_tmp_dir = "", transformation_ctx = "",
catalog_id = None)

Writes and returns a DynamicFrame using the specified JDBC connection information.

• frame – The DynamicFrame to write.

• catalog_connection – A catalog connection to use.

• connection_options – Connection options, such as path and database table (optional). For
more information, see Connection types and options for ETL in AWS Glue for Spark.

• redshift_tmp_dir – An Amazon Redshift temporary directory to use (optional).

• transformation_ctx – A transformation context to use (optional).

• catalog_id — The catalog ID (account ID) of the Data Catalog being accessed. When None, the
default account ID of the caller is used.

write_from_jdbc_conf

write_from_jdbc_conf(frame_or_dfc, catalog_connection,
connection_options={}, redshift_tmp_dir = "", transformation_ctx = "",
catalog_id = None)

Writes and returns a DynamicFrame or DynamicFrameCollection using the specified JDBC
connection information.

• frame_or_dfc – The DynamicFrame or DynamicFrameCollection to write.

• catalog_connection – A catalog connection to use.

• connection_options – Connection options, such as path and database table (optional). For
more information, see Connection types and options for ETL in AWS Glue for Spark.

ETL in PySpark 1450

AWS Glue User Guide

• redshift_tmp_dir – An Amazon Redshift temporary directory to use (optional).

• transformation_ctx – A transformation context to use (optional).

• catalog_id — The catalog ID (account ID) of the Data Catalog being accessed. When None, the
default account ID of the caller is used.

AWS Glue PySpark transforms reference

AWS Glue provides the following built-in transforms that you can use in PySpark ETL operations.
Your data passes from transform to transform in a data structure called a DynamicFrame, which
is an extension to an Apache Spark SQL DataFrame. The DynamicFrame contains your data, and
you reference its schema to process your data.

Most of these transforms also exist as methods of the DynamicFrame class. For more information,
see DynamicFrame transforms .

• GlueTransform base class

• ApplyMapping class

• DropFields class

• DropNullFields class

• ErrorsAsDynamicFrame class

• EvaluateDataQuality class

• FillMissingValues class

• Filter class

• FindIncrementalMatches class

• FindMatches class

• FlatMap class

• Join class

• Map class

• MapToCollection class

• mergeDynamicFrame

• Relationalize class

• RenameField class

• ResolveChoice class

ETL in PySpark 1451

AWS Glue User Guide

• SelectFields class

• SelectFromCollection class

• Simplify_ddb_json class

• Spigot class

• SplitFields class

• SplitRows class

• Unbox class

• UnnestFrame class

GlueTransform base class

The base class that all the awsglue.transforms classes inherit from.

The classes all define a __call__ method. They either override the GlueTransform class
methods listed in the following sections, or they are called using the class name by default.

Methods

• apply(cls, *args, **kwargs)

• name(cls)

• describeArgs(cls)

• describeReturn(cls)

• describeTransform(cls)

• describeErrors(cls)

• describe(cls)

apply(cls, *args, **kwargs)

Applies the transform by calling the transform class, and returns the result.

• cls – The self class object.

name(cls)

Returns the name of the derived transform class.

ETL in PySpark 1452

AWS Glue User Guide

• cls – The self class object.

describeArgs(cls)

• cls – The self class object.

Returns a list of dictionaries, each corresponding to a named argument, in the following format:

[
 {
 "name": "(name of argument)",
 "type": "(type of argument)",
 "description": "(description of argument)",
 "optional": "(Boolean, True if the argument is optional)",
 "defaultValue": "(Default value string, or None)(String; the default value, or
 None)"
 },
...
]

Raises a NotImplementedError exception when called in a derived transform where it is not
implemented.

describeReturn(cls)

• cls – The self class object.

Returns a dictionary with information about the return type, in the following format:

{
 "type": "(return type)",
 "description": "(description of output)"
}

Raises a NotImplementedError exception when called in a derived transform where it is not
implemented.

describeTransform(cls)

Returns a string describing the transform.

ETL in PySpark 1453

AWS Glue User Guide

• cls – The self class object.

Raises a NotImplementedError exception when called in a derived transform where it is not
implemented.

describeErrors(cls)

• cls – The self class object.

Returns a list of dictionaries, each describing a possible exception thrown by this transform, in the
following format:

[
 {
 "type": "(type of error)",
 "description": "(description of error)"
 },
...
]

describe(cls)

• cls – The self class object.

Returns an object with the following format:

{
 "transform" : {
 "name" : cls.name(),
 "args" : cls.describeArgs(),
 "returns" : cls.describeReturn(),
 "raises" : cls.describeErrors(),
 "location" : "internal"
 }
}

ApplyMapping class

Applies a mapping in a DynamicFrame.

ETL in PySpark 1454

AWS Glue User Guide

Example

We recommend that you use the DynamicFrame.apply_mapping() method to apply a mapping
in a DynamicFrame. To view a code example, see Example: Use apply_mapping to rename fields
and change field types.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• Describe

__call__(frame, mappings, transformation_ctx = "", info = "", stageThreshold = 0, totalThreshold
= 0)

Applies a declarative mapping to a specified DynamicFrame.

• frame – The DynamicFrame to apply the mapping to (required).

• mappings – A list of mapping tuples (required). Each consists of: (source column, source type,
target column, target type).

If the source column has a dot "." in the name, you must place back-ticks "``" around it. For
example, to map this.old.name (string) to thisNewName, you would use the following tuple:

("`this.old.name`", "string", "thisNewName", "string")

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string that is associated with errors in the transformation (optional).

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out (optional). The default is zero.

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out (optional). The default is zero.

ETL in PySpark 1455

AWS Glue User Guide

Returns only the fields of the DynamicFrame that are specified in the "mapping" tuples.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

DropFields class

Drops fields within a DynamicFrame.

Example

We recommend that you use the DynamicFrame.drop_fields() method to drop fields from
a DynamicFrame. To view a code example, see Example: Use drop_fields to remove fields from a
DynamicFrame.

Methods

• __call__

• apply

ETL in PySpark 1456

AWS Glue User Guide

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• Describe

__call__(frame, paths, transformation_ctx = "", info = "", stageThreshold = 0, totalThreshold =
0)

Drops nodes within a DynamicFrame.

• frame – The DynamicFrame to drop the nodes in (required).

• paths – A list of full paths to the nodes to drop (required).

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string associated with errors in the transformation (optional).

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out (optional). The default is zero.

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out (optional). The default is zero.

Returns a new DynamicFrame without the specified fields.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

ETL in PySpark 1457

AWS Glue User Guide

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

DropNullFields class

Drops all null fields in a DynamicFrame whose type is NullType. These are fields with missing or
null values in every record in the DynamicFrame dataset.

Example

This example uses DropNullFields to create a new DynamicFrame where fields of type
NullType have been dropped. In order to demonstrate DropNullFields, we add a new column
named empty_column with type null to the already-loaded persons dataset.

Note

To access the dataset that is used in this example, see Code example: Joining and
relationalizing data and follow the instructions in Step 1: Crawl the data in the Amazon S3
bucket.

Example: Use DropNullFields to create a new DynamicFrame without NullType fields

from pyspark.context import SparkContext
from awsglue.context import GlueContext
from pyspark.sql.functions import lit
from pyspark.sql.types import NullType
from awsglue.dynamicframe import DynamicFrame
from awsglue.transforms import DropNullFields

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

ETL in PySpark 1458

AWS Glue User Guide

Create DynamicFrame
persons = glueContext.create_dynamic_frame.from_catalog(
 database="legislators", table_name="persons_json"
)
print("Schema for the persons DynamicFrame:")
persons.printSchema()

Add new column "empty_column" with NullType
persons_with_nulls = persons.toDF().withColumn("empty_column",
 lit(None).cast(NullType()))
persons_with_nulls_dyf = DynamicFrame.fromDF(persons_with_nulls, glueContext,
 "persons_with_nulls")
print("Schema for the persons_with_nulls_dyf DynamicFrame:")
persons_with_nulls_dyf.printSchema()

Remove the NullType field
persons_no_nulls = DropNullFields.apply(persons_with_nulls_dyf)
print("Schema for the persons_no_nulls DynamicFrame:")
persons_no_nulls.printSchema()

Output

Schema for the persons DynamicFrame:
root
|-- family_name: string
|-- name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- gender: string
|-- image: string
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- other_names: array
| |-- element: struct
| | |-- lang: string
| | |-- note: string
| | |-- name: string
|-- sort_name: string

ETL in PySpark 1459

AWS Glue User Guide

|-- images: array
| |-- element: struct
| | |-- url: string
|-- given_name: string
|-- birth_date: string
|-- id: string
|-- contact_details: array
| |-- element: struct
| | |-- type: string
| | |-- value: string
|-- death_date: string

Schema for the persons_with_nulls_dyf DynamicFrame:
root
|-- family_name: string
|-- name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- gender: string
|-- image: string
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- other_names: array
| |-- element: struct
| | |-- lang: string
| | |-- note: string
| | |-- name: string
|-- sort_name: string
|-- images: array
| |-- element: struct
| | |-- url: string
|-- given_name: string
|-- birth_date: string
|-- id: string
|-- contact_details: array
| |-- element: struct
| | |-- type: string
| | |-- value: string
|-- death_date: string
|-- empty_column: null

ETL in PySpark 1460

AWS Glue User Guide

null_fields ['empty_column']
Schema for the persons_no_nulls DynamicFrame:
root
|-- family_name: string
|-- name: string
|-- links: array
| |-- element: struct
| | |-- note: string
| | |-- url: string
|-- gender: string
|-- image: string
|-- identifiers: array
| |-- element: struct
| | |-- scheme: string
| | |-- identifier: string
|-- other_names: array
| |-- element: struct
| | |-- lang: string
| | |-- note: string
| | |-- name: string
|-- sort_name: string
|-- images: array
| |-- element: struct
| | |-- url: string
|-- given_name: string
|-- birth_date: string
|-- id: string
|-- contact_details: array
| |-- element: struct
| | |-- type: string
| | |-- value: string
|-- death_date: string

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

ETL in PySpark 1461

AWS Glue User Guide

• describeTransform

• describeErrors

• Describe

__call__(frame, transformation_ctx = "", info = "", stageThreshold = 0, totalThreshold = 0)

Drops all null fields in a DynamicFrame whose type is NullType. These are fields with missing or
null values in every record in the DynamicFrame dataset.

• frame – The DynamicFrame to drop null fields in (required).

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string associated with errors in the transformation (optional).

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out (optional). The default is zero.

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out (optional). The default is zero.

Returns a new DynamicFrame with no null fields.

apply(cls, *args, **kwargs)

• cls – cls

name(cls)

• cls – cls

describeArgs(cls)

• cls – cls

describeReturn(cls)

• cls – cls

ETL in PySpark 1462

AWS Glue User Guide

describeTransform(cls)

• cls – cls

describeErrors(cls)

• cls – cls

describe(cls)

• cls – cls

ErrorsAsDynamicFrame class

Returns a DynamicFrame that contains nested records for errors that occurred while the source
DynamicFrame was created.

Example

We recommend that you use the DynamicFrame.errorsAsDynamicFrame() method to retrieve
and view error records. To view a code example, see Example: Use errorsAsDynamicFrame to view
error records.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• Describe

ETL in PySpark 1463

AWS Glue User Guide

__call__(frame)

Returns a DynamicFrame that contains nested error records that relate to the source
DynamicFrame.

• frame – The source DynamicFrame (required).

apply(cls, *args, **kwargs)

• cls – cls

name(cls)

• cls – cls

describeArgs(cls)

• cls – cls

describeReturn(cls)

• cls – cls

describeTransform(cls)

• cls – cls

describeErrors(cls)

• cls – cls

describe(cls)

• cls – cls

ETL in PySpark 1464

AWS Glue User Guide

EvaluateDataQuality class

Evaluates a data quality ruleset against a DynamicFrame and returns a new DynamicFrame with
results of the evaluation.

Example

The following example code demonstrates how to evaluate data quality for a DynamicFrame and
then view the data quality results.

from awsglue.transforms import *
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsgluedq.transforms import EvaluateDataQuality

#Create Glue context
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

Define DynamicFrame
legislatorsAreas = glueContext.create_dynamic_frame.from_catalog(
 database="legislators", table_name="areas_json")

Create data quality ruleset
ruleset = """Rules = [ColumnExists "id", IsComplete "id"]"""

Evaluate data quality
dqResults = EvaluateDataQuality.apply(
 frame=legislatorsAreas,
 ruleset=ruleset,
 publishing_options={
 "dataQualityEvaluationContext": "legislatorsAreas",
 "enableDataQualityCloudWatchMetrics": True,
 "enableDataQualityResultsPublishing": True,
 "resultsS3Prefix": "DOC-EXAMPLE-BUCKET1",
 },
)

Inspect data quality results
dqResults.printSchema()
dqResults.toDF().show()

ETL in PySpark 1465

AWS Glue User Guide

Output

root
|-- Rule: string
|-- Outcome: string
|-- FailureReason: string
|-- EvaluatedMetrics: map
| |-- keyType: string
| |-- valueType: double

+-----------------------+-------+-------------+---------------------------------------+
|Rule |Outcome|FailureReason|EvaluatedMetrics |
+-----------------------+-------+-------------+---------------------------------------+
|ColumnExists "id" |Passed |null |{} |
|IsComplete "id" |Passed |null |{Column.first_name.Completeness -> 1.0}|
+-----------------------+-------+-------------+---------------------------------------+

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(frame, ruleset, publishing_options = {})

• frame – The DynamicFrame that you want evaluate the data quality of.

• ruleset – A Data Quality Definition Language (DQDL) ruleset in string format. To learn more
about DQDL, see the Data Quality Definition Language (DQDL) reference guide.

• publishing_options – A dictionary that specifies the following options for publishing
evaluation results and metrics:

ETL in PySpark 1466

AWS Glue User Guide

• dataQualityEvaluationContext – A string that specifies the namespace under which AWS
Glue should publish Amazon CloudWatch metrics and the data quality results. The aggregated
metrics appear in CloudWatch, while the full results appear in the AWS Glue Studio interface.

• Required: No

• Default value: default_context

• enableDataQualityCloudWatchMetrics – Specifies whether the results of the data
quality evaluation should be published to CloudWatch. You specify a namespace for the
metrics using the dataQualityEvaluationContext option.

• Required: No

• Default value: False

• enableDataQualityResultsPublishing – Specifies whether the data quality results
should be visible on the Data Quality tab in the AWS Glue Studio interface.

• Required: No

• Default value: True

• resultsS3Prefix – Specifies the Amazon S3 location where AWS Glue can write the data
quality evaluation results.

• Required: No

• Default value: "" (empty string)

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

ETL in PySpark 1467

AWS Glue User Guide

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

FillMissingValues class

The FillMissingValues class locates null values and empty strings in a specified
DynamicFrame and uses machine learning methods, such as linear regression and random forest,
to predict the missing values. The ETL job uses the values in the input dataset to train the machine
learning model, which then predicts what the missing values should be.

Tip

If you use incremental data sets, then each incremental set is used as the training data for
the machine learning model, so the results might not be as accurate.

To import:

from awsglueml.transforms import FillMissingValues

Methods

• Apply

apply(frame, missing_values_column, output_column ="", transformation_ctx ="", info ="",
stageThreshold = 0, totalThreshold = 0)

Fills a dynamic frame's missing values in a specified column and returns a new frame with
estimates in a new column. For rows without missing values, the specified column's value is
duplicated to the new column.

• frame – The DynamicFrame in which to fill missing values. Required.

• missing_values_column – The column containing missing values (null values and empty
strings). Required.

ETL in PySpark 1468

AWS Glue User Guide

• output_column – The name of the new column that will contain estimated values for all rows
whose value was missing. Optional; the default is the name of missing_values_column
suffixed by "_filled".

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string associated with errors in the transformation (optional).

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out (optional; the default is zero).

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out (optional; the default is zero).

Returns a new DynamicFrame with one additional column that contains estimations for rows with
missing values and the present value for other rows.

Filter class

Builds a new DynamicFrame that contains records from the input DynamicFrame that satisfy a
specified predicate function.

Example

We recommend that you use the DynamicFrame.filter() method to filter records in a
DynamicFrame. To view a code example, see Example: Use filter to get a filtered selection of
fields.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

ETL in PySpark 1469

AWS Glue User Guide

__call__(frame, f, transformation_ctx="", info="", stageThreshold=0, totalThreshold=0))

Returns a new DynamicFrame that is built by selecting records from the input DynamicFrame
that satisfy a specified predicate function.

• frame – The source DynamicFrame to apply the specified filter function to (required).

• f – The predicate function to apply to each DynamicRecord in the DynamicFrame. The
function must take a DynamicRecord as its argument and return True if the DynamicRecord
meets the filter requirements, or False if it doesn't (required).

A DynamicRecord represents a logical record in a DynamicFrame. It's similar to a row in a
Spark DataFrame, except that it is self-describing and can be used for data that doesn't conform
to a fixed schema.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string that is associated with errors in the transformation (optional).

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out (optional). The default is zero.

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out (optional). The default is zero.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

ETL in PySpark 1470

AWS Glue User Guide

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

FindIncrementalMatches class

Identifies matching records in the existing and incremental DynamicFrame and creates a new
DynamicFrame with a unique identifier assigned to each group of matching records.

To import:

from awsglueml.transforms import FindIncrementalMatches

Methods

• Apply

apply(existingFrame, incrementalFrame, transformId, transformation_ctx =
"", info = "", stageThreshold = 0, totalThreshold = 0, enforcedMatches = none,
computeMatchConfidenceScores = 0)

Identifies matching records in the input DynamicFrame and creates a new DynamicFrame with a
unique identifier assigned to each group of matching records.

• existingFrame – The existing and pre-matched DynamicFrame to apply the
FindIncrementalMatches transform. Required.

• incrementalFrame – The incremental DynamicFrame to apply the FindIncrementalMatches
transform to match against the existingFrame. Required.

• transformId – The unique ID associated with the FindIncrementalMatches transform to apply
on records in the DynamicFrames. Required.

• transformation_ctx – A unique string that is used to identify stats/state information.
Optional.

• info – A string to be associated with errors in the transformation. Optional.

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out. Optional. The default is zero.

ETL in PySpark 1471

AWS Glue User Guide

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out. Optional. The default is zero.

• enforcedMatches – The DynamicFrame used to enforce matches. Optional. The default is
None.

• computeMatchConfidenceScores – A Boolean value indicating whether to compute a
confidence score for each group of matching records. Optional. The default is false.

Returns a new DynamicFrame with a unique identifier assigned to each group of matching records.

FindMatches class

Identifies matching records in the input DynamicFrame and creates a new DynamicFrame with a
unique identifier assigned to each group of matching records.

To import:

from awsglueml.transforms import FindMatches

Methods

• Apply

apply(frame, transformId, transformation_ctx = "", info = "", stageThreshold = 0, totalThreshold
= 0, enforcedMatches = none, computeMatchConfidenceScores = 0)

Identifies matching records in the input DynamicFrame and creates a new DynamicFrame with a
unique identifier assigned to each group of matching records.

• frame – The DynamicFrame to apply the FindMatches transform. Required.

• transformId – The unique ID associated with the FindMatches transform to apply on records in
the DynamicFrame. Required.

• transformation_ctx – A unique string that is used to identify stats/state information.
Optional.

• info – A string to be associated with errors in the transformation. Optional.

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out. Optional. The default is zero.

ETL in PySpark 1472

AWS Glue User Guide

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out. Optional. The default is zero.

• enforcedMatches – The DynamicFrame used to enforce matches. Optional. The default is
None.

• computeMatchConfidenceScores – A Boolean value indicating whether to compute a
confidence score for each group of matching records. Optional. The default is false.

Returns a new DynamicFrame with a unique identifier assigned to each group of matching records.

FlatMap class

Applies a transform to each DynamicFrame in a collection. Results are not flattened into a single
DynamicFrame, but preserved as a collection.

Examples for FlatMap

The following example snippet demonstrates how to use the ResolveChoice transform on a
collection of dynamic frames when applied to a FlatMap. The data used for input is in the JSON
located at the placeholder Amazon S3 address s3://bucket/path-for-data/sample.json
and contains the following data.

Example JSON data

[{
 "firstname": "Arnav",
 "lastname": "Desai",
 "address": {
 "street": "6 Anyroad Avenue",
 "city": "London",
 "state": "England",
 "country": "UK"
 },
 "phone": 17235550101,
 "affiliations": [
 "General Anonymous Example Products",
 "Example Independent Research",
 "Government Department of Examples"
]
},
{
 "firstname": "Mary",

ETL in PySpark 1473

AWS Glue User Guide

 "lastname": "Major",
 "address": {
 "street": "7821 Spot Place",
 "city": "Centerville",
 "state": "OK",
 "country": "US"
 },
 "phone": 19185550023,
 "affiliations": [
 "Example Dot Com",
 "Example Independent Research",
 "Example.io"
]
},
{
 "firstname": "Paulo",
 "lastname": "Santos",
 "address": {
 "street": "123 Maple Street",
 "city": "London",
 "state": "Ontario",
 "country": "CA"
 },
 "phone": 12175550181,
 "affiliations": [
 "General Anonymous Example Products",
 "Example Dot Com"
]
}]

Example Apply ResolveChoice to a DynamicFrameCollection and show output.

#Read DynamicFrame
datasource = glueContext.create_dynamic_frame_from_options("s3", connection_options =
 {"paths":["s3://bucket/path/to/file/mysamplejson.json"]}, format="json")
datasource.printSchema()
datasource.show()

Split to create a DynamicFrameCollection
split_frame=datasource.split_fields(["firstname","lastname","address"],"personal_info","business_info")
split_frame.keys()
print("---")

ETL in PySpark 1474

AWS Glue User Guide

Use FlatMap to run ResolveChoice
kwargs = {"choice": "cast:string"}
flat = FlatMap.apply(split_frame, ResolveChoice, frame_name="frame",
 transformation_ctx='tcx', **kwargs)
flat.keys()

##Select one of the DynamicFrames
personal_info = flat.select("personal_info")
personal_info.printSchema()
personal_info.show()
print("---")

business_info = flat.select("business_info")
business_info.printSchema()
business_info.show()

Important

When calling FlatMap.apply, the frame_name parameter must be "frame". No other
value is currently accepted.

Example output

root
|-- firstname: string
|-- lastname: string
|-- address: struct
| |-- street: string
| |-- city: string
| |-- state: string
| |-- country: string
|-- phone: long
|-- affiliations: array
| |-- element: string

{
 "firstname": "Mary",
 "lastname": "Major",
 "address": {
 "street": "7821 Spot Place",
 "city": "Centerville",

ETL in PySpark 1475

AWS Glue User Guide

 "state": "OK",
 "country": "US"
 },
 "phone": 19185550023,
 "affiliations": [
 "Example Dot Com",
 "Example Independent Research",
 "Example.io"
]
}

{
 "firstname": "Paulo",
 "lastname": "Santos",
 "address": {
 "street": "123 Maple Street",
 "city": "London",
 "state": "Ontario",
 "country": "CA"
 },
 "phone": 12175550181,
 "affiliations": [
 "General Anonymous Example Products",
 "Example Dot Com"
]
}

root
|-- firstname: string
|-- lastname: string
|-- address: struct
| |-- street: string
| |-- city: string
| |-- state: string
| |-- country: string

{
 "firstname": "Mary",
 "lastname": "Major",
 "address": {
 "street": "7821 Spot Place",
 "city": "Centerville",
 "state": "OK",
 "country": "US"

ETL in PySpark 1476

AWS Glue User Guide

 }
}

{
 "firstname": "Paulo",
 "lastname": "Santos",
 "address": {
 "street": "123 Maple Street",
 "city": "London",
 "state": "Ontario",
 "country": "CA"
 }
}

root
|-- phone: long
|-- affiliations: array
| |-- element: string

{
 "phone": 19185550023,
 "affiliations": [
 "Example Dot Com",
 "Example Independent Research",
 "Example.io"
]
}

{
 "phone": 12175550181,
 "affiliations": [
 "General Anonymous Example Products",
 "Example Dot Com"
]
}

Methods

• __call__

• Apply

• Name

• describeArgs

ETL in PySpark 1477

AWS Glue User Guide

• describeReturn

• describeTransform

• describeErrors

• Describe

__call__(dfc, BaseTransform, frame_name, transformation_ctx = "", **base_kwargs)

Applies a transform to each DynamicFrame in a collection and flattens the results.

• dfc – The DynamicFrameCollection over which to flatmap (required).

• BaseTransform – A transform derived from GlueTransform to apply to each member of the
collection (required).

• frame_name – The argument name to pass the elements of the collection to (required).

• transformation_ctx – A unique string that is used to identify state information (optional).

• base_kwargs – Arguments to pass to the base transform (required).

Returns a new DynamicFrameCollection created by applying the transform to each
DynamicFrame in the source DynamicFrameCollection.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

ETL in PySpark 1478

AWS Glue User Guide

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

Join class

Performs an equality join on two DynamicFrames.

Example

We recommend that you use the DynamicFrame.join() method to join DynamicFrames. To
view a code example, see Example: Use join to combine DynamicFrames.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• Describe

__call__(frame1, frame2, keys1, keys2, transformation_ctx = "")

Performs an equality join on two DynamicFrames.

• frame1 – The first DynamicFrame to join (required).

• frame2 – The second DynamicFrame to join (required).

• keys1 – The keys to join on for the first frame (required).

• keys2 – The keys to join on for the second frame (required).

• transformation_ctx – A unique string that is used to identify state information (optional).

ETL in PySpark 1479

AWS Glue User Guide

Returns a new DynamicFrame that is created by joining the two DynamicFrames.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

Map class

Builds a new DynamicFrame by applying a function to all records in the input DynamicFrame.

Example

We recommend that you use the DynamicFrame.map() method to apply a function to all records
in a DynamicFrame. To view a code example, see Example: Use map to apply a function to every
record in a DynamicFrame.

Methods

• __call__

• apply

• name

ETL in PySpark 1480

AWS Glue User Guide

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• Describe

__call__(frame, f, transformation_ctx="", info="", stageThreshold=0, totalThreshold=0)

Returns a new DynamicFrame that results from applying the specified function to all
DynamicRecords in the original DynamicFrame.

• frame – The original DynamicFrame to apply the mapping function to (required).

• f – The function to apply to all DynamicRecords in the DynamicFrame. The function must take
a DynamicRecord as an argument and return a new DynamicRecord that is produced by the
mapping (required).

A DynamicRecord represents a logical record in a DynamicFrame. It's similar to a row in an
Apache Spark DataFrame, except that it is self-describing and can be used for data that doesn't
conform to a fixed schema.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string associated with errors in the transformation (optional).

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out (optional). The default is zero.

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out (optional). The default is zero.

Returns a new DynamicFrame that results from applying the specified function to all
DynamicRecords in the original DynamicFrame.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

ETL in PySpark 1481

AWS Glue User Guide

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

MapToCollection class

Applies a transform to each DynamicFrame in the specified DynamicFrameCollection.

Methods

• __call__

• Apply

• Name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• Describe

__call__(dfc, BaseTransform, frame_name, transformation_ctx = "", **base_kwargs)

Applies a transform function to each DynamicFrame in the specified DynamicFrameCollection.

• dfc – The DynamicFrameCollection over which to apply the transform function (required).

• callable – A callable transform function to apply to each member of the collection (required).

ETL in PySpark 1482

AWS Glue User Guide

• transformation_ctx – A unique string that is used to identify state information (optional).

Returns a new DynamicFrameCollection created by applying the transform to each
DynamicFrame in the source DynamicFrameCollection.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

Relationalize class

Flattens a nested schema in a DynamicFrame and pivots out array columns from the flattened
frame.

Example

We recommend that you use the DynamicFrame.relationalize() method to relationalize a
DynamicFrame. To view a code example, see Example: Use relationalize to flatten a nested schema
in a DynamicFrame.

ETL in PySpark 1483

AWS Glue User Guide

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(frame, staging_path=None, name='roottable', options=None, transformation_ctx = "",
info = "", stageThreshold = 0, totalThreshold = 0)

Relationalizes a DynamicFrame and produces a list of frames that are generated by unnesting
nested columns and pivoting array columns. You can join a pivoted array column to the root table
by using the join key that is generated in the unnest phase.

• frame – The DynamicFrame to relationalize (required).

• staging_path – The path where the method can store partitions of pivoted tables in CSV
format (optional). Pivoted tables are read back from this path.

• name – The name of the root table (optional).

• options – A dictionary of optional parameters. Currently unused.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string associated with errors in the transformation (optional).

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out (optional). The default is zero.

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out (optional). The default is zero.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

ETL in PySpark 1484

AWS Glue User Guide

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

RenameField class

Renames a node within a DynamicFrame.

Example

We recommend that you use the DynamicFrame.rename_field() method to rename a field in
a DynamicFrame. To view a code example, see Example: Use rename_field to rename fields in a
DynamicFrame.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

ETL in PySpark 1485

AWS Glue User Guide

• describe

__call__(frame, old_name, new_name, transformation_ctx = "", info = "", stageThreshold = 0,
totalThreshold = 0)

Renames a node within a DynamicFrame.

• frame – The DynamicFrame in which to rename a node (required).

• old_name – The full path to the node to rename (required).

If the old name has dots in it, RenameField will not work unless you place backticks around it
(``). For example, to replace this.old.name with thisNewName, you would call RenameField
as follows:

newDyF = RenameField(oldDyF, "`this.old.name`", "thisNewName")

• new_name – The new name, including full path (required).

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string associated with errors in the transformation (optional).

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out (optional). The default is zero.

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out (optional). The default is zero.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

ETL in PySpark 1486

AWS Glue User Guide

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

ResolveChoice class

Resolves a choice type within a DynamicFrame.

Example

We recommend that you use the DynamicFrame.resolveChoice() method to handle fields
that contain multiple types in a DynamicFrame. To view a code example, see Example: Use
resolveChoice to handle a column that contains multiple types.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(frame, specs = none, choice = "", transformation_ctx = "", info = "", stageThreshold = 0,
totalThreshold = 0)

Provides information for resolving ambiguous types within a DynamicFrame. It returns the
resulting DynamicFrame.

ETL in PySpark 1487

AWS Glue User Guide

• frame – The DynamicFrame in which to resolve the choice type (required).

• specs – A list of specific ambiguities to resolve, each in the form of a tuple: (path, action).
The path value identifies a specific ambiguous element, and the action value identifies the
corresponding resolution.

You can only use one of the spec and choice parameters. If the spec parameter is not None,
then the choice parameter must be an empty string. Conversely, if the choice is not an empty
string, then the spec parameter must be None. If neither parameter is provided, AWS Glue tries
to parse the schema and use it to resolve ambiguities.

You can specify one of the following resolution strategies in the action portion of a specs
tuple:

• cast – Allows you to specify a type to cast to (for example, cast:int).

• make_cols – Resolves a potential ambiguity by flattening the data. For example, if columnA
could be an int or a string, the resolution is to produce two columns named columnA_int
and columnA_string in the resulting DynamicFrame.

• make_struct – Resolves a potential ambiguity by using a struct to represent the data. For
example, if data in a column could be an int or a string, using the make_struct action
produces a column of structures in the resulting DynamicFrame with each containing both an
int and a string.

• project – Resolves a potential ambiguity by retaining only values of a specified type in
the resulting DynamicFrame. For example, if data in a ChoiceType column could be an
int or a string, specifying a project:string action drops values from the resulting
DynamicFrame that are not type string.

If the path identifies an array, place empty square brackets after the name of the array to avoid
ambiguity. For example, suppose you are working with data structured as follows:

"myList": [
 { "price": 100.00 },
 { "price": "$100.00" }
]

You can select the numeric rather than the string version of the price by setting the path to
"myList[].price", and setting the action to "cast:double".

• choice – The default resolution action if the specs parameter is None. If the specs parameter
is not None, then this must not be set to anything but an empty string.

ETL in PySpark 1488

AWS Glue User Guide

In addition to the specs actions previously described, this argument also supports the following
action:

• MATCH_CATALOG – Attempts to cast each ChoiceType to the corresponding type in the
specified Data Catalog table.

• database – The AWS Glue Data Catalog database to use with the MATCH_CATALOG choice
(required for MATCH_CATALOG).

• table_name – The AWS Glue Data Catalog table name to use with the MATCH_CATALOG action
(required for MATCH_CATALOG).

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string associated with errors in the transformation (optional).

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out (optional). The default is zero.

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out (optional). The default is zero.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

ETL in PySpark 1489

AWS Glue User Guide

describe(cls)

Inherited from GlueTransform describe.

SelectFields class

The SelectFields class creates a new DynamicFrame from an existing DynamicFrame, and
keeps only the fields that you specify. SelectFields provides similar functionality to a SQL
SELECT statement.

Example

We recommend that you use the DynamicFrame.select_fields() method to select fields
from a DynamicFrame. To view a code example, see Example: Use select_fields to create a new
DynamicFrame with chosen fields.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• Describe

__call__(frame, paths, transformation_ctx = "", info = "", stageThreshold = 0, totalThreshold =
0)

Gets fields (nodes) in a DynamicFrame.

• frame – The DynamicFrame to select fields in (required).

• paths – A list of full paths to the fields to select (required).

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string that is associated with errors in the transformation (optional).

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out (optional). The default is zero.

ETL in PySpark 1490

AWS Glue User Guide

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out (optional). The default is zero.

Returns a new DynamicFrame that contains only the specified fields.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

SelectFromCollection class

Selects one DynamicFrame in a DynamicFrameCollection.

Example

This example uses SelectFromCollection to select a DynamicFrame from a
DynamicFrameCollection.

Example dataset

ETL in PySpark 1491

AWS Glue User Guide

The example selects two DynamicFrames from a DynamicFrameCollection called
split_rows_collection. The following is the list of keys in split_rows_collection.

dict_keys(['high', 'low'])

Example code

Example: Use SelectFromCollection to select
DynamicFrames from a DynamicFrameCollection

from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.transforms import SelectFromCollection

Create GlueContext
sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

Select frames and inspect entries
frame_low = SelectFromCollection.apply(dfc=split_rows_collection, key="low")
frame_low.toDF().show()

frame_high = SelectFromCollection.apply(dfc=split_rows_collection, key="high")
frame_high.toDF().show()

Output

+---+-----+------------------------+-------------------------+
| id|index|contact_details.val.type|contact_details.val.value|
+---+-----+------------------------+-------------------------+
1	0	fax	202-225-3307
1	1	phone	202-225-5731
2	0	fax	202-225-3307
2	1	phone	202-225-5731
3	0	fax	202-225-3307
3	1	phone	202-225-5731
4	0	fax	202-225-3307
4	1	phone	202-225-5731
5	0	fax	202-225-3307
5	1	phone	202-225-5731
6	0	fax	202-225-3307
6	1	phone	202-225-5731

ETL in PySpark 1492

AWS Glue User Guide

7	0	fax	202-225-3307
7	1	phone	202-225-5731
8	0	fax	202-225-3307
8	1	phone	202-225-5731
9	0	fax	202-225-3307
9	1	phone	202-225-5731
10	0	fax	202-225-6328
10	1	phone	202-225-4576
+---+-----+------------------------+-------------------------+
only showing top 20 rows

+---+-----+------------------------+-------------------------+
| id|index|contact_details.val.type|contact_details.val.value|
+---+-----+------------------------+-------------------------+
11	0	fax	202-225-6328
11	1	phone	202-225-4576
11	2	twitter	RepTrentFranks
12	0	fax	202-225-6328
12	1	phone	202-225-4576
12	2	twitter	RepTrentFranks
13	0	fax	202-225-6328
13	1	phone	202-225-4576
13	2	twitter	RepTrentFranks
14	0	fax	202-225-6328
14	1	phone	202-225-4576
14	2	twitter	RepTrentFranks
15	0	fax	202-225-6328
15	1	phone	202-225-4576
15	2	twitter	RepTrentFranks
16	0	fax	202-225-6328
16	1	phone	202-225-4576
16	2	twitter	RepTrentFranks
17	0	fax	202-225-6328
17	1	phone	202-225-4576
+---+-----+------------------------+-------------------------+
only showing top 20 rows

Methods

• __call__

• apply

• name

ETL in PySpark 1493

AWS Glue User Guide

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(dfc, key, transformation_ctx = "")

Gets one DynamicFrame from a DynamicFrameCollection.

• dfc – The DynamicFrameCollection that the DynamicFrame should be selected from
(required).

• key – The key of the DynamicFrame to select (required).

• transformation_ctx – A unique string that is used to identify state information (optional).

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

ETL in PySpark 1494

AWS Glue User Guide

describe(cls)

Inherited from GlueTransform describe.

Simplify_ddb_json class

Simplifies nested columns in a DynamicFrame that are specifically in the DynamoDB JSON
structure, and returns a new simplified DynamicFrame.

Example

We recommend that you use the DynamicFrame.simplify_ddb_json() method to simplify
nested columns in a DynamicFrame that are specifically in the DynamoDB JSON structure. To view
a code example, see Example: Use simplify_ddb_json to invoke a DynamoDB JSON simplify.

Spigot class

Writes sample records to a specified destination to help you verify the transformations performed
by your AWS Glue job.

Example

We recommend that you use the DynamicFrame.spigot() method to write a subset of records
from a DynamicFrame to a specified destination. To view a code example, see Example: Use spigot
to write sample fields from a DynamicFrame to Amazon S3.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(frame, path, options, transformation_ctx = "")

Writes sample records to a specified destination during a transformation.

ETL in PySpark 1495

AWS Glue User Guide

• frame – The DynamicFrame to spigot (required).

• path – The path of the destination to write to (required).

• options – JSON key-value pairs that specify options (optional). The "topk" option specifies
that the first k records should be written. The "prob" option specifies the probability (as a
decimal) of picking any given record. You use this in selecting records to write.

• transformation_ctx – A unique string that is used to identify state information (optional).

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply

name(cls)

Inherited from GlueTransform name

describeArgs(cls)

Inherited from GlueTransform describeArgs

describeReturn(cls)

Inherited from GlueTransform describeReturn

describeTransform(cls)

Inherited from GlueTransform describeTransform

describeErrors(cls)

Inherited from GlueTransform describeErrors

describe(cls)

Inherited from GlueTransform describe

SplitFields class

Splits a DynamicFrame into two new ones, by specified fields.

ETL in PySpark 1496

AWS Glue User Guide

Example

We recommend that you use the DynamicFrame.split_fields() method to split fields in a
DynamicFrame. To view a code example, see Example: Use split_fields to split selected fields into a
separate DynamicFrame.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(frame, paths, name1 = none, name2 = none, transformation_ctx = "", info = "",
stageThreshold = 0, totalThreshold = 0)

Splits one or more fields in a DynamicFrame off into a new DynamicFrame, and creates another
new DynamicFrame that contains the fields that remain.

• frame – The source DynamicFrame to split into two new ones (required).

• paths – A list of full paths to the fields to be split (required).

• name1 – The name to assign to the DynamicFrame that will contain the fields to be split off
(optional). If no name is supplied, the name of the source frame is used with "1" appended.

• name2 – The name to assign to the DynamicFrame that will contain the fields that remain after
the specified fields are split off (optional). If no name is provided, the name of the source frame
is used with "2" appended.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string associated with errors in the transformation (optional).

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out (optional). The default is zero.

ETL in PySpark 1497

AWS Glue User Guide

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out (optional). The default is zero.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

SplitRows class

Creates a DynamicFrameCollection that contains two DynamicFrames. One DynamicFrame
contains only the specified rows to be split, and the other contains all remaining rows.

Example

We recommend that you use the DynamicFrame.split_rows() method to split rows in
a DynamicFrame. To view a code example, see Example: Use split_rows to split rows in a
DynamicFrame.

Methods

• __call__

ETL in PySpark 1498

AWS Glue User Guide

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(frame, comparison_dict, name1="frame1", name2="frame2", transformation_ctx = "",
info = none, stageThreshold = 0, totalThreshold = 0)

Splits one or more rows in a DynamicFrame off into a new DynamicFrame.

• frame – The source DynamicFrame to split into two new ones (required).

• comparison_dict – A dictionary where the key is the full path to a column, and the value is
another dictionary for mapping comparators to values that the column values are compared to.
For example, {"age": {">": 10, "<": 20}} splits rows where the value of "age" is between
10 and 20, exclusive, from rows where "age" is outside that range (required).

• name1 – The name to assign to the DynamicFrame that will contain the rows to be split off
(optional).

• name2 – The name to assign to the DynamicFrame that will contain the rows that remain after
the specified rows are split off (optional).

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string associated with errors in the transformation (optional).

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out (optional). The default is zero.

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out (optional). The default is zero.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

ETL in PySpark 1499

AWS Glue User Guide

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

Unbox class

Unboxes (reformats) a string field in a DynamicFrame.

Example

We recommend that you use the DynamicFrame.unbox() method to unbox a field in a
DynamicFrame. To view a code example, see Example: Use unbox to unbox a string field into a
struct.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

ETL in PySpark 1500

AWS Glue User Guide

• describeTransform

• describeErrors

• describe

__call__(frame, path, format, transformation_ctx = "", info="", stageThreshold=0,
totalThreshold=0, **options)

Unboxes a string field in a DynamicFrame.

• frame – The DynamicFrame in which to unbox a field. (required).

• path – The full path to the StringNode to unbox (required).

• format – A format specification (optional). This is used for an Amazon S3 or AWS Glue
connection that supports multiple formats. For the formats that are supported, see Data format
options for inputs and outputs in AWS Glue for Spark.

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string associated with errors in the transformation (optional).

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out (optional). The default is zero.

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out (optional). The default is zero.

• separator – A separator token (optional).

• escaper – An escape token (optional).

• skipFirst – True if the first line of data should be skipped, or False if it should not be
skipped (optional).

• withSchema – A string that contains a schema for the data to be unboxed (optional). This should
always be created using StructType.json.

• withHeader – True if the data being unpacked includes a header, or False if not (optional).

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

ETL in PySpark 1501

AWS Glue User Guide

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

UnnestFrame class

Unnests a DynamicFrame, flattens nested objects to top-level elements, and generates join keys
for array objects.

Example

We recommend that you use the DynamicFrame.unnest() method to flatten nested structures
in a DynamicFrame. To view a code example, see Example: Use unnest to turn nested fields into
top-level fields.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

ETL in PySpark 1502

AWS Glue User Guide

• describeErrors

• describe

__call__(frame, transformation_ctx = "", info="", stageThreshold=0, totalThreshold=0)

Unnests a DynamicFrame, flattens nested objects to top-level elements, and generates join keys
for array objects.

• frame – The DynamicFrame to unnest (required).

• transformation_ctx – A unique string that is used to identify state information (optional).

• info – A string associated with errors in the transformation (optional).

• stageThreshold – The maximum number of errors that can occur in the transformation before
it errors out (optional). The default is zero.

• totalThreshold – The maximum number of errors that can occur overall before processing
errors out (optional). The default is zero.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

ETL in PySpark 1503

AWS Glue User Guide

describe(cls)

Inherited from GlueTransform describe.

FlagDuplicatesInColumn class

The FlagDuplicatesInColumn transform returns a new column with a specified value in each
row that indicates whether the value in the row's source column matches a value in an earlier
row of the source column. When matches are found, they are flagged as duplicates. The initial
occurrence is not flagged, because it doesn't match an earlier row.

Example

from pyspark.context import SparkContext
from pyspark.sql import SparkSession
from awsgluedi.transforms import *

sc = SparkContext()
spark = SparkSession(sc)

datasource1 = spark.read.json("s3://${BUCKET}/json/zips/raw/data")

try:
 df_output = column.FlagDuplicatesInColumn.apply(
 data_frame=datasource1,
 spark_context=sc,
 source_column="city",
 target_column="flag_col",
 true_string="True",
 false_string="False"
)
except:
 print("Unexpected Error happened ")
 raise

Output

The FlagDuplicatesInColumn transformation will add a new column `flag_col` to the
`df_output` DataFrame. This column will contain a string value indicating whether the
corresponding row has a duplicate value in the `city` column or not. If a row has a duplicate `city`
value, the `flag_col` will contain the `true_string` value "True". If a row has a unique `city` value,
the `flag_col` will contain the `false_string` value "False".

ETL in PySpark 1504

AWS Glue User Guide

The resulting `df_output` DataFrame will contain all columns from the original `datasource1`
DataFrame, plus the additional `flag_col` column indicating duplicate `city` values.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(spark_context, data_frame, source_column, target_column,
true_string=DEFAULT_TRUE_STRING, false_string=DEFAULT_FALSE_STRING)

The FlagDuplicatesInColumn transform returns a new column with a specified value in each
row that indicates whether the value in the row's source column matches a value in an earlier
row of the source column. When matches are found, they are flagged as duplicates. The initial
occurrence is not flagged, because it doesn't match an earlier row.

• source_column – Name of the source column.

• target_column – Name of the target column.

• true_string – String to be inserted in the target column when a source column value
duplicates an earlier value in that column.

• false_string – String to be inserted in the target column when a source column value is
distinct from earlier values in that column.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

ETL in PySpark 1505

AWS Glue User Guide

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

FormatPhoneNumber class

The FormatPhoneNumber transform returns a column in which a phone number string is
converted into a formatted value.

Example

from pyspark.context import SparkContext
from pyspark.sql import SparkSession
from awsgluedi.transforms import *

sc = SparkContext()
spark = SparkSession(sc)

input_df = spark.createDataFrame(
 [
 ("408-341-5669",),
 ("4083415669",)
],
 ["phone"],
)

ETL in PySpark 1506

AWS Glue User Guide

try:
 df_output = column_formatting.FormatPhoneNumber.apply(
 data_frame=input_df,
 spark_context=sc,
 source_column="phone",
 default_region="US"
)
 df_output.show()
except:
 print("Unexpected Error happened ")
 raise

Output

The output will be:

```
+---------------+
| phone|
+---------------+
|(408) 341-5669|
|(408) 341-5669|
+---------------+
```

The FormatPhoneNumber transformation takes the `source_column` as `"phone"` and the
`default_region` as `"US"`.

The transformation successfully formats both phone numbers, regardless of their initial format, to
the standard US format `(408) 341-5669`.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

ETL in PySpark 1507

AWS Glue User Guide

• describeErrors

• describe

__call__(spark_context, data_frame, source_column, phone_number_format=None,
default_region=None, default_region_column=None)

The FormatPhoneNumber transform returns a column in which a phone number string is
converted into a formatted value.

• source_column – The name of an existing column.

• phone_number_format – The format to convert the phone number to. If no format is specified,
the default is E.164, an internationally-recognized standard phone number format. Valid values
include the following:

• E164 (omit the period after E)

• default_region – A valid region code consisting of two or three uppercase letters that
specifies the region for the phone number when no country code is present in the number itself.
At most, one of defaultRegion or defaultRegionColumn can be provided.

• default_region_column – The name of a column of the advanced data type Country. The
region code from the specified column is used to determine the country code for the phone
number when no country code is present in the number itself. At most, one of defaultRegion
or defaultRegionColumn can be provided.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

ETL in PySpark 1508

AWS Glue User Guide

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

FormatCase class

The FormatCase transform changes each string in a column to the specified case type.

Example

from pyspark.context import SparkContext
from pyspark.sql import SparkSession
from awsgluedi.transforms import *

sc = SparkContext()
spark = SparkSession(sc)

datasource1 = spark.read.json("s3://${BUCKET}/json/zips/raw/data")

try:
 df_output = data_cleaning.FormatCase.apply(
 data_frame=datasource1,
 spark_context=sc,
 source_column="city",
 case_type="LOWER"
)
except:
 print("Unexpected Error happened ")
 raise

Output

The FormatCase transformation will convert the values in the `city` column to lowercase based
on the `case_type="LOWER"` parameter. The resulting `df_output` DataFrame will contain

ETL in PySpark 1509

AWS Glue User Guide

all columns from the original `datasource1` DataFrame, but with the `city` column values in
lowercase.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(spark_context, data_frame, source_column, case_type)

The FormatCase transform changes each string in a column to the specified case type.

• source_column – The name of an existing column.

• case_type – Supported case types are CAPITAL,LOWER, UPPER, SENTENCE.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

ETL in PySpark 1510

AWS Glue User Guide

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

FillWithMode class

The FillWithMode transform formats a column according to the phone numberformat you
specify. You can also specify tie-breaker logic, where some of the values are identical. For example,
consider the following values: 1 2 2 3 3 4

A modeType of MINIMUM causes FillWithMode to return 2 as the mode value. If modeType is
MAXIMUM, the mode is 3. For AVERAGE, the mode is 2.5.

Example

from awsglue.context import *
from pyspark.sql import SparkSession
from awsgluedi.transforms import *

sc = SparkContext()
spark = SparkSession(sc)

input_df = spark.createDataFrame(
 [
 (105.111, 13.12),
 (1055.123, 13.12),
 (None, 13.12),
 (13.12, 13.12),
 (None, 13.12),
],
 ["source_column_1", "source_column_2"],
)

try:
 df_output = data_quality.FillWithMode.apply(
 data_frame=input_df,
 spark_context=sc,
 source_column="source_column_1",
 mode_type="MAXIMUM"
)

ETL in PySpark 1511

AWS Glue User Guide

 df_output.show()
except:
 print("Unexpected Error happened ")
 raise

Output

The output of the given code will be:

```
+---------------+---------------+
|source_column_1|source_column_2|
+---------------+---------------+
| 105.111| 13.12|
| 1055.123| 13.12|
| 1055.123| 13.12|
| 13.12| 13.12|
| 1055.123| 13.12|
+---------------+---------------+
```

The FillWithMode transformation from the `awsglue.data_quality` module is applied to the
`input_df` DataFrame. It replaces the `null` values in the source_column_1 column with the
maximum value (`mode_type="MAXIMUM"`) from the non-null values in that column.

In this case, the maximum value in the source_column_1 column is `1055.123`. Therefore,
the `null` values in source_column_1 are replaced by `1055.123` in the output DataFrame
`df_output`.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

ETL in PySpark 1512

AWS Glue User Guide

__call__(spark_context, data_frame, source_column, mode_type)

The FillWithMode transform formats the case of strings in a column.

• source_column – The name of an existing column.

• mode_type – How to resolve tie values in the data. This value must be one of MINIMUM, NONE,
AVERAGE, or MAXIMUM.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

FlagDuplicateRows class

The FlagDuplicateRows transform returns a new column with a specified value in each row
that indicates whether that row is an exact match of an earlier row in the dataset. When matches
are found, they are flagged as duplicates. The initial occurrence is not flagged, because it doesn't
match an earlier row.

ETL in PySpark 1513

AWS Glue User Guide

Example

from pyspark.context import SparkContext
from pyspark.sql import SparkSession
from awsgluedi.transforms import *

sc = SparkContext()
spark = SparkSession(sc)

input_df = spark.createDataFrame(
 [
 (105.111, 13.12),
 (13.12, 13.12),
 (None, 13.12),
 (13.12, 13.12),
 (None, 13.12),
],
 ["source_column_1", "source_column_2"],
)

try:
 df_output = data_quality.FlagDuplicateRows.apply(
 data_frame=input_df,
 spark_context=sc,
 target_column="flag_row",
 true_string="True",
 false_string="False",
 target_index=1
)
except:
 print("Unexpected Error happened ")
 raise

Output

The output will be a PySpark DataFrame with an additional column flag_row that indicates
whether a row is a duplicate or not, based on the source_column_1 column. The resulting
`df_output` DataFrame will contain the following rows:

```
+---------------+---------------+--------+
|source_column_1|source_column_2|flag_row|

ETL in PySpark 1514



AWS Glue User Guide

+---------------+---------------+--------+
| 105.111| 13.12| False|
| 13.12| 13.12| True|
| null| 13.12| True|
| 13.12| 13.12| True|
| null| 13.12| True|
+---------------+---------------+--------+
```

The flag_row column indicates whether a row is a duplicate or not. The `true_string` is set to
"True", and the `false_string` is set to "False". The `target_index` is set to 1, which means that the
flag_row column will be inserted at the second position (index 1) in the output DataFrame.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(spark_context, data_frame, target_column, true_string=DEFAULT_TRUE_STRING,
false_string=DEFAULT_FALSE_STRING, target_index=None)

The FlagDuplicateRows transform returns a new column with a specified value in each row
that indicates whether that row is an exact match of an earlier row in the dataset. When matches
are found, they are flagged as duplicates. The initial occurrence is not flagged, because it doesn't
match an earlier row.

• true_string – Value to be inserted if the row matches an earlier row.

• false_string – Value to be inserted if the row is unique.

• target_column – Name of the new column that is inserted in the dataset.

ETL in PySpark 1515

AWS Glue User Guide

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

RemoveDuplicates class

The RemoveDuplicates transform deletes an entire row, if a duplicate value is encountered in a
selected source column.

Example

from pyspark.context import SparkContext
from pyspark.sql import SparkSession
from awsgluedi.transforms import *

sc = SparkContext()
spark = SparkSession(sc)

ETL in PySpark 1516

AWS Glue User Guide

input_df = spark.createDataFrame(
 [
 (105.111, 13.12),
 (13.12, 13.12),
 (None, 13.12),
 (13.12, 13.12),
 (None, 13.12),
],
 ["source_column_1", "source_column_2"],
)

try:
 df_output = data_quality.RemoveDuplicates.apply(
 data_frame=input_df,
 spark_context=sc,
 source_column="source_column_1"
)
except:
 print("Unexpected Error happened ")
 raise

Output

The output will be a PySpark DataFrame with duplicates removed based on the
source_column_1 column. The resulting `df_output` DataFrame will contain the following rows:

```
+---------------+---------------+
|source_column_1|source_column_2|
+---------------+---------------+
| 105.111| 13.12|
| 13.12| 13.12|
| null| 13.12|
+---------------+---------------+
```

Note that the rows with source_column_1 values of `13.12` and `null` appear only once in the
output DataFrame, as the duplicates have been removed based on the source_column_1 column.

Methods

• __call__

ETL in PySpark 1517

AWS Glue User Guide

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(spark_context, data_frame, source_column)

The RemoveDuplicates transform deletes an entire row, if a duplicate value is encountered in a
selected source column.

• source_column – The name of an existing column.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

ETL in PySpark 1518

AWS Glue User Guide

describe(cls)

Inherited from GlueTransform describe.

MonthName class

The MonthName transform creates a new column containing the name of the month, from a string
that represents a date.

Example

from pyspark.context import SparkContext
from pyspark.sql import SparkSession
from awsgluedi.transforms import *

sc = SparkContext()
spark = SparkSession(sc)

spark.conf.set("spark.sql.legacy.timeParserPolicy", "LEGACY")

input_df = spark.createDataFrame(
 [
 ("20-2018-12",),
 ("2018-20-12",),
 ("20182012",),
 ("12202018",),
 ("20122018",),
 ("20-12-2018",),
 ("12/20/2018",),
 ("02/02/02",),
 ("02 02 2009",),
 ("02/02/2009",),
 ("August/02/2009",),
 ("02/june/2009",),
 ("02/2020/june",),
 ("2013-02-21 06:35:45.658505",),
 ("August 02 2009",),
 ("2013/02/21",),
 (None,),
],
 ["column_1"],
)

try:

ETL in PySpark 1519

AWS Glue User Guide

 df_output = datetime_functions.MonthName.apply(
 data_frame=input_df,
 spark_context=sc,
 source_column="column_1",
 target_column="target_column"
)
 df_output.show()
except:
 print("Unexpected Error happened ")
 raise

Output

The output will be:

```
+------------+------------+
| column_1|target_column|
+------------+------------+
|20-2018-12 | December |
|2018-20-12 | null |
| 20182012| null |
| 12202018| null |
| 20122018| null |
|20-12-2018 | December |
|12/20/2018 | December |
| 02/02/02 | February |
|02 02 2009 | February |
|02/02/2009 | February |
|August/02/2009| August |
|02/june/2009| null |
|02/2020/june| null |
|2013-02-21 06:35:45.658505| February |
|August 02 2009| August |
| 2013/02/21| February |
| null | null |
+------------+------------+
```

The MonthName transformation takes the `source_column` as `"column_1"` and the
`target_column` as `"target_column"`. It attempts to extract the month name from the date/time
strings in the `"column_1"` column and places it in the `"target_column"` column. If the date/

ETL in PySpark 1520

AWS Glue User Guide

time string is in an unrecognized format or cannot be parsed, the `"target_column"` value is set to
`null`.

The transformation successfully extracts the month name from various date/time formats, such
as "20-12-2018", "12/20/2018", "02/02/2009", "2013-02-21 06:35:45.658505", and "August 02
2009".

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(spark_context, data_frame, target_column, source_column=None, value=None)

The MonthName transform creates a new column containing the name of the month, from a string
that represents a date.

• source_column – The name of an existing column.

• value – A character string to evaluate..

• target_column – A name for the newly created column.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

ETL in PySpark 1521

AWS Glue User Guide

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

IsEven class

The IsEven transform returns a Boolean value in a new column that indicates whether the source
column or value is even. If the source column or value is a decimal, the result is false.

Example

from pyspark.context import SparkContext
from pyspark.sql import SparkSession
from awsgluedi.transforms import *

sc = SparkContext()
spark = SparkSession(sc)

input_df = spark.createDataFrame(
 [(5,), (0,), (-1,), (2,), (None,)],
 ["source_column"],
)

try:
 df_output = math_functions.IsEven.apply(
 data_frame=input_df,
 spark_context=sc,
 source_column="source_column",
 target_column="target_column",
 value=None,
 true_string="Even",

ETL in PySpark 1522

AWS Glue User Guide

 false_string="Not even",
)
 df_output.show()
except:
 print("Unexpected Error happened ")
 raise

Output

The output will be:

```
+------------+------------+
|source_column|target_column|
+------------+------------+
| 5| Not even|
| 0| Even|
| -1| Not even|
| 2| Even|
| null| null|
+------------+------------+
```

The IsEven transformation takes the `source_column` as "source_column" and the
`target_column` as "target_column". It checks if the value in the `"source_column"` is even or not.
If the value is even, it sets the `"target_column"` value to the `true_string` "Even". If the value is
odd, it sets the `"target_column"` value to the `false_string` "Not even". If the `"source_column"`
value is `null`, the `"target_column"` value is set to `null`.

The transformation correctly identifies the even numbers (0 and 2) and sets the `"target_column"`
value to "Even". For odd numbers (5 and -1), it sets the `"target_column"` value to "Not even". For
the `null` value in `"source_column"`, the `"target_column"` value is set to `null`.

Methods

• __call__

• apply

• name

• describeArgs

ETL in PySpark 1523

AWS Glue User Guide

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(spark_context, data_frame, target_column, source_column=None,
true_string=DEFAULT_TRUE_STRING, false_string=DEFAULT_FALSE_STRING, value=None)

The IsEven transform returns a Boolean value in a new column that indicates whether the source
column or value is even. If the source column or value is a decimal, the result is false.

• source_column – The name of an existing column.

• target_column – The name of the new column to be created.

• true_string – A string that indicates whether the value is even.

• false_string – A string that indicates whether the value is not even.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

ETL in PySpark 1524

AWS Glue User Guide

describe(cls)

Inherited from GlueTransform describe.

CryptographicHash class

The CryptographicHash transform applies an algorithm to hash values in the column.

Example

from pyspark.context import SparkContext
from pyspark.sql import SparkSession
from awsgluedi.transforms import *

secret = "${SECRET}"
sc = SparkContext()
spark = SparkSession(sc)

input_df = spark.createDataFrame(
 [
 (1, "1234560000"),
 (2, "1234560001"),
 (3, "1234560002"),
 (4, "1234560003"),
 (5, "1234560004"),
 (6, "1234560005"),
 (7, "1234560006"),
 (8, "1234560007"),
 (9, "1234560008"),
 (10, "1234560009"),
],
 ["id", "phone"],
)

try:
 df_output = pii.CryptographicHash.apply(
 data_frame=input_df,
 spark_context=sc,
 source_columns=["id", "phone"],
 secret_id=secret,
 algorithm="HMAC_SHA256",
 output_format="BASE64",
)
 df_output.show()

ETL in PySpark 1525

AWS Glue User Guide

except:
 print("Unexpected Error happened ")
 raise

Output

The output will be:

```
+---+------------+-------------------+-------------------+
| id| phone | id_hashed | phone_hashed |
+---+------------+-------------------+-------------------+
| 1| 1234560000 | QUI1zXTJiXmfIb... | juDBAmiRnnO3g... |
| 2| 1234560001 | ZAUWiZ3dVTzCo... | vC8lgUqBVDMNQ... |
| 3| 1234560002 | ZP4VvZWkqYifu... | Kl3QAkgswYpzB... |
| 4| 1234560003 | 3u8vO3wQ8EQfj... | CPBzK1P8PZZkV... |
| 5| 1234560004 | eWkQJk4zAOIzx... | aLf7+mHcXqbLs... |
| 6| 1234560005 | xtI9fZCJZCvsa... | dy2DFgdYWmr0p... |
| 7| 1234560006 | iW9hew7jnHuOf... | wwfGMCOEv6oOv... |
| 8| 1234560007 | H9V1pqvgkFhfS... | g9WKhagIXy9ht... |
| 9| 1234560008 | xDhEuHaxAUbU5... | b3uQLKPY+Q5vU... |
| 10| 1234560009 | GRN6nFXkxk349... | VJdsKt8VbxBbt... |
+---+------------+-------------------+-------------------+
```

The transformation computes the cryptographic hashes of the values in the `id` and `phone`
columns using the specified algorithm and secret key, and encodes the hashes in Base64 format.
The resulting `df_output` DataFrame contains all columns from the original `input_df`
DataFrame, plus the additional `id_hashed` and `phone_hashed` columns with the computed
hashes.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

ETL in PySpark 1526

AWS Glue User Guide

• describeErrors

• describe

__call__(spark_context, data_frame, source_columns, secret_id, algorithm=None,
secret_version=None, create_secret_if_missing=False, output_format=None,
entity_type_filter=None)

The CryptographicHash transform applies an algorithm to hash values in the column.

• source_columns – An array of existing columns.

• secret_id – The ARN of the Secrets Manager secret key. The key used in the hash-based
message authentication code (HMAC) prefix algorithm to hash the source columns.

• secret_version – Optional. Defaults to the latest secret version.

• entity_type_filter – Optional array of entity types. Can be used to encrypt only detected
PII in free-text column.

• create_secret_if_missing – Optional boolean. If true will attempt to create the secret on
behalf of the caller.

• algorithm – The algorithm used to hash your data. Valid enum values: MD5, SHA1, SHA256,
SHA512, HMAC_MD5, HMAC_SHA1, HMAC_SHA256, HMAC_SHA512.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

ETL in PySpark 1527

AWS Glue User Guide

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

Decrypt class

The Decrypt transform decrypts inside of AWS Glue. Your data can also be decrypted outside of
AWS Glue with the AWS Encryption SDK. If the provided KMS key ARN does not match what was
used to encrypt the column, the decrypt operation fails.

Example

from pyspark.context import SparkContext
from pyspark.sql import SparkSession
from awsgluedi.transforms import *

kms = "${KMS}"
sc = SparkContext()
spark = SparkSession(sc)

input_df = spark.createDataFrame(
 [
 (1, "1234560000"),
 (2, "1234560001"),
 (3, "1234560002"),
 (4, "1234560003"),
 (5, "1234560004"),
 (6, "1234560005"),
 (7, "1234560006"),
 (8, "1234560007"),
 (9, "1234560008"),
 (10, "1234560009"),
],
 ["id", "phone"],
)

try:
 df_encrypt = pii.Encrypt.apply(
 data_frame=input_df,

ETL in PySpark 1528

AWS Glue User Guide

 spark_context=sc,
 source_columns=["phone"],
 kms_key_arn=kms
)
 df_decrypt = pii.Decrypt.apply(
 data_frame=df_encrypt,
 spark_context=sc,
 source_columns=["phone"],
 kms_key_arn=kms
)
 df_decrypt.show()
except:
 print("Unexpected Error happened ")
 raise

Output

The output will be a PySpark DataFrame with the original `id` column and the decrypted `phone`
column:

```
+---+------------+
| id| phone|
+---+------------+
| 1| 1234560000|
| 2| 1234560001|
| 3| 1234560002|
| 4| 1234560003|
| 5| 1234560004|
| 6| 1234560005|
| 7| 1234560006|
| 8| 1234560007|
| 9| 1234560008|
| 10| 1234560009|
+---+------------+
```

The Encrypt transform takes the `source_columns` as `["phone"]` and the `kms_key_arn` as
the value of the `${KMS}` environment variable. The transformation encrypts the values in the
`phone` column using the specified KMS key. The encrypted DataFrame `df_encrypt` is then
passed to the Decrypt transform from the `awsglue.pii` module. It takes the `source_columns`

ETL in PySpark 1529

AWS Glue User Guide

as `["phone"]` and the `kms_key_arn` as the value of the `${KMS}` environment variable. The
transformation decrypts the encrypted values in the `phone` column using the same KMS key. The
resulting `df_decrypt` DataFrame contains the original `id` column and the decrypted `phone`
column.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(spark_context, data_frame, source_columns, kms_key_arn)

The Decrypt transform decrypts inside of AWS Glue. Your data can also be decrypted outside of
AWS Glue with the AWS Encryption SDK. If the provided KMS key ARN does not match what was
used to encrypt the column, the decrypt operation fails.

• source_columns – An array of existing columns.

• kms_key_arn – The key ARN of the AWS Key Management Service key to use to decrypt the
source columns.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

ETL in PySpark 1530

AWS Glue User Guide

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

Encrypt class

The Encrypt transform encrypts source columns using the AWS Key Management Service key.
The Encrypt transform can encrypt up to 128 MiB per cell. It will attempt to preserve the format
on decryption. To preserve the data type, the data type metadata must serialize to less than 1KB.
Otherwise, you must set the preserve_data_type parameter to false. The data type metadata
will be stored in plaintext in the encryption context.

Example

from pyspark.context import SparkContext
from pyspark.sql import SparkSession
from awsgluedi.transforms import *

kms = "${KMS}"
sc = SparkContext()
spark = SparkSession(sc)

input_df = spark.createDataFrame(
 [
 (1, "1234560000"),
 (2, "1234560001"),
 (3, "1234560002"),
 (4, "1234560003"),
 (5, "1234560004"),
 (6, "1234560005"),
 (7, "1234560006"),

ETL in PySpark 1531

AWS Glue User Guide

 (8, "1234560007"),
 (9, "1234560008"),
 (10, "1234560009"),
],
 ["id", "phone"],
)

try:
 df_encrypt = pii.Encrypt.apply(
 data_frame=input_df,
 spark_context=sc,
 source_columns=["phone"],
 kms_key_arn=kms
)
except:
 print("Unexpected Error happened ")
 raise

Output

The output will be a PySpark DataFrame with the original `id` column and an additional column
containing the encrypted values of the `phone` column.

```
+---+------------+-------------------------+
| id| phone | phone_encrypted |
+---+------------+-------------------------+
| 1| 1234560000| EncryptedData1234...abc |
| 2| 1234560001| EncryptedData5678...def |
| 3| 1234560002| EncryptedData9012...ghi |
| 4| 1234560003| EncryptedData3456...jkl |
| 5| 1234560004| EncryptedData7890...mno |
| 6| 1234560005| EncryptedData1234...pqr |
| 7| 1234560006| EncryptedData5678...stu |
| 8| 1234560007| EncryptedData9012...vwx |
| 9| 1234560008| EncryptedData3456...yz0 |
| 10| 1234560009| EncryptedData7890...123 |
+---+------------+-------------------------+
```

The Encrypt transform takes the `source_columns` as `["phone"]` and the `kms_key_arn`
as the value of the `${KMS}` environment variable. The transformation encrypts the values

ETL in PySpark 1532

AWS Glue User Guide

in the `phone` column using the specified KMS key. The resulting `df_encrypt` DataFrame
contains the original `id` column, the original `phone` column, and an additional column named
`phone_encrypted` containing the encrypted values of the `phone` column.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(spark_context, data_frame, source_columns, kms_key_arn, entity_type_filter=None,
preserve_data_type=None)

The Encrypt transform encrypts source columns using the AWS Key Management Service key.

• source_columns – An array of existing columns.

• kms_key_arn – The key ARN of the AWS Key Management Service key to use to Encrypt the
source columns.

• entity_type_filter – Optional array of entity types. Can be used to encrypt only detected
PII in free-text column.

• preserve_data_type – Optional boolean. Defaults to true. If false, the data type will not be
stored.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

ETL in PySpark 1533

AWS Glue User Guide

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

IntToIp class

The IntToIp transform converts the integer value of source column or other value to the
corresponding IPv4 value in then target column, and returns the result in a new column.

Example

from pyspark.context import SparkContext
from pyspark.sql import SparkSession
from awsgluedi.transforms import *

sc = SparkContext()
spark = SparkSession(sc)

input_df = spark.createDataFrame(
 [
 (3221225473,),
 (0,),
 (1,),
 (100,),
 (168430090,),
 (4294967295,),
 (4294967294,),
 (4294967296,),

ETL in PySpark 1534

AWS Glue User Guide

 (-1,),
 (None,),
],
 ["source_column_int"],
)

try:
 df_output = web_functions.IntToIp.apply(
 data_frame=input_df,
 spark_context=sc,
 source_column="source_column_int",
 target_column="target_column",
 value=None
)
 df_output.show()
except:
 print("Unexpected Error happened ")
 raise

Output

The output will be:

```
+---------------+---------------+
|source_column_int|target_column|
+---------------+---------------+
| 3221225473| 192.0.0.1 |
| 0| 0.0.0.0 |
| 1| 0.0.0.1 |
| 100| 0.0.0.100|
| 168430090 | 10.0.0.10 |
| 4294967295| 255.255.255.255|
| 4294967294| 255.255.255.254|
| 4294967296| null |
| -1| null |
| null| null |
+---------------+---------------+
```

The IntToIp.apply transformation takes the `source_column` as `"source_column_int"`
and the `target_column` as `"target_column"` and converts the integer values in the

ETL in PySpark 1535

AWS Glue User Guide

`source_column_int` column to their corresponding IPv4 address representation and stores the
result in the `target_column` column.

For valid integer values within the range of IPv4 addresses (0 to 4294967295), the transformation
successfully converts them to their IPv4 address representation (e.g., 192.0.0.1, 0.0.0.0, 10.0.0.10,
255.255.255.255).

For integer values outside the valid range (e.g., 4294967296, -1), the `target_column` value is set
to `null`. For `null` values in the `source_column_int` column, the `target_column` value is also
set to `null`.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(spark_context, data_frame, target_column, source_column=None, value=None)

The IntToIp transform converts the integer value of source column or other value to the
corresponding IPv4 value in then target column, and returns the result in a new column.

• sourceColumn – The name of an existing column.

• value – A character string to evaluate.

• targetColumn – The name of the new column to be created.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

ETL in PySpark 1536

AWS Glue User Guide

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

IpToInt class

The IpToInt transform converts the Internet Protocol version 4 (IPv4) value of the source column
or other value to the corresponding integer value in the target column, and returns the result in a
new column.

Example

For AWS Glue 4.0 and above, create or update job arguments with key: --enable-glue-di-
transforms, value: true

from pyspark.context import SparkContext
from awsgluedi.transforms import *

sc = SparkContext()

input_df = spark.createDataFrame(
 [
 ("192.0.0.1",),
 ("10.10.10.10",),
 ("1.2.3.4",),
 ("1.2.3.6",),
 ("http://12.13.14.15",),
 ("https://16.17.18.19",),
 ("1.2.3.4",),

ETL in PySpark 1537

AWS Glue User Guide

 (None,),
 ("abc",),
 ("abc.abc.abc.abc",),
 ("321.123.123.123",),
 ("244.4.4.4",),
 ("255.255.255.255",),
],
 ["source_column_ip"],
)

 df_output = web_functions.IpToInt.apply(
 data_frame=input_df,
 spark_context=sc,
 source_column="source_column_ip",
 target_column="target_column",
 value=None
)
 df_output.show()

Output

The output will be:

```
+----------------+---------------+
|source_column_ip| target_column|
+----------------+---------------+
| 192.0.0.1| 3221225473|
| 10.10.10.10| 168427722|
| 1.2.3.4| 16909060|
| 1.2.3.6| 16909062|
|http://12.13.14.15| null|
|https://16.17.18.19| null|
| 1.2.3.4| 16909060|
| null| null|
| abc| null|
|abc.abc.abc.abc| null|
| 321.123.123.123| null|
| 244.4.4.4| 4102444804|
| 255.255.255.255| 4294967295|
+----------------+---------------+
```

ETL in PySpark 1538

AWS Glue User Guide

The IpToInt transformation takes the `source_column` as `"source_column_ip"` and the
`target_column` as `"target_column"` and converts the valid IPv4 address strings in the
`source_column_ip` column to their corresponding 32-bit integer representation and stores the
result in the `target_column` column.

For valid IPv4 address strings (e.g., "192.0.0.1", "10.10.10.10", "1.2.3.4"), the transformation
successfully converts them to their integer representation (e.g., 3221225473, 168427722,
16909060). For strings that are not valid IPv4 addresses (e.g., URLs, non-IP strings like "abc", invalid
IP formats like "abc.abc.abc.abc"), the `target_column` value is set to `null`. For `null` values in
the `source_column_ip` column, the `target_column` value is also set to `null`.

Methods

• __call__

• apply

• name

• describeArgs

• describeReturn

• describeTransform

• describeErrors

• describe

__call__(spark_context, data_frame, target_column, source_column=None, value=None)

The IpToInt transform converts the Internet Protocol version 4 (IPv4) value of the source column
or other value to the corresponding integer value in the target column, and returns the result in a
new column.

• sourceColumn – The name of an existing column.

• value – A character string to evaluate.

• targetColumn – The name of the new column to be created.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

ETL in PySpark 1539

AWS Glue User Guide

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.

Data integration transforms

For AWS Glue 4.0 and above, create or update job arguments with key: --enable-glue-di-
transforms, value: true.

Example job script:

from pyspark.context import SparkContext

from awsgluedi.transforms import *
sc = SparkContext()

input_df = spark.createDataFrame(
 [(5,), (0,), (-1,), (2,), (None,)],
 ["source_column"],
)

try:
 df_output = math_functions.IsEven.apply(
 data_frame=input_df,
 spark_context=sc,
 source_column="source_column",

ETL in PySpark 1540

AWS Glue User Guide

 target_column="target_column",
 value=None,
 true_string="Even",
 false_string="Not even",
)
 df_output.show()
except:
 print("Unexpected Error happened ")
 raise

Example Sessions using Notebooks

%idle_timeout 2880
%glue_version 4.0
%worker_type G.1X
%number_of_workers 5
%region eu-west-1

%%configure
{
 "--enable-glue-di-transforms": "true"
}

from pyspark.context import SparkContext
from awsgluedi.transforms import *

sc = SparkContext()

input_df = spark.createDataFrame(
 [(5,), (0,), (-1,), (2,), (None,)],
 ["source_column"],
)

try:
 df_output = math_functions.IsEven.apply(
 data_frame=input_df,
 spark_context=sc,
 source_column="source_column",
 target_column="target_column",
 value=None,
 true_string="Even",
 false_string="Not even",

ETL in PySpark 1541

AWS Glue User Guide

)
 df_output.show()
except:
 print("Unexpected Error happened ")
 raise

Example Sessions using AWS CLI

aws glue create-session --default-arguments "--enable-glue-di-transforms=true"

DI transforms:

• FlagDuplicatesInColumn class

• FormatPhoneNumber class

• FormatCase class

• FillWithMode class

• FlagDuplicateRows class

• RemoveDuplicates class

• MonthName class

• IsEven class

• CryptographicHash class

• Decrypt class

• Encrypt class

• IntToIp class

• IpToInt class

Maven: Bundle the plugin with your Spark applications

You can bundle the transforms dependency with your Spark applications and Spark distributions
(version 3.3) by adding the plugin dependency in your Maven pom.xml while developing your
Spark applications locally.

<repositories>
 ...
 <repository>
 <id>aws-glue-etl-artifacts</id>
 <url>https://aws-glue-etl-artifacts.s3.amazonaws.com/release/ </url>

ETL in PySpark 1542

AWS Glue User Guide

 </repository>
</repositories>
...
<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>AWSGlueTransforms</artifactId>
 <version>4.0.0</version>
</dependency>

You can alternatively download the binaries from AWS Glue Maven artifacts directly and include
them in your Spark application as follows.

#!/bin/bash
sudo wget -v https://aws-glue-etl-artifacts.s3.amazonaws.com/release/com/amazonaws/
AWSGlueTransforms/4.0.0/AWSGlueTransforms-4.0.0.jar -P /usr/lib/spark/jars/

Programming AWS Glue ETL scripts in Scala

You can find Scala code examples and utilities for AWS Glue in the AWS Glue samples repository on
the GitHub website.

AWS Glue supports an extension of the PySpark Scala dialect for scripting extract, transform, and
load (ETL) jobs. The following sections describe how to use the AWS Glue Scala library and the AWS
Glue API in ETL scripts, and provide reference documentation for the library.

Contents

• Using Scala to program AWS Glue ETL scripts

• Testing a Scala ETL program in a Jupyter notebook on a development endpoint

• Testing a Scala ETL program in a Scala REPL

• Scala script example - streaming ETL

• APIs in the AWS Glue Scala library

• com.amazonaws.services.glue

• com.amazonaws.services.glue.ml

• com.amazonaws.services.glue.dq

• com.amazonaws.services.glue.types

• com.amazonaws.services.glue.util

• AWS Glue Scala ChoiceOption APIs

ETL in Scala 1543

https://github.com/awslabs/aws-glue-samples

AWS Glue User Guide

• ChoiceOption trait

• ChoiceOption object

• Def apply

• Case class ChoiceOptionWithResolver

• Case class MatchCatalogSchemaChoiceOption

• Abstract DataSink class

• Def writeDynamicFrame

• Def pyWriteDynamicFrame

• Def writeDataFrame

• Def pyWriteDataFrame

• Def setCatalogInfo

• Def supportsFormat

• Def setFormat

• Def withFormat

• Def setAccumulableSize

• Def getOutputErrorRecordsAccumulable

• Def errorsAsDynamicFrame

• DataSink object

• Def recordMetrics

• AWS Glue Scala DataSource trait

• AWS Glue Scala DynamicFrame APIs

• AWS Glue Scala DynamicFrame class

• Val errorsCount

• Def applyMapping

• Def assertErrorThreshold

• Def count

• Def dropField

• Def dropFields

• Def dropNulls

• Def errorsAsDynamicFrame
ETL in Scala 1544

AWS Glue User Guide

• Def filter

• Def getName

• Def getNumPartitions

• Def getSchemaIfComputed

• Def isSchemaComputed

• Def javaToPython

• Def join

• Def map

• Def mergeDynamicFrames

• Def printSchema

• Def recomputeSchema

• Def relationalize

• Def renameField

• Def repartition

• Def resolveChoice

• Def schema

• Def selectField

• Def selectFields

• Def show

• Def simplifyDDBJson

• Def spigot

• Def splitFields

• Def splitRows

• Def stageErrorsCount

• Def toDF

• Def unbox

• Def unnest

• Def unnestDDBJson

• Def withFrameSchema

• Def withName
ETL in Scala 1545

AWS Glue User Guide

• Def withTransformationContext

• The DynamicFrame object

• Def apply

• Def emptyDynamicFrame

• Def fromPythonRDD

• Def ignoreErrors

• Def inlineErrors

• Def newFrameWithErrors

• AWS Glue Scala DynamicRecord class

• Def addField

• Def dropField

• Def setError

• Def isError

• Def getError

• Def clearError

• Def write

• Def readFields

• Def clone

• Def schema

• Def getRoot

• Def toJson

• Def getFieldNode

• Def getField

• Def hashCode

• Def equals

• DynamicRecord object

• Def apply

• RecordTraverser trait

• AWS Glue Scala GlueContext APIs

• def addIngestionTimeColumns
ETL in Scala 1546

AWS Glue User Guide

• def createDataFrameFromOptions

• forEachBatch

• def getCatalogSink

• def getCatalogSource

• def getJDBCSink

• def getSink

• def getSinkWithFormat

• def getSource

• def getSourceWithFormat

• def getSparkSession

• def startTransaction

• def commitTransaction

• def cancelTransaction

• def this

• def this

• def this

• MappingSpec

• MappingSpec case class

• MappingSpec object

• Val orderingByTarget

• Def apply

• Def apply

• Def apply

• AWS Glue Scala ResolveSpec APIs

• ResolveSpec object

• Def

• Def

• ResolveSpec case class

• ResolveSpec def methods

• AWS Glue Scala ArrayNode APIs
ETL in Scala 1547

AWS Glue User Guide

• ArrayNode case class

• ArrayNode def methods

• AWS Glue Scala BinaryNode APIs

• BinaryNode case class

• BinaryNode val fields

• BinaryNode def methods

• AWS Glue Scala BooleanNode APIs

• BooleanNode case class

• BooleanNode val fields

• BooleanNode def methods

• AWS Glue Scala ByteNode APIs

• ByteNode case class

• ByteNode val fields

• ByteNode def methods

• AWS Glue Scala DateNode APIs

• DateNode case class

• DateNode val fields

• DateNode def methods

• AWS Glue Scala DecimalNode APIs

• DecimalNode case class

• DecimalNode val fields

• DecimalNode def methods

• AWS Glue Scala DoubleNode APIs

• DoubleNode case class

• DoubleNode val fields

• DoubleNode def methods

• AWS Glue Scala DynamicNode APIs

• DynamicNode class

• DynamicNode def methods

• DynamicNode object
ETL in Scala 1548

AWS Glue User Guide

• DynamicNode def methods

• EvaluateDataQuality class

• Def apply

• Example

• AWS Glue Scala FloatNode APIs

• FloatNode case class

• FloatNode val fields

• FloatNode def methods

• FillMissingValues class

• Def apply

• FindMatches class

• Def apply

• FindIncrementalMatches class

• Def apply

• AWS Glue Scala IntegerNode APIs

• IntegerNode case class

• IntegerNode val fields

• IntegerNode def methods

• AWS Glue Scala LongNode APIs

• LongNode case class

• LongNode val fields

• LongNode def methods

• AWS Glue Scala MapLikeNode APIs

• MapLikeNode class

• MapLikeNode def methods

• AWS Glue Scala MapNode APIs

• MapNode case class

• MapNode def methods

• AWS Glue Scala NullNode APIs

• NullNode class
ETL in Scala 1549

AWS Glue User Guide

• NullNode case object

• AWS Glue Scala ObjectNode APIs

• ObjectNode object

• ObjectNode def methods

• ObjectNode case class

• ObjectNode def methods

• AWS Glue Scala ScalarNode APIs

• ScalarNode class

• ScalarNode def methods

• ScalarNode object

• ScalarNode def methods

• AWS Glue Scala ShortNode APIs

• ShortNode case class

• ShortNode val fields

• ShortNode def methods

• AWS Glue Scala StringNode APIs

• StringNode case class

• StringNode val fields

• StringNode def methods

• AWS Glue Scala TimestampNode APIs

• TimestampNode case class

• TimestampNode val fields

• TimestampNode def methods

• AWS Glue Scala GlueArgParser APIs

• GlueArgParser object

• GlueArgParser def methods

• AWS Glue Scala job APIs

• Job object

• Job def methods
ETL in Scala 1550

AWS Glue User Guide

Using Scala to program AWS Glue ETL scripts

You can automatically generate a Scala extract, transform, and load (ETL) program using the AWS
Glue console, and modify it as needed before assigning it to a job. Or, you can write your own
program from scratch. For more information, see Configuring job properties for Spark jobs in AWS
Glue. AWS Glue then compiles your Scala program on the server before running the associated job.

To ensure that your program compiles without errors and runs as expected, it's important that you
load it on a development endpoint in a REPL (Read-Eval-Print Loop) or a Jupyter Notebook and
test it there before running it in a job. Because the compile process occurs on the server, you will
not have good visibility into any problems that happen there.

Testing a Scala ETL program in a Jupyter notebook on a development endpoint

To test a Scala program on an AWS Glue development endpoint, set up the development endpoint
as described in Adding a development endpoint.

Next, connect it to a Jupyter Notebook that is either running locally on your machine or remotely
on an Amazon EC2 notebook server. To install a local version of a Jupyter Notebook, follow the
instructions in Tutorial: Jupyter notebook in JupyterLab.

The only difference between running Scala code and running PySpark code on your Notebook is
that you should start each paragraph on the Notebook with the the following:

%spark

This prevents the Notebook server from defaulting to the PySpark flavor of the Spark interpreter.

Testing a Scala ETL program in a Scala REPL

You can test a Scala program on a development endpoint using the AWS GlueScala REPL. Follow
the instructions in Tutorial: Use a SageMaker notebook, except at the end of the SSH-to-REPL
command, replace -t gluepyspark with -t glue-spark-shell. This invokes the AWS Glue
Scala REPL.

To close the REPL when you are finished, type sys.exit.

ETL in Scala 1551

AWS Glue User Guide

Scala script example - streaming ETL

Example

The following example script connects to Amazon Kinesis Data Streams, uses a schema from
the Data Catalog to parse a data stream, joins the stream to a static dataset on Amazon S3, and
outputs the joined results to Amazon S3 in parquet format.

// This script connects to an Amazon Kinesis stream, uses a schema from the data
 catalog to parse the stream,
// joins the stream to a static dataset on Amazon S3, and outputs the joined results to
 Amazon S3 in parquet format.
import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import java.util.Calendar
import org.apache.spark.SparkContext
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.Row
import org.apache.spark.sql.SaveMode
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.from_json
import org.apache.spark.sql.streaming.Trigger
import scala.collection.JavaConverters._

object streamJoiner {
 def main(sysArgs: Array[String]) {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 val sparkSession: SparkSession = glueContext.getSparkSession
 import sparkSession.implicits._
 // @params: [JOB_NAME]
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)

 val staticData = sparkSession.read // read() returns type DataFrameReader
 .format("csv")
 .option("header", "true")
 .load("s3://awsexamplebucket-streaming-demo2/inputs/productsStatic.csv") //
 load() returns a DataFrame

 val datasource0 = sparkSession.readStream // readstream() returns type
 DataStreamReader

ETL in Scala 1552

AWS Glue User Guide

 .format("kinesis")
 .option("streamName", "stream-join-demo")
 .option("endpointUrl", "https://kinesis.us-east-1.amazonaws.com")
 .option("startingPosition", "TRIM_HORIZON")
 .load // load() returns a DataFrame

 val selectfields1 = datasource0.select(from_json($"data".cast("string"),
 glueContext.getCatalogSchemaAsSparkSchema("stream-demos", "stream-join-demo2")) as
 "data").select("data.*")

 val datasink2 = selectfields1.writeStream.foreachBatch { (dataFrame: Dataset[Row],
 batchId: Long) => { //foreachBatch() returns type DataStreamWriter
 val joined = dataFrame.join(staticData, "product_id")
 val year: Int = Calendar.getInstance().get(Calendar.YEAR)
 val month :Int = Calendar.getInstance().get(Calendar.MONTH) + 1
 val day: Int = Calendar.getInstance().get(Calendar.DATE)
 val hour: Int = Calendar.getInstance().get(Calendar.HOUR_OF_DAY)

 if (dataFrame.count() > 0) {
 joined.write // joined.write returns type
 DataFrameWriter
 .mode(SaveMode.Append)
 .format("parquet")
 .option("quote", " ")
 .save("s3://awsexamplebucket-streaming-demo2/output/" + "/year=" +
 "%04d".format(year) + "/month=" + "%02d".format(month) + "/day=" + "%02d".format(day)
 + "/hour=" + "%02d".format(hour) + "/")
 }
 }
 } // end foreachBatch()
 .trigger(Trigger.ProcessingTime("100 seconds"))
 .option("checkpointLocation", "s3://awsexamplebucket-streaming-demo2/
checkpoint/")
 .start().awaitTermination() // start() returns type StreamingQuery
 Job.commit()
 }
}

APIs in the AWS Glue Scala library

AWS Glue supports an extension of the PySpark Scala dialect for scripting extract, transform, and
load (ETL) jobs. The following sections describe the APIs in the AWS Glue Scala library.

ETL in Scala 1553

AWS Glue User Guide

com.amazonaws.services.glue

The com.amazonaws.services.glue package in the AWS Glue Scala library contains the following
APIs:

• ChoiceOption

• DataSink

• DataSource trait

• DynamicFrame

• DynamicRecord

• GlueContext

• MappingSpec

• ResolveSpec

com.amazonaws.services.glue.ml

The com.amazonaws.services.glue.ml package in the AWS Glue Scala library contains the
following APIs:

• FillMissingValues

• FindIncrementalMatches

• FindMatches

com.amazonaws.services.glue.dq

The com.amazonaws.services.glue.dq package in the AWS Glue Scala library contains the
following APIs:

• EvaluateDataQuality

com.amazonaws.services.glue.types

The com.amazonaws.services.glue.types package in the AWS Glue Scala library contains the
following APIs:

• ArrayNode

• BinaryNode

ETL in Scala 1554

AWS Glue User Guide

• BooleanNode

• ByteNode

• DateNode

• DecimalNode

• DoubleNode

• DynamicNode

• FloatNode

• IntegerNode

• LongNode

• MapLikeNode

• MapNode

• NullNode

• ObjectNode

• ScalarNode

• ShortNode

• StringNode

• TimestampNode

com.amazonaws.services.glue.util

The com.amazonaws.services.glue.util package in the AWS Glue Scala library contains the
following APIs:

• GlueArgParser

• Job

AWS Glue Scala ChoiceOption APIs

Topics

• ChoiceOption trait

• ChoiceOption object

• Case class ChoiceOptionWithResolver

• Case class MatchCatalogSchemaChoiceOption

ETL in Scala 1555

AWS Glue User Guide

Package: com.amazonaws.services.glue

ChoiceOption trait

trait ChoiceOption extends Serializable

ChoiceOption object

ChoiceOption

object ChoiceOption

A general strategy to resolve choice applicable to all ChoiceType nodes in a DynamicFrame.

• val CAST

• val MAKE_COLS

• val MAKE_STRUCT

• val MATCH_CATALOG

• val PROJECT

Def apply

def apply(choice: String): ChoiceOption

Case class ChoiceOptionWithResolver

case class ChoiceOptionWithResolver(name: String, choiceResolver: ChoiceResolver)
 extends ChoiceOption {}

Case class MatchCatalogSchemaChoiceOption

case class MatchCatalogSchemaChoiceOption() extends ChoiceOption {}

Abstract DataSink class

Topics

• Def writeDynamicFrame

ETL in Scala 1556

AWS Glue User Guide

• Def pyWriteDynamicFrame

• Def writeDataFrame

• Def pyWriteDataFrame

• Def setCatalogInfo

• Def supportsFormat

• Def setFormat

• Def withFormat

• Def setAccumulableSize

• Def getOutputErrorRecordsAccumulable

• Def errorsAsDynamicFrame

• DataSink object

Package: com.amazonaws.services.glue

abstract class DataSink

The writer analog to a DataSource. DataSink encapsulates a destination and a format that a
DynamicFrame can be written to.

Def writeDynamicFrame

def writeDynamicFrame(frame : DynamicFrame,
 callSite : CallSite = CallSite("Not provided", "")
) : DynamicFrame

Def pyWriteDynamicFrame

def pyWriteDynamicFrame(frame : DynamicFrame,
 site : String = "Not provided",
 info : String = "")

Def writeDataFrame

def writeDataFrame(frame: DataFrame,
 glueContext: GlueContext,

ETL in Scala 1557

AWS Glue User Guide

 callSite: CallSite = CallSite("Not provided", "")
): DataFrame

Def pyWriteDataFrame

def pyWriteDataFrame(frame: DataFrame,
 glueContext: GlueContext,
 site: String = "Not provided",
 info: String = ""
): DataFrame

Def setCatalogInfo

def setCatalogInfo(catalogDatabase: String,
 catalogTableName : String,
 catalogId : String = "")

Def supportsFormat

def supportsFormat(format : String) : Boolean

Def setFormat

def setFormat(format : String,
 options : JsonOptions
) : Unit

Def withFormat

def withFormat(format : String,
 options : JsonOptions = JsonOptions.empty
) : DataSink

Def setAccumulableSize

def setAccumulableSize(size : Int) : Unit

ETL in Scala 1558

AWS Glue User Guide

Def getOutputErrorRecordsAccumulable

def getOutputErrorRecordsAccumulable : Accumulable[List[OutputError], OutputError]

Def errorsAsDynamicFrame

def errorsAsDynamicFrame : DynamicFrame

DataSink object

object DataSink

Def recordMetrics

def recordMetrics(frame : DynamicFrame,
 ctxt : String
) : DynamicFrame

AWS Glue Scala DataSource trait

Package: com.amazonaws.services.glue

A high-level interface for producing a DynamicFrame.

trait DataSource {

 def getDynamicFrame : DynamicFrame

 def getDynamicFrame(minPartitions : Int,
 targetPartitions : Int
) : DynamicFrame
 def getDataFrame : DataFrame

 /** @param num: the number of records for sampling.
 * @param options: optional parameters to control sampling behavior. Current
 available parameter for Amazon S3 sources in options:
 * 1. maxSamplePartitions: the maximum number of partitions the sampling will
 read.
 * 2. maxSampleFilesPerPartition: the maximum number of files the sampling will
 read in one partition.

ETL in Scala 1559

AWS Glue User Guide

 */
 def getSampleDynamicFrame(num:Int, options: JsonOptions = JsonOptions.empty):
 DynamicFrame

 def glueContext : GlueContext

 def setFormat(format : String,
 options : String
) : Unit

 def setFormat(format : String,
 options : JsonOptions
) : Unit

 def supportsFormat(format : String) : Boolean

 def withFormat(format : String,
 options : JsonOptions = JsonOptions.empty
) : DataSource
}

AWS Glue Scala DynamicFrame APIs

Package: com.amazonaws.services.glue

Contents

• AWS Glue Scala DynamicFrame class

• Val errorsCount

• Def applyMapping

• Def assertErrorThreshold

• Def count

• Def dropField

• Def dropFields

• Def dropNulls

• Def errorsAsDynamicFrame

• Def filter

• Def getName

• Def getNumPartitions
ETL in Scala 1560

AWS Glue User Guide

• Def getSchemaIfComputed

• Def isSchemaComputed

• Def javaToPython

• Def join

• Def map

• Def mergeDynamicFrames

• Def printSchema

• Def recomputeSchema

• Def relationalize

• Def renameField

• Def repartition

• Def resolveChoice

• Def schema

• Def selectField

• Def selectFields

• Def show

• Def simplifyDDBJson

• Def spigot

• Def splitFields

• Def splitRows

• Def stageErrorsCount

• Def toDF

• Def unbox

• Def unnest

• Def unnestDDBJson

• Def withFrameSchema

• Def withName

• Def withTransformationContext

• The DynamicFrame object

• Def apply
ETL in Scala 1561

AWS Glue User Guide

• Def emptyDynamicFrame

• Def fromPythonRDD

• Def ignoreErrors

• Def inlineErrors

• Def newFrameWithErrors

AWS Glue Scala DynamicFrame class

Package: com.amazonaws.services.glue

class DynamicFrame extends Serializable with Logging (
 val glueContext : GlueContext,
 _records : RDD[DynamicRecord],
 val name : String = s"",
 val transformationContext : String = DynamicFrame.UNDEFINED,
 callSite : CallSite = CallSite("Not provided", ""),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0,
 prevErrors : => Long = 0,
 errorExpr : => Unit = {})

A DynamicFrame is a distributed collection of self-describing DynamicRecord objects.

DynamicFrames are designed to provide a flexible data model for ETL (extract, transform,
and load) operations. They don't require a schema to create, and you can use them to read and
transform data that contains messy or inconsistent values and types. A schema can be computed
on demand for those operations that need one.

DynamicFrames provide a range of transformations for data cleaning and ETL. They also support
conversion to and from SparkSQL DataFrames to integrate with existing code and the many
analytics operations that DataFrames provide.

The following parameters are shared across many of the AWS Glue transformations that construct
DynamicFrames:

• transformationContext — The identifier for this DynamicFrame. The
transformationContext is used as a key for job bookmark state that is persisted across runs.

• callSite — Provides context information for error reporting. These values are automatically
set when calling from Python.

ETL in Scala 1562

AWS Glue User Guide

• stageThreshold — The maximum number of error records that are allowed from the
computation of this DynamicFrame before throwing an exception, excluding records that are
present in the previous DynamicFrame.

• totalThreshold — The maximum number of total error records before an exception is thrown,
including those from previous frames.

Val errorsCount

val errorsCount

The number of error records in this DynamicFrame. This includes errors from previous operations.

Def applyMapping

def applyMapping(mappings : Seq[Product4[String, String, String, String]],
 caseSensitive : Boolean = true,
 transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided", ""),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : DynamicFrame

• mappings — A sequence of mappings to construct a new DynamicFrame.

• caseSensitive — Whether to treat source columns as case sensitive. Setting this to false
might help when integrating with case-insensitive stores like the AWS Glue Data Catalog.

Selects, projects, and casts columns based on a sequence of mappings.

Each mapping is made up of a source column and type and a target column and type. Mappings
can be specified as either a four-tuple (source_path, source_type, target_path,
target_type) or a MappingSpec object containing the same information.

In addition to using mappings for simple projections and casting, you can use them to nest or
unnest fields by separating components of the path with '.' (period).

For example, suppose that you have a DynamicFrame with the following schema.

 {{{

ETL in Scala 1563

AWS Glue User Guide

 root
 |-- name: string
 |-- age: int
 |-- address: struct
 | |-- state: string
 | |-- zip: int
 }}}

You can make the following call to unnest the state and zip fields.

 {{{
 df.applyMapping(
 Seq(("name", "string", "name", "string"),
 ("age", "int", "age", "int"),
 ("address.state", "string", "state", "string"),
 ("address.zip", "int", "zip", "int")))
 }}}

The resulting schema is as follows.

 {{{
 root
 |-- name: string
 |-- age: int
 |-- state: string
 |-- zip: int
 }}}

You can also use applyMapping to re-nest columns. For example, the following inverts the
previous transformation and creates a struct named address in the target.

 {{{
 df.applyMapping(
 Seq(("name", "string", "name", "string"),
 ("age", "int", "age", "int"),
 ("state", "string", "address.state", "string"),
 ("zip", "int", "address.zip", "int")))
 }}}

Field names that contain '.' (period) characters can be quoted by using backticks (``).

ETL in Scala 1564

AWS Glue User Guide

Note

Currently, you can't use the applyMapping method to map columns that are nested under
arrays.

Def assertErrorThreshold

def assertErrorThreshold : Unit

An action that forces computation and verifies that the number of error records falls below
stageThreshold and totalThreshold. Throws an exception if either condition fails.

Def count

lazy
def count

Returns the number of elements in this DynamicFrame.

Def dropField

def dropField(path : String,
 transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided", ""),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : DynamicFrame

Returns a new DynamicFrame with the specified column removed.

Def dropFields

def dropFields(fieldNames : Seq[String], // The column names to drop.
 transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided", ""),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : DynamicFrame

Returns a new DynamicFrame with the specified columns removed.

ETL in Scala 1565

AWS Glue User Guide

You can use this method to delete nested columns, including those inside of arrays, but not to drop
specific array elements.

Def dropNulls

def dropNulls(transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided", ""),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0)

Returns a new DynamicFrame with all null columns removed.

Note

This only removes columns of type NullType. Individual null values in other columns are
not removed or modified.

Def errorsAsDynamicFrame

def errorsAsDynamicFrame

Returns a new DynamicFrame containing the error records from this DynamicFrame.

Def filter

def filter(f : DynamicRecord => Boolean,
 errorMsg : String = "",
 transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided"),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : DynamicFrame

Constructs a new DynamicFrame containing only those records for which the function 'f' returns
true. The filter function 'f' should not mutate the input record.

Def getName

def getName : String

ETL in Scala 1566

AWS Glue User Guide

Returns the name of this DynamicFrame.

Def getNumPartitions

def getNumPartitions

Returns the number of partitions in this DynamicFrame.

Def getSchemaIfComputed

def getSchemaIfComputed : Option[Schema]

Returns the schema if it has already been computed. Does not scan the data if the schema has not
already been computed.

Def isSchemaComputed

def isSchemaComputed : Boolean

Returns true if the schema has been computed for this DynamicFrame, or false if not. If this
method returns false, then calling the schema method requires another pass over the records in
this DynamicFrame.

Def javaToPython

def javaToPython : JavaRDD[Array[Byte]]

Def join

def join(keys1 : Seq[String],
 keys2 : Seq[String],
 frame2 : DynamicFrame,
 transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided", ""),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : DynamicFrame

• keys1 — The columns in this DynamicFrame to use for the join.

ETL in Scala 1567

AWS Glue User Guide

• keys2 — The columns in frame2 to use for the join. Must be the same length as keys1.

• frame2 — The DynamicFrame to join against.

Returns the result of performing an equijoin with frame2 using the specified keys.

Def map

def map(f : DynamicRecord => DynamicRecord,
 errorMsg : String = "",
 transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided", ""),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : DynamicFrame

Returns a new DynamicFrame constructed by applying the specified function 'f' to each record in
this DynamicFrame.

This method copies each record before applying the specified function, so it is safe to mutate the
records. If the mapping function throws an exception on a given record, that record is marked as an
error, and the stack trace is saved as a column in the error record.

Def mergeDynamicFrames

def mergeDynamicFrames(stageDynamicFrame: DynamicFrame, primaryKeys: Seq[String],
 transformationContext: String = "",
 options: JsonOptions = JsonOptions.empty, callSite: CallSite =
 CallSite("Not provided"),
 stageThreshold: Long = 0, totalThreshold: Long = 0):
 DynamicFrame

• stageDynamicFrame — The staging DynamicFrame to merge.

• primaryKeys — The list of primary key fields to match records from the source and staging
DynamicFrames.

• transformationContext — A unique string that is used to retrieve metadata about the
current transformation (optional).

• options — A string of JSON name-value pairs that provide additional information for this
transformation.

ETL in Scala 1568

AWS Glue User Guide

• callSite — Used to provide context information for error reporting.

• stageThreshold — A Long. The number of errors in the given transformation for which the
processing needs to error out.

• totalThreshold — A Long. The total number of errors up to and including in this
transformation for which the processing needs to error out.

Merges this DynamicFrame with a staging DynamicFrame based on the specified primary keys
to identify records. Duplicate records (records with the same primary keys) are not de-duplicated.
If there is no matching record in the staging frame, all records (including duplicates) are retained
from the source. If the staging frame has matching records, the records from the staging frame
overwrite the records in the source in AWS Glue.

The returned DynamicFrame contains record A in the following cases:

1. If A exists in both the source frame and the staging frame, then A in the staging frame is
returned.

2. If A is in the source table and A.primaryKeys is not in the stagingDynamicFrame (that
means A is not updated in the staging table).

The source frame and staging frame do not need to have the same schema.

Example

val mergedFrame: DynamicFrame = srcFrame.mergeDynamicFrames(stageFrame, Seq("id1",
 "id2"))

Def printSchema

def printSchema : Unit

Prints the schema of this DynamicFrame to stdout in a human-readable format.

Def recomputeSchema

def recomputeSchema : Schema

Forces a schema recomputation. This requires a scan over the data, but it might "tighten" the
schema if there are some fields in the current schema that are not present in the data.

ETL in Scala 1569

AWS Glue User Guide

Returns the recomputed schema.

Def relationalize

def relationalize(rootTableName : String,
 stagingPath : String,
 options : JsonOptions = JsonOptions.empty,
 transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided"),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : Seq[DynamicFrame]

• rootTableName — The name to use for the base DynamicFrame in the output.
DynamicFrames that are created by pivoting arrays start with this as a prefix.

• stagingPath — The Amazon Simple Storage Service (Amazon S3) path for writing intermediate
data.

• options — Relationalize options and configuration. Currently unused.

Flattens all nested structures and pivots arrays into separate tables.

You can use this operation to prepare deeply nested data for ingestion into a relational database.
Nested structs are flattened in the same manner as the Unnest transform. Additionally, arrays are
pivoted into separate tables with each array element becoming a row. For example, suppose that
you have a DynamicFrame with the following data.

 {"name": "Nancy", "age": 47, "friends": ["Fred", "Lakshmi"]}
 {"name": "Stephanie", "age": 28, "friends": ["Yao", "Phil", "Alvin"]}
 {"name": "Nathan", "age": 54, "friends": ["Nicolai", "Karen"]}

Run the following code.

{{{
 df.relationalize("people", "s3:/my_bucket/my_path", JsonOptions.empty)
}}}

This produces two tables. The first table is named "people" and contains the following.

{{{

ETL in Scala 1570

AWS Glue User Guide

 {"name": "Nancy", "age": 47, "friends": 1}
 {"name": "Stephanie", "age": 28, "friends": 2}
 {"name": "Nathan", "age": 54, "friends": 3)
}}}

Here, the friends array has been replaced with an auto-generated join key. A separate table named
people.friends is created with the following content.

{{{
 {"id": 1, "index": 0, "val": "Fred"}
 {"id": 1, "index": 1, "val": "Lakshmi"}
 {"id": 2, "index": 0, "val": "Yao"}
 {"id": 2, "index": 1, "val": "Phil"}
 {"id": 2, "index": 2, "val": "Alvin"}
 {"id": 3, "index": 0, "val": "Nicolai"}
 {"id": 3, "index": 1, "val": "Karen"}
}}}

In this table, 'id' is a join key that identifies which record the array element came from, 'index'
refers to the position in the original array, and 'val' is the actual array entry.

The relationalize method returns the sequence of DynamicFrames created by applying this
process recursively to all arrays.

Note

The AWS Glue library automatically generates join keys for new tables. To ensure that join
keys are unique across job runs, you must enable job bookmarks.

Def renameField

def renameField(oldName : String,
 newName : String,
 transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided", ""),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : DynamicFrame

• oldName — The original name of the column.

ETL in Scala 1571

AWS Glue User Guide

• newName — The new name of the column.

Returns a new DynamicFrame with the specified field renamed.

You can use this method to rename nested fields. For example, the following code would rename
state to state_code inside the address struct.

{{{
 df.renameField("address.state", "address.state_code")
}}}

Def repartition

def repartition(numPartitions : Int,
 transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided", ""),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : DynamicFrame

Returns a new DynamicFrame with numPartitions partitions.

Def resolveChoice

def resolveChoice(specs : Seq[Product2[String, String]] = Seq.empty[ResolveSpec],
 choiceOption : Option[ChoiceOption] = None,
 database : Option[String] = None,
 tableName : Option[String] = None,
 transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided", ""),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : DynamicFrame

• choiceOption — An action to apply to all ChoiceType columns not listed in the specs
sequence.

• database — The Data Catalog database to use with the match_catalog action.

• tableName — The Data Catalog table to use with the match_catalog action.

ETL in Scala 1572

AWS Glue User Guide

Returns a new DynamicFrame by replacing one or more ChoiceTypes with a more specific type.

There are two ways to use resolveChoice. The first is to specify a sequence of specific columns
and how to resolve them. These are specified as tuples made up of (column, action) pairs.

The following are the possible actions:

• cast:type — Attempts to cast all values to the specified type.

• make_cols — Converts each distinct type to a column with the name columnName_type.

• make_struct — Converts a column to a struct with keys for each distinct type.

• project:type — Retains only values of the specified type.

The other mode for resolveChoice is to specify a single resolution for all ChoiceTypes. You can
use this in cases where the complete list of ChoiceTypes is unknown before execution. In addition
to the actions listed preceding, this mode also supports the following action:

• match_catalog — Attempts to cast each ChoiceType to the corresponding type in the
specified catalog table.

Examples:

Resolve the user.id column by casting to an int, and make the address field retain only structs.

{{{
 df.resolveChoice(specs = Seq(("user.id", "cast:int"), ("address", "project:struct")))
}}}

Resolve all ChoiceTypes by converting each choice to a separate column.

{{{
 df.resolveChoice(choiceOption = Some(ChoiceOption("make_cols")))
}}}

Resolve all ChoiceTypes by casting to the types in the specified catalog table.

{{{
 df.resolveChoice(choiceOption = Some(ChoiceOption("match_catalog")),
 database = Some("my_database"),
 tableName = Some("my_table"))

ETL in Scala 1573

AWS Glue User Guide

}}}

Def schema

def schema : Schema

Returns the schema of this DynamicFrame.

The returned schema is guaranteed to contain every field that is present in a record in this
DynamicFrame. But in a small number of cases, it might also contain additional fields. You can use
the Unnest method to "tighten" the schema based on the records in this DynamicFrame.

Def selectField

def selectField(fieldName : String,
 transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided", ""),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : DynamicFrame

Returns a single field as a DynamicFrame.

Def selectFields

def selectFields(paths : Seq[String],
 transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided", ""),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : DynamicFrame

• paths — The sequence of column names to select.

Returns a new DynamicFrame containing the specified columns.

Note

You can only use the selectFields method to select top-level columns. You can use the
applyMapping method to select nested columns.

ETL in Scala 1574

AWS Glue User Guide

Def show

def show(numRows : Int = 20) : Unit

• numRows — The number of rows to print.

Prints rows from this DynamicFrame in JSON format.

Def simplifyDDBJson

DynamoDB exports with the AWS Glue DynamoDB export connector results in JSON files of specific
nested structures. For more information, see Data objects. simplifyDDBJson Simplifies nested
columns in a DynamicFrame of this type of data, and returns a new simplified DynamicFrame. If
there are multiple types or a Map type contained in a List type, the elements in the List will not
be simplified. This method only supports data in the DynamoDB export JSON format. Consider
unnest to perform similar changes on other kinds of data.

def simplifyDDBJson() : DynamicFrame

This method does not take any parameters.

Example input

Consider the following schema generated by a DynamoDB export:

root
|-- Item: struct
| |-- parentMap: struct
| | |-- M: struct
| | | |-- childMap: struct
| | | | |-- M: struct
| | | | | |-- appName: struct
| | | | | | |-- S: string
| | | | | |-- packageName: struct
| | | | | | |-- S: string
| | | | | |-- updatedAt: struct
| | | | | | |-- N: string
| |-- strings: struct
| | |-- SS: array
| | | |-- element: string
| |-- numbers: struct

ETL in Scala 1575

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/S3DataExport.Output.html

AWS Glue User Guide

| | |-- NS: array
| | | |-- element: string
| |-- binaries: struct
| | |-- BS: array
| | | |-- element: string
| |-- isDDBJson: struct
| | |-- BOOL: boolean
| |-- nullValue: struct
| | |-- NULL: boolean

Example code

import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.DynamoDbDataSink
import org.apache.spark.SparkContextimport scala.collection.JavaConverters._

object GlueApp {

 def main(sysArgs: Array[String]): Unit = {
 val glueContext = new GlueContext(SparkContext.getOrCreate())
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)

 val dynamicFrame = glueContext.getSourceWithFormat(
 connectionType = "dynamodb",
 options = JsonOptions(Map(
 "dynamodb.export" -> "ddb",
 "dynamodb.tableArn" -> "ddbTableARN",
 "dynamodb.s3.bucket" -> "exportBucketLocation",
 "dynamodb.s3.prefix" -> "exportBucketPrefix",
 "dynamodb.s3.bucketOwner" -> "exportBucketAccountID",
))
).getDynamicFrame()

 val simplified = dynamicFrame.simplifyDDBJson()
 simplified.printSchema()

 Job.commit()
 }

ETL in Scala 1576

AWS Glue User Guide

}

Example output

The simplifyDDBJson transform will simplify this to:

root
|-- parentMap: struct
| |-- childMap: struct
| | |-- appName: string
| | |-- packageName: string
| | |-- updatedAt: string
|-- strings: array
| |-- element: string
|-- numbers: array
| |-- element: string
|-- binaries: array
| |-- element: string
|-- isDDBJson: boolean
|-- nullValue: null

Def spigot

def spigot(path : String,
 options : JsonOptions = new JsonOptions("{}"),
 transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided"),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : DynamicFrame

Passthrough transformation that returns the same records but writes out a subset of records as a
side effect.

• path — The path in Amazon S3 to write output to, in the form s3://bucket//path.

• options — An optional JsonOptions map describing the sampling behavior.

Returns a DynamicFrame that contains the same records as this one.

By default, writes 100 arbitrary records to the location specified by path. You can customize this
behavior by using the options map. Valid keys include the following:

ETL in Scala 1577

AWS Glue User Guide

• topk — Specifies the total number of records written out. The default is 100.

• prob — Specifies the probability (as a decimal) that an individual record is included. Default is 1.

For example, the following call would sample the dataset by selecting each record with a 20
percent probability and stopping after 200 records have been written.

{{{
 df.spigot("s3://my_bucket/my_path", JsonOptions(Map("topk" -> 200, "prob" ->
 0.2)))
}}}

Def splitFields

def splitFields(paths : Seq[String],
 transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided", ""),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : Seq[DynamicFrame]

• paths — The paths to include in the first DynamicFrame.

Returns a sequence of two DynamicFrames. The first DynamicFrame contains the specified paths,
and the second contains all other columns.

Example

This example takes a DynamicFrame created from the persons table in the legislators
database in the AWS Glue Data Catalog and splits the DynamicFrame into two, with the
specified fields going into the first DynamicFrame and the remaining fields going into a second
DynamicFrame. The example then chooses the first DynamicFrame from the result.

val InputFrame = glueContext.getCatalogSource(database="legislators",
 tableName="persons",
transformationContext="InputFrame").getDynamicFrame()

val SplitField_collection = InputFrame.splitFields(paths=Seq("family_name", "name",
 "links.note",
"links.url", "gender", "image", "identifiers.scheme", "identifiers.identifier",
 "other_names.lang",

ETL in Scala 1578

AWS Glue User Guide

"other_names.note", "other_names.name"), transformationContext="SplitField_collection")

val ResultFrame = SplitField_collection(0)

Def splitRows

def splitRows(paths : Seq[String],
 values : Seq[Any],
 operators : Seq[String],
 transformationContext : String,
 callSite : CallSite,
 stageThreshold : Long,
 totalThreshold : Long
) : Seq[DynamicFrame]

Splits rows based on predicates that compare columns to constants.

• paths — The columns to use for comparison.

• values — The constant values to use for comparison.

• operators — The operators to use for comparison.

Returns a sequence of two DynamicFrames. The first contains rows for which the predicate is true
and the second contains those for which it is false.

Predicates are specified using three sequences: 'paths' contains the (possibly nested) column
names, 'values' contains the constant values to compare to, and 'operators' contains the
operators to use for comparison. All three sequences must be the same length: The nth operator is
used to compare the nth column with the nth value.

Each operator must be one of "!=", "=", "<=", "<", ">=", or ">".

As an example, the following call would split a DynamicFrame so that the first output frame
would contain records of people over 65 from the United States, and the second would contain all
other records.

{{{
 df.splitRows(Seq("age", "address.country"), Seq(65, "USA"), Seq(">=", "="))
}}}

ETL in Scala 1579

AWS Glue User Guide

Def stageErrorsCount

def stageErrorsCount

Returns the number of error records created while computing this DynamicFrame. This excludes
errors from previous operations that were passed into this DynamicFrame as input.

Def toDF

def toDF(specs : Seq[ResolveSpec] = Seq.empty[ResolveSpec]) : DataFrame

Converts this DynamicFrame to an Apache Spark SQL DataFrame with the same schema and
records.

Note

Because DataFrames don't support ChoiceTypes, this method automatically converts
ChoiceType columns into StructTypes. For more information and options for resolving
choice, see resolveChoice.

Def unbox

def unbox(path : String,
 format : String,
 optionString : String = "{}",
 transformationContext : String = "",
 callSite : CallSite = CallSite("Not provided"),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : DynamicFrame

• path — The column to parse. Must be a string or binary.

• format — The format to use for parsing.

• optionString — Options to pass to the format, such as the CSV separator.

Parses an embedded string or binary column according to the specified format. Parsed columns are
nested under a struct with the original column name.

ETL in Scala 1580

AWS Glue User Guide

For example, suppose that you have a CSV file with an embedded JSON column.

name, age, address
Sally, 36, {"state": "NE", "city": "Omaha"}
...

After an initial parse, you would get a DynamicFrame with the following schema.

{{{
 root
 |-- name: string
 |-- age: int
 |-- address: string
}}}

You can call unbox on the address column to parse the specific components.

{{{
 df.unbox("address", "json")
}}}

This gives us a DynamicFrame with the following schema.

{{{
 root
 |-- name: string
 |-- age: int
 |-- address: struct
 | |-- state: string
 | |-- city: string
}}}

Def unnest

def unnest(transformationContext : String = "",
 callSite : CallSite = CallSite("Not Provided"),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0
) : DynamicFrame

ETL in Scala 1581

AWS Glue User Guide

Returns a new DynamicFrame with all nested structures flattened. Names are constructed using
the '.' (period) character.

For example, suppose that you have a DynamicFrame with the following schema.

{{{
 root
 |-- name: string
 |-- age: int
 |-- address: struct
 | |-- state: string
 | |-- city: string
}}}

The following call unnests the address struct.

{{{
 df.unnest()
}}}

The resulting schema is as follows.

{{{
 root
 |-- name: string
 |-- age: int
 |-- address.state: string
 |-- address.city: string
}}}

This method also unnests nested structs inside of arrays. But for historical reasons, the names of
such fields are prepended with the name of the enclosing array and ".val".

Def unnestDDBJson

unnestDDBJson(transformationContext : String = "",
 callSite : CallSite = CallSite("Not Provided"),
 stageThreshold : Long = 0,
 totalThreshold : Long = 0): DynamicFrame

ETL in Scala 1582

AWS Glue User Guide

Unnests nested columns in a DynamicFrame that are specifically in the DynamoDB JSON structure,
and returns a new unnested DynamicFrame. Columns that are of an array of struct types will
not be unnested. Note that this is a specific type of unnesting transform that behaves differently
from the regular unnest transform and requires the data to already be in the DynamoDB JSON
structure. For more information, see DynamoDB JSON.

For example, the schema of a reading an export with the DynamoDB JSON structure might look
like the following:

root
|-- Item: struct
| |-- ColA: struct
| | |-- S: string
| |-- ColB: struct
| | |-- S: string
| |-- ColC: struct
| | |-- N: string
| |-- ColD: struct
| | |-- L: array
| | | |-- element: null

The unnestDDBJson() transform would convert this to:

root
|-- ColA: string
|-- ColB: string
|-- ColC: string
|-- ColD: array
| |-- element: null

The following code example shows how to use the AWS Glue DynamoDB export connector, invoke
a DynamoDB JSON unnest, and print the number of partitions:

import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.DynamoDbDataSink
import org.apache.spark.SparkContext
import scala.collection.JavaConverters._

ETL in Scala 1583

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataExport.Output.html#DataExport.Output.Data

AWS Glue User Guide

object GlueApp {

 def main(sysArgs: Array[String]): Unit = {
 val glueContext = new GlueContext(SparkContext.getOrCreate())
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)

 val dynamicFrame = glueContext.getSourceWithFormat(
 connectionType = "dynamodb",
 options = JsonOptions(Map(
 "dynamodb.export" -> "ddb",
 "dynamodb.tableArn" -> "<test_source>",
 "dynamodb.s3.bucket" -> "<bucket name>",
 "dynamodb.s3.prefix" -> "<bucket prefix>",
 "dynamodb.s3.bucketOwner" -> "<account_id of bucket>",
))
).getDynamicFrame()

 val unnested = dynamicFrame.unnestDDBJson()
 print(unnested.getNumPartitions())

 Job.commit()
 }

}

Def withFrameSchema

def withFrameSchema(getSchema : () => Schema) : DynamicFrame

• getSchema — A function that returns the schema to use. Specified as a zero-parameter function
to defer potentially expensive computation.

Sets the schema of this DynamicFrame to the specified value. This is primarily used internally to
avoid costly schema recomputation. The passed-in schema must contain all columns present in the
data.

Def withName

def withName(name : String) : DynamicFrame

ETL in Scala 1584

AWS Glue User Guide

• name — The new name to use.

Returns a copy of this DynamicFrame with a new name.

Def withTransformationContext

def withTransformationContext(ctx : String) : DynamicFrame

Returns a copy of this DynamicFrame with the specified transformation context.

The DynamicFrame object

Package: com.amazonaws.services.glue

object DynamicFrame

Def apply

def apply(df : DataFrame,
 glueContext : GlueContext
) : DynamicFrame

Def emptyDynamicFrame

def emptyDynamicFrame(glueContext : GlueContext) : DynamicFrame

Def fromPythonRDD

def fromPythonRDD(rdd : JavaRDD[Array[Byte]],
 glueContext : GlueContext
) : DynamicFrame

Def ignoreErrors

def ignoreErrors(fn : DynamicRecord => DynamicRecord) : DynamicRecord

ETL in Scala 1585

AWS Glue User Guide

Def inlineErrors

def inlineErrors(msg : String,
 callSite : CallSite
) : (DynamicRecord => DynamicRecord)

Def newFrameWithErrors

def newFrameWithErrors(prevFrame : DynamicFrame,
 rdd : RDD[DynamicRecord],
 name : String = "",
 transformationContext : String = "",
 callSite : CallSite,
 stageThreshold : Long,
 totalThreshold : Long
) : DynamicFrame

AWS Glue Scala DynamicRecord class

Topics

• Def addField

• Def dropField

• Def setError

• Def isError

• Def getError

• Def clearError

• Def write

• Def readFields

• Def clone

• Def schema

• Def getRoot

• Def toJson

• Def getFieldNode

• Def getField

• Def hashCode

ETL in Scala 1586

AWS Glue User Guide

• Def equals

• DynamicRecord object

• RecordTraverser trait

Package: com.amazonaws.services.glue

class DynamicRecord extends Serializable with Writable with Cloneable

A DynamicRecord is a self-describing data structure that represents a row of data in the dataset
that is being processed. It is self-describing in the sense that you can get the schema of the row
that is represented by the DynamicRecord by inspecting the record itself. A DynamicRecord is
similar to a Row in Apache Spark.

Def addField

def addField(path : String,
 dynamicNode : DynamicNode
) : Unit

Adds a DynamicNode to the specified path.

• path — The path for the field to be added.

• dynamicNode — The DynamicNode to be added at the specified path.

Def dropField

 def dropField(path: String, underRename: Boolean = false): Option[DynamicNode]

Drops a DynamicNode from the specified path and returns the dropped node if there is not an
array in the specified path.

• path — The path to the field to drop.

• underRename — True if dropField is called as part of a rename transform, or false otherwise
(false by default).

Returns a scala.Option Option (DynamicNode).

ETL in Scala 1587

AWS Glue User Guide

Def setError

def setError(error : Error)

Sets this record as an error record, as specified by the error parameter.

Returns a DynamicRecord.

Def isError

def isError

Checks whether this record is an error record.

Def getError

def getError

Gets the Error if the record is an error record. Returns scala.Some Some (Error) if this record is
an error record, or otherwise scala.None .

Def clearError

def clearError

Set the Error to scala.None.None .

Def write

override def write(out : DataOutput) : Unit

Def readFields

override def readFields(in : DataInput) : Unit

Def clone

override def clone : DynamicRecord

Clones this record to a new DynamicRecord and returns it.

ETL in Scala 1588

AWS Glue User Guide

Def schema

def schema

Gets the Schema by inspecting the record.

Def getRoot

def getRoot : ObjectNode

Gets the root ObjectNode for the record.

Def toJson

def toJson : String

Gets the JSON string for the record.

Def getFieldNode

def getFieldNode(path : String) : Option[DynamicNode]

Gets the field's value at the specified path as an option of DynamicNode.

Returns scala.Some Some (DynamicNode) if the field exists, or otherwise scala.None.None .

Def getField

def getField(path : String) : Option[Any]

Gets the field's value at the specified path as an option of DynamicNode.

Returns scala.Some Some (value).

Def hashCode

override def hashCode : Int

Def equals

override def equals(other : Any)

ETL in Scala 1589

AWS Glue User Guide

DynamicRecord object

object DynamicRecord

Def apply

def apply(row : Row,
 schema : SparkStructType)

Apply method to convert an Apache Spark SQL Row to a DynamicRecord.

• row — A Spark SQL Row.

• schema — The Schema of that row.

Returns a DynamicRecord.

RecordTraverser trait

trait RecordTraverser {
 def nullValue(): Unit
 def byteValue(value: Byte): Unit
 def binaryValue(value: Array[Byte]): Unit
 def booleanValue(value: Boolean): Unit
 def shortValue(value: Short) : Unit
 def intValue(value: Int) : Unit
 def longValue(value: Long) : Unit
 def floatValue(value: Float): Unit
 def doubleValue(value: Double): Unit
 def decimalValue(value: BigDecimal): Unit
 def stringValue(value: String): Unit
 def dateValue(value: Date): Unit
 def timestampValue(value: Timestamp): Unit
 def objectStart(length: Int): Unit
 def objectKey(key: String): Unit
 def objectEnd(): Unit
 def mapStart(length: Int): Unit
 def mapKey(key: String): Unit
 def mapEnd(): Unit
 def arrayStart(length: Int): Unit
 def arrayEnd(): Unit

ETL in Scala 1590

AWS Glue User Guide

}

AWS Glue Scala GlueContext APIs

Package: com.amazonaws.services.glue

class GlueContext extends SQLContext(sc) (
 @transient val sc : SparkContext,
 val defaultSourcePartitioner : PartitioningStrategy)

GlueContext is the entry point for reading and writing a DynamicFrame from and to Amazon
Simple Storage Service (Amazon S3), the AWS Glue Data Catalog, JDBC, and so on. This class
provides utility functions to create DataSource trait and DataSink objects that can in turn be used
to read and write DynamicFrames.

You can also use GlueContext to set a target number of partitions (default 20) in the
DynamicFrame if the number of partitions created from the source is less than a minimum
threshold for partitions (default 10).

def addIngestionTimeColumns

def addIngestionTimeColumns(
 df : DataFrame,
 timeGranularity : String = "") : dataFrame

Appends ingestion time columns like ingest_year, ingest_month, ingest_day,
ingest_hour, ingest_minute to the input DataFrame. This function is automatically generated
in the script generated by the AWS Glue when you specify a Data Catalog table with Amazon S3 as
the target. This function automatically updates the partition with ingestion time columns on the
output table. This allows the output data to be automatically partitioned on ingestion time without
requiring explicit ingestion time columns in the input data.

• dataFrame – The dataFrame to append the ingestion time columns to.

• timeGranularity – The granularity of the time columns. Valid values are "day", "hour" and
"minute". For example, if "hour" is passed in to the function, the original dataFrame will
have "ingest_year", "ingest_month", "ingest_day", and "ingest_hour" time columns
appended.

Returns the data frame after appending the time granularity columns.

ETL in Scala 1591

AWS Glue User Guide

Example:

glueContext.addIngestionTimeColumns(dataFrame, "hour")

def createDataFrameFromOptions

def createDataFrameFromOptions(connectionType : String,
 connectionOptions : JsonOptions,
 transformationContext : String = "",
 format : String = null,
 formatOptions : JsonOptions = JsonOptions.empty
) : DataSource

Returns a DataFrame created with the specified connection and format. Use this function only
with AWS Glue streaming sources.

• connectionType – The streaming connection type. Valid values include kinesis and kafka.

• connectionOptions – Connection options, which are different for Kinesis and Kafka. You can
find the list of all connection options for each streaming data source at Connection types and
options for ETL in AWS Glue for Spark. Note the following differences in streaming connection
options:

• Kinesis streaming sources require streamARN, startingPosition, inferSchema, and
classification.

• Kafka streaming sources require connectionName, topicName, startingOffsets,
inferSchema, and classification.

• transformationContext – The transformation context to use (optional).

• format – A format specification (optional). This is used for an Amazon S3 or an AWS Glue
connection that supports multiple formats. For information about the supported formats, see
Data format options for inputs and outputs in AWS Glue for Spark

• formatOptions – Format options for the specified format. For information about the
supported format options, see Data format options.

Example for Amazon Kinesis streaming source:

val data_frame_datasource0 =
glueContext.createDataFrameFromOptions(transformationContext = "datasource0",
 connectionType = "kinesis",

ETL in Scala 1592

AWS Glue User Guide

connectionOptions = JsonOptions("""{"streamName": "example_stream", "startingPosition":
 "TRIM_HORIZON", "inferSchema": "true", "classification": "json"}}"""))

Example for Kafka streaming source:

val data_frame_datasource0 =
glueContext.createDataFrameFromOptions(transformationContext = "datasource0",
 connectionType = "kafka",
connectionOptions = JsonOptions("""{"connectionName": "example_connection",
 "topicName": "example_topic", "startingPosition": "earliest", "inferSchema": "false",
 "classification": "json", "schema":"`column1` STRING, `column2` STRING"}"""))

forEachBatch

forEachBatch(frame, batch_function, options)

Applies the batch_function passed in to every micro batch that is read from the Streaming
source.

• frame – The DataFrame containing the current micro batch.

• batch_function – A function that will be applied for every micro batch.

• options – A collection of key-value pairs that holds information about how to process micro
batches. The following options are required:

• windowSize – The amount of time to spend processing each batch.

• checkpointLocation – The location where checkpoints are stored for the streaming ETL job.

• batchMaxRetries – The maximum number of times to retry the batch if it fails. The default
value is 3. This option is only configurable for Glue version 2.0 and above.

Example:

glueContext.forEachBatch(data_frame_datasource0, (dataFrame: Dataset[Row], batchId:
 Long) =>
 {
 if (dataFrame.count() > 0)
 {
 val datasource0 = DynamicFrame(glueContext.addIngestionTimeColumns(dataFrame,
 "hour"), glueContext)
 // @type: DataSink

ETL in Scala 1593

AWS Glue User Guide

 // @args: [database = "tempdb", table_name = "fromoptionsoutput",
 stream_batch_time = "100 seconds",
 // stream_checkpoint_location = "s3://from-options-testing-eu-central-1/
fromOptionsOutput/checkpoint/",
 // transformation_ctx = "datasink1"]
 // @return: datasink1
 // @inputs: [frame = datasource0]
 val options_datasink1 = JsonOptions(
 Map("partitionKeys" -> Seq("ingest_year", "ingest_month","ingest_day",
 "ingest_hour"),
 "enableUpdateCatalog" -> true))
 val datasink1 = glueContext.getCatalogSink(
 database = "tempdb",
 tableName = "fromoptionsoutput",
 redshiftTmpDir = "",
 transformationContext = "datasink1",
 additionalOptions = options_datasink1).writeDynamicFrame(datasource0)
 }
 }, JsonOptions("""{"windowSize" : "100 seconds",
 "checkpointLocation" : "s3://from-options-testing-eu-central-1/
fromOptionsOutput/checkpoint/"}"""))

def getCatalogSink

def getCatalogSink(database : String,
 tableName : String,
 redshiftTmpDir : String = "",
 transformationContext : String = ""
 additionalOptions: JsonOptions = JsonOptions.empty,
 catalogId: String = null
) : DataSink

Creates a DataSink that writes to a location specified in a table that is defined in the Data Catalog.

• database — The database name in the Data Catalog.

• tableName — The table name in the Data Catalog.

• redshiftTmpDir — The temporary staging directory to be used with certain data sinks. Set to
empty by default.

• transformationContext — The transformation context that is associated with the sink to be
used by job bookmarks. Set to empty by default.

• additionalOptions – Additional options provided to AWS Glue.

ETL in Scala 1594

AWS Glue User Guide

• catalogId — The catalog ID (account ID) of the Data Catalog being accessed. When null, the
default account ID of the caller is used.

Returns the DataSink.

def getCatalogSource

def getCatalogSource(database : String,
 tableName : String,
 redshiftTmpDir : String = "",
 transformationContext : String = ""
 pushDownPredicate : String = " "
 additionalOptions: JsonOptions = JsonOptions.empty,
 catalogId: String = null
) : DataSource

Creates a DataSource trait that reads data from a table definition in the Data Catalog.

• database — The database name in the Data Catalog.

• tableName — The table name in the Data Catalog.

• redshiftTmpDir — The temporary staging directory to be used with certain data sinks. Set to
empty by default.

• transformationContext — The transformation context that is associated with the sink to be
used by job bookmarks. Set to empty by default.

• pushDownPredicate – Filters partitions without having to list and read all the files in your
dataset. For more information, see Pre-filtering using pushdown predicates.

• additionalOptions – A collection of optional name-value pairs. The possible options
include those listed in Connection types and options for ETL in AWS Glue for Spark
except for endpointUrl, streamName, bootstrap.servers, security.protocol,
topicName, classification, and delimiter. Another supported option is
catalogPartitionPredicate:

catalogPartitionPredicate — You can pass a catalog expression to filter based on the
index columns. This pushes down the filtering to the server side. For more information, see AWS
Glue Partition Indexes. Note that push_down_predicate and catalogPartitionPredicate
use different syntaxes. The former one uses Spark SQL standard syntax and the later one uses
JSQL parser.

ETL in Scala 1595

https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html

AWS Glue User Guide

• catalogId — The catalog ID (account ID) of the Data Catalog being accessed. When null, the
default account ID of the caller is used.

Returns the DataSource.

Example for streaming source

val data_frame_datasource0 = glueContext.getCatalogSource(
 database = "tempdb",
 tableName = "test-stream-input",
 redshiftTmpDir = "",
 transformationContext = "datasource0",
 additionalOptions = JsonOptions("""{
 "startingPosition": "TRIM_HORIZON", "inferSchema": "false"}""")
).getDataFrame()

def getJDBCSink

def getJDBCSink(catalogConnection : String,
 options : JsonOptions,
 redshiftTmpDir : String = "",
 transformationContext : String = "",
 catalogId: String = null
) : DataSink

Creates a DataSink that writes to a JDBC database that is specified in a Connection object in the
Data Catalog. The Connection object has information to connect to a JDBC sink, including the
URL, user name, password, VPC, subnet, and security groups.

• catalogConnection — The name of the connection in the Data Catalog that contains the
JDBC URL to write to.

• options — A string of JSON name-value pairs that provide additional information that is
required to write to a JDBC data store. This includes:

• dbtable (required) — The name of the JDBC table. For JDBC data stores that support schemas
within a database, specify schema.table-name. If a schema is not provided, then the default
"public" schema is used. The following example shows an options parameter that points to a
schema named test and a table named test_table in database test_db.

options = JsonOptions("""{"dbtable": "test.test_table", "database": "test_db"}""")

ETL in Scala 1596

AWS Glue User Guide

• database (required) — The name of the JDBC database.

• Any additional options passed directly to the SparkSQL JDBC writer. For more information, see
Redshift data source for Spark.

• redshiftTmpDir — A temporary staging directory to be used with certain data sinks. Set to
empty by default.

• transformationContext — The transformation context that is associated with the sink to be
used by job bookmarks. Set to empty by default.

• catalogId — The catalog ID (account ID) of the Data Catalog being accessed. When null, the
default account ID of the caller is used.

Example code:

getJDBCSink(catalogConnection = "my-connection-name", options =
 JsonOptions("""{"dbtable": "my-jdbc-table", "database": "my-jdbc-db"}"""),
 redshiftTmpDir = "", transformationContext = "datasink4")

Returns the DataSink.

def getSink

def getSink(connectionType : String,
 connectionOptions : JsonOptions,
 transformationContext : String = ""
) : DataSink

Creates a DataSink that writes data to a destination like Amazon Simple Storage Service (Amazon
S3), JDBC, or the AWS Glue Data Catalog, or an Apache Kafka or Amazon Kinesis data stream.

• connectionType — The type of the connection. See the section called “Connection
parameters”.

• connectionOptions — A string of JSON name-value pairs that provide additional information
to establish the connection with the data sink. See the section called “Connection parameters”.

• transformationContext — The transformation context that is associated with the sink to be
used by job bookmarks. Set to empty by default.

Returns the DataSink.

ETL in Scala 1597

https://github.com/databricks/spark-redshift

AWS Glue User Guide

def getSinkWithFormat

def getSinkWithFormat(connectionType : String,
 options : JsonOptions,
 transformationContext : String = "",
 format : String = null,
 formatOptions : JsonOptions = JsonOptions.empty
) : DataSink

Creates a DataSink that writes data to a destination like Amazon S3, JDBC, or the Data Catalog, or
an Apache Kafka or Amazon Kinesis data stream. Also sets the format for the data to be written
out to the destination.

• connectionType — The type of the connection. See the section called “Connection
parameters”.

• options — A string of JSON name-value pairs that provide additional information to establish a
connection with the data sink. See the section called “Connection parameters”.

• transformationContext — The transformation context that is associated with the sink to be
used by job bookmarks. Set to empty by default.

• format — The format of the data to be written out to the destination.

• formatOptions — A string of JSON name-value pairs that provide additional options for
formatting data at the destination. See Data format options.

Returns the DataSink.

def getSource

def getSource(connectionType : String,
 connectionOptions : JsonOptions,
 transformationContext : String = ""
 pushDownPredicate
) : DataSource

Creates a DataSource trait that reads data from a source like Amazon S3, JDBC, or the AWS Glue
Data Catalog. Also supports Kafka and Kinesis streaming data sources.

• connectionType — The type of the data source. See the section called “Connection
parameters”.

ETL in Scala 1598

AWS Glue User Guide

• connectionOptions — A string of JSON name-value pairs that provide additional information
for establishing a connection with the data source. For more information, see the section called
“Connection parameters”.

A Kinesis streaming source requires the following connection options: streamARN,
startingPosition, inferSchema, and classification.

A Kafka streaming source requires the following connection options: connectionName,
topicName, startingOffsets, inferSchema, and classification.

• transformationContext — The transformation context that is associated with the sink to be
used by job bookmarks. Set to empty by default.

• pushDownPredicate — Predicate on partition columns.

Returns the DataSource.

Example for Amazon Kinesis streaming source:

val kinesisOptions = jsonOptions()
data_frame_datasource0 = glueContext.getSource("kinesis",
 kinesisOptions).getDataFrame()

private def jsonOptions(): JsonOptions = {
 new JsonOptions(
 s"""{"streamARN": "arn:aws:kinesis:eu-central-1:123456789012:stream/
fromOptionsStream",
 |"startingPosition": "TRIM_HORIZON",
 |"inferSchema": "true",
 |"classification": "json"}""".stripMargin)
}

Example for Kafka streaming source:

val kafkaOptions = jsonOptions()
val data_frame_datasource0 = glueContext.getSource("kafka",
 kafkaOptions).getDataFrame()

private def jsonOptions(): JsonOptions = {
 new JsonOptions(
 s"""{"connectionName": "ConfluentKafka",
 |"topicName": "kafka-auth-topic",

ETL in Scala 1599

AWS Glue User Guide

 |"startingOffsets": "earliest",
 |"inferSchema": "true",
 |"classification": "json"}""".stripMargin)
 }

def getSourceWithFormat

def getSourceWithFormat(connectionType : String,
 options : JsonOptions,
 transformationContext : String = "",
 format : String = null,
 formatOptions : JsonOptions = JsonOptions.empty
) : DataSource

Creates a DataSource trait that reads data from a source like Amazon S3, JDBC, or the AWS Glue
Data Catalog, and also sets the format of data stored in the source.

• connectionType – The type of the data source. See the section called “Connection
parameters”.

• options – A string of JSON name-value pairs that provide additional information for
establishing a connection with the data source. See the section called “Connection parameters”.

• transformationContext – The transformation context that is associated with the sink to be
used by job bookmarks. Set to empty by default.

• format – The format of the data that is stored at the source. When the connectionType is
"s3", you can also specify format. Can be one of “avro”, “csv”, “grokLog”, “ion”, “json”, “xml”,
“parquet”, or “orc”.

• formatOptions – A string of JSON name-value pairs that provide additional options for parsing
data at the source. See Data format options.

Returns the DataSource.

Examples

Create a DynamicFrame from a data source that is a comma-separated values (CSV) file on Amazon
S3:

val datasource0 = glueContext.getSourceWithFormat(
 connectionType="s3",

ETL in Scala 1600

AWS Glue User Guide

 options =JsonOptions(s"""{"paths": ["s3://csv/nycflights.csv"]}"""),
 transformationContext = "datasource0",
 format = "csv",
 formatOptions=JsonOptions(s"""{"withHeader":"true","separator": ","}""")
).getDynamicFrame()

Create a DynamicFrame from a data source that is a PostgreSQL using a JDBC connection:

val datasource0 = glueContext.getSourceWithFormat(
 connectionType="postgresql",
 options =JsonOptions(s"""{
 "url":"jdbc:postgresql://databasePostgres-1.rds.amazonaws.com:5432/testdb",
 "dbtable": "public.company",
 "redshiftTmpDir":"",
 "user":"username",
 "password":"password123"
 }"""),
 transformationContext = "datasource0").getDynamicFrame()

Create a DynamicFrame from a data source that is a MySQL using a JDBC connection:

 val datasource0 = glueContext.getSourceWithFormat(
 connectionType="mysql",
 options =JsonOptions(s"""{
 "url":"jdbc:mysql://databaseMysql-1.rds.amazonaws.com:3306/testdb",
 "dbtable": "athenatest_nycflights13_csv",
 "redshiftTmpDir":"",
 "user":"username",
 "password":"password123"
 }"""),
 transformationContext = "datasource0").getDynamicFrame()

def getSparkSession

def getSparkSession : SparkSession

Gets the SparkSession object associated with this GlueContext. Use this SparkSession object to
register tables and UDFs for use with DataFrame created from DynamicFrames.

Returns the SparkSession.

ETL in Scala 1601

AWS Glue User Guide

def startTransaction

def startTransaction(readOnly: Boolean):String

Start a new transaction. Internally calls the Lake Formation startTransaction API.

• readOnly – (Boolean) Indicates whether this transaction should be read only or read and write.
Writes made using a read-only transaction ID will be rejected. Read-only transactions do not
need to be committed.

Returns the transaction ID.

def commitTransaction

def commitTransaction(transactionId: String, waitForCommit: Boolean): Boolean

Attempts to commit the specified transaction. commitTransaction may return before the
transaction has finished committing. Internally calls the Lake Formation commitTransaction API.

• transactionId – (String) The transaction to commit.

• waitForCommit – (Boolean) Determines whether the commitTransaction returns
immediately. The default value is true. If false, commitTransaction polls and waits until the
transaction is committed. The amount of wait time is restricted to 1 minute using exponential
backoff with a maximum of 6 retry attempts.

Returns a Boolean to indicate whether the commit is done or not.

def cancelTransaction

def cancelTransaction(transactionId: String): Unit

Attempts to cancel the specified transaction. Internally calls the Lake Formation CancelTransaction
API.

• transactionId – (String) The transaction to cancel.

Returns a TransactionCommittedException exception if the transaction was previously
committed.

ETL in Scala 1602

https://docs.aws.amazon.com/lake-formation/latest/dg/aws-lake-formation-api-aws-lake-formation-api-transactions.html#aws-lake-formation-api-aws-lake-formation-api-transactions-StartTransaction
https://docs.aws.amazon.com/lake-formation/latest/dg/aws-lake-formation-api-aws-lake-formation-api-transactions.html#aws-lake-formation-api-aws-lake-formation-api-transactions-CommitTransaction
https://docs.aws.amazon.com/lake-formation/latest/dg/aws-lake-formation-api-aws-lake-formation-api-transactions.html#aws-lake-formation-api-aws-lake-formation-api-transactions-CancelTransaction

AWS Glue User Guide

def this

def this(sc : SparkContext,
 minPartitions : Int,
 targetPartitions : Int)

Creates a GlueContext object using the specified SparkContext, minimum partitions, and
target partitions.

• sc — The SparkContext.

• minPartitions — The minimum number of partitions.

• targetPartitions — The target number of partitions.

Returns the GlueContext.

def this

def this(sc : SparkContext)

Creates a GlueContext object with the provided SparkContext. Sets the minimum partitions to
10 and target partitions to 20.

• sc — The SparkContext.

Returns the GlueContext.

def this

def this(sparkContext : JavaSparkContext)

Creates a GlueContext object with the provided JavaSparkContext. Sets the minimum
partitions to 10 and target partitions to 20.

• sparkContext — The JavaSparkContext.

Returns the GlueContext.

ETL in Scala 1603

AWS Glue User Guide

MappingSpec

Package: com.amazonaws.services.glue

MappingSpec case class

case class MappingSpec(sourcePath: SchemaPath,
 sourceType: DataType,
 targetPath: SchemaPath,
 targetType: DataTyp
) extends Product4[String, String, String, String] {
 override def _1: String = sourcePath.toString
 override def _2: String = ExtendedTypeName.fromDataType(sourceType)
 override def _3: String = targetPath.toString
 override def _4: String = ExtendedTypeName.fromDataType(targetType)
}

• sourcePath — The SchemaPath of the source field.

• sourceType — The DataType of the source field.

• targetPath — The SchemaPath of the target field.

• targetType — The DataType of the target field.

A MappingSpec specifies a mapping from a source path and a source data type to a target path
and a target data type. The value at the source path in the source frame appears in the target
frame at the target path. The source data type is cast to the target data type.

It extends from Product4 so that you can handle any Product4 in your applyMapping interface.

MappingSpec object

object MappingSpec

The MappingSpec object has the following members:

Val orderingByTarget

val orderingByTarget: Ordering[MappingSpec]

ETL in Scala 1604

AWS Glue User Guide

Def apply

def apply(sourcePath : String,
 sourceType : DataType,
 targetPath : String,
 targetType : DataType
) : MappingSpec

Creates a MappingSpec.

• sourcePath — A string representation of the source path.

• sourceType — The source DataType.

• targetPath — A string representation of the target path.

• targetType — The target DataType.

Returns a MappingSpec.

Def apply

def apply(sourcePath : String,
 sourceTypeString : String,
 targetPath : String,
 targetTypeString : String
) : MappingSpec

Creates a MappingSpec.

• sourcePath — A string representation of the source path.

• sourceType — A string representation of the source data type.

• targetPath — A string representation of the target path.

• targetType — A string representation of the target data type.

Returns a MappingSpec.

Def apply

def apply(product : Product4[String, String, String, String]) : MappingSpec

ETL in Scala 1605

AWS Glue User Guide

Creates a MappingSpec.

• product — The Product4 of the source path, source data type, target path, and target data
type.

Returns a MappingSpec.

AWS Glue Scala ResolveSpec APIs

Topics

• ResolveSpec object

• ResolveSpec case class

Package: com.amazonaws.services.glue

ResolveSpec object

ResolveSpec

object ResolveSpec

Def

def apply(path : String,
 action : String
) : ResolveSpec

Creates a ResolveSpec.

• path — A string representation of the choice field that needs to be resolved.

• action — A resolution action. The action can be one of the following: Project,
KeepAsStruct, or Cast.

Returns the ResolveSpec.

Def

def apply(product : Product2[String, String]) : ResolveSpec

ETL in Scala 1606

AWS Glue User Guide

Creates a ResolveSpec.

• product — Product2 of: source path, resolution action.

Returns the ResolveSpec.

ResolveSpec case class

case class ResolveSpec extends Product2[String, String] (
 path : SchemaPath,
 action : String)

Creates a ResolveSpec.

• path — The SchemaPath of the choice field that needs to be resolved.

• action — A resolution action. The action can be one of the following: Project,
KeepAsStruct, or Cast.

ResolveSpec def methods

def _1 : String

def _2 : String

AWS Glue Scala ArrayNode APIs

Package: com.amazonaws.services.glue.types

ArrayNode case class

ArrayNode

case class ArrayNode extends DynamicNode (
 value : ArrayBuffer[DynamicNode])

ArrayNode def methods

def add(node : DynamicNode)

ETL in Scala 1607

AWS Glue User Guide

def clone

def equals(other : Any)

def get(index : Int) : Option[DynamicNode]

def getValue

def hashCode : Int

def isEmpty : Boolean

def nodeType

def remove(index : Int)

def this

def toIterator : Iterator[DynamicNode]

def toJson : String

def update(index : Int,
 node : DynamicNode)

AWS Glue Scala BinaryNode APIs

Package: com.amazonaws.services.glue.types

BinaryNode case class

BinaryNode

case class BinaryNode extends ScalarNode(value, TypeCode.BINARY) (
 value : Array[Byte])

ETL in Scala 1608

AWS Glue User Guide

BinaryNode val fields

• ordering

BinaryNode def methods

def clone

def equals(other : Any)

def hashCode : Int

AWS Glue Scala BooleanNode APIs

Package: com.amazonaws.services.glue.types

BooleanNode case class

BooleanNode

case class BooleanNode extends ScalarNode(value, TypeCode.BOOLEAN) (
 value : Boolean)

BooleanNode val fields

• ordering

BooleanNode def methods

def equals(other : Any)

AWS Glue Scala ByteNode APIs

Package: com.amazonaws.services.glue.types

ByteNode case class

ByteNode

ETL in Scala 1609

AWS Glue User Guide

case class ByteNode extends ScalarNode(value, TypeCode.BYTE) (
 value : Byte)

ByteNode val fields

• ordering

ByteNode def methods

def equals(other : Any)

AWS Glue Scala DateNode APIs

Package: com.amazonaws.services.glue.types

DateNode case class

DateNode

case class DateNode extends ScalarNode(value, TypeCode.DATE) (
 value : Date)

DateNode val fields

• ordering

DateNode def methods

def equals(other : Any)

def this(value : Int)

AWS Glue Scala DecimalNode APIs

Package: com.amazonaws.services.glue.types

DecimalNode case class

DecimalNode

ETL in Scala 1610

AWS Glue User Guide

case class DecimalNode extends ScalarNode(value, TypeCode.DECIMAL) (
 value : BigDecimal)

DecimalNode val fields

• ordering

DecimalNode def methods

def equals(other : Any)

def this(value : Decimal)

AWS Glue Scala DoubleNode APIs

Package: com.amazonaws.services.glue.types

DoubleNode case class

DoubleNode

case class DoubleNode extends ScalarNode(value, TypeCode.DOUBLE) (
 value : Double)

DoubleNode val fields

• ordering

DoubleNode def methods

def equals(other : Any)

AWS Glue Scala DynamicNode APIs

Topics

• DynamicNode class

• DynamicNode object

ETL in Scala 1611

AWS Glue User Guide

Package: com.amazonaws.services.glue.types

DynamicNode class

DynamicNode

class DynamicNode extends Serializable with Cloneable

DynamicNode def methods

def getValue : Any

Get plain value and bind to the current record:

def nodeType : TypeCode

def toJson : String

Method for debug:

def toRow(schema : Schema,
 options : Map[String, ResolveOption]
) : Row

def typeName : String

DynamicNode object

DynamicNode

object DynamicNode

DynamicNode def methods

def quote(field : String,
 useQuotes : Boolean
) : String

def quote(node : DynamicNode,

ETL in Scala 1612

AWS Glue User Guide

 useQuotes : Boolean
) : String

EvaluateDataQuality class

AWS Glue Data Quality is in preview release for AWS Glue and is subject to change.

Package: com.amazonaws.services.glue.dq

object EvaluateDataQuality

Def apply

def apply(frame: DynamicFrame,
 ruleset: String,
 publishingOptions: JsonOptions = JsonOptions.empty): DynamicFrame

Evaluates a data quality ruleset against a DynamicFrame, and returns a new DynamicFrame with
results of the evaluation. To learn more about AWS Glue Data Quality, see AWS Glue Data Quality.

• frame – The DynamicFrame that you want to evaluate the data quality of.

• ruleset – A Data Quality Definition Language (DQDL) ruleset in string format. To learn more
about DQDL, see the Data Quality Definition Language (DQDL) reference guide.

• publishingOptions – A dictionary that specifies the following options for publishing
evaluation results and metrics:

• dataQualityEvaluationContext – A string that specifies the namespace under which AWS
Glue should publish Amazon CloudWatch metrics and the data quality results. The aggregated
metrics appear in CloudWatch, while the full results appear in the AWS Glue Studio interface.

• Required: No

• Default value: default_context

• enableDataQualityCloudWatchMetrics – Specifies whether the results of the data
quality evaluation should be published to CloudWatch. You specify a namespace for the
metrics using the dataQualityEvaluationContext option.

• Required: No

• Default value: False

ETL in Scala 1613

AWS Glue User Guide

• enableDataQualityResultsPublishing – Specifies whether the data quality results
should be visible on the Data Quality tab in the AWS Glue Studio interface.

• Required: No

• Default value: True

• resultsS3Prefix – Specifies the Amazon S3 location where AWS Glue can write the data
quality evaluation results.

• Required: No

• Default value: "" (empty string)

Example

The following example code demonstrates how to evaluate data quality for a DynamicFrame
before performing a SelectFields transform. The script verifies that all data quality rules pass
before it attempts the transform.

import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.MappingSpec
import com.amazonaws.services.glue.errors.CallSite
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import org.apache.spark.SparkContext
import scala.collection.JavaConverters._
import com.amazonaws.services.glue.dq.EvaluateDataQuality

object GlueApp {
 def main(sysArgs: Array[String]) {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 // @params: [JOB_NAME]
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)

 // Create DynamicFrame with data
 val Legislators_Area = glueContext.getCatalogSource(database="legislators",
 tableName="areas_json", transformationContext="S3bucket_node1").getDynamicFrame()

 // Define data quality ruleset
 val DQ_Ruleset = """
 Rules = [ColumnExists "id"]

ETL in Scala 1614

AWS Glue User Guide

 """

 // Evaluate data quality
 val DQ_Results = EvaluateDataQuality.apply(frame=Legislators_Area,
 ruleset=DQ_Ruleset, publishingOptions=JsonOptions("""{"dataQualityEvaluationContext":
 "Legislators_Area", "enableDataQualityMetrics": "true",
 "enableDataQualityResultsPublishing": "true"}"""))
 assert(DQ_Results.filter(_.getField("Outcome").contains("Failed")).count == 0,
 "Failing DQ rules for Legislators_Area caused the job to fail.")

 // Script generated for node Select Fields
 val SelectFields_Results = Legislators_Area.selectFields(paths=Seq("id", "name"),
 transformationContext="Legislators_Area")

 Job.commit()
 }
}

AWS Glue Scala FloatNode APIs

Package: com.amazonaws.services.glue.types

FloatNode case class

FloatNode

case class FloatNode extends ScalarNode(value, TypeCode.FLOAT) (
 value : Float)

FloatNode val fields

• ordering

FloatNode def methods

def equals(other : Any)

FillMissingValues class

Package: com.amazonaws.services.glue.ml

object FillMissingValues

ETL in Scala 1615

AWS Glue User Guide

Def apply

def apply(frame: DynamicFrame,
 missingValuesColumn: String,
 outputColumn: String = "",
 transformationContext: String = "",
 callSite: CallSite = CallSite("Not provided", ""),
 stageThreshold: Long = 0,
 totalThreshold: Long = 0): DynamicFrame

Fills a dynamic frame's missing values in a specified column and returns a new frame with
estimates in a new column. For rows without missing values, the specified column's value is
duplicated to the new column.

• frame — The DynamicFrame in which to fill missing values. Required.

• missingValuesColumn — The column containing missing values (null values and empty
strings). Required.

• outputColumn — The name of the new column that will contain estimated values for all rows
whose value was missing. Optional; the default is the value of missingValuesColumn suffixed
by "_filled".

• transformationContext — A unique string that is used to identify state information
(optional).

• callSite — Used to provide context information for error reporting. (optional).

• stageThreshold — The maximum number of errors that can occur in the transformation
before it errors out (optional; the default is zero).

• totalThreshold — The maximum number of errors that can occur overall before processing
errors out (optional; the default is zero).

Returns a new dynamic frame with one additional column that contains estimations for rows with
missing values and the present value for other rows.

FindMatches class

Package: com.amazonaws.services.glue.ml

object FindMatches

ETL in Scala 1616

AWS Glue User Guide

Def apply

def apply(frame: DynamicFrame,
 transformId: String,
 transformationContext: String = "",
 callSite: CallSite = CallSite("Not provided", ""),
 stageThreshold: Long = 0,
 totalThreshold: Long = 0,
 enforcedMatches: DynamicFrame = null): DynamicFrame,
 computeMatchConfidenceScores: Boolean

Find matches in an input frame and return a new frame with a new column containing a unique ID
per match group.

• frame — The DynamicFrame in which to find matches. Required.

• transformId — A unique ID associated with the FindMatches transform to apply on the input
frame. Required.

• transformationContext — Identifier for this DynamicFrame. The
transformationContext is used as a key for the job bookmark state that is persisted across
runs. Optional.

• callSite — Used to provide context information for error reporting. These values are
automatically set when calling from Python. Optional.

• stageThreshold — The maximum number of error records allowed from the computation of
this DynamicFrame before throwing an exception, excluding records present in the previous
DynamicFrame. Optional. The default is zero.

• totalThreshold — The maximum number of total errors records before an exception is
thrown, including those from previous frames. Optional. The default is zero.

• enforcedMatches — The frame for enforced matches. Optional. The default is null.

• computeMatchConfidenceScores — A Boolean value indicating whether to compute a
confidence score for each group of matching records. Optional. The default is false.

Returns a new dynamic frame with a unique identifier assigned to each group of matching records.

FindIncrementalMatches class

Package: com.amazonaws.services.glue.ml

ETL in Scala 1617

AWS Glue User Guide

object FindIncrementalMatches

Def apply

apply(existingFrame: DynamicFrame,
 incrementalFrame: DynamicFrame,
 transformId: String,
 transformationContext: String = "",
 callSite: CallSite = CallSite("Not provided", ""),
 stageThreshold: Long = 0,
 totalThreshold: Long = 0,
 enforcedMatches: DynamicFrame = null): DynamicFrame,
 computeMatchConfidenceScores: Boolean

Find matches across the existing and incremental frames and return a new frame with a column
containing a unique ID per match group.

• existingframe — An existing frame which has been assigned a matching ID for each group.
Required.

• incrementalframe — An incremental frame used to find matches against the existing frame.
Required.

• transformId — A unique ID associated with the FindIncrementalMatches transform to apply on
the input frames. Required.

• transformationContext — Identifier for this DynamicFrame. The
transformationContext is used as a key for the job bookmark state that is persisted across
runs. Optional.

• callSite — Used to provide context information for error reporting. These values are
automatically set when calling from Python. Optional.

• stageThreshold — The maximum number of error records allowed from the computation of
this DynamicFrame before throwing an exception, excluding records present in the previous
DynamicFrame. Optional. The default is zero.

• totalThreshold — The maximum number of total errors records before an exception is
thrown, including those from previous frames. Optional. The default is zero.

• enforcedMatches — The frame for enforced matches. Optional. The default is null.

• computeMatchConfidenceScores — A Boolean value indicating whether to compute a
confidence score for each group of matching records. Optional. The default is false.

ETL in Scala 1618

AWS Glue User Guide

Returns a new dynamic frame with a unique identifier assigned to each group of matching records.

AWS Glue Scala IntegerNode APIs

Package: com.amazonaws.services.glue.types

IntegerNode case class

IntegerNode

case class IntegerNode extends ScalarNode(value, TypeCode.INT) (
 value : Int)

IntegerNode val fields

• ordering

IntegerNode def methods

def equals(other : Any)

AWS Glue Scala LongNode APIs

Package: com.amazonaws.services.glue.types

LongNode case class

LongNode

case class LongNode extends ScalarNode(value, TypeCode.LONG) (
 value : Long)

LongNode val fields

• ordering

LongNode def methods

def equals(other : Any)

ETL in Scala 1619

AWS Glue User Guide

AWS Glue Scala MapLikeNode APIs

Package: com.amazonaws.services.glue.types

MapLikeNode class

MapLikeNode

class MapLikeNode extends DynamicNode (
 value : mutable.Map[String, DynamicNode])

MapLikeNode def methods

def clear : Unit

def get(name : String) : Option[DynamicNode]

def getValue

def has(name : String) : Boolean

def isEmpty : Boolean

def put(name : String,
 node : DynamicNode
) : Option[DynamicNode]

def remove(name : String) : Option[DynamicNode]

def toIterator : Iterator[(String, DynamicNode)]

def toJson : String

def toJson(useQuotes : Boolean) : String

Example: Given this JSON:

ETL in Scala 1620

AWS Glue User Guide

{"foo": "bar"}

If useQuotes == true, toJson yields {"foo": "bar"}. If useQuotes == false, toJson
yields {foo: bar} @return.

AWS Glue Scala MapNode APIs

Package: com.amazonaws.services.glue.types

MapNode case class

MapNode

case class MapNode extends MapLikeNode(value) (
 value : mutable.Map[String, DynamicNode])

MapNode def methods

def clone

def equals(other : Any)

def hashCode : Int

def nodeType

def this

AWS Glue Scala NullNode APIs

Topics

• NullNode class

• NullNode case object

Package: com.amazonaws.services.glue.types

ETL in Scala 1621

AWS Glue User Guide

NullNode class

NullNode

class NullNode

NullNode case object

NullNode

case object NullNode extends NullNode

AWS Glue Scala ObjectNode APIs

Topics

• ObjectNode object

• ObjectNode case class

Package: com.amazonaws.services.glue.types

ObjectNode object

ObjectNode

object ObjectNode

ObjectNode def methods

def apply(frameKeys : Set[String],
 v1 : mutable.Map[String, DynamicNode],
 v2 : mutable.Map[String, DynamicNode],
 resolveWith : String
) : ObjectNode

ObjectNode case class

ObjectNode

case class ObjectNode extends MapLikeNode(value) (

ETL in Scala 1622

AWS Glue User Guide

 val value : mutable.Map[String, DynamicNode])

ObjectNode def methods

def clone

def equals(other : Any)

def hashCode : Int

def nodeType

def this

AWS Glue Scala ScalarNode APIs

Topics

• ScalarNode class

• ScalarNode object

Package: com.amazonaws.services.glue.types

ScalarNode class

ScalarNode

class ScalarNode extends DynamicNode (
 value : Any,
 scalarType : TypeCode)

ScalarNode def methods

def compare(other : Any,
 operator : String
) : Boolean

def getValue

ETL in Scala 1623

AWS Glue User Guide

def hashCode : Int

def nodeType

def toJson

ScalarNode object

ScalarNode

object ScalarNode

ScalarNode def methods

def apply(v : Any) : DynamicNode

def compare(tv : Ordered[T],
 other : T,
 operator : String
) : Boolean

def compareAny(v : Any,
 y : Any,
 o : String)

def withEscapedSpecialCharacters(jsonToEscape : String) : String

AWS Glue Scala ShortNode APIs

Package: com.amazonaws.services.glue.types

ShortNode case class

ShortNode

case class ShortNode extends ScalarNode(value, TypeCode.SHORT) (
 value : Short)

ETL in Scala 1624

AWS Glue User Guide

ShortNode val fields

• ordering

ShortNode def methods

def equals(other : Any)

AWS Glue Scala StringNode APIs

Package: com.amazonaws.services.glue.types

StringNode case class

StringNode

case class StringNode extends ScalarNode(value, TypeCode.STRING) (
 value : String)

StringNode val fields

• ordering

StringNode def methods

def equals(other : Any)

def this(value : UTF8String)

AWS Glue Scala TimestampNode APIs

Package: com.amazonaws.services.glue.types

TimestampNode case class

TimestampNode

case class TimestampNode extends ScalarNode(value, TypeCode.TIMESTAMP) (
 value : Timestamp)

ETL in Scala 1625

AWS Glue User Guide

TimestampNode val fields

• ordering

TimestampNode def methods

def equals(other : Any)

def this(value : Long)

AWS Glue Scala GlueArgParser APIs

Package: com.amazonaws.services.glue.util

GlueArgParser object

GlueArgParser

object GlueArgParser

This is strictly consistent with the Python version of utils.getResolvedOptions in the
AWSGlueDataplanePython package.

GlueArgParser def methods

def getResolvedOptions(args : Array[String],
 options : Array[String]
) : Map[String, String]

def initParser(userOptionsSet : mutable.Set[String]) : ArgumentParser

Example Retrieving arguments passed to a job

To retrieve job arguments, you can use the getResolvedOptions method. Consider the following
example, which retrieves a job argument named aws_region.

val args = GlueArgParser.getResolvedOptions(sysArgs,
 Seq("JOB_NAME","aws_region").toArray)
Job.init(args("JOB_NAME"), glueContext, args.asJava)
val region = args("aws_region")

ETL in Scala 1626

AWS Glue User Guide

println(region)

AWS Glue Scala job APIs

Package: com.amazonaws.services.glue.util

Job object

Job

object Job

Job def methods

def commit

def init(jobName : String,
 glueContext : GlueContext,
 args : java.util.Map[String, String] = Map[String, String]().asJava
) : this.type

def init(jobName : String,
 glueContext : GlueContext,
 endpoint : String,
 args : java.util.Map[String, String]
) : this.type

def isInitialized

def reset

def runId

Features and optimizations for programming AWS Glue for Spark ETL
scripts

The following sections describe techniques and values that apply generally to AWS Glue for Spark
ETL (extract, transform, and load) programming in any language.

Features and optimizations 1627

AWS Glue User Guide

Topics

• Connection types and options for ETL in AWS Glue for Spark

• Data format options for inputs and outputs in AWS Glue for Spark

• AWS Glue Data Catalog support for Spark SQL jobs

• Using job bookmarks

• Using Sensitive Data Detection outside AWS Glue Studio

• AWS Glue Visual Job API

Connection types and options for ETL in AWS Glue for Spark

In AWS Glue for Spark, various PySpark and Scala methods and transforms specify the
connection type using a connectionType parameter. They specify connection options using a
connectionOptions or options parameter.

The connectionType parameter can take the values shown in the following table. The associated
connectionOptions (or options) parameter values for each type are documented in the
following sections. Except where otherwise noted, the parameters apply when the connection is
used as a source or sink.

For sample code that demonstrates setting and using connection options, see the homepage for
each connection type.

connectionType Connects to

dynamodb Amazon DynamoDB database

kinesis Amazon Kinesis Data Streams

s3 Amazon S3

documentdb Amazon DocumentDB (with MongoDB compatibility) database

opensearch Amazon OpenSearch Service.

redshift Amazon Redshift database

kafka Kafka or Amazon Managed Streaming for Apache Kafka

Features and optimizations 1628

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/streams/latest/dev/introduction.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/
https://docs.aws.amazon.com/documentdb/latest/developerguide/
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/
https://aws.amazon.com/redshift/
https://kafka.apache.org/
https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html

AWS Glue User Guide

connectionType Connects to

azurecosmos Azure Cosmos for NoSQL.

azuresql Azure SQL.

bigquery Google BigQuery.

mongodb MongoDB database, including MongoDB Atlas.

sqlserver Microsoft SQL Server database (see JDBC connections)

mysql MySQL database (see JDBC connections)

oracle Oracle database (see JDBC connections)

postgresql PostgreSQL database (see JDBC connections)

saphana SAP HANA.

snowflake Snowflake data lake

teradata Teradata Vantage.

vertica Vertica.

custom.* Spark, Athena, or JDBC data stores (see Custom and AWS Marketpla
ce connectionType values

marketplace.* Spark, Athena, or JDBC data stores (see Custom and AWS Marketpla
ce connectionType values)

DynamoDB connections

You can use AWS Glue for Spark to read from and write to tables in DynamoDB in AWS Glue. You
connect to DynamoDB using IAM permissions attached to your AWS Glue job. AWS Glue supports
writing data into another AWS account's DynamoDB table. For more information, see the section
called “Cross-account cross-Region access to DynamoDB tables”.

In addition to the AWS Glue DynamoDB ETL connector, you can read from DynamoDB using the
DynamoDB export connector, that invokes a DynamoDB ExportTableToPointInTime request

Features and optimizations 1629

https://www.mongodb.com/what-is-mongodb
https://www.mysql.com/
https://www.oracle.com/database/
https://www.postgresql.org/
https://www.snowflake.com/

AWS Glue User Guide

and stores it in an Amazon S3 location you supply, in the format of DynamoDB JSON. AWS Glue
then creates a DynamicFrame object by reading the data from the Amazon S3 export location.

The DynamoDB writer is available in AWS Glue version 1.0 or later versions. The AWS Glue
DynamoDB export connector is available in AWS Glue version 2.0 or later versions.

For more information about DynamoDB, consult Amazon DynamoDB documentation.

Note

The DynamoDB ETL reader does not support filters or pushdown predicates.

Configuring DynamoDB connections

To connect to DynamoDB from AWS Glue, grant the IAM role associated with your AWS Glue job
permission to interact with DynamoDB. For more information about permissions necessary to read
or write from DynamoDB, consult Actions, resources, and condition keys for DynamoDB in the IAM
documentation.

In the following situations, you may need additional configuration:

• When using the DynamoDB export connector, you will need to configure IAM so your job can
request DynamoDB table exports. Additionally, you will need to identify an Amazon S3 bucket
for the export and provide appropriate permissions in IAM for DynamoDB to write to it, and
for your AWS Glue job to read from it. For more information, consult Request a table export in
DynamoDB.

• If your AWS Glue job has specific Amazon VPC connectivity requirements, use the NETWORK AWS
Glue connection type to provide network options. Since access to DynamoDB is authorized by
IAM, there is no need for a AWS Glue DynamoDB connection type.

Reading from and writing to DynamoDB

The following code examples show how to read from (via the ETL connector) and write to
DynamoDB tables. They demonstrate reading from one table and writing to another table.

Python

import sys

Features and optimizations 1630

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataExport.Output.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondynamodb.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/S3DataExport_Requesting.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/S3DataExport_Requesting.html

AWS Glue User Guide

from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.utils import getResolvedOptions

args = getResolvedOptions(sys.argv, ["JOB_NAME"])
glue_context= GlueContext(SparkContext.getOrCreate())
job = Job(glue_context)
job.init(args["JOB_NAME"], args)

dyf = glue_context.create_dynamic_frame.from_options(
 connection_type="dynamodb",
 connection_options={"dynamodb.input.tableName": test_source,
 "dynamodb.throughput.read.percent": "1.0",
 "dynamodb.splits": "100"
 }
)
print(dyf.getNumPartitions())

glue_context.write_dynamic_frame_from_options(
 frame=dyf,
 connection_type="dynamodb",
 connection_options={"dynamodb.output.tableName": test_sink,
 "dynamodb.throughput.write.percent": "1.0"
 }
)

job.commit()

Scala

import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.DynamoDbDataSink
import org.apache.spark.SparkContext
import scala.collection.JavaConverters._

object GlueApp {

 def main(sysArgs: Array[String]): Unit = {

Features and optimizations 1631

AWS Glue User Guide

 val glueContext = new GlueContext(SparkContext.getOrCreate())
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)

 val dynamicFrame = glueContext.getSourceWithFormat(
 connectionType = "dynamodb",
 options = JsonOptions(Map(
 "dynamodb.input.tableName" -> test_source,
 "dynamodb.throughput.read.percent" -> "1.0",
 "dynamodb.splits" -> "100"
))
).getDynamicFrame()

 print(dynamicFrame.getNumPartitions())

 val dynamoDbSink: DynamoDbDataSink = glueContext.getSinkWithFormat(
 connectionType = "dynamodb",
 options = JsonOptions(Map(
 "dynamodb.output.tableName" -> test_sink,
 "dynamodb.throughput.write.percent" -> "1.0"
))
).asInstanceOf[DynamoDbDataSink]

 dynamoDbSink.writeDynamicFrame(dynamicFrame)

 Job.commit()
 }

}

Using the DynamoDB export connector

The export connector performs better than the ETL connector when the DynamoDB table size
is larger than 80 GB. In addition, given that the export request is conducted outside from the
Spark processes in an AWS Glue job, you can enable auto scaling of AWS Glue jobs to save DPU
usage during the export request. With the export connector, you also do not need to configure the
number of splits for Spark executor parallelism or DynamoDB throughput read percentage.

Features and optimizations 1632

https://docs.aws.amazon.com/glue/latest/dg/auto-scaling.html

AWS Glue User Guide

Note

DynamoDB has specific requirements to invoke the ExportTableToPointInTime
requests. For more information, see Requesting a table export in DynamoDB. For example,
Point-in-Time-Restore (PITR) needs to be enabled on the table to use this connector.
The DynamoDB connector also supports AWS KMS encryption for DynamoDB exports
to Amazon S3. Supplying your security configuration in the AWS Glue job configuration
enables AWS KMS encryption for a DynamoDB export. The KMS key must be in the same
Region as the Amazon S3 bucket.
Note that additional charges for DynamoDB export and Amazon S3 storage costs apply.
Exported data in Amazon S3 persists after a job run finishes so you can reuse it without
additional DynamoDB exports. A requirement for using this connector is that point-in-time
recovery (PITR) is enabled for the table.
The DynamoDB ETL connector or export connector do not support filters or pushdown
predicates to be applied at the DynamoDB source.

The following code examples show how to read from (via the export connector) and print the
number of partitions.

Python

import sys
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.utils import getResolvedOptions

args = getResolvedOptions(sys.argv, ["JOB_NAME"])
glue_context= GlueContext(SparkContext.getOrCreate())
job = Job(glue_context)
job.init(args["JOB_NAME"], args)

dyf = glue_context.create_dynamic_frame.from_options(
 connection_type="dynamodb",
 connection_options={
 "dynamodb.export": "ddb",
 "dynamodb.tableArn": test_source,
 "dynamodb.s3.bucket": bucket_name,
 "dynamodb.s3.prefix": bucket_prefix,

Features and optimizations 1633

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataExport.Requesting.html

AWS Glue User Guide

 "dynamodb.s3.bucketOwner": account_id_of_bucket,
 }
)
print(dyf.getNumPartitions())

job.commit()

Scala

import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.DynamoDbDataSink
import org.apache.spark.SparkContext
import scala.collection.JavaConverters._

object GlueApp {

 def main(sysArgs: Array[String]): Unit = {
 val glueContext = new GlueContext(SparkContext.getOrCreate())
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)

 val dynamicFrame = glueContext.getSourceWithFormat(
 connectionType = "dynamodb",
 options = JsonOptions(Map(
 "dynamodb.export" -> "ddb",
 "dynamodb.tableArn" -> test_source,
 "dynamodb.s3.bucket" -> bucket_name,
 "dynamodb.s3.prefix" -> bucket_prefix,
 "dynamodb.s3.bucketOwner" -> account_id_of_bucket,
))
).getDynamicFrame()

 print(dynamicFrame.getNumPartitions())

 Job.commit()
 }

}

Features and optimizations 1634

AWS Glue User Guide

These examples show how to do the read from (via the export connector) and print the number of
partitions from an AWS Glue Data Catalog table that has a dynamodb classification:

Python

import sys
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.utils import getResolvedOptions

args = getResolvedOptions(sys.argv, ["JOB_NAME"])
glue_context= GlueContext(SparkContext.getOrCreate())
job = Job(glue_context)
job.init(args["JOB_NAME"], args)

dynamicFrame = glue_context.create_dynamic_frame.from_catalog(
 database=catalog_database,
 table_name=catalog_table_name,
 additional_options={
 "dynamodb.export": "ddb",
 "dynamodb.s3.bucket": s3_bucket,
 "dynamodb.s3.prefix": s3_bucket_prefix
 }
)
print(dynamicFrame.getNumPartitions())

job.commit()

Scala

import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.DynamoDbDataSink
import org.apache.spark.SparkContext
import scala.collection.JavaConverters._

object GlueApp {

 def main(sysArgs: Array[String]): Unit = {

Features and optimizations 1635

AWS Glue User Guide

 val glueContext = new GlueContext(SparkContext.getOrCreate())
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)

 val dynamicFrame = glueContext.getCatalogSource(
 database = catalog_database,
 tableName = catalog_table_name,
 additionalOptions = JsonOptions(Map(
 "dynamodb.export" -> "ddb",
 "dynamodb.s3.bucket" -> s3_bucket,
 "dynamodb.s3.prefix" -> s3_bucket_prefix
))
).getDynamicFrame()
 print(dynamicFrame.getNumPartitions())
)

Simplifying usage of DynamoDB export JSON

The DynamoDB exports with the AWS Glue DynamoDB export connector results in JSON files
of specific nested structures. For more information, see Data objects. AWS Glue supplies a
DynamicFrame transformation, which can unnest such structures into an easier-to-use form for
downstream applications.

The transform can be invoked in one of two ways. You can set the connection option
"dynamodb.simplifyDDBJson" with the value "true" when calling a method to read from
DynamoDB. You can also call the transform as a method independently available in the AWS Glue
library.

Consider the following schema generated by a DynamoDB export:

root
|-- Item: struct
| |-- parentMap: struct
| | |-- M: struct
| | | |-- childMap: struct
| | | | |-- M: struct
| | | | | |-- appName: struct
| | | | | | |-- S: string
| | | | | |-- packageName: struct
| | | | | | |-- S: string
| | | | | |-- updatedAt: struct
| | | | | | |-- N: string

Features and optimizations 1636

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/S3DataExport.Output.html

AWS Glue User Guide

| |-- strings: struct
| | |-- SS: array
| | | |-- element: string
| |-- numbers: struct
| | |-- NS: array
| | | |-- element: string
| |-- binaries: struct
| | |-- BS: array
| | | |-- element: string
| |-- isDDBJson: struct
| | |-- BOOL: boolean
| |-- nullValue: struct
| | |-- NULL: boolean

The simplifyDDBJson transform will simplify this to:

root
|-- parentMap: struct
| |-- childMap: struct
| | |-- appName: string
| | |-- packageName: string
| | |-- updatedAt: string
|-- strings: array
| |-- element: string
|-- numbers: array
| |-- element: string
|-- binaries: array
| |-- element: string
|-- isDDBJson: boolean
|-- nullValue: null

Note

simplifyDDBJson is available in AWS Glue 3.0 and later versions. The unnestDDBJson
transform is also available to simplify DynamoDB export JSON. We encourage users to
transition to simplifyDDBJson from unnestDDBJson.

Configuring paralleism in DynamoDB operations

To improve performance, you can tune certain parameters available for the DynamoDB connector.
Your goal when tuning paralleism parameters is to maximize the use of the provisioned AWS

Features and optimizations 1637

AWS Glue User Guide

Glue workers. Then, if you need more performance, we recommend you to scale out your job by
increasing the number of DPUs.

You can alter the parallelism in a DynamoDB read operation using the dynamodb.splits
parameter when using the ETL connector. When reading with the export connector, you do not
need to configure the number of splits for Spark executor parallelism. You can alter the parallelism
in a DynamoDB write operation with dynamodb.output.numParallelTasks.

Reading with the DynamoDB ETL connector

We recommend you to calculate dynamodb.splits based on the maximum number of workers
set in your job configuration and the following numSlots calculation. If autoscaling, the actual
number of workers available may change under that cap. For more information about setting the
maximum number of workers, see Number of workers (NumberOfWorkers) in the section called
“Configuring Spark job properties”.

• numExecutors = NumberOfWorkers - 1

For context, one executor is reserved for the Spark driver; other executors are used to process
data.

• numSlotsPerExecutor =

AWS Glue 3.0 and later versions

• 4 if WorkerType is G.1X

• 8 if WorkerType is G.2X

• 16 if WorkerType is G.4X

• 32 if WorkerType is G.8X

AWS Glue 2.0 and legacy versions

• 8 if WorkerType is G.1X

• 16 if WorkerType is G.2X

• numSlots = numSlotsPerExecutor * numExecutors

We recommend you set dynamodb.splits to the number of slots available, numSlots.

Writing to DynamoDB

The dynamodb.output.numParallelTasks parameter is used to determine WCU per Spark
task, using the following calculation:

Features and optimizations 1638

AWS Glue User Guide

permittedWcuPerTask = (TableWCU * dynamodb.throughput.write.percent) /
dynamodb.output.numParallelTasks

The DynamoDB writer will function best if configuration accurately represents the number of Spark
tasks writing to DynamoDB. In some cases, you may need to override the default calculation to
improve write performance. If you do not specify this parameter, the permitted WCU per Spark
task will be automatically calculated by the following formula:

• • numPartitions = dynamicframe.getNumPartitions()

• numSlots (as defined previously in this section)

• numParallelTasks = min(numPartitions, numSlots)

• Example 1. DPU=10, WorkerType=Standard. Input DynamicFrame has 100 RDD partitions.

• numPartitions = 100

• numExecutors = (10 - 1) * 2 - 1 = 17

• numSlots = 4 * 17 = 68

• numParallelTasks = min(100, 68) = 68

• Example 2. DPU=10, WorkerType=Standard. Input DynamicFrame has 20 RDD partitions.

• numPartitions = 20

• numExecutors = (10 - 1) * 2 - 1 = 17

• numSlots = 4 * 17 = 68

• numParallelTasks = min(20, 68) = 20

Note

Jobs on legacy AWS Glue versions and those using Standard workers require different
methods to calculate the number of slots. If you need to performance tune these jobs, we
recommend you transition to supported AWS Glue versions.

DynamoDB connection option reference

Designates a connection to Amazon DynamoDB.

Connection options differ for a source connection and a sink connection.
Features and optimizations 1639

AWS Glue User Guide

"connectionType": "dynamodb" with the ETL connector as source

Use the following connection options with "connectionType": "dynamodb" as a source, when
using the AWS Glue DynamoDB ETL connector:

• "dynamodb.input.tableName": (Required) The DynamoDB table to read from.

• "dynamodb.throughput.read.percent": (Optional) The percentage of read capacity units
(RCU) to use. The default is set to "0.5". Acceptable values are from "0.1" to "1.5", inclusive.

• 0.5 represents the default read rate, meaning that AWS Glue will attempt to consume half
of the read capacity of the table. If you increase the value above 0.5, AWS Glue increases the
request rate; decreasing the value below 0.5 decreases the read request rate. (The actual read
rate will vary, depending on factors such as whether there is a uniform key distribution in the
DynamoDB table.)

• When the DynamoDB table is in on-demand mode, AWS Glue handles the read capacity of the
table as 40000. For exporting a large table, we recommend switching your DynamoDB table to
on-demand mode.

• "dynamodb.splits": (Optional) Defines how many splits we partition this DynamoDB table
into while reading. The default is set to "1". Acceptable values are from "1" to "1,000,000",
inclusive.

1 represents there is no parallelism. We highly recommend that you specify a larger value for
better performance by using the below formula. For more information on appropriately setting a
value, see the section called “DynamoDB parallelism”.

• "dynamodb.sts.roleArn": (Optional) The IAM role ARN to be assumed for cross-account
access. This parameter is available in AWS Glue 1.0 or later.

• "dynamodb.sts.roleSessionName": (Optional) STS session name. The default is set to "glue-
dynamodb-read-sts-session". This parameter is available in AWS Glue 1.0 or later.

"connectionType": "dynamodb" with the AWS Glue DynamoDB export connector as source

Use the following connection options with "connectionType": "dynamodb" as a source, when using
the AWS Glue DynamoDB export connector, which is available only for AWS Glue version 2.0
onwards:

• "dynamodb.export": (Required) A string value:

• If set to ddb enables the AWS Glue DynamoDB export connector where a new
ExportTableToPointInTimeRequest will be invoked during the AWS Glue job. A

Features and optimizations 1640

AWS Glue User Guide

new export will be generated with the location passed from dynamodb.s3.bucket and
dynamodb.s3.prefix.

• If set to s3 enables the AWS Glue DynamoDB export connector but skips the creation of a new
DynamoDB export and instead uses the dynamodb.s3.bucket and dynamodb.s3.prefix
as the Amazon S3 location of a past export of that table.

• "dynamodb.tableArn": (Required) The DynamoDB table to read from.

• "dynamodb.unnestDDBJson": (Optional) Default: false. Valid values: boolean. If set to true,
performs an unnest transformation of the DynamoDB JSON structure that is present in exports.
It is an error to set "dynamodb.unnestDDBJson" and "dynamodb.simplifyDDBJson"
to true at the same time. In AWS Glue 3.0 and later versions, we recommend you use
"dynamodb.simplifyDDBJson" for better behavior when simplifying DynamoDB Map types.
For more information, see the section called “Simplifying usage of DynamoDB export JSON”.

• "dynamodb.simplifyDDBJson": (Optional) Default: false. Valid values: boolean. If set to
true, performs a transformation to simplify the schema of the DynamoDB JSON structure
that is present in exports. This has the same purpose as the "dynamodb.unnestDDBJson"
option but provides better support for DynamoDB Map types or even nested Map types in your
DynamoDB table. This option is available in AWS Glue 3.0 and later versions. It is an error to set
"dynamodb.unnestDDBJson" and "dynamodb.simplifyDDBJson" to true at the same time.
For more information, see the section called “Simplifying usage of DynamoDB export JSON”.

• "dynamodb.s3.bucket": (Optional) Indicates the Amazon S3 bucket location in which the
DynamoDB ExportTableToPointInTime process is to be conducted. The file format for the
export is DynamoDB JSON.

• "dynamodb.s3.prefix": (Optional) Indicates the Amazon S3 prefix location inside the
Amazon S3 bucket in which the DynamoDB ExportTableToPointInTime loads are to
be stored. If neither dynamodb.s3.prefix nor dynamodb.s3.bucket are specified,
these values will default to the Temporary Directory location specified in the AWS Glue job
configuration. For more information, see Special Parameters Used by AWS Glue.

• "dynamodb.s3.bucketOwner": Indicates the bucket owner needed for cross-account
Amazon S3 access.

• "dynamodb.sts.roleArn": (Optional) The IAM role ARN to be assumed for cross-account
access and/or cross-Region access for the DynamoDB table. Note: The same IAM role ARN will be
used to access the Amazon S3 location specified for the ExportTableToPointInTime request.

• "dynamodb.sts.roleSessionName": (Optional) STS session name. The default is set to "glue-
dynamodb-read-sts-session".

Features and optimizations 1641

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html

AWS Glue User Guide

• "dynamodb.exportTime" (Optional) Valid values: strings representing ISO-8601 instants. A
point-in-time at which the export should be made.

• "dynamodb.sts.region": (Required if making a cross-region call using a regional endpoint)
The region hosting the DynamoDB table you want to read.

"connectionType": "dynamodb" with the ETL connector as sink

Use the following connection options with "connectionType": "dynamodb" as a sink:

• "dynamodb.output.tableName": (Required) The DynamoDB table to write to.

• "dynamodb.throughput.write.percent": (Optional) The percentage of write capacity units
(WCU) to use. The default is set to "0.5". Acceptable values are from "0.1" to "1.5", inclusive.

• 0.5 represents the default write rate, meaning that AWS Glue will attempt to consume half
of the write capacity of the table. If you increase the value above 0.5, AWS Glue increases the
request rate; decreasing the value below 0.5 decreases the write request rate. (The actual write
rate will vary, depending on factors such as whether there is a uniform key distribution in the
DynamoDB table).

• When the DynamoDB table is in on-demand mode, AWS Glue handles the write capacity of the
table as 40000. For importing a large table, we recommend switching your DynamoDB table to
on-demand mode.

• "dynamodb.output.numParallelTasks": (Optional) Defines how many parallel tasks write
into DynamoDB at the same time. Used to calculate permissive WCU per Spark task. In most
cases, AWS Glue will calculate a reasonable default for this value. For more information, see the
section called “DynamoDB parallelism”.

• "dynamodb.output.retry": (Optional) Defines how many retries we perform when there is a
ProvisionedThroughputExceededException from DynamoDB. The default is set to "10".

• "dynamodb.sts.roleArn": (Optional) The IAM role ARN to be assumed for cross-account
access.

• "dynamodb.sts.roleSessionName": (Optional) STS session name. The default is set to "glue-
dynamodb-write-sts-session".

Cross-account cross-Region access to DynamoDB tables

AWS Glue ETL jobs support both cross-region and cross-account access to DynamoDB tables.
AWS Glue ETL jobs support both reading data from another AWS Account's DynamoDB table, and

Features and optimizations 1642

AWS Glue User Guide

writing data into another AWS Account's DynamoDB table. AWS Glue also supports both reading
from a DynamoDB table in another region, and writing into a DynamoDB table in another region.
This section gives instructions on setting up the access, and provides an example script.

The procedures in this section reference an IAM tutorial for creating an IAM role and granting
access to the role. The tutorial also discusses assuming a role, but here you will instead use a job
script to assume the role in AWS Glue. This tutorial also contains information about general cross-
account practices. For more information, see Tutorial: Delegate Access Across AWS Accounts Using
IAM Roles in the IAM User Guide.

Create a role

Follow step 1 in the tutorial to create an IAM role in account A. When defining the permissions of
the role, you can choose to attach existing policies such as AmazonDynamoDBReadOnlyAccess,
or AmazonDynamoDBFullAccess to allow the role to read/write DynamoDB. The following
example shows creating a role named DynamoDBCrossAccessRole, with the permission policy
AmazonDynamoDBFullAccess.

Grant access to the role

Follow step 2 in the tutorial in the IAM User Guide to allow account B to switch to the newly-
created role. The following example creates a new policy with the following statement:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "<DynamoDBCrossAccessRole's ARN>"
 }
}

Then, you can attach this policy to the group/role/user you would like to use to access DynamoDB.

Assume the role in the AWS Glue job script

Now, you can log in to account B and create an AWS Glue job. To create a job, refer to the
instructions at Configuring job properties for Spark jobs in AWS Glue.

In the job script you need to use the dynamodb.sts.roleArn parameter to assume the
DynamoDBCrossAccessRole role. Assuming this role allows you to get the temporary credentials,
which need to be used to access DynamoDB in account B. Review these example scripts.

Features and optimizations 1643

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html#tutorial_cross-account-with-roles-1
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html#tutorial_cross-account-with-roles-2

AWS Glue User Guide

For a cross-account read across regions (ETL connector):

import sys
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.utils import getResolvedOptions

args = getResolvedOptions(sys.argv, ["JOB_NAME"])
glue_context= GlueContext(SparkContext.getOrCreate())
job = Job(glue_context)
job.init(args["JOB_NAME"], args)

dyf = glue_context.create_dynamic_frame_from_options(
 connection_type="dynamodb",
 connection_options={
 "dynamodb.region": "us-east-1",
 "dynamodb.input.tableName": "test_source",
 "dynamodb.sts.roleArn": "<DynamoDBCrossAccessRole's ARN>"
 }
)
dyf.show()
job.commit()

For a cross-account read across regions (ELT connector):

import sys
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.utils import getResolvedOptions

args = getResolvedOptions(sys.argv, ["JOB_NAME"])
glue_context= GlueContext(SparkContext.getOrCreate())
job = Job(glue_context)
job.init(args["JOB_NAME"], args)

dyf = glue_context.create_dynamic_frame_from_options(
 connection_type="dynamodb",
 connection_options={
 "dynamodb.export": "ddb",
 "dynamodb.tableArn": "<test_source ARN>",
 "dynamodb.sts.roleArn": "<DynamoDBCrossAccessRole's ARN>"

Features and optimizations 1644

AWS Glue User Guide

 }
)
dyf.show()
job.commit()

For a read and cross-account write across regions:

import sys
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.utils import getResolvedOptions

args = getResolvedOptions(sys.argv, ["JOB_NAME"])
glue_context= GlueContext(SparkContext.getOrCreate())
job = Job(glue_context)
job.init(args["JOB_NAME"], args)

dyf = glue_context.create_dynamic_frame_from_options(
 connection_type="dynamodb",
 connection_options={
 "dynamodb.region": "us-east-1",
 "dynamodb.input.tableName": "test_source"
 }
)
dyf.show()

glue_context.write_dynamic_frame_from_options(
 frame=dyf,
 connection_type="dynamodb",
 connection_options={
 "dynamodb.region": "us-west-2",
 "dynamodb.output.tableName": "test_sink",
 "dynamodb.sts.roleArn": "<DynamoDBCrossAccessRole's ARN>"
 }
)

job.commit()

Kinesis connections

You can read and write to Amazon Kinesis data streams using information stored in a Data Catalog
table, or by providing information to directly access the data stream. You can read information

Features and optimizations 1645

AWS Glue User Guide

from Kinesis into a Spark DataFrame, then convert it to a AWS Glue DynamicFrame. You can write
DynamicFrames to Kinesis in a JSON format. If you directly access the data stream, use these
options to provide the information about how to access the data stream.

If you use getCatalogSource or create_data_frame_from_catalog to consume
records from a Kinesis streaming source, the job has the Data Catalog database and
table name information, and can use that to obtain some basic parameters for reading
from the Kinesis streaming source. If you use getSource, getSourceWithFormat,
createDataFrameFromOptions or create_data_frame_from_options, you must specify
these basic parameters using the connection options described here.

You can specify the connection options for Kinesis using the following arguments for the specified
methods in the GlueContext class.

• Scala

• connectionOptions: Use with getSource, createDataFrameFromOptions, getSink

• additionalOptions: Use with getCatalogSource, getCatalogSink

• options: Use with getSourceWithFormat, getSinkWithFormat

• Python

• connection_options: Use with create_data_frame_from_options,
write_dynamic_frame_from_options

• additional_options: Use with create_data_frame_from_catalog,
write_dynamic_frame_from_catalog

• options: Use with getSource, getSink

For notes and restrictions about Streaming ETL jobs, consult the section called “Streaming ETL
notes and restrictions”.

Configure Kinesis

To connect to a Kinesis data stream in an AWS Glue Spark job, you will need some prerequisites:

• If reading, the AWS Glue job must have Read access level IAM permissions to the Kinesis data
stream.

• If writing, the AWS Glue job must have Write access level IAM permissions to the Kinesis data
stream.

Features and optimizations 1646

AWS Glue User Guide

In certain cases, you will need to configure additional prerequisites:

• If your AWS Glue job is configured with Additional network connections (typically to connect
to other datasets) and one of those connections provides Amazon VPC Network options,
this will direct your job to communicate over Amazon VPC. In this case you will also need to
configure your Kinesis data stream to communicate over Amazon VPC. You can do this by
creating an interface VPC endpoint between your Amazon VPC and Kinesis data stream. For more
information, see Using Kinesis Data Streams with Interface VPC Endpoints.

• When specifying Amazon Kinesis Data Streams in another account, you must setup the roles and
policies to allow cross-account access. For more information, see Example: Read From a Kinesis
Stream in a Different Account.

For more information about Streaming ETL job prerequisites, consult the section called “Streaming
ETL jobs”.

Example: Reading from Kinesis streams

Example: Reading from Kinesis streams

Used in conjunction with the section called “forEachBatch”.

Example for Amazon Kinesis streaming source:

kinesis_options =
 { "streamARN": "arn:aws:kinesis:us-east-2:777788889999:stream/fromOptionsStream",
 "startingPosition": "TRIM_HORIZON",
 "inferSchema": "true",
 "classification": "json"
 }
data_frame_datasource0 =
 glueContext.create_data_frame.from_options(connection_type="kinesis",
 connection_options=kinesis_options)

Example: Writing to Kinesis streams

Example: Reading from Kinesis streams

Used in conjunction with the section called “forEachBatch”.

Example for Amazon Kinesis streaming source:

Features and optimizations 1647

https://docs.aws.amazon.com/streams/latest/dev/vpc.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/examples-cross.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/examples-cross.html

AWS Glue User Guide

kinesis_options =
 { "streamARN": "arn:aws:kinesis:us-east-2:777788889999:stream/fromOptionsStream",
 "startingPosition": "TRIM_HORIZON",
 "inferSchema": "true",
 "classification": "json"
 }
data_frame_datasource0 =
 glueContext.create_data_frame.from_options(connection_type="kinesis",
 connection_options=kinesis_options)

Kinesis connection option reference

Designates connection options for Amazon Kinesis Data Streams.

Use the following connection options for Kinesis streaming data sources:

• "streamARN" (Required) Used for Read/Write. The ARN of the Kinesis data stream.

• "classification" (Required for read) Used for Read. The file format used by the data in the
record. Required unless provided through the Data Catalog.

• "streamName" – (Optional) Used for Read. The name of a Kinesis data stream to read from.
Used with endpointUrl.

• "endpointUrl" – (Optional) Used for Read. Default: "https://kinesis.us-
east-1.amazonaws.com". The AWS endpoint of the Kinesis stream. You do not need to change
this unless you are connecting to a special region.

• "partitionKey" – (Optional) Used for Write. The Kinesis partition key used when producing
records.

• "delimiter" (Optional) Used for Read. The value separator used when classification is
CSV. Default is ",."

• "startingPosition": (Optional) Used for Read. The starting position in the Kinesis data
stream to read data from. The possible values are "latest", "trim_horizon", "earliest",
or a Timestamp string in UTC format in the pattern yyyy-mm-ddTHH:MM:SSZ (where Z
represents a UTC timezone offset with a +/-. For example "2023-04-04T08:00:00-04:00").
The default value is "latest". Note: the Timestamp string in UTC Format for
"startingPosition" is supported only for AWS Glue version 4.0 or later.

• "failOnDataLoss": (Optional) Fail the job if any active shard is missing or expired. The default
value is "false".

Features and optimizations 1648

AWS Glue User Guide

• "awsSTSRoleARN": (Optional) Used for Read/Write. The Amazon Resource Name (ARN)
of the role to assume using AWS Security Token Service (AWS STS). This role must have
permissions for describe or read record operations for the Kinesis data stream. You must use
this parameter when accessing a data stream in a different account. Used in conjunction with
"awsSTSSessionName".

• "awsSTSSessionName": (Optional) Used for Read/Write. An identifier for the session assuming
the role using AWS STS. You must use this parameter when accessing a data stream in a different
account. Used in conjunction with "awsSTSRoleARN".

• "awsSTSEndpoint": (Optional) The AWS STS endpoint to use when connecting to Kinesis with
an assumed role. This allows using the regional AWS STS endpoint in a VPC, which is not possible
with the default global endpoint.

• "maxFetchTimeInMs": (Optional) Used for Read. The maximum time spent for the job executor
to read records for the current batch from the Kinesis data stream, specified in milliseconds (ms).
Multiple GetRecords API calls may be made within this time. The default value is 1000.

• "maxFetchRecordsPerShard": (Optional) Used for Read. The maximum number of records
to fetch per shard in the Kinesis data stream per microbatch. Note: The client can exceed this
limit if the streaming job has already read extra records from Kinesis (in the same get-records
call). If maxFetchRecordsPerShard needs to be strict then it needs to be a multiple of
maxRecordPerRead. The default value is 100000.

• "maxRecordPerRead": (Optional) Used for Read. The maximum number of records to fetch
from the Kinesis data stream in each getRecords operation. The default value is 10000.

• "addIdleTimeBetweenReads": (Optional) Used for Read. Adds a time delay between
two consecutive getRecords operations. The default value is "False". This option is only
configurable for Glue version 2.0 and above.

• "idleTimeBetweenReadsInMs": (Optional) Used for Read. The minimum time delay between
two consecutive getRecords operations, specified in ms. The default value is 1000. This option
is only configurable for Glue version 2.0 and above.

• "describeShardInterval": (Optional) Used for Read. The minimum time interval between
two ListShards API calls for your script to consider resharding. For more information, see
Strategies for Resharding in Amazon Kinesis Data Streams Developer Guide. The default value is
1s.

• "numRetries": (Optional) Used for Read. The maximum number of retries for Kinesis Data
Streams API requests. The default value is 3.

Features and optimizations 1649

https://docs.aws.amazon.com/streams/latest/dev/kinesis-using-sdk-java-resharding-strategies.html

AWS Glue User Guide

• "retryIntervalMs": (Optional) Used for Read. The cool-off time period (specified in ms)
before retrying the Kinesis Data Streams API call. The default value is 1000.

• "maxRetryIntervalMs": (Optional) Used for Read. The maximum cool-off time period
(specified in ms) between two retries of a Kinesis Data Streams API call. The default value is
10000.

• "avoidEmptyBatches": (Optional) Used for Read. Avoids creating an empty microbatch job by
checking for unread data in the Kinesis data stream before the batch is started. The default value
is "False".

• "schema": (Required when inferSchema set to false) Used for Read. The schema to use to
process the payload. If classification is avro the provided schema must be in the Avro schema
format. If the classification is not avro the provided schema must be in the DDL schema format.

The following are schema examples.

Example in DDL schema format

`column1` INT, `column2` STRING , `column3` FLOAT

Example in Avro schema format

{
 "type":"array",
 "items":
 {
 "type":"record",
 "name":"test",
 "fields":
 [
 {
 "name":"_id",
 "type":"string"
 },
 {
 "name":"index",
 "type":
 [
 "int",
 "string",
 "float"
]
 }

Features and optimizations 1650

AWS Glue User Guide

]
 }
}

• "inferSchema": (Optional) Used for Read. The default value is 'false'. If set to 'true', the schema
will be detected at runtime from the payload within foreachbatch.

• "avroSchema": (Deprecated) Used for Read. Parameter used to specify a schema of Avro data
when Avro format is used. This parameter is now deprecated. Use the schema parameter.

• "addRecordTimestamp": (Optional) Used for Read. When this option is set to 'true', the data
output will contain an additional column named "__src_timestamp" that indicates the time
when the corresponding record received by the stream. The default value is 'false'. This option is
supported in AWS Glue version 4.0 or later.

• "emitConsumerLagMetrics": (Optional) Used for Read. When the option is set to 'true',
for each batch, it will emit the metrics for the duration between the oldest record received
by the stream and the time it arrives in AWS Glue to CloudWatch. The metric's name is
"glue.driver.streaming.maxConsumerLagInMs". The default value is 'false'. This option is
supported in AWS Glue version 4.0 or later.

• "fanoutConsumerARN": (Optional) Used for Read. The ARN of a Kinesis stream consumer for
the stream specified in streamARN. Used to enable enhanced fan-out mode for your Kinesis
connection. For more information on consuming a Kinesis stream with enhanced fan-out, see the
section called “Using enhanced fan-out in Kinesis streaming jobs”.

• "recordMaxBufferedTime" – (Optional) Used for Write. Default: 1000 (ms). Maximum time a
record is buffered while waiting to be written.

• "aggregationEnabled" – (Optional) Used for Write. Default: true. Specifies if records should
be aggregated before sending them to Kinesis.

• "aggregationMaxSize" – (Optional) Used for Write. Default: 51200 (bytes). If a record is
larger than this limit, it will bypass the aggregator. Note Kinesis enforces a limit of 50KB on
record size. If you set this beyond 50KB, oversize records will be rejected by Kinesis.

• "aggregationMaxCount" – (Optional) Used for Write. Default: 4294967295. Maximum
number of items to pack into an aggregated record.

• "producerRateLimit" – (Optional) Used for Write. Default: 150 (%). Limits per-shard
throughput sent from a single producer (such as your job), as a percentage of the backend limit.

• "collectionMaxCount" – (Optional) Used for Write. Default: 500. Maximum number of items
to pack into an PutRecords request.

Features and optimizations 1651

AWS Glue User Guide

• "collectionMaxSize" – (Optional) Used for Write. Default: 5242880 (bytes). Maximum
amount of data to send with a PutRecords request.

Using enhanced fan-out in Kinesis streaming jobs

An enhanced fan-out consumer is able to recieve records from a Kinesis stream with dedicated
throughput that can be greater than typical consumers. This is done by optimizing the transfer
protocol used to provide data to a Kinesis consumer, such as your job. For more information about
Kinesis Enhanced Fan-Out, see the Kinesis documentation.

In enhanced fan-out mode, the maxRecordPerRead and idleTimeBetweenReadsInMs
connection options no longer apply, as those parameters are not configurable when using
enhanced fan-out. The configuration options for retries perform as described.

Use the following procedures to enable and disable enhanced fan-out for your streaming job. You
should register a stream consumer for each job that will consume data from your stream.

To enable enhanced fan-out consumption on your job:

1. Register a stream consumer for your job using the Kinesis API. Follow the instructions to
register a consumer with enhanced fan-out using the Kinesis Data Streams API in the Kinesis
documentation. You will only need to follow the first step - calling RegisterStreamConsumer.
Your request should return an ARN, consumerARN.

2. Set the connection option fanoutConsumerARN to consumerARN in your connection method
arguments.

3. Restart your job.

To disable enhanced fan-out consumption on your job:

1. Remove the fanoutConsumerARN connection option from your method call.

2. Restart your job.

3. Follow the instructions to deregister a consumer in the Kinesis documentation. These
instructions apply to the console, but can also be achieved through the Kinesis API. For
more information about stream consumer deregistration through the Kinesis API, consult
DeregisterStreamConsumer in the Kinesis documentation.

Features and optimizations 1652

https://docs.aws.amazon.com/streams/latest/dev/enhanced-consumers.html
https://docs.aws.amazon.com/streams/latest/dev/building-enhanced-consumers-api
https://docs.aws.amazon.com/streams/latest/dev/building-enhanced-consumers-api
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_RegisterStreamConsumer.html
https://docs.aws.amazon.com/streams/latest/dev/building-enhanced-consumers-console.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DeregisterStreamConsumer.html

AWS Glue User Guide

Amazon S3 connections

You can use AWS Glue for Spark to read and write files in Amazon S3. AWS Glue for Spark supports
many common data formats stored in Amazon S3 out of the box, including CSV, Avro, JSON, Orc
and Parquet. For more information about supported data formats, see the section called “Data
format options”. Each data format may support a different set of AWS Glue features. Consult
the page for your data format for the specifics of feature support. Additionally, you can read and
write versioned files stored in the Hudi, Iceberg and Delta Lake data lake frameworks. For more
information about data lake frameworks, see the section called “Data lake frameworks”.

With AWS Glue you can partition your Amazon S3 objects into a folder structure while writing,
then retrieve it by partition to improve performance using simple configuration. You can also set
configuration to group small files together when transforming your data to improve performance.
You can read and write bzip2 and gzip archives in Amazon S3.

Topics

• Configuring S3 connections

• Amazon S3 connection option reference

• Deprecated connection syntaxes for data formats

• Excluding Amazon S3 storage classes

• Managing partitions for ETL output in AWS Glue

• Reading input files in larger groups

• Amazon VPC endpoints for Amazon S3

Configuring S3 connections

To connect to Amazon S3 in a AWS Glue with Spark job, you will need some prerequisites:

• The AWS Glue job must have IAM permissions for relevant Amazon S3 buckets.

In certain cases, you will need to configure additional prerequisites:

• When configuring cross-account access, appropriate access controls on the Amazon S3 bucket.

• For security reasons, you may choose to route your Amazon S3 requests through an Amazon
VPC. This approach can introduce bandwidth and availability challenges. For more information,
see the section called “Amazon VPC endpoints for Amazon S3”.

Features and optimizations 1653

AWS Glue User Guide

Amazon S3 connection option reference

Designates a connection to Amazon S3.

Since Amazon S3 manages files rather than tables, in addition to specifying the connection
properties provided in this document, you will need to specify additional configuration about your
file type. You specify this information through data format options. For more information about
format options, see the section called “Data format options”. You can also specify this information
by integrating with the AWS Glue Data Catalog.

For an example of the distinction between connection options and format options, consider how
the the section called “create_dynamic_frame_from_options” method takes connection_type,
connection_options, format and format_options. This section specifically discusses
parameters provided to connection_options.

Use the following connection options with "connectionType": "s3":

• "paths": (Required) A list of the Amazon S3 paths to read from.

• "exclusions": (Optional) A string containing a JSON list of Unix-style glob patterns to exclude.
For example, "[\"**.pdf\"]" excludes all PDF files. For more information about the glob
syntax that AWS Glue supports, see Include and Exclude Patterns.

• "compressionType": or "compression": (Optional) Specifies how the data is compressed. Use
"compressionType" for Amazon S3 sources and "compression" for Amazon S3 targets. This
is generally not necessary if the data has a standard file extension. Possible values are "gzip"
and "bzip2"). Additional compression formats may be supported for specific formats. For the
specifics of feature support, consult the data format page.

• "groupFiles": (Optional) Grouping files is turned on by default when the input contains
more than 50,000 files. To turn on grouping with fewer than 50,000 files, set this parameter to
"inPartition". To disable grouping when there are more than 50,000 files, set this parameter
to "none".

• "groupSize": (Optional) The target group size in bytes. The default is computed based on
the input data size and the size of your cluster. When there are fewer than 50,000 input files,
"groupFiles" must be set to "inPartition" for this to take effect.

• "recurse": (Optional) If set to true, recursively reads files in all subdirectories under the
specified paths.

• "maxBand": (Optional, advanced) This option controls the duration in milliseconds after which
the s3 listing is likely to be consistent. Files with modification timestamps falling within the

Features and optimizations 1654

https://docs.aws.amazon.com/glue/latest/dg/define-crawler.html#crawler-data-stores-exclude

AWS Glue User Guide

last maxBand milliseconds are tracked specially when using JobBookmarks to account for
Amazon S3 eventual consistency. Most users don't need to set this option. The default is 900000
milliseconds, or 15 minutes.

• "maxFilesInBand": (Optional, advanced) This option specifies the maximum number of files to
save from the last maxBand seconds. If this number is exceeded, extra files are skipped and only
processed in the next job run. Most users don't need to set this option.

• "isFailFast": (Optional) This option determines if an AWS Glue ETL job throws reader parsing
exceptions. If set to true, jobs fail fast if four retries of the Spark task fail to parse the data
correctly.

• "catalogPartitionPredicate": (Optional) Used for Read. The contents of a SQL WHERE
clause. Used when reading from Data Catalog tables with a very large quantity of partitions.
Retrieves matching partitions from Data Catalog indices. Used with push_down_predicate,
an option on the the section called “create_dynamic_frame_from_catalog” method (and other
similar methods). For more information, see the section called “Catalog partition predicates”.

• "partitionKeys": (Optional) Used for Write. An array of column label strings. AWS Glue will
partition your data as specified by this configuration. For more information, see the section
called “Writing partitions”.

• "excludeStorageClasses": (Optional) Used for Read. An array of strings specifying Amazon
S3 storage classes. AWS Glue will exclude Amazon S3 objects based on this configuration. For
more information, see the section called “Excluding Amazon S3 storage classes”.

Deprecated connection syntaxes for data formats

Certain data formats can be accessed using a specific connection type syntax. This syntax is
deprecated. We recommend you specify your formats using the s3 connection type and the format
options provided in the section called “Data format options” instead.

"connectionType": "Orc"

Designates a connection to files stored in Amazon S3 in the Apache Hive Optimized Row Columnar
(ORC) file format.

Use the following connection options with "connectionType": "orc":

• paths: (Required) A list of the Amazon S3 paths to read from.

• (Other option name/value pairs): Any additional options, including formatting options, are passed
directly to the SparkSQL DataSource.

Features and optimizations 1655

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

AWS Glue User Guide

"connectionType": "parquet"

Designates a connection to files stored in Amazon S3 in the Apache Parquet file format.

Use the following connection options with "connectionType": "parquet":

• paths: (Required) A list of the Amazon S3 paths to read from.

• (Other option name/value pairs): Any additional options, including formatting options, are passed
directly to the SparkSQL DataSource.

Excluding Amazon S3 storage classes

If you're running AWS Glue ETL jobs that read files or partitions from Amazon Simple Storage
Service (Amazon S3), you can exclude some Amazon S3 storage class types.

The following storage classes are available in Amazon S3:

• STANDARD — For general-purpose storage of frequently accessed data.

• INTELLIGENT_TIERING — For data with unknown or changing access patterns.

• STANDARD_IA and ONEZONE_IA — For long-lived, but less frequently accessed data.

• GLACIER, DEEP_ARCHIVE, and REDUCED_REDUNDANCY — For long-term archive and digital
preservation.

For more information, see Amazon S3 Storage Classes in the Amazon S3 Developer Guide.

The examples in this section show how to exclude the GLACIER and DEEP_ARCHIVE storage
classes. These classes allow you to list files, but they won't let you read the files unless they are
restored. (For more information, see Restoring Archived Objects in the Amazon S3 Developer Guide.)

By using storage class exclusions, you can ensure that your AWS Glue jobs will work on tables that
have partitions across these storage class tiers. Without exclusions, jobs that read data from these
tiers fail with the following error: AmazonS3Exception: The operation is not valid for the object's
storage class.

There are different ways that you can filter Amazon S3 storage classes in AWS Glue.

Topics

• Excluding Amazon S3 storage classes when creating a Dynamic Frame

Features and optimizations 1656

https://parquet.apache.org/docs/
https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-class-intro.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/restoring-objects.html

AWS Glue User Guide

• Excluding Amazon S3 storage classes on a Data Catalog table

Excluding Amazon S3 storage classes when creating a Dynamic Frame

To exclude Amazon S3 storage classes while creating a dynamic frame, use
excludeStorageClasses in additionalOptions. AWS Glue automatically uses its own
Amazon S3 Lister implementation to list and exclude files corresponding to the specified storage
classes.

The following Python and Scala examples show how to exclude the GLACIER and DEEP_ARCHIVE
storage classes when creating a dynamic frame.

Python example:

glueContext.create_dynamic_frame.from_catalog(
 database = "my_database",
 tableName = "my_table_name",
 redshift_tmp_dir = "",
 transformation_ctx = "my_transformation_context",
 additional_options = {
 "excludeStorageClasses" : ["GLACIER", "DEEP_ARCHIVE"]
 }
)

Scala example:

val* *df = glueContext.getCatalogSource(
 nameSpace, tableName, "", "my_transformation_context",
 additionalOptions = JsonOptions(
 Map("excludeStorageClasses" -> List("GLACIER", "DEEP_ARCHIVE"))
)
).getDynamicFrame()

Excluding Amazon S3 storage classes on a Data Catalog table

You can specify storage class exclusions to be used by an AWS Glue ETL job as a table parameter
in the AWS Glue Data Catalog. You can include this parameter in the CreateTable operation
using the AWS Command Line Interface (AWS CLI) or programmatically using the API. For more
information, see Table Structure and CreateTable.

You can also specify excluded storage classes on the AWS Glue console.

Features and optimizations 1657

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-tables.html#aws-glue-api-catalog-tables-Table
https://docs.aws.amazon.com/glue/latest/webapi/API_CreateTable.html

AWS Glue User Guide

To exclude Amazon S3 storage classes (console)

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the navigation pane on the left, choose Tables.

3. Choose the table name in the list, and then choose Edit table.

4. In Table properties, add excludeStorageClasses as a key and [\"GLACIER\",
\"DEEP_ARCHIVE\"] as a value.

5. Choose Apply.

Managing partitions for ETL output in AWS Glue

Partitioning is an important technique for organizing datasets so they can be queried efficiently.
It organizes data in a hierarchical directory structure based on the distinct values of one or more
columns.

For example, you might decide to partition your application logs in Amazon Simple Storage
Service (Amazon S3) by date, broken down by year, month, and day. Files that correspond to
a single day's worth of data are then placed under a prefix such as s3://my_bucket/logs/
year=2018/month=01/day=23/. Systems like Amazon Athena, Amazon Redshift Spectrum, and
now AWS Glue can use these partitions to filter data by partition value without having to read all
the underlying data from Amazon S3.

Crawlers not only infer file types and schemas, they also automatically identify the partition
structure of your dataset when they populate the AWS Glue Data Catalog. The resulting partition
columns are available for querying in AWS Glue ETL jobs or query engines like Amazon Athena.

After you crawl a table, you can view the partitions that the crawler created. In the AWS Glue
console, choose Tables in the left navigation pane. Choose the table created by the crawler, and
then choose View Partitions.

For Apache Hive-style partitioned paths in key=val style, crawlers automatically populate
the column name using the key name. Otherwise, it uses default names like partition_0,
partition_1, and so on. You can change the default names on the console. To do so, navigate to
the table. Check if indexes exist under the Indexes tab. If that's the case, you need to delete them
to proceed (you can recreate them using the new column names afterwards). Then, choose Edit
Schema, and modify the names of the partition columns there.

Features and optimizations 1658

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

In your ETL scripts, you can then filter on the partition columns. Because the partition information
is stored in the Data Catalog, use the from_catalog API calls to include the partition columns
in the DynamicFrame. For example, use create_dynamic_frame.from_catalog instead of
create_dynamic_frame.from_options.

Partitioning is an optimization technique that reduces data scan. For more information about the
process of identifying when this technique is appropriate, consult Reduce the amount of data
scan in the Best practices for performance tuning AWS Glue for Apache Spark jobs guide on AWS
Prescriptive Guidance.

Pre-filtering using pushdown predicates

In many cases, you can use a pushdown predicate to filter on partitions without having to list
and read all the files in your dataset. Instead of reading the entire dataset and then filtering in a
DynamicFrame, you can apply the filter directly on the partition metadata in the Data Catalog.
Then you only list and read what you actually need into a DynamicFrame.

For example, in Python, you could write the following.

glue_context.create_dynamic_frame.from_catalog(
 database = "my_S3_data_set",
 table_name = "catalog_data_table",
 push_down_predicate = my_partition_predicate)

This creates a DynamicFrame that loads only the partitions in the Data Catalog that satisfy the
predicate expression. Depending on how small a subset of your data you are loading, this can save
a great deal of processing time.

The predicate expression can be any Boolean expression supported by Spark SQL. Anything
you could put in a WHERE clause in a Spark SQL query will work. For example, the predicate
expression pushDownPredicate = "(year=='2017' and month=='04')" loads only the
partitions in the Data Catalog that have both year equal to 2017 and month equal to 04. For more
information, see the Apache Spark SQL documentation, and in particular, the Scala SQL functions
reference.

Server-side filtering using catalog partition predicates

The push_down_predicate option is applied after listing all the partitions from the catalog
and before listing files from Amazon S3 for those partitions. If you have a lot of partitions

Features and optimizations 1659

https://docs.aws.amazon.com/prescriptive-guidance/latest/tuning-aws-glue-for-apache-spark/reduce-data-scan.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/tuning-aws-glue-for-apache-spark/reduce-data-scan.html
https://spark.apache.org/docs/2.1.1/sql-programming-guide.html
https://spark.apache.org/docs/2.1.1/api/scala/index.html#org.apache.spark.sql.functions$
https://spark.apache.org/docs/2.1.1/api/scala/index.html#org.apache.spark.sql.functions$

AWS Glue User Guide

for a table, catalog partition listing can still incur additional time overhead. To address this
overhead, you can use server-side partition pruning with the catalogPartitionPredicate
option that uses partition indexes in the AWS Glue Data Catalog. This makes partition
filtering much faster when you have millions of partitions in one table. You can use both
push_down_predicate and catalogPartitionPredicate in additional_options
together if your catalogPartitionPredicate requires predicate syntax that is not yet
supported with the catalog partition indexes.

Python:

dynamic_frame = glueContext.create_dynamic_frame.from_catalog(
 database=dbname,
 table_name=tablename,
 transformation_ctx="datasource0",
 push_down_predicate="day>=10 and customer_id like '10%'",
 additional_options={"catalogPartitionPredicate":"year='2021' and month='06'"}
)

Scala:

val dynamicFrame = glueContext.getCatalogSource(
 database = dbname,
 tableName = tablename,
 transformationContext = "datasource0",
 pushDownPredicate="day>=10 and customer_id like '10%'",
 additionalOptions = JsonOptions("""{
 "catalogPartitionPredicate": "year='2021' and month='06'"}""")
).getDynamicFrame()

Note

The push_down_predicate and catalogPartitionPredicate use different syntaxes.
The former one uses Spark SQL standard syntax and the later one uses JSQL parser.

Writing partitions

By default, a DynamicFrame is not partitioned when it is written. All of the output files are written
at the top level of the specified output path. Until recently, the only way to write a DynamicFrame
into partitions was to convert it to a Spark SQL DataFrame before writing.

Features and optimizations 1660

https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html

AWS Glue User Guide

However, DynamicFrames now support native partitioning using a sequence of keys, using the
partitionKeys option when you create a sink. For example, the following Python code writes out
a dataset to Amazon S3 in the Parquet format, into directories partitioned by the type field. From
there, you can process these partitions using other systems, such as Amazon Athena.

glue_context.write_dynamic_frame.from_options(
 frame = projectedEvents,
 connection_type = "s3",
 connection_options = {"path": "$outpath", "partitionKeys": ["type"]},
 format = "parquet")

Reading input files in larger groups

You can set properties of your tables to enable an AWS Glue ETL job to group files when they
are read from an Amazon S3 data store. These properties enable each ETL task to read a group
of input files into a single in-memory partition, this is especially useful when there is a large
number of small files in your Amazon S3 data store. When you set certain properties, you instruct
AWS Glue to group files within an Amazon S3 data partition and set the size of the groups to
be read. You can also set these options when reading from an Amazon S3 data store with the
create_dynamic_frame.from_options method.

To enable grouping files for a table, you set key-value pairs in the parameters field of your
table structure. Use JSON notation to set a value for the parameter field of your table. For more
information about editing the properties of a table, see Viewing and editing table details.

You can use this method to enable grouping for tables in the Data Catalog with Amazon S3 data
stores.

groupFiles

Set groupFiles to inPartition to enable the grouping of files within an Amazon S3 data
partition. AWS Glue automatically enables grouping if there are more than 50,000 input files, as
in the following example.

 'groupFiles': 'inPartition'

Features and optimizations 1661

AWS Glue User Guide

groupSize

Set groupSize to the target size of groups in bytes. The groupSize property is optional, if not
provided, AWS Glue calculates a size to use all the CPU cores in the cluster while still reducing
the overall number of ETL tasks and in-memory partitions.

For example, the following sets the group size to 1 MB.

 'groupSize': '1048576'

Note that the groupsize should be set with the result of a calculation. For example 1024 *
1024 = 1048576.

recurse

Set recurse to True to recursively read files in all subdirectories when specifying paths as an
array of paths. You do not need to set recurse if paths is an array of object keys in Amazon S3,
or if the input format is parquet/orc, as in the following example.

 'recurse':True

If you are reading from Amazon S3 directly using the create_dynamic_frame.from_options
method, add these connection options. For example, the following attempts to group files into 1
MB groups.

df = glueContext.create_dynamic_frame.from_options("s3", {'paths': ["s3://s3path/"],
 'recurse':True, 'groupFiles': 'inPartition', 'groupSize': '1048576'}, format="json")

Note

groupFiles is supported for DynamicFrames created from the following data formats:
csv, ion, grokLog, json, and xml. This option is not supported for avro, parquet, and orc.

Features and optimizations 1662

AWS Glue User Guide

Amazon VPC endpoints for Amazon S3

For security reasons, many AWS customers run their applications within an Amazon Virtual Private
Cloud environment (Amazon VPC). With Amazon VPC, you can launch Amazon EC2 instances into a
virtual private cloud, which is logically isolated from other networks—including the public internet.
With an Amazon VPC, you have control over its IP address range, subnets, routing tables, network
gateways, and security settings.

Note

If you created your AWS account after 2013-12-04, you already have a default VPC in each
AWS Region. You can immediately start using your default VPC without any additional
configuration.
For more information, see Your Default VPC and Subnets in the Amazon VPC User Guide.

Many customers have legitimate privacy and security concerns about sending and receiving data
across the public internet. Customers can address these concerns by using a virtual private network
(VPN) to route all Amazon S3 network traffic through their own corporate network infrastructure.
However, this approach can introduce bandwidth and availability challenges.

VPC endpoints for Amazon S3 can alleviate these challenges. A VPC endpoint for Amazon S3
enables AWS Glue to use private IP addresses to access Amazon S3 with no exposure to the public
internet. AWS Glue does not require public IP addresses, and you don't need an internet gateway, a
NAT device, or a virtual private gateway in your VPC. You use endpoint policies to control access to
Amazon S3. Traffic between your VPC and the AWS service does not leave the Amazon network.

When you create a VPC endpoint for Amazon S3, any requests to an Amazon S3 endpoint within
the Region (for example, s3.us-west-2.amazonaws.com) are routed to a private Amazon S3
endpoint within the Amazon network. You don't need to modify your applications running on
Amazon EC2 instances in your VPC—the endpoint name remains the same, but the route to
Amazon S3 stays entirely within the Amazon network, and does not access the public internet.

For more information about VPC endpoints, see VPC Endpoints in the Amazon VPC User Guide.

The following diagram shows how AWS Glue can use a VPC endpoint to access Amazon S3.

Features and optimizations 1663

https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html

AWS Glue User Guide

To set up access for Amazon S3

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

2. In the left navigation pane, choose Endpoints.

3. Choose Create Endpoint, and follow the steps to create an Amazon S3 VPC endpoint of type
Gateway.

Amazon DocumentDB connections

You can use AWS Glue for Spark to read from and write to tables in Amazon DocumentDB. You can
connect to Amazon DocumentDB using credentials stored in AWS Secrets Manager through a AWS
Glue connection.

Features and optimizations 1664

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

AWS Glue User Guide

For more information about Amazon DocumentDB, consult the Amazon DocumentDB
documentation.

Note

Amazon DocumentDB elastic clusters are not currently supported when using the AWS Glue
connector. For more information about elastic clusters, see Using Amazon DocumentDB
elastic clusters.

Reading and writing to Amazon DocumentDB collections

Note

When you create an ETL job that connects to Amazon DocumentDB, for the
Connections job property, you must designate a connection object that specifies
the virtual private cloud (VPC) in which Amazon DocumentDB is running. For the
connection object, the connection type must be JDBC, and the JDBC URL must be
mongo://<DocumentDB_host>:27017.

Note

These code samples were developed for AWS Glue 3.0. To migrate to AWS Glue 4.0, consult
the section called “MongoDB”. The uri parameter has changed.

Note

When using Amazon DocumentDB, retryWrites must be set to false in certain situations,
such as when the document written specifies _id. For more information, consult Functional
Differences with MongoDB in the Amazon DocumentDB documentation.

The following Python script demonstrates using connection types and connection options for
reading and writing to Amazon DocumentDB.

import sys

Features and optimizations 1665

https://docs.aws.amazon.com/documentdb/latest/developerguide/what-is.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/what-is.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/docdb-using-elastic-clusters.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/docdb-using-elastic-clusters.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/functional-differences.html#functional-differences.retryable-writes
https://docs.aws.amazon.com/documentdb/latest/developerguide/functional-differences.html#functional-differences.retryable-writes

AWS Glue User Guide

from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext, SparkConf
from awsglue.context import GlueContext
from awsglue.job import Job
import time

@params: [JOB_NAME]
args = getResolvedOptions(sys.argv, ['JOB_NAME'])

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session

job = Job(glueContext)
job.init(args['JOB_NAME'], args)

output_path = "s3://some_bucket/output/" + str(time.time()) + "/"
documentdb_uri = "mongodb://<mongo-instanced-ip-address>:27017"
documentdb_write_uri = "mongodb://<mongo-instanced-ip-address>:27017"

read_docdb_options = {
 "uri": documentdb_uri,
 "database": "test",
 "collection": "coll",
 "username": "username",
 "password": "1234567890",
 "ssl": "true",
 "ssl.domain_match": "false",
 "partitioner": "MongoSamplePartitioner",
 "partitionerOptions.partitionSizeMB": "10",
 "partitionerOptions.partitionKey": "_id"
}

write_documentdb_options = {
 "retryWrites": "false",
 "uri": documentdb_write_uri,
 "database": "test",
 "collection": "coll",
 "username": "username",
 "password": "pwd"
}

Get DynamicFrame from DocumentDB

Features and optimizations 1666

AWS Glue User Guide

dynamic_frame2 =
 glueContext.create_dynamic_frame.from_options(connection_type="documentdb",

 connection_options=read_docdb_options)

Write DynamicFrame to MongoDB and DocumentDB
glueContext.write_dynamic_frame.from_options(dynamic_frame2,
 connection_type="documentdb",

 connection_options=write_documentdb_options)

job.commit()

The following Scala script demonstrates using connection types and connection options for
reading and writing to Amazon DocumentDB.

import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.MappingSpec
import com.amazonaws.services.glue.errors.CallSite
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.DynamicFrame
import org.apache.spark.SparkContext
import scala.collection.JavaConverters._

object GlueApp {
 val DOC_URI: String = "mongodb://<mongo-instanced-ip-address>:27017"
 val DOC_WRITE_URI: String = "mongodb://<mongo-instanced-ip-address>:27017"
 lazy val documentDBJsonOption = jsonOptions(DOC_URI)
 lazy val writeDocumentDBJsonOption = jsonOptions(DOC_WRITE_URI)
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)

 // Get DynamicFrame from DocumentDB
 val resultFrame2: DynamicFrame = glueContext.getSource("documentdb",
 documentDBJsonOption).getDynamicFrame()

 // Write DynamicFrame to DocumentDB
 glueContext.getSink("documentdb", writeJsonOption).writeDynamicFrame(resultFrame2)

Features and optimizations 1667

AWS Glue User Guide

 Job.commit()
 }

 private def jsonOptions(uri: String): JsonOptions = {
 new JsonOptions(
 s"""{"uri": "${uri}",
 |"database":"test",
 |"collection":"coll",
 |"username": "username",
 |"password": "pwd",
 |"ssl":"true",
 |"ssl.domain_match":"false",
 |"partitioner": "MongoSamplePartitioner",
 |"partitionerOptions.partitionSizeMB": "10",
 |"partitionerOptions.partitionKey": "_id"}""".stripMargin)
 }
}

Amazon DocumentDB connection option reference

Designates a connection to Amazon DocumentDB (with MongoDB compatibility).

Connection options differ for a source connection and a sink connection.

"connectionType": "Documentdb" as source

Use the following connection options with "connectionType": "documentdb" as a source:

• "uri": (Required) The Amazon DocumentDB host to read from, formatted as mongodb://
<host>:<port>.

• "database": (Required) The Amazon DocumentDB database to read from.

• "collection": (Required) The Amazon DocumentDB collection to read from.

• "username": (Required) The Amazon DocumentDB user name.

• "password": (Required) The Amazon DocumentDB password.

• "ssl": (Required if using SSL) If your connection uses SSL, then you must include this option
with the value "true".

• "ssl.domain_match": (Required if using SSL) If your connection uses SSL, then you must
include this option with the value "false".

Features and optimizations 1668

AWS Glue User Guide

• "batchSize": (Optional): The number of documents to return per batch, used within the cursor
of internal batches.

• "partitioner": (Optional): The class name of the partitioner for reading input data from
Amazon DocumentDB. The connector provides the following partitioners:

• MongoDefaultPartitioner (default) (Not supported in AWS Glue 4.0)

• MongoSamplePartitioner (Not supported in AWS Glue 4.0)

• MongoShardedPartitioner

• MongoSplitVectorPartitioner

• MongoPaginateByCountPartitioner

• MongoPaginateBySizePartitioner (Not supported in AWS Glue 4.0)

• "partitionerOptions" (Optional): Options for the designated partitioner. The following
options are supported for each partitioner:

• MongoSamplePartitioner: partitionKey, partitionSizeMB, samplesPerPartition

• MongoShardedPartitioner: shardkey

• MongoSplitVectorPartitioner: partitionKey, partitionSizeMB

• MongoPaginateByCountPartitioner: partitionKey, numberOfPartitions

• MongoPaginateBySizePartitioner: partitionKey, partitionSizeMB

For more information about these options, see Partitioner Configuration in the MongoDB
documentation.

"connectionType": "Documentdb" as sink

Use the following connection options with "connectionType": "documentdb" as a sink:

• "uri": (Required) The Amazon DocumentDB host to write to, formatted as mongodb://
<host>:<port>.

• "database": (Required) The Amazon DocumentDB database to write to.

• "collection": (Required) The Amazon DocumentDB collection to write to.

• "username": (Required) The Amazon DocumentDB user name.

• "password": (Required) The Amazon DocumentDB password.

• "extendedBsonTypes": (Optional) If true, allows extended BSON types when writing data to
Amazon DocumentDB. The default is true.

Features and optimizations 1669

https://docs.mongodb.com/spark-connector/master/configuration/#partitioner-conf

AWS Glue User Guide

• "replaceDocument": (Optional) If true, replaces the whole document when saving datasets
that contain an _id field. If false, only fields in the document that match the fields in the
dataset are updated. The default is true.

• "maxBatchSize": (Optional): The maximum batch size for bulk operations when saving data.
The default is 512.

• "retryWrites": (Optional): Automatically retry certain write operations a single time if AWS
Glue encounters a network error.

OpenSearch Service connections

You can use AWS Glue for Spark to read from and write to tables in OpenSearch Service in
AWS Glue 4.0 and later versions. You can define what to read from OpenSearch Service with an
OpenSearch query. You connect to OpenSearch Service using HTTP basic authentication credentials
stored in AWS Secrets Manager through a AWS Glue connection. This feature is not compatible
with OpenSearch Service serverless.

For more information about Amazon OpenSearch Service, see the Amazon OpenSearch Service
documentation.

Configuring OpenSearch Service connections

To connect to OpenSearch Service from AWS Glue, you will need to create and store your
OpenSearch Service credentials in a AWS Secrets Manager secret, then associate that secret with a
OpenSearch Service AWS Glue connection.

Prerequisites:

• Identify the domain endpoint, aosEndpoint and port, aosPort you would like to read from, or
create the resource by following instructions in the Amazon OpenSearch Service documentation.
For more information on creating a domain, see Creating and managing Amazon OpenSearch
Service domains in the Amazon OpenSearch Service documentation.

An Amazon OpenSearch Service domain endpoint will have the following default form,
https://search-domainName-unstructuredIdContent.region.es.amazonaws.com. For
more information on identifying your domain endpoint, see Creating and managing Amazon
OpenSearch Service domains in the Amazon OpenSearch Service documentation.

Identify or generate HTTP basic authentication credentials, aosUser and aosPassword for your
domain.

Features and optimizations 1670

https://docs.aws.amazon.com/opensearch-service/
https://docs.aws.amazon.com/opensearch-service/
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/createupdatedomains.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/createupdatedomains.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/createupdatedomains.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/createupdatedomains.html

AWS Glue User Guide

To configure a connection to OpenSearch Service:

1. In AWS Secrets Manager, create a secret using your OpenSearch Service credentials. To create
a secret in Secrets Manager, follow the tutorial available in Create an AWS Secrets Manager
secret in the AWS Secrets Manager documentation. After creating the secret, keep the Secret
name, secretName for the next step.

• When selecting Key/value pairs, create a pair for the key
opensearch.net.http.auth.user with the value aosUser.

• When selecting Key/value pairs, create a pair for the key
opensearch.net.http.auth.pass with the value aosPassword.

2. In the AWS Glue console, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for future use in AWS Glue.

• When selecting a Connection type, select OpenSearch Service.

• When selecting a Domain endpoint, provide aosEndpoint.

• When selecting a port, provide aosPort.

• When selecting an AWS Secret, provide secretName.

After creating a AWS Glue OpenSearch Service connection, you will need to perform the following
steps before running your AWS Glue job:

• Grant the IAM role associated with your AWS Glue job permission to read secretName.

• In your AWS Glue job configuration, provide connectionName as an Additional network
connection.

Reading from OpenSearch Service indexes

Prerequisites:

• A OpenSearch Service index you would like to read from, aosIndex.

• A AWS Glue OpenSearch Service connection configured to provide auth and network location
information. To acquire this, complete the steps in the previous procedure, To configure
a connection to OpenSearch Service. You will need the name of the AWS Glue connection,
connectionName.

Features and optimizations 1671

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Glue User Guide

This example reads an index from Amazon OpenSearch Service. You will need to provide the
pushdown parameter.

For example:

opensearch_read = glueContext.create_dynamic_frame.from_options(
 connection_type="opensearch",
 connection_options={
 "connectionName": "connectionName",
 "opensearch.resource": "aosIndex",
 "pushdown": "true",
 }
)

You can also provide a query string to filter the results returned in your DynamicFrame. You will
need to configure opensearch.query.

opensearch.query can take a URL query parameter string queryString or a query DSL
JSON object queryObject. For more information about the query DSL, see Query DSL in the
OpenSearch documentation. To provide a URL query parameter string, prepend ?q= to your query,
as you would in a fully qualified URL. To provide a query DSL object, string escape the JSON object
before providing it.

For example:

 queryObject = "{ "query": { "multi_match": { "query": "Sample", "fields":
 ["sample"] } } }"
 queryString = "?q=queryString"

 opensearch_read_query = glueContext.create_dynamic_frame.from_options(
 connection_type="opensearch",
 connection_options={
 "connectionName": "connectionName",
 "opensearch.resource": "aosIndex",
 "opensearch.query": queryString,
 "pushdown": "true",
 }
)

For more information about how to build a query outside of its specific syntax, see Query string
syntax in the OpenSearch documentation.

Features and optimizations 1672

https://opensearch.org/docs/latest/query-dsl/index/
https://opensearch.org/docs/latest/query-dsl/full-text/query-string/#query-string-syntax
https://opensearch.org/docs/latest/query-dsl/full-text/query-string/#query-string-syntax

AWS Glue User Guide

When reading from OpenSearch collections that contain array type data,
you must specify which fields are array type in your method call using the
opensearch.read.field.as.array.include parameter.

For example, when reading the following document, you will encounter the genre and actor
array fields:

{
 "_index": "movies",
 "_id": "2",
 "_version": 1,
 "_seq_no": 0,
 "_primary_term": 1,
 "found": true,
 "_source": {
 "director": "Frankenheimer, John",
 "genre": [
 "Drama",
 "Mystery",
 "Thriller",
 "Crime"
],
 "year": 1962,
 "actor": [
 "Lansbury, Angela",
 "Sinatra, Frank",
 "Leigh, Janet",
 "Harvey, Laurence",
 "Silva, Henry",
 "Frees, Paul",
 "Gregory, James",
 "Bissell, Whit",
 "McGiver, John",
 "Parrish, Leslie",
 "Edwards, James",
 "Flowers, Bess",
 "Dhiegh, Khigh",
 "Payne, Julie",
 "Kleeb, Helen",
 "Gray, Joe",
 "Nalder, Reggie",
 "Stevens, Bert",
 "Masters, Michael",

Features and optimizations 1673

AWS Glue User Guide

 "Lowell, Tom"
],
 "title": "The Manchurian Candidate"
 }
}

In this case, you would include those field names in your method call. For example:

"opensearch.read.field.as.array.include": "genre,actor"

If your array field is nested inside of your document structure, refer to it using dot notation:
"genre,actor,foo.bar.baz". This would specify an array baz included in your source
document through the embedded document foo containing the embedded document bar.

Writing to OpenSearch Service tables

This example writes information from an existing DynamicFrame, dynamicFrame to OpenSearch
Service. If the index already has information, AWS Glue will append data from your DynamicFrame.
You will need to provide the pushdown parameter.

Prerequisites:

• A OpenSearch Service table you would like to write to. You will need identification information
for the table. Let's call this tableName.

• A AWS Glue OpenSearch Service connection configured to provide auth and network location
information. To acquire this, complete the steps in the previous procedure, To configure
a connection to OpenSearch Service. You will need the name of the AWS Glue connection,
connectionName.

For example:

glueContext.write_dynamic_frame.from_options(
 frame=dynamicFrame,
 connection_type="opensearch",
 connection_options={
 "connectionName": "connectionName",
 "opensearch.resource": "aosIndex",
 },
)

Features and optimizations 1674

AWS Glue User Guide

OpenSearch Service connection option reference

• connectionName — Required. Used for Read/Write. The name of a AWS Glue OpenSearch
Service connection configured to provide auth and network location information to your
connection method.

• opensearch.resource — Required. Used for Read/Write. Valid Values: OpenSearch index
names. The name of the index your connection method will interact with.

• opensearch.query — Used for Read. Valid Values: String escaped JSON or, when this string
begins with ?, the search part of a URL. An OpenSearch query that filters what should be
retrieved when reading. For more information on using this parameter, consult the previous
section the section called “Read from OpenSearch Service”.

• pushdown — Required if. Used for Read. Valid Values: boolean. Instructs Spark to pass read
queries down to OpenSearch so the database only returns relevant documents.

• opensearch.read.field.as.array.include — Required if reading array type data.
Used for Read. Valid Values: comma separated lists of field names. Specifies fields to read as
arrays from OpenSearch documents. For more information on using this parameter, consult the
previous section the section called “Read from OpenSearch Service”.

Redshift connections

You can use AWS Glue for Spark to read from and write to tables in Amazon Redshift databases.
When connecting to Amazon Redshift databases, AWS Glue moves data through Amazon S3 to
achieve maximum throughput, using the Amazon Redshift SQL COPY and UNLOAD commands. In
AWS Glue 4.0 and later, you can use the Amazon Redshift integration for Apache Spark to read and
write with optimizations and features specific to Amazon Redshift beyond those available when
connecting through previous versions.

Learn about how AWS Glue is making it easier than ever for Amazon Redshift users to migrate to
AWS Glue for serverless data integration and ETL.

Configuring Redshift connections

To use Amazon Redshift clusters in AWS Glue, you will need some prerequisites:

• An Amazon S3 directory to use for temporary storage when reading from and writing to the
database.

• An Amazon VPC enabling communication between your Amazon Redshift cluster, your AWS Glue
job and your Amazon S3 directory.

Features and optimizations 1675

https://docs.aws.amazon.com/redshift/latest/mgmt/spark-redshift-connector.html

AWS Glue User Guide

• Appropriate IAM permissions on the AWS Glue job and Amazon Redshift cluster.

Configuring IAM roles

Set up the role for the Amazon Redshift cluster

Your Amazon Redshift cluster needs to be able to read and write to Amazon S3 in order to
integrate with AWS Glue jobs. To allow this, you can associate IAM roles with the Amazon Redshift
cluster you want to connect to. Your role should have a policy allowing read from and write to
your Amazon S3 temporary directory. Your role should have a trust relationship allowing the
redshift.amazonaws.com service to AssumeRole.

To associate an IAM role with Amazon Redshift

1. Prerequisites: An Amazon S3 bucket or directory used for the temporary storage of files.

2. Identify which Amazon S3 permissions your Amazon Redshift cluster will need. When moving
data to and from an Amazon Redshift cluster, AWS Glue jobs issue COPY and UNLOAD
statements against Amazon Redshift. If your job modifies a table in Amazon Redshift, AWS
Glue will also issue CREATE LIBRARY statements. For information on specific Amazon S3
permissions required for Amazon Redshift to execute these statements, refer to the Amazon
Redshift documentation: Amazon Redshift: Permissions to access other AWS Resources.

3. In the IAM console, create an IAM policy with the necessary permissions. For more information
about creating a policy Creating IAM policies.

4. In the IAM console, create a role and trust relationship allowing Amazon Redshift to assume
the role. Follow the instructions in the IAM documentation To create a role for an AWS service
(console)

• When asked to choose an AWS service use case, choose "Redshift - Customizable".

• When asked to attach a policy, choose the policy you previously defined.

Note

For more information about configuring roles for Amazon Redshift, see Authorizing
Amazon Redshift to access other AWS services on your behalf in the Amazon Redshift
documentation.

Features and optimizations 1676

https://docs.aws.amazon.com/redshift/latest/dg/copy-usage_notes-access-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html

AWS Glue User Guide

5. In the Amazon Redshift console, associate the role with your Amazon Redshift cluster. Follow
the instructions in the Amazon Redshift documentation.

Select the highlighted option in the Amazon Redshift console to configure this setting:

Note

By default, AWS Glue jobs pass Amazon Redshift temporary credentials that are created
using the role that you specified to run the job. We do not recommend using these
credentials. For security purposes, these credentials expire after 1 hour.

Set up the role for the AWS Glue job

The AWS Glue job needs a role to access the Amazon S3 bucket. You do not need IAM permissions
for the Amazon Redshift cluster, your access is controlled by connectivity in Amazon VPC and your
database credentials.

Features and optimizations 1677

https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html

AWS Glue User Guide

Set up Amazon VPC

To set up access for Amazon Redshift data stores

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. In the left navigation pane, choose Clusters.

3. Choose the cluster name that you want to access from AWS Glue.

4. In the Cluster Properties section, choose a security group in VPC security groups to allow
AWS Glue to use. Record the name of the security group that you chose for future reference.
Choosing the security group opens the Amazon EC2 console Security Groups list.

5. Choose the security group to modify and navigate to the Inbound tab.

6. Add a self-referencing rule to allow AWS Glue components to communicate. Specifically, add
or confirm that there is a rule of Type All TCP, Protocol is TCP, Port Range includes all ports,
and whose Source is the same security group name as the Group ID.

The inbound rule looks similar to the following:

Type Protocol Port range Source

All TCP TCP 0–65535 database-security-
group

For example:

7. Add a rule for outbound traffic also. Either open outbound traffic to all ports, for example:

Type Protocol Port range Destination

All Traffic ALL ALL 0.0.0.0/0

Or create a self-referencing rule where Type All TCP, Protocol is TCP, Port Range includes
all ports, and whose Destination is the same security group name as the Group ID. If using an
Amazon S3 VPC endpoint, also add an HTTPS rule for Amazon S3 access. The s3-prefix-

Features and optimizations 1678

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

AWS Glue User Guide

list-id is required in the security group rule to allow traffic from the VPC to the Amazon S3
VPC endpoint.

For example:

Type Protocol Port range Destination

All TCP TCP 0–65535 security-group

HTTPS TCP 443 s3-prefix-
list-id

Set up AWS Glue

You will need to create an AWS Glue Data Catalog connection that provides Amazon VPC
connection information.

To configure Amazon Redshift Amazon VPC connectivity to AWS Glue in the console

1. Create a Data Catalog connection by following the steps in: the section called “Adding
an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for the next step.

• When selecting a Connection type, select Amazon Redshift.

• When selecting a Redshift cluster, select your cluster by name.

• Provide default connection information for a Amazon Redshift user on your cluster.

• Your Amazon VPC settings will be automatically configured.

Note

You will need to manually provide PhysicalConnectionRequirements for your
Amazon VPC when creating an Amazon Redshift connection through the AWS SDK.

2. In your AWS Glue job configuration, provide connectionName as an Additional network
connection.

Features and optimizations 1679

AWS Glue User Guide

Example: Reading from Amazon Redshift tables

You can read from Amazon Redshift clusters and Amazon Redshift serverless environments.

Prerequisites: An Amazon Redshift table you would like to read from. Follow the steps in the
previous section the section called “Configure Redshift” after which you should have the Amazon
S3 URI for a temporary directory, temp-s3-dir and an IAM role, rs-role-name, (in account
role-account-id).

Using the Data Catalog

Additional Prerequisites: A Data Catalog Database and Table for the Amazon Redshift table
you would like to read from. For more information about Data Catalog, see Data discovery
and cataloging. After creating a entry for your Amazon Redshift table you will identify your
connection with a redshift-dc-database-name and redshift-table-name.

Configuration: In your function options you will identify your Data Catalog Table with the
database and table_name parameters. You will identify your Amazon S3 temporary directory
with redshift_tmp_dir. You will also provide rs-role-name using the aws_iam_role key
in the additional_options parameter.

 glueContext.create_dynamic_frame.from_catalog(
 database = "redshift-dc-database-name",
 table_name = "redshift-table-name",
 redshift_tmp_dir = args["temp-s3-dir"],
 additional_options = {"aws_iam_role": "arn:aws:iam::role-account-id:role/rs-
role-name"})

Connecting directly

Additional Prerequisites:You will need the name of your Amazon Redshift table (redshift-
table-name. You will need the JDBC connection information for the Amazon Redshift cluster
storing that table. You will supply your connection information with host, port, redshift-
database-name, username and password.

You can retrieve your connection information from the Amazon Redshift console when working
with Amazon Redshift clusters. When using Amazon Redshift serverless, consult Connecting to
Amazon Redshift Serverless in the Amazon Redshift documentation.

Features and optimizations 1680

https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-connecting.html
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-connecting.html

AWS Glue User Guide

Configuration: In your function options you will identify your connection parameters with
url, dbtable, user and password. You will identify your Amazon S3 temporary directory
with redshift_tmp_dir. You can specify your IAM role using aws_iam_role when you use
from_options. The syntax is similar to connecting through the Data Catalog, but you put the
parameters in the connection_options map.

It is bad practice to hardcode passwords into AWS Glue scripts. Consider storing your passwords
in AWS Secrets Manager and retrieving them in your script with SDK for Python (Boto3).

my_conn_options = {
 "url": "jdbc:redshift://host:port/redshift-database-name",
 "dbtable": "redshift-table-name",
 "user": "username",
 "password": "password",
 "redshiftTmpDir": args["temp-s3-dir"],
 "aws_iam_role": "arn:aws:iam::account id:role/rs-role-name"
}

df = glueContext.create_dynamic_frame.from_options("redshift", my_conn_options)

Example: Writing to Amazon Redshift tables

You can write to Amazon Redshift clusters and Amazon Redshift serverless environments.

Prerequisites: An Amazon Redshift cluster and follow the steps in the previous section the section
called “Configure Redshift” after which you should have the Amazon S3 URI for a temporary
directory, temp-s3-dir and an IAM role, rs-role-name, (in account role-account-id). You
will also need a DynamicFrame whose contents you would like to write to the database.

Using the Data Catalog

Additional Prerequisites A Data Catalog Database for the Amazon Redshift cluster and table
you would like to write to. For more information about Data Catalog, see Data discovery and
cataloging. You will identify your connection with redshift-dc-database-name and the
target table with redshift-table-name.

Configuration: In your function options you will identify your Data Catalog Database with the
database parameter, then provide table with table_name. You will identify your Amazon S3

Features and optimizations 1681

AWS Glue User Guide

temporary directory with redshift_tmp_dir. You will also provide rs-role-name using the
aws_iam_role key in the additional_options parameter.

 glueContext.write_dynamic_frame.from_catalog(
 frame = input dynamic frame,
 database = "redshift-dc-database-name",
 table_name = "redshift-table-name",
 redshift_tmp_dir = args["temp-s3-dir"],
 additional_options = {"aws_iam_role": "arn:aws:iam::account-id:role/rs-role-
name"})

Connecting through a AWS Glue connection

You can connect to Amazon Redshift directly using the
write_dynamic_frame.from_options method. However, rather than insert your connection
details directly into your script, you can reference connection details stored in a Data Catalog
connection with the from_jdbc_conf method. You can do this without crawling or creating
Data Catalog tables for your database. For more information about Data Catalog connections,
see Connecting to data.

Additional Prerequisites: A Data Catalog connection for your database, a Amazon Redshift
table you would like to read from

Configuration: you will identify your Data Catalog connection with dc-connection-name.
You will identify your Amazon Redshift database and table with redshift-table-name and
redshift-database-name. You will provide your Data Catalog connection information with
catalog_connection and your Amazon Redshift information with dbtable and database.
The syntax is similar to connecting through the Data Catalog, but you put the parameters in the
connection_options map.

my_conn_options = {
 "dbtable": "redshift-table-name",
 "database": "redshift-database-name",
 "aws_iam_role": "arn:aws:iam::role-account-id:role/rs-role-name"
}

glueContext.write_dynamic_frame.from_jdbc_conf(
 frame = input dynamic frame,

Features and optimizations 1682

AWS Glue User Guide

 catalog_connection = "dc-connection-name",
 connection_options = my_conn_options,
 redshift_tmp_dir = args["temp-s3-dir"])

Amazon Redshift connection option reference

The basic connection options used for all AWS Glue JDBC connections to set up information
like url, user and password are consistent across all JDBC types. For more information about
standard JDBC parameters, see the section called “JDBC connection parameters”.

The Amazon Redshift connection type takes some additional connection options:

• "redshiftTmpDir": (Required) The Amazon S3 path where temporary data can be staged
when copying out of the database.

• "aws_iam_role": (Optional) ARN for an IAM role. The AWS Glue job will pass this role to the
Amazon Redshift cluster to grant the cluster permissions needed to complete instructions from
the job.

Additional connection options available in AWS Glue 4.0+

You can also pass options for the new Amazon Redshift connector through AWS Glue connection
options. For a complete list of supported connector options, see the Spark SQL parameters section
in Amazon Redshift integration for Apache Spark.

For you convenience, we reiterate certain new options here:

Name Required Default Description

autopushdown No TRUE Applies predicate
and query pushdown
by capturing and
analyzing the Spark
logical plans for
SQL operations.
The operations are
translated into a

Features and optimizations 1683

https://docs.aws.amazon.com/redshift/latest/mgmt/spark-redshift-connector.html

AWS Glue User Guide

Name Required Default Description

SQL query, and
then run in Amazon
Redshift to improve
performance.

autopushdown.s3_re
sult_cache

No FALSE Caches the SQL query
to unload data for
Amazon S3 path
mapping in memory
so that the same
query doesn't need
to run again in the
same Spark session.
Only supported when
autopushdown is
enabled.

unload_s3_format No PARQUET PARQUET - Unloads
the query results in
Parquet format.

TEXT - Unloads the
query results in
pipe-delimited text
format.

sse_kms_key No N/A The AWS SSE-
KMS key to use for
encryption during
UNLOAD operations
instead of the default
encryption for AWS.

Features and optimizations 1684

AWS Glue User Guide

Name Required Default Description

extracopyoptions No N/A A list of extra options
to append to the
Amazon Redshift
COPYcommand when
loading data, such as
TRUNCATECOLUMNS
or MAXERROR n
(for other options
see COPY: Optional
parameters).

Note that because
these options are
appended to the
end of the COPY
command, only
options that make
sense at the end of
the command can
be used. That should
cover most possible
use cases.

csvnullstring
(experimental)

No NULL The String value
to write for nulls
when using the CSV
tempformat . This
should be a value
that doesn't appear
in your actual data.

These new parameters can be used in the following ways.

New options for performance improvement

Features and optimizations 1685

https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html#r_COPY-syntax-overview-optional-parameters
https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html#r_COPY-syntax-overview-optional-parameters

AWS Glue User Guide

The new connector introduces some new performance improvement options:

• autopushdown: Enabled by default.

• autopushdown.s3_result_cache: Disabled by default.

• unload_s3_format: PARQUET by default.

For information about using these options, see Amazon Redshift integration for Apache Spark.
We recommend that you don't turn on autopushdown.s3_result_cache when you have
mixed read and write operations because the cached results might contain stale information. The
option unload_s3_format is set to PARQUET by default for the UNLOAD command, to improve
performance and reduce storage cost. To use the UNLOAD command default behavior, reset the
option to TEXT.

New encryption option for reading

By default, the data in the temporary folder that AWS Glue uses when it reads data from the
Amazon Redshift table is encrypted using SSE-S3 encryption. To use customer managed keys from
AWS Key Management Service (AWS KMS) to encrypt your data, you can set up ("sse_kms_key"
kmsKey) where ksmKey is the key ID from AWS KMS, instead of the legacy setting option
("extraunloadoptions" # s"ENCRYPTED KMS_KEY_ID '$kmsKey'") in AWS Glue version
3.0.

datasource0 = glueContext.create_dynamic_frame.from_catalog(
 database = "database-name",
 table_name = "table-name",
 redshift_tmp_dir = args["TempDir"],
 additional_options = {"sse_kms_key":"<KMS_KEY_ID>"},
 transformation_ctx = "datasource0"
)

Support IAM-based JDBC URL

The new connector supports an IAM-based JDBC URL so you don't need to pass in a user/password
or secret. With an IAM-based JDBC URL, the connector uses the job runtime role to access to the
Amazon Redshift data source.

Step 1: Attach the following minimal required policy to your AWS Glue job runtime role.

{
 "Version": "2012-10-17",

Features and optimizations 1686

https://docs.aws.amazon.com/redshift/latest/mgmt/spark-redshift-connector.html
https://docs.aws.amazon.com/kms/latest/developerguide/find-cmk-id-arn.html

AWS Glue User Guide

 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "redshift:GetClusterCredentials",
 "Resource": [
 "arn:aws:redshift:<region>:<account>:dbgroup:<cluster name>/*",
 "arn:aws:redshift:*:<account>:dbuser:*/*",
 "arn:aws:redshift:<region>:<account>:dbname:<cluster name>/<database
 name>"
]
 },
 {
 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": "redshift:DescribeClusters",
 "Resource": "*"
 }
]
}

Step 2: Use the IAM-based JDBC URL as follows. Specify a new option DbUser with the Amazon
Redshift user name that you're connecting with.

conn_options = {
 // IAM-based JDBC URL
 "url": "jdbc:redshift:iam://<cluster name>:<region>/<database name>",
 "dbtable": dbtable,
 "redshiftTmpDir": redshiftTmpDir,
 "aws_iam_role": aws_iam_role,
 "DbUser": "<Redshift User name>" // required for IAM-based JDBC URL
 }

redshift_write = glueContext.write_dynamic_frame.from_options(
 frame=dyf,
 connection_type="redshift",
 connection_options=conn_options
)

redshift_read = glueContext.create_dynamic_frame.from_options(
 connection_type="redshift",
 connection_options=conn_options
)

Features and optimizations 1687

AWS Glue User Guide

Note

A DynamicFrame currently only supports an IAM-based JDBC URL with a DbUser in the
GlueContext.create_dynamic_frame.from_options workflow.

Migrating from AWS Glue version 3.0 to version 4.0

In AWS Glue 4.0, ETL jobs have access to a new Amazon Redshift Spark connector and a new JDBC
driver with different options and configuration. The new Amazon Redshift connector and driver are
written with performance in mind, and keep transactional consistency of your data. These products
are documented in the Amazon Redshift documentation. For more information, see:

• Amazon Redshift integration for Apache Spark

• Amazon Redshift JDBC driver, version 2.1

Table/column names and identifiers restriction

The new Amazon Redshift Spark connector and driver have a more restricted requirement for
the Redshift table name. For more information, see Names and identifiers to define your Amazon
Redshift table name. The job bookmark workflow might not work with a table name that doesn't
match the rules and with certain characters, such as a space.

If you have legacy tables with names that don't conform to the Names and identifiers rules and see
issues with bookmarks (jobs reprocessing old Amazon Redshift table data), we recommend that
you rename your table names. For more information, see ALTER TABLE examples.

Default tempformat change in Dataframe

The AWS Glue version 3.0 Spark connector defaults the tempformat to CSV while writing to
Amazon Redshift. To be consistent, in AWS Glue version 3.0, the DynamicFrame still defaults the
tempformat to use CSV. If you've previously used Spark Dataframe APIs directly with the Amazon
Redshift Spark connector, you can explicitly set the tempformat to CSV in the DataframeReader
/Writer options. Otherwise, tempformat defaults to AVRO in the new Spark connector.

Behavior change: map Amazon Redshift data type REAL to Spark data type FLOAT instead of
DOUBLE

In AWS Glue version 3.0, Amazon Redshift REAL is converted to a Spark DOUBLE type. The new
Amazon Redshift Spark connector has updated the behavior so that the Amazon Redshift REAL

Features and optimizations 1688

https://docs.aws.amazon.com/redshift/latest/mgmt/spark-redshift-connector.html
https://docs.aws.amazon.com/redshift/latest/mgmt/jdbc20-download-driver.html
https://docs.aws.amazon.com/redshift/latest/dg/r_names.html
https://docs.aws.amazon.com/redshift/latest/dg/r_names.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE_examples_basic.html

AWS Glue User Guide

type is converted to, and back from, the Spark FLOAT type. If you have a legacy use case where you
still want the Amazon Redshift REAL type to be mapped to a Spark DOUBLE type, you can use the
following workaround:

• For a DynamicFrame, map the Float type to a Double type with
DynamicFrame.ApplyMapping. For a Dataframe, you need to use cast.

Code example:

dyf_cast = dyf.apply_mapping([('a', 'long', 'a', 'long'), ('b', 'float', 'b',
 'double')])

Kafka connections

Designates a connection to a Kafka cluster or an Amazon Managed Streaming for Apache Kafka
cluster.

You can read and write to Kafka data streams using information stored in a Data Catalog table,
or by providing information to directly access the data stream. You can read information from
Kafka into a Spark DataFrame, then convert it to a AWS Glue DynamicFrame. You can write
DynamicFrames to Kafka in a JSON format. If you directly access the data stream, use these options
to provide the information about how to access the data stream.

If you use getCatalogSource or create_data_frame_from_catalog to consume records
from a Kafka streaming source, or getCatalogSink or write_dynamic_frame_from_catalog
to write records to Kafka, and the job has the Data Catalog database and table name information,
and can use that to obtain some basic parameters for reading from the Kafka streaming source.
If you use getSource, getCatalogSink, getSourceWithFormat, getSinkWithFormat,
createDataFrameFromOptions or create_data_frame_from_options, or
write_dynamic_frame_from_catalog, you must specify these basic parameters using the
connection options described here.

You can specify the connection options for Kafka using the following arguments for the specified
methods in the GlueContext class.

• Scala

• connectionOptions: Use with getSource, createDataFrameFromOptions, getSink

• additionalOptions: Use with getCatalogSource, getCatalogSink

Features and optimizations 1689

AWS Glue User Guide

• options: Use with getSourceWithFormat, getSinkWithFormat

• Python

• connection_options: Use with create_data_frame_from_options,
write_dynamic_frame_from_options

• additional_options: Use with create_data_frame_from_catalog,
write_dynamic_frame_from_catalog

• options: Use with getSource, getSink

For notes and restrictions about streaming ETL jobs, consult the section called “Streaming ETL
notes and restrictions”.

Configure Kafka

There are no AWS prerequisites to connecting to Kafka streams available through the internet.

You can create a AWS Glue Kafka connection to manage your connection credentials. For more
information, see the section called “Creating a connection for a Kafka data stream”. In your AWS
Glue job configuration, provide connectionName as an Additional network connection, then, in
your method call, provide connectionName to the connectionName parameter.

In certain cases, you will need to configure additional prerequisites:

• If using Amazon Managed Streaming for Apache Kafka with IAM authentication, you will need
appropriate IAM configuration.

• If using Amazon Managed Streaming for Apache Kafka within an Amazon VPC, you will need
appropriate Amazon VPC configuration. You will need to create a AWS Glue connection that
provides Amazon VPC connection information. You will need your job configuration to include
the AWS Glue connection as an Additional network connection.

For more information about Streaming ETL job prerequisites, consult the section called “Streaming
ETL jobs”.

Example: Reading from Kafka streams

Used in conjunction with the section called “forEachBatch”.

Example for Kafka streaming source:

Features and optimizations 1690

AWS Glue User Guide

kafka_options =
 { "connectionName": "ConfluentKafka",
 "topicName": "kafka-auth-topic",
 "startingOffsets": "earliest",
 "inferSchema": "true",
 "classification": "json"
 }
data_frame_datasource0 =
 glueContext.create_data_frame.from_options(connection_type="kafka",
 connection_options=kafka_options)

Example: Writing to Kafka streams

Examples for writing to Kafka:

Example with the getSink method:

data_frame_datasource0 =
glueContext.getSink(
 connectionType="kafka",
 connectionOptions={
 JsonOptions("""{
 "connectionName": "ConfluentKafka",
 "classification": "json",
 "topic": "kafka-auth-topic",
 "typeOfData": "kafka"}
 """)},
 transformationContext="dataframe_ApacheKafka_node1711729173428")
 .getDataFrame()

Example with the write_dynamic_frame.from_options method:

kafka_options =
 { "connectionName": "ConfluentKafka",
 "topicName": "kafka-auth-topic",
 "classification": "json"
 }
data_frame_datasource0 =
 glueContext.write_dynamic_frame.from_options(connection_type="kafka",
 connection_options=kafka_options)

Kafka connection option reference

Features and optimizations 1691

AWS Glue User Guide

When reading, use the following connection options with "connectionType": "kafka":

• "bootstrap.servers" (Required) A list of bootstrap server URLs, for example, as b-1.vpc-
test-2.o4q88o.c6.kafka.us-east-1.amazonaws.com:9094. This option must be
specified in the API call or defined in the table metadata in the Data Catalog.

• "security.protocol" (Required) The protocol used to communicate with brokers. The
possible values are "SSL" or "PLAINTEXT".

• "topicName" (Required) A comma-separated list of topics to subscribe to. You must specify one
and only one of "topicName", "assign" or "subscribePattern".

• "assign": (Required) A JSON string specifying the specific TopicPartitions to consume. You
must specify one and only one of "topicName", "assign" or "subscribePattern".

Example: '{"topicA":[0,1],"topicB":[2,4]}'

• "subscribePattern": (Required) A Java regex string that identifies the topic list to subscribe
to. You must specify one and only one of "topicName", "assign" or "subscribePattern".

Example: 'topic.*'

• "classification" (Required) The file format used by the data in the record. Required unless
provided through the Data Catalog.

• "delimiter" (Optional) The value separator used when classification is CSV. Default is
",."

• "startingOffsets": (Optional) The starting position in the Kafka topic to read data from. The
possible values are "earliest" or "latest". The default value is "latest".

• "startingTimestamp": (Optional, supported only for AWS Glue version 4.0 or later) The
Timestamp of the record in the Kafka topic to read data from. The possible value is a Timestamp
string in UTC format in the pattern yyyy-mm-ddTHH:MM:SSZ (where Z represents a UTC
timezone offset with a +/-. For example: "2023-04-04T08:00:00-04:00").

Note: Only one of 'startingOffsets' or 'startingTimestamp' can be present in the Connection
Options list of the AWS Glue streaming script, including both these properties will result in job
failure.

• "endingOffsets": (Optional) The end point when a batch query is ended. Possible values are
either "latest" or a JSON string that specifies an ending offset for each TopicPartition.

For the JSON string, the format is {"topicA":{"0":23,"1":-1},"topicB":{"0":-1}}.
The value -1 as an offset represents "latest".

Features and optimizations 1692

AWS Glue User Guide

• "pollTimeoutMs": (Optional) The timeout in milliseconds to poll data from Kafka in Spark job
executors. The default value is 512.

• "numRetries": (Optional) The number of times to retry before failing to fetch Kafka offsets.
The default value is 3.

• "retryIntervalMs": (Optional) The time in milliseconds to wait before retrying to fetch Kafka
offsets. The default value is 10.

• "maxOffsetsPerTrigger": (Optional) The rate limit on the maximum number of offsets that
are processed per trigger interval. The specified total number of offsets is proportionally split
across topicPartitions of different volumes. The default value is null, which means that the
consumer reads all offsets until the known latest offset.

• "minPartitions": (Optional) The desired minimum number of partitions to read from Kafka.
The default value is null, which means that the number of spark partitions is equal to the
number of Kafka partitions.

• "includeHeaders": (Optional) Whether to include the Kafka headers. When the
option is set to "true", the data output will contain an additional column named
"glue_streaming_kafka_headers" with type Array[Struct(key: String, value:
String)]. The default value is "false". This option is available in AWS Glue version 3.0 or later.

• "schema": (Required when inferSchema set to false) The schema to use to process the
payload. If classification is avro the provided schema must be in the Avro schema format. If the
classification is not avro the provided schema must be in the DDL schema format.

The following are schema examples.

Example in DDL schema format

'column1' INT, 'column2' STRING , 'column3' FLOAT

Example in Avro schema format

{
"type":"array",
"items":
{
"type":"record",
"name":"test",
"fields":
[
 {

Features and optimizations 1693

AWS Glue User Guide

 "name":"_id",
 "type":"string"
 },
 {
 "name":"index",
 "type":
 [
 "int",
 "string",
 "float"
]
 }
]
}
}

• "inferSchema": (Optional) The default value is 'false'. If set to 'true', the schema will be
detected at runtime from the payload within foreachbatch.

• "avroSchema": (Deprecated) Parameter used to specify a schema of Avro data when Avro
format is used. This parameter is now deprecated. Use the schema parameter.

• "addRecordTimestamp": (Optional) When this option is set to 'true', the data output will
contain an additional column named "__src_timestamp" that indicates the time when the
corresponding record received by the topic. The default value is 'false'. This option is supported
in AWS Glue version 4.0 or later.

• "emitConsumerLagMetrics": (Optional) When the option is set to 'true', for each
batch, it will emit the metrics for the duration between the oldest record received
by the topic and the time it arrives in AWS Glue to CloudWatch. The metric's name is
"glue.driver.streaming.maxConsumerLagInMs". The default value is 'false'. This option is
supported in AWS Glue version 4.0 or later.

When writing, use the following connection options with "connectionType": "kafka":

• "connectionName" (Required) Name of the AWS Glue connection used to connect to the Kafka
cluster (similar to Kafka source).

• "topic" (Required) If a topic column exists then its value is used as the topic when writing the
given row to Kafka, unless the topic configuration option is set. That is, the topic configuration
option overrides the topic column.

Features and optimizations 1694

AWS Glue User Guide

• "partition" (Optional) If a valid partition number is specified, that partition will be used
when sending the record.

If no partition is specified but a key is present, a partition will be chosen using a hash of the key.

If neither key nor partition is present, a partition will be chosen based on sticky partitioning
those changes when at least batch.size bytes are produced to the partition.

• "key" (Optional) Used for partitioning if partition is null.

• "classification" (Optional) The file format used by the data in the record. We only support
JSON, CSV and Avro.

With Avro format, we can provide a custom avroSchema to serialize with, but note that this
needs to be provided on the source for deserializing as well. Else, by default it uses the Apache
AvroSchema for serializing.

Additionally, you can fine-tune the Kafka sink as required by updating the Kafka producer
configuration parameters. Note that there is no allow listing on connection options, all the key-
value pairs are persisted on the sink as is.

However, there is a small deny list of options that will not take effect. For more information, see
Kafka specific configurations.

Azure Cosmos DB connections

You can use AWS Glue for Spark to read from and write to existing containers in Azure Cosmos DB
using the NoSQL API in AWS Glue 4.0 and later versions. You can define what to read from Azure
Cosmos DB with a SQL query. You connect to Azure Cosmos DB using an Azure Cosmos DB Key
stored in AWS Secrets Manager through a AWS Glue connection.

For more information about Azure Cosmos DB for NoSQL, consult the Azure documentation.

Configuring Azure Cosmos DB connections

To connect to Azure Cosmos DB from AWS Glue, you will need to create and store your Azure
Cosmos DB Key in a AWS Secrets Manager secret, then associate that secret with a Azure Cosmos
DB AWS Glue connection.

Prerequisites:

Features and optimizations 1695

https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#producerconfigs
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/

AWS Glue User Guide

• In Azure, you will need to identify or generate an Azure Cosmos DB Key for use by AWS Glue,
cosmosKey. For more information, see Secure access to data in Azure Cosmos DB in the Azure
documentation.

To configure a connection to Azure Cosmos DB:

1. In AWS Secrets Manager, create a secret using your Azure Cosmos DB Key. To create a secret
in Secrets Manager, follow the tutorial available in Create an AWS Secrets Manager secret in
the AWS Secrets Manager documentation. After creating the secret, keep the Secret name,
secretName for the next step.

• When selecting Key/value pairs, create a pair for the key spark.cosmos.accountKey
with the value cosmosKey.

2. In the AWS Glue console, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for future use in AWS Glue.

• When selecting a Connection type, select Azure Cosmos DB.

• When selecting an AWS Secret, provide secretName.

After creating a AWS Glue Azure Cosmos DB connection, you will need to perform the following
steps before running your AWS Glue job:

• Grant the IAM role associated with your AWS Glue job permission to read secretName.

• In your AWS Glue job configuration, provide connectionName as an Additional network
connection.

Reading from Azure Cosmos DB for NoSQL containers

Prerequisites:

• A Azure Cosmos DB for NoSQL container you would like to read from. You will need identification
information for the container.

An Azure Cosmos for NoSQL container is identified by its database and container. You must
provide the database, cosmosDBName, and container, cosmosContainerName, names when
connecting to the Azure Cosmos for NoSQL API.

Features and optimizations 1696

https://learn.microsoft.com/en-us/azure/cosmos-db/secure-access-to-data?tabs=using-primary-key
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Glue User Guide

• A AWS Glue Azure Cosmos DB connection configured to provide auth and network location
information. To acquire this, complete the steps in the previous procedure, To configure
a connection to Azure Cosmos DB. You will need the name of the AWS Glue connection,
connectionName.

For example:

azurecosmos_read = glueContext.create_dynamic_frame.from_options(
 connection_type="azurecosmos",
 connection_options={
 "connectionName": connectionName,
 "spark.cosmos.database": cosmosDBName,
 "spark.cosmos.container": cosmosContainerName,
 }
)

You can also provide a SELECT SQL query, to filter the results returned to your DynamicFrame. You
will need to configure query.

For example:

azurecosmos_read_query = glueContext.create_dynamic_frame.from_options(
 connection_type="azurecosmos",
 connection_options={
 "connectionName": "connectionName",
 "spark.cosmos.database": cosmosDBName,
 "spark.cosmos.container": cosmosContainerName,
 "spark.cosmos.read.customQuery": "query"
 }
)

Writing to Azure Cosmos DB for NoSQL containers

This example writes information from an existing DynamicFrame, dynamicFrame to Azure Cosmos
DB. If the container already has information, AWS Glue will append data from your DynamicFrame.
If the information in the container has a different schema from the information you write, you will
run into errors.

Prerequisites:

Features and optimizations 1697

AWS Glue User Guide

• A Azure Cosmos DB table you would like to write to. You will need identification information for
the container. You must create the container before calling the connection method.

An Azure Cosmos for NoSQL container is identified by its database and container. You must
provide the database, cosmosDBName, and container, cosmosContainerName, names when
connecting to the Azure Cosmos for NoSQL API.

• A AWS Glue Azure Cosmos DB connection configured to provide auth and network location
information. To acquire this, complete the steps in the previous procedure, To configure
a connection to Azure Cosmos DB. You will need the name of the AWS Glue connection,
connectionName.

For example:

azurecosmos_write = glueContext.write_dynamic_frame.from_options(
 frame=dynamicFrame,
 connection_type="azurecosmos",
 connection_options={
 "connectionName": connectionName,
 "spark.cosmos.database": cosmosDBName,
 "spark.cosmos.container": cosmosContainerName
)

Azure Cosmos DB connection option reference

• connectionName — Required. Used for Read/Write. The name of a AWS Glue Azure Cosmos
DB connection configured to provide auth and network location information to your connection
method.

• spark.cosmos.database — Required. Used for Read/Write. Valid Values: database names.
Azure Cosmos DB for NoSQL database name.

• spark.cosmos.container — Required. Used for Read/Write. Valid Values: container names.
Azure Cosmos DB for NoSQL container name.

• spark.cosmos.read.customQuery — Used for Read. Valid Values: SELECT SQL queries.
Custom query to select documents to be read.

Azure SQL connections

You can use AWS Glue for Spark to read from and write to tables on Azure SQL Managed Instances
in AWS Glue 4.0 and later versions. You can define what to read from Azure SQL with a SQL query.

Features and optimizations 1698

AWS Glue User Guide

You connect to Azure SQL using user and password credentials stored in AWS Secrets Manager
through a AWS Glue connection.

For more information about Azure SQL, consult the Azure SQL documentation.

Configuring Azure SQL connections

To connect to Azure SQL from AWS Glue, you will need to create and store your Azure SQL
credentials in a AWS Secrets Manager secret, then associate that secret with a Azure SQL AWS Glue
connection.

To configure a connection to Azure SQL:

1. In AWS Secrets Manager, create a secret using your Azure SQL credentials. To create a secret
in Secrets Manager, follow the tutorial available in Create an AWS Secrets Manager secret in
the AWS Secrets Manager documentation. After creating the secret, keep the Secret name,
secretName for the next step.

• When selecting Key/value pairs, create a pair for the key user with the value
azuresqlUsername.

• When selecting Key/value pairs, create a pair for the key password with the value
azuresqlPassword.

2. In the AWS Glue console, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for future use in AWS Glue.

• When selecting a Connection type, select Azure SQL.

• When providing Azure SQL URL, provide a JDBC endpoint URL.

The URL must be in the following format:
jdbc:sqlserver://databaseServerName:databasePort;databaseName=azuresqlDBname;.

AWS Glue requires the following URL properties:

• databaseName – A default database in Azure SQL to connect to.

For more information about JDBC URLs for Azure SQL Managed Instances, see the Microsoft
documentation.

• When selecting an AWS Secret, provide secretName.

Features and optimizations 1699

https://azure.microsoft.com/en-us/products/azure-sql
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://learn.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=azuresqldb-mi-current
https://learn.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=azuresqldb-mi-current

AWS Glue User Guide

After creating a AWS Glue Azure SQL connection, you will need to perform the following steps
before running your AWS Glue job:

• Grant the IAM role associated with your AWS Glue job permission to read secretName.

• In your AWS Glue job configuration, provide connectionName as an Additional network
connection.

Reading from Azure SQL tables

Prerequisites:

• A Azure SQL table you would like to read from. You will need identification information for the
table, databaseName and tableIdentifier.

An Azure SQL table is identified by its database, schema and table name. You must provide
the database name and table name when connecting to Azure SQL. You also must provide
the schema if it is not the default, "public". Database is provided through a URL property in
connectionName , schema and table name through the dbtable.

• A AWS Glue Azure SQL connection configured to provide auth information. Complete the
steps in the previous procedure, To configure a connection to Azure SQL to configure your auth
information. You will need the name of the AWS Glue connection, connectionName.

For example:

azuresql_read_table = glueContext.create_dynamic_frame.from_options(
 connection_type="azuresql",
 connection_options={
 "connectionName": "connectionName",
 "dbtable": "tableIdentifier"
 }
)

You can also provide a SELECT SQL query, to filter the results returned to your DynamicFrame. You
will need to configure query.

For example:

azuresql_read_query = glueContext.create_dynamic_frame.from_options(
 connection_type="azuresql",

Features and optimizations 1700

AWS Glue User Guide

 connection_options={
 "connectionName": "connectionName",
 "query": "query"
 }
)

Writing to Azure SQL tables

This example writes information from an existing DynamicFrame, dynamicFrame to Azure SQL. If
the table already has information, AWS Glue will append data from your DynamicFrame.

Prerequisites:

• A Azure SQL table you would like to write to. You will need identification information for the
table, databaseName and tableIdentifier.

An Azure SQL table is identified by its database, schema and table name. You must provide
the database name and table name when connecting to Azure SQL. You also must provide
the schema if it is not the default, "public". Database is provided through a URL property in
connectionName , schema and table name through the dbtable.

• Azure SQL auth information. Complete the steps in the previous procedure, To configure a
connection to Azure SQL to configure your auth information. You will need the name of the AWS
Glue connection, connectionName.

For example:

azuresql_write = glueContext.write_dynamic_frame.from_options(
 connection_type="azuresql",
 connection_options={
 "connectionName": "connectionName",
 "dbtable": "tableIdentifier"
 }
)

Azure SQL connection option reference

• connectionName — Required. Used for Read/Write. The name of a AWS Glue Azure SQL
connection configured to provide auth information to your connection method.

• databaseName — Used for Read/Write. Valid Values: Azure SQL database names. The name of
the database in Azure SQL to connect to.

Features and optimizations 1701

AWS Glue User Guide

• dbtable — Required for writing, required for reading unless query is provided. Used for
Read/Write. Valid Values: Names of Azure SQL tables, or period separated schema/table name
combinations. Used to specify the table and schema that identify the table to connect to. The
default schema is "public". If your table is in a non-default schema, provide this information in
the form schemaName.tableName.

• query — Used for Read. A Transact-SQL SELECT query defining what should be retrieved when
reading from Azure SQL. For more information, see the Microsoft documentation.

BigQuery connections

You can use AWS Glue for Spark to read from and write to tables in Google BigQuery in AWS
Glue 4.0 and later versions. You can read from BigQuery with a Google SQL query. You connect to
BigQuery using credentials stored in AWS Secrets Manager through a AWS Glue connection.

For more information about Google BigQuery, see the Google Cloud BigQuery website.

Configuring BigQuery connections

To connect to Google BigQuery from AWS Glue, you will need to create and store your Google
Cloud Platform credentials in a AWS Secrets Manager secret, then associate that secret with a
Google BigQuery AWS Glue connection.

To configure a connection to BigQuery:

1. In Google Cloud Platform, create and identify relevant resources:

• Create or identify a GCP project containing BigQuery tables you would like to connect to.

• Enable the BigQuery API. For more information, see Use the BigQuery Storage Read API to
read table data .

2. In Google Cloud Platform, create and export service account credentials:

You can use the BigQuery credentials wizard to expedite this step: Create credentials.

To create a service account in GCP, follow the tutorial available in Create service accounts.

• When selecting project, select the project containing your BigQuery table.

• When selecting GCP IAM roles for your service account, add or create a role that would grant
appropriate permissions to run BigQuery jobs to read, write or create BigQuery tables.

Features and optimizations 1702

https://learn.microsoft.com/en-us/sql/t-sql/queries/select-transact-sql?view=azuresqldb-mi-current
https://cloud.google.com/bigquery
https://cloud.google.com/bigquery/docs/reference/storage/#enabling_the_api
https://cloud.google.com/bigquery/docs/reference/storage/#enabling_the_api
https://console.cloud.google.com/apis/credentials/wizard?api=bigquery.googleapis.com
https://cloud.google.com/iam/docs/service-accounts-create

AWS Glue User Guide

To create credentials for your service account, follow the tutorial available in Create a service
account key.

• When selecting key type, select JSON.

You should now have downloaded a JSON file with credentials for your service account. It
should look similar to the following:

{
 "type": "service_account",
 "project_id": "*****",
 "private_key_id": "*****",
 "private_key": "*****",
 "client_email": "*****",
 "client_id": "*****",
 "auth_uri": "https://accounts.google.com/o/oauth2/auth",
 "token_uri": "https://oauth2.googleapis.com/token",
 "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
 "client_x509_cert_url": "*****",
 "universe_domain": "googleapis.com"
}

3. base64 encode your downloaded credentials file. On an AWS CloudShell session or similar, you
can do this from the command line by running cat credentialsFile.json | base64 -w
0. Retain the output of this command, credentialString.

4. In AWS Secrets Manager, create a secret using your Google Cloud Platform credentials. To
create a secret in Secrets Manager, follow the tutorial available in Create an AWS Secrets
Manager secret in the AWS Secrets Manager documentation. After creating the secret, keep
the Secret name, secretName for the next step.

• When selecting Key/value pairs, create a pair for the key credentials with the value
credentialString.

5. In the AWS Glue Data Catalog, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for the next step.

• When selecting a Connection type, select Google BigQuery.

• When selecting an AWS Secret, provide secretName.

Features and optimizations 1703

https://cloud.google.com/iam/docs/keys-create-delete#creating
https://cloud.google.com/iam/docs/keys-create-delete#creating
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Glue User Guide

6. Grant the IAM role associated with your AWS Glue job permission to read secretName.

7. In your AWS Glue job configuration, provide connectionName as an Additional network
connection.

Reading from BigQuery tables

Prerequisites:

• A BigQuery table you would like to read from. You will need the BigQuery table and dataset
names, in the form [dataset].[table]. Let's call this tableName.

• The billing project for the BigQuery table. You will need the name of the project,
parentProject. If there is no billing parent project, use the project containing the table.

• BigQuery auth information. Complete the steps To manage your connection credentials with AWS
Glue to configure your auth information. You will need the name of the AWS Glue connection,
connectionName.

For example:

bigquery_read = glueContext.create_dynamic_frame.from_options(
 connection_type="bigquery",
 connection_options={
 "connectionName": "connectionName",
 "parentProject": "parentProject",
 "sourceType": "table",
 "table": "tableName",
 }

You can also provide a query, to filter the results returned to your DynamicFrame. You will need to
configure query, sourceType, viewsEnabled and materializationDataset.

For example:

Additional prerequisites:

You will need to create or identify a BigQuery dataset, materializationDataset, where
BigQuery can write materialized views for your queries.

Features and optimizations 1704

AWS Glue User Guide

You will need to grant appropriate GCP IAM permissions to your service account to create tables in
materializationDataset.

glueContext.create_dynamic_frame.from_options(
 connection_type="bigquery",
 connection_options={
 "connectionName": "connectionName",
 "materializationDataset": materializationDataset,
 "parentProject": "parentProject",
 "viewsEnabled": "true",
 "sourceType": "query",
 "query": "select * from bqtest.test"
 }
)

Writing to BigQuery tables

This example writes directly to the BigQuery service. BigQuery also supports the "indirect" writing
method. For more information about configuring indirect writes, see the section called “Using
indirect write with Google BigQuery”.

Prerequisites:

• A BigQuery table you would like to write to. You will need the BigQuery table and dataset
names, in the form [dataset].[table]. You can also provide a new table name that will
automatically be created. Let's call this tableName.

• The billing project for the BigQuery table. You will need the name of the project,
parentProject. If there is no billing parent project, use the project containing the table.

• BigQuery auth information. Complete the steps To manage your connection credentials with AWS
Glue to configure your auth information. You will need the name of the AWS Glue connection,
connectionName.

For example:

bigquery_write = glueContext.write_dynamic_frame.from_options(
 frame=frameToWrite,
 connection_type="bigquery",
 connection_options={
 "connectionName": "connectionName",

Features and optimizations 1705

AWS Glue User Guide

 "parentProject": "parentProject",
 "writeMethod": "direct",
 "table": "tableName",
 }
)

BigQuery connection option reference

• project — Default: Google Cloud service account default. Used for Read/Write. The name of a
Google Cloud project associated with your table.

• table — (Required) Used for Read/Write. The name of your BigQuery table in the format
[[project:]dataset.].

• dataset — Required when not defined through the table option. Used for Read/Write. The
name of the dataset containing your BigQuery table.

• parentProject — Default: Google Cloud service account default. Used for Read/Write. The
name of a Google Cloud project associated with project used for billing.

• sourceType — Used for Read. Required when reading. Valid Values: table, query Informs AWS
Glue of whether you will read by table or by query.

• materializationDataset — Used for Read. Valid Values: strings. The name of a BigQuery
dataset used to store materializations for views.

• viewsEnabled — Used for Read. Default: false. Valid Values: true, false. Configures whether
BigQuery will use views.

• query — Used for Read. Used when viewsEnabled is true. A GoogleSQL DQL query.

• temporaryGcsBucket — Used for Write. Required when writeMethod is set to default
(indirect). Name of a Google Cloud Storage bucket used to store an intermediate form of your
data while writing to BigQuery.

• writeMethod — Default: indirect. Valid Values: direct, indirect. Used for Write. Specifies
the method used to write your data.

• If set to direct, your connector will write using the BigQuery Storage Write API.

• If set to indirect, you connector will write to Google Cloud Storage, then transfer it to
BigQuery using a load operation. Your Google Cloud service account will need appropriate GCS
permissions.

Features and optimizations 1706

AWS Glue User Guide

Using indirect write with Google BigQuery

This example uses indirect write, which writes data to Google Cloud Storage and copies it to
Google BigQuery.

Prerequisites:

You will need a temporary Google Cloud Storage bucket, temporaryBucket.

The GCP IAM role for AWS Glue's GCP service account will need appropriate GCS permissions to
access temporaryBucket.

Additional Configuration:

To configure indirect write with BigQuery:

1. Assess the section called “Configuring BigQuery” and locate or redownload your GCP
credentials JSON file. Identify secretName, the AWS Secrets Manager secret for the Google
BigQuery AWS Glue connection used in your job.

2. Upload your credentials JSON file to an appropriately secure Amazon S3 location. Retain the
path to the file, s3secretpath for future steps.

3. Edit secretName, adding the
spark.hadoop.google.cloud.auth.service.account.json.keyfile key. Set the
value to s3secretpath.

4. Grant your AWS Glue job Amazon S3 IAM permissions to access s3secretpath.

You can now provide your temporary GCS bucket location to your write method. You do not need
to provide writeMethod, as indirect is historically the default.

bigquery_write = glueContext.write_dynamic_frame.from_options(
 frame=frameToWrite,
 connection_type="bigquery",
 connection_options={
 "connectionName": "connectionName",
 "parentProject": "parentProject",
 "temporaryGcsBucket": "temporaryBucket",
 "table": "tableName",
 }
)

Features and optimizations 1707

AWS Glue User Guide

JDBC connections

Certain, typically relational, database types support connecting through the JDBC standard. For
more information about JDBC, see the Java JDBC API documentation. AWS Glue natively supports
connecting to certain databases through their JDBC connectors - the JDBC libraries are provided in
AWS Glue Spark jobs. When connecting to these database types using AWS Glue libraries, you have
access to a standard set of options.

The JDBC connectionType values include the following:

• "connectionType": "sqlserver": Designates a connection to a Microsoft SQL Server
database.

• "connectionType": "mysql": Designates a connection to a MySQL database.

• "connectionType": "oracle": Designates a connection to an Oracle database.

• "connectionType": "postgresql": Designates a connection to a PostgreSQL database.

• "connectionType": "redshift": Designates a connection to an Amazon Redshift database.
For more information, see the section called “Redshift connections”.

The following table lists the JDBC driver versions that AWS Glue supports.

Product JDBC driver versions
for Glue 4.0

JDBC driver versions
for Glue 3.0

JDBC driver versions
for Glue 0.9, 1.0, 2.0

Microsoft SQL Server 9.4.0 7.x 6.x

MySQL 8.0.23 8.0.23 5.1

Oracle Database 21.7 21.1 11.2

PostgreSQL 42.3.6 42.2.18 42.1.x

MongoDB 4.7.2 4.0.0 2.0.0

Amazon Redshift * redshift-jdbc42-2.
1.0.16

redshift-jdbc41-1.
2.12.1017

redshift-jdbc41-1.
2.12.1017

* For the Amazon Redshift connection type, all other option name/value pairs that are included in
connection options for a JDBC connection, including formatting options, are passed directly to the

Features and optimizations 1708

https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

AWS Glue User Guide

underlying SparkSQL DataSource. In AWS Glue with Spark jobs in AWS Glue 4.0 and later versions,
the AWS Glue native connector for Amazon Redshift uses the Amazon Redshift integration for
Apache Spark. For more information see Amazon Redshift integration for Apache Spark. In
previous versions, see Amazon Redshift data source for Spark.

To configure your Amazon VPC to connect to Amazon RDS data stores using JDBC, refer to the
section called “Setting up Amazon VPC to connect to Amazon RDS data stores”.

Note

AWS Glue jobs are only associated with one subnet during a run. This may impact your
ability to connect to multiple data sources through the same job. This behavior is not
limited to JDBC sources.

Topics

• JDBC connection option reference

• Use sampleQuery

• Use custom JDBC driver

• Reading from JDBC tables in parallel

• Setting up Amazon VPC for JDBC connections to Amazon RDS data stores from AWS Glue

JDBC connection option reference

If you already have a JDBC AWS Glue connection defined, you can reuse the configuration
properties defined in it, such as: url, user and password; so you don't have to specify them in the
code as connection options. This feature is available in AWS Glue 3.0 and later versions. To do so,
use the following connection properties:

• "useConnectionProperties": Set it to "true" to indicate you want to use the configuration
from a connection.

• "connectionName": Enter the connection name to retrieve the configuration from, the
connection must be defined in the same region as the job.

Use these connection options with JDBC connections:

• "url": (Required) The JDBC URL for the database.

Features and optimizations 1709

https://docs.aws.amazon.com/redshift/latest/mgmt/spark-redshift-connector.html
https://github.com/databricks/spark-redshift

AWS Glue User Guide

• "dbtable": (Required) The database table to read from. For JDBC data stores that support
schemas within a database, specify schema.table-name. If a schema is not provided, then the
default "public" schema is used.

• "user": (Required) The user name to use when connecting.

• "password": (Required) The password to use when connecting.

• (Optional) The following options allow you to supply a custom JDBC driver. Use these options if
you must use a driver that AWS Glue does not natively support.

ETL jobs can use different JDBC driver versions for the data source and target, even if the source
and target are the same database product. This allows you to migrate data between source and
target databases with different versions. To use these options, you must first upload the JAR file
of the JDBC driver to Amazon S3.

• "customJdbcDriverS3Path": The Amazon S3 path of the custom JDBC driver.

• "customJdbcDriverClassName": The class name of JDBC driver.

• "bulkSize": (Optional) Used to configure parallel inserts for speeding up bulk loads into JDBC
targets. Specify an integer value for the degree of parallelism to use when writing or inserting
data. This option is helpful for improving the performance of writes into databases such as the
Arch User Repository (AUR).

• "hashfield" (Optional) A string, used to specify the name of a column in the JDBC table to
be used to divide the data into partitions when reading from JDBC tables in parallel. Provide
"hashfield" OR "hashexpression". For more information, see the section called “Reading from
JDBC in parallel”.

• "hashexpression" (Optional) A SQL select clause returning a whole number. Used to divide
the data in a JDBC table into partitions when reading from JDBC tables in parallel. Provide
"hashfield" OR "hashexpression". For more information, see the section called “Reading from
JDBC in parallel”.

• "hashpartitions" (Optional) A positive integer. Used to specify the number of parallel reads
of the JDBC table when reading from JDBC tables in parallel. Default: 7. For more information,
see the section called “Reading from JDBC in parallel”.

• "sampleQuery": (Optional) A custom SQL query statement. Used to specify a subset of
information in a table to retrieve a sample of the table contents. When configured without
regard to your data, it can be less efficient than DynamicFrame methods, causing timeouts or
out of memory errors. For more information, see the section called “Use sampleQuery”.

Features and optimizations 1710

AWS Glue User Guide

• "enablePartitioningForSampleQuery": (Optional) A boolean. Default: false. Used to
enable reading from JDBC tables in parallel when specifying sampleQuery. If set to true,
sampleQuery must end with "where" or "and" for AWS Glue to append partitioning
conditions. For more information, see the section called “Use sampleQuery”.

• "sampleSize": (Optional) A positive integer. Limits the number of rows returned by the sample
query. Works only when enablePartitioningForSampleQuery is true. If partitioning is not
enabled, you should instead directly add "limit x" in the sampleQuery to limit the size. For
more information, see the section called “Use sampleQuery”.

Use sampleQuery

This section explains how to use sampleQuery, sampleSize and
enablePartitioningForSampleQuery.

sampleQuery can be an efficient way to sample a few rows of your dataset. By default, the
query is run by a single executor. When configured without regard to your data, it can be less
efficient than DynamicFrame methods, causing timeouts or out of memory errors. Running SQL
on the underlying database as part of your ETL pipeline is generally only needed for performance
purposes. If you are trying to preview a few rows of your dataset, consider using the section called
“show”. If you are trying to transform your dataset using SQL, consider using the section called
“toDF” to define a SparkSQL transform against your data in a DataFrame form.

While your query may manipulate a variety of tables, dbtable remains required.

Using sampleQuery to retrieve a sample of your table

When using default sampleQuery behavior to retrieve a sample of your data, AWS Glue does not
expect substantial throughput, so it runs your query on a single executor. In order to limit the
data you provide and not cause performance problems, we suggest you provide SQL with a LIMIT
clause.

Example Use sampleQuery without partitioning

The following code example shows how to use sampleQuery without partitioning.

//A full sql query statement.
val query = "select name from $tableName where age > 0 limit 1"
val connectionOptions = JsonOptions(Map(
 "url" -> url,
 "dbtable" -> tableName,

Features and optimizations 1711

AWS Glue User Guide

 "user" -> user,
 "password" -> password,
 "sampleQuery" -> query))
val dyf = glueContext.getSource("mysql", connectionOptions)
 .getDynamicFrame()

Using sampleQuery against larger datasets

If you're reading a large dataset, you might need to enable JDBC partitioning to query a table
in parallel. For more information, see the section called “Reading from JDBC in parallel”. To use
sampleQuery with JDBC partitioning, set enablePartitioningForSampleQuery to true.
Enabling this feature requires you to make some changes to your sampleQuery.

When using JDBC partitioning with sampleQuery, your query must end with "where" or "and" for
AWS Glue to append partitioning conditions.

If you would like to limit the results of your sampleQuery when reading from JDBC tables in
parallel, set the "sampleSize" parameter rather than specifying a LIMIT clause.

Example Use sampleQuery with JDBC partitioning

The following code example shows how to use sampleQuery with JDBC partitioning.

//note that the query should end with "where" or "and" if use with JDBC partitioning.
val query = "select name from $tableName where age > 0 and"

//Enable JDBC partitioning by setting hashfield.
//to use sampleQuery with partitioning, set enablePartitioningForSampleQuery.
//use sampleSize to limit the size of returned data.
val connectionOptions = JsonOptions(Map(
 "url" -> url,
 "dbtable" -> tableName,
 "user" -> user,
 "password" -> password,
 "hashfield" -> primaryKey,
 "sampleQuery" -> query,
 "enablePartitioningForSampleQuery" -> true,
 "sampleSize" -> "1"))
val dyf = glueContext.getSource("mysql", connectionOptions)
 .getDynamicFrame()

Notes and Restrictions:

Features and optimizations 1712

AWS Glue User Guide

Sample queries cannot be used together with job bookmarks. The bookmark state will be ignored
when configuration for both are provided.

Use custom JDBC driver

The following code examples show how to read from and write to JDBC databases with custom
JDBC drivers. They demonstrate reading from one version of a database product, and writing to a
later version of the same product.

Python

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext, SparkConf
from awsglue.context import GlueContext
from awsglue.job import Job
import time
from pyspark.sql.types import StructType, StructField, IntegerType, StringType

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session

Construct JDBC connection options
connection_mysql5_options = {
 "url": "jdbc:mysql://<jdbc-host-name>:3306/db",
 "dbtable": "test",
 "user": "admin",
 "password": "pwd"}

connection_mysql8_options = {
 "url": "jdbc:mysql://<jdbc-host-name>:3306/db",
 "dbtable": "test",
 "user": "admin",
 "password": "pwd",
 "customJdbcDriverS3Path": "s3://DOC-EXAMPLE-BUCKET/mysql-connector-
java-8.0.17.jar",
 "customJdbcDriverClassName": "com.mysql.cj.jdbc.Driver"}

connection_oracle11_options = {
 "url": "jdbc:oracle:thin:@//<jdbc-host-name>:1521/ORCL",
 "dbtable": "test",

Features and optimizations 1713

AWS Glue User Guide

 "user": "admin",
 "password": "pwd"}

connection_oracle18_options = {
 "url": "jdbc:oracle:thin:@//<jdbc-host-name>:1521/ORCL",
 "dbtable": "test",
 "user": "admin",
 "password": "pwd",
 "customJdbcDriverS3Path": "s3://DOC-EXAMPLE-BUCKET/ojdbc10.jar",
 "customJdbcDriverClassName": "oracle.jdbc.OracleDriver"}

Read from JDBC databases with custom driver
df_mysql8 = glueContext.create_dynamic_frame.from_options(connection_type="mysql",

 connection_options=connection_mysql8_options)

Read DynamicFrame from MySQL 5 and write to MySQL 8
df_mysql5 = glueContext.create_dynamic_frame.from_options(connection_type="mysql",

 connection_options=connection_mysql5_options)
glueContext.write_from_options(frame_or_dfc=df_mysql5, connection_type="mysql",
 connection_options=connection_mysql8_options)

Read DynamicFrame from Oracle 11 and write to Oracle 18
df_oracle11 =
 glueContext.create_dynamic_frame.from_options(connection_type="oracle",

 connection_options=connection_oracle11_options)
glueContext.write_from_options(frame_or_dfc=df_oracle11, connection_type="oracle",
 connection_options=connection_oracle18_options)

Scala

import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.MappingSpec
import com.amazonaws.services.glue.errors.CallSite
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.DynamicFrame
import org.apache.spark.SparkContext
import scala.collection.JavaConverters._

Features and optimizations 1714

AWS Glue User Guide

object GlueApp {
 val MYSQL_5_URI: String = "jdbc:mysql://<jdbc-host-name>:3306/db"
 val MYSQL_8_URI: String = "jdbc:mysql://<jdbc-host-name>:3306/db"
 val ORACLE_11_URI: String = "jdbc:oracle:thin:@//<jdbc-host-name>:1521/ORCL"
 val ORACLE_18_URI: String = "jdbc:oracle:thin:@//<jdbc-host-name>:1521/ORCL"

 // Construct JDBC connection options
 lazy val mysql5JsonOption = jsonOptions(MYSQL_5_URI)
 lazy val mysql8JsonOption = customJDBCDriverJsonOptions(MYSQL_8_URI, "s3://DOC-
EXAMPLE-BUCKET/mysql-connector-java-8.0.17.jar", "com.mysql.cj.jdbc.Driver")
 lazy val oracle11JsonOption = jsonOptions(ORACLE_11_URI)
 lazy val oracle18JsonOption = customJDBCDriverJsonOptions(ORACLE_18_URI, "s3://
DOC-EXAMPLE-BUCKET/ojdbc10.jar", "oracle.jdbc.OracleDriver")

 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)

 // Read from JDBC database with custom driver
 val df_mysql8: DynamicFrame = glueContext.getSource("mysql",
 mysql8JsonOption).getDynamicFrame()

 // Read DynamicFrame from MySQL 5 and write to MySQL 8
 val df_mysql5: DynamicFrame = glueContext.getSource("mysql",
 mysql5JsonOption).getDynamicFrame()
 glueContext.getSink("mysql", mysql8JsonOption).writeDynamicFrame(df_mysql5)

 // Read DynamicFrame from Oracle 11 and write to Oracle 18
 val df_oracle11: DynamicFrame = glueContext.getSource("oracle",
 oracle11JsonOption).getDynamicFrame()
 glueContext.getSink("oracle", oracle18JsonOption).writeDynamicFrame(df_oracle11)

 Job.commit()
 }

 private def jsonOptions(url: String): JsonOptions = {
 new JsonOptions(
 s"""{"url": "${url}",
 |"dbtable":"test",
 |"user": "admin",

Features and optimizations 1715

AWS Glue User Guide

 |"password": "pwd"}""".stripMargin)
 }

 private def customJDBCDriverJsonOptions(url: String, customJdbcDriverS3Path:
 String, customJdbcDriverClassName: String): JsonOptions = {
 new JsonOptions(
 s"""{"url": "${url}",
 |"dbtable":"test",
 |"user": "admin",
 |"password": "pwd",
 |"customJdbcDriverS3Path": "${customJdbcDriverS3Path}",
 |"customJdbcDriverClassName" :
 "${customJdbcDriverClassName}"}""".stripMargin)
 }
}

Reading from JDBC tables in parallel

You can set properties of your JDBC table to enable AWS Glue to read data in parallel. When you
set certain properties, you instruct AWS Glue to run parallel SQL queries against logical partitions
of your data. You can control partitioning by setting a hash field or a hash expression. You can also
control the number of parallel reads that are used to access your data.

Reading from JDBC tables in parallel is an optimization technique that may improve performance.
For more information about the process of identifying when this technique is appropriate, consult
Reduce the amount of data scan in the Best practices for performance tuning AWS Glue for Apache
Spark jobs guide on AWS Prescriptive Guidance.

To enable parallel reads, you can set key-value pairs in the parameters field of your table
structure. Use JSON notation to set a value for the parameter field of your table. For more
information about editing the properties of a table, see Viewing and editing table details. You
can also enable parallel reads when you call the ETL (extract, transform, and load) methods
create_dynamic_frame_from_options and create_dynamic_frame_from_catalog. For
more information about specifying options in these methods, see from_options and from_catalog.

You can use this method for JDBC tables, that is, most tables whose base data is a JDBC data store.
These properties are ignored when reading Amazon Redshift and Amazon S3 tables.

Features and optimizations 1716

https://docs.aws.amazon.com/prescriptive-guidance/latest/tuning-aws-glue-for-apache-spark/parallelize-tasks.html

AWS Glue User Guide

hashfield

Set hashfield to the name of a column in the JDBC table to be used to divide the data
into partitions. For best results, this column should have an even distribution of values to
spread the data between partitions. This column can be of any data type. AWS Glue generates
non-overlapping queries that run in parallel to read the data partitioned by this column. For
example, if your data is evenly distributed by month, you can use the month column to read
each month of data in parallel.

 'hashfield': 'month'

AWS Glue creates a query to hash the field value to a partition number and runs the query
for all partitions in parallel. To use your own query to partition a table read, provide a
hashexpression instead of a hashfield.

hashexpression

Set hashexpression to an SQL expression (conforming to the JDBC database engine
grammar) that returns a whole number. A simple expression is the name of any numeric column
in the table. AWS Glue generates SQL queries to read the JDBC data in parallel using the
hashexpression in the WHERE clause to partition data.

For example, use the numeric column customerID to read data partitioned by a customer
number.

 'hashexpression': 'customerID'

To have AWS Glue control the partitioning, provide a hashfield instead of a
hashexpression.

hashpartitions

Set hashpartitions to the number of parallel reads of the JDBC table. If this property is not
set, the default value is 7.

For example, set the number of parallel reads to 5 so that AWS Glue reads your data with five
queries (or fewer).

Features and optimizations 1717

AWS Glue User Guide

 'hashpartitions': '5'

Setting up Amazon VPC for JDBC connections to Amazon RDS data stores from AWS Glue

When using JDBC to connect to databases in Amazon RDS, you will need to perform additional
setup. To enable AWS Glue components to communicate with Amazon RDS, you must set up access
to your Amazon RDS data stores in Amazon VPC. To enable AWS Glue to communicate between
its components, specify a security group with a self-referencing inbound rule for all TCP ports. By
creating a self-referencing rule, you can restrict the source to the same security group in the VPC. A
self-referencing rule will not open the VPC to all networks. The default security group for your VPC
might already have a self-referencing inbound rule for ALL Traffic.

To set up access between AWS Glue and Amazon RDS data stores

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the Amazon RDS console, identify the security group(s) used to control access to your
Amazon RDS database.

In the left navigation pane, choose Databases, then select the instance you would like to
connect to from the list in the main pane.

In the database detail page, find VPC security groups on the Connectivity & security tab.

3. Based on your network architecture, identify which associated security group is best to modify
to allow access for the AWS Glue service. Save its name, database-security-group for
future reference. If there is no appropriate security group, follow the directions to Provide
access to your DB instance in your VPC by creating a security group in the Amazon RDS
documentation.

4. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

5. In the Amazon VPC console, identify how to update database-security-group.

In the left navigation pane, choose Security groups, then select database-security-group
from the list in the main pane.

Features and optimizations 1718

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SettingUp.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SettingUp.html
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

AWS Glue User Guide

6. Identify the security group ID for database-security-group, database-sg-id. Save it for
future reference.

In the security group detail page, find Security group ID.

7. Alter the inbound rules for database-security-group, add a self-referencing rule to allow
AWS Glue components to communicate. Specifically, add or confirm that there is a rule where
Type is All TCP, Protocol is TCP, Port Range includes all ports, and Source is database-
sg-id. Verify that the security group you have entered for Source is the same as the security
group you are editing.

In the security group detail page, select Edit inbound rules.

The inbound rule looks similar to this:

Type Protocol Port range Source

All TCP TCP 0–65535 database-sg-id

8. Add rules for outbound traffic.

In the security group detail page, select Edit outbound rules.

If you security group allows all outbound traffic, you do not need separate rules. For example:

Type Protocol Port range Destination

All Traffic ALL ALL 0.0.0.0/0

If your network architecture is designed for you to restrict outbound traffic, create the
following outbound rules:

Create a self-referencing rule where Type is All TCP, Protocol is TCP, Port Range includes all
ports, and Destination is database-sg-id. Verify that the security group you have entered
for Destination is the same as the security group you are editing.

If using an Amazon S3 VPC endpoint, add an HTTPS rule to allow traffic from the VPC to
Amazon S3. Create a rule where Type is HTTPS, Protocol is TCP, Port Range is 443 and
Destination is the ID of the managed prefix list for the Amazon S3 gateway endpoint, s3-

Features and optimizations 1719

AWS Glue User Guide

prefix-list-id. For more information about prefix lists and Amazon S3 gateway endpoints,
see Gateway endpoints for Amazon S3 in the Amazon VPC documentation.

For example:

Type Protocol Port range Destination

All TCP TCP 0–65535 database-sg-id

HTTPS TCP 443 s3-prefix-
list-id

MongoDB connections

You can use AWS Glue for Spark to read from and write to tables in MongoDB and MongoDB Atlas
in AWS Glue 4.0 and later versions. You can connect to MongoDB using username and password
credentials credentials stored in AWS Secrets Manager through a AWS Glue connection.

For more information about MongoDB, consult the MongoDB documentation.

Configuring MongoDB connections

To connect to MongoDB from AWS Glue, you will need your MongoDB credentials, mongodbUser
and mongodbPass.

To connect to MongoDB from AWS Glue, you may need some prerequisites:

• If your MongoDB instance is in an Amazon VPC, configure Amazon VPC to allow your AWS Glue
job to communicate with the MongoDB instance without traffic traversing the public internet.

In Amazon VPC, identify or create a VPC, Subnet and Security group that AWS Glue will use
while executing the job. Additionally, you need to ensure Amazon VPC is configured to permit
network traffic between your MongoDB instance and this location. Based on your network
layout, this may require changes to security group rules, Network ACLs, NAT Gateways and
Peering connections.

You can then proceed to configure AWS Glue for use with MongoDB.

Features and optimizations 1720

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-s3.html
https://www.mongodb.com/docs/

AWS Glue User Guide

To configure a connection to MongoDB:

1. Optionally, in AWS Secrets Manager, create a secret using your MongoDB credentials. To create
a secret in Secrets Manager, follow the tutorial available in Create an AWS Secrets Manager
secret in the AWS Secrets Manager documentation. After creating the secret, keep the Secret
name, secretName for the next step.

• When selecting Key/value pairs, create a pair for the key username with the value
mongodbUser.

When selecting Key/value pairs, create a pair for the key password with the value
mongodbPass.

2. In the AWS Glue console, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for future use in AWS Glue.

• When selecting a Connection type, select MongoDB or MongoDB Atlas.

• When selecting MongoDB URL or MongoDB Atlas URL, provide the hostname of your
MongoDB instance.

A MongoDB URL is provided in the format
mongodb://mongoHost:mongoPort/mongoDBname.

A MongoDB Atlas URL is provided in the format mongodb
+srv://mongoHost:mongoPort/mongoDBname.

Providing the default database for the connection, mongoDBname is optional.

• If you chose to create an Secrets Manager secret, choose the AWS Secrets Manager
Credential type.

Then, in AWS Secret provide secretName.

• If you choose to provide Username and password, provide mongodbUser and
mongodbPass.

3. In the following situations, you may require additional configuration:

• For MongoDB instances hosted on AWS in an Amazon VPC

Features and optimizations 1721

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Glue User Guide

• You will need to provide Amazon VPC connection information to the AWS Glue connection
that defines your MongoDB security credentials. When creating or updating your
connection, set VPC, Subnet and Security groups in Network options.

After creating a AWS Glue MongoDB connection, you will need to perform the following actions
before calling your connection method:

• If you chose to create an Secrets Manager secret, grant the IAM role associated with your AWS
Glue job permission to read secretName.

• In your AWS Glue job configuration, provide connectionName as an Additional network
connection.

To use your AWS Glue MongoDB connection in AWS Glue for Spark, provide the connectionName
option in your connection method call. Alternatively, you can follow the steps in the section called
“Integrating with MongoDB” to use the connection in conjunction with the AWS Glue Data Catalog.

Reading from MongoDB using a AWS Glue connection

Prerequisites:

• A MongoDB collection you would like to read from. You will need identification information for
the collection.

A MongoDB collection is identified by a database name and a collection name, mongodbName,
mongodbCollection.

• A AWS Glue MongoDB connection configured to provide auth information. Complete the
steps in the previous procedure, To configure a connection to MongoDB to configure your auth
information. You will need the name of the AWS Glue connection, connectionName.

For example:

mongodb_read = glueContext.create_dynamic_frame.from_options(
 connection_type="mongodb",
 connection_options={
 "connectionName": "connectionName",
 "database": "mongodbName",
 "collection": "mongodbCollection",

Features and optimizations 1722

AWS Glue User Guide

 "partitioner":
 "com.mongodb.spark.sql.connector.read.partitioner.SinglePartitionPartitioner",
 "partitionerOptions.partitionSizeMB": "10",
 "partitionerOptions.partitionKey": "_id",
 "disableUpdateUri": "false",
 }
)

Writing to MongoDB tables

This example writes information from an existing DynamicFrame, dynamicFrame to MongoDB.

Prerequisites:

• A MongoDB collection you would like to write to. You will need identification information for the
collection.

A MongoDB collection is identified by a database name and a collection name, mongodbName,
mongodbCollection.

• A AWS Glue MongoDB connection configured to provide auth information. Complete the
steps in the previous procedure, To configure a connection to MongoDB to configure your auth
information. You will need the name of the AWS Glue connection, connectionName.

For example:

glueContext.write_dynamic_frame.from_options(
 frame=dynamicFrame,
 connection_type="mongodb",
 connection_options={
 "connectionName": "connectionName",
 "database": "mongodbName",
 "collection": "mongodbCollection",
 "disableUpdateUri": "false",
 "retryWrites": "false",
 },
)

Reading and writing to MongoDB tables

This example writes information from an existing DynamicFrame, dynamicFrame to MongoDB.

Prerequisites:

Features and optimizations 1723

AWS Glue User Guide

• A MongoDB collection you would like to read from. You will need identification information for
the collection.

A MongoDB collection you would like to write to. You will need identification information for the
collection.

A MongoDB collection is identified by a database name and a collection name, mongodbName,
mongodbCollection.

• MongoDB auth information, mongodbUser and mongodbPassword.

For example:

Python

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext, SparkConf
from awsglue.context import GlueContext
from awsglue.job import Job
import time

@params: [JOB_NAME]
args = getResolvedOptions(sys.argv, ['JOB_NAME'])

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session

job = Job(glueContext)
job.init(args['JOB_NAME'], args)

output_path = "s3://some_bucket/output/" + str(time.time()) + "/"
mongo_uri = "mongodb://<mongo-instanced-ip-address>:27017"
mongo_ssl_uri = "mongodb://<mongo-instanced-ip-address>:27017"
write_uri = "mongodb://<mongo-instanced-ip-address>:27017"

read_mongo_options = {
 "uri": mongo_uri,
 "database": "mongodbName",
 "collection": "mongodbCollection",
 "username": "mongodbUsername",

Features and optimizations 1724

AWS Glue User Guide

 "password": "mongodbPassword",
 "partitioner": "MongoSamplePartitioner",
 "partitionerOptions.partitionSizeMB": "10",
 "partitionerOptions.partitionKey": "_id"}

ssl_mongo_options = {
 "uri": mongo_ssl_uri,
 "database": "mongodbName",
 "collection": "mongodbCollection",
 "ssl": "true",
 "ssl.domain_match": "false"
}

write_mongo_options = {
 "uri": write_uri,
 "database": "mongodbName",
 "collection": "mongodbCollection",
 "username": "mongodbUsername",
 "password": "mongodbPassword",
}

Get DynamicFrame from MongoDB
dynamic_frame =
 glueContext.create_dynamic_frame.from_options(connection_type="mongodb",

 connection_options=read_mongo_options)

Write DynamicFrame to MongoDB
glueContext.write_dynamic_frame.from_options(dynamicFrame,
 connection_type="mongodb", connection_options=write_mongo_options)

job.commit()

Scala

import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.MappingSpec
import com.amazonaws.services.glue.errors.CallSite
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.DynamicFrame
import org.apache.spark.SparkContext

Features and optimizations 1725

AWS Glue User Guide

import scala.collection.JavaConverters._

object GlueApp {
 val DEFAULT_URI: String = "mongodb://<mongo-instanced-ip-address>:27017"
 val WRITE_URI: String = "mongodb://<mongo-instanced-ip-address>:27017"
 lazy val defaultJsonOption = jsonOptions(DEFAULT_URI)
 lazy val writeJsonOption = jsonOptions(WRITE_URI)
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)

 // Get DynamicFrame from MongoDB
 val dynamicFrame: DynamicFrame = glueContext.getSource("mongodb",
 defaultJsonOption).getDynamicFrame()

 // Write DynamicFrame to MongoDB
 glueContext.getSink("mongodb", writeJsonOption).writeDynamicFrame(dynamicFrame)

 Job.commit()
 }

 private def jsonOptions(uri: String): JsonOptions = {
 new JsonOptions(
 s"""{"uri": "${uri}",
 |"database":"mongodbName",
 |"collection":"mongodbCollection",
 |"username": "mongodbUsername",
 |"password": "mongodbPassword",
 |"ssl":"true",
 |"ssl.domain_match":"false",
 |"partitioner": "MongoSamplePartitioner",
 |"partitionerOptions.partitionSizeMB": "10",
 |"partitionerOptions.partitionKey": "_id"}""".stripMargin)
 }
}

MongoDB connection option reference

Designates a connection to MongoDB. Connection options differ for a source connection and a sink
connection.

Features and optimizations 1726

AWS Glue User Guide

These connection properties are shared between source and sink connections:

• connectionName — Used for Read/Write. The name of a AWS Glue MongoDB connection
configured to provide auth and networking information to your connection method. When
a AWS Glue connection is configured as described in the previous section, the section called
“Configuring MongoDB”, providing connectionName will replace the need to provide the
"uri", "username" and "password" connection options.

• "uri": (Required) The MongoDB host to read from, formatted as mongodb://<host>:<port>.
Used in AWS Glue versions prior to AWS Glue 4.0.

• "connection.uri": (Required) The MongoDB host to read from, formatted as mongodb://
<host>:<port>. Used in AWS Glue 4.0 and later versions.

• "username": (Required) The MongoDB user name.

• "password": (Required) The MongoDB password.

• "database": (Required) The MongoDB database to read from. This
option can also be passed in additional_options when calling
glue_context.create_dynamic_frame_from_catalog in your job script.

• "collection": (Required) The MongoDB collection to read from.
This option can also be passed in additional_options when calling
glue_context.create_dynamic_frame_from_catalog in your job script.

"connectionType": "mongodb" as source

Use the following connection options with "connectionType": "mongodb" as a source:

• "ssl": (Optional) If true, initiates an SSL connection. The default is false.

• "ssl.domain_match": (Optional) If true and ssl is true, domain match check is performed.
The default is true.

• "batchSize": (Optional): The number of documents to return per batch, used within the cursor
of internal batches.

• "partitioner": (Optional): The class name of the partitioner for reading input data from
MongoDB. The connector provides the following partitioners:

• MongoDefaultPartitioner (default) (Not supported in AWS Glue 4.0)

• MongoSamplePartitioner (Requires MongoDB 3.2 or later) (Not supported in AWS Glue 4.0)

• MongoShardedPartitioner (Not supported in AWS Glue 4.0)

Features and optimizations 1727

AWS Glue User Guide

• MongoSplitVectorPartitioner (Not supported in AWS Glue 4.0)

• MongoPaginateByCountPartitioner (Not supported in AWS Glue 4.0)

• MongoPaginateBySizePartitioner (Not supported in AWS Glue 4.0)

• com.mongodb.spark.sql.connector.read.partitioner.SinglePartitionPartitioner

• com.mongodb.spark.sql.connector.read.partitioner.ShardedPartitioner

• com.mongodb.spark.sql.connector.read.partitioner.PaginateIntoPartitionsPartitioner

• "partitionerOptions" (Optional): Options for the designated partitioner. The following
options are supported for each partitioner:

• MongoSamplePartitioner: partitionKey, partitionSizeMB, samplesPerPartition

• MongoShardedPartitioner: shardkey

• MongoSplitVectorPartitioner: partitionKey, partitionSizeMB

• MongoPaginateByCountPartitioner: partitionKey, numberOfPartitions

• MongoPaginateBySizePartitioner: partitionKey, partitionSizeMB

For more information about these options, see Partitioner Configuration in the MongoDB
documentation.

"connectionType": "mongodb" as sink

Use the following connection options with "connectionType": "mongodb" as a sink:

• "ssl": (Optional) If true, initiates an SSL connection. The default is false.

• "ssl.domain_match": (Optional) If true and ssl is true, domain match check is performed.
The default is true.

• "extendedBsonTypes": (Optional) If true, allows extended BSON types when writing data to
MongoDB. The default is true.

• "replaceDocument": (Optional) If true, replaces the whole document when saving datasets
that contain an _id field. If false, only fields in the document that match the fields in the
dataset are updated. The default is true.

• "maxBatchSize": (Optional): The maximum batch size for bulk operations when saving data.
The default is 512.

• "retryWrites": (Optional): Automatically retry certain write operations a single time if AWS
Glue encounters a network error.

Features and optimizations 1728

https://docs.mongodb.com/spark-connector/master/configuration/#partitioner-conf

AWS Glue User Guide

SAP HANA connections

You can use AWS Glue for Spark to read from and write to tables in SAP HANA in AWS Glue 4.0
and later versions. You can define what to read from SAP HANA with a SQL query. You connect to
SAP HANA using JDBC credentials stored in AWS Secrets Manager through a AWS Glue SAP HANA
connection.

For more information about SAP HANA JDBC, consult the SAP HANA documentation.

Configuring SAP HANA connections

To connect to SAP HANA from AWS Glue, you will need to create and store your SAP HANA
credentials in a AWS Secrets Manager secret, then associate that secret with a SAP HANA AWS Glue
connection. You will need to configure network connectivity between your SAP HANA service and
AWS Glue.

To connect to SAP HANA, you may need some prerequisites:

• If your SAP HANA service is in an Amazon VPC, configure Amazon VPC to allow your AWS Glue
job to communicate with the SAP HANA service without traffic traversing the public internet.

In Amazon VPC, identify or create a VPC, Subnet and Security group that AWS Glue will use
while executing the job. Additionally, you need to ensure Amazon VPC is configured to permit
network traffic between your SAP HANA endpoint and this location. Your job will need to
establish a TCP connection with your SAP HANA JDBC port. For more information about SAP
HANA ports, see the SAP HANA documentation. Based on your network layout, this may require
changes to security group rules, Network ACLs, NAT Gateways and Peering connections.

• There are no additional prerequisites if your SAP HANA endpoint is internet accesible.

To configure a connection to SAP HANA:

1. In AWS Secrets Manager, create a secret using your SAP HANA credentials. To create a secret
in Secrets Manager, follow the tutorial available in Create an AWS Secrets Manager secret in
the AWS Secrets Manager documentation. After creating the secret, keep the Secret name,
secretName for the next step.

• When selecting Key/value pairs, create a pair for the key user with the value
saphanaUsername.

Features and optimizations 1729

https://help.sap.com/docs/SAP_HANA_PLATFORM/0eec0d68141541d1b07893a39944924e/ff15928cf5594d78b841fbbe649f04b4.html
https://help.sap.com/docs/HANA_SMART_DATA_INTEGRATION/7952ef28a6914997abc01745fef1b607/88e2e8bded9e4041ad3ad87dc46c7b55.html?locale=en-US
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Glue User Guide

• When selecting Key/value pairs, create a pair for the key password with the value
saphanaPassword.

2. In the AWS Glue console, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for future use in AWS Glue.

• When selecting a Connection type, select SAP HANA.

• When providing SAP HANA URL, provide the URL for your instance.

SAP HANA JDBC URLs are in the form
jdbc:sap://saphanaHostname:saphanaPort/?databaseName=saphanaDBname,ParameterName=ParameterValue

AWS Glue requires the following JDBC URL parameters:

• databaseName – A default database in SAP HANA to connect to.

• When selecting an AWS Secret, provide secretName.

After creating a AWS Glue SAP HANA connection, you will need to perform the following steps
before running your AWS Glue job:

• Grant the IAM role associated with your AWS Glue job permission to read secretName.

• In your AWS Glue job configuration, provide connectionName as an Additional network
connection.

Reading from SAP HANA tables

Prerequisites:

• A SAP HANA table you would like to read from. You will need identification information for the
table.

A table can be specified with a SAP HANA table name and schema name, in the form
schemaName.tableName. The schema name and "." separator are not required if the table is in
the default schema, "public". Call this tableIdentifier. Note that the database is provided as
a JDBC URL parameter in connectionName.

• A AWS Glue SAP HANA connection configured to provide auth information. Complete the
steps in the previous procedure, To configure a connection to SAP HANA to configure your auth
information. You will need the name of the AWS Glue connection, connectionName.

Features and optimizations 1730

AWS Glue User Guide

For example:

saphana_read_table = glueContext.create_dynamic_frame.from_options(
 connection_type="saphana",
 connection_options={
 "connectionName": "connectionName",
 "dbtable": "tableIdentifier",
 }
)

You can also provide a SELECT SQL query, to filter the results returned to your DynamicFrame. You
will need to configure query.

For example:

saphana_read_query = glueContext.create_dynamic_frame.from_options(
 connection_type="saphana",
 connection_options={
 "connectionName": "connectionName",
 "query": "query"
 }
)

Writing to SAP HANA tables

This example writes information from an existing DynamicFrame, dynamicFrame to SAP HANA. If
the table already has information, AWS Glue will error.

Prerequisites:

• A SAP HANA table you would like to write to.

A table can be specified with a SAP HANA table name and schema name, in the form
schemaName.tableName. The schema name and "." separator are not required if the table is in
the default schema, "public". Call this tableIdentifier. Note that the database is provided as
a JDBC URL parameter in connectionName.

• SAP HANA auth information. Complete the steps in the previous procedure, To configure a
connection to SAP HANA to configure your auth information. You will need the name of the AWS
Glue connection, connectionName.

Features and optimizations 1731

AWS Glue User Guide

For example:

options = {
 "connectionName": "connectionName",
 "dbtable": 'tableIdentifier'
}

 saphana_write = glueContext.write_dynamic_frame.from_options(
 frame=dynamicFrame,
 connection_type="saphana",
 connection_options=options
)

SAP HANA connection option reference

• connectionName — Required. Used for Read/Write. The name of a AWS Glue SAP HANA
connection configured to provide auth and networking information to your connection method.

• databaseName — Used for Read/Write. Valid Values: names of databases in SAP HANA. Name
of database to connect to.

• dbtable — Required for writing, required for reading unless query is provided. Used for Read/
Write. Valid Values: contents of a SAP HANA SQL FROM clause. Identifies a table in SAP HANA
to connect to. You may also provide other SQL than a table name, such as a subquery. For more
information, see the From clause in the SAP HANA documentation.

• query — Used for Read. A SAP HANA SQL SELECT query defining what should be retrieved
when reading from SAP HANA.

Snowflake connections

You can use AWS Glue for Spark to read from and write to tables in Snowflake in AWS Glue 4.0
and later versions. You can read from Snowflake with a SQL query. You can connect to Snowflake
using a user and password. You can refer to Snowflake credentials stored in AWS Secrets Manager
through the AWS Glue Data Catalog. Data Catalog Snowflake credentials for AWS Glue for Spark
are stored separately from Data Catalog Snowflake credentials for crawlers. You must choose a
SNOWFLAKE type connection and not a JDBC type connection configured to connect to Snowflake.

For more information about Snowflake, see the Snowflake website. For more information about
Snowflake on AWS, see Snowflake Data Warehouse on Amazon Web Services.

Features and optimizations 1732

https://help.sap.com/docs/SAP_HANA_PLATFORM/4fe29514fd584807ac9f2a04f6754767/20fcf24075191014a89e9dc7b8408b26.html#loio20fcf24075191014a89e9dc7b8408b26__from_clause
https://www.snowflake.com/
https://aws.amazon.com/financial-services/partner-solutions/snowflake/

AWS Glue User Guide

Configuring Snowflake connections

There are no AWS prerequisites to connecting to Snowflake databases available through the
internet.

Optionally, you can perform the following configuration to manage your connection credentials
with AWS Glue.

To manage your connection credentials with AWS Glue

1. In Snowflake, generate a user, snowflakeUser and password, snowflakePassword.

2. In AWS Secrets Manager, create a secret using your Snowflake credentials. To create a secret
in Secrets Manager, follow the tutorial available in Create an AWS Secrets Manager secret in
the AWS Secrets Manager documentation. After creating the secret, keep the Secret name,
secretName for the next step.

• When selecting Key/value pairs, create a pair for snowflakeUser with the key sfUser.

• When selecting Key/value pairs, create a pair for snowflakePassword with the key
sfPassword.

• When selecting Key/value pairs, you can provide your Snowflake warehouse with the key
sfWarehouse.

3. In the AWS Glue Data Catalog, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for the next step.

• When selecting a Connection type, select Snowflake.

• When selecting Snowflake URL, provide the URL of your Snowflake instance. The URL will
use a hostname in the form account_identifier.snowflakecomputing.com.

• When selecting an AWS Secret, provide secretName.

4. In your AWS Glue job configuration, provide connectionName as an Additional network
connection.

In the following situations, you may require the following:

• For Snowflake hosted on AWS in an Amazon VPC

Features and optimizations 1733

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html#create_secret_cli

AWS Glue User Guide

• You will need appropriate Amazon VPC configuration for Snowflake. For more information on
how to configure your Amazon VPC, consult AWS PrivateLink & Snowflake in the Snowflake
documentation.

• You will need appropriate Amazon VPC configuration for AWS Glue. the section called “VPC
endpoints (AWS PrivateLink)”.

• You will need to create a AWS Glue Data Catalog connection that provides Amazon VPC
connection information (in addition to the id of an AWS Secrets Manager secret that defines
your Snowflake security credentials). Your URL will change when using AWS PrivateLink, as
described in the Snowflake documentation linked in a previous item.

• You will need your job configuration in include the Data Catalog connection as an Additional
network connection.

Reading from Snowflake tables

Prerequisites: A Snowflake table you would like to read from. You will need the Snowflake table
name, tableName. You will need your Snowflake url snowflakeUrl, username snowflakeUser
and password snowflakePassword. If your Snowflake user does not have a default namespace
set, you will need the Snowflake database name, databaseName and the schema name
schemaName. Additionally, if your Snowflake user does not have a default warehouse set, you will
need a warehouse name warehouseName.

For example:

Additional Prerequisites: Complete the steps To manage your connection credentials with AWS
Glue to configure snowflakeUrl, snowflakeUsername and snowflakePassword. To review
these steps, see the section called “Configuring Snowflake”, the previous section. To select which
Additional network connection to connect with, we will use the connectionName parameter.

snowflake_read = glueContext.create_dynamic_frame.from_options(
 connection_type="snowflake",
 connection_options={
 "connectionName": "connectionName",
 "dbtable": "tableName",
 "sfDatabase": "databaseName",
 "sfSchema": "schemaName",
 "sfWarehouse": "warehouseName",
 }
)

Features and optimizations 1734

https://docs.snowflake.com/en/user-guide/admin-security-privatelink

AWS Glue User Guide

Additionally, you can use the autopushdown and query parameters to read a portion of a
Snowflake table. This can be substantially more efficient than filtering your results after they have
been loaded into Spark. Consider an example where all sales are stored in the same table, but you
only need to analyze sales from a certain store on holidays. If that information is stored in the
table, you could use predicate pushdown to retrieve the results as follows:

snowflake_node = glueContext.create_dynamic_frame.from_options(
 connection_type="snowflake",
 connection_options={
 "autopushdown": "on",
 "query": "select * from sales where store='1' and IsHoliday='TRUE'",
 "connectionName": "snowflake-glue-conn",
 "sfDatabase": "databaseName",
 "sfSchema": "schemaName",
 "sfWarehouse": "warehouseName",
 }
)

Writing to Snowflake tables

Prerequisites: A Snowflake database you would like to write to. You will need a current or
desired table name, tableName. You will need your Snowflake url snowflakeUrl, username
snowflakeUser and password snowflakePassword. If your Snowflake user does not have
a default namespace set, you will need the Snowflake database name, databaseName and
the schema name schemaName. Additionally, if your Snowflake user does not have a default
warehouse set, you will need a warehouse name warehouseName.

For example:

Additional Prerequisites: Complete the steps To manage your connection credentials with AWS
Glue to configure snowflakeUrl, snowflakeUsername and snowflakePassword. To review
these steps, see the section called “Configuring Snowflake”, the previous section. To select which
Additional network connection to connect with, we will use the connectionName parameter.

glueContext.write_dynamic_frame.from_options(
 connection_type="snowflake",
 connection_options={
 "connectionName": "connectionName",
 "dbtable": "tableName",
 "sfDatabase": "databaseName",

Features and optimizations 1735

AWS Glue User Guide

 "sfSchema": "schemaName",
 "sfWarehouse": "warehouseName",
 },
)

Snowflake connection option reference

The Snowflake connection type takes the following connection options:

You can retrieve some of the parameters in this section from a Data Catalog connection (sfUrl,
sfUser, sfPassword), in which case you are not required to provide them. You can do this by
providing the parameter connectionName.

You can retrieve some of the parameters in this section from an AWS Secrets Manager secret
(sfUser, sfPassword), in which case you are not required to provide them. The secret must
provide the content under the sfUser and sfPassword keys. You can do this by providing the
parameter secretId.

The following parameters are used generally when connecting to Snowflake.

• sfDatabase — Required if a user default is not set in Snowflake. Used for Read/Write. The
database to use for the session after connecting.

• sfSchema — Required if a user default is not set in Snowflake. Used for Read/Write. The schema
to use for the session after connecting.

• sfWarehouse — Required if a user default is not set in Snowflake. Used for Read/Write. The
default virtual warehouse to use for the session after connecting.

• sfRole — Required if a user default is not set in Snowflake. Used for Read/Write. The default
security role to use for the session after connecting.

• sfUrl — (Required) Used for Read/Write. Specifies the hostname for your account in the
following format: account_identifier.snowflakecomputing.com. For more information
about account identifiers, see Account Identifiers in the Snowflake documentation.

• sfUser — (Required) Used for Read/Write. Login name for the Snowflake user.

• sfPassword — (Required unless pem_private_key provided) Used for Read/Write. Password
for the Snowflake user.

• dbtable — Required when working with full tables. Used for Read/Write. The name of the
table to be read or the table to which data is written. When reading, all columns and records are
retrieved.

Features and optimizations 1736

https://docs.snowflake.com/en/user-guide/admin-account-identifier

AWS Glue User Guide

• pem_private_key — Used for Read/Write. An unencrypted b64-encoded private key string.
The private key for the Snowflake user. It is common to copy this out of a PEM file. For more
information, see Key-pair authentication and key-pair rotation in the Snowflake documentation.

• query — Required when reading with a query. Used for Read. The exact query (SELECT
statement) to run

The following options are used to configure specific behaviors during the process of connecting to
Snowflake.

• preactions — Used for Read/Write. Valid Values: Semicolon separated list of SQL statements
as String. SQL statements run before data is transferred between AWS Glue and Snowflake. If a
statement contains %s, the %s is replaced with the table name referenced for the operation.

• postactions — Used for Read/Write. SQL statements run after data is transferred between
AWS Glue and Snowflake. If a statement contains %s, the %s is replaced with the table name
referenced for the operation.

• autopushdown — Default: "on". Valid Values: "on", "off". This parameter controls whether
automatic query pushdown is enabled. If pushdown is enabled, then when a query is run on
Spark, if part of the query can be "pushed down" to the Snowflake server, it is pushed down.
This improves performance of some queries. For information about whether your query can be
pushed down, consult Pushdown in the Snowflake documentation.

Additionally, some of the options available on the Snowflake Spark connector may be supported
in AWS Glue. For more information about options available on the Snowflake Spark connector, see
Setting Configuration Options for the Connector in the Snowflake documentation.

Snowflake connector limitations

Connecting to Snowflake with AWS Glue for Spark is subject to the following limitations.

• This connector does not support job bookmarks. For more information about job bookmarks, see
the section called “Tracking processed data using job bookmarks”.

• This connector does not support Snowflake reads and writes through tables in the
AWS Glue Data Catalog using the create_dynamic_frame.from_catalog and
write_dynamic_frame.from_catalog methods.

• This connector does not support connecting to Snowflake with credentials other than user and
password.

Features and optimizations 1737

https://docs.snowflake.com/en/user-guide/key-pair-auth
https://docs.snowflake.com/en/user-guide/spark-connector-use#pushdown
https://docs.snowflake.com/en/user-guide/spark-connector-use#setting-configuration-options-for-the-connector

AWS Glue User Guide

• This connector is not supported within streaming jobs.

• This connector supports SELECT statement based queries when retrieving information (such as
with the query parameter). Other kind of queries (such as SHOW, DESC, or DML statements) are
not supported.

• Snowflake limits the size of query text (i.e. SQL statements) submitted through Snowflake clients
to 1 MB per statement. For more details, see Limits on Query Text Size.

Teradata Vantage connections

You can use AWS Glue for Spark to read from and write to existing tables in Teradata Vantage in
AWS Glue 4.0 and later versions. You can define what to read from Teradata with a SQL query. You
can connect to Teradata using username and password credentials stored in AWS Secrets Manager
through a AWS Glue connection.

For more information about Teradata, consult the Teradata documentation

Configuring Teradata connections

To connect to Teradata from AWS Glue, you will need to create and store your Teradata credentials
in an AWS Secrets Manager secret, then associate that secret with a AWS Glue Teradata connection.
If your Teradata instance is in an Amazon VPC, you will also need to provide networking options to
your AWS Glue Teradata connection.

To connect to Teradata from AWS Glue, you may need some prerequisites:

• If you are accessing your Teradata environment through Amazon VPC, configure Amazon VPC
to allow your AWS Glue job to communicate with the Teradata environment. We discourage
accessing the Teradata environment over the public internet.

In Amazon VPC, identify or create a VPC, Subnet and Security group that AWS Glue will use
while executing the job. Additionally, you need to ensure Amazon VPC is configured to permit
network traffic between your Teradata instance and this location. Your job will need to establish
a TCP connection with your Teradata client port. For more information about Teradata ports, see
the Teradata documentation.

Based on your network layout, secure VPC connectivity may require changes in Amazon VPC
and other networking services. For more information about AWS connectivity, consult AWS
Connectivity Options in the Teradata documentation.

Features and optimizations 1738

https://docs.snowflake.com/en/user-guide/query-size-limits
https://docs.teradata.com/
https://docs.teradata.com/r/Teradata-VantageTM-on-AWS-DIY-Installation-and-Administration-Guide/April-2020/Before-Deploying-Vantage-on-AWS-DIY/Security-Groups-and-Ports
https://docs.teradata.com/r/Teradata-VantageCloud-Enterprise/Get-Started/Connecting-Your-Environment/AWS-Connectivity-Options
https://docs.teradata.com/r/Teradata-VantageCloud-Enterprise/Get-Started/Connecting-Your-Environment/AWS-Connectivity-Options

AWS Glue User Guide

To configure a AWS Glue Teradata connection:

1. In your Teradata configuration, identify or create a user and password AWS Glue will connect
with, teradataUser and teradataPassword. For more information, consult Vantage
Security Overview in the Teradata documentation.

2. In AWS Secrets Manager, create a secret using your Teradata credentials. To create a secret in
Secrets Manager, follow the tutorial available in Create an AWS Secrets Manager secret in
the AWS Secrets Manager documentation. After creating the secret, keep the Secret name,
secretName for the next step.

• When selecting Key/value pairs, create a pair for the key user with the value
teradataUsername.

• When selecting Key/value pairs, create a pair for the key password with the value
teradataPassword.

3. In the AWS Glue console, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for the next step.

• When selecting a Connection type, select Teradata.

• When providing JDBC URL, provide the URL for your instance. You
can also hardcode certain comma separated connection parameters
in your JDBC URL. The URL must conform to the following format:
jdbc:teradata://teradataHostname/ParameterName=ParameterValue,ParameterName=ParameterValue

Supported URL parameters include:

• DATABASE– name of database on host to access by default.

• DBS_PORT– the database port, used when running on a nonstandard port.

• When selecting a Credential type, select AWS Secrets Manager, then set AWS Secret to
secretName.

4. In the following situations, you may require additional configuration:

• For Teradata instances hosted on AWS in an Amazon VPC

• You will need to provide Amazon VPC connection information to the AWS Glue connection
that defines your Teradata security credentials. When creating or updating your
connection, set VPC, Subnet and Security groups in Network options.

Features and optimizations 1739

https://docs.teradata.com/r/Configuring-Teradata-VantageTM-After-Installation/January-2021/Security-Overview/Vantage-Security-Overview
https://docs.teradata.com/r/Configuring-Teradata-VantageTM-After-Installation/January-2021/Security-Overview/Vantage-Security-Overview
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Glue User Guide

After creating a AWS Glue Teradata connection, you will need to perform the following steps
before calling your connection method.

• Grant the IAM role associated with your AWS Glue job permission to read secretName.

• In your AWS Glue job configuration, provide connectionName as an Additional network
connection.

Reading from Teradata

Prerequisites:

• A Teradata table you would like to read from. You will need the table name, tableName.

• A AWS Glue Teradata connection configured to provide auth information. Complete the steps To
configure a connection to Teradata to configure your auth information. You will need the name of
the AWS Glue connection, connectionName.

For example:

teradata_read_table = glueContext.create_dynamic_frame.from_options(
 connection_type="teradata",
 connection_options={
 "connectionName": "connectionName",
 "dbtable": "tableName"
 }
)

You can also provide a SELECT SQL query, to filter the results returned to your DynamicFrame. You
will need to configure query.

For example:

teradata_read_query = glueContext.create_dynamic_frame.from_options(
 connection_type="teradata",
 connection_options={
 "connectionName": "connectionName",
 "query": "query"
 }
)

Features and optimizations 1740

AWS Glue User Guide

Writing to Teradata tables

Prerequisites: A Teradata table you would like to write to, tableName. You must create the table
before calling the connection method.

For example:

teradata_write = glueContext.write_dynamic_frame.from_options(
 connection_type="teradata",
 connection_options={
 "connectionName": "connectionName",
 "dbtable": "tableName"
 }
)

Teradata connection option reference

• connectionName — Required. Used for Read/Write. The name of a AWS Glue Teradata
connection configured to provide auth and networking information to your connection method.

• dbtable — Required for writing, required for reading unless query is provided. Used for Read/
Write. The name of a table your connection method will interact with.

• query — Used for Read. A SELECT SQL query defining what should be retrieved when reading
from Teradata.

Vertica connections

You can use AWS Glue for Spark to read from and write to tables in Vertica in AWS Glue 4.0 and
later versions. You can define what to read from Vertica with a SQL query. You connect to Vertica
using username and password credentials stored in AWS Secrets Manager through a AWS Glue
connection.

For more information about Vertica, consult the Vertica documentation.

Configuring Vertica connections

To connect to Vertica from AWS Glue, you will need to create and store your Vertica credentials in a
AWS Secrets Manager secret, then associate that secret with a Vertica AWS Glue connection. If your
Vertica instance is in an Amazon VPC, you will also need to provide networking options to your
AWS Glue Vertica connection. You will need an Amazon S3 bucket or folder to use for temporary
storage when reading from and writing to the database.

Features and optimizations 1741

https://www.vertica.com/docs/9.3.x/HTML/Content/Authoring/UsingVerticaOnAWS/UsingVerticaOnAWS.htm

AWS Glue User Guide

To connect to Vertica from AWS Glue, you will need some prerequisites:

• An Amazon S3 bucket or folder to use for temporary storage when reading from and writing to
the database, referred to by tempS3Path.

Note

When using Vertica in AWS Glue job data previews, temporary files may not be
automatically removed from tempS3Path. To ensure the removal of temporary files,
directly end the data preview session by choosing End session in the Data preview pane.
If you cannot guarantee the data preview session is ended directly, consider setting
Amazon S3 Lifecycle configuration to remove old data. We recommend removing
data older than 49 hours, based on maximum job runtime plus a margin. For more
information about configuring Amazon S3 Lifecycle, see Managing your storage lifecycle
in the Amazon S3 documentation.

• An IAM policy with appropriate permissions to your Amazon S3 path you can associate with your
AWS Glue job role.

• If your Vertica instance is in an Amazon VPC, configure Amazon VPC to allow your AWS Glue job
to communicate with the Vertica instance without traffic traversing the public internet.

In Amazon VPC, identify or create a VPC, Subnet and Security group that AWS Glue will use
while executing the job. Additionally, you need to ensure Amazon VPC is configured to permit
network traffic between your Vertica instance and this location. Your job will need to establish
a TCP connection with your Vertica client port, (default 5433). Based on your network layout,
this may require changes to security group rules, Network ACLs, NAT Gateways and Peering
connections.

You can then proceed to configure AWS Glue for use with Vertica.

To configure a connection to Vertica:

1. In AWS Secrets Manager, create a secret using your Vertica credentials, verticaUsername
and verticaPassword. To create a secret in Secrets Manager, follow the tutorial available
in Create an AWS Secrets Manager secret in the AWS Secrets Manager documentation. After
creating the secret, keep the Secret name, secretName for the next step.

Features and optimizations 1742

https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Glue User Guide

• When selecting Key/value pairs, create a pair for the key user with the value
verticaUsername.

• When selecting Key/value pairs, create a pair for the key password with the value
verticaPassword.

2. In the AWS Glue console, create a connection by following the steps in the section called
“Adding an AWS Glue connection”. After creating the connection, keep the connection name,
connectionName, for the next step.

• When selecting a Connection type, select Vertica.

• When selecting Vertica Host, provide the hostname of your Vertica installation.

• When selecting Vertica Port, the port your Vertica installation is available through.

• When selecting an AWS Secret, provide secretName.

3. In the following situations, you may require additional configuration:

• For Vertica instances hosted on AWS in an Amazon VPC

• Provide Amazon VPC connection information to the AWS Glue connection that defines
your Vertica security credentials. When creating or updating your connection, set VPC,
Subnet and Security groups in Network options.

After creating a AWS Glue Vertica connection, you will need to perform the following steps before
calling your connection method.

• Grant the IAM role associated with your AWS Glue job permissions to tempS3Path.

• Grant the IAM role associated with your AWS Glue job permission to read secretName.

• In your AWS Glue job configuration, provide connectionName as an Additional network
connection.

Reading from Vertica

Prerequisites:

• A Vertica table you would like to read from. You will need the Vertica database name, dbName
and the table name, tableName.

Features and optimizations 1743

AWS Glue User Guide

• A AWS Glue Vertica connection configured to provide auth information. Complete the steps in
the previous procedure, To configure a connection to Vertica to configure your auth information.
You will need the name of the AWS Glue connection, connectionName.

• A Amazon S3 bucket or folder to use for temporary storage, mentioned previously. You will need
the name, tempS3Path. You will need to connect to this location using the s3a protocol.

For example:

dynamicFrame = glueContext.create_dynamic_frame.from_options(
 connection_type="vertica",
 connection_options={
 "connectionName": "connectionName",
 "staging_fs_url": "s3a://tempS3Path",
 "db": "dbName",
 "table": "tableName",
 }
)

You can also provide a SELECT SQL query, to filter the results returned to your DynamicFrame or to
access a dataset from multiple tables.

For example:

dynamicFrame = glueContext.create_dynamic_frame.from_options(
 connection_type="vertica",
 connection_options={
 "connectionName": "connectionName",
 "staging_fs_url": "s3a://tempS3Path",
 "db": "dbName",
 "query": "select * FROM tableName",
 },
)

Writing to Vertica tables

This example writes information from an existing DynamicFrame, dynamicFrame to Vertica. If the
table already has information, AWS Glue will append data from your DynamicFrame.

Prerequisites:

Features and optimizations 1744

AWS Glue User Guide

• A current or desired table name, tableName, you would like to write to. You will also need the
corresponding Vertica database name, dbName.

• A AWS Glue Vertica connection configured to provide auth information. Complete the steps in
the previous procedure, To configure a connection to Vertica to configure your auth information.
You will need the name of the AWS Glue connection, connectionName.

• A Amazon S3 bucket or folder to use for temporary storage, mentioned previously. You will need
the name, tempS3Path. You will need to connect to this location using the s3a protocol.

For example:

glueContext.write_dynamic_frame.from_options(
 frame=dynamicFrame,
 connection_type="vertica",
 connection_options={
 "connectionName": "connectionName",
 "staging_fs_url": "s3a://tempS3Path",
 "db": "dbName",
 "table": "tableName",
 }
)

Vertica connection option reference

• connectionName — Required. Used for Read/Write. The name of a AWS Glue Vertica
connection configured to provide auth and networking information to your connection method.

• db — Required. Used for Read/Write. The name of a database in Vertica your connection method
will interact with.

• dbSchema — Required if needed to identify your table. Used for Read/Write. Default: public.
The name of a schema your connection method will interact with.

• table — Required for writing, required for reading unless query is provided. Used for Read/
Write. The name of a table your connection method will interact with.

• query — Used for Read. A SELECT SQL query defining what should be retrieved when reading
from Teradata.

• staging_fs_url — Required. Used for Read/Write. Valid Values: s3a URLs. The URL of a
Amazon S3 bucket or folder to use for temporary storage.

Features and optimizations 1745

AWS Glue User Guide

Custom and AWS Marketplace connectionType values

These include the following:

• "connectionType": "marketplace.athena": Designates a connection to an Amazon
Athena data store. The connection uses a connector from AWS Marketplace.

• "connectionType": "marketplace.spark": Designates a connection to an Apache Spark
data store. The connection uses a connector from AWS Marketplace.

• "connectionType": "marketplace.jdbc": Designates a connection to a JDBC data store.
The connection uses a connector from AWS Marketplace.

• "connectionType": "custom.athena": Designates a connection to an Amazon Athena data
store. The connection uses a custom connector that you upload to AWS Glue Studio.

• "connectionType": "custom.spark": Designates a connection to an Apache Spark data
store. The connection uses a custom connector that you upload to AWS Glue Studio.

• "connectionType": "custom.jdbc": Designates a connection to a JDBC data store. The
connection uses a custom connector that you upload to AWS Glue Studio.

Connection options for type custom.jdbc or marketplace.jdbc

• className – String, required, driver class name.

• connectionName – String, required, name of the connection that is associated with the
connector.

• url – String, required, JDBC URL with placeholders (${}) which are used to build the connection
to the data source. The placeholder ${secretKey} is replaced with the secret of the same name
in AWS Secrets Manager. Refer to the data store documentation for more information about
constructing the URL.

• secretId or user/password – String, required, used to retrieve credentials for the URL.

• dbTable or query – String, required, the table or SQL query to get the data from. You can
specify either dbTable or query, but not both.

• partitionColumn – String, optional, the name of an integer column that is used for
partitioning. This option works only when it's included with lowerBound, upperBound, and
numPartitions. This option works the same way as in the Spark SQL JDBC reader. For more
information, see JDBC To Other Databases in the Apache Spark SQL, DataFrames and Datasets
Guide.

Features and optimizations 1746

https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html

AWS Glue User Guide

The lowerBound and upperBound values are used to decide the partition stride, not for
filtering the rows in table. All rows in the table are partitioned and returned.

Note

When using a query instead of a table name, you should validate that the query works
with the specified partitioning condition. For example:

• If your query format is "SELECT col1 FROM table1", then test the query by
appending a WHERE clause at the end of the query that uses the partition column.

• If your query format is "SELECT col1 FROM table1 WHERE col2=val", then test
the query by extending the WHERE clause with AND and an expression that uses the
partition column.

• lowerBound – Integer, optional, the minimum value of partitionColumn that is used to
decide partition stride.

• upperBound – Integer, optional, the maximum value of partitionColumn that is used to
decide partition stride.

• numPartitions – Integer, optional, the number of partitions. This value, along with
lowerBound (inclusive) and upperBound (exclusive), form partition strides for generated WHERE
clause expressions that are used to split the partitionColumn.

Important

Be careful with the number of partitions because too many partitions might cause
problems on your external database systems.

• filterPredicate – String, optional, extra condition clause to filter data from source. For
example:

BillingCity='Mountain View'

When using a query instead of a table name, you should validate that the query works with the
specified filterPredicate. For example:

• If your query format is "SELECT col1 FROM table1", then test the query by appending a
WHERE clause at the end of the query that uses the filter predicate.

Features and optimizations 1747

AWS Glue User Guide

• If your query format is "SELECT col1 FROM table1 WHERE col2=val", then test the
query by extending the WHERE clause with AND and an expression that uses the filter predicate.

• dataTypeMapping – Dictionary, optional, custom data type mapping that builds a mapping
from a JDBC data type to a Glue data type. For example, the option "dataTypeMapping":
{"FLOAT":"STRING"} maps data fields of JDBC type FLOAT into the Java String type by
calling the ResultSet.getString() method of the driver, and uses it to build AWS Glue
records. The ResultSet object is implemented by each driver, so the behavior is specific to the
driver you use. Refer to the documentation for your JDBC driver to understand how the driver
performs the conversions.

• The AWS Glue data types supported currently are:

• DATE

• STRING

• TIMESTAMP

• INT

• FLOAT

• LONG

• BIGDECIMAL

• BYTE

• SHORT

• DOUBLE

The JDBC data types supported are Java8 java.sql.types.

The default data type mappings (from JDBC to AWS Glue) are:

• DATE -> DATE

• VARCHAR -> STRING

• CHAR -> STRING

• LONGNVARCHAR -> STRING

• TIMESTAMP -> TIMESTAMP

• INTEGER -> INT

• FLOAT -> FLOAT

• REAL -> FLOAT

• BIT -> BOOLEAN
Features and optimizations 1748

https://docs.oracle.com/javase/8/docs/api/java/sql/Types.html

AWS Glue User Guide

• BOOLEAN -> BOOLEAN

• BIGINT -> LONG

• DECIMAL -> BIGDECIMAL

• NUMERIC -> BIGDECIMAL

• TINYINT -> SHORT

• SMALLINT -> SHORT

• DOUBLE -> DOUBLE

If you use a custom data type mapping with the option dataTypeMapping, then you can
override a default data type mapping. Only the JDBC data types listed in the dataTypeMapping
option are affected; the default mapping is used for all other JDBC data types. You can add
mappings for additional JDBC data types if needed. If a JDBC data type is not included in either
the default mapping or a custom mapping, then the data type converts to the AWS Glue STRING
data type by default.

The following Python code example shows how to read from JDBC databases with AWS
Marketplace JDBC drivers. It demonstrates reading from a database and writing to an S3 location.

 import sys
 from awsglue.transforms import *
 from awsglue.utils import getResolvedOptions
 from pyspark.context import SparkContext
 from awsglue.context import GlueContext
 from awsglue.job import Job

 ## @params: [JOB_NAME]
 args = getResolvedOptions(sys.argv, ['JOB_NAME'])

 sc = SparkContext()
 glueContext = GlueContext(sc)
 spark = glueContext.spark_session
 job = Job(glueContext)
 job.init(args['JOB_NAME'], args)
 ## @type: DataSource
 ## @args: [connection_type = "marketplace.jdbc", connection_options =
 {"dataTypeMapping":{"INTEGER":"STRING"},"upperBound":"200","query":"select id,
 name, department from department where id < 200","numPartitions":"4",
 "partitionColumn":"id","lowerBound":"0","connectionName":"test-connection-
jdbc"},

Features and optimizations 1749

AWS Glue User Guide

 transformation_ctx = "DataSource0"]
 ## @return: DataSource0
 ## @inputs: []
 DataSource0 = glueContext.create_dynamic_frame.from_options(connection_type =
 "marketplace.jdbc", connection_options = {"dataTypeMapping":{"INTEGER":"STRING"},
 "upperBound":"200","query":"select id, name, department from department where
 id < 200","numPartitions":"4","partitionColumn":"id","lowerBound":"0",
 "connectionName":"test-connection-jdbc"}, transformation_ctx = "DataSource0")
 ## @type: ApplyMapping
 ## @args: [mappings = [("department", "string", "department", "string"), ("name",
 "string",
 "name", "string"), ("id", "int", "id", "int")], transformation_ctx =
 "Transform0"]
 ## @return: Transform0
 ## @inputs: [frame = DataSource0]
 Transform0 = ApplyMapping.apply(frame = DataSource0, mappings = [("department",
 "string",
 "department", "string"), ("name", "string", "name", "string"), ("id", "int",
 "id", "int")],
 transformation_ctx = "Transform0")
 ## @type: DataSink
 ## @args: [connection_type = "s3", format = "json", connection_options = {"path":
 "s3://<S3 path>/", "partitionKeys": []}, transformation_ctx = "DataSink0"]
 ## @return: DataSink0
 ## @inputs: [frame = Transform0]
 DataSink0 = glueContext.write_dynamic_frame.from_options(frame = Transform0,
 connection_type = "s3", format = "json", connection_options = {"path":
 "s3://<S3 path>/", "partitionKeys": []}, transformation_ctx = "DataSink0")
 job.commit()

Connection options for type custom.athena or marketplace.athena

• className – String, required, driver class name. When you're using the Athena-
CloudWatch connector, this parameter value is the prefix of the class Name (for example,
"com.amazonaws.athena.connectors"). The Athena-CloudWatch connector is composed
of two classes: a metadata handler and a record handler. If you supply the common prefix here,
then the API loads the correct classes based on that prefix.

• tableName – String, required, the name of the CloudWatch log stream to read. This code
snippet uses the special view name all_log_streams, which means that the dynamic data
frame returned will contain data from all log streams in the log group.

Features and optimizations 1750

AWS Glue User Guide

• schemaName – String, required, the name of the CloudWatch log group to read from. For
example, /aws-glue/jobs/output.

• connectionName – String, required, name of the connection that is associated with the
connector.

For additional options for this connector, see the Amazon Athena CloudWatch Connector README
file on GitHub.

The following Python code example shows how to read from an Athena data store using an AWS
Marketplace connector. It demonstrates reading from Athena and writing to an S3 location.

 import sys
 from awsglue.transforms import *
 from awsglue.utils import getResolvedOptions
 from pyspark.context import SparkContext
 from awsglue.context import GlueContext
 from awsglue.job import Job

 ## @params: [JOB_NAME]
 args = getResolvedOptions(sys.argv, ['JOB_NAME'])

 sc = SparkContext()
 glueContext = GlueContext(sc)
 spark = glueContext.spark_session
 job = Job(glueContext)
 job.init(args['JOB_NAME'], args)
 ## @type: DataSource
 ## @args: [connection_type = "marketplace.athena", connection_options =
 {"tableName":"all_log_streams","schemaName":"/aws-glue/jobs/output",
 "connectionName":"test-connection-athena"}, transformation_ctx = "DataSource0"]
 ## @return: DataSource0
 ## @inputs: []
 DataSource0 = glueContext.create_dynamic_frame.from_options(connection_type =
 "marketplace.athena", connection_options = {"tableName":"all_log_streams",,
 "schemaName":"/aws-glue/jobs/output","connectionName":
 "test-connection-athena"}, transformation_ctx = "DataSource0")
 ## @type: ApplyMapping
 ## @args: [mappings = [("department", "string", "department", "string"), ("name",
 "string",
 "name", "string"), ("id", "int", "id", "int")], transformation_ctx =
 "Transform0"]
 ## @return: Transform0

Features and optimizations 1751

https://github.com/awslabs/aws-athena-query-federation/tree/master/athena-cloudwatch

AWS Glue User Guide

 ## @inputs: [frame = DataSource0]
 Transform0 = ApplyMapping.apply(frame = DataSource0, mappings = [("department",
 "string",
 "department", "string"), ("name", "string", "name", "string"), ("id", "int",
 "id", "int")],
 transformation_ctx = "Transform0")
 ## @type: DataSink
 ## @args: [connection_type = "s3", format = "json", connection_options = {"path":
 "s3://<S3 path>/", "partitionKeys": []}, transformation_ctx = "DataSink0"]
 ## @return: DataSink0
 ## @inputs: [frame = Transform0]
 DataSink0 = glueContext.write_dynamic_frame.from_options(frame = Transform0,
 connection_type = "s3", format = "json", connection_options = {"path":
 "s3://<S3 path>/", "partitionKeys": []}, transformation_ctx = "DataSink0")
 job.commit()

Connection options for type custom.spark or marketplace.spark

• className – String, required, connector class name.

• secretId – String, optional, used to retrieve credentials for the connector connection.

• connectionName – String, required, name of the connection that is associated with the
connector.

• Other options depend on the data store. For example, OpenSearch configuration options start
with the prefix es, as described in the Elasticsearch for Apache Hadoop documentation. Spark
connections to Snowflake use options such as sfUser and sfPassword, as described in Using
the Spark Connector in the Connecting to Snowflake guide.

The following Python code example shows how to read from an OpenSearch data store using a
marketplace.spark connection.

 import sys
 from awsglue.transforms import *
 from awsglue.utils import getResolvedOptions
 from pyspark.context import SparkContext
 from awsglue.context import GlueContext
 from awsglue.job import Job

 ## @params: [JOB_NAME]
 args = getResolvedOptions(sys.argv, ['JOB_NAME'])

Features and optimizations 1752

https://www.elastic.co/guide/en/elasticsearch/hadoop/current/configuration.html
https://docs.snowflake.com/en/user-guide/spark-connector-use.html
https://docs.snowflake.com/en/user-guide/spark-connector-use.html

AWS Glue User Guide

 sc = SparkContext()
 glueContext = GlueContext(sc)
 spark = glueContext.spark_session
 job = Job(glueContext)
 job.init(args['JOB_NAME'], args)
 ## @type: DataSource
 ## @args: [connection_type = "marketplace.spark", connection_options =
 {"path":"test",
 "es.nodes.wan.only":"true","es.nodes":"https://<AWS endpoint>",
 "connectionName":"test-spark-es","es.port":"443"}, transformation_ctx =
 "DataSource0"]
 ## @return: DataSource0
 ## @inputs: []
 DataSource0 = glueContext.create_dynamic_frame.from_options(connection_type =
 "marketplace.spark", connection_options = {"path":"test","es.nodes.wan.only":
 "true","es.nodes":"https://<AWS endpoint>","connectionName":
 "test-spark-es","es.port":"443"}, transformation_ctx = "DataSource0")
 ## @type: DataSink
 ## @args: [connection_type = "s3", format = "json", connection_options = {"path":
 "s3://<S3 path>/", "partitionKeys": []}, transformation_ctx = "DataSink0"]
 ## @return: DataSink0
 ## @inputs: [frame = DataSource0]
 DataSink0 = glueContext.write_dynamic_frame.from_options(frame = DataSource0,
 connection_type = "s3", format = "json", connection_options = {"path":
 "s3://<S3 path>/", "partitionKeys": []}, transformation_ctx = "DataSink0")
 job.commit()

General options

The options in this section are provided as connection_options, but do not specifically apply to
one connector.

The following parameters are used generally when configuring bookmarks. They may apply
to Amazon S3 or JDBC workflows. For more information, see the section called “Using job
bookmarks”.

• jobBookmarkKeys — Array of column names.

• jobBookmarkKeysSortOrder — String defining how to compare values based on sort order.
Valid values: "asc", "desc".

• useS3ListImplementation — Used to manage memory performance when listing Amazon
S3 bucket contents. For more information, see Optimize memory management in AWS Glue.

Features and optimizations 1753

https://aws.amazon.com/blogs/big-data/optimize-memory-management-in-aws-glue/

AWS Glue User Guide

Data format options for inputs and outputs in AWS Glue for Spark

These pages offer information about feature support and configuration parameters for data
formats supported by AWS Glue for Spark. See the following for a description of the usage and
applicablity of this information.

Feature support across data formats in AWS Glue

Each data format may support different AWS Glue features. The following common features may
or may not be supported based on your format type. Refer to the documentation for your data
format to understand how to leverage our features to meet your requirements.

Read AWS Glue can recognize and interpret this
data format without additional resources, such
as connectors.

Write AWS Glue can write data in this format
without additional resources. You can include
third-party libraries in your job and use
standard Apache Spark functions to write
data, as you would in other Spark environme
nts. For more information about including
libraries, see the section called “Python
libraries”.

Streaming
read

AWS Glue can recognize and interpret this
data format from an Apache Kafka, Amazon
Managed Streaming for Apache Kafka or
Amazon Kinesis message stream. We expect
streams to present data in a consistent format,
so they are read in as DataFrames .

Group
small
files

AWS Glue can group files together to batch
work sent to each node when performing AWS
Glue transforms. This can significantly improve
performance for workloads involving large
amounts of small files. For more information,
see the section called “Grouping input files”.

Features and optimizations 1754

AWS Glue User Guide

Job
bookmarks

AWS Glue can track the progress of transform
s performing the same work on the same
dataset across job runs with job bookmarks.
This can improve performance for workloads
involving datasets where work only needs to
be done on new data since the last job run.
For more information, see the section called
“Tracking processed data using job bookmarks
”.

Parameters used to interact with data formats in AWS Glue

Certain AWS Glue connection types support multiple format types, requiring you to specify
information about your data format with a format_options object when using methods like
GlueContext.write_dynamic_frame.from_options.

• s3 – For more information, see Connection types and options for ETL in AWS Glue: S3
connection parameters. You can also view the documentation for the methods facilitating this
connection type: the section called “create_dynamic_frame_from_options” and the section called
“write_dynamic_frame_from_options” in Python and the corresponding Scala methods the
section called “getSourceWithFormat” and the section called “getSinkWithFormat”.

• kinesis – For more information, see Connection types and options for ETL in AWS Glue: Kinesis
connection parameters. You can also view the documentation for the method facilitating this
connection type: the section called “create_data_frame_from_options” and the corresponding
Scala method the section called “createDataFrameFromOptions”.

• kafka – For more information, see Connection types and options for ETL in AWS Glue: Kafka
connection parameters. You can also view the documentation for the method facilitating this
connection type: the section called “create_data_frame_from_options” and the corresponding
Scala method the section called “createDataFrameFromOptions”.

Some connection types do not require format_options. For example, in normal use, a JDBC
connection to a relational database retrieves data in a consistent, tabular data format. Therefore,
reading from a JDBC connection would not require format_options.

Features and optimizations 1755

AWS Glue User Guide

Some methods to read and write data in glue do not require format_options. For
example, using GlueContext.create_dynamic_frame.from_catalog with AWS
Glue crawlers. Crawlers determine the shape of your data. When using crawlers, a AWS
Glue classifier will examine your data to make smart decisions about how to represent
your data format. It will then store a representation of your data in the AWS Glue Data
Catalog, which can be used within a AWS Glue ETL script to retrieve your data with the
GlueContext.create_dynamic_frame.from_catalog method. Crawlers remove the need to
manually specify information about your data format.

For jobs that access AWS Lake Formation governed tables, AWS Glue supports reading and writing
all formats supported by Lake Formation governed tables. For the current list of supported formats
for AWS Lake Formation governed tables, see Notes and Restrictions for Governed Tables in the
AWS Lake Formation Developer Guide.

Note

For writing Apache Parquet, AWS Glue ETL only supports writing to a governed table by
specifying an option for a custom Parquet writer type optimized for Dynamic Frames.
When writing to a governed table with the parquet format, you should add the key
useGlueParquetWriter with a value of true in the table parameters.

Topics

• Using the CSV format in AWS Glue

• Using the Parquet format in AWS Glue

• Using the XML format in AWS Glue

• Using the Avro format in AWS Glue

• Using the grokLog format in AWS Glue

• Using the Ion format in AWS Glue

• Using the JSON format in AWS Glue

• Using the ORC format in AWS Glue

• Using data lake frameworks with AWS Glue ETL jobs

• Shared configuration reference

Features and optimizations 1756

https://docs.aws.amazon.com/lake-formation/latest/dg/governed-table-restrictions.html

AWS Glue User Guide

Using the CSV format in AWS Glue

AWS Glue retrieves data from sources and writes data to targets stored and transported in
various data formats. If your data is stored or transported in the CSV data format, this document
introduces you available features for using your data in AWS Glue.

AWS Glue supports using the comma-separated value (CSV) format. This format is a minimal, row-
based data format. CSVs often don't strictly conform to a standard, but you can refer to RFC 4180
and RFC 7111 for more information.

You can use AWS Glue to read CSVs from Amazon S3 and from streaming sources as well as
write CSVs to Amazon S3. You can read and write bzip and gzip archives containing CSV files
from S3. You configure compression behavior on the S3 connection parameters instead of in the
configuration discussed on this page.

The following table shows which common AWS Glue features support the CSV format option.

Read Write Streaming read Group small
files

Job bookmarks

Supported Supported Supported Supported Supported

Example: Read CSV files or folders from S3

Prerequisites: You will need the S3 paths (s3path) to the CSV files or folders that you want to
read.

Configuration: In your function options, specify format="csv". In your connection_options,
use the paths key to specify s3path. You can configure how the reader interacts with S3 in
connection_options. For details, see Connection types and options for ETL in AWS Glue:
S3 connection parameters. You can configure how the reader interprets CSV files in your
format_options. For details, see CSV Configuration Reference.

The following AWS Glue ETL script shows the process of reading CSV files or folders from S3.

We provide a custom CSV reader with performance optimizations for common workflows through
the optimizePerformance configuration key. To determine if this reader is right for your
workload, see the section called “Using optimized CSV reader”.

Features and optimizations 1757

https://tools.ietf.org/html/rfc4180
https://tools.ietf.org/html/rfc7111

AWS Glue User Guide

Python

For this example, use the create_dynamic_frame.from_options method.

Example: Read CSV from S3
For show, we handle a CSV with a header row. Set the withHeader option.
Consider whether optimizePerformance is right for your workflow.

from pyspark.context import SparkContext
from awsglue.context import GlueContext

sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)
spark = glueContext.spark_session

dynamicFrame = glueContext.create_dynamic_frame.from_options(
 connection_type="s3",
 connection_options={"paths": ["s3://s3path"]},
 format="csv",
 format_options={
 "withHeader": True,
 # "optimizePerformance": True,
 },
)

You can also use DataFrames in a script (pyspark.sql.DataFrame).

dataFrame = spark.read\
 .format("csv")\
 .option("header", "true")\
 .load("s3://s3path")

Scala

For this example, use the getSourceWithFormat operation.

// Example: Read CSV from S3
// For show, we handle a CSV with a header row. Set the withHeader option.
// Consider whether optimizePerformance is right for your workflow.

import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.{DynamicFrame, GlueContext}

Features and optimizations 1758

AWS Glue User Guide

import org.apache.spark.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)

 val dynamicFrame = glueContext.getSourceWithFormat(
 formatOptions=JsonOptions("""{"withHeader": true}"""),
 connectionType="s3",
 format="csv",
 options=JsonOptions("""{"paths": ["s3://s3path"], "recurse": true}""")
).getDynamicFrame()
 }
}

You can also use DataFrames in a script (org.apache.spark.sql.DataFrame).

val dataFrame = spark.read
 .option("header","true")
 .format("csv")
 .load("s3://s3path“)

Example: Write CSV files and folders to S3

Prerequisites: You will need an initialized DataFrame (dataFrame) or a DynamicFrame
(dynamicFrame). You will also need your expected S3 output path, s3path.

Configuration: In your function options, specify format="csv". In your connection_options,
use the paths key to specify s3path. You can configure how the writer interacts with S3 in
connection_options. For details, see Connection types and options for ETL in AWS Glue: S3
connection parameters. You can configure how your operation writes the contents of your files
in format_options. For details, see CSV Configuration Reference. The following AWS Glue ETL
script shows the process of writing CSV files and folders to S3.

Python

For this example, use the write_dynamic_frame.from_options method.

Example: Write CSV to S3

Features and optimizations 1759

AWS Glue User Guide

For show, customize how we write string type values. Set quoteChar to -1 so our
 values are not quoted.

from pyspark.context import SparkContext
from awsglue.context import GlueContext

sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

glueContext.write_dynamic_frame.from_options(
 frame=dynamicFrame,
 connection_type="s3",
 connection_options={"path": "s3://s3path"},
 format="csv",
 format_options={
 "quoteChar": -1,
 },
)

You can also use DataFrames in a script (pyspark.sql.DataFrame).

dataFrame.write\
 .format("csv")\
 .option("quote", None)\
 .mode("append")\
 .save("s3://s3path")

Scala

For this example, use the getSinkWithFormat method.

// Example: Write CSV to S3
// For show, customize how we write string type values. Set quoteChar to -1 so our
 values are not quoted.

import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.{DynamicFrame, GlueContext}
import org.apache.spark.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()

Features and optimizations 1760

AWS Glue User Guide

 val glueContext: GlueContext = new GlueContext(spark)

 glueContext.getSinkWithFormat(
 connectionType="s3",
 options=JsonOptions("""{"path": "s3://s3path"}"""),
 format="csv"
).writeDynamicFrame(dynamicFrame)
 }
}

You can also use DataFrames in a script (org.apache.spark.sql.DataFrame).

dataFrame.write
 .format("csv")
 .option("quote", null)
 .mode("Append")
 .save("s3://s3path")

CSV configuration reference

You can use the following format_options wherever AWS Glue libraries specify format="csv":

• separator –Specifies the delimiter character. The default is a comma, but any other character
can be specified.

• Type: Text, Default: ","

• escaper – Specifies a character to use for escaping. This option is used only when reading CSV
files, not writing. If enabled, the character that immediately follows is used as-is, except for a
small set of well-known escapes (\n, \r, \t, and \0).

• Type: Text, Default: none

• quoteChar – Specifies the character to use for quoting. The default is a double quote. Set this
to -1 to turn off quoting entirely.

• Type: Text, Default: '"'

• multiLine – Specifies whether a single record can span multiple lines. This can occur when
a field contains a quoted new-line character. You must set this option to True if any record
spans multiple lines. Enabling multiLine might decrease performance because it requires more
cautious file-splitting while parsing.

• Type: Boolean, Default: false

Features and optimizations 1761

AWS Glue User Guide

• withHeader – Specifies whether to treat the first line as a header. This option can be used in the
DynamicFrameReader class.

• Type: Boolean, Default: false

• writeHeader – Specifies whether to write the header to output. This option can be used in the
DynamicFrameWriter class.

• Type: Boolean, Default: true

• skipFirst – Specifies whether to skip the first data line.

• Type: Boolean, Default: false

• optimizePerformance – Specifies whether to use the advanced SIMD CSV reader along with
Apache Arrow–based columnar memory formats. Only available in AWS Glue 3.0+.

• Type: Boolean, Default: false

• strictCheckForQuoting – When writing CSVs, Glue may add quotes to values it interprets
as strings. This is done to prevent ambiguity in what is written out. To save time when deciding
what to write, Glue may quote in certain situations where quotes are not necessary. Enabling
a strict check will perform a more intensive computation and will only quote when strictly
necessary. Only available in AWS Glue 3.0+.

• Type: Boolean, Default: false

Optimize read performance with vectorized SIMD CSV reader

AWS Glue version 3.0 adds an optimized CSV reader that can significantly speed up overall job
performance compared to row-based CSV readers.

The optimized reader:

• Uses CPU SIMD instructions to read from disk

• Immediately writes records to memory in a columnar format (Apache Arrow)

• Divides the records into batches

This saves processing time when records would be batched or converted to a columnar format later
on. Some examples are when changing schemas or retrieving data by column.

To use the optimized reader, set "optimizePerformance" to true in the format_options or
table property.

Features and optimizations 1762

AWS Glue User Guide

glueContext.create_dynamic_frame.from_options(
 frame = datasource1,
 connection_type = "s3",
 connection_options = {"paths": ["s3://s3path"]},
 format = "csv",
 format_options={
 "optimizePerformance": True,
 "separator": ","
 },
 transformation_ctx = "datasink2")

Limitations for the vectorized CSV reader

Note the following limitations of the vectorized CSV reader:

• It doesn't support the multiLine and escaper format options. It uses the default escaper of
double quote char '"'. When these options are set, AWS Glue automatically falls back to using
the row-based CSV reader.

• It doesn't support creating a DynamicFrame with ChoiceType.

• It doesn't support creating a DynamicFrame with error records.

• It doesn't support reading CSV files with multibyte characters such as Japanese or Chinese
characters.

Using the Parquet format in AWS Glue

AWS Glue retrieves data from sources and writes data to targets stored and transported in various
data formats. If your data is stored or transported in the Parquet data format, this document
introduces you available features for using your data in AWS Glue.

AWS Glue supports using the Parquet format. This format is a performance-oriented, column-
based data format. For an introduction to the format by the standard authority see, Apache
Parquet Documentation Overview.

You can use AWS Glue to read Parquet files from Amazon S3 and from streaming sources as well
as write Parquet files to Amazon S3. You can read and write bzip and gzip archives containing
Parquet files from S3. You configure compression behavior on the S3 connection parameters
instead of in the configuration discussed on this page.

The following table shows which common AWS Glue features support the Parquet format option.

Features and optimizations 1763

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-types.html#aws-glue-api-crawler-pyspark-extensions-types-awsglue-choicetype
https://docs.aws.amazon.com/glue/latest/dg/glue-etl-scala-apis-glue-dynamicframe-class.html#glue-etl-scala-apis-glue-dynamicframe-class-defs-errorsAsDynamicFrame
https://parquet.apache.org/docs/overview/
https://parquet.apache.org/docs/overview/

AWS Glue User Guide

Read Write Streaming read Group small
files

Job bookmarks

Supported Supported Supported Unsupported Supported*

* Supported in AWS Glue version 1.0+

Example: Read Parquet files or folders from S3

Prerequisites: You will need the S3 paths (s3path) to the Parquet files or folders that you want to
read.

Configuration: In your function options, specify format="parquet". In your
connection_options, use the paths key to specify your s3path.

You can configure how the reader interacts with S3 in the connection_options. For details, see
Connection types and options for ETL in AWS Glue: S3 connection parameters.

You can configure how the reader interprets Parquet files in your format_options. For details,
see Parquet Configuration Reference.

The following AWS Glue ETL script shows the process of reading Parquet files or folders from S3:

Python

For this example, use the create_dynamic_frame.from_options method.

Example: Read Parquet from S3

from pyspark.context import SparkContext
from awsglue.context import GlueContext

sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)
spark = glueContext.spark_session

dynamicFrame = glueContext.create_dynamic_frame.from_options(
 connection_type = "s3",
 connection_options = {"paths": ["s3://s3path/"]},
 format = "parquet"
)

Features and optimizations 1764

AWS Glue User Guide

You can also use DataFrames in a script (pyspark.sql.DataFrame).

dataFrame = spark.read.parquet("s3://s3path/")

Scala

For this example, use the getSourceWithFormat method.

// Example: Read Parquet from S3

import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.{DynamicFrame, GlueContext}
import org.apache.spark.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)

 val dynamicFrame = glueContext.getSourceWithFormat(
 connectionType="s3",
 format="parquet",
 options=JsonOptions("""{"paths": ["s3://s3path"]}""")
).getDynamicFrame()
 }
}

You can also use DataFrames in a script (org.apache.spark.sql.DataFrame).

spark.read.parquet("s3://s3path/")

Example: Write Parquet files and folders to S3

Prerequisites: You will need an initialized DataFrame (dataFrame) or DynamicFrame
(dynamicFrame). You will also need your expected S3 output path, s3path.

Configuration: In your function options, specify format="parquet". In your
connection_options, use the paths key to specify s3path.

Features and optimizations 1765

AWS Glue User Guide

You can further alter how the writer interacts with S3 in the connection_options. For details,
see Connection types and options for ETL in AWS Glue: S3 connection parameters. You can
configure how your operation writes the contents of your files in format_options. For details,
see Parquet Configuration Reference.

The following AWS Glue ETL script shows the process of writing Parquet files and folders to S3.

We provide a custom Parquet writer with performance optimizations for DynamicFrames, through
the useGlueParquetWriter configuration key. To determine if this writer is right for your
workload, see Glue Parquet Writer.

Python

For this example, use the write_dynamic_frame.from_options method.

Example: Write Parquet to S3
Consider whether useGlueParquetWriter is right for your workflow.

from pyspark.context import SparkContext
from awsglue.context import GlueContext

sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

glueContext.write_dynamic_frame.from_options(
 frame=dynamicFrame,
 connection_type="s3",
 format="parquet",
 connection_options={
 "path": "s3://s3path",
 },
 format_options={
 # "useGlueParquetWriter": True,
 },
)

You can also use DataFrames in a script (pyspark.sql.DataFrame).

df.write.parquet("s3://s3path/")

Features and optimizations 1766

AWS Glue User Guide

Scala

For this example, use the getSinkWithFormat method.

// Example: Write Parquet to S3
// Consider whether useGlueParquetWriter is right for your workflow.

import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.{DynamicFrame, GlueContext}
import org.apache.spark.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)

 glueContext.getSinkWithFormat(
 connectionType="s3",
 options=JsonOptions("""{"path": "s3://s3path"}"""),
 format="parquet"
).writeDynamicFrame(dynamicFrame)
 }
}

You can also use DataFrames in a script (org.apache.spark.sql.DataFrame).

df.write.parquet("s3://s3path/")

Parquet configuration reference

You can use the following format_options wherever AWS Glue libraries specify
format="parquet":

• useGlueParquetWriter – Specifies the use of a custom Parquet writer that has performance
optimizations for DynamicFrame workflows. For usage details, see Glue Parquet Writer.

• Type: Boolean, Default:false

• compression – Specifies the compression codec used. Values are fully compatible with
org.apache.parquet.hadoop.metadata.CompressionCodecName.

• Type: Enumerated Text, Default: "snappy"

• Values: "uncompressed", "snappy", "gzip", and "lzo"

Features and optimizations 1767

AWS Glue User Guide

• blockSize – Specifies the size in bytes of a row group being buffered in memory. You use this
for tuning performance. Size should divide exactly into a number of megabytes.

• Type: Numerical, Default:134217728

• The default value is equal to 128 MB.

• pageSize – Specifies the size in bytes of a page. You use this for tuning performance. A page is
the smallest unit that must be read fully to access a single record.

• Type: Numerical, Default:1048576

• The default value is equal to 1 MB.

Note

Additionally, any options that are accepted by the underlying SparkSQL code can be passed
to this format by way of the connection_options map parameter. For example, you can
set a Spark configuration such as mergeSchema for the AWS Glue Spark reader to merge
the schema for all files.

Optimize write performance with AWS Glue Parquet writer

Note

The AWS Glue Parquet writer has historically been accessed through the glueparquet
format type. This access pattern is no longer advocated. Instead, use the parquet type
with useGlueParquetWriter enabled.

The AWS Glue Parquet writer has performance enhancements that allow faster Parquet file writes.
The traditional writer computes a schema before writing. The Parquet format doesn't store the
schema in a quickly retrievable fashion, so this might take some time. With the AWS Glue Parquet
writer, a pre-computed schema isn't required. The writer computes and modifies the schema
dynamically, as data comes in.

Note the following limitations when you specify useGlueParquetWriter:

• The writer supports only schema evolution (such as adding or removing columns), but not
changing column types, such as with ResolveChoice.

Features and optimizations 1768

https://spark.apache.org/docs/latest/sql-data-sources-parquet.html#schema-merging

AWS Glue User Guide

• The writer doesn't support writing empty DataFrames—for example, to write a schema-only file.
When integrating with the AWS Glue Data Catalog by setting enableUpdateCatalog=True,
attempting to write an empty DataFrame will not update the Data Catalog. This will result in
creating a table in the Data Catalog without a schema.

If your transform doesn't require these limitations, turning on the AWS Glue Parquet writer should
increase performance.

Using the XML format in AWS Glue

AWS Glue retrieves data from sources and writes data to targets stored and transported in
various data formats. If your data is stored or transported in the XML data format, this document
introduces you available features for using your data in AWS Glue.

AWS Glue supports using the XML format. This format represents highly configurable, rigidly
defined data structures that aren't row or column based. XML is highly standardized. For an
introduction to the format by the standard authority, see XML Essentials.

You can use AWS Glue to read XML files from Amazon S3, as well as bzip and gzip archives
containing XML files. You configure compression behavior on the S3 connection parameters instead
of in the configuration discussed on this page.

The following table shows which common AWS Glue features support the XML format option.

Read Write Streaming read Group small
files

Job bookmarks

Supported Unsupported Unsupported Supported Supported

Example: Read XML from S3

The XML reader takes an XML tag name. It examines elements with that tag within its input to
infer a schema and populates a DynamicFrame with corresponding values. The AWS Glue XML
functionality behaves similarly to the XML Data Source for Apache Spark. You might be able to gain
insight around basic behavior by comparing this reader to that project's documentation.

Prerequisites: You will need the S3 paths (s3path) to the XML files or folders that you want to
read, and some information about your XML file. You will also need the tag for the XML element
you want to read, xmlTag.

Features and optimizations 1769

https://www.w3.org/standards/xml/core
https://github.com/databricks/spark-xml

AWS Glue User Guide

Configuration: In your function options, specify format="xml". In your connection_options,
use the paths key to specify s3path. You can further configure how the reader interacts with S3
in the connection_options. For details, see Connection types and options for ETL in AWS Glue:
S3 connection parameters. In your format_options, use the rowTag key to specify xmlTag. You
can further configure how the reader interprets XML files in your format_options. For details,
see XML Configuration Reference.

The following AWS Glue ETL script shows the process of reading XML files or folders from S3.

Python

For this example, use the create_dynamic_frame.from_options method.

Example: Read XML from S3
Set the rowTag option to configure the reader.

from awsglue.context import GlueContext
from pyspark.context import SparkContext

sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

dynamicFrame = glueContext.create_dynamic_frame.from_options(
 connection_type="s3",
 connection_options={"paths": ["s3://s3path"]},
 format="xml",
 format_options={"rowTag": "xmlTag"},
)

You can also use DataFrames in a script (pyspark.sql.DataFrame).

dataFrame = spark.read\
 .format("xml")\
 .option("rowTag", "xmlTag")\
 .load("s3://s3path")

Scala

For this example, use the getSourceWithFormat operation.

// Example: Read XML from S3
// Set the rowTag option to configure the reader.

Features and optimizations 1770

AWS Glue User Guide

import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.GlueContext
import org.apache.spark.sql.SparkSession

val glueContext = new GlueContext(SparkContext.getOrCreate())
val sparkSession: SparkSession = glueContext.getSparkSession

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val dynamicFrame = glueContext.getSourceWithFormat(
 formatOptions=JsonOptions("""{"rowTag": "xmlTag"}"""),
 connectionType="s3",
 format="xml",
 options=JsonOptions("""{"paths": ["s3://s3path"], "recurse": true}""")
).getDynamicFrame()
}

You can also use DataFrames in a script (org.apache.spark.sql.DataFrame).

val dataFrame = spark.read
 .option("rowTag", "xmlTag")
 .format("xml")
 .load("s3://s3path“)

XML configuration reference

You can use the following format_options wherever AWS Glue libraries specify format="xml":

• rowTag – Specifies the XML tag in the file to treat as a row. Row tags cannot be self-closing.

• Type: Text, Required

• encoding – Specifies the character encoding. It can be the name or alias of a Charset supported
by our runtime environment. We don't make specific guarantees around encoding support, but
major encodings should work.

• Type: Text, Default: "UTF-8"

• excludeAttribute – Specifies whether you want to exclude attributes in elements or not.

• Type: Boolean, Default: false

• treatEmptyValuesAsNulls – Specifies whether to treat white space as a null value.

Features and optimizations 1771

https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html

AWS Glue User Guide

• Type: Boolean, Default: false

• attributePrefix – A prefix for attributes to differentiate them from child element text. This
prefix is used for field names.

• Type: Text, Default: "_"

• valueTag – The tag used for a value when there are attributes in the element that have no
child.

• Type: Text, Default: "_VALUE"

• ignoreSurroundingSpaces – Specifies whether the white space that surrounds values should
be ignored.

• Type: Boolean, Default: false

• withSchema – Contains the expected schema, in situations where you want to override the
inferred schema. If you don't use this option, AWS Glue infers the schema from the XML data.

• Type: Text, Default: Not applicable

• The value should be a JSON object that represents a StructType.

Manually specify the XML schema

Manual XML schema example

This is an example of using the withSchema format option to specify the schema for XML data.

from awsglue.gluetypes import *

schema = StructType([
 Field("id", IntegerType()),
 Field("name", StringType()),
 Field("nested", StructType([
 Field("x", IntegerType()),
 Field("y", StringType()),
 Field("z", ChoiceType([IntegerType(), StringType()]))
]))
])

datasource0 = create_dynamic_frame_from_options(
 connection_type,
 connection_options={"paths": ["s3://xml_bucket/someprefix"]},
 format="xml",
 format_options={"withSchema": json.dumps(schema.jsonValue())},

Features and optimizations 1772

AWS Glue User Guide

 transformation_ctx = ""
)

Using the Avro format in AWS Glue

AWS Glue retrieves data from sources and writes data to targets stored and transported in
various data formats. If your data is stored or transported in the Avro data format, this document
introduces you available features for using your data in AWS Glue.

AWS Glue supports using the Avro format. This format is a performance-oriented, row-based
data format. For an introduction to the format by the standard authority see, Apache Avro 1.8.2
Documentation.

You can use AWS Glue to read Avro files from Amazon S3 and from streaming sources as well
as write Avro files to Amazon S3. You can read and write bzip2 and gzip archives containing
Avro files from S3. Additionally, you can write deflate, snappy, and xz archives containing
Avro files. You configure compression behavior on the S3 connection parameters instead of in the
configuration discussed on this page.

The following table shows which common AWS Glue operations support the Avro format option.

Read Write Streaming read Group small
files

Job bookmarks

Supported Supported Supported* Unsupported Supported

*Supported with restrictions. For more information, see the section called “Notes and restrictions
for Avro streaming sources”.

Example: Read Avro files or folders from S3

Prerequisites: You will need the S3 paths (s3path) to the Avro files or folders that you want to
read.

Configuration: In your function options, specify format="avro". In your connection_options,
use the paths key to specify s3path. You can configure how the reader interacts with S3 in the
connection_options. For details, see Data format options for ETL inputs and outputs in AWS
Glue: the section called “S3 connection parameters”. You can configure how the reader interprets
Avro files in your format_options. For details, see Avro Configuration Reference.

Features and optimizations 1773

https://avro.apache.org/docs/1.8.2/
https://avro.apache.org/docs/1.8.2/

AWS Glue User Guide

The following AWS Glue ETL script shows the process of reading Avro files or folders from S3:

Python

For this example, use the create_dynamic_frame.from_options method.

from pyspark.context import SparkContext
from awsglue.context import GlueContext

sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

dynamicFrame = glueContext.create_dynamic_frame.from_options(
 connection_type="s3",
 connection_options={"paths": ["s3://s3path"]},
 format="avro"
)

Scala

For this example, use the getSourceWithFormat operation.

import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.GlueContext
import org.apache.spark.sql.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)

 val dynamicFrame = glueContext.getSourceWithFormat(
 connectionType="s3",
 format="avro",
 options=JsonOptions("""{"paths": ["s3://s3path"]}""")
).getDynamicFrame()
 }

Example: Write Avro files and folders to S3

Prerequisites: You will need an initialized DataFrame (dataFrame) or DynamicFrame
(dynamicFrame). You will also need your expected S3 output path, s3path.

Features and optimizations 1774

AWS Glue User Guide

Configuration: In your function options, specify format="avro". In your connection_options,
use the paths key to specify your s3path. You can further alter how the writer interacts with S3
in the connection_options. For details, see Data format options for ETL inputs and outputs in
AWS Glue: the section called “S3 connection parameters”. You can alter how the writer interprets
Avro files in your format_options. For details, see Avro Configuration Reference.

The following AWS Glue ETL script shows the process of writing Avro files or folders to S3.

Python

For this example, use the write_dynamic_frame.from_options method.

from pyspark.context import SparkContext
from awsglue.context import GlueContext

sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

glueContext.write_dynamic_frame.from_options(
 frame=dynamicFrame,
 connection_type="s3",
 format="avro",
 connection_options={
 "path": "s3://s3path"
 }
)

Scala

For this example, use the getSinkWithFormat method.

import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.{DynamicFrame, GlueContext}
import org.apache.spark.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)

 glueContext.getSinkWithFormat(
 connectionType="s3",

Features and optimizations 1775

AWS Glue User Guide

 options=JsonOptions("""{"path": "s3://s3path"}"""),
 format="avro"
).writeDynamicFrame(dynamicFrame)
 }
}

Avro configuration reference

You can use the following format_options values wherever AWS Glue libraries specify
format="avro":

• version — Specifies the version of Apache Avro reader/writer format to support. The default
is "1.7". You can specify format_options={"version": “1.8”} to enable Avro logical type
reading and writing. For more information, see the Apache Avro 1.7.7 Specification and Apache
Avro 1.8.2 Specification.

The Apache Avro 1.8 connector supports the following logical type conversions:

For the reader: this table shows the conversion between Avro data type (logical type and Avro
primitive type) and AWS Glue DynamicFrame data type for Avro reader 1.7 and 1.8.

Avro Data Type:

Logical Type

Avro Data Type:

Avro Primitive Type

GlueDynamicFrame
Data Type:

Avro Reader 1.7

GlueDynamicFrame
Data Type:

Avro Reader 1.8

Decimal bytes BINARY Decimal

Decimal fixed BINARY Decimal

Date int INT Date

Time (millisecond) int INT INT

Time (microsecond) long LONG LONG

Timestamp (millisec
ond)

long LONG Timestamp

Features and optimizations 1776

https://avro.apache.org/docs/1.7.7/spec.html
https://avro.apache.org/docs/1.8.2/spec.html
https://avro.apache.org/docs/1.8.2/spec.html

AWS Glue User Guide

Avro Data Type:

Logical Type

Avro Data Type:

Avro Primitive Type

GlueDynamicFrame
Data Type:

Avro Reader 1.7

GlueDynamicFrame
Data Type:

Avro Reader 1.8

Timestamp (microsec
ond)

long LONG LONG

Duration (not a
logical type)

fixed of 12 BINARY BINARY

For the writer: this table shows the conversion between AWS Glue DynamicFrame data type and
Avro data type for Avro writer 1.7 and 1.8.

AWS Glue DynamicFrame
Data Type

Avro Data Type:

Avro Writer 1.7

Avro Data Type:

Avro Writer 1.8

Decimal String decimal

Date String date

Timestamp String timestamp-micros

Avro Spark DataFrame support

In order to use Avro from the Spark DataFrame API, you need to install the Spark Avro plugin for
the corresponding Spark version. The version of Spark available in your job is determined by your
AWS Glue version. For more information about Spark versions, see the section called “AWS Glue
versions”. This plugin is maintained by Apache, we do not make specific guarantees of support.

In AWS Glue 2.0 - use version 2.4.3 of the Spark Avro plugin. You can find this JAR on Maven
Central, see org.apache.spark:spark-avro_2.12:2.4.3.

In AWS Glue 3.0 - use version 3.1.1 of the Spark Avro plugin. You can find this JAR on Maven
Central, see org.apache.spark:spark-avro_2.12:3.1.1.

Features and optimizations 1777

https://search.maven.org/artifact/org.apache.spark/spark-avro_2.12/3.1.1/jar
https://search.maven.org/artifact/org.apache.spark/spark-avro_2.12/3.1.1/jar

AWS Glue User Guide

To include extra JARs in a AWS Glue ETL job, use the --extra-jars job parameter. For more
information about job parameters, see the section called “Job parameters”. You can also configure
this parameter in the AWS Management Console.

Using the grokLog format in AWS Glue

AWS Glue retrieves data from sources and writes data to targets stored and transported in various
data formats. If your data is stored or transported in a loosely structured plaintext format, this
document introduces you available features for using your data in AWS Glue through Grok
patterns.

AWS Glue supports using Grok patterns. Grok patterns are similar to regular expression capture
groups. They recognize patterns of character sequences in a plaintext file and give them a type and
purpose. In AWS Glue, their primary purpose is to read logs. For an introduction to the Grok by the
authors, see Logstash Reference: Grok filter plugin.

Read Write Streaming read Group small
files

Job bookmarks

Supported Not Applicable Supported Supported Unsupported

grokLog configuration reference

You can use the following format_options values with format="grokLog":

• logFormat — Specifies the Grok pattern that matches the log's format.

• customPatterns — Specifies additional Grok patterns used here.

• MISSING — Specifies the signal to use in identifying missing values. The default is '-'.

• LineCount — Specifies the number of lines in each log record. The default is '1', and currently
only single-line records are supported.

• StrictMode — A Boolean value that specifies whether strict mode is turned on. In strict mode,
the reader doesn't do automatic type conversion or recovery. The default value is "false".

Features and optimizations 1778

https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html

AWS Glue User Guide

Using the Ion format in AWS Glue

AWS Glue retrieves data from sources and writes data to targets stored and transported in various
data formats. If your data is stored or transported in the Ion data format, this document introduces
you available features for using your data in AWS Glue.

AWS Glue supports using the Ion format. This format represents data structures (that aren't row or
column based) in interchangeable binary and plaintext representations. For an introduction to the
format by the authors, see Amazon Ion. (For more information, see the Amazon Ion Specification.)

You can use AWS Glue to read Ion files from Amazon S3. You can read bzip and gzip archives
containing Ion files from S3. You configure compression behavior on the S3 connection parameters
instead of in the configuration discussed on this page.

The following table shows which common AWS Glue operations support the Ion format option.

Read Write Streaming read Group small
files

Job bookmarks

Supported Unsupported Unsupported Supported Unsupported

Example: Read Ion files and folders from S3

Prerequisites: You will need the S3 paths (s3path) to the Ion files or folders that you want to read.

Configuration: In your function options, specify format="json". In your connection_options,
use the paths key to specify your s3path. You can configure how the reader interacts with S3 in
the connection_options. For details, see Connection types and options for ETL in AWS Glue: the
section called “S3 connection parameters”.

The following AWS Glue ETL script shows the process of reading Ion files or folders from S3:

Python

For this example, use the create_dynamic_frame.from_options method.

Example: Read ION from S3

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Features and optimizations 1779

https://amzn.github.io/ion-docs/
https://amzn.github.io/ion-docs/spec.html

AWS Glue User Guide

sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

dynamicFrame = glueContext.create_dynamic_frame.from_options(
 connection_type="s3",
 connection_options={"paths": ["s3://s3path"]},
 format="ion"
)

Scala

For this example, use the getSourceWithFormat operation.

// Example: Read ION from S3

import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.GlueContext
import org.apache.spark.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)

 val dynamicFrame = glueContext.getSourceWithFormat(
 connectionType="s3",
 format="ion",
 options=JsonOptions("""{"paths": ["s3://s3path"], "recurse": true}""")
).getDynamicFrame()
 }
}

Ion configuration reference

There are no format_options values for format="ion".

Using the JSON format in AWS Glue

AWS Glue retrieves data from sources and writes data to targets stored and transported in various
data formats. If your data is stored or transported in the JSON data format, this document
introduces you to available features for using your data in AWS Glue.

Features and optimizations 1780

AWS Glue User Guide

AWS Glue supports using the JSON format. This format represents data structures with consistent
shape but flexible contents, that aren't row or column based. JSON is defined by parallel standards
issued by several authorities, one of which is ECMA-404. For an introduction to the format by a
commonly referenced source, see Introducing JSON.

You can use AWS Glue to read JSON files from Amazon S3, as well as bzip and gzip compressed
JSON files. You configure compression behavior on the S3 connection parameters instead of in the
configuration discussed on this page.

Read Write Streaming
read

Group small
files

Job
bookmarks

Supported Supported Supported Supported Supported

Example: Read JSON files or folders from S3

Prerequisites: You will need the S3 paths (s3path) to the JSON files or folders you would like to
read.

Configuration: In your function options, specify format="json". In your connection_options,
use the paths key to specify your s3path. You can further alter how your read operation will
traverse s3 in the connection options, consult the section called “S3 connection parameters” for
details. You can configure how the reader interprets JSON files in your format_options. For
details, see JSON Configuration Reference.

The following AWS Glue ETL script shows the process of reading JSON files or folders from S3:

Python

For this example, use the create_dynamic_frame.from_options method.

Example: Read JSON from S3
For show, we handle a nested JSON file that we can limit with the JsonPath
 parameter
For show, we also handle a JSON where a single entry spans multiple lines
Consider whether optimizePerformance is right for your workflow.

from pyspark.context import SparkContext
from awsglue.context import GlueContext

Features and optimizations 1781

https://www.json.org/

AWS Glue User Guide

sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)
spark = glueContext.spark_session

dynamicFrame = glueContext.create_dynamic_frame.from_options(
 connection_type="s3",
 connection_options={"paths": ["s3://s3path"]},
 format="json",
 format_options={
 "jsonPath": "$.id",
 "multiline": True,
 # "optimizePerformance": True, -> not compatible with jsonPath, multiline
 }
)

You can also use DataFrames in a script (pyspark.sql.DataFrame).

dataFrame = spark.read\
 .option("multiLine", "true")\
 .json("s3://s3path")

Scala

For this example, use the getSourceWithFormat operation.

// Example: Read JSON from S3
// For show, we handle a nested JSON file that we can limit with the JsonPath
 parameter
// For show, we also handle a JSON where a single entry spans multiple lines
// Consider whether optimizePerformance is right for your workflow.

import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.{DynamicFrame, GlueContext}
import org.apache.spark.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)

 val dynamicFrame = glueContext.getSourceWithFormat(
 formatOptions=JsonOptions("""{"jsonPath": "$.id", "multiline": true,
 "optimizePerformance":false}"""),

Features and optimizations 1782

AWS Glue User Guide

 connectionType="s3",
 format="json",
 options=JsonOptions("""{"paths": ["s3://s3path"], "recurse": true}""")
).getDynamicFrame()
 }
}

You can also use DataFrames in a script (pyspark.sql.DataFrame).

val dataFrame = spark.read
 .option("multiLine", "true")
 .json("s3://s3path")

Example: Write JSON files and folders to S3

Prerequisites:You will need an initialized DataFrame (dataFrame) or DynamicFrame
(dynamicFrame). You will also need your expected S3 output path, s3path.

Configuration: In your function options, specify format="json". In your connection_options,
use the paths key to specify s3path. You can further alter how the writer interacts with S3 in the
connection_options. For details, see Data format options for ETL inputs and outputs in AWS
Glue : the section called “S3 connection parameters”. You can configure how the writer interprets
JSON files in your format_options. For details, see JSON Configuration Reference.

The following AWS Glue ETL script shows the process of writing JSON files or folders from S3:

Python

For this example, use the write_dynamic_frame.from_options method.

Example: Write JSON to S3

from pyspark.context import SparkContext
from awsglue.context import GlueContext

sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

glueContext.write_dynamic_frame.from_options(
 frame=dynamicFrame,

Features and optimizations 1783

AWS Glue User Guide

 connection_type="s3",
 connection_options={"path": "s3://s3path"},
 format="json"
)

You can also use DataFrames in a script (pyspark.sql.DataFrame).

df.write.json("s3://s3path/")

Scala

For this example, use the getSinkWithFormat method.

// Example: Write JSON to S3

import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.{DynamicFrame, GlueContext}
import org.apache.spark.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)

 glueContext.getSinkWithFormat(
 connectionType="s3",
 options=JsonOptions("""{"path": "s3://s3path"}"""),
 format="json"
).writeDynamicFrame(dynamicFrame)
 }
}

You can also use DataFrames in a script (pyspark.sql.DataFrame).

df.write.json("s3://s3path")

Json configuration reference

You can use the following format_options values with format="json":

Features and optimizations 1784

AWS Glue User Guide

• jsonPath — A JsonPath expression that identifies an object to be read into records. This is
particularly useful when a file contains records nested inside an outer array. For example, the
following JsonPath expression targets the id field of a JSON object.

format="json", format_options={"jsonPath": "$.id"}

• multiLine — A Boolean value that specifies whether a single record can span multiple lines.
This can occur when a field contains a quoted new-line character. You must set this option to
"true" if any record spans multiple lines. The default value is "false", which allows for more
aggressive file-splitting during parsing.

• optimizePerformance — A Boolean value that specifies whether to use the advanced SIMD
JSON reader along with Apache Arrow based columnar memory formats. Only available in AWS
Glue 3.0. Not compatible with multiLine or jsonPath. Providing either of those options will
instruct AWS Glue to fall back to the standard reader.

• withSchema — A String value that specifies a table schema in the format described in the
section called “Specify XML schema”. Only used with optimizePerformance when reading
from non-Catalog connections.

Using vectorized SIMD JSON reader with Apache Arrow columnar format

AWS Glue version 3.0 adds a vectorized reader for JSON data. It performs 2x faster under certain
conditions, compared to the standard reader. This reader comes with certain limitations users
should be aware of before use, documented in this section.

To use the optimized reader, set "optimizePerformance" to True in the format_options
or table property. You will also need to provide withSchema unless reading from the catalog.
withSchema expects an input as described in the the section called “Specify XML schema”

// Read from S3 data source
glueContext.create_dynamic_frame.from_options(
 connection_type = "s3",
 connection_options = {"paths": ["s3://s3path"]},
 format = "json",
 format_options={
 "optimizePerformance": True,
 "withSchema": SchemaString
 })

Features and optimizations 1785

https://github.com/json-path/JsonPath

AWS Glue User Guide

// Read from catalog table
glueContext.create_dynamic_frame.from_catalog(
 database = database,
 table_name = table,
 additional_options = {
 // The vectorized reader for JSON can read your schema from a catalog table
 property.
 "optimizePerformance": True,
 })

For more information about the building a SchemaString in the AWS Glue library, see the section
called “Types”.

Limitations for the vectorized CSV reader

Note the following limitations:

• JSON elements with nested objects or array values are not supported. If provided, AWS Glue will
fall back to the standard reader.

• A schema must be provided, either from the Catalog or with withSchema.

• Not compatible with multiLine or jsonPath. Providing either of those options will instruct
AWS Glue to fall back to the standard reader.

• Providing input records that do not match the input schema will cause the reader to fail.

• Error records will not be created.

• JSON files with multi-byte characters (such as Japanese or Chinese characters) are not
supported.

Using the ORC format in AWS Glue

AWS Glue retrieves data from sources and writes data to targets stored and transported in
various data formats. If your data is stored or transported in the ORC data format, this document
introduces you available features for using your data in AWS Glue.

AWS Glue supports using the ORC format. This format is a performance-oriented, column-based
data format. For an introduction to the format by the standard authority see, Apache Orc.

You can use AWS Glue to read ORC files from Amazon S3 and from streaming sources as well as
write ORC files to Amazon S3. You can read and write bzip and gzip archives containing ORC files

Features and optimizations 1786

https://docs.aws.amazon.com/glue/latest/dg/glue-etl-scala-apis-glue-dynamicframe-class.html#glue-etl-scala-apis-glue-dynamicframe-class-defs-errorsAsDynamicFrame
https://orc.apache.org/docs/

AWS Glue User Guide

from S3. You configure compression behavior on the S3 connection parameters instead of in the
configuration discussed on this page.

The following table shows which common AWS Glue operations support the ORC format option.

Read Write Streaming read Group small
files

Job bookmarks

Supported Supported Supported Unsupported Supported*

*Supported in AWS Glue version 1.0+

Example: Read ORC files or folders from S3

Prerequisites: You will need the S3 paths (s3path) to the ORC files or folders that you want to
read.

Configuration: In your function options, specify format="orc". In your connection_options,
use the paths key to specify your s3path. You can configure how the reader interacts with S3 in
the connection_options. For details, see Connection types and options for ETL in AWS Glue: the
section called “S3 connection parameters”.

The following AWS Glue ETL script shows the process of reading ORC files or folders from S3:

Python

For this example, use the create_dynamic_frame.from_options method.

from pyspark.context import SparkContext
from awsglue.context import GlueContext

sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

dynamicFrame = glueContext.create_dynamic_frame.from_options(
 connection_type="s3",
 connection_options={"paths": ["s3://s3path"]},
 format="orc"
)

Features and optimizations 1787

AWS Glue User Guide

You can also use DataFrames in a script (pyspark.sql.DataFrame).

dataFrame = spark.read\
 .orc("s3://s3path")

Scala

For this example, use the getSourceWithFormat operation.

import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.GlueContext
import org.apache.spark.sql.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)

 val dynamicFrame = glueContext.getSourceWithFormat(
 connectionType="s3",
 format="orc",
 options=JsonOptions("""{"paths": ["s3://s3path"]}""")
).getDynamicFrame()
 }
}

You can also use DataFrames in a script (pyspark.sql.DataFrame).

val dataFrame = spark.read
 .orc("s3://s3path")

Example: Write ORC files and folders to S3

Prerequisites: You will need an initialized DataFrame (dataFrame) or DynamicFrame
(dynamicFrame). You will also need your expected S3 output path, s3path.

Configuration: In your function options, specify format="orc". In your connection options,
use the paths key to specify s3path. You can further alter how the writer interacts with S3 in
the connection_options. For details, see Data format options for ETL inputs and outputs in
AWS Glue: the section called “S3 connection parameters”. The following code example shows the
process:

Features and optimizations 1788

AWS Glue User Guide

Python

For this example, use the write_dynamic_frame.from_options method.

from pyspark.context import SparkContext
from awsglue.context import GlueContext

sc = SparkContext.getOrCreate()
glueContext = GlueContext(sc)

glueContext.write_dynamic_frame.from_options(
 frame=dynamicFrame,
 connection_type="s3",
 format="orc",
 connection_options={
 "path": "s3://s3path"
 }
)

You can also use DataFrames in a script (pyspark.sql.DataFrame).

df.write.orc("s3://s3path/")

Scala

For this example, use the getSinkWithFormat method.

import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.{DynamicFrame, GlueContext}
import org.apache.spark.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)

 glueContext.getSinkWithFormat(
 connectionType="s3",
 options=JsonOptions("""{"path": "s3://s3path"}"""),
 format="orc"
).writeDynamicFrame(dynamicFrame)
 }

Features and optimizations 1789

AWS Glue User Guide

}

You can also use DataFrames in a script (pyspark.sql.DataFrame).

df.write.orc("s3://s3path/")

ORC configuration reference

There are no format_options values for format="orc". However, any options that are accepted
by the underlying SparkSQL code can be passed to it by way of the connection_options map
parameter.

Using data lake frameworks with AWS Glue ETL jobs

Open-source data lake frameworks simplify incremental data processing for files that you store in
data lakes built on Amazon S3. AWS Glue 3.0 and later supports the following open-source data
lake frameworks:

• Apache Hudi

• Linux Foundation Delta Lake

• Apache Iceberg

We provide native support for these frameworks so that you can read and write data that you
store in Amazon S3 in a transactionally consistent manner. There's no need to install a separate
connector or complete extra configuration steps in order to use these frameworks in AWS Glue ETL
jobs.

When you manage datasets through the AWS Glue Data Catalog, you can use AWS Glue methods
to read and write data lake tables with Spark DataFrames. You can also read and write Amazon S3
data using the Spark DataFrame API.

In this video, you can learn about the basics of how Apache Hudi, Apache Iceberg, and Delta Lake
work. You'll see how to insert, update, and delete data in your data lake and how each of these
frameworks works.

Topics

• Limitations

• Using the Hudi framework in AWS Glue

Features and optimizations 1790

AWS Glue User Guide

• Using the Delta Lake framework in AWS Glue

• Using the Iceberg framework in AWS Glue

Limitations

Consider the following limitations before you use data lake frameworks with AWS Glue.

• The following AWS Glue GlueContext methods for DynamicFrame don't support reading and
writing data lake framework tables. Use the GlueContext methods for DataFrame or Spark
DataFrame API instead.

• The following GlueContext methods for DynamicFrame are not supported with Lake
Formation permission control:

• create_dynamic_frame.from_catalog

• write_dynamic_frame.from_catalog

• getDynamicFrame

• writeDynamicFrame

• The following GlueContext methods for DataFrame are supported with Lake Formation
permission control:

• create_data_frame.from_catalog

• write_data_frame.from_catalog

• getDataFrame

• writeDataFrame

• Grouping small files is not supported.

• Job bookmarks are not supported.

• Apache Hudi 0.10.1 for AWS Glue 3.0 doesn't support Hudi Merge on Read (MoR) tables.

• ALTER TABLE … RENAME TO is not available for Apache Iceberg 0.13.1 for AWS Glue 3.0.

Limitations for data lake format tables managed by Lake Formation permissions

The data lake formats are integrated with AWS Glue ETL via Lake Formation permissions. Creating
a DynamicFrame using create_dynamic_frame is not supported. For more information, see the
following examples:

• Example: Read and write Iceberg table with Lake Formation permission control

Features and optimizations 1791

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format-iceberg.html#aws-glue-programming-etl-format-iceberg-read-write-lake-formation-tables

AWS Glue User Guide

• Example: Read and write Hudi table with Lake Formation permission control

• Example: Read and write Delta Lake table with Lake Formation permission control

Note

The integration with AWS Glue ETL via Lake Formation permissions for Apache Hudi,
Apache Iceberg, and Delta Lake is supported only in AWS Glue version 4.0.

Apache Iceberg has the best integration with AWS Glue ETL via Lake Formation permissions. It
supports almost all operations and includes SQL support.

Hudi supports most basic operations with the exception of administrative operations. This
is because these options generally are done via writing of dataframes and specified via
additional_options. You need to use AWS Glue APIs to create DataFrames for your operations
as SparkSQL is not supported.

Delta Lake only supports the reading and appending and overwriting of table data. Delta Lake
requires the use of their own libraries to be able to perform various tasks such as updates.

The following features are not available for Iceberg tables managed by Lake Formation
permissions.

• Compaction using AWS Glue ETL

• Spark SQL support via AWS Glue ETL

The following are limitations of Hudi tables managed by Lake Formation permissions:

• Removal of orphaned files

The following are limitations of Delta Lake tables managed by Lake Formation permissions:

• All features other than inserting and reading from Delta Lake tables.

Using the Hudi framework in AWS Glue

AWS Glue 3.0 and later supports Apache Hudi framework for data lakes. Hudi is an open-source
data lake storage framework that simplifies incremental data processing and data pipeline

Features and optimizations 1792

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format-hudi.html#aws-glue-programming-etl-format-hudi-read-write-lake-formation-tables
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format-delta-lake.html#aws-glue-programming-etl-format-delta-lake-read-write-lake-formation-tables

AWS Glue User Guide

development. This topic covers available features for using your data in AWS Glue when you
transport or store your data in a Hudi table. To learn more about Hudi, see the official Apache Hudi
documentation.

You can use AWS Glue to perform read and write operations on Hudi tables in Amazon S3, or work
with Hudi tables using the AWS Glue Data Catalog. Additional operations including insert, update,
and all of the Apache Spark operations are also supported.

Note

Apache Hudi 0.10.1 for AWS Glue 3.0 doesn't support Hudi Merge on Read (MoR) tables.

The following table lists the Hudi version that is included in each AWS Glue version.

AWS Glue version Supported Hudi version

4.0 0.12.1

3.0 0.10.1

To learn more about the data lake frameworks that AWS Glue supports, see Using data lake
frameworks with AWS Glue ETL jobs.

Enabling Hudi

To enable Hudi for AWS Glue, complete the following tasks:

• Specify hudi as a value for the --datalake-formats job parameter. For more information, see
AWS Glue job parameters.

• Create a key named --conf for your AWS Glue job, and set it to the following value.
Alternatively, you can set the following configuration using SparkConf in your script. These
settings help Apache Spark correctly handle Hudi tables.

spark.serializer=org.apache.spark.serializer.KryoSerializer --conf
 spark.sql.hive.convertMetastoreParquet=false

• Lake Formation permission support for Hudi is enabled by default for AWS Glue 4.0. No
additional configuration is needed for reading/writing to Lake Formation-registered Hudi tables.

Features and optimizations 1793

https://hudi.apache.org/docs/overview/
https://hudi.apache.org/docs/overview/
https://hudi.apache.org/docs/quick-start-guide/

AWS Glue User Guide

To read a registered Hudi table, the AWS Glue job IAM role must have the SELECT permission. To
write to a registered Hudi table, the AWS Glue job IAM role must have the SUPER permission. To
learn more about managing Lake Formation permissions, see Granting and revoking permissions
on Data Catalog resources.

Using a different Hudi version

To use a version of Hudi that AWS Glue doesn't support, specify your own Hudi JAR files using the
--extra-jars job parameter. Do not include hudi as a value for the --datalake-formats job
parameter.

Example: Write a Hudi table to Amazon S3 and register it in the AWS Glue Data Catalog

This example script demonstrates how to write a Hudi table to Amazon S3 and register the table to
the AWS Glue Data Catalog. The example uses the Hudi Hive Sync tool to register the table.

Note

This example requires you to set the --enable-glue-datacatalog job parameter in
order to use the AWS Glue Data Catalog as an Apache Spark Hive metastore. To learn more,
see AWS Glue job parameters.

Python

Example: Create a Hudi table from a DataFrame
and register the table to Glue Data Catalog

additional_options={
 "hoodie.table.name": "<your_table_name>",
 "hoodie.datasource.write.storage.type": "COPY_ON_WRITE",
 "hoodie.datasource.write.operation": "upsert",
 "hoodie.datasource.write.recordkey.field": "<your_recordkey_field>",
 "hoodie.datasource.write.precombine.field": "<your_precombine_field>",
 "hoodie.datasource.write.partitionpath.field": "<your_partitionkey_field>",
 "hoodie.datasource.write.hive_style_partitioning": "true",
 "hoodie.datasource.hive_sync.enable": "true",
 "hoodie.datasource.hive_sync.database": "<your_database_name>",
 "hoodie.datasource.hive_sync.table": "<your_table_name>",
 "hoodie.datasource.hive_sync.partition_fields": "<your_partitionkey_field>",

Features and optimizations 1794

https://docs.aws.amazon.com/lake-formation/latest/dg/granting-catalog-permissions.html
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-catalog-permissions.html
https://hudi.apache.org/docs/syncing_metastore/

AWS Glue User Guide

 "hoodie.datasource.hive_sync.partition_extractor_class":
 "org.apache.hudi.hive.MultiPartKeysValueExtractor",
 "hoodie.datasource.hive_sync.use_jdbc": "false",
 "hoodie.datasource.hive_sync.mode": "hms",
 "path": "s3://<s3Path/>"
}

dataFrame.write.format("hudi") \
 .options(**additional_options) \
 .mode("overwrite") \
 .save()

Scala

// Example: Example: Create a Hudi table from a DataFrame
// and register the table to Glue Data Catalog

val additionalOptions = Map(
 "hoodie.table.name" -> "<your_table_name>",
 "hoodie.datasource.write.storage.type" -> "COPY_ON_WRITE",
 "hoodie.datasource.write.operation" -> "upsert",
 "hoodie.datasource.write.recordkey.field" -> "<your_recordkey_field>",
 "hoodie.datasource.write.precombine.field" -> "<your_precombine_field>",
 "hoodie.datasource.write.partitionpath.field" -> "<your_partitionkey_field>",
 "hoodie.datasource.write.hive_style_partitioning" -> "true",
 "hoodie.datasource.hive_sync.enable" -> "true",
 "hoodie.datasource.hive_sync.database" -> "<your_database_name>",
 "hoodie.datasource.hive_sync.table" -> "<your_table_name>",
 "hoodie.datasource.hive_sync.partition_fields" -> "<your_partitionkey_field>",
 "hoodie.datasource.hive_sync.partition_extractor_class" ->
 "org.apache.hudi.hive.MultiPartKeysValueExtractor",
 "hoodie.datasource.hive_sync.use_jdbc" -> "false",
 "hoodie.datasource.hive_sync.mode" -> "hms",
 "path" -> "s3://<s3Path/>")

dataFrame.write.format("hudi")
 .options(additionalOptions)
 .mode("append")
 .save()

Features and optimizations 1795

AWS Glue User Guide

Example: Read a Hudi table from Amazon S3 using the AWS Glue Data Catalog

This example reads the Hudi table that you created in the Example: Write a Hudi table to Amazon
S3 and register it in the AWS Glue Data Catalog from Amazon S3.

Note

This example requires you to set the --enable-glue-datacatalog job parameter in
order to use the AWS Glue Data Catalog as an Apache Spark Hive metastore. To learn more,
see AWS Glue job parameters.

Python

For this example, use the GlueContext.create_data_frame.from_catalog() method.

Example: Read a Hudi table from Glue Data Catalog

from awsglue.context import GlueContext
from pyspark.context import SparkContext

sc = SparkContext()
glueContext = GlueContext(sc)

dataFrame = glueContext.create_data_frame.from_catalog(
 database = "<your_database_name>",
 table_name = "<your_table_name>"
)

Scala

For this example, use the getCatalogSource method.

// Example: Read a Hudi table from Glue Data Catalog

import com.amazonaws.services.glue.GlueContext
import org.apache.spark.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()

Features and optimizations 1796

AWS Glue User Guide

 val glueContext: GlueContext = new GlueContext(spark)

 val dataFrame = glueContext.getCatalogSource(
 database = "<your_database_name>",
 tableName = "<your_table_name>"
).getDataFrame()
 }
}

Example: Update and insert a DataFrame into a Hudi table in Amazon S3

This example uses the AWS Glue Data Catalog to insert a DataFrame into the Hudi table that you
created in Example: Write a Hudi table to Amazon S3 and register it in the AWS Glue Data Catalog.

Note

This example requires you to set the --enable-glue-datacatalog job parameter in
order to use the AWS Glue Data Catalog as an Apache Spark Hive metastore. To learn more,
see AWS Glue job parameters.

Python

For this example, use the GlueContext.write_data_frame.from_catalog() method.

Example: Upsert a Hudi table from Glue Data Catalog

from awsglue.context import GlueContext
from pyspark.context import SparkContext

sc = SparkContext()
glueContext = GlueContext(sc)

glueContext.write_data_frame.from_catalog(
 frame = dataFrame,
 database = "<your_database_name>",
 table_name = "<your_table_name>",
 additional_options={
 "hoodie.table.name": "<your_table_name>",
 "hoodie.datasource.write.storage.type": "COPY_ON_WRITE",
 "hoodie.datasource.write.operation": "upsert",

Features and optimizations 1797

AWS Glue User Guide

 "hoodie.datasource.write.recordkey.field": "<your_recordkey_field>",
 "hoodie.datasource.write.precombine.field": "<your_precombine_field>",
 "hoodie.datasource.write.partitionpath.field": "<your_partitionkey_field>",
 "hoodie.datasource.write.hive_style_partitioning": "true",
 "hoodie.datasource.hive_sync.enable": "true",
 "hoodie.datasource.hive_sync.database": "<your_database_name>",
 "hoodie.datasource.hive_sync.table": "<your_table_name>",
 "hoodie.datasource.hive_sync.partition_fields": "<your_partitionkey_field>",
 "hoodie.datasource.hive_sync.partition_extractor_class":
 "org.apache.hudi.hive.MultiPartKeysValueExtractor",
 "hoodie.datasource.hive_sync.use_jdbc": "false",
 "hoodie.datasource.hive_sync.mode": "hms"
 }
)

Scala

For this example, use the getCatalogSink method.

// Example: Upsert a Hudi table from Glue Data Catalog

import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.util.JsonOptions
import org.apacke.spark.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 glueContext.getCatalogSink("<your_database_name>", "<your_table_name>",
 additionalOptions = JsonOptions(Map(
 "hoodie.table.name" -> "<your_table_name>",
 "hoodie.datasource.write.storage.type" -> "COPY_ON_WRITE",
 "hoodie.datasource.write.operation" -> "upsert",
 "hoodie.datasource.write.recordkey.field" -> "<your_recordkey_field>",
 "hoodie.datasource.write.precombine.field" -> "<your_precombine_field>",
 "hoodie.datasource.write.partitionpath.field" ->
 "<your_partitionkey_field>",
 "hoodie.datasource.write.hive_style_partitioning" -> "true",
 "hoodie.datasource.hive_sync.enable" -> "true",
 "hoodie.datasource.hive_sync.database" -> "<your_database_name>",
 "hoodie.datasource.hive_sync.table" -> "<your_table_name>",
 "hoodie.datasource.hive_sync.partition_fields" ->
 "<your_partitionkey_field>",

Features and optimizations 1798

AWS Glue User Guide

 "hoodie.datasource.hive_sync.partition_extractor_class" ->
 "org.apache.hudi.hive.MultiPartKeysValueExtractor",
 "hoodie.datasource.hive_sync.use_jdbc" -> "false",
 "hoodie.datasource.hive_sync.mode" -> "hms"
)))
 .writeDataFrame(dataFrame, glueContext)
 }
}

Example: Read a Hudi table from Amazon S3 using Spark

This example reads a Hudi table from Amazon S3 using the Spark DataFrame API.

Python

Example: Read a Hudi table from S3 using a Spark DataFrame

dataFrame = spark.read.format("hudi").load("s3://<s3path/>")

Scala

// Example: Read a Hudi table from S3 using a Spark DataFrame

val dataFrame = spark.read.format("hudi").load("s3://<s3path/>")

Example: Write a Hudi table to Amazon S3 using Spark

This example writes a Hudi table to Amazon S3 using Spark.

Python

Example: Write a Hudi table to S3 using a Spark DataFrame

dataFrame.write.format("hudi") \
 .options(**additional_options) \
 .mode("overwrite") \
 .save("s3://<s3Path/>)

Scala

// Example: Write a Hudi table to S3 using a Spark DataFrame

Features and optimizations 1799

AWS Glue User Guide

dataFrame.write.format("hudi")
 .options(additionalOptions)
 .mode("overwrite")
 .save("s3://<s3path/>")

Example: Read and write Hudi table with Lake Formation permission control

This example reads and writes a Hudi table with Lake Formation permission control.

1. Create a Hudi table and register it in Lake Formation.

a. To enable Lake Formation permission control, you’ll first need to register the table Amazon S3
path on Lake Formation. For more information, see Registering an Amazon S3 location. You
can register it either from the Lake Formation console or by using the AWS CLI:

aws lakeformation register-resource --resource-arn arn:aws:s3:::<s3-bucket>/<s3-
folder> --use-service-linked-role --region <REGION>

Once you register an Amazon S3 location, any AWS Glue table pointing to the location (or
any of its child locations) will return the value for the IsRegisteredWithLakeFormation
parameter as true in the GetTable call.

b. Create a Hudi table that points to the registered Amazon S3 path through the Spark
dataframe API:

hudi_options = {
 'hoodie.table.name': table_name,
 'hoodie.datasource.write.storage.type': 'COPY_ON_WRITE',
 'hoodie.datasource.write.recordkey.field': 'product_id',
 'hoodie.datasource.write.table.name': table_name,
 'hoodie.datasource.write.operation': 'upsert',
 'hoodie.datasource.write.precombine.field': 'updated_at',
 'hoodie.datasource.write.hive_style_partitioning': 'true',
 'hoodie.upsert.shuffle.parallelism': 2,
 'hoodie.insert.shuffle.parallelism': 2,
 'path': <S3_TABLE_LOCATION>,
 'hoodie.datasource.hive_sync.enable': 'true',
 'hoodie.datasource.hive_sync.database': database_name,
 'hoodie.datasource.hive_sync.table': table_name,
 'hoodie.datasource.hive_sync.use_jdbc': 'false',
 'hoodie.datasource.hive_sync.mode': 'hms'

Features and optimizations 1800

https://docs.aws.amazon.com/lake-formation/latest/dg/register-location.html

AWS Glue User Guide

}

df_products.write.format("hudi") \
 .options(**hudi_options) \
 .mode("overwrite") \
 .save()

2. Grant Lake Formation permission to the AWS Glue job IAM role. You can either grant permissions
from the Lake Formation console, or using the AWS CLI. For more information, see Granting
table permissions using the Lake Formation console and the named resource method

3. Read the Hudi table registered in Lake Formation. The code is same as reading a non-registered
Hudi table. Note that the AWS Glue job IAM role needs to have the SELECT permission for the
read to succeed.

 val dataFrame = glueContext.getCatalogSource(
 database = "<your_database_name>",
 tableName = "<your_table_name>"
).getDataFrame()

4. Write to a Hudi table registered in Lake Formation. The code is same as writing to a non-
registered Hudi table. Note that the AWS Glue job IAM role needs to have the SUPER permission
for the write to succeed.

glueContext.getCatalogSink("<your_database_name>", "<your_table_name>",
 additionalOptions = JsonOptions(Map(
 "hoodie.table.name" -> "<your_table_name>",
 "hoodie.datasource.write.storage.type" -> "COPY_ON_WRITE",
 "hoodie.datasource.write.operation" -> "<write_operation>",
 "hoodie.datasource.write.recordkey.field" -> "<your_recordkey_field>",
 "hoodie.datasource.write.precombine.field" -> "<your_precombine_field>",
 "hoodie.datasource.write.partitionpath.field" -> "<your_partitionkey_field>",
 "hoodie.datasource.write.hive_style_partitioning" -> "true",
 "hoodie.datasource.hive_sync.enable" -> "true",
 "hoodie.datasource.hive_sync.database" -> "<your_database_name>",
 "hoodie.datasource.hive_sync.table" -> "<your_table_name>",
 "hoodie.datasource.hive_sync.partition_fields" ->
 "<your_partitionkey_field>",
 "hoodie.datasource.hive_sync.partition_extractor_class" ->
 "org.apache.hudi.hive.MultiPartKeysValueExtractor",
 "hoodie.datasource.hive_sync.use_jdbc" -> "false",
 "hoodie.datasource.hive_sync.mode" -> "hms"
)))

Features and optimizations 1801

https://docs.aws.amazon.com/lake-formation/latest/dg/granting-table-permissions.html
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-table-permissions.html

AWS Glue User Guide

 .writeDataFrame(dataFrame, glueContext)

Using the Delta Lake framework in AWS Glue

AWS Glue 3.0 and later supports the Linux Foundation Delta Lake framework. Delta Lake is
an open-source data lake storage framework that helps you perform ACID transactions, scale
metadata handling, and unify streaming and batch data processing. This topic covers available
features for using your data in AWS Glue when you transport or store your data in a Delta Lake
table. To learn more about Delta Lake, see the official Delta Lake documentation.

You can use AWS Glue to perform read and write operations on Delta Lake tables in Amazon S3,
or work with Delta Lake tables using the AWS Glue Data Catalog. Additional operations such as
insert, update, and Table batch reads and writes are also supported. When you use Delta Lake
tables, you also have the option to use methods from the Delta Lake Python library such as
DeltaTable.forPath. For more information about the Delta Lake Python library, see Delta
Lake's Python documentation.

The following table lists the version of Delta Lake included in each AWS Glue version.

AWS Glue version Supported Delta Lake version

4.0 2.1.0

3.0 1.0.0

To learn more about the data lake frameworks that AWS Glue supports, see Using data lake
frameworks with AWS Glue ETL jobs.

Enabling Delta Lake for AWS Glue

To enable Delta Lake for AWS Glue, complete the following tasks:

• Specify delta as a value for the --datalake-formats job parameter. For more information,
see AWS Glue job parameters.

• Create a key named --conf for your AWS Glue job, and set it to the following value.
Alternatively, you can set the following configuration using SparkConf in your script. These
settings help Apache Spark correctly handle Delta Lake tables.

Features and optimizations 1802

https://docs.delta.io/latest/delta-intro.html
https://docs.delta.io/0.7.0/api/python/index.html

AWS Glue User Guide

spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension --conf
 spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog --
conf
 spark.delta.logStore.class=org.apache.spark.sql.delta.storage.S3SingleDriverLogStore

• Lake Formation permission support for Delta tables is enabled by default for AWS Glue 4.0. No
additional configuration is needed for reading/writing to Lake Formation-registered Delta tables.
To read a registered Delta table, the AWS Glue job IAM role must have the SELECT permission. To
write to a registered Delta table, the AWS Glue job IAM role must have the SUPER permission. To
learn more about managing Lake Formation permissions, see Granting and revoking permissions
on Data Catalog resources.

Using a different Delta Lake version

To use a version of Delta lake that AWS Glue doesn't support, specify your own Delta Lake JAR files
using the --extra-jars job parameter. Do not include delta as a value for the --datalake-
formats job parameter. To use the Delta Lake Python library in this case, you must specify the
library JAR files using the --extra-py-files job parameter. The Python library comes packaged
in the Delta Lake JAR files.

Example: Write a Delta Lake table to Amazon S3 and register it to the AWS Glue Data Catalog

The following AWS Glue ETL script demonstrates how to write a Delta Lake table to Amazon S3
and register the table to the AWS Glue Data Catalog.

Python

Example: Create a Delta Lake table from a DataFrame
and register the table to Glue Data Catalog

additional_options = {
 "path": "s3://<s3Path>"
}
dataFrame.write \
 .format("delta") \
 .options(**additional_options) \
 .mode("append") \
 .partitionBy("<your_partitionkey_field>") \
 .saveAsTable("<your_database_name>.<your_table_name>")

Features and optimizations 1803

https://docs.aws.amazon.com/lake-formation/latest/dg/granting-catalog-permissions.html
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-catalog-permissions.html

AWS Glue User Guide

Scala

// Example: Example: Create a Delta Lake table from a DataFrame
// and register the table to Glue Data Catalog

val additional_options = Map(
 "path" -> "s3://<s3Path>"
)
dataFrame.write.format("delta")
 .options(additional_options)
 .mode("append")
 .partitionBy("<your_partitionkey_field>")
 .saveAsTable("<your_database_name>.<your_table_name>")

Example: Read a Delta Lake table from Amazon S3 using the AWS Glue Data Catalog

The following AWS Glue ETL script reads the Delta Lake table that you created in Example: Write a
Delta Lake table to Amazon S3 and register it to the AWS Glue Data Catalog.

Python

For this example, use the create_data_frame.from_catalog method.

Example: Read a Delta Lake table from Glue Data Catalog

from awsglue.context import GlueContext
from pyspark.context import SparkContext

sc = SparkContext()
glueContext = GlueContext(sc)

df = glueContext.create_data_frame.from_catalog(
 database="<your_database_name>",
 table_name="<your_table_name>",
 additional_options=additional_options
)

Scala

For this example, use the getCatalogSource method.

// Example: Read a Delta Lake table from Glue Data Catalog

Features and optimizations 1804

AWS Glue User Guide

import com.amazonaws.services.glue.GlueContext
import org.apacke.spark.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 val df = glueContext.getCatalogSource("<your_database_name>",
 "<your_table_name>",
 additionalOptions = additionalOptions)
 .getDataFrame()
 }
}

Example: Insert a DataFrame into a Delta Lake table in Amazon S3 using the AWS Glue Data
Catalog

This example inserts data into the Delta Lake table that you created in Example: Write a Delta Lake
table to Amazon S3 and register it to the AWS Glue Data Catalog.

Note

This example requires you to set the --enable-glue-datacatalog job parameter in
order to use the AWS Glue Data Catalog as an Apache Spark Hive metastore. To learn more,
see AWS Glue job parameters.

Python

For this example, use the write_data_frame.from_catalog method.

Example: Insert into a Delta Lake table in S3 using Glue Data Catalog

from awsglue.context import GlueContext
from pyspark.context import SparkContext

sc = SparkContext()
glueContext = GlueContext(sc)

glueContext.write_data_frame.from_catalog(

Features and optimizations 1805

AWS Glue User Guide

 frame=dataFrame,
 database="<your_database_name>",
 table_name="<your_table_name>",
 additional_options=additional_options
)

Scala

For this example, use the getCatalogSink method.

// Example: Insert into a Delta Lake table in S3 using Glue Data Catalog

import com.amazonaws.services.glue.GlueContext
import org.apacke.spark.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 glueContext.getCatalogSink("<your_database_name>", "<your_table_name>",
 additionalOptions = additionalOptions)
 .writeDataFrame(dataFrame, glueContext)
 }
}

Example: Read a Delta Lake table from Amazon S3 using the Spark API

This example reads a Delta Lake table from Amazon S3 using the Spark API.

Python

Example: Read a Delta Lake table from S3 using a Spark DataFrame

dataFrame = spark.read.format("delta").load("s3://<s3path/>")

Scala

// Example: Read a Delta Lake table from S3 using a Spark DataFrame

val dataFrame = spark.read.format("delta").load("s3://<s3path/>")

Features and optimizations 1806

AWS Glue User Guide

Example: Write a Delta Lake table to Amazon S3 using Spark

This example writes a Delta Lake table to Amazon S3 using Spark.

Python

Example: Write a Delta Lake table to S3 using a Spark DataFrame

dataFrame.write.format("delta") \
 .options(**additional_options) \
 .mode("overwrite") \
 .partitionBy("<your_partitionkey_field>")
 .save("s3://<s3Path>")

Scala

// Example: Write a Delta Lake table to S3 using a Spark DataFrame

dataFrame.write.format("delta")
 .options(additionalOptions)
 .mode("overwrite")
 .partitionBy("<your_partitionkey_field>")
 .save("s3://<s3path/>")

Example: Read and write Delta Lake table with Lake Formation permission control

This example reads and writes a Delta Lake table with Lake Formation permission control.

1. Create a Delta table and register it in Lake Formation

a. To enable Lake Formation permission control, you’ll first need to register the table Amazon S3
path on Lake Formation. For more information, see Registering an Amazon S3 location. You
can register it either from the Lake Formation console or by using the AWS CLI:

aws lakeformation register-resource --resource-arn arn:aws:s3:::<s3-bucket>/<s3-
folder> --use-service-linked-role --region <REGION>

Once you register an Amazon S3 location, any AWS Glue table pointing to the location (or
any of its child locations) will return the value for the IsRegisteredWithLakeFormation
parameter as true in the GetTable call.

b. Create a Delta table that points to the registered Amazon S3 path through Spark:

Features and optimizations 1807

https://docs.aws.amazon.com/lake-formation/latest/dg/register-location.html

AWS Glue User Guide

Note

The following are Python examples.

dataFrame.write \
 .format("delta") \
 .mode("overwrite") \
 .partitionBy("<your_partitionkey_field>") \
 .save("s3://<the_s3_path>")

After the data has been written to Amazon S3, use the AWS Glue crawler to create a new
Delta catalog table. For more information, see Introducing native Delta Lake table support
with AWS Glue crawlers.

You can also create the table manually through the AWS Glue CreateTable API.

2. Grant Lake Formation permission to the AWS Glue job IAM role. You can either grant permissions
from the Lake Formation console, or using the AWS CLI. For more information, see Granting
table permissions using the Lake Formation console and the named resource method

3. Read the Delta table registered in Lake Formation. The code is same as reading a non-registered
Delta table. Note that the AWS Glue job IAM role needs to have the SELECT permission for the
read to succeed.

Example: Read a Delta Lake table from Glue Data Catalog

df = glueContext.create_data_frame.from_catalog(
 database="<your_database_name>",
 table_name="<your_table_name>",
 additional_options=additional_options
)

4. Write to a Delta table registered in Lake Formation. The code is same as writing to a non-
registered Delta table. Note that the AWS Glue job IAM role needs to have the SUPER permission
for the write to succeed.

By default AWS Glue uses Append as saveMode. You can change it by setting the saveMode
option in additional_options. For information about saveMode support in Delta tables, see
Write to a table.

Features and optimizations 1808

https://aws.amazon.com/blogs/big-data/introducing-native-delta-lake-table-support-with-aws-glue-crawlers/
https://aws.amazon.com/blogs/big-data/introducing-native-delta-lake-table-support-with-aws-glue-crawlers/
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-table-permissions.html
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-table-permissions.html
https://docs.delta.io/latest/delta-batch.html#write-to-a-table

AWS Glue User Guide

glueContext.write_data_frame.from_catalog(
 frame=dataFrame,
 database="<your_database_name>",
 table_name="<your_table_name>",
 additional_options=additional_options
)

Using the Iceberg framework in AWS Glue

AWS Glue 3.0 and later supports the Apache Iceberg framework for data lakes. Iceberg provides a
high-performance table format that works just like a SQL table. This topic covers available features
for using your data in AWS Glue when you transport or store your data in an Iceberg table. To learn
more about Iceberg, see the official Apache Iceberg documentation.

You can use AWS Glue to perform read and write operations on Iceberg tables in Amazon S3, or
work with Iceberg tables using the AWS Glue Data Catalog. Additional operations including insert,
update, and all Spark Queries Spark Writes are also supported.

Note

ALTER TABLE … RENAME TO is not available for Apache Iceberg 0.13.1 for AWS Glue 3.0.

The following table lists the version of Iceberg included in each AWS Glue version.

AWS Glue version Supported Iceberg version

4.0 1.0.0

3.0 0.13.1

To learn more about the data lake frameworks that AWS Glue supports, see Using data lake
frameworks with AWS Glue ETL jobs.

Enabling the Iceberg framework

To enable Iceberg for AWS Glue, complete the following tasks:

Features and optimizations 1809

https://iceberg.apache.org/docs/latest/
https://iceberg.apache.org/docs/latest/spark-queries/
https://iceberg.apache.org/docs/latest/spark-writes/

AWS Glue User Guide

• Specify iceberg as a value for the --datalake-formats job parameter. For more
information, see AWS Glue job parameters.

• Create a key named --conf for your AWS Glue job, and set it to the following value.
Alternatively, you can set the following configuration using SparkConf in your script. These
settings help Apache Spark correctly handle Iceberg tables.

spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions
--conf spark.sql.catalog.glue_catalog=org.apache.iceberg.spark.SparkCatalog
--conf spark.sql.catalog.glue_catalog.warehouse=s3://<your-warehouse-dir>/
--conf spark.sql.catalog.glue_catalog.catalog-
impl=org.apache.iceberg.aws.glue.GlueCatalog
--conf spark.sql.catalog.glue_catalog.io-impl=org.apache.iceberg.aws.s3.S3FileIO

If you are reading or writing to Iceberg tables that are registered with Lake Formation, add
the following configuration to enable Lake Formation support. Note that only AWS Glue 4.0
supports Iceberg tables registered with Lake Formation:

--conf spark.sql.catalog.glue_catalog.glue.lakeformation-enabled=true
--conf spark.sql.catalog.glue_catalog.glue.id=<table-catalog-id>

If you use AWS Glue 3.0 with Iceberg 0.13.1, you must set the following additional configurations
to use Amazon DynamoDB lock manager to ensure atomic transaction. AWS Glue 4.0 uses
optimistic locking by default. For more information, see Iceberg AWS Integrations in the official
Apache Iceberg documentation.

--conf spark.sql.catalog.glue_catalog.lock-
impl=org.apache.iceberg.aws.glue.DynamoLockManager
--conf spark.sql.catalog.glue_catalog.lock.table=<your-dynamodb-table-name>

Using a different Iceberg version

To use a version of Iceberg that AWS Glue doesn't support, specify your own Iceberg JAR files using
the --extra-jars job parameter. Do not include iceberg as a value for the --datalake-
formats parameter.

Enabling encryption for Iceberg tables

Features and optimizations 1810

https://iceberg.apache.org/docs/latest/aws/#dynamodb-lock-manager

AWS Glue User Guide

Note

Iceberg tables have their own mechanisms to enable server-side encryption. You should
enable this configuration in addition to AWS Glue's security configuration.

To enable server-side encryption on Iceberg tables, review the guidance from the Iceberg
documentation.

Example: Write an Iceberg table to Amazon S3 and register it to the AWS Glue Data Catalog

This example script demonstrates how to write an Iceberg table to Amazon S3. The example uses
Iceberg AWS Integrations to register the table to the AWS Glue Data Catalog.

Python

Example: Create an Iceberg table from a DataFrame
and register the table to Glue Data Catalog

dataFrame.createOrReplaceTempView("tmp_<your_table_name>")

query = f"""
CREATE TABLE glue_catalog.<your_database_name>.<your_table_name>
USING iceberg
TBLPROPERTIES ("format-version"="2")
AS SELECT * FROM tmp_<your_table_name>
"""
spark.sql(query)

Scala

// Example: Example: Create an Iceberg table from a DataFrame
// and register the table to Glue Data Catalog

dataFrame.createOrReplaceTempView("tmp_<your_table_name>")

val query = """CREATE TABLE glue_catalog.<your_database_name>.<your_table_name>
USING iceberg
TBLPROPERTIES ("format-version"="2")
AS SELECT * FROM tmp_<your_table_name>
"""
spark.sql(query)

Features and optimizations 1811

https://iceberg.apache.org/docs/latest/aws/#s3-server-side-encryption
https://iceberg.apache.org/docs/latest/aws/#s3-server-side-encryption
https://iceberg.apache.org/docs/latest/aws/

AWS Glue User Guide

Alternatively, you can write an Iceberg table to Amazon S3 and the Data Catalog using Spark
methods.

Prerequisites: You will need to provision a catalog for the Iceberg library to use. When using the
AWS Glue Data Catalog, AWS Glue makes this straightforward. The AWS Glue Data Catalog is pre-
configured for use by the Spark libraries as glue_catalog. Data Catalog tables are identified by
a databaseName and a tableName. For more information about the AWS Glue Data Catalog, see
Data discovery and cataloging.

If you are not using the AWS Glue Data Catalog, you will need to provision a catalog through the
Spark APIs. For more information, see Spark Configuration in the Iceberg documentation.

This example writes an Iceberg table to Amazon S3 and the Data Catalog using Spark.

Python

Example: Write an Iceberg table to S3 on the Glue Data Catalog

Create (equivalent to CREATE TABLE AS SELECT)
dataFrame.writeTo("glue_catalog.databaseName.tableName") \
 .tableProperty("format-version", "2") \
 .create()

Append (equivalent to INSERT INTO)
dataFrame.writeTo("glue_catalog.databaseName.tableName") \
 .tableProperty("format-version", "2") \
 .append()

Scala

// Example: Write an Iceberg table to S3 on the Glue Data Catalog

// Create (equivalent to CREATE TABLE AS SELECT)
dataFrame.writeTo("glue_catalog.databaseName.tableName")
 .tableProperty("format-version", "2")
 .create()

// Append (equivalent to INSERT INTO)
dataFrame.writeTo("glue_catalog.databaseName.tableName")
 .tableProperty("format-version", "2")
 .append()

Features and optimizations 1812

https://iceberg.apache.org/docs/latest/spark-configuration/

AWS Glue User Guide

Example: Read an Iceberg table from Amazon S3 using the AWS Glue Data Catalog

This example reads the Iceberg table that you created in Example: Write an Iceberg table to
Amazon S3 and register it to the AWS Glue Data Catalog.

Python

For this example, use the GlueContext.create_data_frame.from_catalog() method.

Example: Read an Iceberg table from Glue Data Catalog

from awsglue.context import GlueContext
from pyspark.context import SparkContext

sc = SparkContext()
glueContext = GlueContext(sc)

df = glueContext.create_data_frame.from_catalog(
 database="<your_database_name>",
 table_name="<your_table_name>",
 additional_options=additional_options
)

Scala

For this example, use the getCatalogSource method.

// Example: Read an Iceberg table from Glue Data Catalog

import com.amazonaws.services.glue.GlueContext
import org.apacke.spark.SparkContext

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 val df = glueContext.getCatalogSource("<your_database_name>",
 "<your_table_name>",
 additionalOptions = additionalOptions)
 .getDataFrame()
 }
}

Features and optimizations 1813

AWS Glue User Guide

Example: Insert a DataFrame into an Iceberg table in Amazon S3 using the AWS Glue Data
Catalog

This example inserts data into the Iceberg table that you created in Example: Write an Iceberg table
to Amazon S3 and register it to the AWS Glue Data Catalog.

Note

This example requires you to set the --enable-glue-datacatalog job parameter in
order to use the AWS Glue Data Catalog as an Apache Spark Hive metastore. To learn more,
see AWS Glue job parameters.

Python

For this example, use the GlueContext.write_data_frame.from_catalog() method.

Example: Insert into an Iceberg table from Glue Data Catalog

from awsglue.context import GlueContext
from pyspark.context import SparkContext

sc = SparkContext()
glueContext = GlueContext(sc)

glueContext.write_data_frame.from_catalog(
 frame=dataFrame,
 database="<your_database_name>",
 table_name="<your_table_name>",
 additional_options=additional_options
)

Scala

For this example, use the getCatalogSink method.

// Example: Insert into an Iceberg table from Glue Data Catalog

import com.amazonaws.services.glue.GlueContext
import org.apacke.spark.SparkContext

Features and optimizations 1814

AWS Glue User Guide

object GlueApp {
 def main(sysArgs: Array[String]): Unit = {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 glueContext.getCatalogSink("<your_database_name>", "<your_table_name>",
 additionalOptions = additionalOptions)
 .writeDataFrame(dataFrame, glueContext)
 }
}

Example: Read an Iceberg table from Amazon S3 using Spark

Prerequisites: You will need to provision a catalog for the Iceberg library to use. When using the
AWS Glue Data Catalog, AWS Glue makes this straightforward. The AWS Glue Data Catalog is pre-
configured for use by the Spark libraries as glue_catalog. Data Catalog tables are identified by
a databaseName and a tableName. For more information about the AWS Glue Data Catalog, see
Data discovery and cataloging.

If you are not using the AWS Glue Data Catalog, you will need to provision a catalog through the
Spark APIs. For more information, see Spark Configuration in the Iceberg documentation.

This example reads an Iceberg table in Amazon S3 from the Data Catalog using Spark.

Python

Example: Read an Iceberg table on S3 as a DataFrame from the Glue Data Catalog

dataFrame = spark.read.format("iceberg").load("glue_catalog.databaseName.tableName")

Scala

// Example: Read an Iceberg table on S3 as a DataFrame from the Glue Data Catalog

val dataFrame =
 spark.read.format("iceberg").load("glue_catalog.databaseName.tableName")

Example: Read and write Iceberg table with Lake Formation permission control

This example reads and writes an Iceberg table with Lake Formation permission control.

Features and optimizations 1815

https://iceberg.apache.org/docs/latest/spark-configuration/

AWS Glue User Guide

1. Create an Iceberg table and register it in Lake Formation:

a. To enable Lake Formation permission control, you’ll first need to register the table Amazon S3
path on Lake Formation. For more information, see Registering an Amazon S3 location. You
can register it either from the Lake Formation console or by using the AWS CLI:

aws lakeformation register-resource --resource-arn arn:aws:s3:::<s3-bucket>/<s3-
folder> --use-service-linked-role --region <REGION>

Once you register an Amazon S3 location, any AWS Glue table pointing to the location (or
any of its child locations) will return the value for the IsRegisteredWithLakeFormation
parameter as true in the GetTable call.

b. Create an Iceberg table that points to the registered path through Spark SQL:

Note

The following are Python examples.

dataFrame.createOrReplaceTempView("tmp_<your_table_name>")

query = f"""
CREATE TABLE glue_catalog.<your_database_name>.<your_table_name>
USING iceberg
AS SELECT * FROM tmp_<your_table_name>
"""
spark.sql(query)

You can also create the table manually through AWS Glue CreateTable API. For more
information, see Creating Apache Iceberg tables.

2. Grant Lake Formation permission to the job IAM role. You can either grant permissions
from the Lake Formation console, or using the AWS CLI. For more information, see: https://
docs.aws.amazon.com/lake-formation/latest/dg/granting-table-permissions.html

3. Read an Iceberg table registered with Lake Formation. The code is same as reading a non-
registered Iceberg table. Note that your AWS Glue job IAM role needs to have the SELECT
permission for the read to succeed.

Example: Read an Iceberg table from the AWS Glue Data Catalog

Features and optimizations 1816

https://docs.aws.amazon.com/lake-formation/latest/dg/register-location.html
https://docs.aws.amazon.com/lake-formation/latest/dg/creating-iceberg-tables.html

AWS Glue User Guide

from awsglue.context import GlueContextfrom pyspark.context import SparkContext

sc = SparkContext()
glueContext = GlueContext(sc)

df = glueContext.create_data_frame.from_catalog(
 database="<your_database_name>",
 table_name="<your_table_name>",
 additional_options=additional_options
)

4. Write to an Iceberg table registered with Lake Formation. The code is same as writing to a
non-registered Iceberg table. Note that your AWS Glue job IAM role needs to have the SUPER
permission for the write to succeed.

glueContext.write_data_frame.from_catalog(
 frame=dataFrame,
 database="<your_database_name>",
 table_name="<your_table_name>",
 additional_options=additional_options
)

Shared configuration reference

You can use the following format_options values with any format type.

• attachFilename — A string in the appropriate format to be used as a column name. If you
provide this option, the name of the source file for the record will be appended to the record.
The parameter value will be used as the column name.

• attachTimestamp — A string in the appropriate format to be used as a column name. If you
provide this option, the modification time of the source file for the record will be appended to
the record. The parameter value will be used as the column name.

AWS Glue Data Catalog support for Spark SQL jobs

The AWS Glue Data Catalog is an Apache Hive metastore-compatible catalog. You can configure
your AWS Glue jobs and development endpoints to use the Data Catalog as an external Apache
Hive metastore. You can then directly run Apache Spark SQL queries against the tables stored in

Features and optimizations 1817

AWS Glue User Guide

the Data Catalog. AWS Glue dynamic frames integrate with the Data Catalog by default. However,
with this feature, Spark SQL jobs can start using the Data Catalog as an external Hive metastore.

This feature requires network access to the AWS Glue API endpoint. For AWS Glue jobs with
connections located in private subnets, you must configure either a VPC endpoint or NAT gateway
to provide the network access. For information about configuring a VPC endpoint, see Setting up
network access to data stores. To create a NAT gateway, see NAT Gateways in the Amazon VPC User
Guide.

You can configure AWS Glue jobs and development endpoints by adding the "--enable-
glue-datacatalog": "" argument to job arguments and development endpoint arguments
respectively. Passing this argument sets certain configurations in Spark that enable it to access the
Data Catalog as an external Hive metastore. It also enables Hive support in the SparkSession
object created in the AWS Glue job or development endpoint.

To enable the Data Catalog access, check the Use AWS Glue Data Catalog as the Hive
metastore check box in the Catalog options group on the Add job or Add endpoint page on
the console. Note that the IAM role used for the job or development endpoint should have
glue:CreateDatabase permissions. A database called "default" is created in the Data Catalog
if it does not exist.

Lets look at an example of how you can use this feature in your Spark SQL jobs. The following
example assumes that you have crawled the US legislators dataset available at s3://awsglue-
datasets/examples/us-legislators.

To serialize/deserialize data from the tables defined in the AWS Glue Data Catalog, Spark SQL
needs the Hive SerDe class for the format defined in the AWS Glue Data Catalog in the classpath of
the spark job.

SerDes for certain common formats are distributed by AWS Glue. The following are the Amazon S3
links for these:

• JSON

• XML

• Grok

Add the JSON SerDe as an extra JAR to the development endpoint. For jobs, you can add the SerDe
using the --extra-jars argument in the arguments field. For more information, see AWS Glue
job parameters.

Features and optimizations 1818

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/SparkSession.Builder.html#enableHiveSupport--
https://cwiki.apache.org/confluence/display/Hive/SerDe
https://s3.us-west-2.amazonaws.com/crawler-public/json/serde/json-serde.jar
https://s3.us-west-2.amazonaws.com/crawler-public/xml/serde/hivexmlserde-1.0.5.3.jar
https://s3.us-west-2.amazonaws.com/crawler-public/grok/serde/AWSGlueHiveGrokSerDe-1.0-super.jar
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-dev-endpoint.html#aws-glue-api-dev-endpoint-DevEndpointCustomLibraries

AWS Glue User Guide

Here is an example input JSON to create a development endpoint with the Data Catalog enabled
for Spark SQL.

{
 "EndpointName": "Name",
 "RoleArn": "role_ARN",
 "PublicKey": "public_key_contents",
 "NumberOfNodes": 2,
 "Arguments": {
 "--enable-glue-datacatalog": ""
 },
 "ExtraJarsS3Path": "s3://crawler-public/json/serde/json-serde.jar"
}

Now query the tables created from the US legislators dataset using Spark SQL.

>>> spark.sql("use legislators")
DataFrame[]
>>> spark.sql("show tables").show()
+-----------+------------------+-----------+
| database| tableName|isTemporary|
+-----------+------------------+-----------+
|legislators| areas_json| false|
|legislators| countries_json| false|
|legislators| events_json| false|
|legislators| memberships_json| false|
|legislators|organizations_json| false|
|legislators| persons_json| false|
+-----------+------------------+-----------+
>>> spark.sql("describe memberships_json").show()
+--------------------+---------+-----------------+
| col_name|data_type| comment|
+--------------------+---------+-----------------+
| area_id| string|from deserializer|
| on_behalf_of_id| string|from deserializer|
| organization_id| string|from deserializer|
| role| string|from deserializer|
| person_id| string|from deserializer|
|legislative_perio...| string|from deserializer|
| start_date| string|from deserializer|
| end_date| string|from deserializer|

Features and optimizations 1819

AWS Glue User Guide

+--------------------+---------+-----------------+

If the SerDe class for the format is not available in the job's classpath, you will see an error similar
to the following.

>>> spark.sql("describe memberships_json").show()

Caused by: MetaException(message:java.lang.ClassNotFoundException Class
 org.openx.data.jsonserde.JsonSerDe not found)
 at
 org.apache.hadoop.hive.metastore.MetaStoreUtils.getDeserializer(MetaStoreUtils.java:399)
 at
 org.apache.hadoop.hive.ql.metadata.Table.getDeserializerFromMetaStore(Table.java:276)
 ... 64 more

To view only the distinct organization_ids from the memberships table, run the following SQL
query.

>>> spark.sql("select distinct organization_id from memberships_json").show()
+--------------------+
| organization_id|
+--------------------+
|d56acebe-8fdc-47b...|
|8fa6c3d2-71dc-478...|
+--------------------+

If you need to do the same with dynamic frames, run the following.

>>> memberships = glueContext.create_dynamic_frame.from_catalog(database="legislators",
 table_name="memberships_json")
>>> memberships.toDF().createOrReplaceTempView("memberships")
>>> spark.sql("select distinct organization_id from memberships").show()
+--------------------+
| organization_id|
+--------------------+
|d56acebe-8fdc-47b...|
|8fa6c3d2-71dc-478...|
+--------------------+

Features and optimizations 1820

AWS Glue User Guide

While DynamicFrames are optimized for ETL operations, enabling Spark SQL to access the
Data Catalog directly provides a concise way to run complex SQL statements or port existing
applications.

Using job bookmarks

AWS Glue for Spark uses job bookmarks to track data that has already been processed. For a
summary of the job bookmarks feature and what it supports, see the section called “Tracking
processed data using job bookmarks”. When programming a AWS Glue job with bookmarks, you
have access to flexibility unavailable in visual jobs.

• When reading from JDBC, you can specify the column(s) to use as bookmark keys in your AWS
Glue script.

• You can chose which transformation_ctx to apply to each method call.

Always call job.init in the beginning of the script and the job.commit in the end of the script
with appropriately configured parameters. These two functions initialize the bookmark service and
update the state change to the service. Bookmarks won’t work without calling them.

Specify bookmark keys

For JDBC workflows, the bookmark keeps track of which rows your job has read by comparing
the values of key fields to a bookmarked value. This is not necessary or applicable for Amazon S3
workflows. When writing a AWS Glue script without the visual editor, you can specify which column
to track with bookmarks. You can also specify multiple columns. Gaps in the sequence of values are
permitted when specifying user-defined bookmark keys.

Warning

If user-defined bookmarks keys are used, they must each be strictly monotonically
increasing or decreasing. When selecting additional fields for a compound key, fields for
concepts like "minor versions" or "revision numbers" do not meet this criteria, since their
values are reused throughout your dataset.

You can specify jobBookmarkKeys and jobBookmarkKeysSortOrder in the following ways:

• create_dynamic_frame.from_catalog — Use additional_options.

• create_dynamic_frame.from_options — Use connection_options.

Features and optimizations 1821

AWS Glue User Guide

Transformation context

Many of the AWS Glue PySpark dynamic frame methods include an optional parameter
named transformation_ctx, which is a unique identifier for the ETL operator instance. The
transformation_ctx parameter is used to identify state information within a job bookmark
for the given operator. Specifically, AWS Glue uses transformation_ctx to index the key to the
bookmark state.

Warning

The transformation_ctx serves as the key to search the bookmark state for a specific
source in your script. For the bookmark to work properly, you should always keep the
source and the associated transformation_ctx consistent. Changing the source
property or renaming the transformation_ctx may make the previous bookmark invalid
and the time stamp based filtering may not yield the correct result.

For job bookmarks to work properly, enable the job bookmark parameter and set the
transformation_ctx parameter. If you don't pass in the transformation_ctx parameter,
then job bookmarks are not enabled for a dynamic frame or a table used in the method. For
example, if you have an ETL job that reads and joins two Amazon S3 sources, you might choose
to pass the transformation_ctx parameter only to those methods that you want to enable
bookmarks. If you reset the job bookmark for a job, it resets all transformations that are associated
with the job regardless of the transformation_ctx used.

For more information about the DynamicFrameReader class, see DynamicFrameReader class. For
more information about PySpark extensions, see AWS Glue PySpark extensions reference.

Examples

Example

The following is an example of a generated script for an Amazon S3 data source. The portions of
the script that are required for using job bookmarks are shown in italics. For more information
about these elements see the GlueContext class API, and the DynamicFrameWriter class API.

Sample Script
import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions

Features and optimizations 1822

AWS Glue User Guide

from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

args = getResolvedOptions(sys.argv, ['JOB_NAME'])
sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)

datasource0 = glueContext.create_dynamic_frame.from_catalog(
 database = "database",
 table_name = "relatedqueries_csv",
 transformation_ctx = "datasource0"
)

applymapping1 = ApplyMapping.apply(
 frame = datasource0,
 mappings = [("col0", "string", "name", "string"), ("col1", "string", "number",
 "string")],
 transformation_ctx = "applymapping1"
)

datasink2 = glueContext.write_dynamic_frame.from_options(
 frame = applymapping1,
 connection_type = "s3",
 connection_options = {"path": "s3://input_path"},
 format = "json",
 transformation_ctx = "datasink2"
)

job.commit()

Example

The following is an example of a generated script for a JDBC source. The source table is an
employee table with the empno column as the primary key. Although by default the job uses a
sequential primary key as the bookmark key if no bookmark key is specified, because empno is
not necessarily sequential—there could be gaps in the values—it does not qualify as a default
bookmark key. Therefore, the script explicitly designates empno as the bookmark key. That portion
of the code is shown in italics.

Features and optimizations 1823

AWS Glue User Guide

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

args = getResolvedOptions(sys.argv, ['JOB_NAME'])

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)

datasource0 = glueContext.create_dynamic_frame.from_catalog(
 database = "hr",
 table_name = "emp",
 transformation_ctx = "datasource0",
 additional_options = {"jobBookmarkKeys":["empno"],"jobBookmarkKeysSortOrder":"asc"}
)

applymapping1 = ApplyMapping.apply(
 frame = datasource0,
 mappings = [("ename", "string", "ename", "string"), ("hrly_rate", "decimal(38,0)",
 "hrly_rate", "decimal(38,0)"), ("comm", "decimal(7,2)", "comm", "decimal(7,2)"),
 ("hiredate", "timestamp", "hiredate", "timestamp"), ("empno", "decimal(5,0)", "empno",
 "decimal(5,0)"), ("mgr", "decimal(5,0)", "mgr", "decimal(5,0)"), ("photo", "string",
 "photo", "string"), ("job", "string", "job", "string"), ("deptno", "decimal(3,0)",
 "deptno", "decimal(3,0)"), ("ssn", "decimal(9,0)", "ssn", "decimal(9,0)"), ("sal",
 "decimal(7,2)", "sal", "decimal(7,2)")],
 transformation_ctx = "applymapping1"
)

datasink2 = glueContext.write_dynamic_frame.from_options(
 frame = applymapping1,
 connection_type = "s3",
 connection_options = {"path": "s3://hr/employees"},
 format = "csv",
 transformation_ctx = "datasink2"
)

job.commit()

Features and optimizations 1824

AWS Glue User Guide

Using Sensitive Data Detection outside AWS Glue Studio

AWS Glue Studio allows you to detect sensitive data, however, you can also use the Sensitive Data
Detection functionality outside of AWS Glue Studio.

For a full list of managed sensitive data types, see Managed data types.

Detecting Sensitive Data Detection using AWS Managed PII types

AWS Glue provides two APIs in a AWS Glue ETL job. These are detect() and
classifyColumns():

 detect(frame: DynamicFrame,
 entityTypesToDetect: Seq[String],
 outputColumnName: String = "DetectedEntities",
 detectionSensitivity: String = "LOW"): DynamicFrame

 detect(frame: DynamicFrame,
 detectionParameters: JsonOptions,
 outputColumnName: String = "DetectedEntities",
 detectionSensitivity: String = "LOW"): DynamicFrame

 classifyColumns(frame: DynamicFrame,
 entityTypesToDetect: Seq[String],
 sampleFraction: Double = 0.1,
 thresholdFraction: Double = 0.1,
 detectionSensitivity: String = "LOW")

You can use the detect() API to identify AWS Managed PII types and custom entity types.
A new column is automatically created with the detection result. The classifyColumns()
API returns a map where keys are column names and values are list of detected entity types.
SampleFraction indicates the fraction of the data to sample when scanning for PII entities
whereas ThresholdFraction indicates the fraction of the data that must be met in order for a
column to be identified as PII data.

Row-level detection

In the example, the job is performing the following actions using the detect() and
classifyColumns() APIs:

Features and optimizations 1825

https://docs.aws.amazon.com/glue/latest/dg/sensitive-data-managed-data-types.html

AWS Glue User Guide

• reading data from an Amazon S3 bucket and turns it into a dynamicFrame

• detecting instances of "Email" and "Credit Card" in the dynamicFrame

• returning a dynamicFrame with original values plus one column which encompasses detection
result for each row

• writing the returned dynamicFrame in another Amazon S3 path

 import com.amazonaws.services.glue.GlueContext
 import com.amazonaws.services.glue.MappingSpec
 import com.amazonaws.services.glue.errors.CallSite
 import com.amazonaws.services.glue.util.GlueArgParser
 import com.amazonaws.services.glue.util.Job
 import com.amazonaws.services.glue.util.JsonOptions
 import org.apache.spark.SparkContext
 import scala.collection.JavaConverters._
 import com.amazonaws.services.glue.ml.EntityDetector

 object GlueApp {
 def main(sysArgs: Array[String]) {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)
 val frame=
 glueContext.getSourceWithFormat(formatOptions=JsonOptions("""{"quoteChar": "\"",
 "withHeader": true, "separator": ","}"""), connectionType="s3", format="csv",
 options=JsonOptions("""{"paths": ["s3://pathToSource"], "recurse": true}"""),
 transformationContext="AmazonS3_node1650160158526").getDynamicFrame()

 val frameWithDetectedPII = EntityDetector.detect(frame, Seq("EMAIL",
 "CREDIT_CARD"))

 glueContext.getSinkWithFormat(connectionType="s3",
 options=JsonOptions("""{"path": "s3://pathToOutput/", "partitionKeys": []}"""),
 transformationContext="someCtx",
 format="json").writeDynamicFrame(frameWithDetectedPII)

 Job.commit()
 }
 }

Features and optimizations 1826

AWS Glue User Guide

Row-level detection with fine-grained actions

In the example, the job is performing the following actions using the detect() APIs:

• reading data from an Amazon S3 bucket and turns it into a dynamicFrame

• detecting sensitive data types for “USA_PTIN”, “ BANK_ACCOUNT”, “USA_SSN”,
“USA_PASSPORT_NUMBER” , and “PHONE_NUMBER” in the dynamicFrame

• returning a dynamicFrame with modified masked values plus one column which encompasses
detection result for each row

• writing the returned dynamicFrame in another Amazon S3 path

In contrast with the above detect() API, this uses fine-grained actions for entity types to detect.
For more information, see Detection parameters for using detect().

import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.MappingSpec
import com.amazonaws.services.glue.errors.CallSite
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import org.apache.spark.SparkContext
import scala.collection.JavaConverters._
import com.amazonaws.services.glue.ml.EntityDetector

object GlueApp {
 def main(sysArgs: Array[String]) {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)
 val frame =
 glueContext.getSourceWithFormat(formatOptions=JsonOptions("""{"quoteChar": "\"",
 "withHeader": true, "separator": ","}"""), connectionType="s3", format="csv",
 options=JsonOptions("""{"paths": ["s3://pathToSource"], "recurse": true}"""),
 transformationContext="AmazonS3_node_source").getDynamicFrame()

 val detectionParameters = JsonOptions(
 """
 {

Features and optimizations 1827

AWS Glue User Guide

 "USA_DRIVING_LICENSE": [{
 "action": "PARTIAL_REDACT",
 "sourceColumns": ["Driving License"],
 "actionOptions": {
 "matchPattern": "[0-9]",
 "redactChar": "*"
 }
 }],
 "BANK_ACCOUNT": [{
 "action": "DETECT",
 "sourceColumns": ["*"]
 }],
 "USA_SSN": [{
 "action": "SHA256_HASH",
 "sourceColumns": ["SSN"]
 }],
 "IP_ADDRESS": [{
 "action": "REDACT",
 "sourceColumns": ["IP Address"],
 "actionOptions": {"redactText": "*****"}
 }],
 "PHONE_NUMBER": [{
 "action": "PARTIAL_REDACT",
 "sourceColumns": ["Phone Number"],
 "actionOptions": {
 "numLeftCharsToExclude": 1,
 "numRightCharsToExclude": 0,
 "redactChar": "*"
 }
 }]
 }
 """
)

 val frameWithDetectedPII = EntityDetector.detect(frame, detectionParameters,
 "DetectedEntities", "HIGH")

 glueContext.getSinkWithFormat(connectionType="s3", options=JsonOptions("""{"path":
 "s3://pathToOutput/", "partitionKeys": []}"""),
 transformationContext="AmazonS3_node_target",
 format="json").writeDynamicFrame(frameWithDetectedPII)

 Job.commit()
 }

Features and optimizations 1828

AWS Glue User Guide

}

Column-level detection

In the example, the job is performing the following actions using the classifyColumns()APIs:

• reading data from an Amazon S3 bucket and turns it into a dynamicFrame

• detecting instances of "Email" and "Credit Card" in the dynamicFrame

• set parameters to sample 100% of the column, mark an entity as detected if it is in 10% of cells,
and have “LOW” sensitivity

• returns a map where keys are column names and values are list of detected entity types

• writing the returned dynamicFrame in another Amazon S3 path

import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.MappingSpec
import com.amazonaws.services.glue.errors.CallSite
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import org.apache.spark.SparkContext
import scala.collection.JavaConverters._
import com.amazonaws.services.glue.DynamicFrame
import com.amazonaws.services.glue.ml.EntityDetector

object GlueApp {
 def main(sysArgs: Array[String]) {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)
 val frame =
 glueContext.getSourceWithFormat(formatOptions=JsonOptions("""{"quoteChar":
 "\"", "withHeader": true, "separator": ",", "optimizePerformance": false}"""),
 connectionType="s3", format="csv", options=JsonOptions("""{"paths": ["s3://
pathToSource"], "recurse": true}"""), transformationContext="frame").getDynamicFrame()

 import glueContext.sparkSession.implicits._

 val detectedDataFrame = EntityDetector.classifyColumns(

Features and optimizations 1829

AWS Glue User Guide

 frame,
 entityTypesToDetect = Seq("CREDIT_CARD", "PHONE_NUMBER"),
 sampleFraction = 1.0,
 thresholdFraction = 0.1,
 detectionSensitivity = "LOW"
)
 val detectedDF = (detectedDataFrame).toSeq.toDF("columnName", "entityTypes")
 val DetectSensitiveData_node = DynamicFrame(detectedDF, glueContext)

 glueContext.getSinkWithFormat(connectionType="s3", options=JsonOptions("""{"path":
 "s3://pathToOutput", "partitionKeys": []}"""), transformationContext="someCtx",
 format="json").writeDynamicFrame(DetectSensitiveData_node)

 Job.commit()
 }
}

Detecting Sensitive Data Detection using AWS CustomEntityType PII types

You can define custom entities through AWS Studio. However, to use this feature out of AWS
Studio, you have to first define the custom entity types and then add the defined custom entity
types to the list of entityTypesToDetect.

If you have specific sensitive data types in your data (such as 'Employee Id'), you can create custom
entities by calling the CreateCustomEntityType() API. The following example defines the
custom entity type 'EMPLOYEE_ID' to the CreateCustomEntityType() API with the request
parameters:

 {
 "name": "EMPLOYEE_ID",
 "regexString": "\d{4}-\d{3}",
 "contextWords": ["employee"]
 }

Then, modify the job to use the new custom sensitive data type by adding the custom entity type
(EMPLOYEE_ID) to the EntityDetector() API:

Features and optimizations 1830

AWS Glue User Guide

 import com.amazonaws.services.glue.GlueContext
 import com.amazonaws.services.glue.MappingSpec
 import com.amazonaws.services.glue.errors.CallSite
 import com.amazonaws.services.glue.util.GlueArgParser
 import com.amazonaws.services.glue.util.Job
 import com.amazonaws.services.glue.util.JsonOptions
 import org.apache.spark.SparkContext
 import scala.collection.JavaConverters._
 import com.amazonaws.services.glue.ml.EntityDetector

 object GlueApp {
 def main(sysArgs: Array[String]) {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)
 val frame=
 glueContext.getSourceWithFormat(formatOptions=JsonOptions("""{"quoteChar": "\"",
 "withHeader": true, "separator": ","}"""), connectionType="s3", format="csv",
 options=JsonOptions("""{"paths": ["s3://pathToSource"], "recurse": true}"""),
 transformationContext="AmazonS3_node1650160158526").getDynamicFrame()

 val frameWithDetectedPII = EntityDetector.detect(frame, Seq("EMAIL",
 "CREDIT_CARD", "EMPLOYEE_ID"))

 glueContext.getSinkWithFormat(connectionType="s3",
 options=JsonOptions("""{"path": "s3://pathToOutput/", "partitionKeys": []}"""),
 transformationContext="someCtx",
 format="json").writeDynamicFrame(frameWithDetectedPII)

 Job.commit()
 }
 }

Note

If a custom sensitive data type is defined with the same name as an existing managed
entity type, then the custom sensitive data type will take precedent and overwrite the
managed entity type's logic.

Features and optimizations 1831

AWS Glue User Guide

Detection parameters for using detect()

This method is used for detecting entities in a DynamicFrame. It returns a new DataFrame with
original values and an additional column outputColumnName that has PII detection metadata.
Custom masking can be done after this DynamicFrame is returned within the AWS Glue script, or
the detect() with fine-grained actions API can be used instead.

detect(frame: DynamicFrame,
 entityTypesToDetect: Seq[String],
 outputColumnName: String = "DetectedEntities",
 detectionSensitivity: String = "LOW"): DynamicFrame

Parameters:

• frame – (type: DynamicFrame) The input DynamicFrame containing the data to be processed.

• entityTypesToDetect – (type: [Seq[String]) List of entity types to detect. Can be either
Managed Entity Types or Custom Entity Types.

• outputColumnName – (type: String, default: "DetectedEntities") The name of the
column where detected entities will be stored. If not provided, the default column name is
"DetectedEntities".

• detectionSensitivity – (type: String, options: "LOW" or "HIGH", default: "LOW") Specifies the
sensitivity of the detection process. Valid options are "LOW" or "HIGH". If not provided, the
default sensitivity is set to "LOW".

outputColumnName settings:

The name of the column where detected entities will be stored. If not provided, the default column
name is "DetectedEntities". For each row in the output column, the supplementary column includes
a map of the column name to the detected entity metadata with the following key-value pairs:

• entityType – The detected entity type.

• start – The starting position of the detected entity in the original data.

• end – The ending position of the detected entity in the original data.

• actionUsed – The action performed on the detected entity (e.g., "DETECT," "REDACT,"
"PARTIAL_REDACT," "SHA256_HASH").

Features and optimizations 1832

AWS Glue User Guide

Example:

{
 "DetectedEntities":{
 "SSN Col":[
 {
 "entityType":"USA_SSN",
 "actionUsed":"DETECT",
 "start":4,
 "end":15
 }
],
 "Random Data col":[
 {
 "entityType":"BANK_ACCOUNT",
 "actionUsed":"PARTIAL_REDACT",
 "start":4,
 "end":13
 },
 {
 "entityType":"IP_ADDRESS",
 "actionUsed":"REDACT",
 "start":4,
 "end":13
 }
]
 }
}

Detection Parameters for detect() with fine grained actions

This method is used for detecting entities in a DynamicFrame using specified parameters. It returns
a new DataFrame with original values replaced with masked sensitive data and an additional
column outputColumnName that has PII detection metadata.

detect(frame: DynamicFrame,
 detectionParameters: JsonOptions,
 outputColumnName: String = "DetectedEntities",
 detectionSensitivity: String = "LOW"): DynamicFrame

Features and optimizations 1833

AWS Glue User Guide

Parameters:

• frame – (type: DynamicFrame): The input DynamicFrame containing the data to be processed.

• detectionParameters – (type: JsonOptions): JSON options specifying parameters for the
detection process.

• outputColumnName – (type: String, default: "DetectedEntities"): The name of the
column where detected entities will be stored. If not provided, the default column name is
"DetectedEntities".

• detectionSensitivity – (type: String, options: "LOW" or "HIGH", default: "LOW"): Specifies
the sensitivity of the detection process. Valid options are "LOW" or "HIGH". If not provided, the
default sensitivity is set to "LOW".

detectionParameters settings

If no settings are included, default values will be used.

• action – (type: String, options: "DETECT", "REDACT", "PARTIAL_REDACT", "SHA256_HASH")
Specifies the action to be performed on the entity. Required. Note that actions that perform
masking (all but "DETECT") can only perform one action per column. This is a preventative
measure for masking coalesced entities.

• sourceColumns – (type: List[String], default: [“*”]) List of source column
names to perform detection on for the entity. Defaults to [“*”] if not present. Raises
IllegalArgumentException if an invalid column name is used.

• sourceColumnsToExclude – (type: List[String]) List of source column names to to perform
detection on for the entity. Use either sourceColumns or sourceColumnsToExclude. Raises
IllegalArgumentException if an invalid column name is used.

• actionOptions – Additional options based on the specified action:

• For "DETECT" and "SHA256_HASH", no options are allowed.

• For "REDACT":

• redactText – (type: String, default: "*****") Text to replace the detected entity.

• For "PARTIAL_REDACT":

• redactChar – (type: String, default: "*") Character to replace each detected character in the
entity.

• matchPattern – (type: String) Regex pattern for partial redaction. Cannot be combined
with numLeftCharsToExclude or numRightCharsToExclude.

Features and optimizations 1834

AWS Glue User Guide

• numLeftCharsToExclude – (type: String, integer) Number of left characters to exclude.
Cannot be combined with matchPattern, but can be used with numRightCharsToExclude.

• numRightCharsToExclude – (type: String, integer) Number of right characters
to exclude. Cannot be combined with matchPattern, but can be used with
numRightCharsToExclude.

outputColumnName settings

See outputColumnName settings

Detection Parameters for classifyColumns()

This method is used for detecting entities in a DynamicFrame. It returns a map where keys are
column names and values are list of detected entity types. Custom masking can be done after this
is returned within the AWS Glue script.

classifyColumns(frame: DynamicFrame,
 entityTypesToDetect: Seq[String],
 sampleFraction: Double = 0.1,
 thresholdFraction: Double = 0.1,
 detectionSensitivity: String = "LOW")

Parameters:

• frame – (type: DynamicFrame) The input DynamicFrame containing the data to be processed.

• entityTypesToDetect – (type: Seq[String]) List of entity types to detect. Can be either
Managed Entity Types or Custom Entity Types.

• sampleFraction – (type: Double, default: 10%) The fraction of the data to sample when
scanning for PII entities.

• thresholdFraction – (type: Double, default: 10%): The fraction of the data that must be met in
order for a column to be identified as PII data.

• detectionSensitivity – (type: String, options: "LOW" or "HIGH", default: "LOW") Specifies the
sensitivity of the detection process. Valid options are "LOW" or "HIGH". If not provided, the
default sensitivity is set to "LOW".

Features and optimizations 1835

AWS Glue User Guide

Managed Sensitive Data Types

Global entities

Data Type Category Description

PERSON_NAME Universal The name of the person.

EMAIL Personal The email address.

IP_ADDRESS Computer The IP address

MAC_ADDRESS Personal The MAC address.

US data types

Data Type Description

BANK_ACCOUNT The bank account number. Not specific to
a country or region, however, only US and
Canadian account formats are detected.

CREDIT_CARD The credit card number.

PHONE_NUMBER The phone number. Not specific to a country
or region, however, only US and Canadian
phone numbers are detected at this time.

USA_ATIN The US Adoption Taxpayer Identification
Number issued by the Internal Revenue
Service.

USA_CPT_CODE The CPT Code (US specific).

USA_DEA_NUMBER The DEA number (US specific).

USA_DRIVING_LICENSE The driver license number (US specific).

USA_HCPCS_CODE The HCPCS code (US specific).

Features and optimizations 1836

AWS Glue User Guide

Data Type Description

USA_HEALTH_INSURANCE_CLAIM_NUMBER Health Insurance Claim Number (US specific).

USA_ITIN The ITIN (for US persons or entities).

USA_MEDICARE_BENEFICIARY_IDENTIFIER Medicare Beneficiary Identifier (US specific).

USA_NATIONAL_DRUG_CODE The NDC code (US specific).

USA_NATIONAL_PROVIDER_IDENTIFIER The National Provider Identifier number (US
specific).

USA_PASSPORT_NUMBER The passport number (for US persons).

USA_PTIN The US Preparer Tax Identification Number
issued by the Internal Revenue Service.

USA_SSN The social security number (for US persons).

Argentina data types

Data Type Description

ARGENTINA_TAX_IDENTIFICATION_NUMBER Argentina Tax Identification Number. Also
known as CUIT or CUIL.

Australian data types

Data Type Description

AUSTRALIA_BUSINESS_NUMBER Australia Business Number (ABN). A unique
identifier issued by the Australian Business
Register (ABR) to identify businesses to the
government and community.

Features and optimizations 1837

AWS Glue User Guide

Data Type Description

AUSTRALIA_COMPANY_NUMBER Australia Company Number (ACN). Unique
identifier issued by the Australian Securities
and Investments Commission.

AUSTRALIA_DRIVING_LICENSE A driver’s license number for Australia.

AUSTRALIA_MEDICARE_NUMBER Australian Medicare Number. Personal
identifier issued by the Australian Health
Insurance Commission.

AUSTRALIA_PASSPORT_NUMBER Australian passport number.

AUSTRALIA_TAX_FILE_NUMBER Australia Tax File Number (TFN). Issued by the
Australian Taxation Office (ATO) to taxpayers
(individual, company, etc) for tax dealings.

Austria data types

Data Type Description

AUSTRIA_DRIVING_LICENSE The driver license number (Austria specific).

AUSTRIA_PASSPORT_NUMBER The passport number (Austria specific).

AUSTRIA_SSN The social security number (for Austria
persons).

AUSTRIA_TAX_IDENTIFICATION_NUMBER Tax identification number (Austria specific).

AUSTRIA_VALUE_ADDED_TAX Value-Added Tax (Austria specific).

Balkans data types

Features and optimizations 1838

AWS Glue User Guide

Data Type Description

BOSNIA_UNIQUE_MASTER_CITIZEN_NUMBER Unique master citizen number (JMBG) for
Bosnia-Herzegovina citizens.

KOSOVO_UNIQUE_MASTER_CITIZEN_NUMBER Unique master citizen number (JMBG) for
Kosovo.

MACEDONIA_UNIQUE_MASTER_CIT
IZEN_NUMBER

Unique master citizen number for Macedonia.

MONTENEGRO_UNIQUE_MASTER_CI
TIZEN_NUMBER

Unique master citizen number (JMBG) for
Montenegro.

SERBIA_UNIQUE_MASTER_CITIZEN_NUMBER Unique master citizen number (JMBG) for
Serbia.

SERBIA_VALUE_ADDED_TAX Value-Added Tax (Serbia specific).

VOJVODINA_UNIQUE_MASTER_CIT
IZEN_NUMBER

Unique master citizen number (JMBG) for
Vojvodina.

Belgium data types

Data Type Description

BELGIUM_DRIVING_LICENSE The driver license number (Belgium specific).

BELGIUM_NATIONAL_IDENTIFICATION_NUMB
ER

The Belgian National Number (BNN).

BELGIUM_PASSPORT_NUMBER The passport number (Belgium specific).

BELGIUM_TAX_IDENTIFICATION_NUMBER Tax identification number (Belgium specific).

BELGIUM_VALUE_ADDED_TAX Value-Added Tax (Belgium specific).

Brazil data types

Features and optimizations 1839

AWS Glue User Guide

Data Type Description

BRAZIL_BANK_ACCOUNT The bank account number (Brazil specific).

BRAZIL_NATIONAL_IDENTIFICATION_NUMBER The national identifier (Brazil specific).

BRAZIL_NATIONAL_REGISTRY_OF_LEGAL_EN
TITIES_NUMBER

The identification number issued to companies
(Brazil specific), also known as the CNPJ.

BRAZIL_NATURAL_PERSON_REGIS
TRY_NUMBER

Natural Person Registry Number, also known
as CPF.

Bulgaria data types

Data Type Description

BULGARIA_DRIVING_LICENSE The driver license number (Bulgaria specific).

BULGARIA_UNIFORM_CIVIL_NUMBER Unified Civil Number (EGN) that serves as a
national identification number.

BULGARIA_VALUE_ADDED_TAX Value-Added Tax (Bulgaria specific).

Canada data types

Data Type Description

CANADA_DRIVING_LICENSE The driver license number (Canada specific).

CANADA_GOVERNMENT_IDENTIFIC
ATION_CARD_NUMBER

The national identifier (Canada specific).

CANADA_PASSPORT_NUMBER The passport number (Canada specific).

CANADA_PERMANENT_RESIDENCE_NUMBER Permanent residence number (PR Card
number).

Features and optimizations 1840

AWS Glue User Guide

Data Type Description

CANADA_PERSONAL_HEALTH_NUMBER The unique identifier for healthcare (PHN
number).

CANADA_SOCIAL_INSURANCE_NUMBER The social insurance number (SIN) in Canada.

Chile data types

Data Type Description

CHILE_DRIVING_LICENSE The driver license number (Chile specific).

CHILE_NATIONAL_IDENTIFICATION_NUMBER The Chile national identifier, also known as
RUT or RUN.

China, Hong Kong, Macau, and Taiwan data types

Data Type Description

CHINA_IDENTIFICATION The China identifier.

CHINA_LICENSE_PLATE_NUMBER The driver license number (China specific).

CHINA_MAINLAND_TRAVEL_PERMI
T_ID_HONG_KONG_MACAU

The Mainland Travel Permit for Hong Kong
and Macao Residents.

CHINA_MAINLAND_TRAVEL_PERMIT_ID_TAIW
AN

The Mainland Travel Permit for Taiwan
Residents issued by Government of the
People's Republic of China (PRC).

CHINA_PASSPORT_NUMBER The passport number (China specific).

CHINA_PHONE_NUMBER The phone number (China specific).

HONG_KONG_IDENTITY_CARD The official identity document issued by the
Immigration Department of Hong Kong.

Features and optimizations 1841

AWS Glue User Guide

Data Type Description

MACAU_RESIDENT_IDENTITY_CARD The Macau Resident Identity Card or BIR is an
official identity card issued by the Identific
ation Services Bureau of Macau.

TAIWAN_NATIONAL_IDENTIFICATION_NUMBE
R

The national identifier (Taiwan specific).

TAIWAN_PASSPORT_NUMBER The passport number (Taiwan specific).

Colombia data types

Data Type Description

COLOMBIA_PERSONAL_IDENTIFICATION_NUM
BER

Unique identifier assigned to Colombians at
birth.

COLOMBIA_TAX_IDENTIFICATION_NUMBER Tax identification number (Colombia specific).

Croatia data types

Data Type Description

CROATIA_DRIVING_LICENSE The driver license number (Croatia specific).

CROATIA_IDENTITY_NUMBER The national identifier (Croatia specific).

CROATIA_PASSPORT_NUMBER The passport number (Croatia specific).

CROATIA_PERSONAL_IDENTIFICATION_NUMB
ER

The personal identifier number (OIB).

Cyprus data types

Features and optimizations 1842

AWS Glue User Guide

Data Type Description

CYPRUS_DRIVING_LICENSE The driver license number (Cyprus specific).

CYPRUS_NATIONAL_IDENTIFICATION_NUMBE
R

The Cypriot identity card.

CYPRUS_PASSPORT_NUMBER The passport number (Cyprus specific).

CYPRUS_TAX_IDENTIFICATION_NUMBER Tax identification number (Cyprus specific).

CYPRUS_VALUE_ADDED_TAX Value-Added Tax (Cyprus specific).

Czechia data types

Data Type Description

CZECHIA_DRIVING_LICENSE The driver license number (Czechia specific).

CZECHIA_PERSONAL_IDENTIFICATION_NUMB
ER

The personal identifier number (Czechia
specific).

CZECHIA_VALUE_ADDED_TAX Value-Added Tax (Czechia specific).

Denmark data types

Data Type Description

DENMARK_DRIVING_LICENSE The driver license number (Denmark specific).

DENMARK_PERSONAL_IDENTIFICA
TION_NUMBER

The personal identifier number (Denmark
specific).

DENMARK_TAX_IDENTIFICATION_NUMBER Tax identification number (Denmark specific).

DENMARK_VALUE_ADDED_TAX Value-Added Tax (Denmark specific).

Features and optimizations 1843

AWS Glue User Guide

Estonia data types

Data Type Description

ESTONIA_DRIVING_LICENSE The driver license number (Estonia specific).

ESTONIA_PASSPORT_NUMBER The passport number (Estonia specific).

ESTONIA_PERSONAL_IDENTIFICATION_CODE The personal identifier number (Estonia
specific).

ESTONIA_VALUE_ADDED_TAX Value-Added Tax (Estonia specific).

Finland data types

Data Type Description

FINLAND_DRIVING_LICENSE The driver license number (Finland specific).

FINLAND_HEALTH_INSURANCE_NUMBER The health insurance number (Finland specific)
.

FINLAND_NATIONAL_IDENTIFICATION_NUMB
ER

The national identifier number (Finland
specific).

FINLAND_PASSPORT_NUMBER The passport number (Finland specific).

FINLAND_VALUE_ADDED_TAX Value-Added Tax (Finland specific).

France data types

Data Type Description

FRANCE_BANK_ACCOUNT The bank account number (France specific).

FRANCE_DRIVING_LICENSE The driver license number (France specific).

FRANCE_HEALTH_INSURANCE_NUMBER France health insurance number.

Features and optimizations 1844

AWS Glue User Guide

Data Type Description

FRANCE_INSEE_CODE France social security, SSN, or NIR number.

FRANCE_NATIONAL_IDENTIFICATION_NUMBE
R

France national identifier number (CNI).

FRANCE_PASSPORT_NUMBER The passport number (France specific).

FRANCE_TAX_IDENTIFICATION_NUMBER Tax identification number (France specific).

FRANCE_VALUE_ADDED_TAX Value-Added Tax (France specific).

Germany data types

Data Type Description

GERMANY_BANK_ACCOUNT The bank account number (Germany specific).

GERMANY_DRIVING_LICENSE The driver license number (Germany specific).

GERMANY_PASSPORT_NUMBER The passport number (Germany specific).

GERMANY_PERSONAL_IDENTIFICA
TION_NUMBER

The personal identification number (Germany
specific).

GERMANY_TAX_IDENTIFICATION_NUMBER Tax identification number (Germany specific).

GERMANY_VALUE_ADDED_TAX Value-Added Tax (Germany specific).

Greece data types

Data Type Description

GREECE_DRIVING_LICENSE The driver license number (Greece specific).

GREECE_PASSPORT_NUMBER The passport number (Greece specific).

Features and optimizations 1845

AWS Glue User Guide

Data Type Description

GREECE_SSN The social security number (for Greece
persons).

GREECE_TAX_IDENTIFICATION_NUMBER Tax identification number (Greece specific).

GREECE_VALUE_ADDED_TAX Value-Added Tax (Greece specific).

Hungary data types

Data Type Description

HUNGARY_DRIVING_LICENSE The driver license number (Hungary specific).

HUNGARY_PASSPORT_NUMBER The passport number (Hungary specific).

HUNGARY_SSN The social security number (for Hungary
persons).

HUNGARY_TAX_IDENTIFICATION_NUMBER Tax identification number (Hungary specific).

HUNGARY_VALUE_ADDED_TAX Value-Added Tax (Hungary specific).

Iceland data types

Data Type Description

ICELAND_NATIONAL_IDENTIFICATION_NUMB
ER

The national identifier (Iceland specific).

ICELAND_PASSPORT_NUMBER The passport number (Iceland specific).

ICELAND_VALUE_ADDED_TAX Value-Added Tax (Iceland specific).

India data types

Features and optimizations 1846

AWS Glue User Guide

Data Type Description

INDIA_AADHAAR_NUMBER Aadhaar identification number issued by the
Unique Identification Authority of India.

INDIA_PERMANENT_ACCOUNT_NUMBER India Permanent Account Number (PAN).

Indonesia data types

Data Type Description

INDONESIA_IDENTITY_CARD_NUMBER The national identifier (Indonesia specific).

Ireland data types

Data Type Description

IRELAND_DRIVING_LICENSE The driver license number (Ireland specific).

IRELAND_PASSPORT_NUMBER The passport number (Ireland specific).

IRELAND_PERSONAL_PUBLIC_SERVICE_NUMB
ER

Ireland personal public service number (PPS).

IRELAND_TAX_IDENTIFICATION_NUMBER Tax identification number (Ireland specific).

IRELAND_VALUE_ADDED_TAX Value-Added Tax (Ireland specific).

Israel data types

Data Type Description

ISRAEL_IDENTIFICATION_NUMBER The national identifier (Israel specific).

Italy data types

Features and optimizations 1847

AWS Glue User Guide

Data Type Description

ITALY_BANK_ACCOUNT The bank account number (Italy specific).

ITALY_DRIVING_LICENSE The driver license number (Italy specific).

ITALY_FISCAL_CODE The identifier number, also known as the
Italian Codice Fiscale.

ITALY_PASSPORT_NUMBER The passport number (Italy specific).

ITALY_VALUE_ADDED_TAX Value-Added Tax (Italy specific).

Japan data types

Data Type Description

JAPAN_BANK_ACCOUNT Japan bank account.

JAPAN_DRIVING_LICENSE A driver's license number for Japan.

JAPAN_MY_NUMBER The unique identifier for Japan citizens or
corporations used for tax administration,
social security administration, and disaster
response

JAPAN_PASSPORT_NUMBER Japan passort number.

Korea data types

Data Type Description

KOREA_PASSPORT_NUMBER The passport number (Korea specific).

KOREA_RESIDENCE_REGISTRATIO
N_NUMBER_FOR_CITIZENS

Korea residence registrant number for
residents.

Features and optimizations 1848

AWS Glue User Guide

Data Type Description

KOREA_RESIDENCE_REGISTRATIO
N_NUMBER_FOR_FOREIGNERS

Korea residence registrant number for
foreigners.

Latvia data types

Data Type Description

LATVIA_DRIVING_LICENSE The driver license number (Latvia specific).

LATVIA_PASSPORT_NUMBER The passport number (Latvia specific).

LATVIA_PERSONAL_IDENTIFICATION_NUMBE
R

The personal identifier number (Latvia
specific).

LATVIA_VALUE_ADDED_TAX Value-Added Tax (Latvia specific).

Liechtenstein data types

Data Type Description

LIECHTENSTEIN_NATIONAL_IDENTIFICATIO
N_NUMBER

The national identifier (Liechtenstein specific).

LIECHTENSTEIN_PASSPORT_NUMBER The passport number (Liechtenstein specific).

LIECHTENSTEIN_TAX_IDENTIFICATION_NUM
BER

Tax identification number (Liechtenstein
specific).

Lithuania data types

Data Type Description

LITHUANIA_DRIVING_LICENSE The driver license number (Lithuania specific).

Features and optimizations 1849

AWS Glue User Guide

Data Type Description

LITHUANIA_PERSONAL_IDENTIFICATION_NU
MBER

The personal identifier number (Lithuania
specific).

LITHUANIA_TAX_IDENTIFICATION_NUMBER Tax identification number (Lithuania specific).

LITHUANIA_VALUE_ADDED_TAX Value-Added Tax (Lithuania specific).

Luxembourg data types

Data Type Description

LUXEMBOURG_DRIVING_LICENSE The driver license number (Luxembourg
specific).

LUXEMBOURG_NATIONAL_INDIVID
UAL_NUMBER

The national identifier (Luxembourg specific).

LUXEMBOURG_PASSPORT_NUMBER The passport number (Luxembourg specific).

LUXEMBOURG_TAX_IDENTIFICATI
ON_NUMBER

Tax identification number (Luxembourg
specific).

LUXEMBOURG_VALUE_ADDED_TAX Value-Added Tax (Luxembourg specific).

Malaysia data types

Data Type Description

MALAYSIA_MYKAD_NUMBER The national identifier (Malaysia specific).

MALAYSIA_PASSPORT_NUMBER The passport number (Malaysia specific).

Malta data types

Features and optimizations 1850

AWS Glue User Guide

Data Type Description

MALTA_DRIVING_LICENSE The driver license number (Malta specific).

MALTA_NATIONAL_IDENTIFICATION_NUMBER The national identifier (Malta specific).

MALTA_TAX_IDENTIFICATION_NUMBER Tax identification number (Malta specific).

MALTA_VALUE_ADDED_TAX Value-Added Tax (Malta specific).

Mexico data types

Data Type Description

MEXICO_CLABE_NUMBER Mexico CLABE (Clave Bancaria Estandarizada)
bank number).

MEXICO_DRIVING_LICENSE The driver license number (Mexico specific).

MEXICO_PASSPORT_NUMBER The passport number (Mexico specific).

MEXICO_TAX_IDENTIFICATION_NUMBER Tax identification number (Mexico specific).

MEXICO_UNIQUE_POPULATION_RE
GISTRY_CODE

The Clave Única de Registro de Población
(CURP) unique identity code for Mexico.

Netherlands data types

Data Type Description

NETHERLANDS_CITIZEN_SERVICE_NUMBER Netherlands citizen number (BSN, burgerser
vicenummer).

NETHERLANDS_DRIVING_LICENSE The driver license number (Netherlands
specific).

NETHERLANDS_PASSPORT_NUMBER The passport number (Netherlands specific).

Features and optimizations 1851

AWS Glue User Guide

Data Type Description

NETHERLANDS_TAX_IDENTIFICATION_NUMBE
R

Tax identification number (Netherlands
specific).

NETHERLANDS_VALUE_ADDED_TAX Value-Added Tax (Netherlands specific).

NETHERLANDS_BANK_ACCOUNT The bank account number (Netherlands
specific).

New Zealand data types

Data Type Description

NEW_ZEALAND_DRIVING_LICENSE The driver license number (New Zealand
specific).

NEW_ZEALAND_NATIONAL_HEALTH
_INDEX_NUMBER

New Zealand national health index number.

NEW_ZEALAND_TAX_IDENTIFICAT
ION_NUMBER

Tax identification number, also known as
inland revenue number (New Zealand specific).

Norway data types

Data Type Description

NORWAY_BIRTH_NUMBER Norwegian national identity number.

NORWAY_DRIVING_LICENSE The driver license number (Norway specific).

NORWAY_HEALTH_INSURANCE_NUMBER Norway health insurance number.

NORWAY_NATIONAL_IDENTIFICAT
ION_NUMBER

The national identifier number (Norway
specific).

NORWAY_VALUE_ADDED_TAX Value-Added Tax (Norway specific).

Features and optimizations 1852

AWS Glue User Guide

Philippines data types

Data Type Description

PHILIPPINES_DRIVING_LICENSE The driver license number (Philippines specific)
.

PHILIPPINES_PASSPORT_NUMBER The passport number (Philippines specific).

Poland data types

Data Type Description

POLAND_DRIVING_LICENSE The driver license number (Poland specific).

POLAND_IDENTIFICATION_NUMBER The Poland identifier.

POLAND_PASSPORT_NUMBER The passport number (Poland specific).

POLAND_REGON_NUMBER The REGON identifier number, also known as
the Statistical Identification Number.

POLAND_SSN The social security number (for Poland
persons).

POLAND_TAX_IDENTIFICATION_NUMBER Tax identification number (Poland specific).

POLAND_VALUE_ADDED_TAX Value-Added Tax (Poland specific).

Portugal data types

Data Type Description

PORTUGAL_DRIVING_LICENSE The driver license number (Portugal specific).

PORTUGAL_NATIONAL_IDENTIFICATION_NUM
BER

The national identifier number (Portugal
specific).

Features and optimizations 1853

AWS Glue User Guide

Data Type Description

PORTUGAL_PASSPORT_NUMBER The passport number (Portugal specific).

PORTUGAL_TAX_IDENTIFICATION_NUMBER Tax identification number (Portugal specific).

PORTUGAL_VALUE_ADDED_TAX Value-Added Tax (Portugal specific).

Romania data types

Data Type Description

ROMANIA_DRIVING_LICENSE The driver license number (Romania specific).

ROMANIA_NUMERICAL_PERSONAL_CODE The personal identifier number (Romania
specific).

ROMANIA_PASSPORT_NUMBER The passport number (Romania specific).

ROMANIA_VALUE_ADDED_TAX Value-Added Tax (Romania specific).

Singapore data types

Data Type Description

SINGAPORE_DRIVING_LICENSE The driver license number (Singapore specific).

SINGAPORE_NATIONAL_REGISTRY_IDENTIFI
CATION_NUMBER

The national registration identity card for
Singapore.

SINGAPORE_PASSPORT_NUMBER The passport number (Singapore specific).

SINGAPORE_UNIQUE_ENTITY_NUMBER The Unique Entity Number for Singapore.

Slovakia data types

Features and optimizations 1854

AWS Glue User Guide

Data Type Description

SLOVAKIA_DRIVING_LICENSE The driver license number (Slovakia specific).

SLOVAKIA_NATIONAL_IDENTIFICATION_NUM
BER

The national identifier number (Slovakia
specific).

SLOVAKIA_PASSPORT_NUMBER The passport number (Slovakia specific).

SLOVAKIA_VALUE_ADDED_TAX Value-Added Tax (Slovakia specific).

Slovenia data types

Data Type Description

SLOVENIA_DRIVING_LICENSE The driver license number (Slovenia specific).

SLOVENIA_PASSPORT_NUMBER The passport number (Slovenia specific).

SLOVENIA_TAX_IDENTIFICATION_NUMBER Tax identification number (Slovenia specific).

SLOVENIA_UNIQUE_MASTER_CITI
ZEN_NUMBER

Unique master citizen number (JMBG) for
Slovenia citizens.

SLOVENIA_VALUE_ADDED_TAX Value-Added Tax (Slovenia specific).

South Africa data types

Data Type Description

SOUTH_AFRICA_PERSONAL_IDENTIFICATION
_NUMBER

The personal identifier number (South Sfrica
specific).

Spain data types

Features and optimizations 1855

AWS Glue User Guide

Data Type Description

SPAIN_BANK_ACCOUNT The bank account number (Spain specific).

SPAIN_DNI The national identity card (Documento
Nacional de Identidad) of Spain.

SPAIN_DRIVING_LICENSE The driver license number (Spain specific).

SPAIN_NIE The foreigner identity number (Spain specific),
also known as the NIE.

SPAIN_NIF Tax identification number (Spain specific), also
known as the NIF.

SPAIN_PASSPORT_NUMBER The passport number (Spain specific).

SPAIN_SSN The social security number (for Spain persons).

SPAIN_VALUE_ADDED_TAX Value-Added Tax (Spain specific).

Sri Lanka data types

Data Type Description

SRI_LANKA_NATIONAL_IDENTIFICATION_NU
MBER

The national identifier (Sri Lanka specific).

Sweden data types

Data Type Description

SWEDEN_DRIVING_LICENSE The driver license number (Sweden specific).

SWEDEN_PASSPORT_NUMBER The passport number (Sweden specific).

SWEDEN_PERSONAL_IDENTIFICAT
ION_NUMBER

The national identifier number (Sweden
specific).

Features and optimizations 1856

AWS Glue User Guide

Data Type Description

SWEDEN_TAX_IDENTIFICATION_NUMBER Sweden tax identification number (personnu
mmer).

SWEDEN_VALUE_ADDED_TAX Value-Added Tax (Sweden specific).

Switzerland data types

Data Type Description

SWITZERLAND_AHV The social security number for Swiss persons
(AHV).

SWITZERLAND_HEALTH_INSURANC
E_NUMBER

Swiss health insurance number.

SWITZERLAND_PASSPORT_NUMBER The passport number (Switzerland specific).

SWITZERLAND_VALUE_ADDED_TAX Value-Added Tax (Switzerland specific).

Thailand data types

Data Type Description

THAILAND_PASSPORT_NUMBER The passport number (Thailand specific).

THAILAND_PERSONAL_IDENTIFICATION_NUM
BER

The personal identifier number (Thailand
specific).

Turkey data types

Data Type Description

TURKEY_NATIONAL_IDENTIFICATION_NUMBE
R

The national identifier number (Turkey
specific).

Features and optimizations 1857

AWS Glue User Guide

Data Type Description

TURKEY_PASSPORT_NUMBER The passport number (Turkey specific).

TURKEY_VALUE_ADDED_TAX Value-Added Tax (Turkey specific).

Ukraine data types

Data Type Description

UKRAINE_INDIVIDUAL_IDENTIFICATION_NU
MBER

The unique identifier (Ukraine specific).

UKRAINE_PASSPORT_NUMBER_DOMESTIC The domestic passport number (Ukraine
specific).

UKRAINE_PASSPORT_NUMBER_INT
ERNATIONAL

The international passport number (Ukraine
specific).

United Arab Emirates (UAE) data types

Data Type Description

UNITED_ARAB_EMIRATES_PERSON
AL_NUMBER

The personal identifier number (UAE specific).

UK data types

Data Type Description

UK_BANK_ACCOUNT United Kingdom (UK) bank account.

UK_BANK_SORT_CODE United Kingdom (UK) bank sort code. Sort
codes are bank codes used to route money
transfers between banks within their respectiv

Features and optimizations 1858

AWS Glue User Guide

Data Type Description

e countries via their respective clearance
organizations.

UK_DRIVING_LICENSE The driver's license number for the United
Kingdom of Great Britain and Northern Ireland
(UK specific)

UK_ELECTORAL_ROLL_NUMBER The Electoral Roll Number (ERN) is the
identification number issued to an individua
l for UK election registration. The format of
this number is specified by the UK Governmen
t Standards of the UK Cabinet Office.

UK_NATIONAL_HEALTH_SERVICE_NUMBER The National Health Service (NHS) number is
the unique number allocated to a registere
d user of public health services in the United
Kingdom.

UK_NATIONAL_INSURANCE_NUMBER The National Insurance number (NINO) is a
number used in the United Kingdom (UK)
to identify an individual for the national
insurance program or social security system.
The number is sometimes referred to as NI No
or NINO.

UK_PASSPORT_NUMBER United Kingdom (UK) passport number.

UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER The United Kingdom (UK) Unique Taxpayer
Reference (UTR) number. An identifier used by
the UK government to manage the taxation
system.

Features and optimizations 1859

AWS Glue User Guide

Data Type Description

UK_VALUE_ADDED_TAX VAT is a consumption tax that is borne by the
end consumer. VAT is paid for each transaction
in the manufacturing and distribution process.
For the United Kingdom, the VAT number
is issued by the VAT office for the region in
which the business is established.

UK_PHONE_NUMBER United Kingdom (UK) phone number.

Venezuela data types

Data Type Description

VENEZUELA_DRIVING_LICENSE The driver license number (Venezuela specific).

VENEZUELA_NATIONAL_IDENTIFICATION_NU
MBER

The national identifier number (Venezuela
specific).

VENEZUELA_VALUE_ADDED_TAX Value-Added Tax (Venezuela specific).

Using fine-grained sensitive data detection

Note

Fine-grained actions is only available in AWS Glue 3.0 and 4.0. This includes the AWS Glue
Studio experience. The persistent audit log changes are also not available in 2.0.
All AWS Glue Studio 3.0 and 4.0 visual jobs will have a script created that automatically
uses fine-grained actions APIs.

The Detect Sensitive Data transform provides the ability to detect, mask, or remove entities that
you define, or are pre-defined by AWS Glue. Fine-grained actions further allows you to apply a
specific action per entity. Additional benefits include:

• Improved performance as actions are being applied as soon data is detected.

Features and optimizations 1860

AWS Glue User Guide

• The option to include or exclude specific columns.

• The ability to use partial masking. This allows you to mask detected sensitive data entities
partially, rather than masking the entire string. Both simple params with offsets and regex are
supported.

The following are code snippets of sensitive data detection APIs and fine-grained actions used in
the sample jobs referenced in the next section.

Detect API – fine-grained actions use the new detectionParameters parameter:

def detect(
 frame: DynamicFrame,
 detectionParameters: JsonOptions,
 outputColumnName: String = "DetectedEntities",
 detectionSensitivity: String = "LOW"
): DynamicFrame = {}

Using Sensitive Data Detection APIs with fine-grained actions

Sensitive data detection APIs using detect analyzes the data given, determines if the rows or
columns are Sensitive Data Entity Types, and will run actions specified by the user for each Entity
type.

Using the detect API with fine-grained actions

Use the detect API and specify the outputColumnName and detectionParameters.

 object GlueApp {
 def main(sysArgs: Array[String]) {

 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)

 // @params: [JOB_NAME]
 val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)

 // Script generated for node S3 bucket. Creates DataFrame from data stored in
 S3.

Features and optimizations 1861

AWS Glue User Guide

 val S3bucket_node1 =
 glueContext.getSourceWithFormat(formatOptions=JsonOptions("""{"quoteChar":
 "\"", "withHeader": true, "separator": ",", "optimizePerformance": false}"""),
 connectionType="s3", format="csv", options=JsonOptions("""{"paths":
 ["s3://189657479688-ddevansh-pii-test-bucket/tiny_pii.csv"], "recurse": true}"""),
 transformationContext="S3bucket_node1").getDynamicFrame()

 // Script generated for node Detect Sensitive Data. Will run detect API for the
 DataFrame
 // detectionParameter contains information on which EntityType are being
 detected
 // and what actions are being applied to them when detected.
 val DetectSensitiveData_node2 = EntityDetector.detect(
 frame = S3bucket_node1,
 detectionParameters = JsonOptions(
 """
 {
 "PHONE_NUMBER": [
 {
 "action": "PARTIAL_REDACT",
 "actionOptions": {
 "numLeftCharsToExclude": "3",
 "numRightCharsToExclude": "4",
 "redactChar": "#"
 },
 "sourceColumnsToExclude": ["Passport No", "DL NO#"]
 }
],
 "USA_PASSPORT_NUMBER": [
 {
 "action": "SHA256_HASH",
 "sourceColumns": ["Passport No"]
 }
],
 "USA_DRIVING_LICENSE": [
 {
 "action": "REDACT",
 "actionOptions": {
 "redactText": "USA_DL"
 },
 "sourceColumns": ["DL NO#"]
 }
]

Features and optimizations 1862

AWS Glue User Guide

 }
 """
),
 outputColumnName = "DetectedEntities"
)

 // Script generated for node S3 bucket. Store Results of detect to S3 location
 val S3bucket_node3 = glueContext.getSinkWithFormat(connectionType="s3",
 options=JsonOptions("""{"path": "s3://189657479688-ddevansh-pii-test-bucket/
test-output/", "partitionKeys": []}"""), transformationContext="S3bucket_node3",
 format="json").writeDynamicFrame(DetectSensitiveData_node2)

 Job.commit()
 }

The above script will create a DataFrame from a location in Amazon S3 and then it will run the
detect API. Since the detect API requires the field detectionParameters (a map of the entity
name to a list all of the action settings to be used for that entity) is represented by AWS Glue’s
JsonOptions object, it will also allow us to extend the functionality of the API.

For each action specified per entity, enter a list of all column names to which to apply the entity/
action combination. This allows you to customize the entities to detect for every column in your
dataset and skip entities that you know are not in a specific column. This also allows your jobs to
be more performant by not performing unnecessary detection calls those entities and allows you
to perform actions unique to each column and entity combination.

Taking a closer look at the detectionParameters, there are three entity types in the sample
job. These are Phone Number, USA_PASSPORT_NUMBER, and USA_DRIVING_LICENSE. For each
of these entity types AWS Glue will run different actions which are either PARTIAL_REDACT,
SHA256_HASH, REDACT, and DETECT. Each of the Entity Types also have sourceColumns to apply
to and/or sourceColumnsToExclude if detected.

Note

Only one edit-in-place action (PARTIAL_REDACT, SHA256_HASH, or REDACT) can be used
per column but the DETECT action can be used with any of these actions.

The detectionParameters field has the below layout:

Features and optimizations 1863

AWS Glue User Guide

 ENTITY_NAME -> List[Actions]
 {
 "ENTITY_NAME": [{
 Action, // required
 ColumnSpecs,
 ActionOptionsMap
 }],
 "ENTITY_NAME2": [{
 ...
 }]
 }

The types of actions and actionOptions are listed below:

DETECT
{
 # Required
 "action": "DETECT",
 # Optional, depending on action chosen
 "actionOptions": {
 // There are no actionOptions for DETECT
 },
 # 1 of below required, both can also used
 "sourceColumns": [
 "COL_1", "COL_2", ..., "COL_N"
],
 "sourceColumnsToExclude": [
 "COL_5"
]
}

SHA256_HASH
{
 # Required
 "action": "SHA256_HASH",
 # Required or optional, depending on action chosen
 "actionOptions": {
 // There are no actionOptions for SHA256_HASH
 },

 # 1 of below required, both can also used

Features and optimizations 1864

AWS Glue User Guide

 "sourceColumns": [
 "COL_1", "COL_2", ..., "COL_N"
],
 "sourceColumnsToExclude": [
 "COL_5"
]
}

REDACT
{
 # Required
 "action": "REDACT",
 # Required or optional, depending on action chosen
 "actionOptions": {
 // The text that is being replaced
 "redactText": "USA_DL"
 },

 # 1 of below required, both can also used
 "sourceColumns": [
 "COL_1", "COL_2", ..., "COL_N"
],
 "sourceColumnsToExclude": [
 "COL_5"
]
}

PARTIAL_REDACT
{
 # Required
 "action": "PARTIAL_REDACT",
 # Required or optional, depending on action chosen
 "actionOptions": {
 // number of characters to not redact from the left side
 "numLeftCharsToExclude": "3",
 // number of characters to not redact from the right side
 "numRightCharsToExclude": "4",
 // the partial redact will be made with this redacted character
 "redactChar": "#",
 // regex pattern for partial redaction
 "matchPattern": "[0-9]"
 },

 # 1 of below required, both can also used

Features and optimizations 1865

AWS Glue User Guide

 "sourceColumns": [
 "COL_1", "COL_2", ..., "COL_N"
],
 "sourceColumnsToExclude": [
 "COL_5"
]
}

Once the script runs, results are output to the given Amazon S3 location. You can view your data in
Amazon S3 but with the selected entity types being sensitized based on the selected action. In the
case, we would have a rows that would have that looked like this:

{
 "Name": "Colby Schuster",
 "Address": "39041 Antonietta Vista, South Rodgerside, Nebraska 24151",
 "Car Owned": "Fiat",
 "Email": "Kitty46@gmail.com",
 "Company": "O'Reilly Group",
 "Job Title": "Dynamic Functionality Facilitator",
 "ITIN": "991-22-2906",
 "Username": "Cassandre.Kub43",
 "SSN": "914-22-2906",
 "DOB": "2020-08-27",
 "Phone Number": "1-2#######1718",
 "Bank Account No": "69741187",
 "Credit Card Number": "6441-6289-6867-2162-2711",
 "Passport No": "94f311e93a623c72ccb6fc46cf5f5b0265ccb42c517498a0f27fd4c43b47111e",
 "DL NO#": "USA_DL"
}

In the above script, the Phone Number was partially redacted with #. The Passport No was
changed into a SHA256 hash. The DL NO# was detected as a USA driver license number and was
redacted to “USA_DL” just like it was stated in the detectionParameters.

Note

The classifyColumns API is not available for use with fine-grained actions due to the nature
of the API. This API performs column sampling (adjustable by the user but has default

Features and optimizations 1866

AWS Glue User Guide

values) to perform detection more quickly. Fine-grained actions require iterating over every
value for this reason.

Persistent Audit Log

A new feature introduced with fine-grained actions (but also available when using the normal
APIs) is the presence of a persistent audit log. Currently, running the detect API adds an additional
column (defaults to DetectedEntities but customizable through the outputColumnName)
parameter with PII detection metadata. This now has an “actionUsed” metadata key, which is one
of DETECT, PARTIAL_REDACT, SHA256_HASH, REDACT.

"DetectedEntities": {
 "Credit Card Number": [
 {
 "entityType": "CREDIT_CARD",
 "actionUsed": "DETECT",
 "start": 0,
 "end": 19
 }
],
 "Phone Number": [
 {
 "entityType": "PHONE_NUMBER",
 "actionUsed": "REDACT",
 "start": 0,
 "end": 14
 }
]
}

Even customers using APIs without fine-grained actions such as
detect(entityTypesToDetect, outputColumnName) will see this persistent audit log in the
resulting dataframe.

Customers using APIs with fine-grained actions will see all of the actions, regardless of if they are
redacted or not. Example:

Features and optimizations 1867

AWS Glue User Guide

+---------------------+----------------
+---
+
| Credit Card Number | Phone Number |
 DetectedEntities
 |
+---------------------+----------------
+---
+
| 622126741306XXXX | +12#####7890 | {"Credit Card Number":
[{"entityType":"CREDIT_CARD","actionUsed":"PARTIAL_REDACT","start":0,"end":16}],"Phone
 Number":
[{"entityType":"PHONE_NUMBER","actionUsed":"PARTIAL_REDACT","start":0,"end":12}]}} |
| 6221 2674 1306 XXXX | +12#######7890 | {"Credit Card Number":
[{"entityType":"CREDIT_CARD","actionUsed":"PARTIAL_REDACT","start":0,"end":19}],"Phone
 Number":
[{"entityType":"PHONE_NUMBER","actionUsed":"PARTIAL_REDACT","start":0,"end":14}]}} |
| 6221-2674-1306-XXXX | 22#######7890 | {"Credit Card Number":
[{"entityType":"CREDIT_CARD","actionUsed":"PARTIAL_REDACT","start":0,"end":19}],"Phone
 Number":
[{"entityType":"PHONE_NUMBER","actionUsed":"PARTIAL_REDACT","start":0,"end":14}]}} |
+---------------------+----------------
+---
+

If you do not want to see the DetectedEntities column, you can simply drop the additional column
in a custom script.

AWS Glue Visual Job API

AWS Glue provides an API that allows customers to create data integration jobs using the AWS
Glue API from a JSON object that represents a visual step workflow. Customers can then use the
visual editor in AWS Glue Studio to work with these jobs.

For more information on Visual Job API data types, see Visual Job API.

Topics

• API design and CRUD APIs

• Getting started

• Visual job limitations

Features and optimizations 1868

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-visual-job-api.html

AWS Glue User Guide

API design and CRUD APIs

The CreateJob and UpdateJob APIs now support an additional optional parameter,
codeGenConfigurationNodes. Providing a non-empty JSON structure for this field will result in
the DAG being registered in AWS Glue Studio for the created job and the associated code being
generated. A null value or empty string for this field on job create will be ignored.

Updates to the codeGenConfigurationNodes field will be done through the UpdateJob AWS Glue
API in a similar way as CreateJob. The entire field should be specified in UpdateJob where the
DAG has been changed as desired. A null value provided will be ignored and no update to the DAG
would be performed. An empty structure or string will cause the codeGenConfigurationNodes to
be set as empty and any previous DAG removed. The GetJob API will return a DAG if one exists. The
DeleteJob API will also delete any associated DAG.

Getting started

To create a job, use the CreateJob action . The CreateJob request input will have an additional
field ‘codeGenConfigurationNodes’ where you can get specify the DAG object in JSON.

Things to keep in mind:

• The ‘codeGenConfigurationNodes’ field is a map of nodeId to node.

• Each node begins with a key identifying what kind of node it is.

• There can only be one key specified since a node can only be of one type.

• The input field contains the parent nodes of the current node.

The following is a JSON representation of a CreateJob input.

{
 "node-1": {
 "S3CatalogSource": {
 "Table": "csvFormattedTable",
 "PartitionPredicate": "",
 "Name": "S3 bucket",
 "AdditionalOptions": {},
 "Database": "myDatabase"
 }
 },
 "node-3": {
 "S3DirectTarget": {

Features and optimizations 1869

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html#aws-glue-api-jobs-job-CreateJob

AWS Glue User Guide

 "Inputs": ["node-2"],
 "PartitionKeys": [],
 "Compression": "none",
 "Format": "json",
 "SchemaChangePolicy": { "EnableUpdateCatalog": false },
 "Path": "",
 "Name": "S3 bucket"
 }
 },
 "node-2": {
 "ApplyMapping": {
 "Inputs": ["node-1"],
 "Name": "ApplyMapping",
 "Mapping": [
 {
 "FromType": "long",
 "ToType": "long",
 "Dropped": false,
 "ToKey": "myheader1",
 "FromPath": ["myheader1"]
 },
 {
 "FromType": "long",
 "ToType": "long",
 "Dropped": false,
 "ToKey": "myheader2",
 "FromPath": ["myheader2"]
 },
 {
 "FromType": "long",
 "ToType": "long",
 "Dropped": false,
 "ToKey": "myheader3",
 "FromPath": ["myheader3"]
 }
]
 }
 }
}

Updating and getting jobs

Features and optimizations 1870

AWS Glue User Guide

Since UpdateJob will also have a ‘codeGenConfigurationNodes’ field, the input format will be the
same. See UpdateJob Action.

The GetJob action will return a ‘codeGenConfigurationNodes’ field in the same format as well. See
GetJob Action.

Visual job limitations

Since the ‘codeGenConfigurationNodes’ parameter has been added to existing APIs, any limitations
in those APIs will be inherited. In addition, the codeGenConfigurationNodes and some nodes will
be limited in size. See Job Structure for more information.

Programming Ray scripts

AWS Glue makes it easy to write and run Ray scripts. This section describes the supported Ray
capabilities that are available in AWS Glue for Ray. You program Ray scripts in Python.

Your custom script must be compatible with the version of Ray that's defined by the Runtime field
in your job definition. For more information about Runtime in the Jobs API, see the section called
“Jobs”. For information about each runtime environment, see the section called “Supported Ray
runtime environments”.

Topics

• Tutorial: Writing an ETL script in AWS Glue for Ray

• Using Ray Core and Ray Data in AWS Glue for Ray

• Providing files and Python libraries to Ray jobs

• Connecting to data in Ray jobs

Tutorial: Writing an ETL script in AWS Glue for Ray

Ray gives you the ability to write and scale distributed tasks natively in Python. AWS Glue for Ray
offers serverless Ray environments that you can access from both jobs and interactive sessions (Ray
interactive sessions are in preview). The AWS Glue job system provides a consistent way to manage
and run your tasks—on a schedule, from a trigger, or from the AWS Glue console.

Combining these AWS Glue tools creates a powerful toolchain that you can use for extract,
transform, and load (ETL) workloads, a popular use case for AWS Glue. In this tutorial, you will
learn the basics of putting together this solution.

AWS Glue for Ray 1871

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html#aws-glue-api-jobs-job-UpdateJob
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html#aws-glue-api-jobs-job-GetJob
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html#aws-glue-api-jobs-job-GetJob
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html#aws-glue-api-jobs-job-Job

AWS Glue User Guide

We also support using AWS Glue for Spark for your ETL workloads. For a tutorial on writing a AWS
Glue for Spark script, see the section called “Tutorial: Writing a Spark script”. For more information
about available engines, see the section called “AWS Glue for Spark and AWS Glue for Ray”. Ray
is capable of addressing many different kinds of tasks in analytics, machine learning (ML), and
application development.

In this tutorial, you will extract, transform, and load a CSV dataset that is hosted in Amazon
Simple Storage Service (Amazon S3). You will begin with the New York City Taxi and Limousine
Commission (TLC) Trip Record Data Dataset, which is stored in a public Amazon S3 bucket. For
more information about this dataset, see the Registry of Open Data on AWS.

You will transform your data with predefined transforms that are available in the Ray Data library.
Ray Data is a dataset preparation library designed by Ray and included by default in AWS Glue for
Ray environments. For more information about libraries included by default, see the section called
“Modules provided with Ray jobs”. You will then write your transformed data to an Amazon S3
bucket that you control.

Prerequisites – For this tutorial, you need an AWS account with access to AWS Glue and Amazon
S3.

Step 1: Create a bucket in Amazon S3 to hold your output data

You will need an Amazon S3 bucket that you control to serve as a sink for data created in this
tutorial. You can create this bucket with the following procedure.

Note

If you want to write your data to an existing bucket that you control, you can skip this step.
Take note of yourBucketName, the existing bucket's name, to use in later steps.

To create a bucket for your Ray job output

• Create a bucket by following the steps in Creating a bucket in the Amazon S3 User Guide.

• When choosing a bucket name, take note of yourBucketName, which you will refer to in
later steps.

• For other configuration, the suggested settings provided in the Amazon S3 console should
work fine in this tutorial.

Tutorial: Writing a Ray script 1872

https://registry.opendata.aws/nyc-tlc-trip-records-pds/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html

AWS Glue User Guide

As an example, the bucket creation dialog box might look like this in the Amazon S3 console.

Step 2: Create an IAM role and policy for your Ray job

Your job will need an AWS Identity and Access Management (IAM) role with the following:

• Permissions granted by the AWSGlueServiceRole managed policy. These are the basic
permissions that are necessary to run an AWS Glue job.

• Read access level permissions for the nyc-tlc/* Amazon S3 resource.

• Write access level permissions for the yourBucketName/* Amazon S3 resource.

• A trust relationship that allows the glue.amazonaws.com principal to assume the role.

You can create this role with the following procedure.

To create an IAM role for your AWS Glue for Ray job

Note

You can create an IAM role by following many different procedures. For more information
or options about how to provision IAM resources, see the AWS Identity and Access
Management documentation.

Tutorial: Writing a Ray script 1873

https://docs.aws.amazon.com/iam/index.html
https://docs.aws.amazon.com/iam/index.html

AWS Glue User Guide

1. Create a policy that defines the previously outlined Amazon S3 permissions by following the
steps in Creating IAM policies (console) with the visual editor in the IAM User Guide.

• When selecting a service, choose Amazon S3.

• When selecting permissions for your policy, attach the following sets of actions for the
following resources (mentioned previously):

• Read access level permissions for the nyc-tlc/* Amazon S3 resource.

• Write access level permissions for the yourBucketName/* Amazon S3 resource.

• When selecting the policy name, take note of YourPolicyName, which you will refer to in a
later step.

2. Create a role for your AWS Glue for Ray job by following the steps in Creating a role for an
AWS service (console) in the IAM User Guide.

• When selecting a trusted AWS service entity, choose Glue. This will automatically populate
the necessary trust relationship for your job.

• When selecting policies for the permissions policy, attach the following policies:

• AWSGlueServiceRole

• YourPolicyName

• When selecting the role name, take note of YourRoleName, which you will refer to in later
steps.

Step 3: Create and run an AWS Glue for Ray job

In this step, you create an AWS Glue job using the AWS Management Console, provide it with a
sample script, and run the job. When you create a job, it creates a place in the console for you to
store, configure, and edit your Ray script. For more information about creating jobs, see the section
called “Signing in to the console”.

In this tutorial, we address the following ETL scenario: you would like to read the January 2022
records from the New York City TLC Trip Record dataset, add a new column (tip_rate) to the
dataset by combining data in existing columns, then remove a number of columns that aren't
relevant to your current analysis, and then you would like to write the results to yourBucketName.
The following Ray script performs these steps:

import ray
import pandas

Tutorial: Writing a Ray script 1874

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html#access_policies_create-visual-editor
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console

AWS Glue User Guide

from ray import data

ray.init('auto')

ds = ray.data.read_csv("s3://nyc-tlc/opendata_repo/opendata_webconvert/yellow/
yellow_tripdata_2022-01.csv")

Add the given new column to the dataset and show the sample record after adding a new
 column
ds = ds.add_column("tip_rate", lambda df: df["tip_amount"] / df["total_amount"])

Dropping few columns from the underlying Dataset
ds = ds.drop_columns(["payment_type", "fare_amount", "extra", "tolls_amount",
 "improvement_surcharge"])

ds.write_parquet("s3://yourBucketName/ray/tutorial/output/")

To create and run an AWS Glue for Ray job

1. In the AWS Management Console, navigate to the AWS Glue landing page.

2. In the side navigation pane, choose ETL Jobs.

3. In Create job, choose Ray script editor, and then choose Create, as in the following
illustration.

4. Paste the full text of the script into the Script pane, and replace any existing text.

5. Navigate to Job details and set the IAM Role property to YourRoleName.

Tutorial: Writing a Ray script 1875

AWS Glue User Guide

6. Choose Save, and then choose Run.

Step 4: Inspect your output

After running your AWS Glue job, you should validate that the output matches the expectations of
this scenario. You can do so with the following procedure.

To validate whether your Ray job ran successfully

1. On the job details page, navigate to Runs.

2. After a few minutes, you should see a run with a Run status of Succeeded.

3. Navigate to the Amazon S3 console at https://console.aws.amazon.com/s3/ and inspect
yourBucketName. You should see files written to your output bucket.

4. Read the Parquet files and verify their contents. You can do this with your existing tools. If you
don't have a process for validating Parquet files, you can do this in the AWS Glue console with
an AWS Glue interactive session, using either Spark or Ray (in preview).

In an interactive session, you have access to Ray Data, Spark, or pandas libraries, which are
provided by default (based on your choice of engine). To verify your file contents, you can
use common inspection methods that are available in those libraries—methods like count,
schema, and show. For more information about interactive sessions in the console, see Using
notebooks with AWS Glue Studio and AWS Glue.

Because you have confirmed that files have been written to the bucket, you can say with
relative certainty that if your output has problems, they are not related to IAM configuration.
Configure your session with yourRoleName to have access to the relevant files.

If you don't see the expected outcomes, examine the troubleshooting content in this guide to
identify and remediate the source of the error. To interpret job run error states, see the section
called “Job run statuses”. You can find the troubleshooting content in the Troubleshooting
AWS Glue chapter. For specific errors that are related to Ray jobs, see the section called
“Troubleshooting Ray errors” in the troubleshooting chapter.

Next steps

You have now seen and performed an ETL process using AWS Glue for Ray from end to end. You
can use the following resources to understand what tools AWS Glue for Ray provides to transform
and interpret your data at scale.

Tutorial: Writing a Ray script 1876

https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/glue/latest/ug/notebooks-chapter.html
https://docs.aws.amazon.com/glue/latest/ug/notebooks-chapter.html

AWS Glue User Guide

• For more information about Ray's task model, see the section called “Using Ray Core and
Ray Data in AWS Glue for Ray”. For more experience in using Ray tasks, follow the examples
in the Ray Core documentation. See Ray Core: Ray Tutorials and Examples (2.4.0) in the Ray
documentation.

• For guidance about available data management libraries in AWS Glue for Ray, see the section
called “Connecting to data”. For more experience using Ray Data to transform and write datasets,
follow the examples in the Ray Data documentation. See Ray Data: Examples (2.4.0).

• For more information about configuring AWS Glue for Ray jobs, see the section called “Working
with Ray jobs”.

• For more information about writing AWS Glue for Ray scripts, continue reading the
documentation in this section.

Using Ray Core and Ray Data in AWS Glue for Ray

Ray is a framework for scaling up Python scripts by distributing work across a cluster. You can use
Ray as a solution to many sorts of problems, so Ray provides libraries to optimize certain tasks.
In AWS Glue, we focus on using Ray to transform large datasets. AWS Glue offers support for Ray
Data and parts of Ray Core to facilitate this task.

What is Ray Core?

The first step of building a distributed application is identifying and defining work that can be
performed concurrently. Ray Core contains the parts of Ray that you use to define tasks that can
be performed concurrently. Ray provides reference and quick start information that you can use
to learn the tools they provide. For more information, see What is Ray Core? and Ray Core Quick
Start. For more information about effectively defining concurrent tasks in Ray, see Tips for first-
time users.

Ray tasks and actors

In AWS Glue for Ray documentation, we might refer to tasks and actors, which are core
concepts in Ray.
Ray uses Python functions and classes as the building blocks of a distributed computing
system. Much like when Python functions and variables become "methods" and "attributes"
when used in a class, functions become "tasks" and classes become "actors" when they're
used in Ray to send code to workers. You can identify functions and classes that might be
used by Ray by the @ray.remote annotation.

Using Ray Core and Ray Data in AWS Glue for Ray 1877

https://docs.ray.io/en/releases-2.4.0/ray-core/examples/overview.html
https://docs.ray.io/en/releases-2.4.0/data/examples/index.html
https://docs.ray.io/en/latest/ray-core/walkthrough.html
https://docs.ray.io/en/latest/ray-overview/getting-started.html#ray-core-quick-start
https://docs.ray.io/en/latest/ray-overview/getting-started.html#ray-core-quick-start
https://docs.ray.io/en/latest/ray-core/tips-for-first-time.html
https://docs.ray.io/en/latest/ray-core/tips-for-first-time.html

AWS Glue User Guide

Tasks and actors are configurable, they have a lifecycle, and they take up compute
resources throughout their life. Code that throws errors can be traced back to a task or
actor when you're finding the root cause of problems. Thus, these terms might come up
when you're learning how to configure, monitor, or debug AWS Glue for Ray jobs.
To begin learning how to effectively use tasks and actors to build a distributed application,
see Key Concepts in the Ray docs.

Ray Core in AWS Glue for Ray

AWS Glue for Ray environments manage cluster formation and scaling, as well as collecting and
visualizing logs. Because we manage these concerns, we consequently limit access to and support
for the APIs in Ray Core that would be used to address these concerns in an open-source cluster.

In the managed Ray2.4 runtime environment, we do not support:

• Ray Core CLI

• Ray State CLI

• ray.util.metrics Prometheus metric utility methods:

• Counter

• Gauge

• Histogram

• Other debugging tools:

• ray.util.pdb.set_trace

• ray.util.inspect_serializability

• ray.timeline

What is Ray Data?

When you're connecting to data sources and destinations, handling datasets, and initiating
common transforms, Ray Data is a straightforward methodology for using Ray to solve problems
transforming Ray datasets. For more information about using Ray Data, see Ray Datasets:
Distributed Data Preprocessing.

You can use Ray Data or other tools to access your data. For more information on accessing your
data in Ray, see the section called “Connecting to data”.

Using Ray Core and Ray Data in AWS Glue for Ray 1878

https://docs.ray.io/en/latest/ray-core/key-concepts.html
https://docs.ray.io/en/releases-2.4.0/ray-core/api/cli.html
https://docs.ray.io/en/releases-2.4.0/ray-observability/api/state/cli.html
https://docs.ray.io/en/releases-2.4.0/ray-core/api/doc/ray.util.metrics.Counter.html
https://docs.ray.io/en/releases-2.4.0/ray-core/api/doc/ray.util.metrics.Gauge.html
https://docs.ray.io/en/releases-2.4.0/ray-core/api/doc/ray.util.metrics.Histogram.html
https://docs.ray.io/en/releases-2.4.0/ray-core/api/doc/ray.util.pdb.set_trace.html
https://docs.ray.io/en/releases-2.4.0/ray-core/api/doc/ray.util.inspect_serializability.html
https://docs.ray.io/en/releases-2.4.0/ray-core/api/doc/ray.timeline.html
https://docs.ray.io/en/releases-2.4.0/data/dataset.html
https://docs.ray.io/en/releases-2.4.0/data/dataset.html

AWS Glue User Guide

Ray Data in AWS Glue for Ray

Ray Data is supported and provided by default in the managed Ray2.4 runtime environment. For
more information about provided modules, see the section called “Modules provided with Ray
jobs”.

Providing files and Python libraries to Ray jobs

This section provides information that you need for using Python libraries with AWS Glue Ray jobs.
You can use certain common libraries included by default in all Ray jobs. You can also provide your
own Python libraries to your Ray job.

Modules provided with Ray jobs

You can perform data integration workflows in a Ray job with the following provided packages.
These packages are available by default in Ray jobs.

AWS Glue version 4.0

In AWS Glue 4.0, the Ray (Ray2.4 runtime) environment provides the following packages:

• boto3 == 1.26.133

• ray == 2.4.0

• pyarrow == 11.0.0

• pandas == 1.5.3

• numpy == 1.24.3

• fsspec == 2023.4.0

This list includes all packages that would be installed with ray[data] == 2.4.0. Ray Data is
supported out of box.

Providing files to your Ray job

You can provide files to your Ray job with the --working-dir parameter. Provide this parameter
with a path to a .zip file hosted on Amazon S3. Within the .zip file, your files must be contained in a
single top-level directory. No other files should be at the top level.

Providing files and Python libraries 1879

AWS Glue User Guide

Your files will be distributed to each Ray node before your script begins to run. Consider how this
might impact the disk space that's available to each Ray node. Available disk space is determined
by the WorkerType set in the job configuration. If you want to provide your job data at scale, this
mechanism is not the right solution. For more information on providing data to your job, see the
section called “Connecting to data”.

Your files will be accessible as if the directory was provided to Ray through the working_dir
parameter. For example, to read a file named sample.txt in your .zip file's top-level directory, you
could call:

@ray.remote
def do_work():
 f = open("sample.txt", "r")
 print(f.read())

For more information about working_dir, see the Ray documentation. This feature behaves
similarly to Ray's native capabilities.

Additional Python modules for Ray jobs

Additional modules from PyPI

Ray jobs use the Python Package Installer (pip3) to install additional modules to be used by a
Ray script. You can use the --pip-install parameter with a list of comma-separated Python
modules to add a new module or change the version of an existing module.

For example, to update or add a new scikit-learn module, use the following key-value pair:

"--pip-install", "scikit-learn==0.21.3"

If you have custom modules or custom patches, you can distribute your own libraries from Amazon
S3 with the --s3-py-modules parameter. Before uploading your distribution, it might need to be
repackaged and rebuilt. Follow the guidelines in in the section called “Including Python code in Ray
jobs”.

Custom distributions from Amazon S3

Custom distributions should adhere to Ray packaging guidelines for dependencies. You can find out
how to build these distributions in the following section. For more information about how Ray sets
up dependencies, see Environment Dependencies in the Ray documentation.

Providing files and Python libraries 1880

https://docs.ray.io/en/latest/ray-core/handling-dependencies.html#remote-uris
https://docs.ray.io/en/latest/ray-core/handling-dependencies.html

AWS Glue User Guide

To include a custom distributable after assessing its contents, upload your distributable to a
bucket available to the job's IAM role. Specify the Amazon S3 path to a Python zip archive in your
parameter configuration. If you're providing multiple distributables, separate them by comma. For
example:

"--s3-py-modules", "s3://s3bucket/pythonPackage.zip"

Limitations

Ray jobs do not support compiling native code in the job environment. You can be limited by this if
your Python dependencies transitively depend on native, compiled code. Ray jobs can run provided
binaries, but they must be compiled for Linux on ARM64. This means you might be able to use the
contents of aarch64manylinux wheels. You can provide your native dependencies in a compiled
form by repackaging a wheel to Ray standards. Typically, this means removing dist-info folders
so that there is only one folder at the root at the archive.

You cannot upgrade the version of ray or ray[data] using this parameter. In order to use a
new version of Ray, you will need to change the runtime field on your job, after we have released
support for it. For more information about supported Ray versions, see the section called “AWS
Glue versions”.

Including Python code in Ray jobs

The Python Software Foundation offers standardized behaviors for packaging Python files for
use across different runtimes. Ray introduces limitations to packaging standards that you should
be aware of. AWS Glue does not specify packaging standards beyond those specified to Ray. The
following instructions provide standard guidance on packaging simple Python packages.

Package your files in a .zip archive. A directory should be at the root of the archive. There should
be no other files at the root level of the archive, or this may lead to unexpected behavior. The
root directory is the package, and its name is used to refer to your Python code when importing it.

If you provide a distribution in this form to a Ray job with --s3-py-modules, you will be able to
import Python code from your package in your Ray script.

Your package can provide a single Python module with some Python files, or you can package
together many modules. When repackaging dependencies, such as libraries from PyPI, check for
hidden files and metadata directories inside of those packages.

Providing files and Python libraries 1881

AWS Glue User Guide

Warning

Certain OS behaviors make make it difficult to properly follow these packaging instructions.

• OSX may add hidden files such as __MACOSX to your zip file at the top level.

• Windows may add your files to a folder inside the zip automatically, unintentionally
creating a nested folder.

The following procedures assume you are interacting with your files in Amazon Linux 2 or a similar
OS that provides a distribution of the Info-ZIP zip and zipinfo utilities. We recommend using
these tools to prevent unexpected behaviors.

To package Python files for use in Ray

1. Create a temporary directory with your package name, then confirm your working directory is
its parent directory. You can do this with the following commands:

cd parent_directory
mkdir temp_dir

2. Copy your files into the temporary directory, then confirm your directory structure. The
contents of this directory will be directly accessed as your Python module. You can do this with
the following command:

ls -AR temp_dir
my_file_1.py
my_file_2.py

3. Compress your temporary folder using zip. You can do this with the following commands:

zip -r zip_file.zip temp_dir

4. Confirm your file is properly packaged. zip_file.zip should now be found in your working
directory. You can inspect it with the following command:

zipinfo -1 zip_file.zip
temp_dir/
temp_dir/my_file_1.py

Providing files and Python libraries 1882

AWS Glue User Guide

temp_dir/my_file_2.py

To repackage a Python package for use in Ray.

1. Create a temporary directory with your package name, then confirm your working directory is
its parent directory. You can do this with the following commands:

cd parent_directory
mkdir temp_dir

2. Decompress your package and copy the contents into your temporary directory. Remove files
related to your previous packaging standard, leaving only the contents of the module. Confirm
your file structure looks correct with the following command:

ls -AR temp_dir
my_module
my_module/__init__.py
my_module/my_file_1.py
my_module/my_submodule/__init__.py
my_module/my_submodule/my_file_2.py
my_module/my_submodule/my_file_3.py

3. Compress your temporary folder using zip. You can do this with the following commands:

zip -r zip_file.zip temp_dir

4. Confirm your file is properly packaged. zip_file.zip should now be found in your working
directory. You can inspect it with the following command:

zipinfo -1 zip_file.zip
temp_dir/my_module/
temp_dir/my_module/__init__.py
temp_dir/my_module/my_file_1.py
temp_dir/my_module/my_submodule/
temp_dir/my_module/my_submodule/__init__.py
temp_dir/my_module/my_submodule/my_file_2.py
temp_dir/my_module/my_submodule/my_file_3.py

Providing files and Python libraries 1883

AWS Glue User Guide

Connecting to data in Ray jobs

AWS Glue Ray jobs can use a broad array of Python packages that are designed for you to quickly
integrate data. We provide a minimal set of dependencies in order to not clutter your environment.
For more information about what is included by default, see the section called “Modules provided
with Ray jobs”.

Note

AWS Glue extract, transform, and load (ETL) provides the DynamicFrame abstraction to
streamline ETL workflows where you resolve schema differences between rows in your
dataset. AWS Glue ETL provides additional features—job bookmarks and grouping input
files. We don't currently provide corresponding features in Ray jobs.
AWS Glue for Spark provides direct support for connecting to certain data formats, sources
and sinks. In Ray, AWS SDK for pandas and current third-party libraries substantively cover
that need. You will need to consult those libraries to understand what capabilities are
available.

AWS Glue for Ray integration with Amazon VPC is not currently available. Resources in Amazon
VPC will not be accessible without a public route. For more information about using AWS Glue with
Amazon VPC, see the section called “VPC endpoints (AWS PrivateLink)”.

Common libraries for working with data in Ray

Ray Data – Ray Data provides methods to handle common data formats, sources and sinks. For
more information about supported formats and sources in Ray Data, see Input/Output in the Ray
Data documentation. Ray Data is an opinionated library, rather than a general-purpose library, for
handling datasets.

Ray provides certain guidance around use cases where Ray Data might be the best solution for your
job. For more information, see Ray use cases in the Ray documentation.

AWS SDK for pandas (awswrangler) – AWS SDK for pandas is an AWS product that delivers clean,
tested solutions for reading from and writing to AWS services when your transformations manage
data with pandas DataFrames. For more information about supported formats and sources in the
AWS SDK for pandas, see the API Reference in the AWS SDK for pandas documentation.

Connecting to data 1884

https://docs.ray.io/en/latest/data/api/input_output.html
https://docs.ray.io/en/latest/ray-overview/use-cases.html
https://aws-sdk-pandas.readthedocs.io/en/stable/api.html

AWS Glue User Guide

For examples of how to read and write data with the AWS SDK for pandas, see Quick Start in the
AWS SDK for pandas documentation. The AWS SDK for pandas doesn't provide transforms for your
data. It only provides support for reading and writing from sources.

Modin – Modin is a Python library that implements common pandas operations in a distributable
way. For more information about Modin, see the Modin documentation. Modin itself doesn't
provide support for reading and writing from sources. It provides distributed implementations of
common transforms. Modin is supported by the AWS SDK for pandas.

When you run Modin and the AWS SDK for pandas together in a Ray environment, you can perform
common ETL tasks with performant results. For more information about using Modin with the AWS
SDK for pandas, see At scale in the AWS SDK for pandas documentation.

Other frameworks – For more information about frameworks that Ray supports, see The Ray
Ecosystem in the Ray documentation. We don't provide support for other frameworks in AWS Glue
for Ray.

Connecting to data through the Data Catalog

Managing your data through the Data Catalog in conjunction with Ray jobs is supported with the
AWS SDK for pandas. For more information, see Glue Catalog on the AWS SDK for pandas website.

Connecting to data 1885

https://aws-sdk-pandas.readthedocs.io/en/stable/
https://modin.readthedocs.io/en/stable/
https://aws-sdk-pandas.readthedocs.io/en/stable/scale.html
https://docs.ray.io/en/latest/ray-overview/ray-libraries.html
https://docs.ray.io/en/latest/ray-overview/ray-libraries.html
https://aws-sdk-pandas.readthedocs.io/en/3.0.0rc2/tutorials/005%20-%20Glue%20Catalog.html

AWS Glue User Guide

Using this service with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS CLI AWS CLI code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS Tools for PowerShell Tools for PowerShell code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

For examples specific to this service, see AWS Glue API code examples using AWS SDKs.

1886

https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/cli
https://docs.aws.amazon.com/code-library/latest/ug/cli_2_code_examples.html
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/powershell
https://docs.aws.amazon.com/code-library/latest/ug/powershell_4_code_examples.html
https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift

AWS Glue User Guide

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

1887

AWS Glue User Guide

AWS Glue API

This section describes data types and primitives used by AWS Glue SDKs and Tools. There are
three general ways to interact with AWS Glue programmatically outside of the AWS Management
Console, each with its own documentation:

• Language SDK libraries allow you to access AWS resources from common programming
languages. Find more information at Tools to Build on AWS.

• The AWS CLI allows you to access AWS resources from the command line. Find more information
at AWS CLI Command Reference.

• AWS CloudFormation allows you to define a set of AWS resources to be provisioned together
consistently. Find more information at AWS CloudFormation: AWS Glue resource type reference.

This section documents shared primitives independently of these SDKs and Tools. Tools use the
AWS Glue Web API Reference to communicate with AWS.

Contents

• Security APIs in AWS Glue

• Data types

• DataCatalogEncryptionSettings structure

• EncryptionAtRest structure

• ConnectionPasswordEncryption structure

• EncryptionConfiguration structure

• S3Encryption structure

• CloudWatchEncryption structure

• JobBookmarksEncryption structure

• SecurityConfiguration structure

• GluePolicy structure

• Operations

• GetDataCatalogEncryptionSettings action (Python: get_data_catalog_encryption_settings)

• PutDataCatalogEncryptionSettings action (Python: put_data_catalog_encryption_settings)

• PutResourcePolicy action (Python: put_resource_policy)

• GetResourcePolicy action (Python: get_resource_policy)

1888

https://aws.amazon.com/tools/
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/en_us/AWSCloudFormation/latest/UserGuide/AWS_Glue.html
https://docs.aws.amazon.com/glue/latest/webapi/WebAPI_Welcome.html

AWS Glue User Guide

• DeleteResourcePolicy action (Python: delete_resource_policy)

• CreateSecurityConfiguration action (Python: create_security_configuration)

• DeleteSecurityConfiguration action (Python: delete_security_configuration)

• GetSecurityConfiguration action (Python: get_security_configuration)

• GetSecurityConfigurations action (Python: get_security_configurations)

• GetResourcePolicies action (Python: get_resource_policies)

• Catalog API

• Database API

• Data types

• Database structure

• DatabaseInput structure

• PrincipalPermissions structure

• DataLakePrincipal structure

• DatabaseIdentifier structure

• FederatedDatabase structure

• Operations

• CreateDatabase action (Python: create_database)

• UpdateDatabase action (Python: update_database)

• DeleteDatabase action (Python: delete_database)

• GetDatabase action (Python: get_database)

• GetDatabases action (Python: get_databases)

• Table API

• Data types

• Table structure

• TableInput structure

• FederatedTable structure

• Column structure

• StorageDescriptor structure

• SchemaReference structure

• SerDeInfo structure
1889

AWS Glue User Guide

• Order structure

• SkewedInfo structure

• TableVersion structure

• TableError structure

• TableVersionError structure

• SortCriterion structure

• TableIdentifier structure

• KeySchemaElement structure

• PartitionIndex structure

• PartitionIndexDescriptor structure

• BackfillError structure

• IcebergInput structure

• OpenTableFormatInput structure

• ViewDefinition structure

• ViewDefinitionInput structure

• ViewRepresentation structure

• ViewRepresentationInput structure

• Operations

• CreateTable action (Python: create_table)

• UpdateTable action (Python: update_table)

• DeleteTable action (Python: delete_table)

• BatchDeleteTable action (Python: batch_delete_table)

• GetTable action (Python: get_table)

• GetTables action (Python: get_tables)

• GetTableVersion action (Python: get_table_version)

• GetTableVersions action (Python: get_table_versions)

• DeleteTableVersion action (Python: delete_table_version)

• BatchDeleteTableVersion action (Python: batch_delete_table_version)

• SearchTables action (Python: search_tables)

• GetPartitionIndexes action (Python: get_partition_indexes)
1890

AWS Glue User Guide

• CreatePartitionIndex action (Python: create_partition_index)

• DeletePartitionIndex action (Python: delete_partition_index)

• GetColumnStatisticsForTable action (Python: get_column_statistics_for_table)

• UpdateColumnStatisticsForTable action (Python: update_column_statistics_for_table)

• DeleteColumnStatisticsForTable action (Python: delete_column_statistics_for_table)

• Partition API

• Data types

• Partition structure

• PartitionInput structure

• PartitionSpecWithSharedStorageDescriptor structure

• PartitionListComposingSpec structure

• PartitionSpecProxy structure

• PartitionValueList structure

• Segment structure

• PartitionError structure

• BatchUpdatePartitionFailureEntry structure

• BatchUpdatePartitionRequestEntry structure

• StorageDescriptor structure

• SchemaReference structure

• SerDeInfo structure

• SkewedInfo structure

• Operations

• CreatePartition action (Python: create_partition)

• BatchCreatePartition action (Python: batch_create_partition)

• UpdatePartition action (Python: update_partition)

• DeletePartition action (Python: delete_partition)

• BatchDeletePartition action (Python: batch_delete_partition)

• GetPartition action (Python: get_partition)

• GetPartitions action (Python: get_partitions)

• BatchGetPartition action (Python: batch_get_partition)
1891

AWS Glue User Guide

• BatchUpdatePartition action (Python: batch_update_partition)

• GetColumnStatisticsForPartition action (Python: get_column_statistics_for_partition)

• UpdateColumnStatisticsForPartition action (Python:
update_column_statistics_for_partition)

• DeleteColumnStatisticsForPartition action (Python:
delete_column_statistics_for_partition)

• Connection API

• Data types

• Connection structure

• ConnectionInput structure

• PhysicalConnectionRequirements structure

• GetConnectionsFilter structure

• Operations

• CreateConnection action (Python: create_connection)

• DeleteConnection action (Python: delete_connection)

• GetConnection action (Python: get_connection)

• GetConnections action (Python: get_connections)

• UpdateConnection action (Python: update_connection)

• BatchDeleteConnection action (Python: batch_delete_connection)

• Authentication configuration

• AuthenticationConfiguration structure

• AuthenticationConfigurationInput structure

• OAuth2Properties structure

• OAuth2PropertiesInput structure

• OAuth2ClientApplication structure

• AuthorizationCodeProperties structure

• User-defined Function API

• Data types

• UserDefinedFunction structure

• UserDefinedFunctionInput structure

• Operations

1892

AWS Glue User Guide

• CreateUserDefinedFunction action (Python: create_user_defined_function)

• UpdateUserDefinedFunction action (Python: update_user_defined_function)

• DeleteUserDefinedFunction action (Python: delete_user_defined_function)

• GetUserDefinedFunction action (Python: get_user_defined_function)

• GetUserDefinedFunctions action (Python: get_user_defined_functions)

• Importing an Athena catalog to AWS Glue

• Data types

• CatalogImportStatus structure

• Operations

• ImportCatalogToGlue action (Python: import_catalog_to_glue)

• GetCatalogImportStatus action (Python: get_catalog_import_status)

• Table optimizer API

• Data types

• TableOptimizer structure

• TableOptimizerConfiguration structure

• TableOptimizerRun structure

• RunMetrics structure

• BatchGetTableOptimizerEntry structure

• BatchTableOptimizer structure

• BatchGetTableOptimizerError structure

• Operations

• GetTableOptimizer action (Python: get_table_optimizer)

• BatchGetTableOptimizer action (Python: batch_get_table_optimizer)

• ListTableOptimizerRuns action (Python: list_table_optimizer_runs)

• CreateTableOptimizer action (Python: create_table_optimizer)

• DeleteTableOptimizer action (Python: delete_table_optimizer)

• UpdateTableOptimizer action (Python: update_table_optimizer)

• Crawlers and classifiers API

• Classifier API

• Data types
1893

AWS Glue User Guide

• Classifier structure

• GrokClassifier structure

• XMLClassifier structure

• JsonClassifier structure

• CsvClassifier structure

• CreateGrokClassifierRequest structure

• UpdateGrokClassifierRequest structure

• CreateXMLClassifierRequest structure

• UpdateXMLClassifierRequest structure

• CreateJsonClassifierRequest structure

• UpdateJsonClassifierRequest structure

• CreateCsvClassifierRequest structure

• UpdateCsvClassifierRequest structure

• Operations

• CreateClassifier action (Python: create_classifier)

• DeleteClassifier action (Python: delete_classifier)

• GetClassifier action (Python: get_classifier)

• GetClassifiers action (Python: get_classifiers)

• UpdateClassifier action (Python: update_classifier)

• Crawler API

• Data types

• Crawler structure

• Schedule structure

• CrawlerTargets structure

• S3Target structure

• S3DeltaCatalogTarget structure

• S3DeltaDirectTarget structure

• JdbcTarget structure

• MongoDBTarget structure

• DynamoDBTarget structure
1894

AWS Glue User Guide

• DeltaTarget structure

• IcebergTarget structure

• HudiTarget structure

• CatalogTarget structure

• CrawlerMetrics structure

• CrawlerHistory structure

• CrawlsFilter structure

• SchemaChangePolicy structure

• LastCrawlInfo structure

• RecrawlPolicy structure

• LineageConfiguration structure

• LakeFormationConfiguration structure

• Operations

• CreateCrawler action (Python: create_crawler)

• DeleteCrawler action (Python: delete_crawler)

• GetCrawler action (Python: get_crawler)

• GetCrawlers action (Python: get_crawlers)

• GetCrawlerMetrics action (Python: get_crawler_metrics)

• UpdateCrawler action (Python: update_crawler)

• StartCrawler action (Python: start_crawler)

• StopCrawler action (Python: stop_crawler)

• BatchGetCrawlers action (Python: batch_get_crawlers)

• ListCrawlers action (Python: list_crawlers)

• ListCrawls action (Python: list_crawls)

• Column statistics API

• Data types

• ColumnStatisticsTaskRun structure

• ColumnStatisticsTaskRunningException structure

• ColumnStatisticsTaskNotRunningException structure

• ColumnStatisticsTaskStoppingException structure
1895

AWS Glue User Guide

• Operations

• StartColumnStatisticsTaskRun action (Python: start_column_statistics_task_run)

• GetColumnStatisticsTaskRun action (Python: get_column_statistics_task_run)

• GetColumnStatisticsTaskRuns action (Python: get_column_statistics_task_runs)

• ListColumnStatisticsTaskRuns action (Python: list_column_statistics_task_runs)

• StopColumnStatisticsTaskRun action (Python: stop_column_statistics_task_run)

• Crawler scheduler API

• Data types

• Schedule structure

• Operations

• UpdateCrawlerSchedule action (Python: update_crawler_schedule)

• StartCrawlerSchedule action (Python: start_crawler_schedule)

• StopCrawlerSchedule action (Python: stop_crawler_schedule)

• Autogenerating ETL Scripts API

• Data types

• CodeGenNode structure

• CodeGenNodeArg structure

• CodeGenEdge structure

• Location structure

• CatalogEntry structure

• MappingEntry structure

• Operations

• CreateScript action (Python: create_script)

• GetDataflowGraph action (Python: get_dataflow_graph)

• GetMapping action (Python: get_mapping)

• GetPlan action (Python: get_plan)

• Visual job API

• Data types

• CodeGenConfigurationNode structure

• JDBCConnectorOptions structure
1896

AWS Glue User Guide

• StreamingDataPreviewOptions structure

• AthenaConnectorSource structure

• JDBCConnectorSource structure

• SparkConnectorSource structure

• CatalogSource structure

• MySQLCatalogSource structure

• PostgreSQLCatalogSource structure

• OracleSQLCatalogSource structure

• MicrosoftSQLServerCatalogSource structure

• CatalogKinesisSource structure

• DirectKinesisSource structure

• KinesisStreamingSourceOptions structure

• CatalogKafkaSource structure

• DirectKafkaSource structure

• KafkaStreamingSourceOptions structure

• RedshiftSource structure

• AmazonRedshiftSource structure

• AmazonRedshiftNodeData structure

• AmazonRedshiftAdvancedOption structure

• Option structure

• S3CatalogSource structure

• S3SourceAdditionalOptions structure

• S3CsvSource structure

• DirectJDBCSource structure

• S3DirectSourceAdditionalOptions structure

• S3JsonSource structure

• S3ParquetSource structure

• S3DeltaSource structure

• S3CatalogDeltaSource structure

• CatalogDeltaSource structure
1897

AWS Glue User Guide

• S3HudiSource structure

• S3CatalogHudiSource structure

• CatalogHudiSource structure

• DynamoDBCatalogSource structure

• RelationalCatalogSource structure

• JDBCConnectorTarget structure

• SparkConnectorTarget structure

• BasicCatalogTarget structure

• MySQLCatalogTarget structure

• PostgreSQLCatalogTarget structure

• OracleSQLCatalogTarget structure

• MicrosoftSQLServerCatalogTarget structure

• RedshiftTarget structure

• AmazonRedshiftTarget structure

• UpsertRedshiftTargetOptions structure

• S3CatalogTarget structure

• S3GlueParquetTarget structure

• CatalogSchemaChangePolicy structure

• S3DirectTarget structure

• S3HudiCatalogTarget structure

• S3HudiDirectTarget structure

• S3DeltaCatalogTarget structure

• S3DeltaDirectTarget structure

• DirectSchemaChangePolicy structure

• ApplyMapping structure

• Mapping structure

• SelectFields structure

• DropFields structure

• RenameField structure

• Spigot structure
1898

AWS Glue User Guide

• Join structure

• JoinColumn structure

• SplitFields structure

• SelectFromCollection structure

• FillMissingValues structure

• Filter structure

• FilterExpression structure

• FilterValue structure

• CustomCode structure

• SparkSQL structure

• SqlAlias structure

• DropNullFields structure

• NullCheckBoxList structure

• NullValueField structure

• Datatype structure

• Merge structure

• Union structure

• PIIDetection structure

• Aggregate structure

• DropDuplicates structure

• GovernedCatalogTarget structure

• GovernedCatalogSource structure

• AggregateOperation structure

• GlueSchema structure

• GlueStudioSchemaColumn structure

• GlueStudioColumn structure

• DynamicTransform structure

• TransformConfigParameter structure

• EvaluateDataQuality structure

• DQResultsPublishingOptions structure
1899

AWS Glue User Guide

• DQStopJobOnFailureOptions structure

• EvaluateDataQualityMultiFrame structure

• Recipe structure

• RecipeReference structure

• SnowflakeNodeData structure

• SnowflakeSource structure

• SnowflakeTarget structure

• ConnectorDataSource structure

• ConnectorDataTarget structure

• Jobs API

• Jobs

• Data types

• Job structure

• ExecutionProperty structure

• NotificationProperty structure

• JobCommand structure

• ConnectionsList structure

• JobUpdate structure

• SourceControlDetails structure

• Operations

• CreateJob action (Python: create_job)

• UpdateJob action (Python: update_job)

• GetJob action (Python: get_job)

• GetJobs action (Python: get_jobs)

• DeleteJob action (Python: delete_job)

• ListJobs action (Python: list_jobs)

• BatchGetJobs action (Python: batch_get_jobs)

• Job runs

• Data types

• JobRun structure
1900

AWS Glue User Guide

• Predecessor structure

• JobBookmarkEntry structure

• BatchStopJobRunSuccessfulSubmission structure

• BatchStopJobRunError structure

• NotificationProperty structure

• Operations

• StartJobRun action (Python: start_job_run)

• BatchStopJobRun action (Python: batch_stop_job_run)

• GetJobRun action (Python: get_job_run)

• GetJobRuns action (Python: get_job_runs)

• GetJobBookmark action (Python: get_job_bookmark)

• GetJobBookmarks action (Python: get_job_bookmarks)

• ResetJobBookmark action (Python: reset_job_bookmark)

• Triggers

• Data types

• Trigger structure

• TriggerUpdate structure

• Predicate structure

• Condition structure

• Action structure

• EventBatchingCondition structure

• Operations

• CreateTrigger action (Python: create_trigger)

• StartTrigger action (Python: start_trigger)

• GetTrigger action (Python: get_trigger)

• GetTriggers action (Python: get_triggers)

• UpdateTrigger action (Python: update_trigger)

• StopTrigger action (Python: stop_trigger)

• DeleteTrigger action (Python: delete_trigger)

• ListTriggers action (Python: list_triggers)
1901

AWS Glue User Guide

• BatchGetTriggers action (Python: batch_get_triggers)

• Interactive sessions API

• Data types

• Session structure

• SessionCommand structure

• Statement structure

• StatementOutput structure

• StatementOutputData structure

• ConnectionsList structure

• Operations

• CreateSession action (Python: create_session)

• StopSession action (Python: stop_session)

• DeleteSession action (Python: delete_session)

• GetSession action (Python: get_session)

• ListSessions action (Python: list_sessions)

• RunStatement action (Python: run_statement)

• CancelStatement action (Python: cancel_statement)

• GetStatement action (Python: get_statement)

• ListStatements action (Python: list_statements)

• Development endpoints API

• Data types

• DevEndpoint structure

• DevEndpointCustomLibraries structure

• Operations

• CreateDevEndpoint action (Python: create_dev_endpoint)

• UpdateDevEndpoint action (Python: update_dev_endpoint)

• DeleteDevEndpoint action (Python: delete_dev_endpoint)

• GetDevEndpoint action (Python: get_dev_endpoint)

• GetDevEndpoints action (Python: get_dev_endpoints)

• BatchGetDevEndpoints action (Python: batch_get_dev_endpoints)
1902

AWS Glue User Guide

• ListDevEndpoints action (Python: list_dev_endpoints)

• Schema registry

• Data types

• RegistryId structure

• RegistryListItem structure

• MetadataInfo structure

• OtherMetadataValueListItem structure

• SchemaListItem structure

• SchemaVersionListItem structure

• MetadataKeyValuePair structure

• SchemaVersionErrorItem structure

• ErrorDetails structure

• SchemaVersionNumber structure

• SchemaId structure

• Operations

• CreateRegistry action (Python: create_registry)

• CreateSchema action (Python: create_schema)

• GetSchema action (Python: get_schema)

• ListSchemaVersions action (Python: list_schema_versions)

• GetSchemaVersion action (Python: get_schema_version)

• GetSchemaVersionsDiff action (Python: get_schema_versions_diff)

• ListRegistries action (Python: list_registries)

• ListSchemas action (Python: list_schemas)

• RegisterSchemaVersion action (Python: register_schema_version)

• UpdateSchema action (Python: update_schema)

• CheckSchemaVersionValidity action (Python: check_schema_version_validity)

• UpdateRegistry action (Python: update_registry)

• GetSchemaByDefinition action (Python: get_schema_by_definition)

• GetRegistry action (Python: get_registry)

• PutSchemaVersionMetadata action (Python: put_schema_version_metadata)
1903

AWS Glue User Guide

• QuerySchemaVersionMetadata action (Python: query_schema_version_metadata)

• RemoveSchemaVersionMetadata action (Python: remove_schema_version_metadata)

• DeleteRegistry action (Python: delete_registry)

• DeleteSchema action (Python: delete_schema)

• DeleteSchemaVersions action (Python: delete_schema_versions)

• Workflows

• Data types

• JobNodeDetails structure

• CrawlerNodeDetails structure

• TriggerNodeDetails structure

• Crawl structure

• Node structure

• Edge structure

• Workflow structure

• WorkflowGraph structure

• WorkflowRun structure

• WorkflowRunStatistics structure

• StartingEventBatchCondition structure

• Blueprint structure

• BlueprintDetails structure

• LastActiveDefinition structure

• BlueprintRun structure

• Operations

• CreateWorkflow action (Python: create_workflow)

• UpdateWorkflow action (Python: update_workflow)

• DeleteWorkflow action (Python: delete_workflow)

• GetWorkflow action (Python: get_workflow)

• ListWorkflows action (Python: list_workflows)

• BatchGetWorkflows action (Python: batch_get_workflows)

• GetWorkflowRun action (Python: get_workflow_run)
1904

AWS Glue User Guide

• GetWorkflowRuns action (Python: get_workflow_runs)

• GetWorkflowRunProperties action (Python: get_workflow_run_properties)

• PutWorkflowRunProperties action (Python: put_workflow_run_properties)

• CreateBlueprint action (Python: create_blueprint)

• UpdateBlueprint action (Python: update_blueprint)

• DeleteBlueprint action (Python: delete_blueprint)

• ListBlueprints action (Python: list_blueprints)

• BatchGetBlueprints action (Python: batch_get_blueprints)

• StartBlueprintRun action (Python: start_blueprint_run)

• GetBlueprintRun action (Python: get_blueprint_run)

• GetBlueprintRuns action (Python: get_blueprint_runs)

• StartWorkflowRun action (Python: start_workflow_run)

• StopWorkflowRun action (Python: stop_workflow_run)

• ResumeWorkflowRun action (Python: resume_workflow_run)

• Usage profiles

• Data types

• ProfileConfiguration structure

• ConfigurationObject structure

• UsageProfileDefinition structure

• Operations

• CreateUsageProfile action (Python: create_usage_profile)

• GetUsageProfile action (Python: get_usage_profile)

• UpdateUsageProfile action (Python: update_usage_profile)

• DeleteUsageProfile action (Python: delete_usage_profile)

• ListUsageProfiles action (Python: list_usage_profiles)

• Machine learning API

• Data types

• TransformParameters structure

• EvaluationMetrics structure

• MLTransform structure
1905

AWS Glue User Guide

• FindMatchesParameters structure

• FindMatchesMetrics structure

• ConfusionMatrix structure

• GlueTable structure

• TaskRun structure

• TransformFilterCriteria structure

• TransformSortCriteria structure

• TaskRunFilterCriteria structure

• TaskRunSortCriteria structure

• TaskRunProperties structure

• FindMatchesTaskRunProperties structure

• ImportLabelsTaskRunProperties structure

• ExportLabelsTaskRunProperties structure

• LabelingSetGenerationTaskRunProperties structure

• SchemaColumn structure

• TransformEncryption structure

• MLUserDataEncryption structure

• ColumnImportance structure

• Operations

• CreateMLTransform action (Python: create_ml_transform)

• UpdateMLTransform action (Python: update_ml_transform)

• DeleteMLTransform action (Python: delete_ml_transform)

• GetMLTransform action (Python: get_ml_transform)

• GetMLTransforms action (Python: get_ml_transforms)

• ListMLTransforms action (Python: list_ml_transforms)

• StartMLEvaluationTaskRun action (Python: start_ml_evaluation_task_run)

• StartMLLabelingSetGenerationTaskRun action (Python:
start_ml_labeling_set_generation_task_run)

• GetMLTaskRun action (Python: get_ml_task_run)

• GetMLTaskRuns action (Python: get_ml_task_runs)
1906

AWS Glue User Guide

• CancelMLTaskRun action (Python: cancel_ml_task_run)

• StartExportLabelsTaskRun action (Python: start_export_labels_task_run)

• StartImportLabelsTaskRun action (Python: start_import_labels_task_run)

• Data Quality API

• Data types

• DataSource structure

• DataQualityRulesetListDetails structure

• DataQualityTargetTable structure

• DataQualityRulesetEvaluationRunDescription structure

• DataQualityRulesetEvaluationRunFilter structure

• DataQualityEvaluationRunAdditionalRunOptions structure

• DataQualityRuleRecommendationRunDescription structure

• DataQualityRuleRecommendationRunFilter structure

• DataQualityResult structure

• DataQualityAnalyzerResult structure

• DataQualityObservation structure

• MetricBasedObservation structure

• DataQualityMetricValues structure

• DataQualityRuleResult structure

• DataQualityResultDescription structure

• DataQualityResultFilterCriteria structure

• DataQualityRulesetFilterCriteria structure

• Operations

• StartDataQualityRulesetEvaluationRun action (Python:
start_data_quality_ruleset_evaluation_run)

• CancelDataQualityRulesetEvaluationRun action (Python:
cancel_data_quality_ruleset_evaluation_run)

• GetDataQualityRulesetEvaluationRun action (Python:
get_data_quality_ruleset_evaluation_run)

• ListDataQualityRulesetEvaluationRuns action (Python:
list_data_quality_ruleset_evaluation_runs)

1907

AWS Glue User Guide

• StartDataQualityRuleRecommendationRun action (Python:
start_data_quality_rule_recommendation_run)

• CancelDataQualityRuleRecommendationRun action (Python:
cancel_data_quality_rule_recommendation_run)

• GetDataQualityRuleRecommendationRun action (Python:
get_data_quality_rule_recommendation_run)

• ListDataQualityRuleRecommendationRuns action (Python:
list_data_quality_rule_recommendation_runs)

• GetDataQualityResult action (Python: get_data_quality_result)

• BatchGetDataQualityResult action (Python: batch_get_data_quality_result)

• ListDataQualityResults action (Python: list_data_quality_results)

• CreateDataQualityRuleset action (Python: create_data_quality_ruleset)

• DeleteDataQualityRuleset action (Python: delete_data_quality_ruleset)

• GetDataQualityRuleset action (Python: get_data_quality_ruleset)

• ListDataQualityRulesets action (Python: list_data_quality_rulesets)

• UpdateDataQualityRuleset action (Python: update_data_quality_ruleset)

• Sensitive data detection API

• Data types

• CustomEntityType structure

• Operations

• CreateCustomEntityType action (Python: create_custom_entity_type)

• DeleteCustomEntityType action (Python: delete_custom_entity_type)

• GetCustomEntityType action (Python: get_custom_entity_type)

• BatchGetCustomEntityTypes action (Python: batch_get_custom_entity_types)

• ListCustomEntityTypes action (Python: list_custom_entity_types)

• Tagging APIs in AWS Glue

• Data types

• Tag structure

• Operations

• TagResource action (Python: tag_resource)

• UntagResource action (Python: untag_resource)
1908

AWS Glue User Guide

• GetTags action (Python: get_tags)

• Common data types

• Tag structure

• DecimalNumber structure

• ErrorDetail structure

• PropertyPredicate structure

• ResourceUri structure

• ColumnStatistics structure

• ColumnStatisticsError structure

• ColumnError structure

• ColumnStatisticsData structure

• BooleanColumnStatisticsData structure

• DateColumnStatisticsData structure

• DecimalColumnStatisticsData structure

• DoubleColumnStatisticsData structure

• LongColumnStatisticsData structure

• StringColumnStatisticsData structure

• BinaryColumnStatisticsData structure

• String patterns

• Exceptions

• AccessDeniedException structure

• AlreadyExistsException structure

• ConcurrentModificationException structure

• ConcurrentRunsExceededException structure

• CrawlerNotRunningException structure

• CrawlerRunningException structure

• CrawlerStoppingException structure

• EntityNotFoundException structure

• FederationSourceException structure

• FederationSourceRetryableException structure
1909

AWS Glue User Guide

• GlueEncryptionException structure

• IdempotentParameterMismatchException structure

• IllegalWorkflowStateException structure

• InternalServiceException structure

• InvalidExecutionEngineException structure

• InvalidInputException structure

• InvalidStateException structure

• InvalidTaskStatusTransitionException structure

• JobDefinitionErrorException structure

• JobRunInTerminalStateException structure

• JobRunInvalidStateTransitionException structure

• JobRunNotInTerminalStateException structure

• LateRunnerException structure

• NoScheduleException structure

• OperationTimeoutException structure

• ResourceNotReadyException structure

• ResourceNumberLimitExceededException structure

• SchedulerNotRunningException structure

• SchedulerRunningException structure

• SchedulerTransitioningException structure

• UnrecognizedRunnerException structure

• ValidationException structure

• VersionMismatchException structure

Security APIs in AWS Glue

The Security API describes the security data types, and the API related to security in AWS Glue.

Data types

• DataCatalogEncryptionSettings structure

• EncryptionAtRest structure

Security 1910

AWS Glue User Guide

• ConnectionPasswordEncryption structure

• EncryptionConfiguration structure

• S3Encryption structure

• CloudWatchEncryption structure

• JobBookmarksEncryption structure

• SecurityConfiguration structure

• GluePolicy structure

DataCatalogEncryptionSettings structure

Contains configuration information for maintaining Data Catalog security.

Fields

• EncryptionAtRest – An EncryptionAtRest object.

Specifies the encryption-at-rest configuration for the Data Catalog.

• ConnectionPasswordEncryption – A ConnectionPasswordEncryption object.

When connection password protection is enabled, the Data Catalog uses a customer-provided
key to encrypt the password as part of CreateConnection or UpdateConnection and store
it in the ENCRYPTED_PASSWORD field in the connection properties. You can enable catalog
encryption or only password encryption.

EncryptionAtRest structure

Specifies the encryption-at-rest configuration for the Data Catalog.

Fields

• CatalogEncryptionMode – Required: UTF-8 string (valid values: DISABLED | SSE-
KMS="SSEKMS" | SSE-KMS-WITH-SERVICE-ROLE="SSEKMSWITHSERVICEROLE").

The encryption-at-rest mode for encrypting Data Catalog data.

• SseAwsKmsKeyId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

DataCatalogEncryptionSettings 1911

AWS Glue User Guide

The ID of the AWS KMS key to use for encryption at rest.

• CatalogEncryptionServiceRole – UTF-8 string, matching the Custom string pattern #24.

The role that AWS Glue assumes to encrypt and decrypt the Data Catalog objects on the caller's
behalf.

ConnectionPasswordEncryption structure

The data structure used by the Data Catalog to encrypt the password as part of
CreateConnection or UpdateConnection and store it in the ENCRYPTED_PASSWORD field in
the connection properties. You can enable catalog encryption or only password encryption.

When a CreationConnection request arrives containing a password, the Data Catalog first
encrypts the password using your AWS KMS key. It then encrypts the whole connection object
again if catalog encryption is also enabled.

This encryption requires that you set AWS KMS key permissions to enable or restrict access on
the password key according to your security requirements. For example, you might want only
administrators to have decrypt permission on the password key.

Fields

• ReturnConnectionPasswordEncrypted – Required: Boolean.

When the ReturnConnectionPasswordEncrypted flag is set to "true", passwords remain
encrypted in the responses of GetConnection and GetConnections. This encryption takes
effect independently from catalog encryption.

• AwsKmsKeyId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

An AWS KMS key that is used to encrypt the connection password.

If connection password protection is enabled, the caller of CreateConnection and
UpdateConnection needs at least kms:Encrypt permission on the specified AWS KMS key, to
encrypt passwords before storing them in the Data Catalog.

You can set the decrypt permission to enable or restrict access on the password key according to
your security requirements.

ConnectionPasswordEncryption 1912

AWS Glue User Guide

EncryptionConfiguration structure

Specifies an encryption configuration.

Fields

• S3Encryption – An array of S3Encryption objects.

The encryption configuration for Amazon Simple Storage Service (Amazon S3) data.

• CloudWatchEncryption – A CloudWatchEncryption object.

The encryption configuration for Amazon CloudWatch.

• JobBookmarksEncryption – A JobBookmarksEncryption object.

The encryption configuration for job bookmarks.

S3Encryption structure

Specifies how Amazon Simple Storage Service (Amazon S3) data should be encrypted.

Fields

• S3EncryptionMode – UTF-8 string (valid values: DISABLED | SSE-KMS="SSEKMS" | SSE-
S3="SSES3").

The encryption mode to use for Amazon S3 data.

• KmsKeyArn – UTF-8 string, matching the Custom string pattern #25.

The Amazon Resource Name (ARN) of the KMS key to be used to encrypt the data.

CloudWatchEncryption structure

Specifies how Amazon CloudWatch data should be encrypted.

Fields

• CloudWatchEncryptionMode – UTF-8 string (valid values: DISABLED | SSE-KMS="SSEKMS").

The encryption mode to use for CloudWatch data.

EncryptionConfiguration 1913

AWS Glue User Guide

• KmsKeyArn – UTF-8 string, matching the Custom string pattern #25.

The Amazon Resource Name (ARN) of the KMS key to be used to encrypt the data.

JobBookmarksEncryption structure

Specifies how job bookmark data should be encrypted.

Fields

• JobBookmarksEncryptionMode – UTF-8 string (valid values: DISABLED | CSE-
KMS="CSEKMS").

The encryption mode to use for job bookmarks data.

• KmsKeyArn – UTF-8 string, matching the Custom string pattern #25.

The Amazon Resource Name (ARN) of the KMS key to be used to encrypt the data.

SecurityConfiguration structure

Specifies a security configuration.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the security configuration.

• CreatedTimeStamp – Timestamp.

The time at which this security configuration was created.

• EncryptionConfiguration – An EncryptionConfiguration object.

The encryption configuration associated with this security configuration.

GluePolicy structure

A structure for returning a resource policy.

JobBookmarksEncryption 1914

AWS Glue User Guide

Fields

• PolicyInJson – UTF-8 string, at least 2 bytes long.

Contains the requested policy document, in JSON format.

• PolicyHash – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Contains the hash value associated with this policy.

• CreateTime – Timestamp.

The date and time at which the policy was created.

• UpdateTime – Timestamp.

The date and time at which the policy was last updated.

Operations

• GetDataCatalogEncryptionSettings action (Python: get_data_catalog_encryption_settings)

• PutDataCatalogEncryptionSettings action (Python: put_data_catalog_encryption_settings)

• PutResourcePolicy action (Python: put_resource_policy)

• GetResourcePolicy action (Python: get_resource_policy)

• DeleteResourcePolicy action (Python: delete_resource_policy)

• CreateSecurityConfiguration action (Python: create_security_configuration)

• DeleteSecurityConfiguration action (Python: delete_security_configuration)

• GetSecurityConfiguration action (Python: get_security_configuration)

• GetSecurityConfigurations action (Python: get_security_configurations)

• GetResourcePolicies action (Python: get_resource_policies)

GetDataCatalogEncryptionSettings action (Python:
get_data_catalog_encryption_settings)

Retrieves the security configuration for a specified catalog.

 — operations — 1915

AWS Glue User Guide

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog to retrieve the security configuration for. If none is provided, the AWS
account ID is used by default.

Response

• DataCatalogEncryptionSettings – A DataCatalogEncryptionSettings object.

The requested security configuration.

Errors

• InternalServiceException

• InvalidInputException

• OperationTimeoutException

PutDataCatalogEncryptionSettings action (Python:
put_data_catalog_encryption_settings)

Sets the security configuration for a specified catalog. After the configuration has been set, the
specified encryption is applied to every catalog write thereafter.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog to set the security configuration for. If none is provided, the AWS
account ID is used by default.

• DataCatalogEncryptionSettings – Required: A DataCatalogEncryptionSettings object.

The security configuration to set.

PutDataCatalogEncryptionSettings (put_data_catalog_encryption_settings) 1916

AWS Glue User Guide

Response

• No Response parameters.

Errors

• InternalServiceException

• InvalidInputException

• OperationTimeoutException

PutResourcePolicy action (Python: put_resource_policy)

Sets the Data Catalog resource policy for access control.

Request

• PolicyInJson – Required: UTF-8 string, at least 2 bytes long.

Contains the policy document to set, in JSON format.

• ResourceArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the
Custom string pattern #22.

Do not use. For internal use only.

• PolicyHashCondition – UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The hash value returned when the previous policy was set using PutResourcePolicy. Its
purpose is to prevent concurrent modifications of a policy. Do not use this parameter if no
previous policy has been set.

• PolicyExistsCondition – UTF-8 string (valid values: MUST_EXIST | NOT_EXIST | NONE).

A value of MUST_EXIST is used to update a policy. A value of NOT_EXIST is used to create a new
policy. If a value of NONE or a null value is used, the call does not depend on the existence of a
policy.

• EnableHybrid – UTF-8 string (valid values: TRUE | FALSE).

If 'TRUE', indicates that you are using both methods to grant cross-account access to Data
Catalog resources:

PutResourcePolicy (put_resource_policy) 1917

AWS Glue User Guide

• By directly updating the resource policy with PutResourePolicy

• By using the Grant permissions command on the AWS Management Console.

Must be set to 'TRUE' if you have already used the Management Console to grant cross-account
access, otherwise the call fails. Default is 'FALSE'.

Response

• PolicyHash – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

A hash of the policy that has just been set. This must be included in a subsequent call that
overwrites or updates this policy.

Errors

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

• ConditionCheckFailureException

GetResourcePolicy action (Python: get_resource_policy)

Retrieves a specified resource policy.

Request

• ResourceArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the
Custom string pattern #22.

The ARN of the AWS Glue resource for which to retrieve the resource policy. If not supplied,
the Data Catalog resource policy is returned. Use GetResourcePolicies to view all existing
resource policies. For more information see Specifying AWS Glue Resource ARNs.

GetResourcePolicy (get_resource_policy) 1918

https://docs.aws.amazon.com/glue/latest/dg/glue-specifying-resource-arns.html

AWS Glue User Guide

Response

• PolicyInJson – UTF-8 string, at least 2 bytes long.

Contains the requested policy document, in JSON format.

• PolicyHash – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Contains the hash value associated with this policy.

• CreateTime – Timestamp.

The date and time at which the policy was created.

• UpdateTime – Timestamp.

The date and time at which the policy was last updated.

Errors

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

DeleteResourcePolicy action (Python: delete_resource_policy)

Deletes a specified policy.

Request

• PolicyHashCondition – UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The hash value returned when this policy was set.

• ResourceArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the
Custom string pattern #22.

The ARN of the AWS Glue resource for the resource policy to be deleted.

DeleteResourcePolicy (delete_resource_policy) 1919

AWS Glue User Guide

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

• ConditionCheckFailureException

CreateSecurityConfiguration action (Python:
create_security_configuration)

Creates a new security configuration. A security configuration is a set of security properties
that can be used by AWS Glue. You can use a security configuration to encrypt data at rest. For
information about using security configurations in AWS Glue, see Encrypting Data Written by
Crawlers, Jobs, and Development Endpoints.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name for the new security configuration.

• EncryptionConfiguration – Required: An EncryptionConfiguration object.

The encryption configuration for the new security configuration.

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name assigned to the new security configuration.

• CreatedTimestamp – Timestamp.

CreateSecurityConfiguration (create_security_configuration) 1920

https://docs.aws.amazon.com/glue/latest/dg/encryption-security-configuration.html
https://docs.aws.amazon.com/glue/latest/dg/encryption-security-configuration.html

AWS Glue User Guide

The time at which the new security configuration was created.

Errors

• AlreadyExistsException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• ResourceNumberLimitExceededException

DeleteSecurityConfiguration action (Python:
delete_security_configuration)

Deletes a specified security configuration.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the security configuration to delete.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

DeleteSecurityConfiguration (delete_security_configuration) 1921

AWS Glue User Guide

GetSecurityConfiguration action (Python: get_security_configuration)

Retrieves a specified security configuration.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the security configuration to retrieve.

Response

• SecurityConfiguration – A SecurityConfiguration object.

The requested security configuration.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

GetSecurityConfigurations action (Python: get_security_configurations)

Retrieves a list of all security configurations.

Request

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum number of results to return.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

GetSecurityConfiguration (get_security_configuration) 1922

AWS Glue User Guide

Response

• SecurityConfigurations – An array of SecurityConfiguration objects.

A list of security configurations.

• NextToken – UTF-8 string.

A continuation token, if there are more security configurations to return.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

GetResourcePolicies action (Python: get_resource_policies)

Retrieves the resource policies set on individual resources by AWS Resource Access Manager during
cross-account permission grants. Also retrieves the Data Catalog resource policy.

If you enabled metadata encryption in Data Catalog settings, and you do not have permission on
the AWS KMS key, the operation can't return the Data Catalog resource policy.

Request

• NextToken – UTF-8 string.

A continuation token, if this is a continuation request.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum size of a list to return.

Response

• GetResourcePoliciesResponseList – An array of GluePolicy objects.

A list of the individual resource policies and the account-level resource policy.

GetResourcePolicies (get_resource_policies) 1923

AWS Glue User Guide

• NextToken – UTF-8 string.

A continuation token, if the returned list does not contain the last resource policy available.

Errors

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

• GlueEncryptionException

Catalog API

The Catalog API describes the data types and API related to working with catalogs in AWS Glue.

Topics

• Database API

• Table API

• Partition API

• Connection API

• User-defined Function API

• Importing an Athena catalog to AWS Glue

Database API

The Database API describes database data types, and includes the API for creating, deleting,
locating, updating, and listing databases.

Data types

• Database structure

• DatabaseInput structure

• PrincipalPermissions structure

• DataLakePrincipal structure

Catalog 1924

AWS Glue User Guide

• DatabaseIdentifier structure

• FederatedDatabase structure

Database structure

The Database object represents a logical grouping of tables that might reside in a Hive metastore
or an RDBMS.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the database. For Hive compatibility, this is folded to lowercase when it is stored.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the database.

• LocationUri – Uniform resource identifier (uri), not less than 1 or more than 1024 bytes long,
matching the URI address multi-line string pattern.

The location of the database (for example, an HDFS path).

• Parameters – A map array of key-value pairs.

Each key is a Key string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a UTF-8 string, not more than 512000 bytes long.

These key-value pairs define parameters and properties of the database.

• CreateTime – Timestamp.

The time at which the metadata database was created in the catalog.

• CreateTableDefaultPermissions – An array of PrincipalPermissions objects.

Creates a set of default permissions on the table for principals. Used by AWS Lake Formation.
Not used in the normal course of AWS Glue operations.

• TargetDatabase – A DatabaseIdentifier object.

Databases 1925

AWS Glue User Guide

A DatabaseIdentifier structure that describes a target database for resource linking.

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which the database resides.

• FederatedDatabase – A FederatedDatabase object.

A FederatedDatabase structure that references an entity outside the AWS Glue Data Catalog.

DatabaseInput structure

The structure used to create or update a database.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the database. For Hive compatibility, this is folded to lowercase when it is stored.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the database.

• LocationUri – Uniform resource identifier (uri), not less than 1 or more than 1024 bytes long,
matching the URI address multi-line string pattern.

The location of the database (for example, an HDFS path).

• Parameters – A map array of key-value pairs.

Each key is a Key string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a UTF-8 string, not more than 512000 bytes long.

These key-value pairs define parameters and properties of the database.

These key-value pairs define parameters and properties of the database.

• CreateTableDefaultPermissions – An array of PrincipalPermissions objects.

Databases 1926

AWS Glue User Guide

Creates a set of default permissions on the table for principals. Used by AWS Lake Formation.
Not used in the normal course of AWS Glue operations.

• TargetDatabase – A DatabaseIdentifier object.

A DatabaseIdentifier structure that describes a target database for resource linking.

• FederatedDatabase – A FederatedDatabase object.

A FederatedDatabase structure that references an entity outside the AWS Glue Data Catalog.

PrincipalPermissions structure

Permissions granted to a principal.

Fields

• Principal – A DataLakePrincipal object.

The principal who is granted permissions.

• Permissions – An array of UTF-8 strings.

The permissions that are granted to the principal.

DataLakePrincipal structure

The AWS Lake Formation principal.

Fields

• DataLakePrincipalIdentifier – UTF-8 string, not less than 1 or more than 255 bytes long.

An identifier for the AWS Lake Formation principal.

DatabaseIdentifier structure

A structure that describes a target database for resource linking.

Databases 1927

AWS Glue User Guide

Fields

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which the database resides.

• DatabaseName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the catalog database.

• Region – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Region of the target database.

FederatedDatabase structure

A database that points to an entity outside the AWS Glue Data Catalog.

Fields

• Identifier – UTF-8 string, not less than 1 or more than 512 bytes long, matching the Single-
line string pattern.

A unique identifier for the federated database.

• ConnectionName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the connection to the external metastore.

Operations

• CreateDatabase action (Python: create_database)

• UpdateDatabase action (Python: update_database)

• DeleteDatabase action (Python: delete_database)

• GetDatabase action (Python: get_database)

• GetDatabases action (Python: get_databases)

Databases 1928

AWS Glue User Guide

CreateDatabase action (Python: create_database)

Creates a new database in a Data Catalog.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which to create the database. If none is provided, the AWS account
ID is used by default.

• DatabaseInput – Required: A DatabaseInput object.

The metadata for the database.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

The tags you assign to the database.

Response

• No Response parameters.

Errors

• InvalidInputException

• AlreadyExistsException

• ResourceNumberLimitExceededException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

• ConcurrentModificationException

• FederatedResourceAlreadyExistsException

Databases 1929

AWS Glue User Guide

UpdateDatabase action (Python: update_database)

Updates an existing database definition in a Data Catalog.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which the metadata database resides. If none is provided, the AWS
account ID is used by default.

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the database to update in the catalog. For Hive compatibility, this is folded to
lowercase.

• DatabaseInput – Required: A DatabaseInput object.

A DatabaseInput object specifying the new definition of the metadata database in the catalog.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

• ConcurrentModificationException

DeleteDatabase action (Python: delete_database)

Removes a specified database from a Data Catalog.

Databases 1930

AWS Glue User Guide

Note

After completing this operation, you no longer have access to the tables (and all table
versions and partitions that might belong to the tables) and the user-defined functions in
the deleted database. AWS Glue deletes these "orphaned" resources asynchronously in a
timely manner, at the discretion of the service.
To ensure the immediate deletion of all related resources, before calling DeleteDatabase,
use DeleteTableVersion or BatchDeleteTableVersion, DeletePartition or
BatchDeletePartition, DeleteUserDefinedFunction, and DeleteTable or
BatchDeleteTable, to delete any resources that belong to the database.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which the database resides. If none is provided, the AWS account ID
is used by default.

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the database to delete. For Hive compatibility, this must be all lowercase.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• ConcurrentModificationException

Databases 1931

AWS Glue User Guide

GetDatabase action (Python: get_database)

Retrieves the definition of a specified database.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which the database resides. If none is provided, the AWS account ID
is used by default.

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the database to retrieve. For Hive compatibility, this should be all lowercase.

Response

• Database – A Database object.

The definition of the specified database in the Data Catalog.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

• FederationSourceException

GetDatabases action (Python: get_databases)

Retrieves all databases defined in a given Data Catalog.

Databases 1932

AWS Glue User Guide

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog from which to retrieve Databases. If none is provided, the AWS
account ID is used by default.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

• MaxResults – Number (integer), not less than 1 or more than 100.

The maximum number of databases to return in one response.

• ResourceShareType – UTF-8 string (valid values: FOREIGN | ALL | FEDERATED).

Allows you to specify that you want to list the databases shared with your account. The
allowable values are FEDERATED, FOREIGN or ALL.

• If set to FEDERATED, will list the federated databases (referencing an external entity) shared
with your account.

• If set to FOREIGN, will list the databases shared with your account.

• If set to ALL, will list the databases shared with your account, as well as the databases in yor
local account.

Response

• DatabaseList – Required: An array of Database objects.

A list of Database objects from the specified catalog.

• NextToken – UTF-8 string.

A continuation token for paginating the returned list of tokens, returned if the current segment
of the list is not the last.

Errors

• InvalidInputException

• InternalServiceException
Databases 1933

AWS Glue User Guide

• OperationTimeoutException

• GlueEncryptionException

Table API

The Table API describes data types and operations associated with tables.

Data types

• Table structure

• TableInput structure

• FederatedTable structure

• Column structure

• StorageDescriptor structure

• SchemaReference structure

• SerDeInfo structure

• Order structure

• SkewedInfo structure

• TableVersion structure

• TableError structure

• TableVersionError structure

• SortCriterion structure

• TableIdentifier structure

• KeySchemaElement structure

• PartitionIndex structure

• PartitionIndexDescriptor structure

• BackfillError structure

• IcebergInput structure

• OpenTableFormatInput structure

• ViewDefinition structure

• ViewDefinitionInput structure

• ViewRepresentation structure

Tables 1934

AWS Glue User Guide

• ViewRepresentationInput structure

Table structure

Represents a collection of related data organized in columns and rows.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The table name. For Hive compatibility, this must be entirely lowercase.

• DatabaseName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the database where the table metadata resides. For Hive compatibility, this must be
all lowercase.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the table.

• Owner – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The owner of the table.

• CreateTime – Timestamp.

The time when the table definition was created in the Data Catalog.

• UpdateTime – Timestamp.

The last time that the table was updated.

• LastAccessTime – Timestamp.

The last time that the table was accessed. This is usually taken from HDFS, and might not be
reliable.

• LastAnalyzedTime – Timestamp.

The last time that column statistics were computed for this table.

Tables 1935

AWS Glue User Guide

• Retention – Number (integer), not more than None.

The retention time for this table.

• StorageDescriptor – A StorageDescriptor object.

A storage descriptor containing information about the physical storage of this table.

• PartitionKeys – An array of Column objects.

A list of columns by which the table is partitioned. Only primitive types are supported as
partition keys.

When you create a table used by Amazon Athena, and you do not specify any partitionKeys,
you must at least set the value of partitionKeys to an empty list. For example:

"PartitionKeys": []

• ViewOriginalText – UTF-8 string, not more than 409600 bytes long.

Included for Apache Hive compatibility. Not used in the normal course of AWS Glue operations. If
the table is a VIRTUAL_VIEW, certain Athena configuration encoded in base64.

• ViewExpandedText – UTF-8 string, not more than 409600 bytes long.

Included for Apache Hive compatibility. Not used in the normal course of AWS Glue operations.

• TableType – UTF-8 string, not more than 255 bytes long.

The type of this table. AWS Glue will create tables with the EXTERNAL_TABLE type. Other
services, such as Athena, may create tables with additional table types.

AWS Glue related table types:

EXTERNAL_TABLE

Hive compatible attribute - indicates a non-Hive managed table.

GOVERNED

Used by AWS Lake Formation. The AWS Glue Data Catalog understands GOVERNED.

• Parameters – A map array of key-value pairs.

Each key is a Key string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Tables 1936

AWS Glue User Guide

Each value is a UTF-8 string, not more than 512000 bytes long.

These key-value pairs define properties associated with the table.

• CreatedBy – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The person or entity who created the table.

• IsRegisteredWithLakeFormation – Boolean.

Indicates whether the table has been registered with AWS Lake Formation.

• TargetTable – A TableIdentifier object.

A TableIdentifier structure that describes a target table for resource linking.

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which the table resides.

• VersionId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The ID of the table version.

• FederatedTable – A FederatedTable object.

A FederatedTable structure that references an entity outside the AWS Glue Data Catalog.

• ViewDefinition – A ViewDefinition object.

A structure that contains all the information that defines the view, including the dialect or
dialects for the view, and the query.

• IsMultiDialectView – Boolean.

Specifies whether the view supports the SQL dialects of one or more different query engines and
can therefore be read by those engines.

TableInput structure

A structure used to define a table.

Tables 1937

AWS Glue User Guide

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The table name. For Hive compatibility, this is folded to lowercase when it is stored.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the table.

• Owner – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The table owner. Included for Apache Hive compatibility. Not used in the normal course of AWS
Glue operations.

• LastAccessTime – Timestamp.

The last time that the table was accessed.

• LastAnalyzedTime – Timestamp.

The last time that column statistics were computed for this table.

• Retention – Number (integer), not more than None.

The retention time for this table.

• StorageDescriptor – A StorageDescriptor object.

A storage descriptor containing information about the physical storage of this table.

• PartitionKeys – An array of Column objects.

A list of columns by which the table is partitioned. Only primitive types are supported as
partition keys.

When you create a table used by Amazon Athena, and you do not specify any partitionKeys,
you must at least set the value of partitionKeys to an empty list. For example:

"PartitionKeys": []

• ViewOriginalText – UTF-8 string, not more than 409600 bytes long.

Tables 1938

AWS Glue User Guide

Included for Apache Hive compatibility. Not used in the normal course of AWS Glue operations. If
the table is a VIRTUAL_VIEW, certain Athena configuration encoded in base64.

• ViewExpandedText – UTF-8 string, not more than 409600 bytes long.

Included for Apache Hive compatibility. Not used in the normal course of AWS Glue operations.

• TableType – UTF-8 string, not more than 255 bytes long.

The type of this table. AWS Glue will create tables with the EXTERNAL_TABLE type. Other
services, such as Athena, may create tables with additional table types.

AWS Glue related table types:

EXTERNAL_TABLE

Hive compatible attribute - indicates a non-Hive managed table.

GOVERNED

Used by AWS Lake Formation. The AWS Glue Data Catalog understands GOVERNED.

• Parameters – A map array of key-value pairs.

Each key is a Key string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a UTF-8 string, not more than 512000 bytes long.

These key-value pairs define properties associated with the table.

• TargetTable – A TableIdentifier object.

A TableIdentifier structure that describes a target table for resource linking.

• ViewDefinition – A ViewDefinitionInput object.

A structure that contains all the information that defines the view, including the dialect or
dialects for the view, and the query.

FederatedTable structure

A table that points to an entity outside the AWS Glue Data Catalog.

Tables 1939

AWS Glue User Guide

Fields

• Identifier – UTF-8 string, not less than 1 or more than 512 bytes long, matching the Single-
line string pattern.

A unique identifier for the federated table.

• DatabaseIdentifier – UTF-8 string, not less than 1 or more than 512 bytes long, matching
the Single-line string pattern.

A unique identifier for the federated database.

• ConnectionName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the connection to the external metastore.

Column structure

A column in a Table.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the Column.

• Type – UTF-8 string, not more than 131072 bytes long, matching the Single-line string pattern.

The data type of the Column.

• Comment – Comment string, not more than 255 bytes long, matching the Single-line string
pattern.

A free-form text comment.

• Parameters – A map array of key-value pairs.

Each key is a Key string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a UTF-8 string, not more than 512000 bytes long.

Tables 1940

AWS Glue User Guide

These key-value pairs define properties associated with the column.

StorageDescriptor structure

Describes the physical storage of table data.

Fields

• Columns – An array of Column objects.

A list of the Columns in the table.

• Location – Location string, not more than 2056 bytes long, matching the URI address multi-
line string pattern.

The physical location of the table. By default, this takes the form of the warehouse location,
followed by the database location in the warehouse, followed by the table name.

• AdditionalLocations – An array of UTF-8 strings.

A list of locations that point to the path where a Delta table is located.

• InputFormat – Format string, not more than 128 bytes long, matching the Single-line string
pattern.

The input format: SequenceFileInputFormat (binary), or TextInputFormat, or a custom
format.

• OutputFormat – Format string, not more than 128 bytes long, matching the Single-line string
pattern.

The output format: SequenceFileOutputFormat (binary), or
IgnoreKeyTextOutputFormat, or a custom format.

• Compressed – Boolean.

True if the data in the table is compressed, or False if not.

• NumberOfBuckets – Number (integer).

Must be specified if the table contains any dimension columns.

• SerdeInfo – A SerDeInfo object.

The serialization/deserialization (SerDe) information.

Tables 1941

AWS Glue User Guide

• BucketColumns – An array of UTF-8 strings.

A list of reducer grouping columns, clustering columns, and bucketing columns in the table.

• SortColumns – An array of Order objects.

A list specifying the sort order of each bucket in the table.

• Parameters – A map array of key-value pairs.

Each key is a Key string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a UTF-8 string, not more than 512000 bytes long.

The user-supplied properties in key-value form.

• SkewedInfo – A SkewedInfo object.

The information about values that appear frequently in a column (skewed values).

• StoredAsSubDirectories – Boolean.

True if the table data is stored in subdirectories, or False if not.

• SchemaReference – A SchemaReference object.

An object that references a schema stored in the AWS Glue Schema Registry.

When creating a table, you can pass an empty list of columns for the schema, and instead use a
schema reference.

SchemaReference structure

An object that references a schema stored in the AWS Glue Schema Registry.

Fields

• SchemaId – A SchemaId object.

A structure that contains schema identity fields. Either this or the SchemaVersionId has to be
provided.

• SchemaVersionId – UTF-8 string, not less than 36 or more than 36 bytes long, matching the
Custom string pattern #17.

Tables 1942

AWS Glue User Guide

The unique ID assigned to a version of the schema. Either this or the SchemaId has to be
provided.

• SchemaVersionNumber – Number (long), not less than 1 or more than 100000.

The version number of the schema.

SerDeInfo structure

Information about a serialization/deserialization program (SerDe) that serves as an extractor and
loader.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Name of the SerDe.

• SerializationLibrary – UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

Usually the class that implements the SerDe. An example is
org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe.

• Parameters – A map array of key-value pairs.

Each key is a Key string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a UTF-8 string, not more than 512000 bytes long.

These key-value pairs define initialization parameters for the SerDe.

Order structure

Specifies the sort order of a sorted column.

Fields

• Column – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

Tables 1943

AWS Glue User Guide

The name of the column.

• SortOrder – Required: Number (integer), not more than 1.

Indicates that the column is sorted in ascending order (== 1), or in descending order (==0).

SkewedInfo structure

Specifies skewed values in a table. Skewed values are those that occur with very high frequency.

Fields

• SkewedColumnNames – An array of UTF-8 strings.

A list of names of columns that contain skewed values.

• SkewedColumnValues – An array of UTF-8 strings.

A list of values that appear so frequently as to be considered skewed.

• SkewedColumnValueLocationMaps – A map array of key-value pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

A mapping of skewed values to the columns that contain them.

TableVersion structure

Specifies a version of a table.

Fields

• Table – A Table object.

The table in question.

• VersionId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The ID value that identifies this table version. A VersionId is a string representation of an
integer. Each version is incremented by 1.

Tables 1944

AWS Glue User Guide

TableError structure

An error record for table operations.

Fields

• TableName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the table. For Hive compatibility, this must be entirely lowercase.

• ErrorDetail – An ErrorDetail object.

The details about the error.

TableVersionError structure

An error record for table-version operations.

Fields

• TableName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the table in question.

• VersionId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The ID value of the version in question. A VersionID is a string representation of an integer.
Each version is incremented by 1.

• ErrorDetail – An ErrorDetail object.

The details about the error.

SortCriterion structure

Specifies a field to sort by and a sort order.

Fields

• FieldName – Value string, not more than 1024 bytes long.

Tables 1945

AWS Glue User Guide

The name of the field on which to sort.

• Sort – UTF-8 string (valid values: ASC="ASCENDING" | DESC="DESCENDING").

An ascending or descending sort.

TableIdentifier structure

A structure that describes a target table for resource linking.

Fields

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which the table resides.

• DatabaseName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the catalog database that contains the target table.

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the target table.

• Region – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Region of the target table.

KeySchemaElement structure

A partition key pair consisting of a name and a type.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of a partition key.

Tables 1946

AWS Glue User Guide

• Type – Required: UTF-8 string, not more than 131072 bytes long, matching the Single-line string
pattern.

The type of a partition key.

PartitionIndex structure

A structure for a partition index.

Fields

• Keys – Required: An array of UTF-8 strings, at least 1 string.

The keys for the partition index.

• IndexName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the partition index.

PartitionIndexDescriptor structure

A descriptor for a partition index in a table.

Fields

• IndexName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the partition index.

• Keys – Required: An array of KeySchemaElement objects, at least 1 structure.

A list of one or more keys, as KeySchemaElement structures, for the partition index.

• IndexStatus – Required: UTF-8 string (valid values: CREATING | ACTIVE | DELETING | FAILED).

The status of the partition index.

The possible statuses are:

• CREATING: The index is being created. When an index is in a CREATING state, the index or its
table cannot be deleted.

Tables 1947

AWS Glue User Guide

• ACTIVE: The index creation succeeds.

• FAILED: The index creation fails.

• DELETING: The index is deleted from the list of indexes.

• BackfillErrors – An array of BackfillError objects.

A list of errors that can occur when registering partition indexes for an existing table.

BackfillError structure

A list of errors that can occur when registering partition indexes for an existing table.

These errors give the details about why an index registration failed and provide a limited number
of partitions in the response, so that you can fix the partitions at fault and try registering the index
again. The most common set of errors that can occur are categorized as follows:

• EncryptedPartitionError: The partitions are encrypted.

• InvalidPartitionTypeDataError: The partition value doesn't match the data type for that partition
column.

• MissingPartitionValueError: The partitions are encrypted.

• UnsupportedPartitionCharacterError: Characters inside the partition value are not supported. For
example: U+0000 , U+0001, U+0002.

• InternalError: Any error which does not belong to other error codes.

Fields

• Code – UTF-8 string (valid values: ENCRYPTED_PARTITION_ERROR | INTERNAL_ERROR
| INVALID_PARTITION_TYPE_DATA_ERROR | MISSING_PARTITION_VALUE_ERROR |
UNSUPPORTED_PARTITION_CHARACTER_ERROR).

The error code for an error that occurred when registering partition indexes for an existing table.

• Partitions – An array of PartitionValueList objects.

A list of a limited number of partitions in the response.

Tables 1948

AWS Glue User Guide

IcebergInput structure

A structure that defines an Apache Iceberg metadata table to create in the catalog.

Fields

• MetadataOperation – Required: UTF-8 string (valid values: CREATE).

A required metadata operation. Can only be set to CREATE.

• Version – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The table version for the Iceberg table. Defaults to 2.

OpenTableFormatInput structure

A structure representing an open format table.

Fields

• IcebergInput – An IcebergInput object.

Specifies an IcebergInput structure that defines an Apache Iceberg metadata table.

ViewDefinition structure

A structure containing details for representations.

Fields

• IsProtected – Boolean.

You can set this flag as true to instruct the engine not to push user-provided operations into the
logical plan of the view during query planning. However, setting this flag does not guarantee
that the engine will comply. Refer to the engine's documentation to understand the guarantees
provided, if any.

• Definer – UTF-8 string, not less than 1 or more than 512 bytes long, matching the Single-line
string pattern.

The definer of a view in SQL.

Tables 1949

AWS Glue User Guide

• SubObjects – An array of UTF-8 strings, not more than 10 strings.

A list of table Amazon Resource Names (ARNs).

• Representations – An array of ViewRepresentation objects, not less than 1 or more than 1000
structures.

A list of representations.

ViewDefinitionInput structure

A structure containing details for creating or updating an AWS Glue view.

Fields

• IsProtected – Boolean.

You can set this flag as true to instruct the engine not to push user-provided operations into the
logical plan of the view during query planning. However, setting this flag does not guarantee
that the engine will comply. Refer to the engine's documentation to understand the guarantees
provided, if any.

• Definer – UTF-8 string, not less than 1 or more than 512 bytes long, matching the Single-line
string pattern.

The definer of a view in SQL.

• Representations – An array of ViewRepresentationInput objects, not less than 1 or more than
10 structures.

A list of structures that contains the dialect of the view, and the query that defines the view.

• SubObjects – An array of UTF-8 strings, not more than 10 strings.

A list of base table ARNs that make up the view.

ViewRepresentation structure

A structure that contains the dialect of the view, and the query that defines the view.

Fields

• Dialect – UTF-8 string (valid values: REDSHIFT | ATHENA | SPARK).

Tables 1950

AWS Glue User Guide

The dialect of the query engine.

• DialectVersion – UTF-8 string, not less than 1 or more than 255 bytes long.

The version of the dialect of the query engine. For example, 3.0.0.

• ViewOriginalText – UTF-8 string, not more than 409600 bytes long.

The SELECT query provided by the customer during CREATE VIEW DDL. This SQL is not used
during a query on a view (ViewExpandedText is used instead). ViewOriginalText is used for
cases like SHOW CREATE VIEW where users want to see the original DDL command that created
the view.

• ViewExpandedText – UTF-8 string, not more than 409600 bytes long.

The expanded SQL for the view. This SQL is used by engines while processing a query on a view.
Engines may perform operations during view creation to transform ViewOriginalText to
ViewExpandedText. For example:

• Fully qualified identifiers: SELECT * from table1 -> SELECT * from db1.table1

• ValidationConnection – UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the connection to be used to validate the specific representation of the view.

• IsStale – Boolean.

Dialects marked as stale are no longer valid and must be updated before they can be queried in
their respective query engines.

ViewRepresentationInput structure

A structure containing details of a representation to update or create a Lake Formation view.

Fields

• Dialect – UTF-8 string (valid values: REDSHIFT | ATHENA | SPARK).

A parameter that specifies the engine type of a specific representation.

• DialectVersion – UTF-8 string, not less than 1 or more than 255 bytes long.

A parameter that specifies the version of the engine of a specific representation.

Tables 1951

AWS Glue User Guide

• ViewOriginalText – UTF-8 string, not more than 409600 bytes long.

A string that represents the original SQL query that describes the view.

• ValidationConnection – UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the connection to be used to validate the specific representation of the view.

• ViewExpandedText – UTF-8 string, not more than 409600 bytes long.

A string that represents the SQL query that describes the view with expanded resource ARNs

Operations

• CreateTable action (Python: create_table)

• UpdateTable action (Python: update_table)

• DeleteTable action (Python: delete_table)

• BatchDeleteTable action (Python: batch_delete_table)

• GetTable action (Python: get_table)

• GetTables action (Python: get_tables)

• GetTableVersion action (Python: get_table_version)

• GetTableVersions action (Python: get_table_versions)

• DeleteTableVersion action (Python: delete_table_version)

• BatchDeleteTableVersion action (Python: batch_delete_table_version)

• SearchTables action (Python: search_tables)

• GetPartitionIndexes action (Python: get_partition_indexes)

• CreatePartitionIndex action (Python: create_partition_index)

• DeletePartitionIndex action (Python: delete_partition_index)

• GetColumnStatisticsForTable action (Python: get_column_statistics_for_table)

• UpdateColumnStatisticsForTable action (Python: update_column_statistics_for_table)

• DeleteColumnStatisticsForTable action (Python: delete_column_statistics_for_table)

CreateTable action (Python: create_table)

Creates a new table definition in the Data Catalog.

Tables 1952

AWS Glue User Guide

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which to create the Table. If none is supplied, the AWS account ID
is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The catalog database in which to create the new table. For Hive compatibility, this name is
entirely lowercase.

• TableInput – Required: A TableInput object.

The TableInput object that defines the metadata table to create in the catalog.

• PartitionIndexes – An array of PartitionIndex objects, not more than 3 structures.

A list of partition indexes, PartitionIndex structures, to create in the table.

• TransactionId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #16.

The ID of the transaction.

• OpenTableFormatInput – An OpenTableFormatInput object.

Specifies an OpenTableFormatInput structure when creating an open format table.

Response

• No Response parameters.

Errors

• AlreadyExistsException

• InvalidInputException

• EntityNotFoundException

• ResourceNumberLimitExceededException

• InternalServiceException

Tables 1953

AWS Glue User Guide

• OperationTimeoutException

• GlueEncryptionException

• ConcurrentModificationException

• ResourceNotReadyException

UpdateTable action (Python: update_table)

Updates a metadata table in the Data Catalog.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the table resides. If none is provided, the AWS account ID is
used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database in which the table resides. For Hive compatibility, this name is
entirely lowercase.

• TableInput – Required: A TableInput object.

An updated TableInput object to define the metadata table in the catalog.

• SkipArchive – Boolean.

By default, UpdateTable always creates an archived version of the table before updating it.
However, if skipArchive is set to true, UpdateTable does not create the archived version.

• TransactionId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #16.

The transaction ID at which to update the table contents.

• VersionId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The version ID at which to update the table contents.

• ViewUpdateAction – UTF-8 string (valid values: ADD | REPLACE | ADD_OR_REPLACE | DROP).

Tables 1954

AWS Glue User Guide

The operation to be performed when updating the view.

• Force – Boolean.

A flag that can be set to true to ignore matching storage descriptor and subobject matching
requirements.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• ConcurrentModificationException

• ResourceNumberLimitExceededException

• GlueEncryptionException

• ResourceNotReadyException

DeleteTable action (Python: delete_table)

Removes a table definition from the Data Catalog.

Note

After completing this operation, you no longer have access to the table versions and
partitions that belong to the deleted table. AWS Glue deletes these "orphaned" resources
asynchronously in a timely manner, at the discretion of the service.
To ensure the immediate deletion of all related resources, before calling DeleteTable,
use DeleteTableVersion or BatchDeleteTableVersion, and DeletePartition or
BatchDeletePartition, to delete any resources that belong to the table.

Tables 1955

AWS Glue User Guide

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the table resides. If none is provided, the AWS account ID is
used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database in which the table resides. For Hive compatibility, this name is
entirely lowercase.

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the table to be deleted. For Hive compatibility, this name is entirely lowercase.

• TransactionId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #16.

The transaction ID at which to delete the table contents.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• ConcurrentModificationException

• ResourceNotReadyException

Tables 1956

AWS Glue User Guide

BatchDeleteTable action (Python: batch_delete_table)

Deletes multiple tables at once.

Note

After completing this operation, you no longer have access to the table versions and
partitions that belong to the deleted table. AWS Glue deletes these "orphaned" resources
asynchronously in a timely manner, at the discretion of the service.
To ensure the immediate deletion of all related resources, before calling
BatchDeleteTable, use DeleteTableVersion or BatchDeleteTableVersion, and
DeletePartition or BatchDeletePartition, to delete any resources that belong to
the table.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the table resides. If none is provided, the AWS account ID is
used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database in which the tables to delete reside. For Hive compatibility,
this name is entirely lowercase.

• TablesToDelete – Required: An array of UTF-8 strings, not more than 100 strings.

A list of the table to delete.

• TransactionId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #16.

The transaction ID at which to delete the table contents.

Response

• Errors – An array of TableError objects.

Tables 1957

AWS Glue User Guide

A list of errors encountered in attempting to delete the specified tables.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

• ResourceNotReadyException

GetTable action (Python: get_table)

Retrieves the Table definition in a Data Catalog for a specified table.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the table resides. If none is provided, the AWS account ID is
used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the database in the catalog in which the table resides. For Hive compatibility, this
name is entirely lowercase.

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the table for which to retrieve the definition. For Hive compatibility, this name is
entirely lowercase.

• TransactionId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #16.

The transaction ID at which to read the table contents.

Tables 1958

AWS Glue User Guide

• QueryAsOfTime – Timestamp.

The time as of when to read the table contents. If not set, the most recent transaction commit
time will be used. Cannot be specified along with TransactionId.

Response

• Table – A Table object.

The Table object that defines the specified table.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

• ResourceNotReadyException

• FederationSourceException

• FederationSourceRetryableException

GetTables action (Python: get_tables)

Retrieves the definitions of some or all of the tables in a given Database.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the tables reside. If none is provided, the AWS account ID is
used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

Tables 1959

AWS Glue User Guide

The database in the catalog whose tables to list. For Hive compatibility, this name is entirely
lowercase.

• Expression – UTF-8 string, not more than 2048 bytes long, matching the Single-line string
pattern.

A regular expression pattern. If present, only those tables whose names match the pattern are
returned.

• NextToken – UTF-8 string.

A continuation token, included if this is a continuation call.

• MaxResults – Number (integer), not less than 1 or more than 100.

The maximum number of tables to return in a single response.

• TransactionId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #16.

The transaction ID at which to read the table contents.

• QueryAsOfTime – Timestamp.

The time as of when to read the table contents. If not set, the most recent transaction commit
time will be used. Cannot be specified along with TransactionId.

Response

• TableList – An array of Table objects.

A list of the requested Table objects.

• NextToken – UTF-8 string.

A continuation token, present if the current list segment is not the last.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

Tables 1960

AWS Glue User Guide

• InternalServiceException

• GlueEncryptionException

• FederationSourceException

• FederationSourceRetryableException

GetTableVersion action (Python: get_table_version)

Retrieves a specified version of a table.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the tables reside. If none is provided, the AWS account ID is
used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The database in the catalog in which the table resides. For Hive compatibility, this name is
entirely lowercase.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table. For Hive compatibility, this name is entirely lowercase.

• VersionId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The ID value of the table version to be retrieved. A VersionID is a string representation of an
integer. Each version is incremented by 1.

Response

• TableVersion – A TableVersion object.

The requested table version.

Tables 1961

AWS Glue User Guide

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

GetTableVersions action (Python: get_table_versions)

Retrieves a list of strings that identify available versions of a specified table.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the tables reside. If none is provided, the AWS account ID is
used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The database in the catalog in which the table resides. For Hive compatibility, this name is
entirely lowercase.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table. For Hive compatibility, this name is entirely lowercase.

• NextToken – UTF-8 string.

A continuation token, if this is not the first call.

• MaxResults – Number (integer), not less than 1 or more than 100.

The maximum number of table versions to return in one response.

Response

• TableVersions – An array of TableVersion objects.

Tables 1962

AWS Glue User Guide

A list of strings identifying available versions of the specified table.

• NextToken – UTF-8 string.

A continuation token, if the list of available versions does not include the last one.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

DeleteTableVersion action (Python: delete_table_version)

Deletes a specified version of a table.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the tables reside. If none is provided, the AWS account ID is
used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The database in the catalog in which the table resides. For Hive compatibility, this name is
entirely lowercase.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table. For Hive compatibility, this name is entirely lowercase.

• VersionId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

Tables 1963

AWS Glue User Guide

The ID of the table version to be deleted. A VersionID is a string representation of an integer.
Each version is incremented by 1.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

BatchDeleteTableVersion action (Python: batch_delete_table_version)

Deletes a specified batch of versions of a table.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the tables reside. If none is provided, the AWS account ID is
used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The database in the catalog in which the table resides. For Hive compatibility, this name is
entirely lowercase.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table. For Hive compatibility, this name is entirely lowercase.

• VersionIds – Required: An array of UTF-8 strings, not more than 100 strings.

Tables 1964

AWS Glue User Guide

A list of the IDs of versions to be deleted. A VersionId is a string representation of an integer.
Each version is incremented by 1.

Response

• Errors – An array of TableVersionError objects.

A list of errors encountered while trying to delete the specified table versions.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

SearchTables action (Python: search_tables)

Searches a set of tables based on properties in the table metadata as well as on the parent
database. You can search against text or filter conditions.

You can only get tables that you have access to based on the security policies defined in Lake
Formation. You need at least a read-only access to the table for it to be returned. If you do not
have access to all the columns in the table, these columns will not be searched against when
returning the list of tables back to you. If you have access to the columns but not the data in the
columns, those columns and the associated metadata for those columns will be included in the
search.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

A unique identifier, consisting of account_id.

• NextToken – UTF-8 string.

A continuation token, included if this is a continuation call.

Tables 1965

AWS Glue User Guide

• Filters – An array of PropertyPredicate objects.

A list of key-value pairs, and a comparator used to filter the search results. Returns all entities
matching the predicate.

The Comparator member of the PropertyPredicate struct is used only for time fields,
and can be omitted for other field types. Also, when comparing string values, such as when
Key=Name, a fuzzy match algorithm is used. The Key field (for example, the value of the Name
field) is split on certain punctuation characters, for example, -, :, #, etc. into tokens. Then each
token is exact-match compared with the Value member of PropertyPredicate. For example,
if Key=Name and Value=link, tables named customer-link and xx-link-yy are returned,
but xxlinkyy is not returned.

• SearchText – Value string, not more than 1024 bytes long.

A string used for a text search.

Specifying a value in quotes filters based on an exact match to the value.

• SortCriteria – An array of SortCriterion objects, not more than 1 structures.

A list of criteria for sorting the results by a field name, in an ascending or descending order.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum number of tables to return in a single response.

• ResourceShareType – UTF-8 string (valid values: FOREIGN | ALL | FEDERATED).

Allows you to specify that you want to search the tables shared with your account. The allowable
values are FOREIGN or ALL.

• If set to FOREIGN, will search the tables shared with your account.

• If set to ALL, will search the tables shared with your account, as well as the tables in yor local
account.

Response

• NextToken – UTF-8 string.

A continuation token, present if the current list segment is not the last.

• TableList – An array of Table objects.
Tables 1966

AWS Glue User Guide

A list of the requested Table objects. The SearchTables response returns only the tables that
you have access to.

Errors

• InternalServiceException

• InvalidInputException

• OperationTimeoutException

GetPartitionIndexes action (Python: get_partition_indexes)

Retrieves the partition indexes associated with a table.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The catalog ID where the table resides.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

Specifies the name of a database from which you want to retrieve partition indexes.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

Specifies the name of a table for which you want to retrieve the partition indexes.

• NextToken – UTF-8 string.

A continuation token, included if this is a continuation call.

Response

• PartitionIndexDescriptorList – An array of PartitionIndexDescriptor objects.

A list of index descriptors.

• NextToken – UTF-8 string.

Tables 1967

AWS Glue User Guide

A continuation token, present if the current list segment is not the last.

Errors

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

• EntityNotFoundException

• ConflictException

CreatePartitionIndex action (Python: create_partition_index)

Creates a specified partition index in an existing table.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The catalog ID where the table resides.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

Specifies the name of a database in which you want to create a partition index.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

Specifies the name of a table in which you want to create a partition index.

• PartitionIndex – Required: A PartitionIndex object.

Specifies a PartitionIndex structure to create a partition index in an existing table.

Response

• No Response parameters.

Tables 1968

AWS Glue User Guide

Errors

• AlreadyExistsException

• InvalidInputException

• EntityNotFoundException

• ResourceNumberLimitExceededException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

DeletePartitionIndex action (Python: delete_partition_index)

Deletes a specified partition index from an existing table.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The catalog ID where the table resides.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

Specifies the name of a database from which you want to delete a partition index.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

Specifies the name of a table from which you want to delete a partition index.

• IndexName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the partition index to be deleted.

Response

• No Response parameters.

Tables 1969

AWS Glue User Guide

Errors

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

• EntityNotFoundException

• ConflictException

• GlueEncryptionException

GetColumnStatisticsForTable action (Python: get_column_statistics_for_table)

Retrieves table statistics of columns.

The Identity and Access Management (IAM) permission required for this operation is GetTable.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the partitions in question reside. If none is supplied, the AWS
account ID is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database where the partitions reside.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the partitions' table.

• ColumnNames – Required: An array of UTF-8 strings, not more than 100 strings.

A list of the column names.

Response

• ColumnStatisticsList – An array of ColumnStatistics objects.

Tables 1970

AWS Glue User Guide

List of ColumnStatistics.

• Errors – An array of ColumnError objects.

List of ColumnStatistics that failed to be retrieved.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

UpdateColumnStatisticsForTable action (Python:
update_column_statistics_for_table)

Creates or updates table statistics of columns.

The Identity and Access Management (IAM) permission required for this operation is
UpdateTable.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the partitions in question reside. If none is supplied, the AWS
account ID is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database where the partitions reside.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the partitions' table.

Tables 1971

AWS Glue User Guide

• ColumnStatisticsList – Required: An array of ColumnStatistics objects, not more than 25
structures.

A list of the column statistics.

Response

• Errors – An array of ColumnStatisticsError objects.

List of ColumnStatisticsErrors.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

DeleteColumnStatisticsForTable action (Python:
delete_column_statistics_for_table)

Retrieves table statistics of columns.

The Identity and Access Management (IAM) permission required for this operation is
DeleteTable.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the partitions in question reside. If none is supplied, the AWS
account ID is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database where the partitions reside.

Tables 1972

AWS Glue User Guide

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the partitions' table.

• ColumnName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the column.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

Partition API

The Partition API describes data types and operations used to work with partitions.

Data types

• Partition structure

• PartitionInput structure

• PartitionSpecWithSharedStorageDescriptor structure

• PartitionListComposingSpec structure

• PartitionSpecProxy structure

• PartitionValueList structure

• Segment structure

• PartitionError structure

Partitions 1973

AWS Glue User Guide

• BatchUpdatePartitionFailureEntry structure

• BatchUpdatePartitionRequestEntry structure

• StorageDescriptor structure

• SchemaReference structure

• SerDeInfo structure

• SkewedInfo structure

Partition structure

Represents a slice of table data.

Fields

• Values – An array of UTF-8 strings.

The values of the partition.

• DatabaseName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the catalog database in which to create the partition.

• TableName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the database table in which to create the partition.

• CreationTime – Timestamp.

The time at which the partition was created.

• LastAccessTime – Timestamp.

The last time at which the partition was accessed.

• StorageDescriptor – A StorageDescriptor object.

Provides information about the physical location where the partition is stored.

• Parameters – A map array of key-value pairs.

Each key is a Key string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Partitions 1974

AWS Glue User Guide

Each value is a UTF-8 string, not more than 512000 bytes long.

These key-value pairs define partition parameters.

• LastAnalyzedTime – Timestamp.

The last time at which column statistics were computed for this partition.

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which the partition resides.

PartitionInput structure

The structure used to create and update a partition.

Fields

• Values – An array of UTF-8 strings.

The values of the partition. Although this parameter is not required by the SDK, you must specify
this parameter for a valid input.

The values for the keys for the new partition must be passed as an array of String objects that
must be ordered in the same order as the partition keys appearing in the Amazon S3 prefix.
Otherwise AWS Glue will add the values to the wrong keys.

• LastAccessTime – Timestamp.

The last time at which the partition was accessed.

• StorageDescriptor – A StorageDescriptor object.

Provides information about the physical location where the partition is stored.

• Parameters – A map array of key-value pairs.

Each key is a Key string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a UTF-8 string, not more than 512000 bytes long.

These key-value pairs define partition parameters.

Partitions 1975

AWS Glue User Guide

• LastAnalyzedTime – Timestamp.

The last time at which column statistics were computed for this partition.

PartitionSpecWithSharedStorageDescriptor structure

A partition specification for partitions that share a physical location.

Fields

• StorageDescriptor – A StorageDescriptor object.

The shared physical storage information.

• Partitions – An array of Partition objects.

A list of the partitions that share this physical location.

PartitionListComposingSpec structure

Lists the related partitions.

Fields

• Partitions – An array of Partition objects.

A list of the partitions in the composing specification.

PartitionSpecProxy structure

Provides a root path to specified partitions.

Fields

• DatabaseName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The catalog database in which the partitions reside.

• TableName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Partitions 1976

AWS Glue User Guide

The name of the table that contains the partitions.

• RootPath – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The root path of the proxy for addressing the partitions.

• PartitionSpecWithSharedSD – A PartitionSpecWithSharedStorageDescriptor object.

A specification of partitions that share the same physical storage location.

• PartitionListComposingSpec – A PartitionListComposingSpec object.

Specifies a list of partitions.

PartitionValueList structure

Contains a list of values defining partitions.

Fields

• Values – Required: An array of UTF-8 strings.

The list of values.

Segment structure

Defines a non-overlapping region of a table's partitions, allowing multiple requests to be run in
parallel.

Fields

• SegmentNumber – Required: Number (integer), not more than None.

The zero-based index number of the segment. For example, if the total number of segments is 4,
SegmentNumber values range from 0 through 3.

• TotalSegments – Required: Number (integer), not less than 1 or more than 10.

The total number of segments.

Partitions 1977

AWS Glue User Guide

PartitionError structure

Contains information about a partition error.

Fields

• PartitionValues – An array of UTF-8 strings.

The values that define the partition.

• ErrorDetail – An ErrorDetail object.

The details about the partition error.

BatchUpdatePartitionFailureEntry structure

Contains information about a batch update partition error.

Fields

• PartitionValueList – An array of UTF-8 strings, not more than 100 strings.

A list of values defining the partitions.

• ErrorDetail – An ErrorDetail object.

The details about the batch update partition error.

BatchUpdatePartitionRequestEntry structure

A structure that contains the values and structure used to update a partition.

Fields

• PartitionValueList – Required: An array of UTF-8 strings, not more than 100 strings.

A list of values defining the partitions.

• PartitionInput – Required: A PartitionInput object.

The structure used to update a partition.

Partitions 1978

AWS Glue User Guide

StorageDescriptor structure

Describes the physical storage of table data.

Fields

• Columns – An array of Column objects.

A list of the Columns in the table.

• Location – Location string, not more than 2056 bytes long, matching the URI address multi-
line string pattern.

The physical location of the table. By default, this takes the form of the warehouse location,
followed by the database location in the warehouse, followed by the table name.

• AdditionalLocations – An array of UTF-8 strings.

A list of locations that point to the path where a Delta table is located.

• InputFormat – Format string, not more than 128 bytes long, matching the Single-line string
pattern.

The input format: SequenceFileInputFormat (binary), or TextInputFormat, or a custom
format.

• OutputFormat – Format string, not more than 128 bytes long, matching the Single-line string
pattern.

The output format: SequenceFileOutputFormat (binary), or
IgnoreKeyTextOutputFormat, or a custom format.

• Compressed – Boolean.

True if the data in the table is compressed, or False if not.

• NumberOfBuckets – Number (integer).

Must be specified if the table contains any dimension columns.

• SerdeInfo – A SerDeInfo object.

The serialization/deserialization (SerDe) information.

• BucketColumns – An array of UTF-8 strings.

A list of reducer grouping columns, clustering columns, and bucketing columns in the table.

Partitions 1979

AWS Glue User Guide

• SortColumns – An array of Order objects.

A list specifying the sort order of each bucket in the table.

• Parameters – A map array of key-value pairs.

Each key is a Key string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a UTF-8 string, not more than 512000 bytes long.

The user-supplied properties in key-value form.

• SkewedInfo – A SkewedInfo object.

The information about values that appear frequently in a column (skewed values).

• StoredAsSubDirectories – Boolean.

True if the table data is stored in subdirectories, or False if not.

• SchemaReference – A SchemaReference object.

An object that references a schema stored in the AWS Glue Schema Registry.

When creating a table, you can pass an empty list of columns for the schema, and instead use a
schema reference.

SchemaReference structure

An object that references a schema stored in the AWS Glue Schema Registry.

Fields

• SchemaId – A SchemaId object.

A structure that contains schema identity fields. Either this or the SchemaVersionId has to be
provided.

• SchemaVersionId – UTF-8 string, not less than 36 or more than 36 bytes long, matching the
Custom string pattern #17.

The unique ID assigned to a version of the schema. Either this or the SchemaId has to be
provided.

Partitions 1980

AWS Glue User Guide

• SchemaVersionNumber – Number (long), not less than 1 or more than 100000.

The version number of the schema.

SerDeInfo structure

Information about a serialization/deserialization program (SerDe) that serves as an extractor and
loader.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Name of the SerDe.

• SerializationLibrary – UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

Usually the class that implements the SerDe. An example is
org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe.

• Parameters – A map array of key-value pairs.

Each key is a Key string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a UTF-8 string, not more than 512000 bytes long.

These key-value pairs define initialization parameters for the SerDe.

SkewedInfo structure

Specifies skewed values in a table. Skewed values are those that occur with very high frequency.

Fields

• SkewedColumnNames – An array of UTF-8 strings.

A list of names of columns that contain skewed values.

• SkewedColumnValues – An array of UTF-8 strings.

Partitions 1981

AWS Glue User Guide

A list of values that appear so frequently as to be considered skewed.

• SkewedColumnValueLocationMaps – A map array of key-value pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

A mapping of skewed values to the columns that contain them.

Operations

• CreatePartition action (Python: create_partition)

• BatchCreatePartition action (Python: batch_create_partition)

• UpdatePartition action (Python: update_partition)

• DeletePartition action (Python: delete_partition)

• BatchDeletePartition action (Python: batch_delete_partition)

• GetPartition action (Python: get_partition)

• GetPartitions action (Python: get_partitions)

• BatchGetPartition action (Python: batch_get_partition)

• BatchUpdatePartition action (Python: batch_update_partition)

• GetColumnStatisticsForPartition action (Python: get_column_statistics_for_partition)

• UpdateColumnStatisticsForPartition action (Python: update_column_statistics_for_partition)

• DeleteColumnStatisticsForPartition action (Python: delete_column_statistics_for_partition)

CreatePartition action (Python: create_partition)

Creates a new partition.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The AWS account ID of the catalog in which the partition is to be created.

Partitions 1982

AWS Glue User Guide

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the metadata database in which the partition is to be created.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the metadata table in which the partition is to be created.

• PartitionInput – Required: A PartitionInput object.

A PartitionInput structure defining the partition to be created.

Response

• No Response parameters.

Errors

• InvalidInputException

• AlreadyExistsException

• ResourceNumberLimitExceededException

• InternalServiceException

• EntityNotFoundException

• OperationTimeoutException

• GlueEncryptionException

BatchCreatePartition action (Python: batch_create_partition)

Creates one or more partitions in a batch operation.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the catalog in which the partition is to be created. Currently, this should be the AWS
account ID.

Partitions 1983

AWS Glue User Guide

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the metadata database in which the partition is to be created.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the metadata table in which the partition is to be created.

• PartitionInputList – Required: An array of PartitionInput objects, not more than 100
structures.

A list of PartitionInput structures that define the partitions to be created.

Response

• Errors – An array of PartitionError objects.

The errors encountered when trying to create the requested partitions.

Errors

• InvalidInputException

• AlreadyExistsException

• ResourceNumberLimitExceededException

• InternalServiceException

• EntityNotFoundException

• OperationTimeoutException

• GlueEncryptionException

UpdatePartition action (Python: update_partition)

Updates a partition.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

Partitions 1984

AWS Glue User Guide

The ID of the Data Catalog where the partition to be updated resides. If none is provided, the
AWS account ID is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database in which the table in question resides.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table in which the partition to be updated is located.

• PartitionValueList – Required: An array of UTF-8 strings, not more than 100 strings.

List of partition key values that define the partition to update.

• PartitionInput – Required: A PartitionInput object.

The new partition object to update the partition to.

The Values property can't be changed. If you want to change the partition key values for a
partition, delete and recreate the partition.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

DeletePartition action (Python: delete_partition)

Deletes a specified partition.

Partitions 1985

AWS Glue User Guide

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the partition to be deleted resides. If none is provided, the
AWS account ID is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database in which the table in question resides.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table that contains the partition to be deleted.

• PartitionValues – Required: An array of UTF-8 strings.

The values that define the partition.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

BatchDeletePartition action (Python: batch_delete_partition)

Deletes one or more partitions in a batch operation.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

Partitions 1986

AWS Glue User Guide

The ID of the Data Catalog where the partition to be deleted resides. If none is provided, the
AWS account ID is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database in which the table in question resides.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table that contains the partitions to be deleted.

• PartitionsToDelete – Required: An array of PartitionValueList objects, not more than 25
structures.

A list of PartitionInput structures that define the partitions to be deleted.

Response

• Errors – An array of PartitionError objects.

The errors encountered when trying to delete the requested partitions.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

GetPartition action (Python: get_partition)

Retrieves information about a specified partition.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

Partitions 1987

AWS Glue User Guide

The ID of the Data Catalog where the partition in question resides. If none is provided, the AWS
account ID is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database where the partition resides.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the partition's table.

• PartitionValues – Required: An array of UTF-8 strings.

The values that define the partition.

Response

• Partition – A Partition object.

The requested information, in the form of a Partition object.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

• FederationSourceException

• FederationSourceRetryableException

GetPartitions action (Python: get_partitions)

Retrieves information about the partitions in a table.

Partitions 1988

AWS Glue User Guide

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the partitions in question reside. If none is provided, the AWS
account ID is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database where the partitions reside.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the partitions' table.

• Expression – Predicate string, not more than 2048 bytes long, matching the URI address multi-
line string pattern.

An expression that filters the partitions to be returned.

The expression uses SQL syntax similar to the SQL WHERE filter clause. The SQL statement parser
JSQLParser parses the expression.

Operators: The following are the operators that you can use in the Expression API call:

=

Checks whether the values of the two operands are equal; if yes, then the condition becomes
true.

Example: Assume 'variable a' holds 10 and 'variable b' holds 20.

(a = b) is not true.

< >

Checks whether the values of two operands are equal; if the values are not equal, then the
condition becomes true.

Example: (a < > b) is true.

Partitions 1989

http://jsqlparser.sourceforge.net/home.php

AWS Glue User Guide

>

Checks whether the value of the left operand is greater than the value of the right operand; if
yes, then the condition becomes true.

Example: (a > b) is not true.

<

Checks whether the value of the left operand is less than the value of the right operand; if
yes, then the condition becomes true.

Example: (a < b) is true.

>=

Checks whether the value of the left operand is greater than or equal to the value of the right
operand; if yes, then the condition becomes true.

Example: (a >= b) is not true.

<=

Checks whether the value of the left operand is less than or equal to the value of the right
operand; if yes, then the condition becomes true.

Example: (a <= b) is true.

AND, OR, IN, BETWEEN, LIKE, NOT, IS NULL

Logical operators.

Supported Partition Key Types: The following are the supported partition keys.

• string

• date

• timestamp

• int

• bigint

• long

• tinyint

• smallintPartitions 1990

AWS Glue User Guide

• decimal

If an type is encountered that is not valid, an exception is thrown.

The following list shows the valid operators on each type. When you define a crawler, the
partitionKey type is created as a STRING, to be compatible with the catalog partitions.

Sample API Call:

Example

The table twitter_partition has three partitions:

year = 2015
 year = 2016
 year = 2017

Example

Get partition year equal to 2015

aws glue get-partitions --database-name dbname --table-name twitter_partition
 --expression "year*=*'2015'"

Example

Get partition year between 2016 and 2018 (exclusive)

aws glue get-partitions --database-name dbname --table-name twitter_partition
 --expression "year>'2016' AND year<'2018'"

Example

Get partition year between 2015 and 2018 (inclusive). The following API calls are equivalent to
each other:

aws glue get-partitions --database-name dbname --table-name twitter_partition
 --expression "year>='2015' AND year<='2018'"

Partitions 1991

AWS Glue User Guide

 aws glue get-partitions --database-name dbname --table-name
 twitter_partition
 --expression "year BETWEEN 2015 AND 2018"

 aws glue get-partitions --database-name dbname --table-name
 twitter_partition
 --expression "year IN (2015,2016,2017,2018)"

Example

A wildcard partition filter, where the following call output is partition year=2017. A regular
expression is not supported in LIKE.

aws glue get-partitions --database-name dbname --table-name twitter_partition
 --expression "year LIKE '%7'"

• NextToken – UTF-8 string.

A continuation token, if this is not the first call to retrieve these partitions.

• Segment – A Segment object.

The segment of the table's partitions to scan in this request.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum number of partitions to return in a single response.

• ExcludeColumnSchema – Boolean.

When true, specifies not returning the partition column schema. Useful when you are interested
only in other partition attributes such as partition values or location. This approach avoids the
problem of a large response by not returning duplicate data.

• TransactionId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #16.

The transaction ID at which to read the partition contents.

• QueryAsOfTime – Timestamp.

The time as of when to read the partition contents. If not set, the most recent transaction
commit time will be used. Cannot be specified along with TransactionId.

Partitions 1992

AWS Glue User Guide

Response

• Partitions – An array of Partition objects.

A list of requested partitions.

• NextToken – UTF-8 string.

A continuation token, if the returned list of partitions does not include the last one.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

• GlueEncryptionException

• InvalidStateException

• ResourceNotReadyException

• FederationSourceException

• FederationSourceRetryableException

BatchGetPartition action (Python: batch_get_partition)

Retrieves partitions in a batch request.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the partitions in question reside. If none is supplied, the AWS
account ID is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database where the partitions reside.

Partitions 1993

AWS Glue User Guide

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the partitions' table.

• PartitionsToGet – Required: An array of PartitionValueList objects, not more than 1000
structures.

A list of partition values identifying the partitions to retrieve.

Response

• Partitions – An array of Partition objects.

A list of the requested partitions.

• UnprocessedKeys – An array of PartitionValueList objects, not more than 1000 structures.

A list of the partition values in the request for which partitions were not returned.

Errors

• InvalidInputException

• EntityNotFoundException

• OperationTimeoutException

• InternalServiceException

• GlueEncryptionException

• InvalidStateException

• FederationSourceException

• FederationSourceRetryableException

BatchUpdatePartition action (Python: batch_update_partition)

Updates one or more partitions in a batch operation.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

Partitions 1994

AWS Glue User Guide

The ID of the catalog in which the partition is to be updated. Currently, this should be the AWS
account ID.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the metadata database in which the partition is to be updated.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the metadata table in which the partition is to be updated.

• Entries – Required: An array of BatchUpdatePartitionRequestEntry objects, not less than 1 or
more than 100 structures.

A list of up to 100 BatchUpdatePartitionRequestEntry objects to update.

Response

• Errors – An array of BatchUpdatePartitionFailureEntry objects.

The errors encountered when trying to update the requested partitions. A list of
BatchUpdatePartitionFailureEntry objects.

Errors

• InvalidInputException

• EntityNotFoundException

• OperationTimeoutException

• InternalServiceException

• GlueEncryptionException

GetColumnStatisticsForPartition action (Python:
get_column_statistics_for_partition)

Retrieves partition statistics of columns.

Partitions 1995

AWS Glue User Guide

The Identity and Access Management (IAM) permission required for this operation is
GetPartition.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the partitions in question reside. If none is supplied, the AWS
account ID is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database where the partitions reside.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the partitions' table.

• PartitionValues – Required: An array of UTF-8 strings.

A list of partition values identifying the partition.

• ColumnNames – Required: An array of UTF-8 strings, not more than 100 strings.

A list of the column names.

Response

• ColumnStatisticsList – An array of ColumnStatistics objects.

List of ColumnStatistics that failed to be retrieved.

• Errors – An array of ColumnError objects.

Error occurred during retrieving column statistics data.

Errors

• EntityNotFoundException

• InvalidInputException

Partitions 1996

AWS Glue User Guide

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

UpdateColumnStatisticsForPartition action (Python:
update_column_statistics_for_partition)

Creates or updates partition statistics of columns.

The Identity and Access Management (IAM) permission required for this operation is
UpdatePartition.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the partitions in question reside. If none is supplied, the AWS
account ID is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database where the partitions reside.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the partitions' table.

• PartitionValues – Required: An array of UTF-8 strings.

A list of partition values identifying the partition.

• ColumnStatisticsList – Required: An array of ColumnStatistics objects, not more than 25
structures.

A list of the column statistics.

Response

• Errors – An array of ColumnStatisticsError objects.

Partitions 1997

AWS Glue User Guide

Error occurred during updating column statistics data.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

DeleteColumnStatisticsForPartition action (Python:
delete_column_statistics_for_partition)

Delete the partition column statistics of a column.

The Identity and Access Management (IAM) permission required for this operation is
DeletePartition.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the partitions in question reside. If none is supplied, the AWS
account ID is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database where the partitions reside.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the partitions' table.

• PartitionValues – Required: An array of UTF-8 strings.

A list of partition values identifying the partition.

Partitions 1998

AWS Glue User Guide

• ColumnName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

Name of the column.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

Connection API

The Connection API describes AWS Glue connection data types, and the API for creating, deleting,
updating, and listing connections.

Data types

• Connection structure

• ConnectionInput structure

• PhysicalConnectionRequirements structure

• GetConnectionsFilter structure

Connection structure

Defines a connection to a data source.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Connections 1999

AWS Glue User Guide

The name of the connection definition.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

The description of the connection.

• ConnectionType – UTF-8 string (valid values: JDBC | SFTP | MONGODB | KAFKA | NETWORK |
MARKETPLACE | CUSTOM | SALESFORCE).

The type of the connection. Currently, SFTP is not supported.

• MatchCriteria – An array of UTF-8 strings, not more than 10 strings.

A list of criteria that can be used in selecting this connection.

• ConnectionProperties – A map array of key-value pairs, not more than 100 pairs.

Each key is a UTF-8 string (valid values: HOST | PORT | USERNAME="USER_NAME" | PASSWORD
| ENCRYPTED_PASSWORD | JDBC_DRIVER_JAR_URI | JDBC_DRIVER_CLASS_NAME
| JDBC_ENGINE | JDBC_ENGINE_VERSION | CONFIG_FILES | INSTANCE_ID
| JDBC_CONNECTION_URL | JDBC_ENFORCE_SSL | CUSTOM_JDBC_CERT |
SKIP_CUSTOM_JDBC_CERT_VALIDATION | CUSTOM_JDBC_CERT_STRING |
CONNECTION_URL | KAFKA_BOOTSTRAP_SERVERS | KAFKA_SSL_ENABLED
| KAFKA_CUSTOM_CERT | KAFKA_SKIP_CUSTOM_CERT_VALIDATION |
KAFKA_CLIENT_KEYSTORE | KAFKA_CLIENT_KEYSTORE_PASSWORD |
KAFKA_CLIENT_KEY_PASSWORD | ENCRYPTED_KAFKA_CLIENT_KEYSTORE_PASSWORD
| ENCRYPTED_KAFKA_CLIENT_KEY_PASSWORD | SECRET_ID | CONNECTOR_URL
| CONNECTOR_TYPE | CONNECTOR_CLASS_NAME | KAFKA_SASL_MECHANISM
| KAFKA_SASL_PLAIN_USERNAME | KAFKA_SASL_PLAIN_PASSWORD |
ENCRYPTED_KAFKA_SASL_PLAIN_PASSWORD | KAFKA_SASL_SCRAM_USERNAME
| KAFKA_SASL_SCRAM_PASSWORD | KAFKA_SASL_SCRAM_SECRETS_ARN |
ENCRYPTED_KAFKA_SASL_SCRAM_PASSWORD | KAFKA_SASL_GSSAPI_KEYTAB
| KAFKA_SASL_GSSAPI_KRB5_CONF | KAFKA_SASL_GSSAPI_SERVICE |
KAFKA_SASL_GSSAPI_PRINCIPAL | ROLE_ARN).

Each value is a Value string, not more than 1024 bytes long.

These key-value pairs define parameters for the connection:

• HOST - The host URI: either the fully qualified domain name (FQDN) or the IPv4 address of the
database host.

Connections 2000

AWS Glue User Guide

• PORT - The port number, between 1024 and 65535, of the port on which the database host is
listening for database connections.

• USER_NAME - The name under which to log in to the database. The value string for
USER_NAME is "USERNAME".

• PASSWORD - A password, if one is used, for the user name.

• ENCRYPTED_PASSWORD - When you enable connection password protection by setting
ConnectionPasswordEncryption in the Data Catalog encryption settings, this field stores
the encrypted password.

• JDBC_DRIVER_JAR_URI - The Amazon Simple Storage Service (Amazon S3) path of the JAR
file that contains the JDBC driver to use.

• JDBC_DRIVER_CLASS_NAME - The class name of the JDBC driver to use.

• JDBC_ENGINE - The name of the JDBC engine to use.

• JDBC_ENGINE_VERSION - The version of the JDBC engine to use.

• CONFIG_FILES - (Reserved for future use.)

• INSTANCE_ID - The instance ID to use.

• JDBC_CONNECTION_URL - The URL for connecting to a JDBC data source.

• JDBC_ENFORCE_SSL - A Boolean string (true, false) specifying whether Secure Sockets Layer
(SSL) with hostname matching is enforced for the JDBC connection on the client. The default is
false.

• CUSTOM_JDBC_CERT - An Amazon S3 location specifying the customer's root certificate. AWS
Glue uses this root certificate to validate the customer's certificate when connecting to the
customer database. AWS Glue only handles X.509 certificates. The certificate provided must be
DER-encoded and supplied in Base64 encoding PEM format.

• SKIP_CUSTOM_JDBC_CERT_VALIDATION - By default, this is false. AWS Glue validates the
Signature algorithm and Subject Public Key Algorithm for the customer certificate. The only
permitted algorithms for the Signature algorithm are SHA256withRSA, SHA384withRSA or
SHA512withRSA. For the Subject Public Key Algorithm, the key length must be at least 2048.
You can set the value of this property to true to skip AWS Glue's validation of the customer
certificate.

• CUSTOM_JDBC_CERT_STRING - A custom JDBC certificate string which is used for domain
match or distinguished name match to prevent a man-in-the-middle attack. In Oracle
database, this is used as the SSL_SERVER_CERT_DN; in Microsoft SQL Server, this is used as
the hostNameInCertificate.

Connections 2001

AWS Glue User Guide

• CONNECTION_URL - The URL for connecting to a general (non-JDBC) data source.

• SECRET_ID - The secret ID used for the secret manager of credentials.

• CONNECTOR_URL - The connector URL for a MARKETPLACE or CUSTOM connection.

• CONNECTOR_TYPE - The connector type for a MARKETPLACE or CUSTOM connection.

• CONNECTOR_CLASS_NAME - The connector class name for a MARKETPLACE or CUSTOM
connection.

• KAFKA_BOOTSTRAP_SERVERS - A comma-separated list of host and port pairs that are the
addresses of the Apache Kafka brokers in a Kafka cluster to which a Kafka client will connect to
and bootstrap itself.

• KAFKA_SSL_ENABLED - Whether to enable or disable SSL on an Apache Kafka connection.
Default value is "true".

• KAFKA_CUSTOM_CERT - The Amazon S3 URL for the private CA cert file (.pem format). The
default is an empty string.

• KAFKA_SKIP_CUSTOM_CERT_VALIDATION - Whether to skip the validation of the CA cert
file or not. AWS Glue validates for three algorithms: SHA256withRSA, SHA384withRSA and
SHA512withRSA. Default value is "false".

• KAFKA_CLIENT_KEYSTORE - The Amazon S3 location of the client keystore file for Kafka
client side authentication (Optional).

• KAFKA_CLIENT_KEYSTORE_PASSWORD - The password to access the provided keystore
(Optional).

• KAFKA_CLIENT_KEY_PASSWORD - A keystore can consist of multiple keys, so this is the
password to access the client key to be used with the Kafka server side key (Optional).

• ENCRYPTED_KAFKA_CLIENT_KEYSTORE_PASSWORD - The encrypted version of the Kafka
client keystore password (if the user has the AWS Glue encrypt passwords setting selected).

• ENCRYPTED_KAFKA_CLIENT_KEY_PASSWORD - The encrypted version of the Kafka client key
password (if the user has the AWS Glue encrypt passwords setting selected).

• KAFKA_SASL_MECHANISM - "SCRAM-SHA-512", "GSSAPI", "AWS_MSK_IAM", or "PLAIN".
These are the supported SASL Mechanisms.

• KAFKA_SASL_PLAIN_USERNAME - A plaintext username used to authenticate with the "PLAIN"
mechanism.

• KAFKA_SASL_PLAIN_PASSWORD - A plaintext password used to authenticate with the "PLAIN"
mechanism.

Connections 2002

https://www.iana.org/assignments/sasl-mechanisms/sasl-mechanisms.xhtml

AWS Glue User Guide

• ENCRYPTED_KAFKA_SASL_PLAIN_PASSWORD - The encrypted version of the Kafka SASL
PLAIN password (if the user has the AWS Glue encrypt passwords setting selected).

• KAFKA_SASL_SCRAM_USERNAME - A plaintext username used to authenticate with the
"SCRAM-SHA-512" mechanism.

• KAFKA_SASL_SCRAM_PASSWORD - A plaintext password used to authenticate with the
"SCRAM-SHA-512" mechanism.

• ENCRYPTED_KAFKA_SASL_SCRAM_PASSWORD - The encrypted version of the Kafka SASL
SCRAM password (if the user has the AWS Glue encrypt passwords setting selected).

• KAFKA_SASL_SCRAM_SECRETS_ARN - The Amazon Resource Name of a secret in AWS Secrets
Manager.

• KAFKA_SASL_GSSAPI_KEYTAB - The S3 location of a Kerberos keytab file. A keytab
stores long-term keys for one or more principals. For more information, see MIT Kerberos
Documentation: Keytab.

• KAFKA_SASL_GSSAPI_KRB5_CONF - The S3 location of a Kerberos krb5.conf file. A
krb5.conf stores Kerberos configuration information, such as the location of the KDC server.
For more information, see MIT Kerberos Documentation: krb5.conf.

• KAFKA_SASL_GSSAPI_SERVICE - The Kerberos service name, as set with
sasl.kerberos.service.name in your Kafka Configuration.

• KAFKA_SASL_GSSAPI_PRINCIPAL - The name of the Kerberos princial used by AWS Glue. For
more information, see Kafka Documentation: Configuring Kafka Brokers.

• PhysicalConnectionRequirements – A PhysicalConnectionRequirements object.

The physical connection requirements, such as virtual private cloud (VPC) and SecurityGroup,
that are needed to make this connection successfully.

• CreationTime – Timestamp.

The timestamp of the time that this connection definition was created.

• LastUpdatedTime – Timestamp.

The timestamp of the last time the connection definition was updated.

• LastUpdatedBy – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The user, group, or role that last updated this connection definition.

• Status – UTF-8 string (valid values: READY | IN_PROGRESS | FAILED).

Connections 2003

https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html
https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html
https://web.mit.edu/kerberos/krb5-1.12/doc/admin/conf_files/krb5_conf.html
https://kafka.apache.org/documentation/#brokerconfigs_sasl.kerberos.service.name
https://kafka.apache.org/documentation/#security_sasl_kerberos_clientconfig

AWS Glue User Guide

The status of the connection. Can be one of: READY, IN_PROGRESS, or FAILED.

• StatusReason – UTF-8 string, not less than 1 or more than 16384 bytes long.

The reason for the connection status.

• LastConnectionValidationTime – Timestamp.

A timestamp of the time this connection was last validated.

• AuthenticationConfiguration – An AuthenticationConfiguration object.

The authentication properties of the connection.

ConnectionInput structure

A structure that is used to specify a connection to create or update.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the connection.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

The description of the connection.

• ConnectionType – Required: UTF-8 string (valid values: JDBC | SFTP | MONGODB | KAFKA |
NETWORK | MARKETPLACE | CUSTOM | SALESFORCE).

The type of the connection. Currently, these types are supported:

• JDBC - Designates a connection to a database through Java Database Connectivity (JDBC).

JDBC Connections use the following ConnectionParameters.

• Required: All of (HOST, PORT, JDBC_ENGINE) or JDBC_CONNECTION_URL.

• Required: All of (USERNAME, PASSWORD) or SECRET_ID.

• Optional: JDBC_ENFORCE_SSL, CUSTOM_JDBC_CERT, CUSTOM_JDBC_CERT_STRING,
SKIP_CUSTOM_JDBC_CERT_VALIDATION. These parameters are used to configure SSL with
JDBC.

Connections 2004

AWS Glue User Guide

• KAFKA - Designates a connection to an Apache Kafka streaming platform.

KAFKA Connections use the following ConnectionParameters.

• Required: KAFKA_BOOTSTRAP_SERVERS.

• Optional: KAFKA_SSL_ENABLED, KAFKA_CUSTOM_CERT,
KAFKA_SKIP_CUSTOM_CERT_VALIDATION. These parameters are used to configure SSL
with KAFKA.

• Optional: KAFKA_CLIENT_KEYSTORE, KAFKA_CLIENT_KEYSTORE_PASSWORD,
KAFKA_CLIENT_KEY_PASSWORD, ENCRYPTED_KAFKA_CLIENT_KEYSTORE_PASSWORD,
ENCRYPTED_KAFKA_CLIENT_KEY_PASSWORD. These parameters are used to configure TLS
client configuration with SSL in KAFKA.

• Optional: KAFKA_SASL_MECHANISM. Can be specified as SCRAM-SHA-512, GSSAPI, or
AWS_MSK_IAM.

• Optional: KAFKA_SASL_SCRAM_USERNAME, KAFKA_SASL_SCRAM_PASSWORD,
ENCRYPTED_KAFKA_SASL_SCRAM_PASSWORD. These parameters are used to configure
SASL/SCRAM-SHA-512 authentication with KAFKA.

• Optional: KAFKA_SASL_GSSAPI_KEYTAB, KAFKA_SASL_GSSAPI_KRB5_CONF,
KAFKA_SASL_GSSAPI_SERVICE, KAFKA_SASL_GSSAPI_PRINCIPAL. These parameters are
used to configure SASL/GSSAPI authentication with KAFKA.

• MONGODB - Designates a connection to a MongoDB document database.

MONGODB Connections use the following ConnectionParameters.

• Required: CONNECTION_URL.

• Required: All of (USERNAME, PASSWORD) or SECRET_ID.

• SALESFORCE - Designates a connection to Salesforce using OAuth authencation.

• Requires the AuthenticationConfiguration member to be configured.

• NETWORK - Designates a network connection to a data source within an Amazon Virtual Private
Cloud environment (Amazon VPC).

NETWORK Connections do not require ConnectionParameters. Instead, provide a
PhysicalConnectionRequirements.

• MARKETPLACE - Uses configuration settings contained in a connector purchased from AWS
Marketplace to read from and write to data stores that are not natively supported by AWS
Glue.

Connections 2005

AWS Glue User Guide

MARKETPLACE Connections use the following ConnectionParameters.

• Required: CONNECTOR_TYPE, CONNECTOR_URL, CONNECTOR_CLASS_NAME,
CONNECTION_URL.

• Required for JDBC CONNECTOR_TYPE connections: All of (USERNAME, PASSWORD) or
SECRET_ID.

• CUSTOM - Uses configuration settings contained in a custom connector to read from and write
to data stores that are not natively supported by AWS Glue.

SFTP is not supported.

For more information about how optional ConnectionProperties are used to configure features in
AWS Glue, consult AWS Glue connection properties.

For more information about how optional ConnectionProperties are used to configure features in
AWS Glue Studio, consult Using connectors and connections.

• MatchCriteria – An array of UTF-8 strings, not more than 10 strings.

A list of criteria that can be used in selecting this connection.

• ConnectionProperties – Required: A map array of key-value pairs, not more than 100 pairs.

Each key is a UTF-8 string (valid values: HOST | PORT | USERNAME="USER_NAME" | PASSWORD
| ENCRYPTED_PASSWORD | JDBC_DRIVER_JAR_URI | JDBC_DRIVER_CLASS_NAME
| JDBC_ENGINE | JDBC_ENGINE_VERSION | CONFIG_FILES | INSTANCE_ID
| JDBC_CONNECTION_URL | JDBC_ENFORCE_SSL | CUSTOM_JDBC_CERT |
SKIP_CUSTOM_JDBC_CERT_VALIDATION | CUSTOM_JDBC_CERT_STRING |
CONNECTION_URL | KAFKA_BOOTSTRAP_SERVERS | KAFKA_SSL_ENABLED
| KAFKA_CUSTOM_CERT | KAFKA_SKIP_CUSTOM_CERT_VALIDATION |
KAFKA_CLIENT_KEYSTORE | KAFKA_CLIENT_KEYSTORE_PASSWORD |
KAFKA_CLIENT_KEY_PASSWORD | ENCRYPTED_KAFKA_CLIENT_KEYSTORE_PASSWORD
| ENCRYPTED_KAFKA_CLIENT_KEY_PASSWORD | SECRET_ID | CONNECTOR_URL
| CONNECTOR_TYPE | CONNECTOR_CLASS_NAME | KAFKA_SASL_MECHANISM
| KAFKA_SASL_PLAIN_USERNAME | KAFKA_SASL_PLAIN_PASSWORD |
ENCRYPTED_KAFKA_SASL_PLAIN_PASSWORD | KAFKA_SASL_SCRAM_USERNAME
| KAFKA_SASL_SCRAM_PASSWORD | KAFKA_SASL_SCRAM_SECRETS_ARN |
ENCRYPTED_KAFKA_SASL_SCRAM_PASSWORD | KAFKA_SASL_GSSAPI_KEYTAB

Connections 2006

https://docs.aws.amazon.com/glue/latest/dg/connection-defining.html
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html

AWS Glue User Guide

| KAFKA_SASL_GSSAPI_KRB5_CONF | KAFKA_SASL_GSSAPI_SERVICE |
KAFKA_SASL_GSSAPI_PRINCIPAL | ROLE_ARN).

Each value is a Value string, not more than 1024 bytes long.

These key-value pairs define parameters for the connection.

• PhysicalConnectionRequirements – A PhysicalConnectionRequirements object.

The physical connection requirements, such as virtual private cloud (VPC) and SecurityGroup,
that are needed to successfully make this connection.

• AuthenticationConfiguration – An AuthenticationConfigurationInput object.

The authentication properties of the connection. Used for a Salesforce connection.

• ValidateCredentials – Boolean.

A flag to validate the credentials during create connection. Used for a Salesforce connection.
Default is true.

PhysicalConnectionRequirements structure

The OAuth client app in GetConnection response.

Fields

• SubnetId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The subnet ID used by the connection.

• SecurityGroupIdList – An array of UTF-8 strings, not more than 50 strings.

The security group ID list used by the connection.

• AvailabilityZone – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The connection's Availability Zone.

GetConnectionsFilter structure

Filters the connection definitions that are returned by the GetConnections API operation.

Connections 2007

AWS Glue User Guide

Fields

• MatchCriteria – An array of UTF-8 strings, not more than 10 strings.

A criteria string that must match the criteria recorded in the connection definition for that
connection definition to be returned.

• ConnectionType – UTF-8 string (valid values: JDBC | SFTP | MONGODB | KAFKA | NETWORK |
MARKETPLACE | CUSTOM | SALESFORCE).

The type of connections to return. Currently, SFTP is not supported.

Operations

• CreateConnection action (Python: create_connection)

• DeleteConnection action (Python: delete_connection)

• GetConnection action (Python: get_connection)

• GetConnections action (Python: get_connections)

• UpdateConnection action (Python: update_connection)

• BatchDeleteConnection action (Python: batch_delete_connection)

CreateConnection action (Python: create_connection)

Creates a connection definition in the Data Catalog.

Connections used for creating federated resources require the IAM glue:PassConnection
permission.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which to create the connection. If none is provided, the AWS
account ID is used by default.

• ConnectionInput – Required: A ConnectionInput object.

A ConnectionInput object defining the connection to create.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Connections 2008

AWS Glue User Guide

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

The tags you assign to the connection.

Response

• CreateConnectionStatus – UTF-8 string (valid values: READY | IN_PROGRESS | FAILED).

The status of the connection creation request. The request can take some time for certain
authentication types, for example when creating an OAuth connection with token exchange over
VPC.

Errors

• AlreadyExistsException

• InvalidInputException

• OperationTimeoutException

• ResourceNumberLimitExceededException

• GlueEncryptionException

DeleteConnection action (Python: delete_connection)

Deletes a connection from the Data Catalog.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which the connection resides. If none is provided, the AWS account
ID is used by default.

• ConnectionName – Required: UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The name of the connection to delete.

Connections 2009

AWS Glue User Guide

Response

• No Response parameters.

Errors

• EntityNotFoundException

• OperationTimeoutException

GetConnection action (Python: get_connection)

Retrieves a connection definition from the Data Catalog.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which the connection resides. If none is provided, the AWS account
ID is used by default.

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the connection definition to retrieve.

• HidePassword – Boolean.

Allows you to retrieve the connection metadata without returning the password. For instance,
the AWS Glue console uses this flag to retrieve the connection, and does not display the
password. Set this parameter when the caller might not have permission to use the AWS KMS
key to decrypt the password, but it does have permission to access the rest of the connection
properties.

Response

• Connection – A Connection object.

The requested connection definition.

Connections 2010

AWS Glue User Guide

Errors

• EntityNotFoundException

• OperationTimeoutException

• InvalidInputException

• GlueEncryptionException

GetConnections action (Python: get_connections)

Retrieves a list of connection definitions from the Data Catalog.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which the connections reside. If none is provided, the AWS account
ID is used by default.

• Filter – A GetConnectionsFilter object.

A filter that controls which connections are returned.

• HidePassword – Boolean.

Allows you to retrieve the connection metadata without returning the password. For instance,
the AWS Glue console uses this flag to retrieve the connection, and does not display the
password. Set this parameter when the caller might not have permission to use the AWS KMS
key to decrypt the password, but it does have permission to access the rest of the connection
properties.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum number of connections to return in one response.

Response

• ConnectionList – An array of Connection objects.

Connections 2011

AWS Glue User Guide

A list of requested connection definitions.

• NextToken – UTF-8 string.

A continuation token, if the list of connections returned does not include the last of the filtered
connections.

Errors

• EntityNotFoundException

• OperationTimeoutException

• InvalidInputException

• GlueEncryptionException

UpdateConnection action (Python: update_connection)

Updates a connection definition in the Data Catalog.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which the connection resides. If none is provided, the AWS account
ID is used by default.

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the connection definition to update.

• ConnectionInput – Required: A ConnectionInput object.

A ConnectionInput object that redefines the connection in question.

Response

• No Response parameters.

Connections 2012

AWS Glue User Guide

Errors

• InvalidInputException

• EntityNotFoundException

• OperationTimeoutException

• InvalidInputException

• GlueEncryptionException

BatchDeleteConnection action (Python: batch_delete_connection)

Deletes a list of connection definitions from the Data Catalog.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which the connections reside. If none is provided, the AWS account
ID is used by default.

• ConnectionNameList – Required: An array of UTF-8 strings, not more than 25 strings.

A list of names of the connections to delete.

Response

• Succeeded – An array of UTF-8 strings.

A list of names of the connection definitions that were successfully deleted.

• Errors – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a An ErrorDetail object.

A map of the names of connections that were not successfully deleted to error details.

Connections 2013

AWS Glue User Guide

Errors

• InternalServiceException

• OperationTimeoutException

Authentication configuration

• AuthenticationConfiguration structure

• AuthenticationConfigurationInput structure

• OAuth2Properties structure

• OAuth2PropertiesInput structure

• OAuth2ClientApplication structure

• AuthorizationCodeProperties structure

AuthenticationConfiguration structure

A structure containing the authentication configuration.

Fields

• AuthenticationType – UTF-8 string (valid values: BASIC | OAUTH2 | CUSTOM).

A structure containing the authentication configuration.

• SecretArn – UTF-8 string, matching the Custom string pattern #11.

The secret manager ARN to store credentials.

• OAuth2Properties – An OAuth2Properties object.

The properties for OAuth2 authentication.

AuthenticationConfigurationInput structure

A structure containing the authentication configuration in the CreateConnection request.

Fields

• AuthenticationType – UTF-8 string (valid values: BASIC | OAUTH2 | CUSTOM).

Connections 2014

AWS Glue User Guide

A structure containing the authentication configuration in the CreateConnection request.

• SecretArn – UTF-8 string, matching the Custom string pattern #11.

The secret manager ARN to store credentials in the CreateConnection request.

• OAuth2Properties – An OAuth2PropertiesInput object.

The properties for OAuth2 authentication in the CreateConnection request.

OAuth2Properties structure

A structure containing properties for OAuth2 authentication.

Fields

• OAuth2GrantType – UTF-8 string (valid values: AUTHORIZATION_CODE |
CLIENT_CREDENTIALS | JWT_BEARER).

The OAuth2 grant type. For example, AUTHORIZATION_CODE, JWT_BEARER, or
CLIENT_CREDENTIALS.

• OAuth2ClientApplication – An OAuth2ClientApplication object.

The client application type. For example, AWS_MANAGED or USER_MANAGED.

• TokenUrl – UTF-8 string, not more than 256 bytes long, matching the Custom string pattern
#12.

The URL of the provider's authentication server, to exchange an authorization code for an access
token.

• TokenUrlParametersMap – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not less than 1 or more than 512 bytes long.

A map of parameters that are added to the token GET request.

OAuth2PropertiesInput structure

A structure containing properties for OAuth2 in the CreateConnection request.

Connections 2015

AWS Glue User Guide

Fields

• OAuth2GrantType – UTF-8 string (valid values: AUTHORIZATION_CODE |
CLIENT_CREDENTIALS | JWT_BEARER).

The OAuth2 grant type in the CreateConnection request. For example, AUTHORIZATION_CODE,
JWT_BEARER, or CLIENT_CREDENTIALS.

• OAuth2ClientApplication – An OAuth2ClientApplication object.

The client application type in the CreateConnection request. For example, AWS_MANAGED or
USER_MANAGED.

• TokenUrl – UTF-8 string, not more than 256 bytes long, matching the Custom string pattern
#12.

The URL of the provider's authentication server, to exchange an authorization code for an access
token.

• TokenUrlParametersMap – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not less than 1 or more than 512 bytes long.

A map of parameters that are added to the token GET request.

• AuthorizationCodeProperties – An AuthorizationCodeProperties object.

The set of properties required for the the OAuth2 AUTHORIZATION_CODE grant type.

OAuth2ClientApplication structure

The OAuth2 client app used for the connection.

Fields

• UserManagedClientApplicationClientId – UTF-8 string, not more than 2048 bytes long,
matching the Custom string pattern #13.

The client application clientID if the ClientAppType is USER_MANAGED.

• AWSManagedClientApplicationReference – UTF-8 string, not more than 2048 bytes long,
matching the Custom string pattern #13.

Connections 2016

AWS Glue User Guide

The reference to the SaaS-side client app that is AWS managed.

AuthorizationCodeProperties structure

The set of properties required for the the OAuth2 AUTHORIZATION_CODE grant type workflow.

Fields

• AuthorizationCode – UTF-8 string, not less than 1 or more than 4096 bytes long, matching
the Custom string pattern #13.

An authorization code to be used in the third leg of the AUTHORIZATION_CODE grant workflow.
This is a single-use code which becomes invalid once exchanged for an access token, thus it is
acceptable to have this value as a request parameter.

• RedirectUri – UTF-8 string, not more than 512 bytes long, matching the Custom string
pattern #14.

The redirect URI where the user gets redirected to by authorization server when issuing an
authorization code. The URI is subsequently used when the authorization code is exchanged for
an access token.

User-defined Function API

The User-defined Function API describes AWS Glue data types and operations used in working with
functions.

Data types

• UserDefinedFunction structure

• UserDefinedFunctionInput structure

UserDefinedFunction structure

Represents the equivalent of a Hive user-defined function (UDF) definition.

User-defined Functions 2017

AWS Glue User Guide

Fields

• FunctionName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the function.

• DatabaseName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the catalog database that contains the function.

• ClassName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The Java class that contains the function code.

• OwnerName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The owner of the function.

• OwnerType – UTF-8 string (valid values: USER | ROLE | GROUP).

The owner type.

• CreateTime – Timestamp.

The time at which the function was created.

• ResourceUris – An array of ResourceUri objects, not more than 1000 structures.

The resource URIs for the function.

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog in which the function resides.

UserDefinedFunctionInput structure

A structure used to create or update a user-defined function.

User-defined Functions 2018

AWS Glue User Guide

Fields

• FunctionName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the function.

• ClassName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The Java class that contains the function code.

• OwnerName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The owner of the function.

• OwnerType – UTF-8 string (valid values: USER | ROLE | GROUP).

The owner type.

• ResourceUris – An array of ResourceUri objects, not more than 1000 structures.

The resource URIs for the function.

Operations

• CreateUserDefinedFunction action (Python: create_user_defined_function)

• UpdateUserDefinedFunction action (Python: update_user_defined_function)

• DeleteUserDefinedFunction action (Python: delete_user_defined_function)

• GetUserDefinedFunction action (Python: get_user_defined_function)

• GetUserDefinedFunctions action (Python: get_user_defined_functions)

CreateUserDefinedFunction action (Python: create_user_defined_function)

Creates a new function definition in the Data Catalog.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

User-defined Functions 2019

AWS Glue User Guide

The ID of the Data Catalog in which to create the function. If none is provided, the AWS account
ID is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database in which to create the function.

• FunctionInput – Required: An UserDefinedFunctionInput object.

A FunctionInput object that defines the function to create in the Data Catalog.

Response

• No Response parameters.

Errors

• AlreadyExistsException

• InvalidInputException

• InternalServiceException

• EntityNotFoundException

• OperationTimeoutException

• ResourceNumberLimitExceededException

• GlueEncryptionException

UpdateUserDefinedFunction action (Python: update_user_defined_function)

Updates an existing function definition in the Data Catalog.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the function to be updated is located. If none is provided, the
AWS account ID is used by default.

User-defined Functions 2020

AWS Glue User Guide

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database where the function to be updated is located.

• FunctionName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the function.

• FunctionInput – Required: An UserDefinedFunctionInput object.

A FunctionInput object that redefines the function in the Data Catalog.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

DeleteUserDefinedFunction action (Python: delete_user_defined_function)

Deletes an existing function definition from the Data Catalog.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the function to be deleted is located. If none is supplied, the
AWS account ID is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

User-defined Functions 2021

AWS Glue User Guide

The name of the catalog database where the function is located.

• FunctionName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the function definition to be deleted.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

GetUserDefinedFunction action (Python: get_user_defined_function)

Retrieves a specified function definition from the Data Catalog.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the function to be retrieved is located. If none is provided, the
AWS account ID is used by default.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the catalog database where the function is located.

• FunctionName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the function.

User-defined Functions 2022

AWS Glue User Guide

Response

• UserDefinedFunction – An UserDefinedFunction object.

The requested function definition.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• GlueEncryptionException

GetUserDefinedFunctions action (Python: get_user_defined_functions)

Retrieves multiple function definitions from the Data Catalog.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the functions to be retrieved are located. If none is provided,
the AWS account ID is used by default.

• DatabaseName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the catalog database where the functions are located. If none is provided, functions
from all the databases across the catalog will be returned.

• Pattern – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

An optional function-name pattern string that filters the function definitions returned.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

User-defined Functions 2023

AWS Glue User Guide

• MaxResults – Number (integer), not less than 1 or more than 100.

The maximum number of functions to return in one response.

Response

• UserDefinedFunctions – An array of UserDefinedFunction objects.

A list of requested function definitions.

• NextToken – UTF-8 string.

A continuation token, if the list of functions returned does not include the last requested
function.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

• GlueEncryptionException

Importing an Athena catalog to AWS Glue

The Migration API describes AWS Glue data types and operations having to do with migrating an
Athena Data catalog to AWS Glue.

Data types

• CatalogImportStatus structure

CatalogImportStatus structure

A structure containing migration status information.

Fields

• ImportCompleted – Boolean.

Importing an Athena catalog 2024

AWS Glue User Guide

True if the migration has completed, or False otherwise.

• ImportTime – Timestamp.

The time that the migration was started.

• ImportedBy – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the person who initiated the migration.

Operations

• ImportCatalogToGlue action (Python: import_catalog_to_glue)

• GetCatalogImportStatus action (Python: get_catalog_import_status)

ImportCatalogToGlue action (Python: import_catalog_to_glue)

Imports an existing Amazon Athena Data Catalog to AWS Glue.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the catalog to import. Currently, this should be the AWS account ID.

Response

• No Response parameters.

Errors

• InternalServiceException

• OperationTimeoutException

Importing an Athena catalog 2025

AWS Glue User Guide

GetCatalogImportStatus action (Python: get_catalog_import_status)

Retrieves the status of a migration operation.

Request

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the catalog to migrate. Currently, this should be the AWS account ID.

Response

• ImportStatus – A CatalogImportStatus object.

The status of the specified catalog migration.

Errors

• InternalServiceException

• OperationTimeoutException

Table optimizer API

The table optimizer API describes the AWS Glue API for enabling compaction to improve read
performance.

Data types

• TableOptimizer structure

• TableOptimizerConfiguration structure

• TableOptimizerRun structure

• RunMetrics structure

• BatchGetTableOptimizerEntry structure

• BatchTableOptimizer structure

• BatchGetTableOptimizerError structure

Table optimizer 2026

AWS Glue User Guide

TableOptimizer structure

Contains details about an optimizer associated with a table.

Fields

• type – UTF-8 string (valid values: compaction="COMPACTION").

The type of table optimizer. Currently, the only valid value is compaction.

• configuration – A TableOptimizerConfiguration object.

A TableOptimizerConfiguration object that was specified when creating or updating a
table optimizer.

• lastRun – A TableOptimizerRun object.

A TableOptimizerRun object representing the last run of the table optimizer.

TableOptimizerConfiguration structure

Contains details on the configuration of a table optimizer. You pass this configuration when
creating or updating a table optimizer.

Fields

• roleArn – UTF-8 string, not less than 1 or more than 512 bytes long, matching the Single-line
string pattern.

A role passed by the caller which gives the service permission to update the resources associated
with the optimizer on the caller's behalf.

• enabled – Boolean.

Whether table optimization is enabled.

TableOptimizerRun structure

Contains details for a table optimizer run.

TableOptimizer 2027

AWS Glue User Guide

Fields

• eventType – UTF-8 string (valid values: starting="STARTING" | completed="COMPLETED" |
failed="FAILED" | in_progress="IN_PROGRESS").

An event type representing the status of the table optimizer run.

• startTimestamp – Timestamp.

Represents the epoch timestamp at which the compaction job was started within Lake
Formation.

• endTimestamp – Timestamp.

Represents the epoch timestamp at which the compaction job ended.

• metrics – A RunMetrics object.

A RunMetrics object containing metrics for the optimizer run.

• error – UTF-8 string.

An error that occured during the optimizer run.

RunMetrics structure

Metrics for the optimizer run.

Fields

• NumberOfBytesCompacted – UTF-8 string.

The number of bytes removed by the compaction job run.

• NumberOfFilesCompacted – UTF-8 string.

The number of files removed by the compaction job run.

• NumberOfDpus – UTF-8 string.

The number of DPU hours consumed by the job.

• JobDurationInHour – UTF-8 string.

The duration of the job in hours.
RunMetrics 2028

AWS Glue User Guide

BatchGetTableOptimizerEntry structure

Represents a table optimizer to retrieve in the BatchGetTableOptimizer operation.

Fields

• catalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The Catalog ID of the table.

• databaseName – UTF-8 string, at least 1 byte long.

The name of the database in the catalog in which the table resides.

• tableName – UTF-8 string, at least 1 byte long.

The name of the table.

• type – UTF-8 string (valid values: compaction="COMPACTION").

The type of table optimizer.

BatchTableOptimizer structure

Contains details for one of the table optimizers returned by the BatchGetTableOptimizer
operation.

Fields

• catalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The Catalog ID of the table.

• databaseName – UTF-8 string, at least 1 byte long.

The name of the database in the catalog in which the table resides.

• tableName – UTF-8 string, at least 1 byte long.

The name of the table.

• tableOptimizer – A TableOptimizer object.

BatchGetTableOptimizerEntry 2029

AWS Glue User Guide

A TableOptimizer object that contains details on the configuration and last run of a table
optimzer.

BatchGetTableOptimizerError structure

Contains details on one of the errors in the error list returned by the BatchGetTableOptimizer
operation.

Fields

• error – An ErrorDetail object.

An ErrorDetail object containing code and message details about the error.

• catalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The Catalog ID of the table.

• databaseName – UTF-8 string, at least 1 byte long.

The name of the database in the catalog in which the table resides.

• tableName – UTF-8 string, at least 1 byte long.

The name of the table.

• type – UTF-8 string (valid values: compaction="COMPACTION").

The type of table optimizer.

Operations

• GetTableOptimizer action (Python: get_table_optimizer)

• BatchGetTableOptimizer action (Python: batch_get_table_optimizer)

• ListTableOptimizerRuns action (Python: list_table_optimizer_runs)

• CreateTableOptimizer action (Python: create_table_optimizer)

• DeleteTableOptimizer action (Python: delete_table_optimizer)

• UpdateTableOptimizer action (Python: update_table_optimizer)

BatchGetTableOptimizerError 2030

AWS Glue User Guide

GetTableOptimizer action (Python: get_table_optimizer)

Returns the configuration of all optimizers associated with a specified table.

Request

• CatalogId – Required: Catalog id string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The Catalog ID of the table.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the database in the catalog in which the table resides.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table.

• Type – Required: UTF-8 string (valid values: compaction="COMPACTION").

The type of table optimizer.

Response

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The Catalog ID of the table.

• DatabaseName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the database in the catalog in which the table resides.

• TableName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the table.

• TableOptimizer – A TableOptimizer object.

The optimizer associated with the specified table.

GetTableOptimizer (get_table_optimizer) 2031

AWS Glue User Guide

Errors

• EntityNotFoundException

• InvalidInputException

• AccessDeniedException

• InternalServiceException

BatchGetTableOptimizer action (Python: batch_get_table_optimizer)

Returns the configuration for the specified table optimizers.

Request

• Entries – Required: An array of BatchGetTableOptimizerEntry objects.

A list of BatchGetTableOptimizerEntry objects specifying the table optimizers to retrieve.

Response

• TableOptimizers – An array of BatchTableOptimizer objects.

A list of BatchTableOptimizer objects.

• Failures – An array of BatchGetTableOptimizerError objects.

A list of errors from the operation.

Errors

• InternalServiceException

ListTableOptimizerRuns action (Python: list_table_optimizer_runs)

Lists the history of previous optimizer runs for a specific table.

Request

• CatalogId – Required: Catalog id string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

BatchGetTableOptimizer (batch_get_table_optimizer) 2032

AWS Glue User Guide

The Catalog ID of the table.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the database in the catalog in which the table resides.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table.

• Type – Required: UTF-8 string (valid values: compaction="COMPACTION").

The type of table optimizer. Currently, the only valid value is compaction.

• MaxResults – Number (integer).

The maximum number of optimizer runs to return on each call.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

Response

• CatalogId – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The Catalog ID of the table.

• DatabaseName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the database in the catalog in which the table resides.

• TableName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the table.

• NextToken – UTF-8 string.

A continuation token for paginating the returned list of optimizer runs, returned if the current
segment of the list is not the last.

ListTableOptimizerRuns (list_table_optimizer_runs) 2033

AWS Glue User Guide

• TableOptimizerRuns – An array of TableOptimizerRun objects.

A list of the optimizer runs associated with a table.

Errors

• EntityNotFoundException

• AccessDeniedException

• InvalidInputException

• InternalServiceException

CreateTableOptimizer action (Python: create_table_optimizer)

Creates a new table optimizer for a specific function. compaction is the only currently supported
optimizer type.

Request

• CatalogId – Required: Catalog id string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The Catalog ID of the table.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the database in the catalog in which the table resides.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table.

• Type – Required: UTF-8 string (valid values: compaction="COMPACTION").

The type of table optimizer. Currently, the only valid value is compaction.

• TableOptimizerConfiguration – Required: A TableOptimizerConfiguration object.

A TableOptimizerConfiguration object representing the configuration of a table optimizer.

CreateTableOptimizer (create_table_optimizer) 2034

AWS Glue User Guide

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• AccessDeniedException

• AlreadyExistsException

• InternalServiceException

DeleteTableOptimizer action (Python: delete_table_optimizer)

Deletes an optimizer and all associated metadata for a table. The optimization will no longer be
performed on the table.

Request

• CatalogId – Required: Catalog id string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The Catalog ID of the table.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the database in the catalog in which the table resides.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table.

• Type – Required: UTF-8 string (valid values: compaction="COMPACTION").

The type of table optimizer.

DeleteTableOptimizer (delete_table_optimizer) 2035

AWS Glue User Guide

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• AccessDeniedException

• InternalServiceException

UpdateTableOptimizer action (Python: update_table_optimizer)

Updates the configuration for an existing table optimizer.

Request

• CatalogId – Required: Catalog id string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The Catalog ID of the table.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the database in the catalog in which the table resides.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table.

• Type – Required: UTF-8 string (valid values: compaction="COMPACTION").

The type of table optimizer. Currently, the only valid value is compaction.

• TableOptimizerConfiguration – Required: A TableOptimizerConfiguration object.

A TableOptimizerConfiguration object representing the configuration of a table optimizer.

UpdateTableOptimizer (update_table_optimizer) 2036

AWS Glue User Guide

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• AccessDeniedException

• InternalServiceException

Crawlers and classifiers API

The Crawler and classifiers API describes the AWS Glue crawler and classifier data types, and
includes the API for creating, deleting, updating, and listing crawlers or classifiers.

Topics

• Classifier API

• Crawler API

• Column statistics API

• Crawler scheduler API

Classifier API

The Classifier API describes AWS Glue classifier data types, and includes the API for creating,
deleting, updating, and listing classifiers.

Data types

• Classifier structure

• GrokClassifier structure

• XMLClassifier structure

• JsonClassifier structure

• CsvClassifier structure

• CreateGrokClassifierRequest structure

Crawlers and classifiers 2037

AWS Glue User Guide

• UpdateGrokClassifierRequest structure

• CreateXMLClassifierRequest structure

• UpdateXMLClassifierRequest structure

• CreateJsonClassifierRequest structure

• UpdateJsonClassifierRequest structure

• CreateCsvClassifierRequest structure

• UpdateCsvClassifierRequest structure

Classifier structure

Classifiers are triggered during a crawl task. A classifier checks whether a given file is in a format
it can handle. If it is, the classifier creates a schema in the form of a StructType object that
matches that data format.

You can use the standard classifiers that AWS Glue provides, or you can write your own classifiers
to best categorize your data sources and specify the appropriate schemas to use for them. A
classifier can be a grok classifier, an XML classifier, a JSON classifier, or a custom CSV classifier, as
specified in one of the fields in the Classifier object.

Fields

• GrokClassifier – A GrokClassifier object.

A classifier that uses grok.

• XMLClassifier – A XMLClassifier object.

A classifier for XML content.

• JsonClassifier – A JsonClassifier object.

A classifier for JSON content.

• CsvClassifier – A CsvClassifier object.

A classifier for comma-separated values (CSV).

GrokClassifier structure

A classifier that uses grok patterns.

Classifiers 2038

AWS Glue User Guide

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the classifier.

• Classification – Required: UTF-8 string.

An identifier of the data format that the classifier matches, such as Twitter, JSON, Omniture logs,
and so on.

• CreationTime – Timestamp.

The time that this classifier was registered.

• LastUpdated – Timestamp.

The time that this classifier was last updated.

• Version – Number (long).

The version of this classifier.

• GrokPattern – Required: UTF-8 string, not less than 1 or more than 2048 bytes long, matching
the A Logstash Grok string pattern.

The grok pattern applied to a data store by this classifier. For more information, see built-in
patterns in Writing Custom Classifiers.

• CustomPatterns – UTF-8 string, not more than 16000 bytes long, matching the URI address
multi-line string pattern.

Optional custom grok patterns defined by this classifier. For more information, see custom
patterns in Writing Custom Classifiers.

XMLClassifier structure

A classifier for XML content.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Classifiers 2039

https://docs.aws.amazon.com/glue/latest/dg/custom-classifier.html
https://docs.aws.amazon.com/glue/latest/dg/custom-classifier.html

AWS Glue User Guide

The name of the classifier.

• Classification – Required: UTF-8 string.

An identifier of the data format that the classifier matches.

• CreationTime – Timestamp.

The time that this classifier was registered.

• LastUpdated – Timestamp.

The time that this classifier was last updated.

• Version – Number (long).

The version of this classifier.

• RowTag – UTF-8 string.

The XML tag designating the element that contains each record in an XML document being
parsed. This can't identify a self-closing element (closed by />). An empty row element that
contains only attributes can be parsed as long as it ends with a closing tag (for example, <row
item_a="A" item_b="B"></row> is okay, but <row item_a="A" item_b="B" /> is not).

JsonClassifier structure

A classifier for JSON content.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the classifier.

• CreationTime – Timestamp.

The time that this classifier was registered.

• LastUpdated – Timestamp.

The time that this classifier was last updated.

• Version – Number (long).

Classifiers 2040

AWS Glue User Guide

The version of this classifier.

• JsonPath – Required: UTF-8 string.

A JsonPath string defining the JSON data for the classifier to classify. AWS Glue supports a
subset of JsonPath, as described in Writing JsonPath Custom Classifiers.

CsvClassifier structure

A classifier for custom CSV content.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the classifier.

• CreationTime – Timestamp.

The time that this classifier was registered.

• LastUpdated – Timestamp.

The time that this classifier was last updated.

• Version – Number (long).

The version of this classifier.

• Delimiter – UTF-8 string, not less than 1 or more than 1 bytes long, matching the Custom
string pattern #10.

A custom symbol to denote what separates each column entry in the row.

• QuoteSymbol – UTF-8 string, not less than 1 or more than 1 bytes long, matching the Custom
string pattern #10.

A custom symbol to denote what combines content into a single column value. It must be
different from the column delimiter.

• ContainsHeader – UTF-8 string (valid values: UNKNOWN | PRESENT | ABSENT).

Indicates whether the CSV file contains a header.

• Header – An array of UTF-8 strings.

Classifiers 2041

https://docs.aws.amazon.com/glue/latest/dg/custom-classifier.html#custom-classifier-json

AWS Glue User Guide

A list of strings representing column names.

• DisableValueTrimming – Boolean.

Specifies not to trim values before identifying the type of column values. The default value is
true.

• AllowSingleColumn – Boolean.

Enables the processing of files that contain only one column.

• CustomDatatypeConfigured – Boolean.

Enables the custom datatype to be configured.

• CustomDatatypes – An array of UTF-8 strings.

A list of custom datatypes including "BINARY", "BOOLEAN", "DATE", "DECIMAL", "DOUBLE",
"FLOAT", "INT", "LONG", "SHORT", "STRING", "TIMESTAMP".

• Serde – UTF-8 string (valid values: OpenCSVSerDe | LazySimpleSerDe | None).

Sets the SerDe for processing CSV in the classifier, which will be applied in the Data Catalog.
Valid values are OpenCSVSerDe, LazySimpleSerDe, and None. You can specify the None value
when you want the crawler to do the detection.

CreateGrokClassifierRequest structure

Specifies a grok classifier for CreateClassifier to create.

Fields

• Classification – Required: UTF-8 string.

An identifier of the data format that the classifier matches, such as Twitter, JSON, Omniture logs,
Amazon CloudWatch Logs, and so on.

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the new classifier.

• GrokPattern – Required: UTF-8 string, not less than 1 or more than 2048 bytes long, matching
the A Logstash Grok string pattern.

Classifiers 2042

AWS Glue User Guide

The grok pattern used by this classifier.

• CustomPatterns – UTF-8 string, not more than 16000 bytes long, matching the URI address
multi-line string pattern.

Optional custom grok patterns used by this classifier.

UpdateGrokClassifierRequest structure

Specifies a grok classifier to update when passed to UpdateClassifier.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the GrokClassifier.

• Classification – UTF-8 string.

An identifier of the data format that the classifier matches, such as Twitter, JSON, Omniture logs,
Amazon CloudWatch Logs, and so on.

• GrokPattern – UTF-8 string, not less than 1 or more than 2048 bytes long, matching the A
Logstash Grok string pattern.

The grok pattern used by this classifier.

• CustomPatterns – UTF-8 string, not more than 16000 bytes long, matching the URI address
multi-line string pattern.

Optional custom grok patterns used by this classifier.

CreateXMLClassifierRequest structure

Specifies an XML classifier for CreateClassifier to create.

Fields

• Classification – Required: UTF-8 string.

An identifier of the data format that the classifier matches.

Classifiers 2043

AWS Glue User Guide

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the classifier.

• RowTag – UTF-8 string.

The XML tag designating the element that contains each record in an XML document being
parsed. This can't identify a self-closing element (closed by />). An empty row element that
contains only attributes can be parsed as long as it ends with a closing tag (for example, <row
item_a="A" item_b="B"></row> is okay, but <row item_a="A" item_b="B" /> is not).

UpdateXMLClassifierRequest structure

Specifies an XML classifier to be updated.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the classifier.

• Classification – UTF-8 string.

An identifier of the data format that the classifier matches.

• RowTag – UTF-8 string.

The XML tag designating the element that contains each record in an XML document being
parsed. This cannot identify a self-closing element (closed by />). An empty row element that
contains only attributes can be parsed as long as it ends with a closing tag (for example, <row
item_a="A" item_b="B"></row> is okay, but <row item_a="A" item_b="B" /> is not).

CreateJsonClassifierRequest structure

Specifies a JSON classifier for CreateClassifier to create.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Classifiers 2044

AWS Glue User Guide

The name of the classifier.

• JsonPath – Required: UTF-8 string.

A JsonPath string defining the JSON data for the classifier to classify. AWS Glue supports a
subset of JsonPath, as described in Writing JsonPath Custom Classifiers.

UpdateJsonClassifierRequest structure

Specifies a JSON classifier to be updated.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the classifier.

• JsonPath – UTF-8 string.

A JsonPath string defining the JSON data for the classifier to classify. AWS Glue supports a
subset of JsonPath, as described in Writing JsonPath Custom Classifiers.

CreateCsvClassifierRequest structure

Specifies a custom CSV classifier for CreateClassifier to create.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the classifier.

• Delimiter – UTF-8 string, not less than 1 or more than 1 bytes long, matching the Custom
string pattern #10.

A custom symbol to denote what separates each column entry in the row.

• QuoteSymbol – UTF-8 string, not less than 1 or more than 1 bytes long, matching the Custom
string pattern #10.

Classifiers 2045

https://docs.aws.amazon.com/glue/latest/dg/custom-classifier.html#custom-classifier-json
https://docs.aws.amazon.com/glue/latest/dg/custom-classifier.html#custom-classifier-json

AWS Glue User Guide

A custom symbol to denote what combines content into a single column value. Must be different
from the column delimiter.

• ContainsHeader – UTF-8 string (valid values: UNKNOWN | PRESENT | ABSENT).

Indicates whether the CSV file contains a header.

• Header – An array of UTF-8 strings.

A list of strings representing column names.

• DisableValueTrimming – Boolean.

Specifies not to trim values before identifying the type of column values. The default value is
true.

• AllowSingleColumn – Boolean.

Enables the processing of files that contain only one column.

• CustomDatatypeConfigured – Boolean.

Enables the configuration of custom datatypes.

• CustomDatatypes – An array of UTF-8 strings.

Creates a list of supported custom datatypes.

• Serde – UTF-8 string (valid values: OpenCSVSerDe | LazySimpleSerDe | None).

Sets the SerDe for processing CSV in the classifier, which will be applied in the Data Catalog.
Valid values are OpenCSVSerDe, LazySimpleSerDe, and None. You can specify the None value
when you want the crawler to do the detection.

UpdateCsvClassifierRequest structure

Specifies a custom CSV classifier to be updated.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the classifier.

Classifiers 2046

AWS Glue User Guide

• Delimiter – UTF-8 string, not less than 1 or more than 1 bytes long, matching the Custom
string pattern #10.

A custom symbol to denote what separates each column entry in the row.

• QuoteSymbol – UTF-8 string, not less than 1 or more than 1 bytes long, matching the Custom
string pattern #10.

A custom symbol to denote what combines content into a single column value. It must be
different from the column delimiter.

• ContainsHeader – UTF-8 string (valid values: UNKNOWN | PRESENT | ABSENT).

Indicates whether the CSV file contains a header.

• Header – An array of UTF-8 strings.

A list of strings representing column names.

• DisableValueTrimming – Boolean.

Specifies not to trim values before identifying the type of column values. The default value is
true.

• AllowSingleColumn – Boolean.

Enables the processing of files that contain only one column.

• CustomDatatypeConfigured – Boolean.

Specifies the configuration of custom datatypes.

• CustomDatatypes – An array of UTF-8 strings.

Specifies a list of supported custom datatypes.

• Serde – UTF-8 string (valid values: OpenCSVSerDe | LazySimpleSerDe | None).

Sets the SerDe for processing CSV in the classifier, which will be applied in the Data Catalog.
Valid values are OpenCSVSerDe, LazySimpleSerDe, and None. You can specify the None value
when you want the crawler to do the detection.

Operations

• CreateClassifier action (Python: create_classifier)
Classifiers 2047

AWS Glue User Guide

• DeleteClassifier action (Python: delete_classifier)

• GetClassifier action (Python: get_classifier)

• GetClassifiers action (Python: get_classifiers)

• UpdateClassifier action (Python: update_classifier)

CreateClassifier action (Python: create_classifier)

Creates a classifier in the user's account. This can be a GrokClassifier, an XMLClassifier, a
JsonClassifier, or a CsvClassifier, depending on which field of the request is present.

Request

• GrokClassifier – A CreateGrokClassifierRequest object.

A GrokClassifier object specifying the classifier to create.

• XMLClassifier – A CreateXMLClassifierRequest object.

An XMLClassifier object specifying the classifier to create.

• JsonClassifier – A CreateJsonClassifierRequest object.

A JsonClassifier object specifying the classifier to create.

• CsvClassifier – A CreateCsvClassifierRequest object.

A CsvClassifier object specifying the classifier to create.

Response

• No Response parameters.

Errors

• AlreadyExistsException

• InvalidInputException

• OperationTimeoutException

Classifiers 2048

AWS Glue User Guide

DeleteClassifier action (Python: delete_classifier)

Removes a classifier from the Data Catalog.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Name of the classifier to remove.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• OperationTimeoutException

GetClassifier action (Python: get_classifier)

Retrieve a classifier by name.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Name of the classifier to retrieve.

Response

• Classifier – A Classifier object.

The requested classifier.

Classifiers 2049

AWS Glue User Guide

Errors

• EntityNotFoundException

• OperationTimeoutException

GetClassifiers action (Python: get_classifiers)

Lists all classifier objects in the Data Catalog.

Request

• MaxResults – Number (integer), not less than 1 or more than 1000.

The size of the list to return (optional).

• NextToken – UTF-8 string.

An optional continuation token.

Response

• Classifiers – An array of Classifier objects.

The requested list of classifier objects.

• NextToken – UTF-8 string.

A continuation token.

Errors

• OperationTimeoutException

UpdateClassifier action (Python: update_classifier)

Modifies an existing classifier (a GrokClassifier, an XMLClassifier, a JsonClassifier, or a
CsvClassifier, depending on which field is present).

Request

• GrokClassifier – An UpdateGrokClassifierRequest object.

Classifiers 2050

AWS Glue User Guide

A GrokClassifier object with updated fields.

• XMLClassifier – An UpdateXMLClassifierRequest object.

An XMLClassifier object with updated fields.

• JsonClassifier – An UpdateJsonClassifierRequest object.

A JsonClassifier object with updated fields.

• CsvClassifier – An UpdateCsvClassifierRequest object.

A CsvClassifier object with updated fields.

Response

• No Response parameters.

Errors

• InvalidInputException

• VersionMismatchException

• EntityNotFoundException

• OperationTimeoutException

Crawler API

The Crawler API describes AWS Glue crawler data types, along with the API for creating, deleting,
updating, and listing crawlers.

Data types

• Crawler structure

• Schedule structure

• CrawlerTargets structure

• S3Target structure

• S3DeltaCatalogTarget structure

• S3DeltaDirectTarget structure

Crawlers 2051

AWS Glue User Guide

• JdbcTarget structure

• MongoDBTarget structure

• DynamoDBTarget structure

• DeltaTarget structure

• IcebergTarget structure

• HudiTarget structure

• CatalogTarget structure

• CrawlerMetrics structure

• CrawlerHistory structure

• CrawlsFilter structure

• SchemaChangePolicy structure

• LastCrawlInfo structure

• RecrawlPolicy structure

• LineageConfiguration structure

• LakeFormationConfiguration structure

Crawler structure

Specifies a crawler program that examines a data source and uses classifiers to try to determine its
schema. If successful, the crawler records metadata concerning the data source in the AWS Glue
Data Catalog.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the crawler.

• Role – UTF-8 string.

The Amazon Resource Name (ARN) of an IAM role that's used to access customer resources, such
as Amazon Simple Storage Service (Amazon S3) data.

• Targets – A CrawlerTargets object.

Crawlers 2052

AWS Glue User Guide

A collection of targets to crawl.

• DatabaseName – UTF-8 string.

The name of the database in which the crawler's output is stored.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the crawler.

• Classifiers – An array of UTF-8 strings.

A list of UTF-8 strings that specify the custom classifiers that are associated with the crawler.

• RecrawlPolicy – A RecrawlPolicy object.

A policy that specifies whether to crawl the entire dataset again, or to crawl only folders that
were added since the last crawler run.

• SchemaChangePolicy – A SchemaChangePolicy object.

The policy that specifies update and delete behaviors for the crawler.

• LineageConfiguration – A LineageConfiguration object.

A configuration that specifies whether data lineage is enabled for the crawler.

• State – UTF-8 string (valid values: READY | RUNNING | STOPPING).

Indicates whether the crawler is running, or whether a run is pending.

• TablePrefix – UTF-8 string, not more than 128 bytes long.

The prefix added to the names of tables that are created.

• Schedule – A Schedule object.

For scheduled crawlers, the schedule when the crawler runs.

• CrawlElapsedTime – Number (long).

If the crawler is running, contains the total time elapsed since the last crawl began.

• CreationTime – Timestamp.

The time that the crawler was created.

• LastUpdated – Timestamp.

Crawlers 2053

AWS Glue User Guide

The time that the crawler was last updated.

• LastCrawl – A LastCrawlInfo object.

The status of the last crawl, and potentially error information if an error occurred.

• Version – Number (long).

The version of the crawler.

• Configuration – UTF-8 string.

Crawler configuration information. This versioned JSON string allows users to specify aspects of
a crawler's behavior. For more information, see Setting crawler configuration options.

• CrawlerSecurityConfiguration – UTF-8 string, not more than 128 bytes long.

The name of the SecurityConfiguration structure to be used by this crawler.

• LakeFormationConfiguration – A LakeFormationConfiguration object.

Specifies whether the crawler should use AWS Lake Formation credentials for the crawler instead
of the IAM role credentials.

Schedule structure

A scheduling object using a cron statement to schedule an event.

Fields

• ScheduleExpression – UTF-8 string.

A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and
Crawlers. For example, to run something every day at 12:15 UTC, you would specify: cron(15
12 * * ? *).

• State – UTF-8 string (valid values: SCHEDULED | NOT_SCHEDULED | TRANSITIONING).

The state of the schedule.

CrawlerTargets structure

Specifies data stores to crawl.

Crawlers 2054

https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html

AWS Glue User Guide

Fields

• S3Targets – An array of S3Target objects.

Specifies Amazon Simple Storage Service (Amazon S3) targets.

• JdbcTargets – An array of JdbcTarget objects.

Specifies JDBC targets.

• MongoDBTargets – An array of MongoDBTarget objects.

Specifies Amazon DocumentDB or MongoDB targets.

• DynamoDBTargets – An array of DynamoDBTarget objects.

Specifies Amazon DynamoDB targets.

• CatalogTargets – An array of CatalogTarget objects.

Specifies AWS Glue Data Catalog targets.

• DeltaTargets – An array of DeltaTarget objects.

Specifies Delta data store targets.

• IcebergTargets – An array of IcebergTarget objects.

Specifies Apache Iceberg data store targets.

• HudiTargets – An array of HudiTarget objects.

Specifies Apache Hudi data store targets.

S3Target structure

Specifies a data store in Amazon Simple Storage Service (Amazon S3).

Fields

• Path – UTF-8 string.

The path to the Amazon S3 target.

• Exclusions – An array of UTF-8 strings.

Crawlers 2055

AWS Glue User Guide

A list of glob patterns used to exclude from the crawl. For more information, see Catalog Tables
with a Crawler.

• ConnectionName – UTF-8 string.

The name of a connection which allows a job or crawler to access data in Amazon S3 within an
Amazon Virtual Private Cloud environment (Amazon VPC).

• SampleSize – Number (integer).

Sets the number of files in each leaf folder to be crawled when crawling sample files in a dataset.
If not set, all the files are crawled. A valid value is an integer between 1 and 249.

• EventQueueArn – UTF-8 string.

A valid Amazon SQS ARN. For example, arn:aws:sqs:region:account:sqs.

• DlqEventQueueArn – UTF-8 string.

A valid Amazon dead-letter SQS ARN. For example,
arn:aws:sqs:region:account:deadLetterQueue.

S3DeltaCatalogTarget structure

Specifies a target that writes to a Delta Lake data source in the AWS Glue Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• PartitionKeys – An array of UTF-8 strings.

Specifies native partitioning using a sequence of keys.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to write to.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

Crawlers 2056

https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html

AWS Glue User Guide

The name of the database to write to.

• AdditionalOptions – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Specifies additional connection options for the connector.

• SchemaChangePolicy – A CatalogSchemaChangePolicy object.

A policy that specifies update behavior for the crawler.

S3DeltaDirectTarget structure

Specifies a target that writes to a Delta Lake data source in Amazon S3.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• PartitionKeys – An array of UTF-8 strings.

Specifies native partitioning using a sequence of keys.

• Path – Required: UTF-8 string, matching the Custom string pattern #40.

The Amazon S3 path of your Delta Lake data source to write to.

• Compression – Required: UTF-8 string (valid values: uncompressed="UNCOMPRESSED" |
snappy="SNAPPY").

Specifies how the data is compressed. This is generally not necessary if the data has a standard
file extension. Possible values are "gzip" and "bzip").

• Format – Required: UTF-8 string (valid values: json="JSON" | csv="CSV" | avro="AVRO" |
orc="ORC" | parquet="PARQUET" | hudi="HUDI" | delta="DELTA").

Crawlers 2057

AWS Glue User Guide

Specifies the data output format for the target.

• AdditionalOptions – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Specifies additional connection options for the connector.

• SchemaChangePolicy – A DirectSchemaChangePolicy object.

A policy that specifies update behavior for the crawler.

JdbcTarget structure

Specifies a JDBC data store to crawl.

Fields

• ConnectionName – UTF-8 string.

The name of the connection to use to connect to the JDBC target.

• Path – UTF-8 string.

The path of the JDBC target.

• Exclusions – An array of UTF-8 strings.

A list of glob patterns used to exclude from the crawl. For more information, see Catalog Tables
with a Crawler.

• EnableAdditionalMetadata – An array of UTF-8 strings.

Specify a value of RAWTYPES or COMMENTS to enable additional metadata in table responses.
RAWTYPES provides the native-level datatype. COMMENTS provides comments associated with a
column or table in the database.

If you do not need additional metadata, keep the field empty.

Crawlers 2058

https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html

AWS Glue User Guide

MongoDBTarget structure

Specifies an Amazon DocumentDB or MongoDB data store to crawl.

Fields

• ConnectionName – UTF-8 string.

The name of the connection to use to connect to the Amazon DocumentDB or MongoDB target.

• Path – UTF-8 string.

The path of the Amazon DocumentDB or MongoDB target (database/collection).

• ScanAll – Boolean.

Indicates whether to scan all the records, or to sample rows from the table. Scanning all the
records can take a long time when the table is not a high throughput table.

A value of true means to scan all records, while a value of false means to sample the records.
If no value is specified, the value defaults to true.

DynamoDBTarget structure

Specifies an Amazon DynamoDB table to crawl.

Fields

• Path – UTF-8 string.

The name of the DynamoDB table to crawl.

• scanAll – Boolean.

Indicates whether to scan all the records, or to sample rows from the table. Scanning all the
records can take a long time when the table is not a high throughput table.

A value of true means to scan all records, while a value of false means to sample the records.
If no value is specified, the value defaults to true.

• scanRate – Number (double).

Crawlers 2059

AWS Glue User Guide

The percentage of the configured read capacity units to use by the AWS Glue crawler. Read
capacity units is a term defined by DynamoDB, and is a numeric value that acts as rate limiter for
the number of reads that can be performed on that table per second.

The valid values are null or a value between 0.1 to 1.5. A null value is used when user does not
provide a value, and defaults to 0.5 of the configured Read Capacity Unit (for provisioned tables),
or 0.25 of the max configured Read Capacity Unit (for tables using on-demand mode).

DeltaTarget structure

Specifies a Delta data store to crawl one or more Delta tables.

Fields

• DeltaTables – An array of UTF-8 strings.

A list of the Amazon S3 paths to the Delta tables.

• ConnectionName – UTF-8 string.

The name of the connection to use to connect to the Delta table target.

• WriteManifest – Boolean.

Specifies whether to write the manifest files to the Delta table path.

• CreateNativeDeltaTable – Boolean.

Specifies whether the crawler will create native tables, to allow integration with query engines
that support querying of the Delta transaction log directly.

IcebergTarget structure

Specifies an Apache Iceberg data source where Iceberg tables are stored in Amazon S3.

Fields

• Paths – An array of UTF-8 strings.

One or more Amazon S3 paths that contains Iceberg metadata folders as s3://bucket/
prefix.

Crawlers 2060

AWS Glue User Guide

• ConnectionName – UTF-8 string.

The name of the connection to use to connect to the Iceberg target.

• Exclusions – An array of UTF-8 strings.

A list of glob patterns used to exclude from the crawl. For more information, see Catalog Tables
with a Crawler.

• MaximumTraversalDepth – Number (integer).

The maximum depth of Amazon S3 paths that the crawler can traverse to discover the Iceberg
metadata folder in your Amazon S3 path. Used to limit the crawler run time.

HudiTarget structure

Specifies an Apache Hudi data source.

Fields

• Paths – An array of UTF-8 strings.

An array of Amazon S3 location strings for Hudi, each indicating the root folder with which the
metadata files for a Hudi table resides. The Hudi folder may be located in a child folder of the
root folder.

The crawler will scan all folders underneath a path for a Hudi folder.

• ConnectionName – UTF-8 string.

The name of the connection to use to connect to the Hudi target. If your Hudi files are stored in
buckets that require VPC authorization, you can set their connection properties here.

• Exclusions – An array of UTF-8 strings.

A list of glob patterns used to exclude from the crawl. For more information, see Catalog Tables
with a Crawler.

• MaximumTraversalDepth – Number (integer).

The maximum depth of Amazon S3 paths that the crawler can traverse to discover the Hudi
metadata folder in your Amazon S3 path. Used to limit the crawler run time.

Crawlers 2061

https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html

AWS Glue User Guide

CatalogTarget structure

Specifies an AWS Glue Data Catalog target.

Fields

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the database to be synchronized.

• Tables – Required: An array of UTF-8 strings, at least 1 string.

A list of the tables to be synchronized.

• ConnectionName – UTF-8 string.

The name of the connection for an Amazon S3-backed Data Catalog table to be a target of the
crawl when using a Catalog connection type paired with a NETWORK Connection type.

• EventQueueArn – UTF-8 string.

A valid Amazon SQS ARN. For example, arn:aws:sqs:region:account:sqs.

• DlqEventQueueArn – UTF-8 string.

A valid Amazon dead-letter SQS ARN. For example,
arn:aws:sqs:region:account:deadLetterQueue.

CrawlerMetrics structure

Metrics for a specified crawler.

Fields

• CrawlerName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the crawler.

• TimeLeftSeconds – Number (double), not more than None.

The estimated time left to complete a running crawl.

• StillEstimating – Boolean.

Crawlers 2062

AWS Glue User Guide

True if the crawler is still estimating how long it will take to complete this run.

• LastRuntimeSeconds – Number (double), not more than None.

The duration of the crawler's most recent run, in seconds.

• MedianRuntimeSeconds – Number (double), not more than None.

The median duration of this crawler's runs, in seconds.

• TablesCreated – Number (integer), not more than None.

The number of tables created by this crawler.

• TablesUpdated – Number (integer), not more than None.

The number of tables updated by this crawler.

• TablesDeleted – Number (integer), not more than None.

The number of tables deleted by this crawler.

CrawlerHistory structure

Contains the information for a run of a crawler.

Fields

• CrawlId – UTF-8 string.

A UUID identifier for each crawl.

• State – UTF-8 string (valid values: RUNNING | COMPLETED | FAILED | STOPPED).

The state of the crawl.

• StartTime – Timestamp.

The date and time on which the crawl started.

• EndTime – Timestamp.

The date and time on which the crawl ended.

• Summary – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Crawlers 2063

AWS Glue User Guide

A run summary for the specific crawl in JSON. Contains the catalog tables and partitions that
were added, updated, or deleted.

• ErrorMessage – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

If an error occurred, the error message associated with the crawl.

• LogGroup – UTF-8 string, not less than 1 or more than 512 bytes long, matching the Log group
string pattern.

The log group associated with the crawl.

• LogStream – UTF-8 string, not less than 1 or more than 512 bytes long, matching the Log-
stream string pattern.

The log stream associated with the crawl.

• MessagePrefix – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The prefix for a CloudWatch message about this crawl.

• DPUHour – Number (double), not more than None.

The number of data processing units (DPU) used in hours for the crawl.

CrawlsFilter structure

A list of fields, comparators and value that you can use to filter the crawler runs for a specified
crawler.

Fields

• FieldName – UTF-8 string (valid values: CRAWL_ID | STATE | START_TIME | END_TIME |
DPU_HOUR).

A key used to filter the crawler runs for a specified crawler. Valid values for each of the field
names are:

• CRAWL_ID: A string representing the UUID identifier for a crawl.

• STATE: A string representing the state of the crawl.

• START_TIME and END_TIME: The epoch timestamp in milliseconds.

Crawlers 2064

AWS Glue User Guide

• DPU_HOUR: The number of data processing unit (DPU) hours used for the crawl.

• FilterOperator – UTF-8 string (valid values: GT | GE | LT | LE | EQ | NE).

A defined comparator that operates on the value. The available operators are:

• GT: Greater than.

• GE: Greater than or equal to.

• LT: Less than.

• LE: Less than or equal to.

• EQ: Equal to.

• NE: Not equal to.

• FieldValue – UTF-8 string.

The value provided for comparison on the crawl field.

SchemaChangePolicy structure

A policy that specifies update and deletion behaviors for the crawler.

Fields

• UpdateBehavior – UTF-8 string (valid values: LOG | UPDATE_IN_DATABASE).

The update behavior when the crawler finds a changed schema.

• DeleteBehavior – UTF-8 string (valid values: LOG | DELETE_FROM_DATABASE |
DEPRECATE_IN_DATABASE).

The deletion behavior when the crawler finds a deleted object.

LastCrawlInfo structure

Status and error information about the most recent crawl.

Fields

• Status – UTF-8 string (valid values: SUCCEEDED | CANCELLED | FAILED).

Status of the last crawl.

Crawlers 2065

AWS Glue User Guide

• ErrorMessage – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

If an error occurred, the error information about the last crawl.

• LogGroup – UTF-8 string, not less than 1 or more than 512 bytes long, matching the Log group
string pattern.

The log group for the last crawl.

• LogStream – UTF-8 string, not less than 1 or more than 512 bytes long, matching the Log-
stream string pattern.

The log stream for the last crawl.

• MessagePrefix – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The prefix for a message about this crawl.

• StartTime – Timestamp.

The time at which the crawl started.

RecrawlPolicy structure

When crawling an Amazon S3 data source after the first crawl is complete, specifies whether to
crawl the entire dataset again or to crawl only folders that were added since the last crawler run.
For more information, see Incremental Crawls in AWS Glue in the developer guide.

Fields

• RecrawlBehavior – UTF-8 string (valid values: CRAWL_EVERYTHING |
CRAWL_NEW_FOLDERS_ONLY | CRAWL_EVENT_MODE).

Specifies whether to crawl the entire dataset again or to crawl only folders that were added since
the last crawler run.

A value of CRAWL_EVERYTHING specifies crawling the entire dataset again.

A value of CRAWL_NEW_FOLDERS_ONLY specifies crawling only folders that were added since the
last crawler run.

Crawlers 2066

https://docs.aws.amazon.com/glue/latest/dg/incremental-crawls.html

AWS Glue User Guide

A value of CRAWL_EVENT_MODE specifies crawling only the changes identified by Amazon S3
events.

LineageConfiguration structure

Specifies data lineage configuration settings for the crawler.

Fields

• CrawlerLineageSettings – UTF-8 string (valid values: ENABLE | DISABLE).

Specifies whether data lineage is enabled for the crawler. Valid values are:

• ENABLE: enables data lineage for the crawler

• DISABLE: disables data lineage for the crawler

LakeFormationConfiguration structure

Specifies AWS Lake Formation configuration settings for the crawler.

Fields

• UseLakeFormationCredentials – Boolean.

Specifies whether to use AWS Lake Formation credentials for the crawler instead of the IAM role
credentials.

• AccountId – UTF-8 string, not more than 12 bytes long.

Required for cross account crawls. For same account crawls as the target data, this can be left as
null.

Operations

• CreateCrawler action (Python: create_crawler)

• DeleteCrawler action (Python: delete_crawler)

• GetCrawler action (Python: get_crawler)

• GetCrawlers action (Python: get_crawlers)

Crawlers 2067

AWS Glue User Guide

• GetCrawlerMetrics action (Python: get_crawler_metrics)

• UpdateCrawler action (Python: update_crawler)

• StartCrawler action (Python: start_crawler)

• StopCrawler action (Python: stop_crawler)

• BatchGetCrawlers action (Python: batch_get_crawlers)

• ListCrawlers action (Python: list_crawlers)

• ListCrawls action (Python: list_crawls)

CreateCrawler action (Python: create_crawler)

Creates a new crawler with specified targets, role, configuration, and optional schedule. At least
one crawl target must be specified, in the s3Targets field, the jdbcTargets field, or the
DynamoDBTargets field.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Name of the new crawler.

• Role – Required: UTF-8 string.

The IAM role or Amazon Resource Name (ARN) of an IAM role used by the new crawler to access
customer resources.

• DatabaseName – UTF-8 string.

The AWS Glue database where results are written, such as: arn:aws:daylight:us-
east-1::database/sometable/*.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the new crawler.

• Targets – Required: A CrawlerTargets object.

A list of collection of targets to crawl.

• Schedule – UTF-8 string.

Crawlers 2068

AWS Glue User Guide

A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and
Crawlers. For example, to run something every day at 12:15 UTC, you would specify: cron(15
12 * * ? *).

• Classifiers – An array of UTF-8 strings.

A list of custom classifiers that the user has registered. By default, all built-in classifiers are
included in a crawl, but these custom classifiers always override the default classifiers for a given
classification.

• TablePrefix – UTF-8 string, not more than 128 bytes long.

The table prefix used for catalog tables that are created.

• SchemaChangePolicy – A SchemaChangePolicy object.

The policy for the crawler's update and deletion behavior.

• RecrawlPolicy – A RecrawlPolicy object.

A policy that specifies whether to crawl the entire dataset again, or to crawl only folders that
were added since the last crawler run.

• LineageConfiguration – A LineageConfiguration object.

Specifies data lineage configuration settings for the crawler.

• LakeFormationConfiguration – A LakeFormationConfiguration object.

Specifies AWS Lake Formation configuration settings for the crawler.

• Configuration – UTF-8 string.

Crawler configuration information. This versioned JSON string allows users to specify aspects of
a crawler's behavior. For more information, see Setting crawler configuration options.

• CrawlerSecurityConfiguration – UTF-8 string, not more than 128 bytes long.

The name of the SecurityConfiguration structure to be used by this crawler.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

Crawlers 2069

https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html

AWS Glue User Guide

The tags to use with this crawler request. You may use tags to limit access to the crawler. For
more information about tags in AWS Glue, see AWS Tags in AWS Glue in the developer guide.

Response

• No Response parameters.

Errors

• InvalidInputException

• AlreadyExistsException

• OperationTimeoutException

• ResourceNumberLimitExceededException

DeleteCrawler action (Python: delete_crawler)

Removes a specified crawler from the AWS Glue Data Catalog, unless the crawler state is RUNNING.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the crawler to remove.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• CrawlerRunningException

• SchedulerTransitioningException

• OperationTimeoutException

Crawlers 2070

https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html

AWS Glue User Guide

GetCrawler action (Python: get_crawler)

Retrieves metadata for a specified crawler.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the crawler to retrieve metadata for.

Response

• Crawler – A Crawler object.

The metadata for the specified crawler.

Errors

• EntityNotFoundException

• OperationTimeoutException

GetCrawlers action (Python: get_crawlers)

Retrieves metadata for all crawlers defined in the customer account.

Request

• MaxResults – Number (integer), not less than 1 or more than 1000.

The number of crawlers to return on each call.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation request.

Response

• Crawlers – An array of Crawler objects.

A list of crawler metadata.

Crawlers 2071

AWS Glue User Guide

• NextToken – UTF-8 string.

A continuation token, if the returned list has not reached the end of those defined in this
customer account.

Errors

• OperationTimeoutException

GetCrawlerMetrics action (Python: get_crawler_metrics)

Retrieves metrics about specified crawlers.

Request

• CrawlerNameList – An array of UTF-8 strings, not more than 100 strings.

A list of the names of crawlers about which to retrieve metrics.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum size of a list to return.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

Response

• CrawlerMetricsList – An array of CrawlerMetrics objects.

A list of metrics for the specified crawler.

• NextToken – UTF-8 string.

A continuation token, if the returned list does not contain the last metric available.

Errors

• OperationTimeoutException

Crawlers 2072

AWS Glue User Guide

UpdateCrawler action (Python: update_crawler)

Updates a crawler. If a crawler is running, you must stop it using StopCrawler before updating it.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Name of the new crawler.

• Role – UTF-8 string.

The IAM role or Amazon Resource Name (ARN) of an IAM role that is used by the new crawler to
access customer resources.

• DatabaseName – UTF-8 string.

The AWS Glue database where results are stored, such as: arn:aws:daylight:us-
east-1::database/sometable/*.

• Description – UTF-8 string, not more than 2048 bytes long, matching the URI address multi-
line string pattern.

A description of the new crawler.

• Targets – A CrawlerTargets object.

A list of targets to crawl.

• Schedule – UTF-8 string.

A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and
Crawlers. For example, to run something every day at 12:15 UTC, you would specify: cron(15
12 * * ? *).

• Classifiers – An array of UTF-8 strings.

A list of custom classifiers that the user has registered. By default, all built-in classifiers are
included in a crawl, but these custom classifiers always override the default classifiers for a given
classification.

• TablePrefix – UTF-8 string, not more than 128 bytes long.

The table prefix used for catalog tables that are created.
Crawlers 2073

https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html

AWS Glue User Guide

• SchemaChangePolicy – A SchemaChangePolicy object.

The policy for the crawler's update and deletion behavior.

• RecrawlPolicy – A RecrawlPolicy object.

A policy that specifies whether to crawl the entire dataset again, or to crawl only folders that
were added since the last crawler run.

• LineageConfiguration – A LineageConfiguration object.

Specifies data lineage configuration settings for the crawler.

• LakeFormationConfiguration – A LakeFormationConfiguration object.

Specifies AWS Lake Formation configuration settings for the crawler.

• Configuration – UTF-8 string.

Crawler configuration information. This versioned JSON string allows users to specify aspects of
a crawler's behavior. For more information, see Setting crawler configuration options.

• CrawlerSecurityConfiguration – UTF-8 string, not more than 128 bytes long.

The name of the SecurityConfiguration structure to be used by this crawler.

Response

• No Response parameters.

Errors

• InvalidInputException

• VersionMismatchException

• EntityNotFoundException

• CrawlerRunningException

• OperationTimeoutException

Crawlers 2074

https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html

AWS Glue User Guide

StartCrawler action (Python: start_crawler)

Starts a crawl using the specified crawler, regardless of what is scheduled. If the crawler is already
running, returns a CrawlerRunningException.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Name of the crawler to start.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• CrawlerRunningException

• OperationTimeoutException

StopCrawler action (Python: stop_crawler)

If the specified crawler is running, stops the crawl.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Name of the crawler to stop.

Response

• No Response parameters.

Crawlers 2075

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-exceptions.html#aws-glue-api-exceptions-CrawlerRunningException

AWS Glue User Guide

Errors

• EntityNotFoundException

• CrawlerNotRunningException

• CrawlerStoppingException

• OperationTimeoutException

BatchGetCrawlers action (Python: batch_get_crawlers)

Returns a list of resource metadata for a given list of crawler names. After calling the
ListCrawlers operation, you can call this operation to access the data to which you have been
granted permissions. This operation supports all IAM permissions, including permission conditions
that uses tags.

Request

• CrawlerNames – Required: An array of UTF-8 strings, not more than 100 strings.

A list of crawler names, which might be the names returned from the ListCrawlers operation.

Response

• Crawlers – An array of Crawler objects.

A list of crawler definitions.

• CrawlersNotFound – An array of UTF-8 strings, not more than 100 strings.

A list of names of crawlers that were not found.

Errors

• InvalidInputException

• OperationTimeoutException

Crawlers 2076

AWS Glue User Guide

ListCrawlers action (Python: list_crawlers)

Retrieves the names of all crawler resources in this AWS account, or the resources with the specified
tag. This operation allows you to see which resources are available in your account, and their
names.

This operation takes the optional Tags field, which you can use as a filter on the response so that
tagged resources can be retrieved as a group. If you choose to use tags filtering, only resources
with the tag are retrieved.

Request

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum size of a list to return.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation request.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

Specifies to return only these tagged resources.

Response

• CrawlerNames – An array of UTF-8 strings, not more than 100 strings.

The names of all crawlers in the account, or the crawlers with the specified tags.

• NextToken – UTF-8 string.

A continuation token, if the returned list does not contain the last metric available.

Errors

• OperationTimeoutException

Crawlers 2077

AWS Glue User Guide

ListCrawls action (Python: list_crawls)

Returns all the crawls of a specified crawler. Returns only the crawls that have occurred since the
launch date of the crawler history feature, and only retains up to 12 months of crawls. Older crawls
will not be returned.

You may use this API to:

• Retrive all the crawls of a specified crawler.

• Retrieve all the crawls of a specified crawler within a limited count.

• Retrieve all the crawls of a specified crawler in a specific time range.

• Retrieve all the crawls of a specified crawler with a particular state, crawl ID, or DPU hour value.

Request

• CrawlerName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the crawler whose runs you want to retrieve.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum number of results to return. The default is 20, and maximum is 100.

• Filters – An array of CrawlsFilter objects.

Filters the crawls by the criteria you specify in a list of CrawlsFilter objects.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

Response

• Crawls – An array of CrawlerHistory objects.

A list of CrawlerHistory objects representing the crawl runs that meet your criteria.

• NextToken – UTF-8 string.

A continuation token for paginating the returned list of tokens, returned if the current segment
of the list is not the last.

Crawlers 2078

AWS Glue User Guide

Errors

• EntityNotFoundException

• OperationTimeoutException

• InvalidInputException

Column statistics API

The column statistics API describes AWS Glue APIs for returning statistics on columns in a table.

Data types

• ColumnStatisticsTaskRun structure

• ColumnStatisticsTaskRunningException structure

• ColumnStatisticsTaskNotRunningException structure

• ColumnStatisticsTaskStoppingException structure

ColumnStatisticsTaskRun structure

The object that shows the details of the column stats run.

Fields

• CustomerId – UTF-8 string, not more than 12 bytes long.

The AWS account ID.

• ColumnStatisticsTaskRunId – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The identifier for the particular column statistics task run.

• DatabaseName – UTF-8 string.

The database where the table resides.

• TableName – UTF-8 string.

The name of the table for which column statistics is generated.

• ColumnNameList – An array of UTF-8 strings.

Column statistics 2079

AWS Glue User Guide

A list of the column names. If none is supplied, all column names for the table will be used by
default.

• CatalogID – Catalog id string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the Data Catalog where the table resides. If none is supplied, the AWS account ID is
used by default.

• Role – UTF-8 string.

The IAM role that the service assumes to generate statistics.

• SampleSize – Number (double), not more than 100.

The percentage of rows used to generate statistics. If none is supplied, the entire table will be
used to generate stats.

• SecurityConfiguration – UTF-8 string, not more than 128 bytes long.

Name of the security configuration that is used to encrypt CloudWatch logs for the column stats
task run.

• NumberOfWorkers – Number (integer), at least 1.

The number of workers used to generate column statistics. The job is preconfigured to autoscale
up to 25 instances.

• WorkerType – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The type of workers being used for generating stats. The default is g.1x.

• Status – UTF-8 string (valid values: STARTING | RUNNING | SUCCEEDED | FAILED | STOPPED).

The status of the task run.

• CreationTime – Timestamp.

The time that this task was created.

• LastUpdated – Timestamp.

The last point in time when this task was modified.

• StartTime – Timestamp.

Column statistics 2080

AWS Glue User Guide

The start time of the task.

• EndTime – Timestamp.

The end time of the task.

• ErrorMessage – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

The error message for the job.

• DPUSeconds – Number (double), not more than None.

The calculated DPU usage in seconds for all autoscaled workers.

ColumnStatisticsTaskRunningException structure

An exception thrown when you try to start another job while running a column stats generation
job.

Fields

• Message – UTF-8 string.

A message describing the problem.

ColumnStatisticsTaskNotRunningException structure

An exception thrown when you try to stop a task run when there is no task running.

Fields

• Message – UTF-8 string.

A message describing the problem.

ColumnStatisticsTaskStoppingException structure

An exception thrown when you try to stop a task run.

Column statistics 2081

AWS Glue User Guide

Fields

• Message – UTF-8 string.

A message describing the problem.

Operations

• StartColumnStatisticsTaskRun action (Python: start_column_statistics_task_run)

• GetColumnStatisticsTaskRun action (Python: get_column_statistics_task_run)

• GetColumnStatisticsTaskRuns action (Python: get_column_statistics_task_runs)

• ListColumnStatisticsTaskRuns action (Python: list_column_statistics_task_runs)

• StopColumnStatisticsTaskRun action (Python: stop_column_statistics_task_run)

StartColumnStatisticsTaskRun action (Python: start_column_statistics_task_run)

Starts a column statistics task run, for a specified table and columns.

Request

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the database where the table resides.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table to generate statistics.

• ColumnNameList – An array of UTF-8 strings.

A list of the column names to generate statistics. If none is supplied, all column names for the
table will be used by default.

• Role – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The IAM role that the service assumes to generate statistics.

• SampleSize – Number (double), not more than 100.

Column statistics 2082

AWS Glue User Guide

The percentage of rows used to generate statistics. If none is supplied, the entire table will be
used to generate stats.

• CatalogID – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The ID of the Data Catalog where the table reside. If none is supplied, the AWS account ID is used
by default.

• SecurityConfiguration – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

Name of the security configuration that is used to encrypt CloudWatch logs for the column stats
task run.

Response

• ColumnStatisticsTaskRunId – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The identifier for the column statistics task run.

Errors

• AccessDeniedException

• EntityNotFoundException

• ColumnStatisticsTaskRunningException

• OperationTimeoutException

• ResourceNumberLimitExceededException

• InvalidInputException

GetColumnStatisticsTaskRun action (Python: get_column_statistics_task_run)

Get the associated metadata/information for a task run, given a task run ID.

Column statistics 2083

AWS Glue User Guide

Request

• ColumnStatisticsTaskRunId – Required: UTF-8 string, not less than 1 or more than 255
bytes long, matching the Single-line string pattern.

The identifier for the particular column statistics task run.

Response

• ColumnStatisticsTaskRun – A ColumnStatisticsTaskRun object.

A ColumnStatisticsTaskRun object representing the details of the column stats run.

Errors

• EntityNotFoundException

• OperationTimeoutException

• InvalidInputException

GetColumnStatisticsTaskRuns action (Python: get_column_statistics_task_runs)

Retrieves information about all runs associated with the specified table.

Request

• DatabaseName – Required: UTF-8 string.

The name of the database where the table resides.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum size of the response.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

Column statistics 2084

AWS Glue User Guide

Response

• ColumnStatisticsTaskRuns – An array of ColumnStatisticsTaskRun objects.

A list of column statistics task runs.

• NextToken – UTF-8 string.

A continuation token, if not all task runs have yet been returned.

Errors

• OperationTimeoutException

ListColumnStatisticsTaskRuns action (Python: list_column_statistics_task_runs)

List all task runs for a particular account.

Request

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum size of the response.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

Response

• ColumnStatisticsTaskRunIds – An array of UTF-8 strings, not more than 100 strings.

A list of column statistics task run IDs.

• NextToken – UTF-8 string.

A continuation token, if not all task run IDs have yet been returned.

Errors

• OperationTimeoutException

Column statistics 2085

AWS Glue User Guide

StopColumnStatisticsTaskRun action (Python: stop_column_statistics_task_run)

Stops a task run for the specified table.

Request

• DatabaseName – Required: UTF-8 string.

The name of the database where the table resides.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• ColumnStatisticsTaskNotRunningException

• ColumnStatisticsTaskStoppingException

• OperationTimeoutException

Crawler scheduler API

The Crawler scheduler API describes AWS Glue crawler data types, along with the API for creating,
deleting, updating, and listing crawlers.

Data types

• Schedule structure

Schedule structure

A scheduling object using a cron statement to schedule an event.

Scheduler 2086

AWS Glue User Guide

Fields

• ScheduleExpression – UTF-8 string.

A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and
Crawlers. For example, to run something every day at 12:15 UTC, you would specify: cron(15
12 * * ? *).

• State – UTF-8 string (valid values: SCHEDULED | NOT_SCHEDULED | TRANSITIONING).

The state of the schedule.

Operations

• UpdateCrawlerSchedule action (Python: update_crawler_schedule)

• StartCrawlerSchedule action (Python: start_crawler_schedule)

• StopCrawlerSchedule action (Python: stop_crawler_schedule)

UpdateCrawlerSchedule action (Python: update_crawler_schedule)

Updates the schedule of a crawler using a cron expression.

Request

• CrawlerName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the crawler whose schedule to update.

• Schedule – UTF-8 string.

The updated cron expression used to specify the schedule (see Time-Based Schedules for
Jobs and Crawlers. For example, to run something every day at 12:15 UTC, you would specify:
cron(15 12 * * ? *).

Response

• No Response parameters.

Scheduler 2087

https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html

AWS Glue User Guide

Errors

• EntityNotFoundException

• InvalidInputException

• VersionMismatchException

• SchedulerTransitioningException

• OperationTimeoutException

StartCrawlerSchedule action (Python: start_crawler_schedule)

Changes the schedule state of the specified crawler to SCHEDULED, unless the crawler is already
running or the schedule state is already SCHEDULED.

Request

• CrawlerName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

Name of the crawler to schedule.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• SchedulerRunningException

• SchedulerTransitioningException

• NoScheduleException

• OperationTimeoutException

StopCrawlerSchedule action (Python: stop_crawler_schedule)

Sets the schedule state of the specified crawler to NOT_SCHEDULED, but does not stop the crawler
if it is already running.

Scheduler 2088

AWS Glue User Guide

Request

• CrawlerName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

Name of the crawler whose schedule state to set.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• SchedulerNotRunningException

• SchedulerTransitioningException

• OperationTimeoutException

Autogenerating ETL Scripts API

The ETL script-generation API describes the datatypes and API for generating ETL scripts in AWS
Glue.

Data types

• CodeGenNode structure

• CodeGenNodeArg structure

• CodeGenEdge structure

• Location structure

• CatalogEntry structure

• MappingEntry structure

CodeGenNode structure

Represents a node in a directed acyclic graph (DAG)

Autogenerating ETL Scripts 2089

AWS Glue User Guide

Fields

• Id – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Identifier
string pattern.

A node identifier that is unique within the node's graph.

• NodeType – Required: UTF-8 string.

The type of node that this is.

• Args – Required: An array of CodeGenNodeArg objects, not more than 50 structures.

Properties of the node, in the form of name-value pairs.

• LineNumber – Number (integer).

The line number of the node.

CodeGenNodeArg structure

An argument or property of a node.

Fields

• Name – Required: UTF-8 string.

The name of the argument or property.

• Value – Required: UTF-8 string.

The value of the argument or property.

• Param – Boolean.

True if the value is used as a parameter.

CodeGenEdge structure

Represents a directional edge in a directed acyclic graph (DAG).

CodeGenNodeArg 2090

AWS Glue User Guide

Fields

• Source – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Identifier string pattern.

The ID of the node at which the edge starts.

• Target – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Identifier string pattern.

The ID of the node at which the edge ends.

• TargetParameter – UTF-8 string.

The target of the edge.

Location structure

The location of resources.

Fields

• Jdbc – An array of CodeGenNodeArg objects, not more than 50 structures.

A JDBC location.

• S3 – An array of CodeGenNodeArg objects, not more than 50 structures.

An Amazon Simple Storage Service (Amazon S3) location.

• DynamoDB – An array of CodeGenNodeArg objects, not more than 50 structures.

An Amazon DynamoDB table location.

CatalogEntry structure

Specifies a table definition in the AWS Glue Data Catalog.

Fields

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

Location 2091

AWS Glue User Guide

The database in which the table metadata resides.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the table in question.

MappingEntry structure

Defines a mapping.

Fields

• SourceTable – UTF-8 string.

The name of the source table.

• SourcePath – UTF-8 string.

The source path.

• SourceType – UTF-8 string.

The source type.

• TargetTable – UTF-8 string.

The target table.

• TargetPath – UTF-8 string.

The target path.

• TargetType – UTF-8 string.

The target type.

Operations

• CreateScript action (Python: create_script)

• GetDataflowGraph action (Python: get_dataflow_graph)

• GetMapping action (Python: get_mapping)

• GetPlan action (Python: get_plan)

MappingEntry 2092

AWS Glue User Guide

CreateScript action (Python: create_script)

Transforms a directed acyclic graph (DAG) into code.

Request

• DagNodes – An array of CodeGenNode objects.

A list of the nodes in the DAG.

• DagEdges – An array of CodeGenEdge objects.

A list of the edges in the DAG.

• Language – UTF-8 string (valid values: PYTHON | SCALA).

The programming language of the resulting code from the DAG.

Response

• PythonScript – UTF-8 string.

The Python script generated from the DAG.

• ScalaCode – UTF-8 string.

The Scala code generated from the DAG.

Errors

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

GetDataflowGraph action (Python: get_dataflow_graph)

Transforms a Python script into a directed acyclic graph (DAG).

Request

• PythonScript – UTF-8 string.

CreateScript (create_script) 2093

AWS Glue User Guide

The Python script to transform.

Response

• DagNodes – An array of CodeGenNode objects.

A list of the nodes in the resulting DAG.

• DagEdges – An array of CodeGenEdge objects.

A list of the edges in the resulting DAG.

Errors

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

GetMapping action (Python: get_mapping)

Creates mappings.

Request

• Source – Required: A CatalogEntry object.

Specifies the source table.

• Sinks – An array of CatalogEntry objects.

A list of target tables.

• Location – A Location object.

Parameters for the mapping.

Response

• Mapping – Required: An array of MappingEntry objects.

GetMapping (get_mapping) 2094

AWS Glue User Guide

A list of mappings to the specified targets.

Errors

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• EntityNotFoundException

GetPlan action (Python: get_plan)

Gets code to perform a specified mapping.

Request

• Mapping – Required: An array of MappingEntry objects.

The list of mappings from a source table to target tables.

• Source – Required: A CatalogEntry object.

The source table.

• Sinks – An array of CatalogEntry objects.

The target tables.

• Location – A Location object.

The parameters for the mapping.

• Language – UTF-8 string (valid values: PYTHON | SCALA).

The programming language of the code to perform the mapping.

• AdditionalPlanOptionsMap – A map array of key-value pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

A map to hold additional optional key-value parameters.

GetPlan (get_plan) 2095

AWS Glue User Guide

Currently, these key-value pairs are supported:

• inferSchema — Specifies whether to set inferSchema to true or false for the default script
generated by an AWS Glue job. For example, to set inferSchema to true, pass the following
key value pair:

--additional-plan-options-map '{"inferSchema":"true"}'

Response

• PythonScript – UTF-8 string.

A Python script to perform the mapping.

• ScalaCode – UTF-8 string.

The Scala code to perform the mapping.

Errors

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

Visual job API

The Visual job API allows you to create data integration jobs by using the AWS Glue API from a
JSON object that represents a visual configuration of a AWS Glue job.

A list of CodeGenConfigurationNodes are provided to a create or update job API to register a
DAG in AWS Glue Studio for the created job and generate the associated code.

Data types

• CodeGenConfigurationNode structure

• JDBCConnectorOptions structure

• StreamingDataPreviewOptions structure

• AthenaConnectorSource structure

Visual job API 2096

AWS Glue User Guide

• JDBCConnectorSource structure

• SparkConnectorSource structure

• CatalogSource structure

• MySQLCatalogSource structure

• PostgreSQLCatalogSource structure

• OracleSQLCatalogSource structure

• MicrosoftSQLServerCatalogSource structure

• CatalogKinesisSource structure

• DirectKinesisSource structure

• KinesisStreamingSourceOptions structure

• CatalogKafkaSource structure

• DirectKafkaSource structure

• KafkaStreamingSourceOptions structure

• RedshiftSource structure

• AmazonRedshiftSource structure

• AmazonRedshiftNodeData structure

• AmazonRedshiftAdvancedOption structure

• Option structure

• S3CatalogSource structure

• S3SourceAdditionalOptions structure

• S3CsvSource structure

• DirectJDBCSource structure

• S3DirectSourceAdditionalOptions structure

• S3JsonSource structure

• S3ParquetSource structure

• S3DeltaSource structure

• S3CatalogDeltaSource structure

• CatalogDeltaSource structure

• S3HudiSource structure

 — data types — 2097

AWS Glue User Guide

• S3CatalogHudiSource structure

• CatalogHudiSource structure

• DynamoDBCatalogSource structure

• RelationalCatalogSource structure

• JDBCConnectorTarget structure

• SparkConnectorTarget structure

• BasicCatalogTarget structure

• MySQLCatalogTarget structure

• PostgreSQLCatalogTarget structure

• OracleSQLCatalogTarget structure

• MicrosoftSQLServerCatalogTarget structure

• RedshiftTarget structure

• AmazonRedshiftTarget structure

• UpsertRedshiftTargetOptions structure

• S3CatalogTarget structure

• S3GlueParquetTarget structure

• CatalogSchemaChangePolicy structure

• S3DirectTarget structure

• S3HudiCatalogTarget structure

• S3HudiDirectTarget structure

• S3DeltaCatalogTarget structure

• S3DeltaDirectTarget structure

• DirectSchemaChangePolicy structure

• ApplyMapping structure

• Mapping structure

• SelectFields structure

• DropFields structure

• RenameField structure

• Spigot structure

 — data types — 2098

AWS Glue User Guide

• Join structure

• JoinColumn structure

• SplitFields structure

• SelectFromCollection structure

• FillMissingValues structure

• Filter structure

• FilterExpression structure

• FilterValue structure

• CustomCode structure

• SparkSQL structure

• SqlAlias structure

• DropNullFields structure

• NullCheckBoxList structure

• NullValueField structure

• Datatype structure

• Merge structure

• Union structure

• PIIDetection structure

• Aggregate structure

• DropDuplicates structure

• GovernedCatalogTarget structure

• GovernedCatalogSource structure

• AggregateOperation structure

• GlueSchema structure

• GlueStudioSchemaColumn structure

• GlueStudioColumn structure

• DynamicTransform structure

• TransformConfigParameter structure

• EvaluateDataQuality structure

 — data types — 2099

AWS Glue User Guide

• DQResultsPublishingOptions structure

• DQStopJobOnFailureOptions structure

• EvaluateDataQualityMultiFrame structure

• Recipe structure

• RecipeReference structure

• SnowflakeNodeData structure

• SnowflakeSource structure

• SnowflakeTarget structure

• ConnectorDataSource structure

• ConnectorDataTarget structure

CodeGenConfigurationNode structure

CodeGenConfigurationNode enumerates all valid Node types. One and only one of its member
variables can be populated.

Fields

• AthenaConnectorSource – An AthenaConnectorSource object.

Specifies a connector to an Amazon Athena data source.

• JDBCConnectorSource – A JDBCConnectorSource object.

Specifies a connector to a JDBC data source.

• SparkConnectorSource – A SparkConnectorSource object.

Specifies a connector to an Apache Spark data source.

• CatalogSource – A CatalogSource object.

Specifies a data store in the AWS Glue Data Catalog.

• RedshiftSource – A RedshiftSource object.

Specifies an Amazon Redshift data store.

• S3CatalogSource – A S3CatalogSource object.

CodeGenConfigurationNode 2100

AWS Glue User Guide

Specifies an Amazon S3 data store in the AWS Glue Data Catalog.

• S3CsvSource – A S3CsvSource object.

Specifies a command-separated value (CSV) data store stored in Amazon S3.

• S3JsonSource – A S3JsonSource object.

Specifies a JSON data store stored in Amazon S3.

• S3ParquetSource – A S3ParquetSource object.

Specifies an Apache Parquet data store stored in Amazon S3.

• RelationalCatalogSource – A RelationalCatalogSource object.

Specifies a relational catalog data store in the AWS Glue Data Catalog.

• DynamoDBCatalogSource – A DynamoDBCatalogSource object.

Specifies a DynamoDBC Catalog data store in the AWS Glue Data Catalog.

• JDBCConnectorTarget – A JDBCConnectorTarget object.

Specifies a data target that writes to Amazon S3 in Apache Parquet columnar storage.

• SparkConnectorTarget – A SparkConnectorTarget object.

Specifies a target that uses an Apache Spark connector.

• CatalogTarget – A BasicCatalogTarget object.

Specifies a target that uses a AWS Glue Data Catalog table.

• RedshiftTarget – A RedshiftTarget object.

Specifies a target that uses Amazon Redshift.

• S3CatalogTarget – A S3CatalogTarget object.

Specifies a data target that writes to Amazon S3 using the AWS Glue Data Catalog.

• S3GlueParquetTarget – A S3GlueParquetTarget object.

Specifies a data target that writes to Amazon S3 in Apache Parquet columnar storage.

• S3DirectTarget – A S3DirectTarget object.

Specifies a data target that writes to Amazon S3.

CodeGenConfigurationNode 2101

AWS Glue User Guide

• ApplyMapping – An ApplyMapping object.

Specifies a transform that maps data property keys in the data source to data property keys in
the data target. You can rename keys, modify the data types for keys, and choose which keys to
drop from the dataset.

• SelectFields – A SelectFields object.

Specifies a transform that chooses the data property keys that you want to keep.

• DropFields – A DropFields object.

Specifies a transform that chooses the data property keys that you want to drop.

• RenameField – A RenameField object.

Specifies a transform that renames a single data property key.

• Spigot – A Spigot object.

Specifies a transform that writes samples of the data to an Amazon S3 bucket.

• Join – A Join object.

Specifies a transform that joins two datasets into one dataset using a comparison phrase on the
specified data property keys. You can use inner, outer, left, right, left semi, and left anti joins.

• SplitFields – A SplitFields object.

Specifies a transform that splits data property keys into two DynamicFrames. The output is a
collection of DynamicFrames: one with selected data property keys, and one with the remaining
data property keys.

• SelectFromCollection – A SelectFromCollection object.

Specifies a transform that chooses one DynamicFrame from a collection of DynamicFrames.
The output is the selected DynamicFrame

• FillMissingValues – A FillMissingValues object.

Specifies a transform that locates records in the dataset that have missing values and adds a
new field with a value determined by imputation. The input data set is used to train the machine
learning model that determines what the missing value should be.

• Filter – A Filter object.

Specifies a transform that splits a dataset into two, based on a filter condition.

CodeGenConfigurationNode 2102

AWS Glue User Guide

• CustomCode – A CustomCode object.

Specifies a transform that uses custom code you provide to perform the data transformation.
The output is a collection of DynamicFrames.

• SparkSQL – A SparkSQL object.

Specifies a transform where you enter a SQL query using Spark SQL syntax to transform the
data. The output is a single DynamicFrame.

• DirectKinesisSource – A DirectKinesisSource object.

Specifies a direct Amazon Kinesis data source.

• DirectKafkaSource – A DirectKafkaSource object.

Specifies an Apache Kafka data store.

• CatalogKinesisSource – A CatalogKinesisSource object.

Specifies a Kinesis data source in the AWS Glue Data Catalog.

• CatalogKafkaSource – A CatalogKafkaSource object.

Specifies an Apache Kafka data store in the Data Catalog.

• DropNullFields – A DropNullFields object.

Specifies a transform that removes columns from the dataset if all values in the column are 'null'.
By default, AWS Glue Studio will recognize null objects, but some values such as empty strings,
strings that are "null", -1 integers or other placeholders such as zeros, are not automatically
recognized as nulls.

• Merge – A Merge object.

Specifies a transform that merges a DynamicFrame with a staging DynamicFrame based on the
specified primary keys to identify records. Duplicate records (records with the same primary keys)
are not de-duplicated.

• Union – An Union object.

Specifies a transform that combines the rows from two or more datasets into a single result.

• PIIDetection – A PIIDetection object.

Specifies a transform that identifies, removes or masks PII data.

• Aggregate – An Aggregate object.

CodeGenConfigurationNode 2103

AWS Glue User Guide

Specifies a transform that groups rows by chosen fields and computes the aggregated value by
specified function.

• DropDuplicates – A DropDuplicates object.

Specifies a transform that removes rows of repeating data from a data set.

• GovernedCatalogTarget – A GovernedCatalogTarget object.

Specifies a data target that writes to a goverened catalog.

• GovernedCatalogSource – A GovernedCatalogSource object.

Specifies a data source in a goverened Data Catalog.

• MicrosoftSQLServerCatalogSource – A MicrosoftSQLServerCatalogSource object.

Specifies a Microsoft SQL server data source in the AWS Glue Data Catalog.

• MySQLCatalogSource – A MySQLCatalogSource object.

Specifies a MySQL data source in the AWS Glue Data Catalog.

• OracleSQLCatalogSource – An OracleSQLCatalogSource object.

Specifies an Oracle data source in the AWS Glue Data Catalog.

• PostgreSQLCatalogSource – A PostgreSQLCatalogSource object.

Specifies a PostgresSQL data source in the AWS Glue Data Catalog.

• MicrosoftSQLServerCatalogTarget – A MicrosoftSQLServerCatalogTarget object.

Specifies a target that uses Microsoft SQL.

• MySQLCatalogTarget – A MySQLCatalogTarget object.

Specifies a target that uses MySQL.

• OracleSQLCatalogTarget – An OracleSQLCatalogTarget object.

Specifies a target that uses Oracle SQL.

• PostgreSQLCatalogTarget – A PostgreSQLCatalogTarget object.

Specifies a target that uses Postgres SQL.

• DynamicTransform – A DynamicTransform object.

CodeGenConfigurationNode 2104

AWS Glue User Guide

Specifies a custom visual transform created by a user.

• EvaluateDataQuality – An EvaluateDataQuality object.

Specifies your data quality evaluation criteria.

• S3CatalogHudiSource – A S3CatalogHudiSource object.

Specifies a Hudi data source that is registered in the AWS Glue Data Catalog. The data source
must be stored in Amazon S3.

• CatalogHudiSource – A CatalogHudiSource object.

Specifies a Hudi data source that is registered in the AWS Glue Data Catalog.

• S3HudiSource – A S3HudiSource object.

Specifies a Hudi data source stored in Amazon S3.

• S3HudiCatalogTarget – A S3HudiCatalogTarget object.

Specifies a target that writes to a Hudi data source in the AWS Glue Data Catalog.

• S3HudiDirectTarget – A S3HudiDirectTarget object.

Specifies a target that writes to a Hudi data source in Amazon S3.

• S3CatalogDeltaSource – A S3CatalogDeltaSource object.

Specifies a Delta Lake data source that is registered in the AWS Glue Data Catalog. The data
source must be stored in Amazon S3.

• CatalogDeltaSource – A CatalogDeltaSource object.

Specifies a Delta Lake data source that is registered in the AWS Glue Data Catalog.

• S3DeltaSource – A S3DeltaSource object.

Specifies a Delta Lake data source stored in Amazon S3.

• S3DeltaCatalogTarget – A S3DeltaCatalogTarget object.

Specifies a target that writes to a Delta Lake data source in the AWS Glue Data Catalog.

• S3DeltaDirectTarget – A S3DeltaDirectTarget object.

Specifies a target that writes to a Delta Lake data source in Amazon S3.

• AmazonRedshiftSource – An AmazonRedshiftSource object.

CodeGenConfigurationNode 2105

AWS Glue User Guide

Specifies a target that writes to a data source in Amazon Redshift.

• AmazonRedshiftTarget – An AmazonRedshiftTarget object.

Specifies a target that writes to a data target in Amazon Redshift.

• EvaluateDataQualityMultiFrame – An EvaluateDataQualityMultiFrame object.

Specifies your data quality evaluation criteria. Allows multiple input data and returns a collection
of Dynamic Frames.

• Recipe – A Recipe object.

Specifies a AWS Glue DataBrew recipe node.

• SnowflakeSource – A SnowflakeSource object.

Specifies a Snowflake data source.

• SnowflakeTarget – A SnowflakeTarget object.

Specifies a target that writes to a Snowflake data source.

• ConnectorDataSource – A ConnectorDataSource object.

Specifies a source generated with standard connection options.

• ConnectorDataTarget – A ConnectorDataTarget object.

Specifies a target generated with standard connection options.

JDBCConnectorOptions structure

Additional connection options for the connector.

Fields

• FilterPredicate – UTF-8 string, matching the Custom string pattern #40.

Extra condition clause to filter data from source. For example:

BillingCity='Mountain View'

When using a query instead of a table name, you should validate that the query works with the
specified filterPredicate.

JDBCConnectorOptions 2106

AWS Glue User Guide

• PartitionColumn – UTF-8 string, matching the Custom string pattern #40.

The name of an integer column that is used for partitioning. This option works only when it's
included with lowerBound, upperBound, and numPartitions. This option works the same
way as in the Spark SQL JDBC reader.

• LowerBound – Number (long), not more than None.

The minimum value of partitionColumn that is used to decide partition stride.

• UpperBound – Number (long), not more than None.

The maximum value of partitionColumn that is used to decide partition stride.

• NumPartitions – Number (long), not more than None.

The number of partitions. This value, along with lowerBound (inclusive) and upperBound
(exclusive), form partition strides for generated WHERE clause expressions that are used to split
the partitionColumn.

• JobBookmarkKeys – An array of UTF-8 strings.

The name of the job bookmark keys on which to sort.

• JobBookmarkKeysSortOrder – UTF-8 string, matching the Custom string pattern #40.

Specifies an ascending or descending sort order.

• DataTypeMapping – A map array of key-value pairs.

Each key is a UTF-8 string (valid values: ARRAY | BIGINT | BINARY | BIT | BLOB | BOOLEAN | CHAR
| CLOB | DATALINK | DATE | DECIMAL | DISTINCT | DOUBLE | FLOAT | INTEGER | JAVA_OBJECT
| LONGNVARCHAR | LONGVARBINARY | LONGVARCHAR | NCHAR | NCLOB | NULL | NUMERIC |
NVARCHAR | OTHER | REAL | REF | REF_CURSOR | ROWID | SMALLINT | SQLXML | STRUCT | TIME |
TIME_WITH_TIMEZONE | TIMESTAMP | TIMESTAMP_WITH_TIMEZONE | TINYINT | VARBINARY |
VARCHAR).

Each value is a UTF-8 string (valid values: DATE | STRING | TIMESTAMP | INT | FLOAT | LONG |
BIGDECIMAL | BYTE | SHORT | DOUBLE).

Custom data type mapping that builds a mapping from a JDBC data type to an AWS Glue data
type. For example, the option "dataTypeMapping":{"FLOAT":"STRING"} maps data fields
of JDBC type FLOAT into the Java String type by calling the ResultSet.getString()
method of the driver, and uses it to build the AWS Glue record. The ResultSet object is

JDBCConnectorOptions 2107

AWS Glue User Guide

implemented by each driver, so the behavior is specific to the driver you use. Refer to the
documentation for your JDBC driver to understand how the driver performs the conversions.

StreamingDataPreviewOptions structure

Specifies options related to data preview for viewing a sample of your data.

Fields

• PollingTime – Number (long), at least 10.

The polling time in milliseconds.

• RecordPollingLimit – Number (long), at least 1.

The limit to the number of records polled.

AthenaConnectorSource structure

Specifies a connector to an Amazon Athena data source.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data source.

• ConnectionName – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the connection that is associated with the connector.

• ConnectorName – Required: UTF-8 string, matching the Custom string pattern #40.

The name of a connector that assists with accessing the data store in AWS Glue Studio.

• ConnectionType – Required: UTF-8 string, matching the Custom string pattern #40.

The type of connection, such as marketplace.athena or custom.athena, designating a connection
to an Amazon Athena data store.

• ConnectionTable – UTF-8 string, matching the Custom string pattern #41.

The name of the table in the data source.

• SchemaName – Required: UTF-8 string, matching the Custom string pattern #40.

StreamingDataPreviewOptions 2108

AWS Glue User Guide

The name of the Cloudwatch log group to read from. For example, /aws-glue/jobs/output.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the custom Athena source.

JDBCConnectorSource structure

Specifies a connector to a JDBC data source.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data source.

• ConnectionName – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the connection that is associated with the connector.

• ConnectorName – Required: UTF-8 string, matching the Custom string pattern #40.

The name of a connector that assists with accessing the data store in AWS Glue Studio.

• ConnectionType – Required: UTF-8 string, matching the Custom string pattern #40.

The type of connection, such as marketplace.jdbc or custom.jdbc, designating a connection to a
JDBC data store.

• AdditionalOptions – A JDBCConnectorOptions object.

Additional connection options for the connector.

• ConnectionTable – UTF-8 string, matching the Custom string pattern #41.

The name of the table in the data source.

• Query – UTF-8 string, matching the Custom string pattern #42.

The table or SQL query to get the data from. You can specify either ConnectionTable or
query, but not both.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the custom JDBC source.

JDBCConnectorSource 2109

AWS Glue User Guide

SparkConnectorSource structure

Specifies a connector to an Apache Spark data source.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data source.

• ConnectionName – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the connection that is associated with the connector.

• ConnectorName – Required: UTF-8 string, matching the Custom string pattern #40.

The name of a connector that assists with accessing the data store in AWS Glue Studio.

• ConnectionType – Required: UTF-8 string, matching the Custom string pattern #40.

The type of connection, such as marketplace.spark or custom.spark, designating a connection to
an Apache Spark data store.

• AdditionalOptions – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Additional connection options for the connector.

• OutputSchemas – An array of GlueSchema objects.

Specifies data schema for the custom spark source.

CatalogSource structure

Specifies a data store in the AWS Glue Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data store.
SparkConnectorSource 2110

AWS Glue User Guide

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to read from.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to read from.

MySQLCatalogSource structure

Specifies a MySQL data source in the AWS Glue Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data source.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to read from.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to read from.

PostgreSQLCatalogSource structure

Specifies a PostgresSQL data source in the AWS Glue Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data source.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to read from.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to read from.
MySQLCatalogSource 2111

AWS Glue User Guide

OracleSQLCatalogSource structure

Specifies an Oracle data source in the AWS Glue Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data source.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to read from.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to read from.

MicrosoftSQLServerCatalogSource structure

Specifies a Microsoft SQL server data source in the AWS Glue Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data source.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to read from.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to read from.

CatalogKinesisSource structure

Specifies a Kinesis data source in the AWS Glue Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

OracleSQLCatalogSource 2112

AWS Glue User Guide

The name of the data source.

• WindowSize – Number (integer), not more than None.

The amount of time to spend processing each micro batch.

• DetectSchema – Boolean.

Whether to automatically determine the schema from the incoming data.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to read from.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to read from.

• StreamingOptions – A KinesisStreamingSourceOptions object.

Additional options for the Kinesis streaming data source.

• DataPreviewOptions – A StreamingDataPreviewOptions object.

Additional options for data preview.

DirectKinesisSource structure

Specifies a direct Amazon Kinesis data source.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data source.

• WindowSize – Number (integer), not more than None.

The amount of time to spend processing each micro batch.

• DetectSchema – Boolean.

Whether to automatically determine the schema from the incoming data.

• StreamingOptions – A KinesisStreamingSourceOptions object.

Additional options for the Kinesis streaming data source.

DirectKinesisSource 2113

AWS Glue User Guide

• DataPreviewOptions – A StreamingDataPreviewOptions object.

Additional options for data preview.

KinesisStreamingSourceOptions structure

Additional options for the Amazon Kinesis streaming data source.

Fields

• EndpointUrl – UTF-8 string, matching the Custom string pattern #40.

The URL of the Kinesis endpoint.

• StreamName – UTF-8 string, matching the Custom string pattern #40.

The name of the Kinesis data stream.

• Classification – UTF-8 string, matching the Custom string pattern #40.

An optional classification.

• Delimiter – UTF-8 string, matching the Custom string pattern #40.

Specifies the delimiter character.

• StartingPosition – UTF-8 string (valid values: latest="LATEST" |
trim_horizon="TRIM_HORIZON" | earliest="EARLIEST" | timestamp="TIMESTAMP").

The starting position in the Kinesis data stream to read data from. The possible values are
"latest", "trim_horizon", "earliest", or a timestamp string in UTC format in the pattern
yyyy-mm-ddTHH:MM:SSZ (where Z represents a UTC timezone offset with a +/-. For example:
"2023-04-04T08:00:00-04:00"). The default value is "latest".

Note: Using a value that is a timestamp string in UTC format for "startingPosition" is supported
only for AWS Glue version 4.0 or later.

• MaxFetchTimeInMs – Number (long), not more than None.

The maximum time spent for the job executor to read records for the current batch from the
Kinesis data stream, specified in milliseconds (ms). Multiple GetRecords API calls may be made
within this time. The default value is 1000.

• MaxFetchRecordsPerShard – Number (long), not more than None.

KinesisStreamingSourceOptions 2114

AWS Glue User Guide

The maximum number of records to fetch per shard in the Kinesis data stream per microbatch.
Note: The client can exceed this limit if the streaming job has already read extra records from
Kinesis (in the same get-records call). If MaxFetchRecordsPerShard needs to be strict then it
needs to be a multiple of MaxRecordPerRead. The default value is 100000.

• MaxRecordPerRead – Number (long), not more than None.

The maximum number of records to fetch from the Kinesis data stream in each getRecords
operation. The default value is 10000.

• AddIdleTimeBetweenReads – Boolean.

Adds a time delay between two consecutive getRecords operations. The default value is
"False". This option is only configurable for Glue version 2.0 and above.

• IdleTimeBetweenReadsInMs – Number (long), not more than None.

The minimum time delay between two consecutive getRecords operations, specified in ms. The
default value is 1000. This option is only configurable for Glue version 2.0 and above.

• DescribeShardInterval – Number (long), not more than None.

The minimum time interval between two ListShards API calls for your script to consider
resharding. The default value is 1s.

• NumRetries – Number (integer), not more than None.

The maximum number of retries for Kinesis Data Streams API requests. The default value is 3.

• RetryIntervalMs – Number (long), not more than None.

The cool-off time period (specified in ms) before retrying the Kinesis Data Streams API call. The
default value is 1000.

• MaxRetryIntervalMs – Number (long), not more than None.

The maximum cool-off time period (specified in ms) between two retries of a Kinesis Data
Streams API call. The default value is 10000.

• AvoidEmptyBatches – Boolean.

Avoids creating an empty microbatch job by checking for unread data in the Kinesis data stream
before the batch is started. The default value is "False".

• StreamArn – UTF-8 string, matching the Custom string pattern #40.

KinesisStreamingSourceOptions 2115

AWS Glue User Guide

The Amazon Resource Name (ARN) of the Kinesis data stream.

• RoleArn – UTF-8 string, matching the Custom string pattern #40.

The Amazon Resource Name (ARN) of the role to assume using AWS Security Token Service (AWS
STS). This role must have permissions for describe or read record operations for the Kinesis data
stream. You must use this parameter when accessing a data stream in a different account. Used
in conjunction with "awsSTSSessionName".

• RoleSessionName – UTF-8 string, matching the Custom string pattern #40.

An identifier for the session assuming the role using AWS STS. You must use this
parameter when accessing a data stream in a different account. Used in conjunction with
"awsSTSRoleARN".

• AddRecordTimestamp – UTF-8 string, matching the Custom string pattern #40.

When this option is set to 'true', the data output will contain an additional column named
"__src_timestamp" that indicates the time when the corresponding record received by the
stream. The default value is 'false'. This option is supported in AWS Glue version 4.0 or later.

• EmitConsumerLagMetrics – UTF-8 string, matching the Custom string pattern #40.

When this option is set to 'true', for each batch, it will emit the metrics for the duration between
the oldest record received by the stream and the time it arrives in AWS Glue to CloudWatch. The
metric's name is "glue.driver.streaming.maxConsumerLagInMs". The default value is 'false'. This
option is supported in AWS Glue version 4.0 or later.

• StartingTimestamp – UTF-8 string.

The timestamp of the record in the Kinesis data stream to start reading data from. The possible
values are a timestamp string in UTC format of the pattern yyyy-mm-ddTHH:MM:SSZ (where Z
represents a UTC timezone offset with a +/-. For example: "2023-04-04T08:00:00+08:00").

CatalogKafkaSource structure

Specifies an Apache Kafka data store in the Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

CatalogKafkaSource 2116

AWS Glue User Guide

The name of the data store.

• WindowSize – Number (integer), not more than None.

The amount of time to spend processing each micro batch.

• DetectSchema – Boolean.

Whether to automatically determine the schema from the incoming data.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to read from.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to read from.

• StreamingOptions – A KafkaStreamingSourceOptions object.

Specifies the streaming options.

• DataPreviewOptions – A StreamingDataPreviewOptions object.

Specifies options related to data preview for viewing a sample of your data.

DirectKafkaSource structure

Specifies an Apache Kafka data store.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data store.

• StreamingOptions – A KafkaStreamingSourceOptions object.

Specifies the streaming options.

• WindowSize – Number (integer), not more than None.

The amount of time to spend processing each micro batch.

• DetectSchema – Boolean.

Whether to automatically determine the schema from the incoming data.

DirectKafkaSource 2117

AWS Glue User Guide

• DataPreviewOptions – A StreamingDataPreviewOptions object.

Specifies options related to data preview for viewing a sample of your data.

KafkaStreamingSourceOptions structure

Additional options for streaming.

Fields

• BootstrapServers – UTF-8 string, matching the Custom string pattern #40.

A list of bootstrap server URLs, for example, as b-1.vpc-test-2.o4q88o.c6.kafka.us-
east-1.amazonaws.com:9094. This option must be specified in the API call or defined in the
table metadata in the Data Catalog.

• SecurityProtocol – UTF-8 string, matching the Custom string pattern #40.

The protocol used to communicate with brokers. The possible values are "SSL" or
"PLAINTEXT".

• ConnectionName – UTF-8 string, matching the Custom string pattern #40.

The name of the connection.

• TopicName – UTF-8 string, matching the Custom string pattern #40.

The topic name as specified in Apache Kafka. You must specify at least one of "topicName",
"assign" or "subscribePattern".

• Assign – UTF-8 string, matching the Custom string pattern #40.

The specific TopicPartitions to consume. You must specify at least one of "topicName",
"assign" or "subscribePattern".

• SubscribePattern – UTF-8 string, matching the Custom string pattern #40.

A Java regex string that identifies the topic list to subscribe to. You must specify at least one of
"topicName", "assign" or "subscribePattern".

• Classification – UTF-8 string, matching the Custom string pattern #40.

An optional classification.

• Delimiter – UTF-8 string, matching the Custom string pattern #40.

KafkaStreamingSourceOptions 2118

AWS Glue User Guide

Specifies the delimiter character.

• StartingOffsets – UTF-8 string, matching the Custom string pattern #40.

The starting position in the Kafka topic to read data from. The possible values are "earliest"
or "latest". The default value is "latest".

• EndingOffsets – UTF-8 string, matching the Custom string pattern #40.

The end point when a batch query is ended. Possible values are either "latest" or a JSON
string that specifies an ending offset for each TopicPartition.

• PollTimeoutMs – Number (long), not more than None.

The timeout in milliseconds to poll data from Kafka in Spark job executors. The default value is
512.

• NumRetries – Number (integer), not more than None.

The number of times to retry before failing to fetch Kafka offsets. The default value is 3.

• RetryIntervalMs – Number (long), not more than None.

The time in milliseconds to wait before retrying to fetch Kafka offsets. The default value is 10.

• MaxOffsetsPerTrigger – Number (long), not more than None.

The rate limit on the maximum number of offsets that are processed per trigger interval. The
specified total number of offsets is proportionally split across topicPartitions of different
volumes. The default value is null, which means that the consumer reads all offsets until the
known latest offset.

• MinPartitions – Number (integer), not more than None.

The desired minimum number of partitions to read from Kafka. The default value is null, which
means that the number of spark partitions is equal to the number of Kafka partitions.

• IncludeHeaders – Boolean.

Whether to include the Kafka headers. When the option is set to "true", the data output
will contain an additional column named "glue_streaming_kafka_headers" with type
Array[Struct(key: String, value: String)]. The default value is "false". This option is
available in AWS Glue version 3.0 or later only.

• AddRecordTimestamp – UTF-8 string, matching the Custom string pattern #40.

KafkaStreamingSourceOptions 2119

AWS Glue User Guide

When this option is set to 'true', the data output will contain an additional column named
"__src_timestamp" that indicates the time when the corresponding record received by the topic.
The default value is 'false'. This option is supported in AWS Glue version 4.0 or later.

• EmitConsumerLagMetrics – UTF-8 string, matching the Custom string pattern #40.

When this option is set to 'true', for each batch, it will emit the metrics for the duration between
the oldest record received by the topic and the time it arrives in AWS Glue to CloudWatch. The
metric's name is "glue.driver.streaming.maxConsumerLagInMs". The default value is 'false'. This
option is supported in AWS Glue version 4.0 or later.

• StartingTimestamp – UTF-8 string.

The timestamp of the record in the Kafka topic to start reading data from. The possible values
are a timestamp string in UTC format of the pattern yyyy-mm-ddTHH:MM:SSZ (where Z
represents a UTC timezone offset with a +/-. For example: "2023-04-04T08:00:00+08:00").

Only one of StartingTimestamp or StartingOffsets must be set.

RedshiftSource structure

Specifies an Amazon Redshift data store.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the Amazon Redshift data store.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The database to read from.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The database table to read from.

• RedshiftTmpDir – UTF-8 string, matching the Custom string pattern #40.

The Amazon S3 path where temporary data can be staged when copying out of the database.

• TmpDirIAMRole – UTF-8 string, matching the Custom string pattern #40.

The IAM role with permissions.

RedshiftSource 2120

AWS Glue User Guide

AmazonRedshiftSource structure

Specifies an Amazon Redshift source.

Fields

• Name – UTF-8 string, matching the Custom string pattern #43.

The name of the Amazon Redshift source.

• Data – An AmazonRedshiftNodeData object.

Specifies the data of the Amazon Reshift source node.

AmazonRedshiftNodeData structure

Specifies an Amazon Redshift node.

Fields

• AccessType – UTF-8 string, matching the Custom string pattern #39.

The access type for the Redshift connection. Can be a direct connection or catalog connections.

• SourceType – UTF-8 string, matching the Custom string pattern #39.

The source type to specify whether a specific table is the source or a custom query.

• Connection – An Option object.

The AWS Glue connection to the Redshift cluster.

• Schema – An Option object.

The Redshift schema name when working with a direct connection.

• Table – An Option object.

The Redshift table name when working with a direct connection.

• CatalogDatabase – An Option object.

The name of the AWS Glue Data Catalog database when working with a data catalog.

• CatalogTable – An Option object.
AmazonRedshiftSource 2121

AWS Glue User Guide

The AWS Glue Data Catalog table name when working with a data catalog.

• CatalogRedshiftSchema – UTF-8 string.

The Redshift schema name when working with a data catalog.

• CatalogRedshiftTable – UTF-8 string.

The database table to read from.

• TempDir – UTF-8 string, matching the Custom string pattern #40.

The Amazon S3 path where temporary data can be staged when copying out of the database.

• IamRole – An Option object.

Optional. The role name use when connection to S3. The IAM role ill default to the role on the
job when left blank.

• AdvancedOptions – An array of AmazonRedshiftAdvancedOption objects.

Optional values when connecting to the Redshift cluster.

• SampleQuery – UTF-8 string.

The SQL used to fetch the data from a Redshift sources when the SourceType is 'query'.

• PreAction – UTF-8 string.

The SQL used before a MERGE or APPEND with upsert is run.

• PostAction – UTF-8 string.

The SQL used before a MERGE or APPEND with upsert is run.

• Action – UTF-8 string.

Specifies how writing to a Redshift cluser will occur.

• TablePrefix – UTF-8 string, matching the Custom string pattern #39.

Specifies the prefix to a table.

• Upsert – Boolean.

The action used on Redshift sinks when doing an APPEND.

• MergeAction – UTF-8 string, matching the Custom string pattern #39.

AmazonRedshiftNodeData 2122

AWS Glue User Guide

The action used when to detemine how a MERGE in a Redshift sink will be handled.

• MergeWhenMatched – UTF-8 string, matching the Custom string pattern #39.

The action used when to detemine how a MERGE in a Redshift sink will be handled when an
existing record matches a new record.

• MergeWhenNotMatched – UTF-8 string, matching the Custom string pattern #39.

The action used when to detemine how a MERGE in a Redshift sink will be handled when an
existing record doesn't match a new record.

• MergeClause – UTF-8 string.

The SQL used in a custom merge to deal with matching records.

• CrawlerConnection – UTF-8 string.

Specifies the name of the connection that is associated with the catalog table used.

• TableSchema – An array of Option objects.

The array of schema output for a given node.

• StagingTable – UTF-8 string.

The name of the temporary staging table that is used when doing a MERGE or APPEND with
upsert.

• SelectedColumns – An array of Option objects.

The list of column names used to determine a matching record when doing a MERGE or APPEND
with upsert.

AmazonRedshiftAdvancedOption structure

Specifies an optional value when connecting to the Redshift cluster.

Fields

• Key – UTF-8 string.

The key for the additional connection option.

• Value – UTF-8 string.

AmazonRedshiftAdvancedOption 2123

AWS Glue User Guide

The value for the additional connection option.

Option structure

Specifies an option value.

Fields

• Value – UTF-8 string, matching the Custom string pattern #40.

Specifies the value of the option.

• Label – UTF-8 string, matching the Custom string pattern #40.

Specifies the label of the option.

• Description – UTF-8 string, matching the Custom string pattern #40.

Specifies the description of the option.

S3CatalogSource structure

Specifies an Amazon S3 data store in the AWS Glue Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data store.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The database to read from.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The database table to read from.

• PartitionPredicate – UTF-8 string, matching the Custom string pattern #40.

Partitions satisfying this predicate are deleted. Files within the retention period in these
partitions are not deleted. Set to "" – empty by default.

• AdditionalOptions – A S3SourceAdditionalOptions object.

Option 2124

AWS Glue User Guide

Specifies additional connection options.

S3SourceAdditionalOptions structure

Specifies additional connection options for the Amazon S3 data store.

Fields

• BoundedSize – Number (long).

Sets the upper limit for the target size of the dataset in bytes that will be processed.

• BoundedFiles – Number (long).

Sets the upper limit for the target number of files that will be processed.

S3CsvSource structure

Specifies a command-separated value (CSV) data store stored in Amazon S3.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data store.

• Paths – Required: An array of UTF-8 strings.

A list of the Amazon S3 paths to read from.

• CompressionType – UTF-8 string (valid values: gzip="GZIP" | bzip2="BZIP2").

Specifies how the data is compressed. This is generally not necessary if the data has a standard
file extension. Possible values are "gzip" and "bzip").

• Exclusions – An array of UTF-8 strings.

A string containing a JSON list of Unix-style glob patterns to exclude. For example, "[\"**.pdf\"]"
excludes all PDF files.

• GroupSize – UTF-8 string, matching the Custom string pattern #40.

S3SourceAdditionalOptions 2125

AWS Glue User Guide

The target group size in bytes. The default is computed based on the input data size and the size
of your cluster. When there are fewer than 50,000 input files, "groupFiles" must be set to
"inPartition" for this to take effect.

• GroupFiles – UTF-8 string, matching the Custom string pattern #40.

Grouping files is turned on by default when the input contains more than 50,000 files. To turn
on grouping with fewer than 50,000 files, set this parameter to "inPartition". To disable grouping
when there are more than 50,000 files, set this parameter to "none".

• Recurse – Boolean.

If set to true, recursively reads files in all subdirectories under the specified paths.

• MaxBand – Number (integer), not more than None.

This option controls the duration in milliseconds after which the s3 listing is likely to be
consistent. Files with modification timestamps falling within the last maxBand milliseconds are
tracked specially when using JobBookmarks to account for Amazon S3 eventual consistency.
Most users don't need to set this option. The default is 900000 milliseconds, or 15 minutes.

• MaxFilesInBand – Number (integer), not more than None.

This option specifies the maximum number of files to save from the last maxBand seconds. If this
number is exceeded, extra files are skipped and only processed in the next job run.

• AdditionalOptions – A S3DirectSourceAdditionalOptions object.

Specifies additional connection options.

• Separator – Required: UTF-8 string (valid values: comma="COMMA" | ctrla="CTRLA" |
pipe="PIPE" | semicolon="SEMICOLON" | tab="TAB").

Specifies the delimiter character. The default is a comma: ",", but any other character can be
specified.

• Escaper – UTF-8 string, matching the Custom string pattern #41.

Specifies a character to use for escaping. This option is used only when reading CSV files. The
default value is none. If enabled, the character which immediately follows is used as-is, except
for a small set of well-known escapes (\n, \r, \t, and \0).

• QuoteChar – Required: UTF-8 string (valid values: quote="QUOTE" |
quillemet="QUILLEMET" | single_quote="SINGLE_QUOTE" | disabled="DISABLED").

S3CsvSource 2126

AWS Glue User Guide

Specifies the character to use for quoting. The default is a double quote: '"'. Set this to -1 to
turn off quoting entirely.

• Multiline – Boolean.

A Boolean value that specifies whether a single record can span multiple lines. This can occur
when a field contains a quoted new-line character. You must set this option to True if any record
spans multiple lines. The default value is False, which allows for more aggressive file-splitting
during parsing.

• WithHeader – Boolean.

A Boolean value that specifies whether to treat the first line as a header. The default value is
False.

• WriteHeader – Boolean.

A Boolean value that specifies whether to write the header to output. The default value is True.

• SkipFirst – Boolean.

A Boolean value that specifies whether to skip the first data line. The default value is False.

• OptimizePerformance – Boolean.

A Boolean value that specifies whether to use the advanced SIMD CSV reader along with Apache
Arrow based columnar memory formats. Only available in AWS Glue version 3.0.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the S3 CSV source.

DirectJDBCSource structure

Specifies the direct JDBC source connection.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the JDBC source connection.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The database of the JDBC source connection.

DirectJDBCSource 2127

AWS Glue User Guide

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The table of the JDBC source connection.

• ConnectionName – Required: UTF-8 string, matching the Custom string pattern #40.

The connection name of the JDBC source.

• ConnectionType – Required: UTF-8 string (valid values: sqlserver | mysql | oracle |
postgresql | redshift).

The connection type of the JDBC source.

• RedshiftTmpDir – UTF-8 string, matching the Custom string pattern #40.

The temp directory of the JDBC Redshift source.

S3DirectSourceAdditionalOptions structure

Specifies additional connection options for the Amazon S3 data store.

Fields

• BoundedSize – Number (long).

Sets the upper limit for the target size of the dataset in bytes that will be processed.

• BoundedFiles – Number (long).

Sets the upper limit for the target number of files that will be processed.

• EnableSamplePath – Boolean.

Sets option to enable a sample path.

• SamplePath – UTF-8 string, matching the Custom string pattern #40.

If enabled, specifies the sample path.

S3JsonSource structure

Specifies a JSON data store stored in Amazon S3.

S3DirectSourceAdditionalOptions 2128

AWS Glue User Guide

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data store.

• Paths – Required: An array of UTF-8 strings.

A list of the Amazon S3 paths to read from.

• CompressionType – UTF-8 string (valid values: gzip="GZIP" | bzip2="BZIP2").

Specifies how the data is compressed. This is generally not necessary if the data has a standard
file extension. Possible values are "gzip" and "bzip").

• Exclusions – An array of UTF-8 strings.

A string containing a JSON list of Unix-style glob patterns to exclude. For example, "[\"**.pdf\"]"
excludes all PDF files.

• GroupSize – UTF-8 string, matching the Custom string pattern #40.

The target group size in bytes. The default is computed based on the input data size and the size
of your cluster. When there are fewer than 50,000 input files, "groupFiles" must be set to
"inPartition" for this to take effect.

• GroupFiles – UTF-8 string, matching the Custom string pattern #40.

Grouping files is turned on by default when the input contains more than 50,000 files. To turn
on grouping with fewer than 50,000 files, set this parameter to "inPartition". To disable grouping
when there are more than 50,000 files, set this parameter to "none".

• Recurse – Boolean.

If set to true, recursively reads files in all subdirectories under the specified paths.

• MaxBand – Number (integer), not more than None.

This option controls the duration in milliseconds after which the s3 listing is likely to be
consistent. Files with modification timestamps falling within the last maxBand milliseconds are
tracked specially when using JobBookmarks to account for Amazon S3 eventual consistency.
Most users don't need to set this option. The default is 900000 milliseconds, or 15 minutes.

• MaxFilesInBand – Number (integer), not more than None.

S3JsonSource 2129

AWS Glue User Guide

This option specifies the maximum number of files to save from the last maxBand seconds. If this
number is exceeded, extra files are skipped and only processed in the next job run.

• AdditionalOptions – A S3DirectSourceAdditionalOptions object.

Specifies additional connection options.

• JsonPath – UTF-8 string, matching the Custom string pattern #40.

A JsonPath string defining the JSON data.

• Multiline – Boolean.

A Boolean value that specifies whether a single record can span multiple lines. This can occur
when a field contains a quoted new-line character. You must set this option to True if any record
spans multiple lines. The default value is False, which allows for more aggressive file-splitting
during parsing.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the S3 JSON source.

S3ParquetSource structure

Specifies an Apache Parquet data store stored in Amazon S3.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data store.

• Paths – Required: An array of UTF-8 strings.

A list of the Amazon S3 paths to read from.

• CompressionType – UTF-8 string (valid values: snappy="SNAPPY" | lzo="LZO" |
gzip="GZIP" | uncompressed="UNCOMPRESSED" | none="NONE").

Specifies how the data is compressed. This is generally not necessary if the data has a standard
file extension. Possible values are "gzip" and "bzip").

• Exclusions – An array of UTF-8 strings.

S3ParquetSource 2130

AWS Glue User Guide

A string containing a JSON list of Unix-style glob patterns to exclude. For example, "[\"**.pdf\"]"
excludes all PDF files.

• GroupSize – UTF-8 string, matching the Custom string pattern #40.

The target group size in bytes. The default is computed based on the input data size and the size
of your cluster. When there are fewer than 50,000 input files, "groupFiles" must be set to
"inPartition" for this to take effect.

• GroupFiles – UTF-8 string, matching the Custom string pattern #40.

Grouping files is turned on by default when the input contains more than 50,000 files. To turn
on grouping with fewer than 50,000 files, set this parameter to "inPartition". To disable grouping
when there are more than 50,000 files, set this parameter to "none".

• Recurse – Boolean.

If set to true, recursively reads files in all subdirectories under the specified paths.

• MaxBand – Number (integer), not more than None.

This option controls the duration in milliseconds after which the s3 listing is likely to be
consistent. Files with modification timestamps falling within the last maxBand milliseconds are
tracked specially when using JobBookmarks to account for Amazon S3 eventual consistency.
Most users don't need to set this option. The default is 900000 milliseconds, or 15 minutes.

• MaxFilesInBand – Number (integer), not more than None.

This option specifies the maximum number of files to save from the last maxBand seconds. If this
number is exceeded, extra files are skipped and only processed in the next job run.

• AdditionalOptions – A S3DirectSourceAdditionalOptions object.

Specifies additional connection options.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the S3 Parquet source.

S3DeltaSource structure

Specifies a Delta Lake data source stored in Amazon S3.

S3DeltaSource 2131

AWS Glue User Guide

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the Delta Lake source.

• Paths – Required: An array of UTF-8 strings.

A list of the Amazon S3 paths to read from.

• AdditionalDeltaOptions – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Specifies additional connection options.

• AdditionalOptions – A S3DirectSourceAdditionalOptions object.

Specifies additional options for the connector.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the Delta Lake source.

S3CatalogDeltaSource structure

Specifies a Delta Lake data source that is registered in the AWS Glue Data Catalog. The data source
must be stored in Amazon S3.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the Delta Lake data source.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to read from.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to read from.

• AdditionalDeltaOptions – A map array of key-value pairs.

S3CatalogDeltaSource 2132

AWS Glue User Guide

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Specifies additional connection options.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the Delta Lake source.

CatalogDeltaSource structure

Specifies a Delta Lake data source that is registered in the AWS Glue Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the Delta Lake data source.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to read from.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to read from.

• AdditionalDeltaOptions – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Specifies additional connection options.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the Delta Lake source.

S3HudiSource structure

Specifies a Hudi data source stored in Amazon S3.

CatalogDeltaSource 2133

AWS Glue User Guide

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the Hudi source.

• Paths – Required: An array of UTF-8 strings.

A list of the Amazon S3 paths to read from.

• AdditionalHudiOptions – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Specifies additional connection options.

• AdditionalOptions – A S3DirectSourceAdditionalOptions object.

Specifies additional options for the connector.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the Hudi source.

S3CatalogHudiSource structure

Specifies a Hudi data source that is registered in the AWS Glue Data Catalog. The Hudi data source
must be stored in Amazon S3.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the Hudi data source.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to read from.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to read from.

• AdditionalHudiOptions – A map array of key-value pairs.

S3CatalogHudiSource 2134

AWS Glue User Guide

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Specifies additional connection options.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the Hudi source.

CatalogHudiSource structure

Specifies a Hudi data source that is registered in the AWS Glue Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the Hudi data source.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to read from.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to read from.

• AdditionalHudiOptions – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Specifies additional connection options.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the Hudi source.

DynamoDBCatalogSource structure

Specifies a DynamoDB data source in the AWS Glue Data Catalog.

CatalogHudiSource 2135

AWS Glue User Guide

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data source.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to read from.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to read from.

RelationalCatalogSource structure

Specifies a Relational database data source in the AWS Glue Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data source.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to read from.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to read from.

JDBCConnectorTarget structure

Specifies a data target that writes to Amazon S3 in Apache Parquet columnar storage.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

RelationalCatalogSource 2136

AWS Glue User Guide

• ConnectionName – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the connection that is associated with the connector.

• ConnectionTable – Required: UTF-8 string, matching the Custom string pattern #41.

The name of the table in the data target.

• ConnectorName – Required: UTF-8 string, matching the Custom string pattern #40.

The name of a connector that will be used.

• ConnectionType – Required: UTF-8 string, matching the Custom string pattern #40.

The type of connection, such as marketplace.jdbc or custom.jdbc, designating a connection to a
JDBC data target.

• AdditionalOptions – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Additional connection options for the connector.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the JDBC target.

SparkConnectorTarget structure

Specifies a target that uses an Apache Spark connector.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• ConnectionName – Required: UTF-8 string, matching the Custom string pattern #40.

The name of a connection for an Apache Spark connector.

SparkConnectorTarget 2137

AWS Glue User Guide

• ConnectorName – Required: UTF-8 string, matching the Custom string pattern #40.

The name of an Apache Spark connector.

• ConnectionType – Required: UTF-8 string, matching the Custom string pattern #40.

The type of connection, such as marketplace.spark or custom.spark, designating a connection to
an Apache Spark data store.

• AdditionalOptions – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Additional connection options for the connector.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the custom spark target.

BasicCatalogTarget structure

Specifies a target that uses a AWS Glue Data Catalog table.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of your data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The database that contains the table you want to use as the target. This database must already
exist in the Data Catalog.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The table that defines the schema of your output data. This table must already exist in the Data
Catalog.

BasicCatalogTarget 2138

AWS Glue User Guide

MySQLCatalogTarget structure

Specifies a target that uses MySQL.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to write to.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to write to.

PostgreSQLCatalogTarget structure

Specifies a target that uses Postgres SQL.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to write to.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to write to.

MySQLCatalogTarget 2139

AWS Glue User Guide

OracleSQLCatalogTarget structure

Specifies a target that uses Oracle SQL.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to write to.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to write to.

MicrosoftSQLServerCatalogTarget structure

Specifies a target that uses Microsoft SQL.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to write to.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to write to.

OracleSQLCatalogTarget 2140

AWS Glue User Guide

RedshiftTarget structure

Specifies a target that uses Amazon Redshift.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to write to.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to write to.

• RedshiftTmpDir – UTF-8 string, matching the Custom string pattern #40.

The Amazon S3 path where temporary data can be staged when copying out of the database.

• TmpDirIAMRole – UTF-8 string, matching the Custom string pattern #40.

The IAM role with permissions.

• UpsertRedshiftOptions – An UpsertRedshiftTargetOptions object.

The set of options to configure an upsert operation when writing to a Redshift target.

AmazonRedshiftTarget structure

Specifies an Amazon Redshift target.

Fields

• Name – UTF-8 string, matching the Custom string pattern #43.

The name of the Amazon Redshift target.

• Data – An AmazonRedshiftNodeData object.
RedshiftTarget 2141

AWS Glue User Guide

Specifies the data of the Amazon Redshift target node.

• Inputs – An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

UpsertRedshiftTargetOptions structure

The options to configure an upsert operation when writing to a Redshift target .

Fields

• TableLocation – UTF-8 string, matching the Custom string pattern #40.

The physical location of the Redshift table.

• ConnectionName – UTF-8 string, matching the Custom string pattern #40.

The name of the connection to use to write to Redshift.

• UpsertKeys – An array of UTF-8 strings.

The keys used to determine whether to perform an update or insert.

S3CatalogTarget structure

Specifies a data target that writes to Amazon S3 using the AWS Glue Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• PartitionKeys – An array of UTF-8 strings.

Specifies native partitioning using a sequence of keys.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

UpsertRedshiftTargetOptions 2142

AWS Glue User Guide

The name of the table in the database to write to.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to write to.

• SchemaChangePolicy – A CatalogSchemaChangePolicy object.

A policy that specifies update behavior for the crawler.

S3GlueParquetTarget structure

Specifies a data target that writes to Amazon S3 in Apache Parquet columnar storage.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• PartitionKeys – An array of UTF-8 strings.

Specifies native partitioning using a sequence of keys.

• Path – Required: UTF-8 string, matching the Custom string pattern #40.

A single Amazon S3 path to write to.

• Compression – UTF-8 string (valid values: snappy="SNAPPY" | lzo="LZO" | gzip="GZIP" |
uncompressed="UNCOMPRESSED" | none="NONE").

Specifies how the data is compressed. This is generally not necessary if the data has a standard
file extension. Possible values are "gzip" and "bzip").

• SchemaChangePolicy – A DirectSchemaChangePolicy object.

A policy that specifies update behavior for the crawler.

S3GlueParquetTarget 2143

AWS Glue User Guide

CatalogSchemaChangePolicy structure

A policy that specifies update behavior for the crawler.

Fields

• EnableUpdateCatalog – Boolean.

Whether to use the specified update behavior when the crawler finds a changed schema.

• UpdateBehavior – UTF-8 string (valid values: UPDATE_IN_DATABASE | LOG).

The update behavior when the crawler finds a changed schema.

S3DirectTarget structure

Specifies a data target that writes to Amazon S3.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• PartitionKeys – An array of UTF-8 strings.

Specifies native partitioning using a sequence of keys.

• Path – Required: UTF-8 string, matching the Custom string pattern #40.

A single Amazon S3 path to write to.

• Compression – UTF-8 string, matching the Custom string pattern #40.

Specifies how the data is compressed. This is generally not necessary if the data has a standard
file extension. Possible values are "gzip" and "bzip").

• Format – Required: UTF-8 string (valid values: json="JSON" | csv="CSV" | avro="AVRO" |
orc="ORC" | parquet="PARQUET" | hudi="HUDI" | delta="DELTA").

Specifies the data output format for the target.

CatalogSchemaChangePolicy 2144

AWS Glue User Guide

• SchemaChangePolicy – A DirectSchemaChangePolicy object.

A policy that specifies update behavior for the crawler.

S3HudiCatalogTarget structure

Specifies a target that writes to a Hudi data source in the AWS Glue Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• PartitionKeys – An array of UTF-8 strings.

Specifies native partitioning using a sequence of keys.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to write to.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to write to.

• AdditionalOptions – Required: A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Specifies additional connection options for the connector.

• SchemaChangePolicy – A CatalogSchemaChangePolicy object.

A policy that specifies update behavior for the crawler.

S3HudiDirectTarget structure

Specifies a target that writes to a Hudi data source in Amazon S3.

S3HudiCatalogTarget 2145

AWS Glue User Guide

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• Path – Required: UTF-8 string, matching the Custom string pattern #40.

The Amazon S3 path of your Hudi data source to write to.

• Compression – Required: UTF-8 string (valid values: gzip="GZIP" | lzo="LZO" |
uncompressed="UNCOMPRESSED" | snappy="SNAPPY").

Specifies how the data is compressed. This is generally not necessary if the data has a standard
file extension. Possible values are "gzip" and "bzip").

• PartitionKeys – An array of UTF-8 strings.

Specifies native partitioning using a sequence of keys.

• Format – Required: UTF-8 string (valid values: json="JSON" | csv="CSV" | avro="AVRO" |
orc="ORC" | parquet="PARQUET" | hudi="HUDI" | delta="DELTA").

Specifies the data output format for the target.

• AdditionalOptions – Required: A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Specifies additional connection options for the connector.

• SchemaChangePolicy – A DirectSchemaChangePolicy object.

A policy that specifies update behavior for the crawler.

S3DeltaCatalogTarget structure

Specifies a target that writes to a Delta Lake data source in the AWS Glue Data Catalog.

S3DeltaCatalogTarget 2146

AWS Glue User Guide

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• PartitionKeys – An array of UTF-8 strings.

Specifies native partitioning using a sequence of keys.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to write to.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to write to.

• AdditionalOptions – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Specifies additional connection options for the connector.

• SchemaChangePolicy – A CatalogSchemaChangePolicy object.

A policy that specifies update behavior for the crawler.

S3DeltaDirectTarget structure

Specifies a target that writes to a Delta Lake data source in Amazon S3.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

S3DeltaDirectTarget 2147

AWS Glue User Guide

• PartitionKeys – An array of UTF-8 strings.

Specifies native partitioning using a sequence of keys.

• Path – Required: UTF-8 string, matching the Custom string pattern #40.

The Amazon S3 path of your Delta Lake data source to write to.

• Compression – Required: UTF-8 string (valid values: uncompressed="UNCOMPRESSED" |
snappy="SNAPPY").

Specifies how the data is compressed. This is generally not necessary if the data has a standard
file extension. Possible values are "gzip" and "bzip").

• Format – Required: UTF-8 string (valid values: json="JSON" | csv="CSV" | avro="AVRO" |
orc="ORC" | parquet="PARQUET" | hudi="HUDI" | delta="DELTA").

Specifies the data output format for the target.

• AdditionalOptions – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Specifies additional connection options for the connector.

• SchemaChangePolicy – A DirectSchemaChangePolicy object.

A policy that specifies update behavior for the crawler.

DirectSchemaChangePolicy structure

A policy that specifies update behavior for the crawler.

Fields

• EnableUpdateCatalog – Boolean.

Whether to use the specified update behavior when the crawler finds a changed schema.

• UpdateBehavior – UTF-8 string (valid values: UPDATE_IN_DATABASE | LOG).

The update behavior when the crawler finds a changed schema.

• Table – UTF-8 string, matching the Custom string pattern #40.

DirectSchemaChangePolicy 2148

AWS Glue User Guide

Specifies the table in the database that the schema change policy applies to.

• Database – UTF-8 string, matching the Custom string pattern #40.

Specifies the database that the schema change policy applies to.

ApplyMapping structure

Specifies a transform that maps data property keys in the data source to data property keys in the
data target. You can rename keys, modify the data types for keys, and choose which keys to drop
from the dataset.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The data inputs identified by their node names.

• Mapping – Required: An array of Mapping objects.

Specifies the mapping of data property keys in the data source to data property keys in the data
target.

Mapping structure

Specifies the mapping of data property keys.

Fields

• ToKey – UTF-8 string, matching the Custom string pattern #40.

After the apply mapping, what the name of the column should be. Can be the same as
FromPath.

• FromPath – An array of UTF-8 strings.

The table or column to be modified.

• FromType – UTF-8 string, matching the Custom string pattern #40.

ApplyMapping 2149

AWS Glue User Guide

The type of the data to be modified.

• ToType – UTF-8 string, matching the Custom string pattern #40.

The data type that the data is to be modified to.

• Dropped – Boolean.

If true, then the column is removed.

• Children – An array of Mapping objects.

Only applicable to nested data structures. If you want to change the parent structure, but also
one of its children, you can fill out this data strucutre. It is also Mapping, but its FromPath will
be the parent's FromPath plus the FromPath from this structure.

For the children part, suppose you have the structure:

{ "FromPath": "OuterStructure", "ToKey": "OuterStructure", "ToType":
"Struct", "Dropped": false, "Chidlren": [{ "FromPath": "inner", "ToKey":
"inner", "ToType": "Double", "Dropped": false, }] }

You can specify a Mapping that looks like:

{ "FromPath": "OuterStructure", "ToKey": "OuterStructure", "ToType":
"Struct", "Dropped": false, "Chidlren": [{ "FromPath": "inner", "ToKey":
"inner", "ToType": "Double", "Dropped": false, }] }

SelectFields structure

Specifies a transform that chooses the data property keys that you want to keep.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The data inputs identified by their node names.

• Paths – Required: An array of UTF-8 strings.

SelectFields 2150

AWS Glue User Guide

A JSON path to a variable in the data structure.

DropFields structure

Specifies a transform that chooses the data property keys that you want to drop.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The data inputs identified by their node names.

• Paths – Required: An array of UTF-8 strings.

A JSON path to a variable in the data structure.

RenameField structure

Specifies a transform that renames a single data property key.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The data inputs identified by their node names.

• SourcePath – Required: An array of UTF-8 strings.

A JSON path to a variable in the data structure for the source data.

• TargetPath – Required: An array of UTF-8 strings.

A JSON path to a variable in the data structure for the target data.

DropFields 2151

AWS Glue User Guide

Spigot structure

Specifies a transform that writes samples of the data to an Amazon S3 bucket.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The data inputs identified by their node names.

• Path – Required: UTF-8 string, matching the Custom string pattern #40.

A path in Amazon S3 where the transform will write a subset of records from the dataset to a
JSON file in an Amazon S3 bucket.

• Topk – Number (integer), not more than 100.

Specifies a number of records to write starting from the beginning of the dataset.

• Prob – Number (double), not more than 1.

The probability (a decimal value with a maximum value of 1) of picking any given record. A value
of 1 indicates that each row read from the dataset should be included in the sample output.

Join structure

Specifies a transform that joins two datasets into one dataset using a comparison phrase on the
specified data property keys. You can use inner, outer, left, right, left semi, and left anti joins.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 2 or more than 2 strings.

The data inputs identified by their node names.

• JoinType – Required: UTF-8 string (valid values: equijoin="EQUIJOIN" | left="LEFT" |
right="RIGHT" | outer="OUTER" | leftsemi="LEFT_SEMI" | leftanti="LEFT_ANTI").

Spigot 2152

AWS Glue User Guide

Specifies the type of join to be performed on the datasets.

• Columns – Required: An array of JoinColumn objects, not less than 2 or more than 2 structures.

A list of the two columns to be joined.

JoinColumn structure

Specifies a column to be joined.

Fields

• From – Required: UTF-8 string, matching the Custom string pattern #40.

The column to be joined.

• Keys – Required: An array of UTF-8 strings.

The key of the column to be joined.

SplitFields structure

Specifies a transform that splits data property keys into two DynamicFrames. The output is a
collection of DynamicFrames: one with selected data property keys, and one with the remaining
data property keys.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The data inputs identified by their node names.

• Paths – Required: An array of UTF-8 strings.

A JSON path to a variable in the data structure.

JoinColumn 2153

AWS Glue User Guide

SelectFromCollection structure

Specifies a transform that chooses one DynamicFrame from a collection of DynamicFrames. The
output is the selected DynamicFrame

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The data inputs identified by their node names.

• Index – Required: Number (integer), not more than None.

The index for the DynamicFrame to be selected.

FillMissingValues structure

Specifies a transform that locates records in the dataset that have missing values and adds a
new field with a value determined by imputation. The input data set is used to train the machine
learning model that determines what the missing value should be.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The data inputs identified by their node names.

• ImputedPath – Required: UTF-8 string, matching the Custom string pattern #40.

A JSON path to a variable in the data structure for the dataset that is imputed.

• FilledPath – UTF-8 string, matching the Custom string pattern #40.

A JSON path to a variable in the data structure for the dataset that is filled.

SelectFromCollection 2154

AWS Glue User Guide

Filter structure

Specifies a transform that splits a dataset into two, based on a filter condition.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The data inputs identified by their node names.

• LogicalOperator – Required: UTF-8 string (valid values: AND | OR).

The operator used to filter rows by comparing the key value to a specified value.

• Filters – Required: An array of FilterExpression objects.

Specifies a filter expression.

FilterExpression structure

Specifies a filter expression.

Fields

• Operation – Required: UTF-8 string (valid values: EQ | LT | GT | LTE | GTE | REGEX | ISNULL).

The type of operation to perform in the expression.

• Negated – Boolean.

Whether the expression is to be negated.

• Values – Required: An array of FilterValue objects.

A list of filter values.

FilterValue structure

Represents a single entry in the list of values for a FilterExpression.

Filter 2155

AWS Glue User Guide

Fields

• Type – Required: UTF-8 string (valid values: COLUMNEXTRACTED | CONSTANT).

The type of filter value.

• Value – Required: An array of UTF-8 strings.

The value to be associated.

CustomCode structure

Specifies a transform that uses custom code you provide to perform the data transformation. The
output is a collection of DynamicFrames.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, at least 1 string.

The data inputs identified by their node names.

• Code – Required: UTF-8 string, matching the Custom string pattern #35.

The custom code that is used to perform the data transformation.

• ClassName – Required: UTF-8 string, matching the Custom string pattern #40.

The name defined for the custom code node class.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the custom code transform.

SparkSQL structure

Specifies a transform where you enter a SQL query using Spark SQL syntax to transform the data.
The output is a single DynamicFrame.

CustomCode 2156

AWS Glue User Guide

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, at least 1 string.

The data inputs identified by their node names. You can associate a table name with each
input node to use in the SQL query. The name you choose must meet the Spark SQL naming
restrictions.

• SqlQuery – Required: UTF-8 string, matching the Custom string pattern #42.

A SQL query that must use Spark SQL syntax and return a single data set.

• SqlAliases – Required: An array of SqlAlias objects.

A list of aliases. An alias allows you to specify what name to use in the SQL for a given input. For
example, you have a datasource named "MyDataSource". If you specify From as MyDataSource,
and Alias as SqlName, then in your SQL you can do:

select * from SqlName

and that gets data from MyDataSource.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the SparkSQL transform.

SqlAlias structure

Represents a single entry in the list of values for SqlAliases.

Fields

• From – Required: UTF-8 string, matching the Custom string pattern #39.

A table, or a column in a table.

• Alias – Required: UTF-8 string, matching the Custom string pattern #41.

A temporary name given to a table, or a column in a table.

SqlAlias 2157

AWS Glue User Guide

DropNullFields structure

Specifies a transform that removes columns from the dataset if all values in the column are 'null'.
By default, AWS Glue Studio will recognize null objects, but some values such as empty strings,
strings that are "null", -1 integers or other placeholders such as zeros, are not automatically
recognized as nulls.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The data inputs identified by their node names.

• NullCheckBoxList – A NullCheckBoxList object.

A structure that represents whether certain values are recognized as null values for removal.

• NullTextList – An array of NullValueField objects, not more than 50 structures.

A structure that specifies a list of NullValueField structures that represent a custom null value
such as zero or other value being used as a null placeholder unique to the dataset.

The DropNullFields transform removes custom null values only if both the value of the null
placeholder and the datatype match the data.

NullCheckBoxList structure

Represents whether certain values are recognized as null values for removal.

Fields

• IsEmpty – Boolean.

Specifies that an empty string is considered as a null value.

• IsNullString – Boolean.

Specifies that a value spelling out the word 'null' is considered as a null value.

• IsNegOne – Boolean.

DropNullFields 2158

AWS Glue User Guide

Specifies that an integer value of -1 is considered as a null value.

NullValueField structure

Represents a custom null value such as a zeros or other value being used as a null placeholder
unique to the dataset.

Fields

• Value – Required: UTF-8 string, matching the Custom string pattern #40.

The value of the null placeholder.

• Datatype – Required: A Datatype object.

The datatype of the value.

Datatype structure

A structure representing the datatype of the value.

Fields

• Id – Required: UTF-8 string, matching the Custom string pattern #39.

The datatype of the value.

• Label – Required: UTF-8 string, matching the Custom string pattern #39.

A label assigned to the datatype.

Merge structure

Specifies a transform that merges a DynamicFrame with a staging DynamicFrame based on the
specified primary keys to identify records. Duplicate records (records with the same primary keys)
are not de-duplicated.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

NullValueField 2159

AWS Glue User Guide

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 2 or more than 2 strings.

The data inputs identified by their node names.

• Source – Required: UTF-8 string, matching the Custom string pattern #39.

The source DynamicFrame that will be merged with a staging DynamicFrame.

• PrimaryKeys – Required: An array of UTF-8 strings.

The list of primary key fields to match records from the source and staging dynamic frames.

Union structure

Specifies a transform that combines the rows from two or more datasets into a single result.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 2 or more than 2 strings.

The node ID inputs to the transform.

• UnionType – Required: UTF-8 string (valid values: ALL | DISTINCT).

Indicates the type of Union transform.

Specify ALL to join all rows from data sources to the resulting DynamicFrame. The resulting
union does not remove duplicate rows.

Specify DISTINCT to remove duplicate rows in the resulting DynamicFrame.

PIIDetection structure

Specifies a transform that identifies, removes or masks PII data.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

Union 2160

AWS Glue User Guide

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The node ID inputs to the transform.

• PiiType – Required: UTF-8 string (valid values: RowAudit | RowMasking | ColumnAudit |
ColumnMasking).

Indicates the type of PIIDetection transform.

• EntityTypesToDetect – Required: An array of UTF-8 strings.

Indicates the types of entities the PIIDetection transform will identify as PII data.

PII type entities include: PERSON_NAME, DATE, USA_SNN, EMAIL,
USA_ITIN, USA_PASSPORT_NUMBER, PHONE_NUMBER, BANK_ACCOUNT,
IP_ADDRESS, MAC_ADDRESS, USA_CPT_CODE, USA_HCPCS_CODE,
USA_NATIONAL_DRUG_CODE, USA_MEDICARE_BENEFICIARY_IDENTIFIER,
USA_HEALTH_INSURANCE_CLAIM_NUMBER,CREDIT_CARD,USA_NATIONAL_PROVIDER_IDENTIFIER,USA_DEA_NUMBER,USA_DRIVING_LICENSE

• OutputColumnName – UTF-8 string, matching the Custom string pattern #40.

Indicates the output column name that will contain any entity type detected in that row.

• SampleFraction – Number (double), not more than 1.

Indicates the fraction of the data to sample when scanning for PII entities.

• ThresholdFraction – Number (double), not more than 1.

Indicates the fraction of the data that must be met in order for a column to be identified as PII
data.

• MaskValue – UTF-8 string, not more than 256 bytes long, matching the Custom string pattern
#37.

Indicates the value that will replace the detected entity.

Aggregate structure

Specifies a transform that groups rows by chosen fields and computes the aggregated value by
specified function.

Aggregate 2161

AWS Glue User Guide

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

Specifies the fields and rows to use as inputs for the aggregate transform.

• Groups – Required: An array of UTF-8 strings.

Specifies the fields to group by.

• Aggs – Required: An array of AggregateOperation objects, not less than 1 or more than 30
structures.

Specifies the aggregate functions to be performed on specified fields.

DropDuplicates structure

Specifies a transform that removes rows of repeating data from a data set.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the transform node.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The data inputs identified by their node names.

• Columns – An array of UTF-8 strings.

The name of the columns to be merged or removed if repeating.

GovernedCatalogTarget structure

Specifies a data target that writes to Amazon S3 using the AWS Glue Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

DropDuplicates 2162

AWS Glue User Guide

The name of the data target.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

• PartitionKeys – An array of UTF-8 strings.

Specifies native partitioning using a sequence of keys.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the table in the database to write to.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The name of the database to write to.

• SchemaChangePolicy – A CatalogSchemaChangePolicy object.

A policy that specifies update behavior for the governed catalog.

GovernedCatalogSource structure

Specifies the data store in the governed AWS Glue Data Catalog.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data store.

• Database – Required: UTF-8 string, matching the Custom string pattern #40.

The database to read from.

• Table – Required: UTF-8 string, matching the Custom string pattern #40.

The database table to read from.

• PartitionPredicate – UTF-8 string, matching the Custom string pattern #40.

Partitions satisfying this predicate are deleted. Files within the retention period in these
partitions are not deleted. Set to "" – empty by default.

• AdditionalOptions – A S3SourceAdditionalOptions object.

GovernedCatalogSource 2163

AWS Glue User Guide

Specifies additional connection options.

AggregateOperation structure

Specifies the set of parameters needed to perform aggregation in the aggregate transform.

Fields

• Column – Required: An array of UTF-8 strings.

Specifies the column on the data set on which the aggregation function will be applied.

• AggFunc – Required: UTF-8 string (valid values: avg | countDistinct | count | first | last
| kurtosis | max | min | skewness | stddev_samp | stddev_pop | sum | sumDistinct |
var_samp | var_pop).

Specifies the aggregation function to apply.

Possible aggregation functions include: avg countDistinct, count, first, last, kurtosis, max, min,
skewness, stddev_samp, stddev_pop, sum, sumDistinct, var_samp, var_pop

GlueSchema structure

Specifies a user-defined schema when a schema cannot be determined by AWS Glue.

Fields

• Columns – An array of GlueStudioSchemaColumn objects.

Specifies the column definitions that make up a AWS Glue schema.

GlueStudioSchemaColumn structure

Specifies a single column in a AWS Glue schema definition.

Fields

• Name – Required: UTF-8 string, not more than 1024 bytes long, matching the Single-line string
pattern.

AggregateOperation 2164

AWS Glue User Guide

The name of the column in the AWS Glue Studio schema.

• Type – UTF-8 string, not more than 131072 bytes long, matching the Single-line string pattern.

The hive type for this column in the AWS Glue Studio schema.

GlueStudioColumn structure

Specifies a single column in AWS GlueStudio.

Fields

• Key – Required: UTF-8 string, matching the Custom string pattern #41.

The key of the column in AWS Glue Studio.

• FullPath – Required: An array of UTF-8 strings.

TThe full URL of the column in AWS Glue Studio.

• Type – Required: UTF-8 string (valid values: array="ARRAY" | bigint="BIGINT" | bigint
array="BIGINT_ARRAY" | binary="BINARY" | binary array="BINARY_ARRAY" |
boolean="BOOLEAN" | boolean array="BOOLEAN_ARRAY" | byte="BYTE" | byte
array="BYTE_ARRAY" | char="CHAR" | char array="CHAR_ARRAY" | choice="CHOICE"
| choice array="CHOICE_ARRAY" | date="DATE" | date array="DATE_ARRAY"
| decimal="DECIMAL" | decimal array="DECIMAL_ARRAY" | double="DOUBLE" |
double array="DOUBLE_ARRAY" | enum="ENUM" | enum array="ENUM_ARRAY" |
float="FLOAT" | float array="FLOAT_ARRAY" | int="INT" | int array="INT_ARRAY"
| interval="INTERVAL" | interval array="INTERVAL_ARRAY" | long="LONG"
| long array="LONG_ARRAY" | object="OBJECT" | short="SHORT" | short
array="SHORT_ARRAY" | smallint="SMALLINT" | smallint array="SMALLINT_ARRAY"
| string="STRING" | string array="STRING_ARRAY" | timestamp="TIMESTAMP"
| timestamp array="TIMESTAMP_ARRAY" | tinyint="TINYINT" | tinyint
array="TINYINT_ARRAY" | varchar="VARCHAR" | varchar array="VARCHAR_ARRAY" |
null="NULL" | unknown="UNKNOWN" | unknown array="UNKNOWN_ARRAY").

TThe type of the column in AWS Glue Studio.

• Children – An array of a structures.

TThe children of the parent column in AWS Glue Studio.

GlueStudioColumn 2165

AWS Glue User Guide

DynamicTransform structure

Specifies the set of parameters needed to perform the dynamic transform.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #40.

Specifies the name of the dynamic transform.

• TransformName – Required: UTF-8 string, matching the Custom string pattern #40.

Specifies the name of the dynamic transform as it appears in the AWS Glue Studio visual editor.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

Specifies the inputs for the dynamic transform that are required.

• Parameters – An array of TransformConfigParameter objects.

Specifies the parameters of the dynamic transform.

• FunctionName – Required: UTF-8 string, matching the Custom string pattern #40.

Specifies the name of the function of the dynamic transform.

• Path – Required: UTF-8 string, matching the Custom string pattern #40.

Specifies the path of the dynamic transform source and config files.

• Version – UTF-8 string, matching the Custom string pattern #40.

This field is not used and will be deprecated in future release.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for the dynamic transform.

TransformConfigParameter structure

Specifies the parameters in the config file of the dynamic transform.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #40.
DynamicTransform 2166

AWS Glue User Guide

Specifies the name of the parameter in the config file of the dynamic transform.

• Type – Required: UTF-8 string (valid values: str="STR" | int="INT" | float="FLOAT" |
complex="COMPLEX" | bool="BOOL" | list="LIST" | null="NULL").

Specifies the parameter type in the config file of the dynamic transform.

• ValidationRule – UTF-8 string, matching the Custom string pattern #40.

Specifies the validation rule in the config file of the dynamic transform.

• ValidationMessage – UTF-8 string, matching the Custom string pattern #40.

Specifies the validation message in the config file of the dynamic transform.

• Value – An array of UTF-8 strings.

Specifies the value of the parameter in the config file of the dynamic transform.

• ListType – UTF-8 string (valid values: str="STR" | int="INT" | float="FLOAT" |
complex="COMPLEX" | bool="BOOL" | list="LIST" | null="NULL").

Specifies the list type of the parameter in the config file of the dynamic transform.

• IsOptional – Boolean.

Specifies whether the parameter is optional or not in the config file of the dynamic transform.

EvaluateDataQuality structure

Specifies your data quality evaluation criteria.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data quality evaluation.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The inputs of your data quality evaluation.

• Ruleset – Required: UTF-8 string, not less than 1 or more than 65536 bytes long, matching the
Custom string pattern #38.

The ruleset for your data quality evaluation.

EvaluateDataQuality 2167

AWS Glue User Guide

• Output – UTF-8 string (valid values: PrimaryInput | EvaluationResults).

The output of your data quality evaluation.

• PublishingOptions – A DQResultsPublishingOptions object.

Options to configure how your results are published.

• StopJobOnFailureOptions – A DQStopJobOnFailureOptions object.

Options to configure how your job will stop if your data quality evaluation fails.

DQResultsPublishingOptions structure

Options to configure how your data quality evaluation results are published.

Fields

• EvaluationContext – UTF-8 string, matching the Custom string pattern #39.

The context of the evaluation.

• ResultsS3Prefix – UTF-8 string, matching the Custom string pattern #40.

The Amazon S3 prefix prepended to the results.

• CloudWatchMetricsEnabled – Boolean.

Enable metrics for your data quality results.

• ResultsPublishingEnabled – Boolean.

Enable publishing for your data quality results.

DQStopJobOnFailureOptions structure

Options to configure how your job will stop if your data quality evaluation fails.

Fields

• StopJobOnFailureTiming – UTF-8 string (valid values: Immediate | AfterDataLoad).

When to stop job if your data quality evaluation fails. Options are Immediate or AfterDataLoad.
DQResultsPublishingOptions 2168

AWS Glue User Guide

EvaluateDataQualityMultiFrame structure

Specifies your data quality evaluation criteria.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the data quality evaluation.

• Inputs – Required: An array of UTF-8 strings, at least 1 string.

The inputs of your data quality evaluation. The first input in this list is the primary data source.

• AdditionalDataSources – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #43.

Each value is a UTF-8 string, matching the Custom string pattern #40.

The aliases of all data sources except primary.

• Ruleset – Required: UTF-8 string, not less than 1 or more than 65536 bytes long, matching the
Custom string pattern #38.

The ruleset for your data quality evaluation.

• PublishingOptions – A DQResultsPublishingOptions object.

Options to configure how your results are published.

• AdditionalOptions – A map array of key-value pairs.

Each key is a UTF-8 string (valid values: performanceTuning.caching="CacheOption" |
observations.scope="ObservationsOption").

Each value is a UTF-8 string.

Options to configure runtime behavior of the transform.

• StopJobOnFailureOptions – A DQStopJobOnFailureOptions object.

Options to configure how your job will stop if your data quality evaluation fails.

EvaluateDataQualityMultiFrame 2169

AWS Glue User Guide

Recipe structure

A AWS Glue Studio node that uses a AWS Glue DataBrew recipe in AWS Glue jobs.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the AWS Glue Studio node.

• Inputs – Required: An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the recipe node, identified by id.

• RecipeReference – Required: A RecipeReference object.

A reference to the DataBrew recipe used by the node.

RecipeReference structure

A reference to a AWS Glue DataBrew recipe.

Fields

• RecipeArn – Required: UTF-8 string, matching the Custom string pattern #40.

The ARN of the DataBrew recipe.

• RecipeVersion – Required: UTF-8 string, not less than 1 or more than 16 bytes long.

The RecipeVersion of the DataBrew recipe.

SnowflakeNodeData structure

Specifies configuration for Snowflake nodes in AWS Glue Studio.

Fields

• SourceType – UTF-8 string, matching the Custom string pattern #39.

Specifies how retrieved data is specified. Valid values: "table", "query".

• Connection – An Option object.

Recipe 2170

AWS Glue User Guide

Specifies a AWS Glue Data Catalog Connection to a Snowflake endpoint.

• Schema – UTF-8 string.

Specifies a Snowflake database schema for your node to use.

• Table – UTF-8 string.

Specifies a Snowflake table for your node to use.

• Database – UTF-8 string.

Specifies a Snowflake database for your node to use.

• TempDir – UTF-8 string, matching the Custom string pattern #40.

Not currently used.

• IamRole – An Option object.

Not currently used.

• AdditionalOptions – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #40.

Each value is a UTF-8 string, matching the Custom string pattern #40.

Specifies additional options passed to the Snowflake connector. If options are specified
elsewhere in this node, this will take precedence.

• SampleQuery – UTF-8 string.

A SQL string used to retrieve data with the query sourcetype.

• PreAction – UTF-8 string.

A SQL string run before the Snowflake connector performs its standard actions.

• PostAction – UTF-8 string.

A SQL string run after the Snowflake connector performs its standard actions.

• Action – UTF-8 string.

Specifies what action to take when writing to a table with preexisting data. Valid values:
append, merge, truncate, drop.

SnowflakeNodeData 2171

AWS Glue User Guide

• Upsert – Boolean.

Used when Action is append. Specifies the resolution behavior when a row already exists. If true,
preexisting rows will be updated. If false, those rows will be inserted.

• MergeAction – UTF-8 string, matching the Custom string pattern #39.

Specifies a merge action. Valid values: simple, custom. If simple, merge behavior is defined by
MergeWhenMatched and MergeWhenNotMatched. If custom, defined by MergeClause.

• MergeWhenMatched – UTF-8 string, matching the Custom string pattern #39.

Specifies how to resolve records that match preexisting data when merging. Valid values:
update, delete.

• MergeWhenNotMatched – UTF-8 string, matching the Custom string pattern #39.

Specifies how to process records that do not match preexisting data when merging. Valid values:
insert, none.

• MergeClause – UTF-8 string.

A SQL statement that specifies a custom merge behavior.

• StagingTable – UTF-8 string.

The name of a staging table used when performing merge or upsert append actions. Data is
written to this table, then moved to table by a generated postaction.

• SelectedColumns – An array of Option objects.

Specifies the columns combined to identify a record when detecting matches for merges
and upserts. A list of structures with value, label and description keys. Each structure
describes a column.

• AutoPushdown – Boolean.

Specifies whether automatic query pushdown is enabled. If pushdown is enabled, then when a
query is run on Spark, if part of the query can be "pushed down" to the Snowflake server, it is
pushed down. This improves performance of some queries.

• TableSchema – An array of Option objects.

Manually defines the target schema for the node. A list of structures with value , label and
description keys. Each structure defines a column.

SnowflakeNodeData 2172

AWS Glue User Guide

SnowflakeSource structure

Specifies a Snowflake data source.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the Snowflake data source.

• Data – Required: A SnowflakeNodeData object.

Configuration for the Snowflake data source.

• OutputSchemas – An array of GlueSchema objects.

Specifies user-defined schemas for your output data.

SnowflakeTarget structure

Specifies a Snowflake target.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of the Snowflake target.

• Data – Required: A SnowflakeNodeData object.

Specifies the data of the Snowflake target node.

• Inputs – An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

ConnectorDataSource structure

Specifies a source generated with standard connection options.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

SnowflakeSource 2173

AWS Glue User Guide

The name of this source node.

• ConnectionType – Required: UTF-8 string, matching the Custom string pattern #40.

The connectionType, as provided to the underlying AWS Glue library. This node type supports
the following connection types:

• opensearch

• azuresql

• azurecosmos

• bigquery

• saphana

• teradata

• vertica

• Data – Required: A map array of key-value pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

A map specifying connection options for the node. You can find standard connection options
for the corresponding connection type in the Connection parameters section of the AWS Glue
documentation.

• OutputSchemas – An array of GlueSchema objects.

Specifies the data schema for this source.

ConnectorDataTarget structure

Specifies a target generated with standard connection options.

Fields

• Name – Required: UTF-8 string, matching the Custom string pattern #43.

The name of this target node.

• ConnectionType – Required: UTF-8 string, matching the Custom string pattern #40.

ConnectorDataTarget 2174

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html

AWS Glue User Guide

The connectionType, as provided to the underlying AWS Glue library. This node type supports
the following connection types:

• opensearch

• azuresql

• azurecosmos

• bigquery

• saphana

• teradata

• vertica

• Data – Required: A map array of key-value pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

A map specifying connection options for the node. You can find standard connection options
for the corresponding connection type in the Connection parameters section of the AWS Glue
documentation.

• Inputs – An array of UTF-8 strings, not less than 1 or more than 1 strings.

The nodes that are inputs to the data target.

Jobs API

The Jobs API describes jobs data types and contains APIs for working with jobs, job runs, and
triggers in AWS Glue.

Topics

• Jobs

• Job runs

• Triggers

Jobs 2175

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html

AWS Glue User Guide

Jobs

The Jobs API describes the data types and API related to creating, updating, deleting, or viewing
jobs in AWS Glue.

Data types

• Job structure

• ExecutionProperty structure

• NotificationProperty structure

• JobCommand structure

• ConnectionsList structure

• JobUpdate structure

• SourceControlDetails structure

Job structure

Specifies a job definition.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name you assign to this job definition.

• JobMode – UTF-8 string (valid values: SCRIPT="" | VISUAL="" | NOTEBOOK="").

A mode that describes how a job was created. Valid values are:

• SCRIPT - The job was created using the AWS Glue Studio script editor.

• VISUAL - The job was created using the AWS Glue Studio visual editor.

• NOTEBOOK - The job was created using an interactive sessions notebook.

When the JobMode field is missing or null, SCRIPT is assigned as the default value.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the job.

Jobs 2176

AWS Glue User Guide

• LogUri – UTF-8 string.

This field is reserved for future use.

• Role – UTF-8 string.

The name or Amazon Resource Name (ARN) of the IAM role associated with this job.

• CreatedOn – Timestamp.

The time and date that this job definition was created.

• LastModifiedOn – Timestamp.

The last point in time when this job definition was modified.

• ExecutionProperty – An ExecutionProperty object.

An ExecutionProperty specifying the maximum number of concurrent runs allowed for this
job.

• Command – A JobCommand object.

The JobCommand that runs this job.

• DefaultArguments – A map array of key-value pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

The default arguments for every run of this job, specified as name-value pairs.

You can specify arguments here that your own job-execution script consumes, as well as
arguments that AWS Glue itself consumes.

Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from
a AWS Glue Connection, AWS Secrets Manager or other secret management mechanism if you
intend to keep them within the Job.

For information about how to specify and consume your own Job arguments, see the Calling
AWS Glue APIs in Python topic in the developer guide.

For information about the arguments you can provide to this field when configuring Spark jobs,
see the Special Parameters Used by AWS Glue topic in the developer guide.

Jobs 2177

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html

AWS Glue User Guide

For information about the arguments you can provide to this field when configuring Ray jobs, see
Using job parameters in Ray jobs in the developer guide.

• NonOverridableArguments – A map array of key-value pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

Arguments for this job that are not overridden when providing job arguments in a job run,
specified as name-value pairs.

• Connections – A ConnectionsList object.

The connections used for this job.

• MaxRetries – Number (integer).

The maximum number of times to retry this job after a JobRun fails.

• AllocatedCapacity – Number (integer).

This field is deprecated. Use MaxCapacity instead.

The number of AWS Glue data processing units (DPUs) allocated to runs of this job. You can
allocate a minimum of 2 DPUs; the default is 10. A DPU is a relative measure of processing power
that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see
the AWS Glue pricing page.

• Timeout – Number (integer), at least 1.

The job timeout in minutes. This is the maximum time that a job run can consume resources
before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours) for
batch jobs.

Streaming jobs must have timeout values less than 7 days or 10080 minutes. When the value
is left blank, the job will be restarted after 7 days based if you have not setup a maintenance
window. If you have setup maintenance window, it will be restarted during the maintenance
window after 7 days.

• MaxCapacity – Number (double).

Jobs 2178

https://docs.aws.amazon.com/glue/latest/dg/author-job-ray-job-parameters.html
https://aws.amazon.com/glue/pricing/

AWS Glue User Guide

For Glue version 1.0 or earlier jobs, using the standard worker type, the number of AWS Glue
data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative
measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of
memory. For more information, see the AWS Glue pricing page.

For Glue version 2.0 or later jobs, you cannot specify a Maximum capacity. Instead, you should
specify a Worker type and the Number of workers.

Do not set MaxCapacity if using WorkerType and NumberOfWorkers.

The value that can be allocated for MaxCapacity depends on whether you are running a Python
shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:

• When you specify a Python shell job (JobCommand.Name="pythonshell"), you can allocate
either 0.0625 or 1 DPU. The default is 0.0625 DPU.

• When you specify an Apache Spark ETL job (JobCommand.Name="glueetl") or Apache Spark
streaming ETL job (JobCommand.Name="gluestreaming"), you can allocate from 2 to 100
DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.

• WorkerType – UTF-8 string (valid values: Standard="" | G.1X="" | G.2X="" | G.025X="" |
G.4X="" | G.8X="" | Z.2X="").

The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X,
G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.

• For the G.1X worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with
84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this
worker type for workloads such as data transforms, joins, and queries, to offers a scalable and
cost effective way to run most jobs.

• For the G.2X worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with
128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend
this worker type for workloads such as data transforms, joins, and queries, to offers a scalable
and cost effective way to run most jobs.

• For the G.4X worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with
256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend
this worker type for jobs whose workloads contain your most demanding transforms,
aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0
or later Spark ETL jobs in the following AWS Regions: US East (Ohio), US East (N. Virginia),

Jobs 2179

https://aws.amazon.com/glue/pricing/

AWS Glue User Guide

US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada
(Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).

• For the G.8X worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with
512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend
this worker type for jobs whose workloads contain your most demanding transforms,
aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or
later Spark ETL jobs, in the same AWS Regions as supported for the G.4X worker type.

• For the G.025X worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with
84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this
worker type for low volume streaming jobs. This worker type is only available for AWS Glue
version 3.0 streaming jobs.

• For the Z.2X worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128
GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.

• NumberOfWorkers – Number (integer).

The number of workers of a defined workerType that are allocated when a job runs.

• SecurityConfiguration – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The name of the SecurityConfiguration structure to be used with this job.

• NotificationProperty – A NotificationProperty object.

Specifies configuration properties of a job notification.

• Running – Boolean.

This field is reserved for future use.

• GlueVersion – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #20.

In Spark jobs, GlueVersion determines the versions of Apache Spark and Python that AWS
Glue available in a job. The Python version indicates the version supported for jobs of type
Spark.

Ray jobs should set GlueVersion to 4.0 or greater. However, the versions of Ray, Python and
additional libraries available in your Ray job are determined by the Runtime parameter of the
Job command.

Jobs 2180

AWS Glue User Guide

For more information about the available AWS Glue versions and corresponding Spark and
Python versions, see Glue version in the developer guide.

Jobs that are created without specifying a Glue version default to Glue 0.9.

• CodeGenConfigurationNodes – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #39.

Each value is a A CodeGenConfigurationNode object.

The representation of a directed acyclic graph on which both the Glue Studio visual component
and Glue Studio code generation is based.

• ExecutionClass – UTF-8 string, not more than 16 bytes long (valid values: FLEX="" |
STANDARD="").

Indicates whether the job is run with a standard or flexible execution class. The standard
execution class is ideal for time-sensitive workloads that require fast job startup and dedicated
resources.

The flexible execution class is appropriate for time-insensitive jobs whose start and completion
times may vary.

Only jobs with AWS Glue version 3.0 and above and command type glueetl will be allowed to
set ExecutionClass to FLEX. The flexible execution class is available for Spark jobs.

• SourceControlDetails – A SourceControlDetails object.

The details for a source control configuration for a job, allowing synchronization of job artifacts
to or from a remote repository.

• MaintenanceWindow – UTF-8 string, matching the Custom string pattern #30.

This field specifies a day of the week and hour for a maintenance window for streaming jobs.
AWS Glue periodically performs maintenance activities. During these maintenance windows,
AWS Glue will need to restart your streaming jobs.

AWS Glue will restart the job within 3 hours of the specified maintenance window. For instance,
if you set up the maintenance window for Monday at 10:00AM GMT, your jobs will be restarted
between 10:00AM GMT to 1:00PM GMT.

Jobs 2181

https://docs.aws.amazon.com/glue/latest/dg/add-job.html

AWS Glue User Guide

• ProfileName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of an AWS Glue usage profile associated with the job.

ExecutionProperty structure

An execution property of a job.

Fields

• MaxConcurrentRuns – Number (integer).

The maximum number of concurrent runs allowed for the job. The default is 1. An error is
returned when this threshold is reached. The maximum value you can specify is controlled by a
service limit.

NotificationProperty structure

Specifies configuration properties of a notification.

Fields

• NotifyDelayAfter – Number (integer), at least 1.

After a job run starts, the number of minutes to wait before sending a job run delay notification.

JobCommand structure

Specifies code that runs when a job is run.

Fields

• Name – UTF-8 string.

The name of the job command. For an Apache Spark ETL job, this must be glueetl. For a
Python shell job, it must be pythonshell. For an Apache Spark streaming ETL job, this must be
gluestreaming. For a Ray job, this must be glueray.

• ScriptLocation – UTF-8 string, not more than 400000 bytes long.

Jobs 2182

AWS Glue User Guide

Specifies the Amazon Simple Storage Service (Amazon S3) path to a script that runs a job.

• PythonVersion – UTF-8 string, matching the Custom string pattern #21.

The Python version being used to run a Python shell job. Allowed values are 2 or 3.

• Runtime – UTF-8 string, not more than 64 bytes long, matching the Custom string pattern #29.

In Ray jobs, Runtime is used to specify the versions of Ray, Python and additional libraries
available in your environment. This field is not used in other job types. For supported runtime
environment values, see Supported Ray runtime environments in the AWS Glue Developer Guide.

ConnectionsList structure

Specifies the connections used by a job.

Fields

• Connections – An array of UTF-8 strings.

A list of connections used by the job.

JobUpdate structure

Specifies information used to update an existing job definition. The previous job definition is
completely overwritten by this information.

Fields

• JobMode – UTF-8 string (valid values: SCRIPT="" | VISUAL="" | NOTEBOOK="").

A mode that describes how a job was created. Valid values are:

• SCRIPT - The job was created using the AWS Glue Studio script editor.

• VISUAL - The job was created using the AWS Glue Studio visual editor.

• NOTEBOOK - The job was created using an interactive sessions notebook.

When the JobMode field is missing or null, SCRIPT is assigned as the default value.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

Jobs 2183

https://docs.aws.amazon.com/glue/latest/dg/ray-jobs-section.html

AWS Glue User Guide

Description of the job being defined.

• LogUri – UTF-8 string.

This field is reserved for future use.

• Role – UTF-8 string.

The name or Amazon Resource Name (ARN) of the IAM role associated with this job (required).

• ExecutionProperty – An ExecutionProperty object.

An ExecutionProperty specifying the maximum number of concurrent runs allowed for this
job.

• Command – A JobCommand object.

The JobCommand that runs this job (required).

• DefaultArguments – A map array of key-value pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

The default arguments for every run of this job, specified as name-value pairs.

You can specify arguments here that your own job-execution script consumes, as well as
arguments that AWS Glue itself consumes.

Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from
a AWS Glue Connection, AWS Secrets Manager or other secret management mechanism if you
intend to keep them within the Job.

For information about how to specify and consume your own Job arguments, see the Calling
AWS Glue APIs in Python topic in the developer guide.

For information about the arguments you can provide to this field when configuring Spark jobs,
see the Special Parameters Used by AWS Glue topic in the developer guide.

For information about the arguments you can provide to this field when configuring Ray jobs, see
Using job parameters in Ray jobs in the developer guide.

• NonOverridableArguments – A map array of key-value pairs.

Jobs 2184

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
https://docs.aws.amazon.com/glue/latest/dg/author-job-ray-job-parameters.html

AWS Glue User Guide

Each key is a UTF-8 string.

Each value is a UTF-8 string.

Arguments for this job that are not overridden when providing job arguments in a job run,
specified as name-value pairs.

• Connections – A ConnectionsList object.

The connections used for this job.

• MaxRetries – Number (integer).

The maximum number of times to retry this job if it fails.

• AllocatedCapacity – Number (integer).

This field is deprecated. Use MaxCapacity instead.

The number of AWS Glue data processing units (DPUs) to allocate to this job. You can allocate
a minimum of 2 DPUs; the default is 10. A DPU is a relative measure of processing power that
consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the
AWS Glue pricing page.

• Timeout – Number (integer), at least 1.

The job timeout in minutes. This is the maximum time that a job run can consume resources
before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours) for
batch jobs.

Streaming jobs must have timeout values less than 7 days or 10080 minutes. When the value
is left blank, the job will be restarted after 7 days based if you have not setup a maintenance
window. If you have setup maintenance window, it will be restarted during the maintenance
window after 7 days.

• MaxCapacity – Number (double).

For Glue version 1.0 or earlier jobs, using the standard worker type, the number of AWS Glue
data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative
measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of
memory. For more information, see the AWS Glue pricing page.

Jobs 2185

https://aws.amazon.com/glue/pricing/
https://aws.amazon.com/glue/pricing/

AWS Glue User Guide

For Glue version 2.0+ jobs, you cannot specify a Maximum capacity. Instead, you should
specify a Worker type and the Number of workers.

Do not set MaxCapacity if using WorkerType and NumberOfWorkers.

The value that can be allocated for MaxCapacity depends on whether you are running a Python
shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:

• When you specify a Python shell job (JobCommand.Name="pythonshell"), you can allocate
either 0.0625 or 1 DPU. The default is 0.0625 DPU.

• When you specify an Apache Spark ETL job (JobCommand.Name="glueetl") or Apache Spark
streaming ETL job (JobCommand.Name="gluestreaming"), you can allocate from 2 to 100
DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.

• WorkerType – UTF-8 string (valid values: Standard="" | G.1X="" | G.2X="" | G.025X="" |
G.4X="" | G.8X="" | Z.2X="").

The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X,
G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.

• For the G.1X worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with
84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this
worker type for workloads such as data transforms, joins, and queries, to offers a scalable and
cost effective way to run most jobs.

• For the G.2X worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with
128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend
this worker type for workloads such as data transforms, joins, and queries, to offers a scalable
and cost effective way to run most jobs.

• For the G.4X worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with
256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend
this worker type for jobs whose workloads contain your most demanding transforms,
aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0
or later Spark ETL jobs in the following AWS Regions: US East (Ohio), US East (N. Virginia),
US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada
(Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).

• For the G.8X worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with
512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend
this worker type for jobs whose workloads contain your most demanding transforms,

Jobs 2186

AWS Glue User Guide

aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or
later Spark ETL jobs, in the same AWS Regions as supported for the G.4X worker type.

• For the G.025X worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with
84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this
worker type for low volume streaming jobs. This worker type is only available for AWS Glue
version 3.0 streaming jobs.

• For the Z.2X worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128
GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.

• NumberOfWorkers – Number (integer).

The number of workers of a defined workerType that are allocated when a job runs.

• SecurityConfiguration – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The name of the SecurityConfiguration structure to be used with this job.

• NotificationProperty – A NotificationProperty object.

Specifies the configuration properties of a job notification.

• GlueVersion – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #20.

In Spark jobs, GlueVersion determines the versions of Apache Spark and Python that AWS
Glue available in a job. The Python version indicates the version supported for jobs of type
Spark.

Ray jobs should set GlueVersion to 4.0 or greater. However, the versions of Ray, Python and
additional libraries available in your Ray job are determined by the Runtime parameter of the
Job command.

For more information about the available AWS Glue versions and corresponding Spark and
Python versions, see Glue version in the developer guide.

Jobs that are created without specifying a Glue version default to Glue 0.9.

• CodeGenConfigurationNodes – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #39.

Each value is a A CodeGenConfigurationNode object.
Jobs 2187

https://docs.aws.amazon.com/glue/latest/dg/add-job.html

AWS Glue User Guide

The representation of a directed acyclic graph on which both the Glue Studio visual component
and Glue Studio code generation is based.

• ExecutionClass – UTF-8 string, not more than 16 bytes long (valid values: FLEX="" |
STANDARD="").

Indicates whether the job is run with a standard or flexible execution class. The standard
execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated
resources.

The flexible execution class is appropriate for time-insensitive jobs whose start and completion
times may vary.

Only jobs with AWS Glue version 3.0 and above and command type glueetl will be allowed to
set ExecutionClass to FLEX. The flexible execution class is available for Spark jobs.

• SourceControlDetails – A SourceControlDetails object.

The details for a source control configuration for a job, allowing synchronization of job artifacts
to or from a remote repository.

• MaintenanceWindow – UTF-8 string, matching the Custom string pattern #30.

This field specifies a day of the week and hour for a maintenance window for streaming jobs.
AWS Glue periodically performs maintenance activities. During these maintenance windows,
AWS Glue will need to restart your streaming jobs.

AWS Glue will restart the job within 3 hours of the specified maintenance window. For instance,
if you set up the maintenance window for Monday at 10:00AM GMT, your jobs will be restarted
between 10:00AM GMT to 1:00PM GMT.

• ProfileName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of an AWS Glue usage profile associated with the job.

SourceControlDetails structure

The details for a source control configuration for a job, allowing synchronization of job artifacts to
or from a remote repository.

Jobs 2188

AWS Glue User Guide

Fields

• Provider – UTF-8 string.

The provider for the remote repository.

• Repository – UTF-8 string, not less than 1 or more than 512 bytes long.

The name of the remote repository that contains the job artifacts.

• Owner – UTF-8 string, not less than 1 or more than 512 bytes long.

The owner of the remote repository that contains the job artifacts.

• Branch – UTF-8 string, not less than 1 or more than 512 bytes long.

An optional branch in the remote repository.

• Folder – UTF-8 string, not less than 1 or more than 512 bytes long.

An optional folder in the remote repository.

• LastCommitId – UTF-8 string, not less than 1 or more than 512 bytes long.

The last commit ID for a commit in the remote repository.

• LastSyncTimestamp – UTF-8 string, not less than 1 or more than 512 bytes long.

The date and time that the last job synchronization was performed.

• AuthStrategy – UTF-8 string.

The type of authentication, which can be an authentication token stored in AWS Secrets
Manager, or a personal access token.

• AuthToken – UTF-8 string, not less than 1 or more than 512 bytes long.

The value of an authorization token.

Operations

• CreateJob action (Python: create_job)

• UpdateJob action (Python: update_job)

• GetJob action (Python: get_job)

• GetJobs action (Python: get_jobs)

Jobs 2189

AWS Glue User Guide

• DeleteJob action (Python: delete_job)

• ListJobs action (Python: list_jobs)

• BatchGetJobs action (Python: batch_get_jobs)

CreateJob action (Python: create_job)

Creates a new job definition.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name you assign to this job definition. It must be unique in your account.

• JobMode – UTF-8 string (valid values: SCRIPT="" | VISUAL="" | NOTEBOOK="").

A mode that describes how a job was created. Valid values are:

• SCRIPT - The job was created using the AWS Glue Studio script editor.

• VISUAL - The job was created using the AWS Glue Studio visual editor.

• NOTEBOOK - The job was created using an interactive sessions notebook.

When the JobMode field is missing or null, SCRIPT is assigned as the default value.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

Description of the job being defined.

• LogUri – UTF-8 string.

This field is reserved for future use.

• Role – Required: UTF-8 string.

The name or Amazon Resource Name (ARN) of the IAM role associated with this job.

• ExecutionProperty – An ExecutionProperty object.

An ExecutionProperty specifying the maximum number of concurrent runs allowed for this
job.

• Command – Required: A JobCommand object.

Jobs 2190

AWS Glue User Guide

The JobCommand that runs this job.

• DefaultArguments – A map array of key-value pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

The default arguments for every run of this job, specified as name-value pairs.

You can specify arguments here that your own job-execution script consumes, as well as
arguments that AWS Glue itself consumes.

Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from
a AWS Glue Connection, AWS Secrets Manager or other secret management mechanism if you
intend to keep them within the Job.

For information about how to specify and consume your own Job arguments, see the Calling
AWS Glue APIs in Python topic in the developer guide.

For information about the arguments you can provide to this field when configuring Spark jobs,
see the Special Parameters Used by AWS Glue topic in the developer guide.

For information about the arguments you can provide to this field when configuring Ray jobs, see
Using job parameters in Ray jobs in the developer guide.

• NonOverridableArguments – A map array of key-value pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

Arguments for this job that are not overridden when providing job arguments in a job run,
specified as name-value pairs.

• Connections – A ConnectionsList object.

The connections used for this job.

• MaxRetries – Number (integer).

The maximum number of times to retry this job if it fails.

• AllocatedCapacity – Number (integer).
Jobs 2191

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
https://docs.aws.amazon.com/glue/latest/dg/author-job-ray-job-parameters.html

AWS Glue User Guide

This parameter is deprecated. Use MaxCapacity instead.

The number of AWS Glue data processing units (DPUs) to allocate to this Job. You can allocate
a minimum of 2 DPUs; the default is 10. A DPU is a relative measure of processing power that
consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the
AWS Glue pricing page.

• Timeout – Number (integer), at least 1.

The job timeout in minutes. This is the maximum time that a job run can consume resources
before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours) for
batch jobs.

Streaming jobs must have timeout values less than 7 days or 10080 minutes. When the value
is left blank, the job will be restarted after 7 days based if you have not setup a maintenance
window. If you have setup maintenance window, it will be restarted during the maintenance
window after 7 days.

• MaxCapacity – Number (double).

For Glue version 1.0 or earlier jobs, using the standard worker type, the number of AWS Glue
data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative
measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of
memory. For more information, see the AWS Glue pricing page.

For Glue version 2.0+ jobs, you cannot specify a Maximum capacity. Instead, you should
specify a Worker type and the Number of workers.

Do not set MaxCapacity if using WorkerType and NumberOfWorkers.

The value that can be allocated for MaxCapacity depends on whether you are running a Python
shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:

• When you specify a Python shell job (JobCommand.Name="pythonshell"), you can allocate
either 0.0625 or 1 DPU. The default is 0.0625 DPU.

• When you specify an Apache Spark ETL job (JobCommand.Name="glueetl") or Apache Spark
streaming ETL job (JobCommand.Name="gluestreaming"), you can allocate from 2 to 100
DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.

• SecurityConfiguration – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

Jobs 2192

https://aws.amazon.com/glue/pricing/
https://aws.amazon.com/glue/pricing/

AWS Glue User Guide

The name of the SecurityConfiguration structure to be used with this job.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

The tags to use with this job. You may use tags to limit access to the job. For more information
about tags in AWS Glue, see AWS Tags in AWS Glue in the developer guide.

• NotificationProperty – A NotificationProperty object.

Specifies configuration properties of a job notification.

• GlueVersion – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #20.

In Spark jobs, GlueVersion determines the versions of Apache Spark and Python that AWS
Glue available in a job. The Python version indicates the version supported for jobs of type
Spark.

Ray jobs should set GlueVersion to 4.0 or greater. However, the versions of Ray, Python and
additional libraries available in your Ray job are determined by the Runtime parameter of the
Job command.

For more information about the available AWS Glue versions and corresponding Spark and
Python versions, see Glue version in the developer guide.

Jobs that are created without specifying a Glue version default to Glue 0.9.

• NumberOfWorkers – Number (integer).

The number of workers of a defined workerType that are allocated when a job runs.

• WorkerType – UTF-8 string (valid values: Standard="" | G.1X="" | G.2X="" | G.025X="" |
G.4X="" | G.8X="" | Z.2X="").

The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X,
G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.

• For the G.1X worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with
84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this

Jobs 2193

https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html
https://docs.aws.amazon.com/glue/latest/dg/add-job.html

AWS Glue User Guide

worker type for workloads such as data transforms, joins, and queries, to offers a scalable and
cost effective way to run most jobs.

• For the G.2X worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with
128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend
this worker type for workloads such as data transforms, joins, and queries, to offers a scalable
and cost effective way to run most jobs.

• For the G.4X worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with
256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend
this worker type for jobs whose workloads contain your most demanding transforms,
aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0
or later Spark ETL jobs in the following AWS Regions: US East (Ohio), US East (N. Virginia),
US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada
(Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).

• For the G.8X worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with
512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend
this worker type for jobs whose workloads contain your most demanding transforms,
aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or
later Spark ETL jobs, in the same AWS Regions as supported for the G.4X worker type.

• For the G.025X worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with
84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this
worker type for low volume streaming jobs. This worker type is only available for AWS Glue
version 3.0 streaming jobs.

• For the Z.2X worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128
GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.

• CodeGenConfigurationNodes – A map array of key-value pairs.

Each key is a UTF-8 string, matching the Custom string pattern #39.

Each value is a A CodeGenConfigurationNode object.

The representation of a directed acyclic graph on which both the Glue Studio visual component
and Glue Studio code generation is based.

• ExecutionClass – UTF-8 string, not more than 16 bytes long (valid values: FLEX="" |
STANDARD="").

Jobs 2194

AWS Glue User Guide

Indicates whether the job is run with a standard or flexible execution class. The standard
execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated
resources.

The flexible execution class is appropriate for time-insensitive jobs whose start and completion
times may vary.

Only jobs with AWS Glue version 3.0 and above and command type glueetl will be allowed to
set ExecutionClass to FLEX. The flexible execution class is available for Spark jobs.

• SourceControlDetails – A SourceControlDetails object.

The details for a source control configuration for a job, allowing synchronization of job artifacts
to or from a remote repository.

• MaintenanceWindow – UTF-8 string, matching the Custom string pattern #30.

This field specifies a day of the week and hour for a maintenance window for streaming jobs.
AWS Glue periodically performs maintenance activities. During these maintenance windows,
AWS Glue will need to restart your streaming jobs.

AWS Glue will restart the job within 3 hours of the specified maintenance window. For instance,
if you set up the maintenance window for Monday at 10:00AM GMT, your jobs will be restarted
between 10:00AM GMT to 1:00PM GMT.

• ProfileName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of an AWS Glue usage profile associated with the job.

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The unique name that was provided for this job definition.

Errors

• InvalidInputException

Jobs 2195

AWS Glue User Guide

• IdempotentParameterMismatchException

• AlreadyExistsException

• InternalServiceException

• OperationTimeoutException

• ResourceNumberLimitExceededException

• ConcurrentModificationException

UpdateJob action (Python: update_job)

Updates an existing job definition. The previous job definition is completely overwritten by this
information.

Request

• JobName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the job definition to update.

• JobUpdate – Required: A JobUpdate object.

Specifies the values with which to update the job definition. Unspecified configuration is
removed or reset to default values.

• ProfileName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of an AWS Glue usage profile associated with the job.

Response

• JobName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Returns the name of the updated job definition.

Errors

• InvalidInputException

Jobs 2196

AWS Glue User Guide

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• ConcurrentModificationException

GetJob action (Python: get_job)

Retrieves an existing job definition.

Request

• JobName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the job definition to retrieve.

Response

• Job – A Job object.

The requested job definition.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

GetJobs action (Python: get_jobs)

Retrieves all current job definitions.

Request

• NextToken – UTF-8 string.

Jobs 2197

AWS Glue User Guide

A continuation token, if this is a continuation call.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum size of the response.

Response

• Jobs – An array of Job objects.

A list of job definitions.

• NextToken – UTF-8 string.

A continuation token, if not all job definitions have yet been returned.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

DeleteJob action (Python: delete_job)

Deletes a specified job definition. If the job definition is not found, no exception is thrown.

Request

• JobName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the job definition to delete.

Response

• JobName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Jobs 2198

AWS Glue User Guide

The name of the job definition that was deleted.

Errors

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

ListJobs action (Python: list_jobs)

Retrieves the names of all job resources in this AWS account, or the resources with the specified
tag. This operation allows you to see which resources are available in your account, and their
names.

This operation takes the optional Tags field, which you can use as a filter on the response so that
tagged resources can be retrieved as a group. If you choose to use tags filtering, only resources
with the tag are retrieved.

Request

• NextToken – UTF-8 string.

A continuation token, if this is a continuation request.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum size of a list to return.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

Specifies to return only these tagged resources.

Response

• JobNames – An array of UTF-8 strings.

Jobs 2199

AWS Glue User Guide

The names of all jobs in the account, or the jobs with the specified tags.

• NextToken – UTF-8 string.

A continuation token, if the returned list does not contain the last metric available.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

BatchGetJobs action (Python: batch_get_jobs)

Returns a list of resource metadata for a given list of job names. After calling the ListJobs
operation, you can call this operation to access the data to which you have been granted
permissions. This operation supports all IAM permissions, including permission conditions that uses
tags.

Request

• JobNames – Required: An array of UTF-8 strings.

A list of job names, which might be the names returned from the ListJobs operation.

Response

• Jobs – An array of Job objects.

A list of job definitions.

• JobsNotFound – An array of UTF-8 strings.

A list of names of jobs not found.

Errors

• InternalServiceException

Jobs 2200

AWS Glue User Guide

• OperationTimeoutException

• InvalidInputException

Job runs

The Jobs Runs API describes the data types and API related to starting, stopping, or viewing job
runs, and resetting job bookmarks, in AWS Glue. Job run history is accessible for 90 days for your
workflow and job run.

Data types

• JobRun structure

• Predecessor structure

• JobBookmarkEntry structure

• BatchStopJobRunSuccessfulSubmission structure

• BatchStopJobRunError structure

• NotificationProperty structure

JobRun structure

Contains information about a job run.

Fields

• Id – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line string
pattern.

The ID of this job run.

• Attempt – Number (integer).

The number of the attempt to run this job.

• PreviousRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the previous run of this job. For example, the JobRunId specified in the StartJobRun
action.

Job runs 2201

AWS Glue User Guide

• TriggerName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the trigger that started this job run.

• JobName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the job definition being used in this run.

• JobMode – UTF-8 string (valid values: SCRIPT="" | VISUAL="" | NOTEBOOK="").

A mode that describes how a job was created. Valid values are:

• SCRIPT - The job was created using the AWS Glue Studio script editor.

• VISUAL - The job was created using the AWS Glue Studio visual editor.

• NOTEBOOK - The job was created using an interactive sessions notebook.

When the JobMode field is missing or null, SCRIPT is assigned as the default value.

• StartedOn – Timestamp.

The date and time at which this job run was started.

• LastModifiedOn – Timestamp.

The last time that this job run was modified.

• CompletedOn – Timestamp.

The date and time that this job run completed.

• JobRunState – UTF-8 string (valid values: STARTING | RUNNING | STOPPING | STOPPED |
SUCCEEDED | FAILED | TIMEOUT | ERROR | WAITING | EXPIRED).

The current state of the job run. For more information about the statuses of jobs that have
terminated abnormally, see AWS Glue Job Run Statuses.

• Arguments – A map array of key-value pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

The job arguments associated with this run. For this job run, they replace the default arguments
set in the job definition itself.

Job runs 2202

https://docs.aws.amazon.com/glue/latest/dg/job-run-statuses.html

AWS Glue User Guide

You can specify arguments here that your own job-execution script consumes, as well as
arguments that AWS Glue itself consumes.

Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from
a AWS Glue Connection, AWS Secrets Manager or other secret management mechanism if you
intend to keep them within the Job.

For information about how to specify and consume your own Job arguments, see the Calling
AWS Glue APIs in Python topic in the developer guide.

For information about the arguments you can provide to this field when configuring Spark jobs,
see the Special Parameters Used by AWS Glue topic in the developer guide.

For information about the arguments you can provide to this field when configuring Ray jobs, see
Using job parameters in Ray jobs in the developer guide.

• ErrorMessage – UTF-8 string.

An error message associated with this job run.

• PredecessorRuns – An array of Predecessor objects.

A list of predecessors to this job run.

• AllocatedCapacity – Number (integer).

This field is deprecated. Use MaxCapacity instead.

The number of AWS Glue data processing units (DPUs) allocated to this JobRun. From 2 to 100
DPUs can be allocated; the default is 10. A DPU is a relative measure of processing power that
consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the
AWS Glue pricing page.

• ExecutionTime – Number (integer).

The amount of time (in seconds) that the job run consumed resources.

• Timeout – Number (integer), at least 1.

The JobRun timeout in minutes. This is the maximum time that a job run can consume resources
before it is terminated and enters TIMEOUT status. This value overrides the timeout value set in
the parent job.

Job runs 2203

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
https://docs.aws.amazon.com/glue/latest/dg/author-job-ray-job-parameters.html
https://aws.amazon.com/glue/pricing/

AWS Glue User Guide

Streaming jobs must have timeout values less than 7 days or 10080 minutes. When the value
is left blank, the job will be restarted after 7 days based if you have not setup a maintenance
window. If you have setup maintenance window, it will be restarted during the maintenance
window after 7 days.

• MaxCapacity – Number (double).

For Glue version 1.0 or earlier jobs, using the standard worker type, the number of AWS Glue
data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative
measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of
memory. For more information, see the AWS Glue pricing page.

For Glue version 2.0+ jobs, you cannot specify a Maximum capacity. Instead, you should
specify a Worker type and the Number of workers.

Do not set MaxCapacity if using WorkerType and NumberOfWorkers.

The value that can be allocated for MaxCapacity depends on whether you are running a Python
shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:

• When you specify a Python shell job (JobCommand.Name="pythonshell"), you can allocate
either 0.0625 or 1 DPU. The default is 0.0625 DPU.

• When you specify an Apache Spark ETL job (JobCommand.Name="glueetl") or Apache Spark
streaming ETL job (JobCommand.Name="gluestreaming"), you can allocate from 2 to 100
DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.

• WorkerType – UTF-8 string (valid values: Standard="" | G.1X="" | G.2X="" | G.025X="" |
G.4X="" | G.8X="" | Z.2X="").

The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X,
G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.

• For the G.1X worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with
84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this
worker type for workloads such as data transforms, joins, and queries, to offers a scalable and
cost effective way to run most jobs.

• For the G.2X worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with
128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend
this worker type for workloads such as data transforms, joins, and queries, to offers a scalable
and cost effective way to run most jobs.

Job runs 2204

https://aws.amazon.com/glue/pricing/

AWS Glue User Guide

• For the G.4X worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with
256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend
this worker type for jobs whose workloads contain your most demanding transforms,
aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0
or later Spark ETL jobs in the following AWS Regions: US East (Ohio), US East (N. Virginia),
US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada
(Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).

• For the G.8X worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with
512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend
this worker type for jobs whose workloads contain your most demanding transforms,
aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or
later Spark ETL jobs, in the same AWS Regions as supported for the G.4X worker type.

• For the G.025X worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with
84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this
worker type for low volume streaming jobs. This worker type is only available for AWS Glue
version 3.0 streaming jobs.

• For the Z.2X worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128
GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.

• NumberOfWorkers – Number (integer).

The number of workers of a defined workerType that are allocated when a job runs.

• SecurityConfiguration – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The name of the SecurityConfiguration structure to be used with this job run.

• LogGroupName – UTF-8 string.

The name of the log group for secure logging that can be server-side encrypted in Amazon
CloudWatch using AWS KMS. This name can be /aws-glue/jobs/, in which case the default
encryption is NONE. If you add a role name and SecurityConfiguration name (in other
words, /aws-glue/jobs-yourRoleName-yourSecurityConfigurationName/), then that
security configuration is used to encrypt the log group.

• NotificationProperty – A NotificationProperty object.

Specifies configuration properties of a job run notification.

Job runs 2205

AWS Glue User Guide

• GlueVersion – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #20.

In Spark jobs, GlueVersion determines the versions of Apache Spark and Python that AWS
Glue available in a job. The Python version indicates the version supported for jobs of type
Spark.

Ray jobs should set GlueVersion to 4.0 or greater. However, the versions of Ray, Python and
additional libraries available in your Ray job are determined by the Runtime parameter of the
Job command.

For more information about the available AWS Glue versions and corresponding Spark and
Python versions, see Glue version in the developer guide.

Jobs that are created without specifying a Glue version default to Glue 0.9.

• DPUSeconds – Number (double).

This field can be set for either job runs with execution class FLEX or when Auto Scaling is
enabled, and represents the total time each executor ran during the lifecycle of a job run in
seconds, multiplied by a DPU factor (1 for G.1X, 2 for G.2X, or 0.25 for G.025X workers).
This value may be different than the executionEngineRuntime * MaxCapacity as in the
case of Auto Scaling jobs, as the number of executors running at a given time may be less
than the MaxCapacity. Therefore, it is possible that the value of DPUSeconds is less than
executionEngineRuntime * MaxCapacity.

• ExecutionClass – UTF-8 string, not more than 16 bytes long (valid values: FLEX="" |
STANDARD="").

Indicates whether the job is run with a standard or flexible execution class. The standard
execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated
resources.

The flexible execution class is appropriate for time-insensitive jobs whose start and completion
times may vary.

Only jobs with AWS Glue version 3.0 and above and command type glueetl will be allowed to
set ExecutionClass to FLEX. The flexible execution class is available for Spark jobs.

• MaintenanceWindow – UTF-8 string, matching the Custom string pattern #30.

Job runs 2206

https://docs.aws.amazon.com/glue/latest/dg/add-job.html

AWS Glue User Guide

This field specifies a day of the week and hour for a maintenance window for streaming jobs.
AWS Glue periodically performs maintenance activities. During these maintenance windows,
AWS Glue will need to restart your streaming jobs.

AWS Glue will restart the job within 3 hours of the specified maintenance window. For instance,
if you set up the maintenance window for Monday at 10:00AM GMT, your jobs will be restarted
between 10:00AM GMT to 1:00PM GMT.

• ProfileName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of an AWS Glue usage profile associated with the job run.

Predecessor structure

A job run that was used in the predicate of a conditional trigger that triggered this job run.

Fields

• JobName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the job definition used by the predecessor job run.

• RunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The job-run ID of the predecessor job run.

JobBookmarkEntry structure

Defines a point that a job can resume processing.

Fields

• JobName – UTF-8 string.

The name of the job in question.

• Version – Number (integer).

The version of the job.

Job runs 2207

AWS Glue User Guide

• Run – Number (integer).

The run ID number.

• Attempt – Number (integer).

The attempt ID number.

• PreviousRunId – UTF-8 string.

The unique run identifier associated with the previous job run.

• RunId – UTF-8 string.

The run ID number.

• JobBookmark – UTF-8 string.

The bookmark itself.

BatchStopJobRunSuccessfulSubmission structure

Records a successful request to stop a specified JobRun.

Fields

• JobName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the job definition used in the job run that was stopped.

• JobRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The JobRunId of the job run that was stopped.

BatchStopJobRunError structure

Records an error that occurred when attempting to stop a specified job run.

Fields

• JobName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Job runs 2208

AWS Glue User Guide

The name of the job definition that is used in the job run in question.

• JobRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The JobRunId of the job run in question.

• ErrorDetail – An ErrorDetail object.

Specifies details about the error that was encountered.

NotificationProperty structure

Specifies configuration properties of a notification.

Fields

• NotifyDelayAfter – Number (integer), at least 1.

After a job run starts, the number of minutes to wait before sending a job run delay notification.

Operations

• StartJobRun action (Python: start_job_run)

• BatchStopJobRun action (Python: batch_stop_job_run)

• GetJobRun action (Python: get_job_run)

• GetJobRuns action (Python: get_job_runs)

• GetJobBookmark action (Python: get_job_bookmark)

• GetJobBookmarks action (Python: get_job_bookmarks)

• ResetJobBookmark action (Python: reset_job_bookmark)

StartJobRun action (Python: start_job_run)

Starts a job run using a job definition.

Request

• JobName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

Job runs 2209

AWS Glue User Guide

The name of the job definition to use.

• JobRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The ID of a previous JobRun to retry.

• Arguments – A map array of key-value pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

The job arguments associated with this run. For this job run, they replace the default arguments
set in the job definition itself.

You can specify arguments here that your own job-execution script consumes, as well as
arguments that AWS Glue itself consumes.

Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from
a AWS Glue Connection, AWS Secrets Manager or other secret management mechanism if you
intend to keep them within the Job.

For information about how to specify and consume your own Job arguments, see the Calling
AWS Glue APIs in Python topic in the developer guide.

For information about the arguments you can provide to this field when configuring Spark jobs,
see the Special Parameters Used by AWS Glue topic in the developer guide.

For information about the arguments you can provide to this field when configuring Ray jobs, see
Using job parameters in Ray jobs in the developer guide.

• AllocatedCapacity – Number (integer).

This field is deprecated. Use MaxCapacity instead.

The number of AWS Glue data processing units (DPUs) to allocate to this JobRun. You can
allocate a minimum of 2 DPUs; the default is 10. A DPU is a relative measure of processing power
that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see
the AWS Glue pricing page.

• Timeout – Number (integer), at least 1.

Job runs 2210

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
https://docs.aws.amazon.com/glue/latest/dg/author-job-ray-job-parameters.html
https://aws.amazon.com/glue/pricing/

AWS Glue User Guide

The JobRun timeout in minutes. This is the maximum time that a job run can consume resources
before it is terminated and enters TIMEOUT status. This value overrides the timeout value set in
the parent job.

Streaming jobs must have timeout values less than 7 days or 10080 minutes. When the value
is left blank, the job will be restarted after 7 days based if you have not setup a maintenance
window. If you have setup maintenance window, it will be restarted during the maintenance
window after 7 days.

• MaxCapacity – Number (double).

For Glue version 1.0 or earlier jobs, using the standard worker type, the number of AWS Glue
data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative
measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of
memory. For more information, see the AWS Glue pricing page.

For Glue version 2.0+ jobs, you cannot specify a Maximum capacity. Instead, you should
specify a Worker type and the Number of workers.

Do not set MaxCapacity if using WorkerType and NumberOfWorkers.

The value that can be allocated for MaxCapacity depends on whether you are running a Python
shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:

• When you specify a Python shell job (JobCommand.Name="pythonshell"), you can allocate
either 0.0625 or 1 DPU. The default is 0.0625 DPU.

• When you specify an Apache Spark ETL job (JobCommand.Name="glueetl") or Apache Spark
streaming ETL job (JobCommand.Name="gluestreaming"), you can allocate from 2 to 100
DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.

• SecurityConfiguration – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The name of the SecurityConfiguration structure to be used with this job run.

• NotificationProperty – A NotificationProperty object.

Specifies configuration properties of a job run notification.

• WorkerType – UTF-8 string (valid values: Standard="" | G.1X="" | G.2X="" | G.025X="" |
G.4X="" | G.8X="" | Z.2X="").

Job runs 2211

https://aws.amazon.com/glue/pricing/

AWS Glue User Guide

The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X,
G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.

• For the G.1X worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with
84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this
worker type for workloads such as data transforms, joins, and queries, to offers a scalable and
cost effective way to run most jobs.

• For the G.2X worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with
128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend
this worker type for workloads such as data transforms, joins, and queries, to offers a scalable
and cost effective way to run most jobs.

• For the G.4X worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with
256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend
this worker type for jobs whose workloads contain your most demanding transforms,
aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0
or later Spark ETL jobs in the following AWS Regions: US East (Ohio), US East (N. Virginia),
US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada
(Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).

• For the G.8X worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with
512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend
this worker type for jobs whose workloads contain your most demanding transforms,
aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or
later Spark ETL jobs, in the same AWS Regions as supported for the G.4X worker type.

• For the G.025X worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with
84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this
worker type for low volume streaming jobs. This worker type is only available for AWS Glue
version 3.0 streaming jobs.

• For the Z.2X worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128
GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.

• NumberOfWorkers – Number (integer).

The number of workers of a defined workerType that are allocated when a job runs.

• ExecutionClass – UTF-8 string, not more than 16 bytes long (valid values: FLEX="" |
STANDARD="").

Job runs 2212

AWS Glue User Guide

Indicates whether the job is run with a standard or flexible execution class. The standard
execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated
resources.

The flexible execution class is appropriate for time-insensitive jobs whose start and completion
times may vary.

Only jobs with AWS Glue version 3.0 and above and command type glueetl will be allowed to
set ExecutionClass to FLEX. The flexible execution class is available for Spark jobs.

• ProfileName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of an AWS Glue usage profile associated with the job run.

Response

• JobRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The ID assigned to this job run.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• ResourceNumberLimitExceededException

• ConcurrentRunsExceededException

BatchStopJobRun action (Python: batch_stop_job_run)

Stops one or more job runs for a specified job definition.

Job runs 2213

AWS Glue User Guide

Request

• JobName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the job definition for which to stop job runs.

• JobRunIds – Required: An array of UTF-8 strings, not less than 1 or more than 25 strings.

A list of the JobRunIds that should be stopped for that job definition.

Response

• SuccessfulSubmissions – An array of BatchStopJobRunSuccessfulSubmission objects.

A list of the JobRuns that were successfully submitted for stopping.

• Errors – An array of BatchStopJobRunError objects.

A list of the errors that were encountered in trying to stop JobRuns, including the JobRunId for
which each error was encountered and details about the error.

Errors

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

GetJobRun action (Python: get_job_run)

Retrieves the metadata for a given job run. Job run history is accessible for 90 days for your
workflow and job run.

Request

• JobName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

Name of the job definition being run.

Job runs 2214

AWS Glue User Guide

• RunId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the job run.

• PredecessorsIncluded – Boolean.

True if a list of predecessor runs should be returned.

Response

• JobRun – A JobRun object.

The requested job-run metadata.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

GetJobRuns action (Python: get_job_runs)

Retrieves metadata for all runs of a given job definition.

Request

• JobName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the job definition for which to retrieve all job runs.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

• MaxResults – Number (integer), not less than 1 or more than 200.

The maximum size of the response.

Job runs 2215

AWS Glue User Guide

Response

• JobRuns – An array of JobRun objects.

A list of job-run metadata objects.

• NextToken – UTF-8 string.

A continuation token, if not all requested job runs have been returned.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

GetJobBookmark action (Python: get_job_bookmark)

Returns information on a job bookmark entry.

For more information about enabling and using job bookmarks, see:

• Tracking processed data using job bookmarks

• Job parameters used by AWS Glue

• Job structure

Request

• JobName – Required: UTF-8 string.

The name of the job in question.

• Version – Number (integer).

The version of the job.

• RunId – UTF-8 string.

The unique run identifier associated with this job run.

Job runs 2216

https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html#aws-glue-api-jobs-job-Job

AWS Glue User Guide

Response

• JobBookmarkEntry – A JobBookmarkEntry object.

A structure that defines a point that a job can resume processing.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• ValidationException

GetJobBookmarks action (Python: get_job_bookmarks)

Returns information on the job bookmark entries. The list is ordered on decreasing version
numbers.

For more information about enabling and using job bookmarks, see:

• Tracking processed data using job bookmarks

• Job parameters used by AWS Glue

• Job structure

Request

• JobName – Required: UTF-8 string.

The name of the job in question.

• MaxResults – Number (integer).

The maximum size of the response.

• NextToken – Number (integer).

A continuation token, if this is a continuation call.

Job runs 2217

https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html#aws-glue-api-jobs-job-Job

AWS Glue User Guide

Response

• JobBookmarkEntries – An array of JobBookmarkEntry objects.

A list of job bookmark entries that defines a point that a job can resume processing.

• NextToken – Number (integer).

A continuation token, which has a value of 1 if all the entries are returned, or > 1 if not all
requested job runs have been returned.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

ResetJobBookmark action (Python: reset_job_bookmark)

Resets a bookmark entry.

For more information about enabling and using job bookmarks, see:

• Tracking processed data using job bookmarks

• Job parameters used by AWS Glue

• Job structure

Request

• JobName – Required: UTF-8 string.

The name of the job in question.

• RunId – UTF-8 string.

The unique run identifier associated with this job run.

Job runs 2218

https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html#aws-glue-api-jobs-job-Job

AWS Glue User Guide

Response

• JobBookmarkEntry – A JobBookmarkEntry object.

The reset bookmark entry.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

Triggers

The Triggers API describes the data types and API related to creating, updating, or deleting, and
starting and stopping job triggers in AWS Glue.

Data types

• Trigger structure

• TriggerUpdate structure

• Predicate structure

• Condition structure

• Action structure

• EventBatchingCondition structure

Trigger structure

Information about a specific trigger.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the trigger.

Triggers 2219

AWS Glue User Guide

• WorkflowName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the workflow associated with the trigger.

• Id – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line string
pattern.

Reserved for future use.

• Type – UTF-8 string (valid values: SCHEDULED | CONDITIONAL | ON_DEMAND | EVENT).

The type of trigger that this is.

• State – UTF-8 string (valid values: CREATING | CREATED | ACTIVATING | ACTIVATED |
DEACTIVATING | DEACTIVATED | DELETING | UPDATING).

The current state of the trigger.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of this trigger.

• Schedule – UTF-8 string.

A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and
Crawlers. For example, to run something every day at 12:15 UTC, you would specify: cron(15
12 * * ? *).

• Actions – An array of Action objects.

The actions initiated by this trigger.

• Predicate – A Predicate object.

The predicate of this trigger, which defines when it will fire.

• EventBatchingCondition – An EventBatchingCondition object.

Batch condition that must be met (specified number of events received or batch time window
expired) before EventBridge event trigger fires.

Triggers 2220

https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html

AWS Glue User Guide

TriggerUpdate structure

A structure used to provide information used to update a trigger. This object updates the previous
trigger definition by overwriting it completely.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Reserved for future use.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of this trigger.

• Schedule – UTF-8 string.

A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and
Crawlers. For example, to run something every day at 12:15 UTC, you would specify: cron(15
12 * * ? *).

• Actions – An array of Action objects.

The actions initiated by this trigger.

• Predicate – A Predicate object.

The predicate of this trigger, which defines when it will fire.

• EventBatchingCondition – An EventBatchingCondition object.

Batch condition that must be met (specified number of events received or batch time window
expired) before EventBridge event trigger fires.

Predicate structure

Defines the predicate of the trigger, which determines when it fires.

Fields

• Logical – UTF-8 string (valid values: AND | ANY).
Triggers 2221

https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html

AWS Glue User Guide

An optional field if only one condition is listed. If multiple conditions are listed, then this field is
required.

• Conditions – An array of Condition objects.

A list of the conditions that determine when the trigger will fire.

Condition structure

Defines a condition under which a trigger fires.

Fields

• LogicalOperator – UTF-8 string (valid values: EQUALS).

A logical operator.

• JobName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the job whose JobRuns this condition applies to, and on which this trigger waits.

• State – UTF-8 string (valid values: STARTING | RUNNING | STOPPING | STOPPED | SUCCEEDED |
FAILED | TIMEOUT | ERROR | WAITING | EXPIRED).

The condition state. Currently, the only job states that a trigger can listen for are SUCCEEDED,
STOPPED, FAILED, and TIMEOUT. The only crawler states that a trigger can listen for are
SUCCEEDED, FAILED, and CANCELLED.

• CrawlerName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the crawler to which this condition applies.

• CrawlState – UTF-8 string (valid values: RUNNING | CANCELLING | CANCELLED | SUCCEEDED |
FAILED | ERROR).

The state of the crawler to which this condition applies.

Action structure

Defines an action to be initiated by a trigger.

Triggers 2222

AWS Glue User Guide

Fields

• JobName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of a job to be run.

• Arguments – A map array of key-value pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

The job arguments used when this trigger fires. For this job run, they replace the default
arguments set in the job definition itself.

You can specify arguments here that your own job-execution script consumes, as well as
arguments that AWS Glue itself consumes.

For information about how to specify and consume your own Job arguments, see the Calling
AWS Glue APIs in Python topic in the developer guide.

For information about the key-value pairs that AWS Glue consumes to set up your job, see the
Special Parameters Used by AWS Glue topic in the developer guide.

• Timeout – Number (integer), at least 1.

The JobRun timeout in minutes. This is the maximum time that a job run can consume resources
before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This
overrides the timeout value set in the parent job.

• SecurityConfiguration – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The name of the SecurityConfiguration structure to be used with this action.

• NotificationProperty – A NotificationProperty object.

Specifies configuration properties of a job run notification.

• CrawlerName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the crawler to be used with this action.
Triggers 2223

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html

AWS Glue User Guide

EventBatchingCondition structure

Batch condition that must be met (specified number of events received or batch time window
expired) before EventBridge event trigger fires.

Fields

• BatchSize – Required: Number (integer), not less than 1 or more than 100.

Number of events that must be received from Amazon EventBridge before EventBridge event
trigger fires.

• BatchWindow – Number (integer), not less than 1 or more than 900.

Window of time in seconds after which EventBridge event trigger fires. Window starts when first
event is received.

Operations

• CreateTrigger action (Python: create_trigger)

• StartTrigger action (Python: start_trigger)

• GetTrigger action (Python: get_trigger)

• GetTriggers action (Python: get_triggers)

• UpdateTrigger action (Python: update_trigger)

• StopTrigger action (Python: stop_trigger)

• DeleteTrigger action (Python: delete_trigger)

• ListTriggers action (Python: list_triggers)

• BatchGetTriggers action (Python: batch_get_triggers)

CreateTrigger action (Python: create_trigger)

Creates a new trigger.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Triggers 2224

AWS Glue User Guide

The name of the trigger.

• WorkflowName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the workflow associated with the trigger.

• Type – Required: UTF-8 string (valid values: SCHEDULED | CONDITIONAL | ON_DEMAND | EVENT).

The type of the new trigger.

• Schedule – UTF-8 string.

A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and
Crawlers. For example, to run something every day at 12:15 UTC, you would specify: cron(15
12 * * ? *).

This field is required when the trigger type is SCHEDULED.

• Predicate – A Predicate object.

A predicate to specify when the new trigger should fire.

This field is required when the trigger type is CONDITIONAL.

• Actions – Required: An array of Action objects.

The actions initiated by this trigger when it fires.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the new trigger.

• StartOnCreation – Boolean.

Set to true to start SCHEDULED and CONDITIONAL triggers when created. True is not supported
for ON_DEMAND triggers.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

Triggers 2225

https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html

AWS Glue User Guide

The tags to use with this trigger. You may use tags to limit access to the trigger. For more
information about tags in AWS Glue, see AWS Tags in AWS Glue in the developer guide.

• EventBatchingCondition – An EventBatchingCondition object.

Batch condition that must be met (specified number of events received or batch time window
expired) before EventBridge event trigger fires.

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the trigger.

Errors

• AlreadyExistsException

• EntityNotFoundException

• InvalidInputException

• IdempotentParameterMismatchException

• InternalServiceException

• OperationTimeoutException

• ResourceNumberLimitExceededException

• ConcurrentModificationException

StartTrigger action (Python: start_trigger)

Starts an existing trigger. See Triggering Jobs for information about how different types of trigger
are started.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the trigger to start.

Triggers 2226

https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html
https://docs.aws.amazon.com/glue/latest/dg/trigger-job.html

AWS Glue User Guide

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the trigger that was started.

Errors

• InvalidInputException

• InternalServiceException

• EntityNotFoundException

• OperationTimeoutException

• ResourceNumberLimitExceededException

• ConcurrentRunsExceededException

GetTrigger action (Python: get_trigger)

Retrieves the definition of a trigger.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the trigger to retrieve.

Response

• Trigger – A Trigger object.

The requested trigger definition.

Errors

• EntityNotFoundException

• InvalidInputException

Triggers 2227

AWS Glue User Guide

• InternalServiceException

• OperationTimeoutException

GetTriggers action (Python: get_triggers)

Gets all the triggers associated with a job.

Request

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

• DependentJobName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the job to retrieve triggers for. The trigger that can start this job is returned, and if
there is no such trigger, all triggers are returned.

• MaxResults – Number (integer), not less than 1 or more than 200.

The maximum size of the response.

Response

• Triggers – An array of Trigger objects.

A list of triggers for the specified job.

• NextToken – UTF-8 string.

A continuation token, if not all the requested triggers have yet been returned.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

Triggers 2228

AWS Glue User Guide

UpdateTrigger action (Python: update_trigger)

Updates a trigger definition.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the trigger to update.

• TriggerUpdate – Required: A TriggerUpdate object.

The new values with which to update the trigger.

Response

• Trigger – A Trigger object.

The resulting trigger definition.

Errors

• InvalidInputException

• InternalServiceException

• EntityNotFoundException

• OperationTimeoutException

• ConcurrentModificationException

StopTrigger action (Python: stop_trigger)

Stops a specified trigger.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the trigger to stop.

Triggers 2229

AWS Glue User Guide

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the trigger that was stopped.

Errors

• InvalidInputException

• InternalServiceException

• EntityNotFoundException

• OperationTimeoutException

• ConcurrentModificationException

DeleteTrigger action (Python: delete_trigger)

Deletes a specified trigger. If the trigger is not found, no exception is thrown.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the trigger to delete.

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the trigger that was deleted.

Errors

• InvalidInputException

• InternalServiceException

Triggers 2230

AWS Glue User Guide

• OperationTimeoutException

• ConcurrentModificationException

ListTriggers action (Python: list_triggers)

Retrieves the names of all trigger resources in this AWS account, or the resources with the specified
tag. This operation allows you to see which resources are available in your account, and their
names.

This operation takes the optional Tags field, which you can use as a filter on the response so that
tagged resources can be retrieved as a group. If you choose to use tags filtering, only resources
with the tag are retrieved.

Request

• NextToken – UTF-8 string.

A continuation token, if this is a continuation request.

• DependentJobName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the job for which to retrieve triggers. The trigger that can start this job is returned.
If there is no such trigger, all triggers are returned.

• MaxResults – Number (integer), not less than 1 or more than 200.

The maximum size of a list to return.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

Specifies to return only these tagged resources.

Response

• TriggerNames – An array of UTF-8 strings.

The names of all triggers in the account, or the triggers with the specified tags.

Triggers 2231

AWS Glue User Guide

• NextToken – UTF-8 string.

A continuation token, if the returned list does not contain the last metric available.

Errors

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

BatchGetTriggers action (Python: batch_get_triggers)

Returns a list of resource metadata for a given list of trigger names. After calling the
ListTriggers operation, you can call this operation to access the data to which you have been
granted permissions. This operation supports all IAM permissions, including permission conditions
that uses tags.

Request

• TriggerNames – Required: An array of UTF-8 strings.

A list of trigger names, which may be the names returned from the ListTriggers operation.

Response

• Triggers – An array of Trigger objects.

A list of trigger definitions.

• TriggersNotFound – An array of UTF-8 strings.

A list of names of triggers not found.

Errors

• InternalServiceException

• OperationTimeoutException

Triggers 2232

AWS Glue User Guide

• InvalidInputException

Interactive sessions API

The interactive sessions API describes the AWS Glue API related to using AWS Glue interactive
sessions to build and test extract, transform, and load (ETL) scripts for data integration.

Data types

• Session structure

• SessionCommand structure

• Statement structure

• StatementOutput structure

• StatementOutputData structure

• ConnectionsList structure

Session structure

The period in which a remote Spark runtime environment is running.

Fields

• Id – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line string
pattern.

The ID of the session.

• CreatedOn – Timestamp.

The time and date when the session was created.

• Status – UTF-8 string (valid values: PROVISIONING | READY | FAILED | TIMEOUT | STOPPING |
STOPPED).

The session status.

• ErrorMessage – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

The error message displayed during the session.

Interactive sessions 2233

AWS Glue User Guide

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

The description of the session.

• Role – UTF-8 string, not less than 20 or more than 2048 bytes long, matching the Custom string
pattern #26.

The name or Amazon Resource Name (ARN) of the IAM role associated with the Session.

• Command – A SessionCommand object.

The command object.See SessionCommand.

• DefaultArguments – A map array of key-value pairs, not more than 75 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long, matching the Custom
string pattern #27.

Each value is a UTF-8 string, not more than 4096 bytes long, matching the URI address multi-line
string pattern.

A map array of key-value pairs. Max is 75 pairs.

• Connections – A ConnectionsList object.

The number of connections used for the session.

• Progress – Number (double).

The code execution progress of the session.

• MaxCapacity – Number (double).

The number of AWS Glue data processing units (DPUs) that can be allocated when the job runs. A
DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and
16 GB memory.

• SecurityConfiguration – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The name of the SecurityConfiguration structure to be used with the session.

• GlueVersion – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #20.

Session 2234

AWS Glue User Guide

The AWS Glue version determines the versions of Apache Spark and Python that AWS Glue
supports. The GlueVersion must be greater than 2.0.

• DataAccessId – UTF-8 string, not less than 1 or more than 36 bytes long.

The data access ID of the session.

• PartitionId – UTF-8 string, not less than 1 or more than 36 bytes long.

The partition ID of the sesion.

• NumberOfWorkers – Number (integer).

The number of workers of a defined WorkerType to use for the session.

• WorkerType – UTF-8 string (valid values: Standard="" | G.1X="" | G.2X="" | G.025X="" |
G.4X="" | G.8X="" | Z.2X="").

The type of predefined worker that is allocated when a session runs. Accepts a value of G.1X,
G.2X, G.4X, or G.8X for Spark sessions. Accepts the value Z.2X for Ray sessions.

• CompletedOn – Timestamp.

The date and time that this session is completed.

• ExecutionTime – Number (double).

The total time the session ran for.

• DPUSeconds – Number (double).

The DPUs consumed by the session (formula: ExecutionTime * MaxCapacity).

• IdleTimeout – Number (integer).

The number of minutes when idle before the session times out.

• ProfileName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of an AWS Glue usage profile associated with the session.

SessionCommand structure

The SessionCommand that runs the job.

SessionCommand 2235

AWS Glue User Guide

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Specifies the name of the SessionCommand. Can be 'glueetl' or 'gluestreaming'.

• PythonVersion – UTF-8 string, matching the Custom string pattern #21.

Specifies the Python version. The Python version indicates the version supported for jobs of type
Spark.

Statement structure

The statement or request for a particular action to occur in a session.

Fields

• Id – Number (integer).

The ID of the statement.

• Code – UTF-8 string.

The execution code of the statement.

• State – UTF-8 string (valid values: WAITING | RUNNING | AVAILABLE | CANCELLING |
CANCELLED | ERROR).

The state while request is actioned.

• Output – A StatementOutput object.

The output in JSON.

• Progress – Number (double).

The code execution progress.

• StartedOn – Number (long).

The unix time and date that the job definition was started.

• CompletedOn – Number (long).

The unix time and date that the job definition was completed.

Statement 2236

AWS Glue User Guide

StatementOutput structure

The code execution output in JSON format.

Fields

• Data – A StatementOutputData object.

The code execution output.

• ExecutionCount – Number (integer).

The execution count of the output.

• Status – UTF-8 string (valid values: WAITING | RUNNING | AVAILABLE | CANCELLING |
CANCELLED | ERROR).

The status of the code execution output.

• ErrorName – UTF-8 string.

The name of the error in the output.

• ErrorValue – UTF-8 string.

The error value of the output.

• Traceback – An array of UTF-8 strings.

The traceback of the output.

StatementOutputData structure

The code execution output in JSON format.

Fields

• TextPlain – UTF-8 string.

The code execution output in text format.

ConnectionsList structure

Specifies the connections used by a job.

StatementOutput 2237

AWS Glue User Guide

Fields

• Connections – An array of UTF-8 strings.

A list of connections used by the job.

Operations

• CreateSession action (Python: create_session)

• StopSession action (Python: stop_session)

• DeleteSession action (Python: delete_session)

• GetSession action (Python: get_session)

• ListSessions action (Python: list_sessions)

• RunStatement action (Python: run_statement)

• CancelStatement action (Python: cancel_statement)

• GetStatement action (Python: get_statement)

• ListStatements action (Python: list_statements)

CreateSession action (Python: create_session)

Creates a new session.

Request

Request to create a new session.

• Id – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The ID of the session request.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

The description of the session.

• Role – Required: UTF-8 string, not less than 20 or more than 2048 bytes long, matching the
Custom string pattern #26.

 — operations — 2238

AWS Glue User Guide

The IAM Role ARN

• Command – Required: A SessionCommand object.

The SessionCommand that runs the job.

• Timeout – Number (integer), at least 1.

The number of minutes before session times out. Default for Spark ETL jobs is 48 hours (2880
minutes), the maximum session lifetime for this job type. Consult the documentation for other
job types.

• IdleTimeout – Number (integer), at least 1.

The number of minutes when idle before session times out. Default for Spark ETL jobs is value of
Timeout. Consult the documentation for other job types.

• DefaultArguments – A map array of key-value pairs, not more than 75 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long, matching the Custom
string pattern #27.

Each value is a UTF-8 string, not more than 4096 bytes long, matching the URI address multi-line
string pattern.

A map array of key-value pairs. Max is 75 pairs.

• Connections – A ConnectionsList object.

The number of connections to use for the session.

• MaxCapacity – Number (double).

The number of AWS Glue data processing units (DPUs) that can be allocated when the job runs. A
DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and
16 GB memory.

• NumberOfWorkers – Number (integer).

The number of workers of a defined WorkerType to use for the session.

• WorkerType – UTF-8 string (valid values: Standard="" | G.1X="" | G.2X="" | G.025X="" |
G.4X="" | G.8X="" | Z.2X="").

CreateSession (create_session) 2239

AWS Glue User Guide

The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X,
G.4X, or G.8X for Spark jobs. Accepts the value Z.2X for Ray notebooks.

• For the G.1X worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with
84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this
worker type for workloads such as data transforms, joins, and queries, to offers a scalable and
cost effective way to run most jobs.

• For the G.2X worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with
128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend
this worker type for workloads such as data transforms, joins, and queries, to offers a scalable
and cost effective way to run most jobs.

• For the G.4X worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with
256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend
this worker type for jobs whose workloads contain your most demanding transforms,
aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0
or later Spark ETL jobs in the following AWS Regions: US East (Ohio), US East (N. Virginia),
US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada
(Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).

• For the G.8X worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with
512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend
this worker type for jobs whose workloads contain your most demanding transforms,
aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or
later Spark ETL jobs, in the same AWS Regions as supported for the G.4X worker type.

• For the Z.2X worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128
GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.

• SecurityConfiguration – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The name of the SecurityConfiguration structure to be used with the session

• GlueVersion – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #20.

The AWS Glue version determines the versions of Apache Spark and Python that AWS Glue
supports. The GlueVersion must be greater than 2.0.

• DataAccessId – UTF-8 string, not less than 1 or more than 36 bytes long.

CreateSession (create_session) 2240

AWS Glue User Guide

The data access ID of the session.

• PartitionId – UTF-8 string, not less than 1 or more than 36 bytes long.

The partition ID of the session.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

The map of key value pairs (tags) belonging to the session.

• RequestOrigin – UTF-8 string, not less than 1 or more than 128 bytes long, matching the
Custom string pattern #27.

The origin of the request.

• ProfileName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of an AWS Glue usage profile associated with the session.

Response

• Session – A Session object.

Returns the session object in the response.

Errors

• AccessDeniedException

• IdempotentParameterMismatchException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

• ValidationException

• AlreadyExistsException

• ResourceNumberLimitExceededException

CreateSession (create_session) 2241

AWS Glue User Guide

StopSession action (Python: stop_session)

Stops the session.

Request

• Id – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The ID of the session to be stopped.

• RequestOrigin – UTF-8 string, not less than 1 or more than 128 bytes long, matching the
Custom string pattern #27.

The origin of the request.

Response

• Id – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line string
pattern.

Returns the Id of the stopped session.

Errors

• AccessDeniedException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

• IllegalSessionStateException

• ConcurrentModificationException

DeleteSession action (Python: delete_session)

Deletes the session.

StopSession (stop_session) 2242

AWS Glue User Guide

Request

• Id – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The ID of the session to be deleted.

• RequestOrigin – UTF-8 string, not less than 1 or more than 128 bytes long, matching the
Custom string pattern #27.

The name of the origin of the delete session request.

Response

• Id – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line string
pattern.

Returns the ID of the deleted session.

Errors

• AccessDeniedException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

• IllegalSessionStateException

• ConcurrentModificationException

GetSession action (Python: get_session)

Retrieves the session.

Request

• Id – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The ID of the session.

GetSession (get_session) 2243

AWS Glue User Guide

• RequestOrigin – UTF-8 string, not less than 1 or more than 128 bytes long, matching the
Custom string pattern #27.

The origin of the request.

Response

• Session – A Session object.

The session object is returned in the response.

Errors

• AccessDeniedException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

ListSessions action (Python: list_sessions)

Retrieve a list of sessions.

Request

• NextToken – UTF-8 string, not more than 400000 bytes long.

The token for the next set of results, or null if there are no more result.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum number of results.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

Tags belonging to the session.

ListSessions (list_sessions) 2244

AWS Glue User Guide

• RequestOrigin – UTF-8 string, not less than 1 or more than 128 bytes long, matching the
Custom string pattern #27.

The origin of the request.

Response

• Ids – An array of UTF-8 strings.

Returns the ID of the session.

• Sessions – An array of Session objects.

Returns the session object.

• NextToken – UTF-8 string, not more than 400000 bytes long.

The token for the next set of results, or null if there are no more result.

Errors

• AccessDeniedException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

RunStatement action (Python: run_statement)

Executes the statement.

Request

• SessionId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The Session Id of the statement to be run.

• Code – Required: UTF-8 string, not more than 68000 bytes long.

The statement code to be run.

RunStatement (run_statement) 2245

AWS Glue User Guide

• RequestOrigin – UTF-8 string, not less than 1 or more than 128 bytes long, matching the
Custom string pattern #27.

The origin of the request.

Response

• Id – Number (integer).

Returns the Id of the statement that was run.

Errors

• EntityNotFoundException

• AccessDeniedException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

• ValidationException

• ResourceNumberLimitExceededException

• IllegalSessionStateException

CancelStatement action (Python: cancel_statement)

Cancels the statement.

Request

• SessionId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The Session ID of the statement to be cancelled.

• Id – Required: Number (integer).

The ID of the statement to be cancelled.

CancelStatement (cancel_statement) 2246

AWS Glue User Guide

• RequestOrigin – UTF-8 string, not less than 1 or more than 128 bytes long, matching the
Custom string pattern #27.

The origin of the request to cancel the statement.

Response

• No Response parameters.

Errors

• AccessDeniedException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

• IllegalSessionStateException

GetStatement action (Python: get_statement)

Retrieves the statement.

Request

• SessionId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The Session ID of the statement.

• Id – Required: Number (integer).

The Id of the statement.

• RequestOrigin – UTF-8 string, not less than 1 or more than 128 bytes long, matching the
Custom string pattern #27.

The origin of the request.

GetStatement (get_statement) 2247

AWS Glue User Guide

Response

• Statement – A Statement object.

Returns the statement.

Errors

• AccessDeniedException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

• IllegalSessionStateException

ListStatements action (Python: list_statements)

Lists statements for the session.

Request

• SessionId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The Session ID of the statements.

• RequestOrigin – UTF-8 string, not less than 1 or more than 128 bytes long, matching the
Custom string pattern #27.

The origin of the request to list statements.

• NextToken – UTF-8 string, not more than 400000 bytes long.

A continuation token, if this is a continuation call.

Response

• Statements – An array of Statement objects.

Returns the list of statements.

ListStatements (list_statements) 2248

AWS Glue User Guide

• NextToken – UTF-8 string, not more than 400000 bytes long.

A continuation token, if not all statements have yet been returned.

Errors

• AccessDeniedException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

• IllegalSessionStateException

Development endpoints API

The Development endpoints API describes the AWS Glue API related to testing using a custom
DevEndpoint.

Data types

• DevEndpoint structure

• DevEndpointCustomLibraries structure

DevEndpoint structure

A development endpoint where a developer can remotely debug extract, transform, and load (ETL)
scripts.

Fields

• EndpointName – UTF-8 string.

The name of the DevEndpoint.

• RoleArn – UTF-8 string, matching the AWS IAM ARN string pattern.

The Amazon Resource Name (ARN) of the IAM role used in this DevEndpoint.

DevEndpoints 2249

AWS Glue User Guide

• SecurityGroupIds – An array of UTF-8 strings.

A list of security group identifiers used in this DevEndpoint.

• SubnetId – UTF-8 string.

The subnet ID for this DevEndpoint.

• YarnEndpointAddress – UTF-8 string.

The YARN endpoint address used by this DevEndpoint.

• PrivateAddress – UTF-8 string.

A private IP address to access the DevEndpoint within a VPC if the DevEndpoint is created
within one. The PrivateAddress field is present only when you create the DevEndpoint
within your VPC.

• ZeppelinRemoteSparkInterpreterPort – Number (integer).

The Apache Zeppelin port for the remote Apache Spark interpreter.

• PublicAddress – UTF-8 string.

The public IP address used by this DevEndpoint. The PublicAddress field is present only
when you create a non-virtual private cloud (VPC) DevEndpoint.

• Status – UTF-8 string.

The current status of this DevEndpoint.

• WorkerType – UTF-8 string (valid values: Standard="" | G.1X="" | G.2X="" | G.025X="" |
G.4X="" | G.8X="" | Z.2X="").

The type of predefined worker that is allocated to the development endpoint. Accepts a value of
Standard, G.1X, or G.2X.

• For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB
disk, and 2 executors per worker.

• For the G.1X worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk),
and provides 1 executor per worker. We recommend this worker type for memory-intensive
jobs.

• For the G.2X worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB
disk), and provides 1 executor per worker. We recommend this worker type for memory-
intensive jobs.

DevEndpoint 2250

AWS Glue User Guide

Known issue: when a development endpoint is created with the G.2X WorkerType
configuration, the Spark drivers for the development endpoint will run on 4 vCPU, 16 GB of
memory, and a 64 GB disk.

• GlueVersion – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #20.

Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The
Python version indicates the version supported for running your ETL scripts on development
endpoints.

For more information about the available AWS Glue versions and corresponding Spark and
Python versions, see Glue version in the developer guide.

Development endpoints that are created without specifying a Glue version default to Glue 0.9.

You can specify a version of Python support for development endpoints by using the Arguments
parameter in the CreateDevEndpoint or UpdateDevEndpoint APIs. If no arguments are
provided, the version defaults to Python 2.

• NumberOfWorkers – Number (integer).

The number of workers of a defined workerType that are allocated to the development
endpoint.

The maximum number of workers you can define are 299 for G.1X, and 149 for G.2X.

• NumberOfNodes – Number (integer).

The number of AWS Glue Data Processing Units (DPUs) allocated to this DevEndpoint.

• AvailabilityZone – UTF-8 string.

The AWS Availability Zone where this DevEndpoint is located.

• VpcId – UTF-8 string.

The ID of the virtual private cloud (VPC) used by this DevEndpoint.

• ExtraPythonLibsS3Path – UTF-8 string.

The paths to one or more Python libraries in an Amazon S3 bucket that should be loaded in your
DevEndpoint. Multiple values must be complete paths separated by a comma.

DevEndpoint 2251

https://docs.aws.amazon.com/glue/latest/dg/add-job.html

AWS Glue User Guide

Note

You can only use pure Python libraries with a DevEndpoint. Libraries that rely on C
extensions, such as the pandas Python data analysis library, are not currently supported.

• ExtraJarsS3Path – UTF-8 string.

The path to one or more Java .jar files in an S3 bucket that should be loaded in your
DevEndpoint.

Note

You can only use pure Java/Scala libraries with a DevEndpoint.

• FailureReason – UTF-8 string.

The reason for a current failure in this DevEndpoint.

• LastUpdateStatus – UTF-8 string.

The status of the last update.

• CreatedTimestamp – Timestamp.

The point in time at which this DevEndpoint was created.

• LastModifiedTimestamp – Timestamp.

The point in time at which this DevEndpoint was last modified.

• PublicKey – UTF-8 string.

The public key to be used by this DevEndpoint for authentication. This attribute is provided for
backward compatibility because the recommended attribute to use is public keys.

• PublicKeys – An array of UTF-8 strings, not more than 5 strings.

A list of public keys to be used by the DevEndpoints for authentication. Using this attribute is
preferred over a single public key because the public keys allow you to have a different private
key per client.

DevEndpoint 2252

http://pandas.pydata.org/

AWS Glue User Guide

Note

If you previously created an endpoint with a public key, you must remove that key to be
able to set a list of public keys. Call the UpdateDevEndpoint API operation with the
public key content in the deletePublicKeys attribute, and the list of new keys in the
addPublicKeys attribute.

• SecurityConfiguration – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The name of the SecurityConfiguration structure to be used with this DevEndpoint.

• Arguments – A map array of key-value pairs, not more than 100 pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

A map of arguments used to configure the DevEndpoint.

Valid arguments are:

• "--enable-glue-datacatalog": ""

You can specify a version of Python support for development endpoints by using the Arguments
parameter in the CreateDevEndpoint or UpdateDevEndpoint APIs. If no arguments are
provided, the version defaults to Python 2.

DevEndpointCustomLibraries structure

Custom libraries to be loaded into a development endpoint.

Fields

• ExtraPythonLibsS3Path – UTF-8 string.

The paths to one or more Python libraries in an Amazon Simple Storage Service (Amazon S3)
bucket that should be loaded in your DevEndpoint. Multiple values must be complete paths
separated by a comma.

DevEndpointCustomLibraries 2253

AWS Glue User Guide

Note

You can only use pure Python libraries with a DevEndpoint. Libraries that rely on C
extensions, such as the pandas Python data analysis library, are not currently supported.

• ExtraJarsS3Path – UTF-8 string.

The path to one or more Java .jar files in an S3 bucket that should be loaded in your
DevEndpoint.

Note

You can only use pure Java/Scala libraries with a DevEndpoint.

Operations

• CreateDevEndpoint action (Python: create_dev_endpoint)

• UpdateDevEndpoint action (Python: update_dev_endpoint)

• DeleteDevEndpoint action (Python: delete_dev_endpoint)

• GetDevEndpoint action (Python: get_dev_endpoint)

• GetDevEndpoints action (Python: get_dev_endpoints)

• BatchGetDevEndpoints action (Python: batch_get_dev_endpoints)

• ListDevEndpoints action (Python: list_dev_endpoints)

CreateDevEndpoint action (Python: create_dev_endpoint)

Creates a new development endpoint.

Request

• EndpointName – Required: UTF-8 string.

The name to be assigned to the new DevEndpoint.

• RoleArn – Required: UTF-8 string, matching the AWS IAM ARN string pattern.

 — operations — 2254

http://pandas.pydata.org/

AWS Glue User Guide

The IAM role for the DevEndpoint.

• SecurityGroupIds – An array of UTF-8 strings.

Security group IDs for the security groups to be used by the new DevEndpoint.

• SubnetId – UTF-8 string.

The subnet ID for the new DevEndpoint to use.

• PublicKey – UTF-8 string.

The public key to be used by this DevEndpoint for authentication. This attribute is provided for
backward compatibility because the recommended attribute to use is public keys.

• PublicKeys – An array of UTF-8 strings, not more than 5 strings.

A list of public keys to be used by the development endpoints for authentication. The use of
this attribute is preferred over a single public key because the public keys allow you to have a
different private key per client.

Note

If you previously created an endpoint with a public key, you must remove that key to
be able to set a list of public keys. Call the UpdateDevEndpoint API with the public
key content in the deletePublicKeys attribute, and the list of new keys in the
addPublicKeys attribute.

• NumberOfNodes – Number (integer).

The number of AWS Glue Data Processing Units (DPUs) to allocate to this DevEndpoint.

• WorkerType – UTF-8 string (valid values: Standard="" | G.1X="" | G.2X="" | G.025X="" |
G.4X="" | G.8X="" | Z.2X="").

The type of predefined worker that is allocated to the development endpoint. Accepts a value of
Standard, G.1X, or G.2X.

• For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB
disk, and 2 executors per worker.

• For the G.1X worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk),
and provides 1 executor per worker. We recommend this worker type for memory-intensive
jobs.

CreateDevEndpoint (create_dev_endpoint) 2255

AWS Glue User Guide

• For the G.2X worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB
disk), and provides 1 executor per worker. We recommend this worker type for memory-
intensive jobs.

Known issue: when a development endpoint is created with the G.2X WorkerType
configuration, the Spark drivers for the development endpoint will run on 4 vCPU, 16 GB of
memory, and a 64 GB disk.

• GlueVersion – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #20.

Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The
Python version indicates the version supported for running your ETL scripts on development
endpoints.

For more information about the available AWS Glue versions and corresponding Spark and
Python versions, see Glue version in the developer guide.

Development endpoints that are created without specifying a Glue version default to Glue 0.9.

You can specify a version of Python support for development endpoints by using the Arguments
parameter in the CreateDevEndpoint or UpdateDevEndpoint APIs. If no arguments are
provided, the version defaults to Python 2.

• NumberOfWorkers – Number (integer).

The number of workers of a defined workerType that are allocated to the development
endpoint.

The maximum number of workers you can define are 299 for G.1X, and 149 for G.2X.

• ExtraPythonLibsS3Path – UTF-8 string.

The paths to one or more Python libraries in an Amazon S3 bucket that should be loaded in your
DevEndpoint. Multiple values must be complete paths separated by a comma.

Note

You can only use pure Python libraries with a DevEndpoint. Libraries that rely on C
extensions, such as the pandas Python data analysis library, are not yet supported.

• ExtraJarsS3Path – UTF-8 string.

CreateDevEndpoint (create_dev_endpoint) 2256

https://docs.aws.amazon.com/glue/latest/dg/add-job.html
http://pandas.pydata.org/

AWS Glue User Guide

The path to one or more Java .jar files in an S3 bucket that should be loaded in your
DevEndpoint.

• SecurityConfiguration – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The name of the SecurityConfiguration structure to be used with this DevEndpoint.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

The tags to use with this DevEndpoint. You may use tags to limit access to the DevEndpoint. For
more information about tags in AWS Glue, see AWS Tags in AWS Glue in the developer guide.

• Arguments – A map array of key-value pairs, not more than 100 pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

A map of arguments used to configure the DevEndpoint.

Response

• EndpointName – UTF-8 string.

The name assigned to the new DevEndpoint.

• Status – UTF-8 string.

The current status of the new DevEndpoint.

• SecurityGroupIds – An array of UTF-8 strings.

The security groups assigned to the new DevEndpoint.

• SubnetId – UTF-8 string.

The subnet ID assigned to the new DevEndpoint.

• RoleArn – UTF-8 string, matching the AWS IAM ARN string pattern.

CreateDevEndpoint (create_dev_endpoint) 2257

https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html

AWS Glue User Guide

The Amazon Resource Name (ARN) of the role assigned to the new DevEndpoint.

• YarnEndpointAddress – UTF-8 string.

The address of the YARN endpoint used by this DevEndpoint.

• ZeppelinRemoteSparkInterpreterPort – Number (integer).

The Apache Zeppelin port for the remote Apache Spark interpreter.

• NumberOfNodes – Number (integer).

The number of AWS Glue Data Processing Units (DPUs) allocated to this DevEndpoint.

• WorkerType – UTF-8 string (valid values: Standard="" | G.1X="" | G.2X="" | G.025X="" |
G.4X="" | G.8X="" | Z.2X="").

The type of predefined worker that is allocated to the development endpoint. May be a value of
Standard, G.1X, or G.2X.

• GlueVersion – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #20.

Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The
Python version indicates the version supported for running your ETL scripts on development
endpoints.

For more information about the available AWS Glue versions and corresponding Spark and
Python versions, see Glue version in the developer guide.

• NumberOfWorkers – Number (integer).

The number of workers of a defined workerType that are allocated to the development
endpoint.

• AvailabilityZone – UTF-8 string.

The AWS Availability Zone where this DevEndpoint is located.

• VpcId – UTF-8 string.

The ID of the virtual private cloud (VPC) used by this DevEndpoint.

• ExtraPythonLibsS3Path – UTF-8 string.

CreateDevEndpoint (create_dev_endpoint) 2258

https://docs.aws.amazon.com/glue/latest/dg/add-job.html

AWS Glue User Guide

The paths to one or more Python libraries in an S3 bucket that will be loaded in your
DevEndpoint.

• ExtraJarsS3Path – UTF-8 string.

Path to one or more Java .jar files in an S3 bucket that will be loaded in your DevEndpoint.

• FailureReason – UTF-8 string.

The reason for a current failure in this DevEndpoint.

• SecurityConfiguration – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The name of the SecurityConfiguration structure being used with this DevEndpoint.

• CreatedTimestamp – Timestamp.

The point in time at which this DevEndpoint was created.

• Arguments – A map array of key-value pairs, not more than 100 pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

The map of arguments used to configure this DevEndpoint.

Valid arguments are:

• "--enable-glue-datacatalog": ""

You can specify a version of Python support for development endpoints by using the Arguments
parameter in the CreateDevEndpoint or UpdateDevEndpoint APIs. If no arguments are
provided, the version defaults to Python 2.

Errors

• AccessDeniedException

• AlreadyExistsException

• IdempotentParameterMismatchException

• InternalServiceException

• OperationTimeoutException

CreateDevEndpoint (create_dev_endpoint) 2259

AWS Glue User Guide

• InvalidInputException

• ValidationException

• ResourceNumberLimitExceededException

UpdateDevEndpoint action (Python: update_dev_endpoint)

Updates a specified development endpoint.

Request

• EndpointName – Required: UTF-8 string.

The name of the DevEndpoint to be updated.

• PublicKey – UTF-8 string.

The public key for the DevEndpoint to use.

• AddPublicKeys – An array of UTF-8 strings, not more than 5 strings.

The list of public keys for the DevEndpoint to use.

• DeletePublicKeys – An array of UTF-8 strings, not more than 5 strings.

The list of public keys to be deleted from the DevEndpoint.

• CustomLibraries – A DevEndpointCustomLibraries object.

Custom Python or Java libraries to be loaded in the DevEndpoint.

• UpdateEtlLibraries – Boolean.

True if the list of custom libraries to be loaded in the development endpoint needs to be
updated, or False if otherwise.

• DeleteArguments – An array of UTF-8 strings.

The list of argument keys to be deleted from the map of arguments used to configure the
DevEndpoint.

• AddArguments – A map array of key-value pairs, not more than 100 pairs.

Each key is a UTF-8 string.

Each value is a UTF-8 string.

UpdateDevEndpoint (update_dev_endpoint) 2260

AWS Glue User Guide

The map of arguments to add the map of arguments used to configure the DevEndpoint.

Valid arguments are:

• "--enable-glue-datacatalog": ""

You can specify a version of Python support for development endpoints by using the Arguments
parameter in the CreateDevEndpoint or UpdateDevEndpoint APIs. If no arguments are
provided, the version defaults to Python 2.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

• ValidationException

DeleteDevEndpoint action (Python: delete_dev_endpoint)

Deletes a specified development endpoint.

Request

• EndpointName – Required: UTF-8 string.

The name of the DevEndpoint.

Response

• No Response parameters.

DeleteDevEndpoint (delete_dev_endpoint) 2261

AWS Glue User Guide

Errors

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

GetDevEndpoint action (Python: get_dev_endpoint)

Retrieves information about a specified development endpoint.

Note

When you create a development endpoint in a virtual private cloud (VPC), AWS Glue
returns only a private IP address, and the public IP address field is not populated. When you
create a non-VPC development endpoint, AWS Glue returns only a public IP address.

Request

• EndpointName – Required: UTF-8 string.

Name of the DevEndpoint to retrieve information for.

Response

• DevEndpoint – A DevEndpoint object.

A DevEndpoint definition.

Errors

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

GetDevEndpoint (get_dev_endpoint) 2262

AWS Glue User Guide

GetDevEndpoints action (Python: get_dev_endpoints)

Retrieves all the development endpoints in this AWS account.

Note

When you create a development endpoint in a virtual private cloud (VPC), AWS Glue
returns only a private IP address and the public IP address field is not populated. When you
create a non-VPC development endpoint, AWS Glue returns only a public IP address.

Request

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum size of information to return.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

Response

• DevEndpoints – An array of DevEndpoint objects.

A list of DevEndpoint definitions.

• NextToken – UTF-8 string.

A continuation token, if not all DevEndpoint definitions have yet been returned.

Errors

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

GetDevEndpoints (get_dev_endpoints) 2263

AWS Glue User Guide

BatchGetDevEndpoints action (Python: batch_get_dev_endpoints)

Returns a list of resource metadata for a given list of development endpoint names. After calling
the ListDevEndpoints operation, you can call this operation to access the data to which you
have been granted permissions. This operation supports all IAM permissions, including permission
conditions that uses tags.

Request

• customerAccountId – UTF-8 string.

The AWS account ID.

• DevEndpointNames – Required: An array of UTF-8 strings, not less than 1 or more than 25
strings.

The list of DevEndpoint names, which might be the names returned from the
ListDevEndpoint operation.

Response

• DevEndpoints – An array of DevEndpoint objects.

A list of DevEndpoint definitions.

• DevEndpointsNotFound – An array of UTF-8 strings, not less than 1 or more than 25 strings.

A list of DevEndpoints not found.

Errors

• AccessDeniedException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

BatchGetDevEndpoints (batch_get_dev_endpoints) 2264

AWS Glue User Guide

ListDevEndpoints action (Python: list_dev_endpoints)

Retrieves the names of all DevEndpoint resources in this AWS account, or the resources with the
specified tag. This operation allows you to see which resources are available in your account, and
their names.

This operation takes the optional Tags field, which you can use as a filter on the response so that
tagged resources can be retrieved as a group. If you choose to use tags filtering, only resources
with the tag are retrieved.

Request

• NextToken – UTF-8 string.

A continuation token, if this is a continuation request.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum size of a list to return.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

Specifies to return only these tagged resources.

Response

• DevEndpointNames – An array of UTF-8 strings.

The names of all the DevEndpoints in the account, or the DevEndpoints with the specified
tags.

• NextToken – UTF-8 string.

A continuation token, if the returned list does not contain the last metric available.

Errors

• InvalidInputException

ListDevEndpoints (list_dev_endpoints) 2265

AWS Glue User Guide

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

Schema registry

The Schema registry API describes the data types and API related to working with schemas in AWS
Glue.

Data types

• RegistryId structure

• RegistryListItem structure

• MetadataInfo structure

• OtherMetadataValueListItem structure

• SchemaListItem structure

• SchemaVersionListItem structure

• MetadataKeyValuePair structure

• SchemaVersionErrorItem structure

• ErrorDetails structure

• SchemaVersionNumber structure

• SchemaId structure

RegistryId structure

A wrapper structure that may contain the registry name and Amazon Resource Name (ARN).

Fields

• RegistryName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #18.

Name of the registry. Used only for lookup. One of RegistryArn or RegistryName has to be
provided.

Schema registry 2266

AWS Glue User Guide

• RegistryArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the
Custom string pattern #22.

Arn of the registry to be updated. One of RegistryArn or RegistryName has to be provided.

RegistryListItem structure

A structure containing the details for a registry.

Fields

• RegistryName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #18.

The name of the registry.

• RegistryArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the
Custom string pattern #22.

The Amazon Resource Name (ARN) of the registry.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the registry.

• Status – UTF-8 string (valid values: AVAILABLE | DELETING).

The status of the registry.

• CreatedTime – UTF-8 string.

The data the registry was created.

• UpdatedTime – UTF-8 string.

The date the registry was updated.

MetadataInfo structure

A structure containing metadata information for a schema version.

RegistryListItem 2267

AWS Glue User Guide

Fields

• MetadataValue – UTF-8 string, not less than 1 or more than 256 bytes long, matching the
Custom string pattern #33.

The metadata key's corresponding value.

• CreatedTime – UTF-8 string.

The time at which the entry was created.

• OtherMetadataValueList – An array of OtherMetadataValueListItem objects.

Other metadata belonging to the same metadata key.

OtherMetadataValueListItem structure

A structure containing other metadata for a schema version belonging to the same metadata key.

Fields

• MetadataValue – UTF-8 string, not less than 1 or more than 256 bytes long, matching the
Custom string pattern #33.

The metadata key's corresponding value for the other metadata belonging to the same metadata
key.

• CreatedTime – UTF-8 string.

The time at which the entry was created.

SchemaListItem structure

An object that contains minimal details for a schema.

Fields

• RegistryName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #18.

the name of the registry where the schema resides.

OtherMetadataValueListItem 2268

AWS Glue User Guide

• SchemaName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #18.

The name of the schema.

• SchemaArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the Custom
string pattern #22.

The Amazon Resource Name (ARN) for the schema.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description for the schema.

• SchemaStatus – UTF-8 string (valid values: AVAILABLE | PENDING | DELETING).

The status of the schema.

• CreatedTime – UTF-8 string.

The date and time that a schema was created.

• UpdatedTime – UTF-8 string.

The date and time that a schema was updated.

SchemaVersionListItem structure

An object containing the details about a schema version.

Fields

• SchemaArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the Custom
string pattern #22.

The Amazon Resource Name (ARN) of the schema.

• SchemaVersionId – UTF-8 string, not less than 36 or more than 36 bytes long, matching the
Custom string pattern #17.

The unique identifier of the schema version.

• VersionNumber – Number (long), not less than 1 or more than 100000.

The version number of the schema.

SchemaVersionListItem 2269

AWS Glue User Guide

• Status – UTF-8 string (valid values: AVAILABLE | PENDING | FAILURE | DELETING).

The status of the schema version.

• CreatedTime – UTF-8 string.

The date and time the schema version was created.

MetadataKeyValuePair structure

A structure containing a key value pair for metadata.

Fields

• MetadataKey – UTF-8 string, not less than 1 or more than 128 bytes long, matching the Custom
string pattern #33.

A metadata key.

• MetadataValue – UTF-8 string, not less than 1 or more than 256 bytes long, matching the
Custom string pattern #33.

A metadata key's corresponding value.

SchemaVersionErrorItem structure

An object that contains the error details for an operation on a schema version.

Fields

• VersionNumber – Number (long), not less than 1 or more than 100000.

The version number of the schema.

• ErrorDetails – An ErrorDetails object.

The details of the error for the schema version.

ErrorDetails structure

An object containing error details.

MetadataKeyValuePair 2270

AWS Glue User Guide

Fields

• ErrorCode – UTF-8 string.

The error code for an error.

• ErrorMessage – UTF-8 string.

The error message for an error.

SchemaVersionNumber structure

A structure containing the schema version information.

Fields

• LatestVersion – Boolean.

The latest version available for the schema.

• VersionNumber – Number (long), not less than 1 or more than 100000.

The version number of the schema.

SchemaId structure

The unique ID of the schema in the AWS Glue schema registry.

Fields

• SchemaArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the Custom
string pattern #22.

The Amazon Resource Name (ARN) of the schema. One of SchemaArn or SchemaName has to be
provided.

• SchemaName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #18.

The name of the schema. One of SchemaArn or SchemaName has to be provided.

• RegistryName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #18.

SchemaVersionNumber 2271

AWS Glue User Guide

The name of the schema registry that contains the schema.

Operations

• CreateRegistry action (Python: create_registry)

• CreateSchema action (Python: create_schema)

• GetSchema action (Python: get_schema)

• ListSchemaVersions action (Python: list_schema_versions)

• GetSchemaVersion action (Python: get_schema_version)

• GetSchemaVersionsDiff action (Python: get_schema_versions_diff)

• ListRegistries action (Python: list_registries)

• ListSchemas action (Python: list_schemas)

• RegisterSchemaVersion action (Python: register_schema_version)

• UpdateSchema action (Python: update_schema)

• CheckSchemaVersionValidity action (Python: check_schema_version_validity)

• UpdateRegistry action (Python: update_registry)

• GetSchemaByDefinition action (Python: get_schema_by_definition)

• GetRegistry action (Python: get_registry)

• PutSchemaVersionMetadata action (Python: put_schema_version_metadata)

• QuerySchemaVersionMetadata action (Python: query_schema_version_metadata)

• RemoveSchemaVersionMetadata action (Python: remove_schema_version_metadata)

• DeleteRegistry action (Python: delete_registry)

• DeleteSchema action (Python: delete_schema)

• DeleteSchemaVersions action (Python: delete_schema_versions)

CreateRegistry action (Python: create_registry)

Creates a new registry which may be used to hold a collection of schemas.

 — operations — 2272

AWS Glue User Guide

Request

• RegistryName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Custom string pattern #18.

Name of the registry to be created of max length of 255, and may only contain letters, numbers,
hyphen, underscore, dollar sign, or hash mark. No whitespace.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the registry. If description is not provided, there will not be any default value for
this.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

AWS tags that contain a key value pair and may be searched by console, command line, or API.

Response

• RegistryArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the
Custom string pattern #22.

The Amazon Resource Name (ARN) of the newly created registry.

• RegistryName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #18.

The name of the registry.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the registry.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.
CreateRegistry (create_registry) 2273

AWS Glue User Guide

The tags for the registry.

Errors

• InvalidInputException

• AccessDeniedException

• AlreadyExistsException

• ResourceNumberLimitExceededException

• ConcurrentModificationException

• InternalServiceException

CreateSchema action (Python: create_schema)

Creates a new schema set and registers the schema definition. Returns an error if the schema set
already exists without actually registering the version.

When the schema set is created, a version checkpoint will be set to the first version. Compatibility
mode "DISABLED" restricts any additional schema versions from being added after the first schema
version. For all other compatibility modes, validation of compatibility settings will be applied only
from the second version onwards when the RegisterSchemaVersion API is used.

When this API is called without a RegistryId, this will create an entry for a "default-registry" in
the registry database tables, if it is not already present.

Request

• RegistryId – A RegistryId object.

This is a wrapper shape to contain the registry identity fields. If this is not provided, the
default registry will be used. The ARN format for the same will be: arn:aws:glue:us-
east-2:<customer id>:registry/default-registry:random-5-letter-id.

• SchemaName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #18.

Name of the schema to be created of max length of 255, and may only contain letters, numbers,
hyphen, underscore, dollar sign, or hash mark. No whitespace.

CreateSchema (create_schema) 2274

AWS Glue User Guide

• DataFormat – Required: UTF-8 string (valid values: AVRO | JSON | PROTOBUF).

The data format of the schema definition. Currently AVRO, JSON and PROTOBUF are supported.

• Compatibility – UTF-8 string (valid values: NONE | DISABLED | BACKWARD | BACKWARD_ALL |
FORWARD | FORWARD_ALL | FULL | FULL_ALL).

The compatibility mode of the schema. The possible values are:

• NONE: No compatibility mode applies. You can use this choice in development scenarios or if
you do not know the compatibility mode that you want to apply to schemas. Any new version
added will be accepted without undergoing a compatibility check.

• DISABLED: This compatibility choice prevents versioning for a particular schema. You can use
this choice to prevent future versioning of a schema.

• BACKWARD: This compatibility choice is recommended as it allows data receivers to read both
the current and one previous schema version. This means that for instance, a new schema
version cannot drop data fields or change the type of these fields, so they can't be read by
readers using the previous version.

• BACKWARD_ALL: This compatibility choice allows data receivers to read both the current and
all previous schema versions. You can use this choice when you need to delete fields or add
optional fields, and check compatibility against all previous schema versions.

• FORWARD: This compatibility choice allows data receivers to read both the current and one
next schema version, but not necessarily later versions. You can use this choice when you need
to add fields or delete optional fields, but only check compatibility against the last schema
version.

• FORWARD_ALL: This compatibility choice allows data receivers to read written by producers
of any new registered schema. You can use this choice when you need to add fields or delete
optional fields, and check compatibility against all previous schema versions.

• FULL: This compatibility choice allows data receivers to read data written by producers using
the previous or next version of the schema, but not necessarily earlier or later versions.
You can use this choice when you need to add or remove optional fields, but only check
compatibility against the last schema version.

• FULL_ALL: This compatibility choice allows data receivers to read data written by producers
using all previous schema versions. You can use this choice when you need to add or remove
optional fields, and check compatibility against all previous schema versions.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

CreateSchema (create_schema) 2275

AWS Glue User Guide

An optional description of the schema. If description is not provided, there will not be any
automatic default value for this.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

AWS tags that contain a key value pair and may be searched by console, command line, or API. If
specified, follows the AWS tags-on-create pattern.

• SchemaDefinition – UTF-8 string, not less than 1 or more than 170000 bytes long, matching
the Custom string pattern #32.

The schema definition using the DataFormat setting for SchemaName.

Response

• RegistryName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #18.

The name of the registry.

• RegistryArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the
Custom string pattern #22.

The Amazon Resource Name (ARN) of the registry.

• SchemaName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #18.

The name of the schema.

• SchemaArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the Custom
string pattern #22.

The Amazon Resource Name (ARN) of the schema.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the schema if specified when created.

CreateSchema (create_schema) 2276

AWS Glue User Guide

• DataFormat – UTF-8 string (valid values: AVRO | JSON | PROTOBUF).

The data format of the schema definition. Currently AVRO, JSON and PROTOBUF are supported.

• Compatibility – UTF-8 string (valid values: NONE | DISABLED | BACKWARD | BACKWARD_ALL |
FORWARD | FORWARD_ALL | FULL | FULL_ALL).

The schema compatibility mode.

• SchemaCheckpoint – Number (long), not less than 1 or more than 100000.

The version number of the checkpoint (the last time the compatibility mode was changed).

• LatestSchemaVersion – Number (long), not less than 1 or more than 100000.

The latest version of the schema associated with the returned schema definition.

• NextSchemaVersion – Number (long), not less than 1 or more than 100000.

The next version of the schema associated with the returned schema definition.

• SchemaStatus – UTF-8 string (valid values: AVAILABLE | PENDING | DELETING).

The status of the schema.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

The tags for the schema.

• SchemaVersionId – UTF-8 string, not less than 36 or more than 36 bytes long, matching the
Custom string pattern #17.

The unique identifier of the first schema version.

• SchemaVersionStatus – UTF-8 string (valid values: AVAILABLE | PENDING | FAILURE |
DELETING).

The status of the first schema version created.

Errors

• InvalidInputException
CreateSchema (create_schema) 2277

AWS Glue User Guide

• AccessDeniedException

• EntityNotFoundException

• AlreadyExistsException

• ResourceNumberLimitExceededException

• ConcurrentModificationException

• InternalServiceException

GetSchema action (Python: get_schema)

Describes the specified schema in detail.

Request

• SchemaId – Required: A SchemaId object.

This is a wrapper structure to contain schema identity fields. The structure contains:

• SchemaId$SchemaArn: The Amazon Resource Name (ARN) of the schema. Either SchemaArn
or SchemaName and RegistryName has to be provided.

• SchemaId$SchemaName: The name of the schema. Either SchemaArn or SchemaName and
RegistryName has to be provided.

Response

• RegistryName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #18.

The name of the registry.

• RegistryArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the
Custom string pattern #22.

The Amazon Resource Name (ARN) of the registry.

• SchemaName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #18.

The name of the schema.

GetSchema (get_schema) 2278

AWS Glue User Guide

• SchemaArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the Custom
string pattern #22.

The Amazon Resource Name (ARN) of the schema.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of schema if specified when created

• DataFormat – UTF-8 string (valid values: AVRO | JSON | PROTOBUF).

The data format of the schema definition. Currently AVRO, JSON and PROTOBUF are supported.

• Compatibility – UTF-8 string (valid values: NONE | DISABLED | BACKWARD | BACKWARD_ALL |
FORWARD | FORWARD_ALL | FULL | FULL_ALL).

The compatibility mode of the schema.

• SchemaCheckpoint – Number (long), not less than 1 or more than 100000.

The version number of the checkpoint (the last time the compatibility mode was changed).

• LatestSchemaVersion – Number (long), not less than 1 or more than 100000.

The latest version of the schema associated with the returned schema definition.

• NextSchemaVersion – Number (long), not less than 1 or more than 100000.

The next version of the schema associated with the returned schema definition.

• SchemaStatus – UTF-8 string (valid values: AVAILABLE | PENDING | DELETING).

The status of the schema.

• CreatedTime – UTF-8 string.

The date and time the schema was created.

• UpdatedTime – UTF-8 string.

The date and time the schema was updated.

Errors

• InvalidInputException

• AccessDeniedException

GetSchema (get_schema) 2279

AWS Glue User Guide

• EntityNotFoundException

• InternalServiceException

ListSchemaVersions action (Python: list_schema_versions)

Returns a list of schema versions that you have created, with minimal information. Schema versions
in Deleted status will not be included in the results. Empty results will be returned if there are no
schema versions available.

Request

• SchemaId – Required: A SchemaId object.

This is a wrapper structure to contain schema identity fields. The structure contains:

• SchemaId$SchemaArn: The Amazon Resource Name (ARN) of the schema. Either SchemaArn
or SchemaName and RegistryName has to be provided.

• SchemaId$SchemaName: The name of the schema. Either SchemaArn or SchemaName and
RegistryName has to be provided.

• MaxResults – Number (integer), not less than 1 or more than 100.

Maximum number of results required per page. If the value is not supplied, this will be defaulted
to 25 per page.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

Response

• Schemas – An array of SchemaVersionListItem objects.

An array of SchemaVersionList objects containing details of each schema version.

• NextToken – UTF-8 string.

A continuation token for paginating the returned list of tokens, returned if the current segment
of the list is not the last.

ListSchemaVersions (list_schema_versions) 2280

AWS Glue User Guide

Errors

• InvalidInputException

• AccessDeniedException

• EntityNotFoundException

• InternalServiceException

GetSchemaVersion action (Python: get_schema_version)

Get the specified schema by its unique ID assigned when a version of the schema is created or
registered. Schema versions in Deleted status will not be included in the results.

Request

• SchemaId – A SchemaId object.

This is a wrapper structure to contain schema identity fields. The structure contains:

• SchemaId$SchemaArn: The Amazon Resource Name (ARN) of the schema. Either SchemaArn
or SchemaName and RegistryName has to be provided.

• SchemaId$SchemaName: The name of the schema. Either SchemaArn or SchemaName and
RegistryName has to be provided.

• SchemaVersionId – UTF-8 string, not less than 36 or more than 36 bytes long, matching the
Custom string pattern #17.

The SchemaVersionId of the schema version. This field is required for fetching by schema ID.
Either this or the SchemaId wrapper has to be provided.

• SchemaVersionNumber – A SchemaVersionNumber object.

The version number of the schema.

Response

• SchemaVersionId – UTF-8 string, not less than 36 or more than 36 bytes long, matching the
Custom string pattern #17.

The SchemaVersionId of the schema version.

GetSchemaVersion (get_schema_version) 2281

AWS Glue User Guide

• SchemaDefinition – UTF-8 string, not less than 1 or more than 170000 bytes long, matching
the Custom string pattern #32.

The schema definition for the schema ID.

• DataFormat – UTF-8 string (valid values: AVRO | JSON | PROTOBUF).

The data format of the schema definition. Currently AVRO, JSON and PROTOBUF are supported.

• SchemaArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the Custom
string pattern #22.

The Amazon Resource Name (ARN) of the schema.

• VersionNumber – Number (long), not less than 1 or more than 100000.

The version number of the schema.

• Status – UTF-8 string (valid values: AVAILABLE | PENDING | FAILURE | DELETING).

The status of the schema version.

• CreatedTime – UTF-8 string.

The date and time the schema version was created.

Errors

• InvalidInputException

• AccessDeniedException

• EntityNotFoundException

• InternalServiceException

GetSchemaVersionsDiff action (Python: get_schema_versions_diff)

Fetches the schema version difference in the specified difference type between two stored schema
versions in the Schema Registry.

This API allows you to compare two schema versions between two schema definitions under the
same schema.

GetSchemaVersionsDiff (get_schema_versions_diff) 2282

AWS Glue User Guide

Request

• SchemaId – Required: A SchemaId object.

This is a wrapper structure to contain schema identity fields. The structure contains:

• SchemaId$SchemaArn: The Amazon Resource Name (ARN) of the schema. One of SchemaArn
or SchemaName has to be provided.

• SchemaId$SchemaName: The name of the schema. One of SchemaArn or SchemaName has to
be provided.

• FirstSchemaVersionNumber – Required: A SchemaVersionNumber object.

The first of the two schema versions to be compared.

• SecondSchemaVersionNumber – Required: A SchemaVersionNumber object.

The second of the two schema versions to be compared.

• SchemaDiffType – Required: UTF-8 string (valid values: SYNTAX_DIFF).

Refers to SYNTAX_DIFF, which is the currently supported diff type.

Response

• Diff – UTF-8 string, not less than 1 or more than 340000 bytes long, matching the Custom
string pattern #32.

The difference between schemas as a string in JsonPatch format.

Errors

• InvalidInputException

• EntityNotFoundException

• AccessDeniedException

• InternalServiceException

GetSchemaVersionsDiff (get_schema_versions_diff) 2283

AWS Glue User Guide

ListRegistries action (Python: list_registries)

Returns a list of registries that you have created, with minimal registry information. Registries in
the Deleting status will not be included in the results. Empty results will be returned if there are
no registries available.

Request

• MaxResults – Number (integer), not less than 1 or more than 100.

Maximum number of results required per page. If the value is not supplied, this will be defaulted
to 25 per page.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

Response

• Registries – An array of RegistryListItem objects.

An array of RegistryDetailedListItem objects containing minimal details of each registry.

• NextToken – UTF-8 string.

A continuation token for paginating the returned list of tokens, returned if the current segment
of the list is not the last.

Errors

• InvalidInputException

• AccessDeniedException

• InternalServiceException

ListSchemas action (Python: list_schemas)

Returns a list of schemas with minimal details. Schemas in Deleting status will not be included in
the results. Empty results will be returned if there are no schemas available.

ListRegistries (list_registries) 2284

AWS Glue User Guide

When the RegistryId is not provided, all the schemas across registries will be part of the API
response.

Request

• RegistryId – A RegistryId object.

A wrapper structure that may contain the registry name and Amazon Resource Name (ARN).

• MaxResults – Number (integer), not less than 1 or more than 100.

Maximum number of results required per page. If the value is not supplied, this will be defaulted
to 25 per page.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

Response

• Schemas – An array of SchemaListItem objects.

An array of SchemaListItem objects containing details of each schema.

• NextToken – UTF-8 string.

A continuation token for paginating the returned list of tokens, returned if the current segment
of the list is not the last.

Errors

• InvalidInputException

• AccessDeniedException

• EntityNotFoundException

• InternalServiceException

ListSchemas (list_schemas) 2285

AWS Glue User Guide

RegisterSchemaVersion action (Python: register_schema_version)

Adds a new version to the existing schema. Returns an error if new version of schema does not
meet the compatibility requirements of the schema set. This API will not create a new schema set
and will return a 404 error if the schema set is not already present in the Schema Registry.

If this is the first schema definition to be registered in the Schema Registry, this API will store the
schema version and return immediately. Otherwise, this call has the potential to run longer than
other operations due to compatibility modes. You can call the GetSchemaVersion API with the
SchemaVersionId to check compatibility modes.

If the same schema definition is already stored in Schema Registry as a version, the schema ID of
the existing schema is returned to the caller.

Request

• SchemaId – Required: A SchemaId object.

This is a wrapper structure to contain schema identity fields. The structure contains:

• SchemaId$SchemaArn: The Amazon Resource Name (ARN) of the schema. Either SchemaArn
or SchemaName and RegistryName has to be provided.

• SchemaId$SchemaName: The name of the schema. Either SchemaArn or SchemaName and
RegistryName has to be provided.

• SchemaDefinition – Required: UTF-8 string, not less than 1 or more than 170000 bytes long,
matching the Custom string pattern #32.

The schema definition using the DataFormat setting for the SchemaName.

Response

• SchemaVersionId – UTF-8 string, not less than 36 or more than 36 bytes long, matching the
Custom string pattern #17.

The unique ID that represents the version of this schema.

• VersionNumber – Number (long), not less than 1 or more than 100000.

The version of this schema (for sync flow only, in case this is the first version).

• Status – UTF-8 string (valid values: AVAILABLE | PENDING | FAILURE | DELETING).

RegisterSchemaVersion (register_schema_version) 2286

AWS Glue User Guide

The status of the schema version.

Errors

• InvalidInputException

• AccessDeniedException

• EntityNotFoundException

• ResourceNumberLimitExceededException

• ConcurrentModificationException

• InternalServiceException

UpdateSchema action (Python: update_schema)

Updates the description, compatibility setting, or version checkpoint for a schema set.

For updating the compatibility setting, the call will not validate compatibility for the entire set of
schema versions with the new compatibility setting. If the value for Compatibility is provided,
the VersionNumber (a checkpoint) is also required. The API will validate the checkpoint version
number for consistency.

If the value for the VersionNumber (checkpoint) is provided, Compatibility is optional and this
can be used to set/reset a checkpoint for the schema.

This update will happen only if the schema is in the AVAILABLE state.

Request

• SchemaId – Required: A SchemaId object.

This is a wrapper structure to contain schema identity fields. The structure contains:

• SchemaId$SchemaArn: The Amazon Resource Name (ARN) of the schema. One of SchemaArn
or SchemaName has to be provided.

• SchemaId$SchemaName: The name of the schema. One of SchemaArn or SchemaName has to
be provided.

• SchemaVersionNumber – A SchemaVersionNumber object.

UpdateSchema (update_schema) 2287

AWS Glue User Guide

Version number required for check pointing. One of VersionNumber or Compatibility has to
be provided.

• Compatibility – UTF-8 string (valid values: NONE | DISABLED | BACKWARD | BACKWARD_ALL |
FORWARD | FORWARD_ALL | FULL | FULL_ALL).

The new compatibility setting for the schema.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

The new description for the schema.

Response

• SchemaArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the Custom
string pattern #22.

The Amazon Resource Name (ARN) of the schema.

• SchemaName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #18.

The name of the schema.

• RegistryName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #18.

The name of the registry that contains the schema.

Errors

• InvalidInputException

• AccessDeniedException

• EntityNotFoundException

• ConcurrentModificationException

• InternalServiceException

UpdateSchema (update_schema) 2288

AWS Glue User Guide

CheckSchemaVersionValidity action (Python:
check_schema_version_validity)

Validates the supplied schema. This call has no side effects, it simply validates using the
supplied schema using DataFormat as the format. Since it does not take a schema set name, no
compatibility checks are performed.

Request

• DataFormat – Required: UTF-8 string (valid values: AVRO | JSON | PROTOBUF).

The data format of the schema definition. Currently AVRO, JSON and PROTOBUF are supported.

• SchemaDefinition – Required: UTF-8 string, not less than 1 or more than 170000 bytes long,
matching the Custom string pattern #32.

The definition of the schema that has to be validated.

Response

• Valid – Boolean.

Return true, if the schema is valid and false otherwise.

• Error – UTF-8 string, not less than 1 or more than 5000 bytes long.

A validation failure error message.

Errors

• InvalidInputException

• AccessDeniedException

• InternalServiceException

UpdateRegistry action (Python: update_registry)

Updates an existing registry which is used to hold a collection of schemas. The updated properties
relate to the registry, and do not modify any of the schemas within the registry.

CheckSchemaVersionValidity (check_schema_version_validity) 2289

AWS Glue User Guide

Request

• RegistryId – Required: A RegistryId object.

This is a wrapper structure that may contain the registry name and Amazon Resource Name
(ARN).

• Description – Required: Description string, not more than 2048 bytes long, matching the URI
address multi-line string pattern.

A description of the registry. If description is not provided, this field will not be updated.

Response

• RegistryName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #18.

The name of the updated registry.

• RegistryArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the
Custom string pattern #22.

The Amazon Resource name (ARN) of the updated registry.

Errors

• InvalidInputException

• AccessDeniedException

• EntityNotFoundException

• ConcurrentModificationException

• InternalServiceException

GetSchemaByDefinition action (Python: get_schema_by_definition)

Retrieves a schema by the SchemaDefinition. The schema definition is sent to the Schema
Registry, canonicalized, and hashed. If the hash is matched within the scope of the SchemaName or
ARN (or the default registry, if none is supplied), that schema's metadata is returned. Otherwise, a
404 or NotFound error is returned. Schema versions in Deleted statuses will not be included in the
results.

GetSchemaByDefinition (get_schema_by_definition) 2290

AWS Glue User Guide

Request

• SchemaId – Required: A SchemaId object.

This is a wrapper structure to contain schema identity fields. The structure contains:

• SchemaId$SchemaArn: The Amazon Resource Name (ARN) of the schema. One of SchemaArn
or SchemaName has to be provided.

• SchemaId$SchemaName: The name of the schema. One of SchemaArn or SchemaName has to
be provided.

• SchemaDefinition – Required: UTF-8 string, not less than 1 or more than 170000 bytes long,
matching the Custom string pattern #32.

The definition of the schema for which schema details are required.

Response

• SchemaVersionId – UTF-8 string, not less than 36 or more than 36 bytes long, matching the
Custom string pattern #17.

The schema ID of the schema version.

• SchemaArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the Custom
string pattern #22.

The Amazon Resource Name (ARN) of the schema.

• DataFormat – UTF-8 string (valid values: AVRO | JSON | PROTOBUF).

The data format of the schema definition. Currently AVRO, JSON and PROTOBUF are supported.

• Status – UTF-8 string (valid values: AVAILABLE | PENDING | FAILURE | DELETING).

The status of the schema version.

• CreatedTime – UTF-8 string.

The date and time the schema was created.

Errors

• InvalidInputException
GetSchemaByDefinition (get_schema_by_definition) 2291

AWS Glue User Guide

• AccessDeniedException

• EntityNotFoundException

• InternalServiceException

GetRegistry action (Python: get_registry)

Describes the specified registry in detail.

Request

• RegistryId – Required: A RegistryId object.

This is a wrapper structure that may contain the registry name and Amazon Resource Name
(ARN).

Response

• RegistryName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #18.

The name of the registry.

• RegistryArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the
Custom string pattern #22.

The Amazon Resource Name (ARN) of the registry.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the registry.

• Status – UTF-8 string (valid values: AVAILABLE | DELETING).

The status of the registry.

• CreatedTime – UTF-8 string.

The date and time the registry was created.

• UpdatedTime – UTF-8 string.

The date and time the registry was updated.

GetRegistry (get_registry) 2292

AWS Glue User Guide

Errors

• InvalidInputException

• AccessDeniedException

• EntityNotFoundException

• InternalServiceException

PutSchemaVersionMetadata action (Python:
put_schema_version_metadata)

Puts the metadata key value pair for a specified schema version ID. A maximum of 10 key value
pairs will be allowed per schema version. They can be added over one or more calls.

Request

• SchemaId – A SchemaId object.

The unique ID for the schema.

• SchemaVersionNumber – A SchemaVersionNumber object.

The version number of the schema.

• SchemaVersionId – UTF-8 string, not less than 36 or more than 36 bytes long, matching the
Custom string pattern #17.

The unique version ID of the schema version.

• MetadataKeyValue – Required: A MetadataKeyValuePair object.

The metadata key's corresponding value.

Response

• SchemaArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the Custom
string pattern #22.

The Amazon Resource Name (ARN) for the schema.

• SchemaName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #18.

PutSchemaVersionMetadata (put_schema_version_metadata) 2293

AWS Glue User Guide

The name for the schema.

• RegistryName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #18.

The name for the registry.

• LatestVersion – Boolean.

The latest version of the schema.

• VersionNumber – Number (long), not less than 1 or more than 100000.

The version number of the schema.

• SchemaVersionId – UTF-8 string, not less than 36 or more than 36 bytes long, matching the
Custom string pattern #17.

The unique version ID of the schema version.

• MetadataKey – UTF-8 string, not less than 1 or more than 128 bytes long, matching the Custom
string pattern #33.

The metadata key.

• MetadataValue – UTF-8 string, not less than 1 or more than 256 bytes long, matching the
Custom string pattern #33.

The value of the metadata key.

Errors

• InvalidInputException

• AccessDeniedException

• AlreadyExistsException

• EntityNotFoundException

• ResourceNumberLimitExceededException

PutSchemaVersionMetadata (put_schema_version_metadata) 2294

AWS Glue User Guide

QuerySchemaVersionMetadata action (Python:
query_schema_version_metadata)

Queries for the schema version metadata information.

Request

• SchemaId – A SchemaId object.

A wrapper structure that may contain the schema name and Amazon Resource Name (ARN).

• SchemaVersionNumber – A SchemaVersionNumber object.

The version number of the schema.

• SchemaVersionId – UTF-8 string, not less than 36 or more than 36 bytes long, matching the
Custom string pattern #17.

The unique version ID of the schema version.

• MetadataList – An array of MetadataKeyValuePair objects.

Search key-value pairs for metadata, if they are not provided all the metadata information will
be fetched.

• MaxResults – Number (integer), not less than 1 or more than 50.

Maximum number of results required per page. If the value is not supplied, this will be defaulted
to 25 per page.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation call.

Response

• MetadataInfoMap – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long, matching the Custom
string pattern #33.

Each value is a A MetadataInfo object.

A map of a metadata key and associated values.

QuerySchemaVersionMetadata (query_schema_version_metadata) 2295

AWS Glue User Guide

• SchemaVersionId – UTF-8 string, not less than 36 or more than 36 bytes long, matching the
Custom string pattern #17.

The unique version ID of the schema version.

• NextToken – UTF-8 string.

A continuation token for paginating the returned list of tokens, returned if the current segment
of the list is not the last.

Errors

• InvalidInputException

• AccessDeniedException

• EntityNotFoundException

RemoveSchemaVersionMetadata action (Python:
remove_schema_version_metadata)

Removes a key value pair from the schema version metadata for the specified schema version ID.

Request

• SchemaId – A SchemaId object.

A wrapper structure that may contain the schema name and Amazon Resource Name (ARN).

• SchemaVersionNumber – A SchemaVersionNumber object.

The version number of the schema.

• SchemaVersionId – UTF-8 string, not less than 36 or more than 36 bytes long, matching the
Custom string pattern #17.

The unique version ID of the schema version.

• MetadataKeyValue – Required: A MetadataKeyValuePair object.

The value of the metadata key.

RemoveSchemaVersionMetadata (remove_schema_version_metadata) 2296

AWS Glue User Guide

Response

• SchemaArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the Custom
string pattern #22.

The Amazon Resource Name (ARN) of the schema.

• SchemaName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #18.

The name of the schema.

• RegistryName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #18.

The name of the registry.

• LatestVersion – Boolean.

The latest version of the schema.

• VersionNumber – Number (long), not less than 1 or more than 100000.

The version number of the schema.

• SchemaVersionId – UTF-8 string, not less than 36 or more than 36 bytes long, matching the
Custom string pattern #17.

The version ID for the schema version.

• MetadataKey – UTF-8 string, not less than 1 or more than 128 bytes long, matching the Custom
string pattern #33.

The metadata key.

• MetadataValue – UTF-8 string, not less than 1 or more than 256 bytes long, matching the
Custom string pattern #33.

The value of the metadata key.

Errors

• InvalidInputException

• AccessDeniedException

• EntityNotFoundException

RemoveSchemaVersionMetadata (remove_schema_version_metadata) 2297

AWS Glue User Guide

DeleteRegistry action (Python: delete_registry)

Delete the entire registry including schema and all of its versions. To get the status of the delete
operation, you can call the GetRegistry API after the asynchronous call. Deleting a registry will
deactivate all online operations for the registry such as the UpdateRegistry, CreateSchema,
UpdateSchema, and RegisterSchemaVersion APIs.

Request

• RegistryId – Required: A RegistryId object.

This is a wrapper structure that may contain the registry name and Amazon Resource Name
(ARN).

Response

• RegistryName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Custom string pattern #18.

The name of the registry being deleted.

• RegistryArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the
Custom string pattern #22.

The Amazon Resource Name (ARN) of the registry being deleted.

• Status – UTF-8 string (valid values: AVAILABLE | DELETING).

The status of the registry. A successful operation will return the Deleting status.

Errors

• InvalidInputException

• EntityNotFoundException

• AccessDeniedException

• ConcurrentModificationException

DeleteRegistry (delete_registry) 2298

AWS Glue User Guide

DeleteSchema action (Python: delete_schema)

Deletes the entire schema set, including the schema set and all of its versions. To get the status of
the delete operation, you can call GetSchema API after the asynchronous call. Deleting a registry
will deactivate all online operations for the schema, such as the GetSchemaByDefinition, and
RegisterSchemaVersion APIs.

Request

• SchemaId – Required: A SchemaId object.

This is a wrapper structure that may contain the schema name and Amazon Resource Name
(ARN).

Response

• SchemaArn – UTF-8 string, not less than 1 or more than 10240 bytes long, matching the Custom
string pattern #22.

The Amazon Resource Name (ARN) of the schema being deleted.

• SchemaName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #18.

The name of the schema being deleted.

• Status – UTF-8 string (valid values: AVAILABLE | PENDING | DELETING).

The status of the schema.

Errors

• InvalidInputException

• EntityNotFoundException

• AccessDeniedException

• ConcurrentModificationException

DeleteSchema (delete_schema) 2299

AWS Glue User Guide

DeleteSchemaVersions action (Python: delete_schema_versions)

Remove versions from the specified schema. A version number or range may be supplied. If the
compatibility mode forbids deleting of a version that is necessary, such as BACKWARDS_FULL,
an error is returned. Calling the GetSchemaVersions API after this call will list the status of the
deleted versions.

When the range of version numbers contain check pointed version, the API will return a 409
conflict and will not proceed with the deletion. You have to remove the checkpoint first using the
DeleteSchemaCheckpoint API before using this API.

You cannot use the DeleteSchemaVersions API to delete the first schema version in the schema
set. The first schema version can only be deleted by the DeleteSchema API. This operation will
also delete the attached SchemaVersionMetadata under the schema versions. Hard deletes will
be enforced on the database.

If the compatibility mode forbids deleting of a version that is necessary, such as
BACKWARDS_FULL, an error is returned.

Request

• SchemaId – Required: A SchemaId object.

This is a wrapper structure that may contain the schema name and Amazon Resource Name
(ARN).

• Versions – Required: UTF-8 string, not less than 1 or more than 100000 bytes long, matching
the Custom string pattern #34.

A version range may be supplied which may be of the format:

• a single version number, 5

• a range, 5-8 : deletes versions 5, 6, 7, 8

Response

• SchemaVersionErrors – An array of SchemaVersionErrorItem objects.

A list of SchemaVersionErrorItem objects, each containing an error and schema version.

DeleteSchemaVersions (delete_schema_versions) 2300

AWS Glue User Guide

Errors

• InvalidInputException

• EntityNotFoundException

• AccessDeniedException

• ConcurrentModificationException

Workflows

The Workflows API describes the data types and API related to creating, updating, or viewing
workflows in AWS Glue. Job run history is accessible for 90 days for your workflow and job run.

Data types

• JobNodeDetails structure

• CrawlerNodeDetails structure

• TriggerNodeDetails structure

• Crawl structure

• Node structure

• Edge structure

• Workflow structure

• WorkflowGraph structure

• WorkflowRun structure

• WorkflowRunStatistics structure

• StartingEventBatchCondition structure

• Blueprint structure

• BlueprintDetails structure

• LastActiveDefinition structure

• BlueprintRun structure

JobNodeDetails structure

The details of a Job node present in the workflow.

Workflows 2301

AWS Glue User Guide

Fields

• JobRuns – An array of JobRun objects.

The information for the job runs represented by the job node.

CrawlerNodeDetails structure

The details of a Crawler node present in the workflow.

Fields

• Crawls – An array of Crawl objects.

A list of crawls represented by the crawl node.

TriggerNodeDetails structure

The details of a Trigger node present in the workflow.

Fields

• Trigger – A Trigger object.

The information of the trigger represented by the trigger node.

Crawl structure

The details of a crawl in the workflow.

Fields

• State – UTF-8 string (valid values: RUNNING | CANCELLING | CANCELLED | SUCCEEDED | FAILED
| ERROR).

The state of the crawler.

• StartedOn – Timestamp.

The date and time on which the crawl started.

• CompletedOn – Timestamp.

CrawlerNodeDetails 2302

AWS Glue User Guide

The date and time on which the crawl completed.

• ErrorMessage – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

The error message associated with the crawl.

• LogGroup – UTF-8 string, not less than 1 or more than 512 bytes long, matching the Log group
string pattern.

The log group associated with the crawl.

• LogStream – UTF-8 string, not less than 1 or more than 512 bytes long, matching the Log-
stream string pattern.

The log stream associated with the crawl.

Node structure

A node represents an AWS Glue component (trigger, crawler, or job) on a workflow graph.

Fields

• Type – UTF-8 string (valid values: CRAWLER | JOB | TRIGGER).

The type of AWS Glue component represented by the node.

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the AWS Glue component represented by the node.

• UniqueId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The unique Id assigned to the node within the workflow.

• TriggerDetails – A TriggerNodeDetails object.

Details of the Trigger when the node represents a Trigger.

• JobDetails – A JobNodeDetails object.

Details of the Job when the node represents a Job.

Node 2303

AWS Glue User Guide

• CrawlerDetails – A CrawlerNodeDetails object.

Details of the crawler when the node represents a crawler.

Edge structure

An edge represents a directed connection between two AWS Glue components that are part of the
workflow the edge belongs to.

Fields

• SourceId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The unique of the node within the workflow where the edge starts.

• DestinationId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The unique of the node within the workflow where the edge ends.

Workflow structure

A workflow is a collection of multiple dependent AWS Glue jobs and crawlers that are run to
complete a complex ETL task. A workflow manages the execution and monitoring of all its jobs and
crawlers.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the workflow.

• Description – UTF-8 string.

A description of the workflow.

• DefaultRunProperties – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Edge 2304

AWS Glue User Guide

Each value is a UTF-8 string.

A collection of properties to be used as part of each execution of the workflow. The run
properties are made available to each job in the workflow. A job can modify the properties for
the next jobs in the flow.

• CreatedOn – Timestamp.

The date and time when the workflow was created.

• LastModifiedOn – Timestamp.

The date and time when the workflow was last modified.

• LastRun – A WorkflowRun object.

The information about the last execution of the workflow.

• Graph – A WorkflowGraph object.

The graph representing all the AWS Glue components that belong to the workflow as nodes and
directed connections between them as edges.

• CreationStatus – UTF-8 string (valid values: CREATING | CREATED | CREATION_FAILED).

The creation status of the workflow.

• MaxConcurrentRuns – Number (integer).

You can use this parameter to prevent unwanted multiple updates to data, to control costs,
or in some cases, to prevent exceeding the maximum number of concurrent runs of any of the
component jobs. If you leave this parameter blank, there is no limit to the number of concurrent
workflow runs.

• BlueprintDetails – A BlueprintDetails object.

This structure indicates the details of the blueprint that this particular workflow is created from.

WorkflowGraph structure

A workflow graph represents the complete workflow containing all the AWS Glue components
present in the workflow and all the directed connections between them.

WorkflowGraph 2305

AWS Glue User Guide

Fields

• Nodes – An array of Node objects.

A list of the the AWS Glue components belong to the workflow represented as nodes.

• Edges – An array of Edge objects.

A list of all the directed connections between the nodes belonging to the workflow.

WorkflowRun structure

A workflow run is an execution of a workflow providing all the runtime information.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Name of the workflow that was run.

• WorkflowRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of this workflow run.

• PreviousRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the previous workflow run.

• WorkflowRunProperties – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a UTF-8 string.

The workflow run properties which were set during the run.

• StartedOn – Timestamp.

The date and time when the workflow run was started.

• CompletedOn – Timestamp.

WorkflowRun 2306

AWS Glue User Guide

The date and time when the workflow run completed.

• Status – UTF-8 string (valid values: RUNNING | COMPLETED | STOPPING | STOPPED | ERROR).

The status of the workflow run.

• ErrorMessage – UTF-8 string.

This error message describes any error that may have occurred in starting the workflow run.
Currently the only error message is "Concurrent runs exceeded for workflow: foo."

• Statistics – A WorkflowRunStatistics object.

The statistics of the run.

• Graph – A WorkflowGraph object.

The graph representing all the AWS Glue components that belong to the workflow as nodes and
directed connections between them as edges.

• StartingEventBatchCondition – A StartingEventBatchCondition object.

The batch condition that started the workflow run.

WorkflowRunStatistics structure

Workflow run statistics provides statistics about the workflow run.

Fields

• TotalActions – Number (integer).

Total number of Actions in the workflow run.

• TimeoutActions – Number (integer).

Total number of Actions that timed out.

• FailedActions – Number (integer).

Total number of Actions that have failed.

• StoppedActions – Number (integer).

Total number of Actions that have stopped.

WorkflowRunStatistics 2307

AWS Glue User Guide

• SucceededActions – Number (integer).

Total number of Actions that have succeeded.

• RunningActions – Number (integer).

Total number Actions in running state.

• ErroredActions – Number (integer).

Indicates the count of job runs in the ERROR state in the workflow run.

• WaitingActions – Number (integer).

Indicates the count of job runs in WAITING state in the workflow run.

StartingEventBatchCondition structure

The batch condition that started the workflow run. Either the number of events in the batch size
arrived, in which case the BatchSize member is non-zero, or the batch window expired, in which
case the BatchWindow member is non-zero.

Fields

• BatchSize – Number (integer).

Number of events in the batch.

• BatchWindow – Number (integer).

Duration of the batch window in seconds.

Blueprint structure

The details of a blueprint.

Fields

• Name – UTF-8 string, not less than 1 or more than 128 bytes long, matching the Custom string
pattern #27.

The name of the blueprint.

• Description – UTF-8 string, not less than 1 or more than 512 bytes long.

StartingEventBatchCondition 2308

AWS Glue User Guide

The description of the blueprint.

• CreatedOn – Timestamp.

The date and time the blueprint was registered.

• LastModifiedOn – Timestamp.

The date and time the blueprint was last modified.

• ParameterSpec – UTF-8 string, not less than 1 or more than 131072 bytes long.

A JSON string that indicates the list of parameter specifications for the blueprint.

• BlueprintLocation – UTF-8 string.

Specifies the path in Amazon S3 where the blueprint is published.

• BlueprintServiceLocation – UTF-8 string.

Specifies a path in Amazon S3 where the blueprint is copied when you call CreateBlueprint/
UpdateBlueprint to register the blueprint in AWS Glue.

• Status – UTF-8 string (valid values: CREATING | ACTIVE | UPDATING | FAILED).

The status of the blueprint registration.

• Creating — The blueprint registration is in progress.

• Active — The blueprint has been successfully registered.

• Updating — An update to the blueprint registration is in progress.

• Failed — The blueprint registration failed.

• ErrorMessage – UTF-8 string.

An error message.

• LastActiveDefinition – A LastActiveDefinition object.

When there are multiple versions of a blueprint and the latest version has some errors, this
attribute indicates the last successful blueprint definition that is available with the service.

BlueprintDetails structure

The details of a blueprint.
BlueprintDetails 2309

AWS Glue User Guide

Fields

• BlueprintName – UTF-8 string, not less than 1 or more than 128 bytes long, matching the
Custom string pattern #27.

The name of the blueprint.

• RunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The run ID for this blueprint.

LastActiveDefinition structure

When there are multiple versions of a blueprint and the latest version has some errors, this
attribute indicates the last successful blueprint definition that is available with the service.

Fields

• Description – UTF-8 string, not less than 1 or more than 512 bytes long.

The description of the blueprint.

• LastModifiedOn – Timestamp.

The date and time the blueprint was last modified.

• ParameterSpec – UTF-8 string, not less than 1 or more than 131072 bytes long.

A JSON string specifying the parameters for the blueprint.

• BlueprintLocation – UTF-8 string.

Specifies a path in Amazon S3 where the blueprint is published by the AWS Glue developer.

• BlueprintServiceLocation – UTF-8 string.

Specifies a path in Amazon S3 where the blueprint is copied when you create or update the
blueprint.

BlueprintRun structure

The details of a blueprint run.

LastActiveDefinition 2310

AWS Glue User Guide

Fields

• BlueprintName – UTF-8 string, not less than 1 or more than 128 bytes long, matching the
Custom string pattern #27.

The name of the blueprint.

• RunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The run ID for this blueprint run.

• WorkflowName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of a workflow that is created as a result of a successful blueprint run. If a blueprint run
has an error, there will not be a workflow created.

• State – UTF-8 string (valid values: RUNNING | SUCCEEDED | FAILED | ROLLING_BACK).

The state of the blueprint run. Possible values are:

• Running — The blueprint run is in progress.

• Succeeded — The blueprint run completed successfully.

• Failed — The blueprint run failed and rollback is complete.

• Rolling Back — The blueprint run failed and rollback is in progress.

• StartedOn – Timestamp.

The date and time that the blueprint run started.

• CompletedOn – Timestamp.

The date and time that the blueprint run completed.

• ErrorMessage – UTF-8 string.

Indicates any errors that are seen while running the blueprint.

• RollbackErrorMessage – UTF-8 string.

If there are any errors while creating the entities of a workflow, we try to roll back the created
entities until that point and delete them. This attribute indicates the errors seen while trying to
delete the entities that are created.

• Parameters – UTF-8 string, not less than 1 or more than 131072 bytes long.

BlueprintRun 2311

AWS Glue User Guide

The blueprint parameters as a string. You will have to provide a value for each key that is
required from the parameter spec that is defined in the Blueprint$ParameterSpec.

• RoleArn – UTF-8 string, not less than 1 or more than 1024 bytes long, matching the Custom
string pattern #26.

The role ARN. This role will be assumed by the AWS Glue service and will be used to create the
workflow and other entities of a workflow.

Operations

• CreateWorkflow action (Python: create_workflow)

• UpdateWorkflow action (Python: update_workflow)

• DeleteWorkflow action (Python: delete_workflow)

• GetWorkflow action (Python: get_workflow)

• ListWorkflows action (Python: list_workflows)

• BatchGetWorkflows action (Python: batch_get_workflows)

• GetWorkflowRun action (Python: get_workflow_run)

• GetWorkflowRuns action (Python: get_workflow_runs)

• GetWorkflowRunProperties action (Python: get_workflow_run_properties)

• PutWorkflowRunProperties action (Python: put_workflow_run_properties)

• CreateBlueprint action (Python: create_blueprint)

• UpdateBlueprint action (Python: update_blueprint)

• DeleteBlueprint action (Python: delete_blueprint)

• ListBlueprints action (Python: list_blueprints)

• BatchGetBlueprints action (Python: batch_get_blueprints)

• StartBlueprintRun action (Python: start_blueprint_run)

• GetBlueprintRun action (Python: get_blueprint_run)

• GetBlueprintRuns action (Python: get_blueprint_runs)

• StartWorkflowRun action (Python: start_workflow_run)

• StopWorkflowRun action (Python: stop_workflow_run)

• ResumeWorkflowRun action (Python: resume_workflow_run)

 — operations — 2312

AWS Glue User Guide

CreateWorkflow action (Python: create_workflow)

Creates a new workflow.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name to be assigned to the workflow. It should be unique within your account.

• Description – UTF-8 string.

A description of the workflow.

• DefaultRunProperties – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a UTF-8 string.

A collection of properties to be used as part of each execution of the workflow.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

The tags to be used with this workflow.

• MaxConcurrentRuns – Number (integer).

You can use this parameter to prevent unwanted multiple updates to data, to control costs,
or in some cases, to prevent exceeding the maximum number of concurrent runs of any of the
component jobs. If you leave this parameter blank, there is no limit to the number of concurrent
workflow runs.

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

CreateWorkflow (create_workflow) 2313

AWS Glue User Guide

The name of the workflow which was provided as part of the request.

Errors

• AlreadyExistsException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• ResourceNumberLimitExceededException

• ConcurrentModificationException

UpdateWorkflow action (Python: update_workflow)

Updates an existing workflow.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Name of the workflow to be updated.

• Description – UTF-8 string.

The description of the workflow.

• DefaultRunProperties – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a UTF-8 string.

A collection of properties to be used as part of each execution of the workflow.

• MaxConcurrentRuns – Number (integer).

You can use this parameter to prevent unwanted multiple updates to data, to control costs,
or in some cases, to prevent exceeding the maximum number of concurrent runs of any of the

UpdateWorkflow (update_workflow) 2314

AWS Glue User Guide

component jobs. If you leave this parameter blank, there is no limit to the number of concurrent
workflow runs.

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the workflow which was specified in input.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• ConcurrentModificationException

DeleteWorkflow action (Python: delete_workflow)

Deletes a workflow.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Name of the workflow to be deleted.

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Name of the workflow specified in input.

DeleteWorkflow (delete_workflow) 2315

AWS Glue User Guide

Errors

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• ConcurrentModificationException

GetWorkflow action (Python: get_workflow)

Retrieves resource metadata for a workflow.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the workflow to retrieve.

• IncludeGraph – Boolean.

Specifies whether to include a graph when returning the workflow resource metadata.

Response

• Workflow – A Workflow object.

The resource metadata for the workflow.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

ListWorkflows action (Python: list_workflows)

Lists names of workflows created in the account.

GetWorkflow (get_workflow) 2316

AWS Glue User Guide

Request

• NextToken – UTF-8 string.

A continuation token, if this is a continuation request.

• MaxResults – Number (integer), not less than 1 or more than 25.

The maximum size of a list to return.

Response

• Workflows – An array of UTF-8 strings, not less than 1 or more than 25 strings.

List of names of workflows in the account.

• NextToken – UTF-8 string.

A continuation token, if not all workflow names have been returned.

Errors

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

BatchGetWorkflows action (Python: batch_get_workflows)

Returns a list of resource metadata for a given list of workflow names. After calling the
ListWorkflows operation, you can call this operation to access the data to which you have been
granted permissions. This operation supports all IAM permissions, including permission conditions
that uses tags.

Request

• Names – Required: An array of UTF-8 strings, not less than 1 or more than 25 strings.

A list of workflow names, which may be the names returned from the ListWorkflows
operation.

• IncludeGraph – Boolean.

BatchGetWorkflows (batch_get_workflows) 2317

AWS Glue User Guide

Specifies whether to include a graph when returning the workflow resource metadata.

Response

• Workflows – An array of Workflow objects, not less than 1 or more than 25 structures.

A list of workflow resource metadata.

• MissingWorkflows – An array of UTF-8 strings, not less than 1 or more than 25 strings.

A list of names of workflows not found.

Errors

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

GetWorkflowRun action (Python: get_workflow_run)

Retrieves the metadata for a given workflow run. Job run history is accessible for 90 days for your
workflow and job run.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Name of the workflow being run.

• RunId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the workflow run.

• IncludeGraph – Boolean.

Specifies whether to include the workflow graph in response or not.

GetWorkflowRun (get_workflow_run) 2318

AWS Glue User Guide

Response

• Run – A WorkflowRun object.

The requested workflow run metadata.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

GetWorkflowRuns action (Python: get_workflow_runs)

Retrieves metadata for all runs of a given workflow.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Name of the workflow whose metadata of runs should be returned.

• IncludeGraph – Boolean.

Specifies whether to include the workflow graph in response or not.

• NextToken – UTF-8 string.

The maximum size of the response.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum number of workflow runs to be included in the response.

Response

• Runs – An array of WorkflowRun objects, not less than 1 or more than 1000 structures.

A list of workflow run metadata objects.

GetWorkflowRuns (get_workflow_runs) 2319

AWS Glue User Guide

• NextToken – UTF-8 string.

A continuation token, if not all requested workflow runs have been returned.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

GetWorkflowRunProperties action (Python:
get_workflow_run_properties)

Retrieves the workflow run properties which were set during the run.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Name of the workflow which was run.

• RunId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the workflow run whose run properties should be returned.

Response

• RunProperties – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a UTF-8 string.

The workflow run properties which were set during the specified run.

GetWorkflowRunProperties (get_workflow_run_properties) 2320

AWS Glue User Guide

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

PutWorkflowRunProperties action (Python:
put_workflow_run_properties)

Puts the specified workflow run properties for the given workflow run. If a property already exists
for the specified run, then it overrides the value otherwise adds the property to existing properties.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Name of the workflow which was run.

• RunId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the workflow run for which the run properties should be updated.

• RunProperties – Required: A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a UTF-8 string.

The properties to put for the specified run.

Response

• No Response parameters.

PutWorkflowRunProperties (put_workflow_run_properties) 2321

AWS Glue User Guide

Errors

• AlreadyExistsException

• EntityNotFoundException

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• ResourceNumberLimitExceededException

• ConcurrentModificationException

CreateBlueprint action (Python: create_blueprint)

Registers a blueprint with AWS Glue.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 128 bytes long, matching the
Custom string pattern #27.

The name of the blueprint.

• Description – UTF-8 string, not less than 1 or more than 512 bytes long.

A description of the blueprint.

• BlueprintLocation – Required: UTF-8 string, not less than 1 or more than 8192 bytes long,
matching the Custom string pattern #28.

Specifies a path in Amazon S3 where the blueprint is published.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

The tags to be applied to this blueprint.

CreateBlueprint (create_blueprint) 2322

AWS Glue User Guide

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Returns the name of the blueprint that was registered.

Errors

• AlreadyExistsException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

• ResourceNumberLimitExceededException

UpdateBlueprint action (Python: update_blueprint)

Updates a registered blueprint.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 128 bytes long, matching the
Custom string pattern #27.

The name of the blueprint.

• Description – UTF-8 string, not less than 1 or more than 512 bytes long.

A description of the blueprint.

• BlueprintLocation – Required: UTF-8 string, not less than 1 or more than 8192 bytes long,
matching the Custom string pattern #28.

Specifies a path in Amazon S3 where the blueprint is published.

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

UpdateBlueprint (update_blueprint) 2323

AWS Glue User Guide

Returns the name of the blueprint that was updated.

Errors

• EntityNotFoundException

• ConcurrentModificationException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

• IllegalBlueprintStateException

DeleteBlueprint action (Python: delete_blueprint)

Deletes an existing blueprint.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the blueprint to delete.

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Returns the name of the blueprint that was deleted.

Errors

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

DeleteBlueprint (delete_blueprint) 2324

AWS Glue User Guide

ListBlueprints action (Python: list_blueprints)

Lists all the blueprint names in an account.

Request

• NextToken – UTF-8 string.

A continuation token, if this is a continuation request.

• MaxResults – Number (integer), not less than 1 or more than 25.

The maximum size of a list to return.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

Filters the list by an AWS resource tag.

Response

• Blueprints – An array of UTF-8 strings.

List of names of blueprints in the account.

• NextToken – UTF-8 string.

A continuation token, if not all blueprint names have been returned.

Errors

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

BatchGetBlueprints action (Python: batch_get_blueprints)

Retrieves information about a list of blueprints.

ListBlueprints (list_blueprints) 2325

AWS Glue User Guide

Request

• Names – Required: An array of UTF-8 strings, not less than 1 or more than 25 strings.

A list of blueprint names.

• IncludeBlueprint – Boolean.

Specifies whether or not to include the blueprint in the response.

• IncludeParameterSpec – Boolean.

Specifies whether or not to include the parameters, as a JSON string, for the blueprint in the
response.

Response

• Blueprints – An array of Blueprint objects.

Returns a list of blueprint as a Blueprints object.

• MissingBlueprints – An array of UTF-8 strings.

Returns a list of BlueprintNames that were not found.

Errors

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

StartBlueprintRun action (Python: start_blueprint_run)

Starts a new run of the specified blueprint.

Request

• BlueprintName – Required: UTF-8 string, not less than 1 or more than 128 bytes long,
matching the Custom string pattern #27.

The name of the blueprint.

StartBlueprintRun (start_blueprint_run) 2326

AWS Glue User Guide

• Parameters – UTF-8 string, not less than 1 or more than 131072 bytes long.

Specifies the parameters as a BlueprintParameters object.

• RoleArn – Required: UTF-8 string, not less than 1 or more than 1024 bytes long, matching the
Custom string pattern #26.

Specifies the IAM role used to create the workflow.

Response

• RunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The run ID for this blueprint run.

Errors

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

• ResourceNumberLimitExceededException

• EntityNotFoundException

• IllegalBlueprintStateException

GetBlueprintRun action (Python: get_blueprint_run)

Retrieves the details of a blueprint run.

Request

• BlueprintName – Required: UTF-8 string, not less than 1 or more than 128 bytes long,
matching the Custom string pattern #27.

The name of the blueprint.

• RunId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

GetBlueprintRun (get_blueprint_run) 2327

AWS Glue User Guide

The run ID for the blueprint run you want to retrieve.

Response

• BlueprintRun – A BlueprintRun object.

Returns a BlueprintRun object.

Errors

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

GetBlueprintRuns action (Python: get_blueprint_runs)

Retrieves the details of blueprint runs for a specified blueprint.

Request

• BlueprintName – Required: UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The name of the blueprint.

• NextToken – UTF-8 string.

A continuation token, if this is a continuation request.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum size of a list to return.

Response

• BlueprintRuns – An array of BlueprintRun objects.

Returns a list of BlueprintRun objects.

• NextToken – UTF-8 string.

GetBlueprintRuns (get_blueprint_runs) 2328

AWS Glue User Guide

A continuation token, if not all blueprint runs have been returned.

Errors

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

StartWorkflowRun action (Python: start_workflow_run)

Starts a new run of the specified workflow.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the workflow to start.

• RunProperties – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a UTF-8 string.

The workflow run properties for the new workflow run.

Response

• RunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

An Id for the new run.

StartWorkflowRun (start_workflow_run) 2329

AWS Glue User Guide

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• ResourceNumberLimitExceededException

• ConcurrentRunsExceededException

StopWorkflowRun action (Python: stop_workflow_run)

Stops the execution of the specified workflow run.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the workflow to stop.

• RunId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the workflow run to stop.

Response

• No Response parameters.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

• IllegalWorkflowStateException

StopWorkflowRun (stop_workflow_run) 2330

AWS Glue User Guide

ResumeWorkflowRun action (Python: resume_workflow_run)

Restarts selected nodes of a previous partially completed workflow run and resumes the workflow
run. The selected nodes and all nodes that are downstream from the selected nodes are run.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the workflow to resume.

• RunId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The ID of the workflow run to resume.

• NodeIds – Required: An array of UTF-8 strings.

A list of the node IDs for the nodes you want to restart. The nodes that are to be restarted must
have a run attempt in the original run.

Response

• RunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The new ID assigned to the resumed workflow run. Each resume of a workflow run will have a
new run ID.

• NodeIds – An array of UTF-8 strings.

A list of the node IDs for the nodes that were actually restarted.

Errors

• InvalidInputException

• EntityNotFoundException

• InternalServiceException

• OperationTimeoutException

ResumeWorkflowRun (resume_workflow_run) 2331

AWS Glue User Guide

• ConcurrentRunsExceededException

• IllegalWorkflowStateException

Usage profiles

The Usage profiles API describes the data types and API related to creating, updating, or viewing
usage profiles in AWS Glue.

Data types

• ProfileConfiguration structure

• ConfigurationObject structure

• UsageProfileDefinition structure

ProfileConfiguration structure

Specifies the job and session values that an admin configures in an AWS Glue usage profile.

Fields

• SessionConfiguration – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a A ConfigurationObject object.

A key-value map of configuration parameters for AWS Glue sessions.

• JobConfiguration – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a A ConfigurationObject object.

A key-value map of configuration parameters for AWS Glue jobs.

Usage profiles 2332

AWS Glue User Guide

ConfigurationObject structure

Specifies the values that an admin sets for each job or session parameter configured in a AWS Glue
usage profile.

Fields

• DefaultValue – UTF-8 string, not less than 1 or more than 128 bytes long, matching the
Custom string pattern #31.

A default value for the parameter.

• AllowedValues – An array of UTF-8 strings.

A list of allowed values for the parameter.

• MinValue – UTF-8 string, not less than 1 or more than 128 bytes long, matching the Custom
string pattern #31.

A minimum allowed value for the parameter.

• MaxValue – UTF-8 string, not less than 1 or more than 128 bytes long, matching the Custom
string pattern #31.

A maximum allowed value for the parameter.

UsageProfileDefinition structure

Describes an AWS Glue usage profile.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the usage profile.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the usage profile.

• CreatedOn – Timestamp.

ConfigurationObject 2333

AWS Glue User Guide

The date and time when the usage profile was created.

• LastModifiedOn – Timestamp.

The date and time when the usage profile was last modified.

Operations

• CreateUsageProfile action (Python: create_usage_profile)

• GetUsageProfile action (Python: get_usage_profile)

• UpdateUsageProfile action (Python: update_usage_profile)

• DeleteUsageProfile action (Python: delete_usage_profile)

• ListUsageProfiles action (Python: list_usage_profiles)

CreateUsageProfile action (Python: create_usage_profile)

Creates an AWS Glue usage profile.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the usage profile.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the usage profile.

• Configuration – Required: A ProfileConfiguration object.

A ProfileConfiguration object specifying the job and session values for the profile.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

A list of tags applied to the usage profile.

 — operations — 2334

AWS Glue User Guide

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the usage profile that was created.

Errors

• InvalidInputException

• InternalServiceException

• AlreadyExistsException

• OperationTimeoutException

• ResourceNumberLimitExceededException

• OperationNotSupportedException

GetUsageProfile action (Python: get_usage_profile)

Retrieves information about the specified AWS Glue usage profile.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the usage profile to retrieve.

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the usage profile.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the usage profile.

GetUsageProfile (get_usage_profile) 2335

AWS Glue User Guide

• Configuration – A ProfileConfiguration object.

A ProfileConfiguration object specifying the job and session values for the profile.

• CreatedOn – Timestamp.

The date and time when the usage profile was created.

• LastModifiedOn – Timestamp.

The date and time when the usage profile was last modified.

Errors

• InvalidInputException

• InternalServiceException

• EntityNotFoundException

• OperationTimeoutException

• OperationNotSupportedException

UpdateUsageProfile action (Python: update_usage_profile)

Update an AWS Glue usage profile.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the usage profile.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the usage profile.

• Configuration – Required: A ProfileConfiguration object.

A ProfileConfiguration object specifying the job and session values for the profile.

UpdateUsageProfile (update_usage_profile) 2336

AWS Glue User Guide

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the usage profile that was updated.

Errors

• InvalidInputException

• InternalServiceException

• EntityNotFoundException

• OperationTimeoutException

• OperationNotSupportedException

• ConcurrentModificationException

DeleteUsageProfile action (Python: delete_usage_profile)

Deletes the AWS Glue specified usage profile.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the usage profile to delete.

Response

• No Response parameters.

Errors

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

DeleteUsageProfile (delete_usage_profile) 2337

AWS Glue User Guide

• OperationNotSupportedException

ListUsageProfiles action (Python: list_usage_profiles)

List all the AWS Glue usage profiles.

Request

• NextToken – UTF-8 string, not more than 400000 bytes long.

A continuation token, included if this is a continuation call.

• MaxResults – Number (integer), not less than 1 or more than 200.

The maximum number of usage profiles to return in a single response.

Response

• Profiles – An array of UsageProfileDefinition objects.

A list of usage profile (UsageProfileDefinition) objects.

• NextToken – UTF-8 string, not more than 400000 bytes long.

A continuation token, present if the current list segment is not the last.

Errors

• InternalServiceException

• OperationTimeoutException

• InvalidInputException

• OperationNotSupportedException

Machine learning API

The Machine learning API describes the machine learning data types, and includes the API for
creating, deleting, or updating a transform, or starting a machine learning task run.

ListUsageProfiles (list_usage_profiles) 2338

AWS Glue User Guide

Data types

• TransformParameters structure

• EvaluationMetrics structure

• MLTransform structure

• FindMatchesParameters structure

• FindMatchesMetrics structure

• ConfusionMatrix structure

• GlueTable structure

• TaskRun structure

• TransformFilterCriteria structure

• TransformSortCriteria structure

• TaskRunFilterCriteria structure

• TaskRunSortCriteria structure

• TaskRunProperties structure

• FindMatchesTaskRunProperties structure

• ImportLabelsTaskRunProperties structure

• ExportLabelsTaskRunProperties structure

• LabelingSetGenerationTaskRunProperties structure

• SchemaColumn structure

• TransformEncryption structure

• MLUserDataEncryption structure

• ColumnImportance structure

TransformParameters structure

The algorithm-specific parameters that are associated with the machine learning transform.

Fields

• TransformType – Required: UTF-8 string (valid values: FIND_MATCHES).

The type of machine learning transform.

 — data types — 2339

AWS Glue User Guide

For information about the types of machine learning transforms, see Creating Machine Learning
Transforms.

• FindMatchesParameters – A FindMatchesParameters object.

The parameters for the find matches algorithm.

EvaluationMetrics structure

Evaluation metrics provide an estimate of the quality of your machine learning transform.

Fields

• TransformType – Required: UTF-8 string (valid values: FIND_MATCHES).

The type of machine learning transform.

• FindMatchesMetrics – A FindMatchesMetrics object.

The evaluation metrics for the find matches algorithm.

MLTransform structure

A structure for a machine learning transform.

Fields

• TransformId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The unique transform ID that is generated for the machine learning transform. The ID is
guaranteed to be unique and does not change.

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

A user-defined name for the machine learning transform. Names are not guaranteed unique and
can be changed at any time.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

EvaluationMetrics 2340

https://docs.aws.amazon.com/glue/latest/dg/add-job-machine-learning-transform.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-machine-learning-transform.html

AWS Glue User Guide

A user-defined, long-form description text for the machine learning transform. Descriptions are
not guaranteed to be unique and can be changed at any time.

• Status – UTF-8 string (valid values: NOT_READY | READY | DELETING).

The current status of the machine learning transform.

• CreatedOn – Timestamp.

A timestamp. The time and date that this machine learning transform was created.

• LastModifiedOn – Timestamp.

A timestamp. The last point in time when this machine learning transform was modified.

• InputRecordTables – An array of GlueTable objects, not more than 10 structures.

A list of AWS Glue table definitions used by the transform.

• Parameters – A TransformParameters object.

A TransformParameters object. You can use parameters to tune (customize) the behavior of
the machine learning transform by specifying what data it learns from and your preference on
various tradeoffs (such as precious vs. recall, or accuracy vs. cost).

• EvaluationMetrics – An EvaluationMetrics object.

An EvaluationMetrics object. Evaluation metrics provide an estimate of the quality of your
machine learning transform.

• LabelCount – Number (integer).

A count identifier for the labeling files generated by AWS Glue for this transform. As you create a
better transform, you can iteratively download, label, and upload the labeling file.

• Schema – An array of SchemaColumn objects, not more than 100 structures.

A map of key-value pairs representing the columns and data types that this transform can run
against. Has an upper bound of 100 columns.

• Role – UTF-8 string.

The name or Amazon Resource Name (ARN) of the IAM role with the required permissions. The
required permissions include both AWS Glue service role permissions to AWS Glue resources, and
Amazon S3 permissions required by the transform.

MLTransform 2341

AWS Glue User Guide

• This role needs AWS Glue service role permissions to allow access to resources in AWS Glue.
See Attach a Policy to IAM Users That Access AWS Glue.

• This role needs permission to your Amazon Simple Storage Service (Amazon S3) sources,
targets, temporary directory, scripts, and any libraries used by the task run for this transform.

• GlueVersion – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #20.

This value determines which version of AWS Glue this machine learning transform is compatible
with. Glue 1.0 is recommended for most customers. If the value is not set, the Glue compatibility
defaults to Glue 0.9. For more information, see AWS Glue Versions in the developer guide.

• MaxCapacity – Number (double).

The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this
transform. You can allocate from 2 to 100 DPUs; the default is 10. A DPU is a relative measure of
processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more
information, see the AWS Glue pricing page.

MaxCapacity is a mutually exclusive option with NumberOfWorkers and WorkerType.

• If either NumberOfWorkers or WorkerType is set, then MaxCapacity cannot be set.

• If MaxCapacity is set then neither NumberOfWorkers or WorkerType can be set.

• If WorkerType is set, then NumberOfWorkers is required (and vice versa).

• MaxCapacity and NumberOfWorkers must both be at least 1.

When the WorkerType field is set to a value other than Standard, the MaxCapacity field is
set automatically and becomes read-only.

• WorkerType – UTF-8 string (valid values: Standard="" | G.1X="" | G.2X="" | G.025X="" |
G.4X="" | G.8X="" | Z.2X="").

The type of predefined worker that is allocated when a task of this transform runs. Accepts a
value of Standard, G.1X, or G.2X.

• For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB
disk, and 2 executors per worker.

• For the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk,
and 1 executor per worker.

• For the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk,
and 1 executor per worker.

MLTransform 2342

https://docs.aws.amazon.com/glue/latest/dg/attach-policy-iam-user.html
https://docs.aws.amazon.com/glue/latest/dg/release-notes.html#release-notes-versions
https://aws.amazon.com/glue/pricing/

AWS Glue User Guide

MaxCapacity is a mutually exclusive option with NumberOfWorkers and WorkerType.

• If either NumberOfWorkers or WorkerType is set, then MaxCapacity cannot be set.

• If MaxCapacity is set then neither NumberOfWorkers or WorkerType can be set.

• If WorkerType is set, then NumberOfWorkers is required (and vice versa).

• MaxCapacity and NumberOfWorkers must both be at least 1.

• NumberOfWorkers – Number (integer).

The number of workers of a defined workerType that are allocated when a task of the
transform runs.

If WorkerType is set, then NumberOfWorkers is required (and vice versa).

• Timeout – Number (integer), at least 1.

The timeout in minutes of the machine learning transform.

• MaxRetries – Number (integer).

The maximum number of times to retry after an MLTaskRun of the machine learning transform
fails.

• TransformEncryption – A TransformEncryption object.

The encryption-at-rest settings of the transform that apply to accessing user data. Machine
learning transforms can access user data encrypted in Amazon S3 using KMS.

FindMatchesParameters structure

The parameters to configure the find matches transform.

Fields

• PrimaryKeyColumnName – UTF-8 string, not less than 1 or more than 1024 bytes long,
matching the Single-line string pattern.

The name of a column that uniquely identifies rows in the source table. Used to help identify
matching records.

• PrecisionRecallTradeoff – Number (double), not more than 1.0.

FindMatchesParameters 2343

AWS Glue User Guide

The value selected when tuning your transform for a balance between precision and recall. A
value of 0.5 means no preference; a value of 1.0 means a bias purely for precision, and a value
of 0.0 means a bias for recall. Because this is a tradeoff, choosing values close to 1.0 means very
low recall, and choosing values close to 0.0 results in very low precision.

The precision metric indicates how often your model is correct when it predicts a match.

The recall metric indicates that for an actual match, how often your model predicts the match.

• AccuracyCostTradeoff – Number (double), not more than 1.0.

The value that is selected when tuning your transform for a balance between accuracy and
cost. A value of 0.5 means that the system balances accuracy and cost concerns. A value of 1.0
means a bias purely for accuracy, which typically results in a higher cost, sometimes substantially
higher. A value of 0.0 means a bias purely for cost, which results in a less accurate FindMatches
transform, sometimes with unacceptable accuracy.

Accuracy measures how well the transform finds true positives and true negatives. Increasing
accuracy requires more machine resources and cost. But it also results in increased recall.

Cost measures how many compute resources, and thus money, are consumed to run the
transform.

• EnforceProvidedLabels – Boolean.

The value to switch on or off to force the output to match the provided labels from users. If the
value is True, the find matches transform forces the output to match the provided labels.
The results override the normal conflation results. If the value is False, the find matches
transform does not ensure all the labels provided are respected, and the results rely on the
trained model.

Note that setting this value to true may increase the conflation execution time.

FindMatchesMetrics structure

The evaluation metrics for the find matches algorithm. The quality of your machine learning
transform is measured by getting your transform to predict some matches and comparing the
results to known matches from the same dataset. The quality metrics are based on a subset of your
data, so they are not precise.

FindMatchesMetrics 2344

AWS Glue User Guide

Fields

• AreaUnderPRCurve – Number (double), not more than 1.0.

The area under the precision/recall curve (AUPRC) is a single number measuring the overall
quality of the transform, that is independent of the choice made for precision vs. recall. Higher
values indicate that you have a more attractive precision vs. recall tradeoff.

For more information, see Precision and recall in Wikipedia.

• Precision – Number (double), not more than 1.0.

The precision metric indicates when often your transform is correct when it predicts a match.
Specifically, it measures how well the transform finds true positives from the total true positives
possible.

For more information, see Precision and recall in Wikipedia.

• Recall – Number (double), not more than 1.0.

The recall metric indicates that for an actual match, how often your transform predicts the
match. Specifically, it measures how well the transform finds true positives from the total
records in the source data.

For more information, see Precision and recall in Wikipedia.

• F1 – Number (double), not more than 1.0.

The maximum F1 metric indicates the transform's accuracy between 0 and 1, where 1 is the best
accuracy.

For more information, see F1 score in Wikipedia.

• ConfusionMatrix – A ConfusionMatrix object.

The confusion matrix shows you what your transform is predicting accurately and what types of
errors it is making.

For more information, see Confusion matrix in Wikipedia.

• ColumnImportances – An array of ColumnImportance objects, not more than 100 structures.

A list of ColumnImportance structures containing column importance metrics, sorted in order
of descending importance.

FindMatchesMetrics 2345

https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/Confusion_matrix

AWS Glue User Guide

ConfusionMatrix structure

The confusion matrix shows you what your transform is predicting accurately and what types of
errors it is making.

For more information, see Confusion matrix in Wikipedia.

Fields

• NumTruePositives – Number (long).

The number of matches in the data that the transform correctly found, in the confusion matrix
for your transform.

• NumFalsePositives – Number (long).

The number of nonmatches in the data that the transform incorrectly classified as a match, in
the confusion matrix for your transform.

• NumTrueNegatives – Number (long).

The number of nonmatches in the data that the transform correctly rejected, in the confusion
matrix for your transform.

• NumFalseNegatives – Number (long).

The number of matches in the data that the transform didn't find, in the confusion matrix for
your transform.

GlueTable structure

The database and table in the AWS Glue Data Catalog that is used for input or output data.

Fields

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

A database name in the AWS Glue Data Catalog.

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

A table name in the AWS Glue Data Catalog.

ConfusionMatrix 2346

https://en.wikipedia.org/wiki/Confusion_matrix

AWS Glue User Guide

• CatalogId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

A unique identifier for the AWS Glue Data Catalog.

• ConnectionName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the connection to the AWS Glue Data Catalog.

• AdditionalOptions – A map array of key-value pairs, not less than 1 or more than 10 pairs.

Each key is a UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

Additional options for the table. Currently there are two keys supported:

• pushDownPredicate: to filter on partitions without having to list and read all the files in
your dataset.

• catalogPartitionPredicate: to use server-side partition pruning using partition indexes
in the AWS Glue Data Catalog.

TaskRun structure

The sampling parameters that are associated with the machine learning transform.

Fields

• TransformId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The unique identifier for the transform.

• TaskRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The unique identifier for this task run.

• Status – UTF-8 string (valid values: STARTING | RUNNING | STOPPING | STOPPED | SUCCEEDED |
FAILED | TIMEOUT).

TaskRun 2347

AWS Glue User Guide

The current status of the requested task run.

• LogGroupName – UTF-8 string.

The names of the log group for secure logging, associated with this task run.

• Properties – A TaskRunProperties object.

Specifies configuration properties associated with this task run.

• ErrorString – UTF-8 string.

The list of error strings associated with this task run.

• StartedOn – Timestamp.

The date and time that this task run started.

• LastModifiedOn – Timestamp.

The last point in time that the requested task run was updated.

• CompletedOn – Timestamp.

The last point in time that the requested task run was completed.

• ExecutionTime – Number (integer).

The amount of time (in seconds) that the task run consumed resources.

TransformFilterCriteria structure

The criteria used to filter the machine learning transforms.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

A unique transform name that is used to filter the machine learning transforms.

• TransformType – UTF-8 string (valid values: FIND_MATCHES).

The type of machine learning transform that is used to filter the machine learning transforms.

• Status – UTF-8 string (valid values: NOT_READY | READY | DELETING).

TransformFilterCriteria 2348

AWS Glue User Guide

Filters the list of machine learning transforms by the last known status of the transforms (to
indicate whether a transform can be used or not). One of "NOT_READY", "READY", or "DELETING".

• GlueVersion – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #20.

This value determines which version of AWS Glue this machine learning transform is compatible
with. Glue 1.0 is recommended for most customers. If the value is not set, the Glue compatibility
defaults to Glue 0.9. For more information, see AWS Glue Versions in the developer guide.

• CreatedBefore – Timestamp.

The time and date before which the transforms were created.

• CreatedAfter – Timestamp.

The time and date after which the transforms were created.

• LastModifiedBefore – Timestamp.

Filter on transforms last modified before this date.

• LastModifiedAfter – Timestamp.

Filter on transforms last modified after this date.

• Schema – An array of SchemaColumn objects, not more than 100 structures.

Filters on datasets with a specific schema. The Map<Column, Type> object is an array of key-
value pairs representing the schema this transform accepts, where Column is the name of a
column, and Type is the type of the data such as an integer or string. Has an upper bound of 100
columns.

TransformSortCriteria structure

The sorting criteria that are associated with the machine learning transform.

Fields

• Column – Required: UTF-8 string (valid values: NAME | TRANSFORM_TYPE | STATUS | CREATED |
LAST_MODIFIED).

TransformSortCriteria 2349

https://docs.aws.amazon.com/glue/latest/dg/release-notes.html#release-notes-versions

AWS Glue User Guide

The column to be used in the sorting criteria that are associated with the machine learning
transform.

• SortDirection – Required: UTF-8 string (valid values: DESCENDING | ASCENDING).

The sort direction to be used in the sorting criteria that are associated with the machine learning
transform.

TaskRunFilterCriteria structure

The criteria that are used to filter the task runs for the machine learning transform.

Fields

• TaskRunType – UTF-8 string (valid values: EVALUATION | LABELING_SET_GENERATION |
IMPORT_LABELS | EXPORT_LABELS | FIND_MATCHES).

The type of task run.

• Status – UTF-8 string (valid values: STARTING | RUNNING | STOPPING | STOPPED | SUCCEEDED |
FAILED | TIMEOUT).

The current status of the task run.

• StartedBefore – Timestamp.

Filter on task runs started before this date.

• StartedAfter – Timestamp.

Filter on task runs started after this date.

TaskRunSortCriteria structure

The sorting criteria that are used to sort the list of task runs for the machine learning transform.

Fields

• Column – Required: UTF-8 string (valid values: TASK_RUN_TYPE | STATUS | STARTED).

The column to be used to sort the list of task runs for the machine learning transform.

• SortDirection – Required: UTF-8 string (valid values: DESCENDING | ASCENDING).

TaskRunFilterCriteria 2350

AWS Glue User Guide

The sort direction to be used to sort the list of task runs for the machine learning transform.

TaskRunProperties structure

The configuration properties for the task run.

Fields

• TaskType – UTF-8 string (valid values: EVALUATION | LABELING_SET_GENERATION |
IMPORT_LABELS | EXPORT_LABELS | FIND_MATCHES).

The type of task run.

• ImportLabelsTaskRunProperties – An ImportLabelsTaskRunProperties object.

The configuration properties for an importing labels task run.

• ExportLabelsTaskRunProperties – An ExportLabelsTaskRunProperties object.

The configuration properties for an exporting labels task run.

• LabelingSetGenerationTaskRunProperties – A LabelingSetGenerationTaskRunProperties
object.

The configuration properties for a labeling set generation task run.

• FindMatchesTaskRunProperties – A FindMatchesTaskRunProperties object.

The configuration properties for a find matches task run.

FindMatchesTaskRunProperties structure

Specifies configuration properties for a Find Matches task run.

Fields

• JobId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The job ID for the Find Matches task run.

• JobName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

TaskRunProperties 2351

AWS Glue User Guide

The name assigned to the job for the Find Matches task run.

• JobRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The job run ID for the Find Matches task run.

ImportLabelsTaskRunProperties structure

Specifies configuration properties for an importing labels task run.

Fields

• InputS3Path – UTF-8 string.

The Amazon Simple Storage Service (Amazon S3) path from where you will import the labels.

• Replace – Boolean.

Indicates whether to overwrite your existing labels.

ExportLabelsTaskRunProperties structure

Specifies configuration properties for an exporting labels task run.

Fields

• OutputS3Path – UTF-8 string.

The Amazon Simple Storage Service (Amazon S3) path where you will export the labels.

LabelingSetGenerationTaskRunProperties structure

Specifies configuration properties for a labeling set generation task run.

Fields

• OutputS3Path – UTF-8 string.

The Amazon Simple Storage Service (Amazon S3) path where you will generate the labeling set.

ImportLabelsTaskRunProperties 2352

AWS Glue User Guide

SchemaColumn structure

A key-value pair representing a column and data type that this transform can run against. The
Schema parameter of the MLTransform may contain up to 100 of these structures.

Fields

• Name – UTF-8 string, not less than 1 or more than 1024 bytes long, matching the Single-line
string pattern.

The name of the column.

• DataType – UTF-8 string, not more than 131072 bytes long, matching the Single-line string
pattern.

The type of data in the column.

TransformEncryption structure

The encryption-at-rest settings of the transform that apply to accessing user data. Machine
learning transforms can access user data encrypted in Amazon S3 using KMS.

Additionally, imported labels and trained transforms can now be encrypted using a customer
provided KMS key.

Fields

• MlUserDataEncryption – A MLUserDataEncryption object.

An MLUserDataEncryption object containing the encryption mode and customer-provided
KMS key ID.

• TaskRunSecurityConfigurationName – UTF-8 string, not less than 1 or more than 255
bytes long, matching the Single-line string pattern.

The name of the security configuration.

MLUserDataEncryption structure

The encryption-at-rest settings of the transform that apply to accessing user data.

SchemaColumn 2353

AWS Glue User Guide

Fields

• MlUserDataEncryptionMode – Required: UTF-8 string (valid values: DISABLED | SSE-
KMS="SSEKMS").

The encryption mode applied to user data. Valid values are:

• DISABLED: encryption is disabled

• SSEKMS: use of server-side encryption with AWS Key Management Service (SSE-KMS) for user
data stored in Amazon S3.

• KmsKeyId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The ID for the customer-provided KMS key.

ColumnImportance structure

A structure containing the column name and column importance score for a column.

Column importance helps you understand how columns contribute to your model, by identifying
which columns in your records are more important than others.

Fields

• ColumnName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of a column.

• Importance – Number (double), not more than 1.0.

The column importance score for the column, as a decimal.

Operations

• CreateMLTransform action (Python: create_ml_transform)

• UpdateMLTransform action (Python: update_ml_transform)

• DeleteMLTransform action (Python: delete_ml_transform)

• GetMLTransform action (Python: get_ml_transform)

ColumnImportance 2354

AWS Glue User Guide

• GetMLTransforms action (Python: get_ml_transforms)

• ListMLTransforms action (Python: list_ml_transforms)

• StartMLEvaluationTaskRun action (Python: start_ml_evaluation_task_run)

• StartMLLabelingSetGenerationTaskRun action (Python:
start_ml_labeling_set_generation_task_run)

• GetMLTaskRun action (Python: get_ml_task_run)

• GetMLTaskRuns action (Python: get_ml_task_runs)

• CancelMLTaskRun action (Python: cancel_ml_task_run)

• StartExportLabelsTaskRun action (Python: start_export_labels_task_run)

• StartImportLabelsTaskRun action (Python: start_import_labels_task_run)

CreateMLTransform action (Python: create_ml_transform)

Creates an AWS Glue machine learning transform. This operation creates the transform and all the
necessary parameters to train it.

Call this operation as the first step in the process of using a machine learning transform (such as
the FindMatches transform) for deduplicating data. You can provide an optional Description,
in addition to the parameters that you want to use for your algorithm.

You must also specify certain parameters for the tasks that AWS Glue runs on your behalf as
part of learning from your data and creating a high-quality machine learning transform. These
parameters include Role, and optionally, AllocatedCapacity, Timeout, and MaxRetries. For
more information, see Jobs.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The unique name that you give the transform when you create it.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the machine learning transform that is being defined. The default is an empty
string.

CreateMLTransform (create_ml_transform) 2355

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html

AWS Glue User Guide

• InputRecordTables – Required: An array of GlueTable objects, not more than 10 structures.

A list of AWS Glue table definitions used by the transform.

• Parameters – Required: A TransformParameters object.

The algorithmic parameters that are specific to the transform type used. Conditionally
dependent on the transform type.

• Role – Required: UTF-8 string.

The name or Amazon Resource Name (ARN) of the IAM role with the required permissions. The
required permissions include both AWS Glue service role permissions to AWS Glue resources, and
Amazon S3 permissions required by the transform.

• This role needs AWS Glue service role permissions to allow access to resources in AWS Glue.
See Attach a Policy to IAM Users That Access AWS Glue.

• This role needs permission to your Amazon Simple Storage Service (Amazon S3) sources,
targets, temporary directory, scripts, and any libraries used by the task run for this transform.

• GlueVersion – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #20.

This value determines which version of AWS Glue this machine learning transform is compatible
with. Glue 1.0 is recommended for most customers. If the value is not set, the Glue compatibility
defaults to Glue 0.9. For more information, see AWS Glue Versions in the developer guide.

• MaxCapacity – Number (double).

The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this
transform. You can allocate from 2 to 100 DPUs; the default is 10. A DPU is a relative measure of
processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more
information, see the AWS Glue pricing page.

MaxCapacity is a mutually exclusive option with NumberOfWorkers and WorkerType.

• If either NumberOfWorkers or WorkerType is set, then MaxCapacity cannot be set.

• If MaxCapacity is set then neither NumberOfWorkers or WorkerType can be set.

• If WorkerType is set, then NumberOfWorkers is required (and vice versa).

• MaxCapacity and NumberOfWorkers must both be at least 1.

When the WorkerType field is set to a value other than Standard, the MaxCapacity field is
set automatically and becomes read-only.

CreateMLTransform (create_ml_transform) 2356

https://docs.aws.amazon.com/glue/latest/dg/attach-policy-iam-user.html
https://docs.aws.amazon.com/glue/latest/dg/release-notes.html#release-notes-versions
https://aws.amazon.com/glue/pricing/

AWS Glue User Guide

When the WorkerType field is set to a value other than Standard, the MaxCapacity field is
set automatically and becomes read-only.

• WorkerType – UTF-8 string (valid values: Standard="" | G.1X="" | G.2X="" | G.025X="" |
G.4X="" | G.8X="" | Z.2X="").

The type of predefined worker that is allocated when this task runs. Accepts a value of Standard,
G.1X, or G.2X.

• For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB
disk, and 2 executors per worker.

• For the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk,
and 1 executor per worker.

• For the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk,
and 1 executor per worker.

MaxCapacity is a mutually exclusive option with NumberOfWorkers and WorkerType.

• If either NumberOfWorkers or WorkerType is set, then MaxCapacity cannot be set.

• If MaxCapacity is set then neither NumberOfWorkers or WorkerType can be set.

• If WorkerType is set, then NumberOfWorkers is required (and vice versa).

• MaxCapacity and NumberOfWorkers must both be at least 1.

• NumberOfWorkers – Number (integer).

The number of workers of a defined workerType that are allocated when this task runs.

If WorkerType is set, then NumberOfWorkers is required (and vice versa).

• Timeout – Number (integer), at least 1.

The timeout of the task run for this transform in minutes. This is the maximum time that a task
run for this transform can consume resources before it is terminated and enters TIMEOUT status.
The default is 2,880 minutes (48 hours).

• MaxRetries – Number (integer).

The maximum number of times to retry a task for this transform after a task run fails.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.
CreateMLTransform (create_ml_transform) 2357

AWS Glue User Guide

Each value is a UTF-8 string, not more than 256 bytes long.

The tags to use with this machine learning transform. You may use tags to limit access to the
machine learning transform. For more information about tags in AWS Glue, see AWS Tags in AWS
Glue in the developer guide.

• TransformEncryption – A TransformEncryption object.

The encryption-at-rest settings of the transform that apply to accessing user data. Machine
learning transforms can access user data encrypted in Amazon S3 using KMS.

Response

• TransformId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

A unique identifier that is generated for the transform.

Errors

• AlreadyExistsException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

• AccessDeniedException

• ResourceNumberLimitExceededException

• IdempotentParameterMismatchException

UpdateMLTransform action (Python: update_ml_transform)

Updates an existing machine learning transform. Call this operation to tune the algorithm
parameters to achieve better results.

After calling this operation, you can call the StartMLEvaluationTaskRun operation to assess
how well your new parameters achieved your goals (such as improving the quality of your machine
learning transform, or making it more cost-effective).

UpdateMLTransform (update_ml_transform) 2358

https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html

AWS Glue User Guide

Request

• TransformId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

A unique identifier that was generated when the transform was created.

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The unique name that you gave the transform when you created it.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the transform. The default is an empty string.

• Parameters – A TransformParameters object.

The configuration parameters that are specific to the transform type (algorithm) used.
Conditionally dependent on the transform type.

• Role – UTF-8 string.

The name or Amazon Resource Name (ARN) of the IAM role with the required permissions.

• GlueVersion – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #20.

This value determines which version of AWS Glue this machine learning transform is compatible
with. Glue 1.0 is recommended for most customers. If the value is not set, the Glue compatibility
defaults to Glue 0.9. For more information, see AWS Glue Versions in the developer guide.

• MaxCapacity – Number (double).

The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this
transform. You can allocate from 2 to 100 DPUs; the default is 10. A DPU is a relative measure of
processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more
information, see the AWS Glue pricing page.

When the WorkerType field is set to a value other than Standard, the MaxCapacity field is
set automatically and becomes read-only.

• WorkerType – UTF-8 string (valid values: Standard="" | G.1X="" | G.2X="" | G.025X="" |
G.4X="" | G.8X="" | Z.2X="").

UpdateMLTransform (update_ml_transform) 2359

https://docs.aws.amazon.com/glue/latest/dg/release-notes.html#release-notes-versions
https://aws.amazon.com/glue/pricing/

AWS Glue User Guide

The type of predefined worker that is allocated when this task runs. Accepts a value of Standard,
G.1X, or G.2X.

• For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB
disk, and 2 executors per worker.

• For the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk,
and 1 executor per worker.

• For the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk,
and 1 executor per worker.

• NumberOfWorkers – Number (integer).

The number of workers of a defined workerType that are allocated when this task runs.

• Timeout – Number (integer), at least 1.

The timeout for a task run for this transform in minutes. This is the maximum time that a task
run for this transform can consume resources before it is terminated and enters TIMEOUT status.
The default is 2,880 minutes (48 hours).

• MaxRetries – Number (integer).

The maximum number of times to retry a task for this transform after a task run fails.

Response

• TransformId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The unique identifier for the transform that was updated.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

• AccessDeniedException

UpdateMLTransform (update_ml_transform) 2360

AWS Glue User Guide

DeleteMLTransform action (Python: delete_ml_transform)

Deletes an AWS Glue machine learning transform. Machine learning transforms are a special type
of transform that use machine learning to learn the details of the transformation to be performed
by learning from examples provided by humans. These transformations are then saved by AWS
Glue. If you no longer need a transform, you can delete it by calling DeleteMLTransforms.
However, any AWS Glue jobs that still reference the deleted transform will no longer succeed.

Request

• TransformId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The unique identifier of the transform to delete.

Response

• TransformId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The unique identifier of the transform that was deleted.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

GetMLTransform action (Python: get_ml_transform)

Gets an AWS Glue machine learning transform artifact and all its corresponding metadata.
Machine learning transforms are a special type of transform that use machine learning to learn
the details of the transformation to be performed by learning from examples provided by humans.
These transformations are then saved by AWS Glue. You can retrieve their metadata by calling
GetMLTransform.

DeleteMLTransform (delete_ml_transform) 2361

AWS Glue User Guide

Request

• TransformId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The unique identifier of the transform, generated at the time that the transform was created.

Response

• TransformId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The unique identifier of the transform, generated at the time that the transform was created.

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The unique name given to the transform when it was created.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the transform.

• Status – UTF-8 string (valid values: NOT_READY | READY | DELETING).

The last known status of the transform (to indicate whether it can be used or not). One of
"NOT_READY", "READY", or "DELETING".

• CreatedOn – Timestamp.

The date and time when the transform was created.

• LastModifiedOn – Timestamp.

The date and time when the transform was last modified.

• InputRecordTables – An array of GlueTable objects, not more than 10 structures.

A list of AWS Glue table definitions used by the transform.

• Parameters – A TransformParameters object.

The configuration parameters that are specific to the algorithm used.

• EvaluationMetrics – An EvaluationMetrics object.

GetMLTransform (get_ml_transform) 2362

AWS Glue User Guide

The latest evaluation metrics.

• LabelCount – Number (integer).

The number of labels available for this transform.

• Schema – An array of SchemaColumn objects, not more than 100 structures.

The Map<Column, Type> object that represents the schema that this transform accepts. Has an
upper bound of 100 columns.

• Role – UTF-8 string.

The name or Amazon Resource Name (ARN) of the IAM role with the required permissions.

• GlueVersion – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Custom
string pattern #20.

This value determines which version of AWS Glue this machine learning transform is compatible
with. Glue 1.0 is recommended for most customers. If the value is not set, the Glue compatibility
defaults to Glue 0.9. For more information, see AWS Glue Versions in the developer guide.

• MaxCapacity – Number (double).

The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this
transform. You can allocate from 2 to 100 DPUs; the default is 10. A DPU is a relative measure of
processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more
information, see the AWS Glue pricing page.

When the WorkerType field is set to a value other than Standard, the MaxCapacity field is
set automatically and becomes read-only.

• WorkerType – UTF-8 string (valid values: Standard="" | G.1X="" | G.2X="" | G.025X="" |
G.4X="" | G.8X="" | Z.2X="").

The type of predefined worker that is allocated when this task runs. Accepts a value of Standard,
G.1X, or G.2X.

• For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB
disk, and 2 executors per worker.

• For the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk,
and 1 executor per worker.

GetMLTransform (get_ml_transform) 2363

https://docs.aws.amazon.com/glue/latest/dg/release-notes.html#release-notes-versions
https://aws.amazon.com/glue/pricing/

AWS Glue User Guide

• For the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk,
and 1 executor per worker.

• NumberOfWorkers – Number (integer).

The number of workers of a defined workerType that are allocated when this task runs.

• Timeout – Number (integer), at least 1.

The timeout for a task run for this transform in minutes. This is the maximum time that a task
run for this transform can consume resources before it is terminated and enters TIMEOUT status.
The default is 2,880 minutes (48 hours).

• MaxRetries – Number (integer).

The maximum number of times to retry a task for this transform after a task run fails.

• TransformEncryption – A TransformEncryption object.

The encryption-at-rest settings of the transform that apply to accessing user data. Machine
learning transforms can access user data encrypted in Amazon S3 using KMS.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

GetMLTransforms action (Python: get_ml_transforms)

Gets a sortable, filterable list of existing AWS Glue machine learning transforms. Machine learning
transforms are a special type of transform that use machine learning to learn the details of
the transformation to be performed by learning from examples provided by humans. These
transformations are then saved by AWS Glue, and you can retrieve their metadata by calling
GetMLTransforms.

Request

• NextToken – UTF-8 string.

GetMLTransforms (get_ml_transforms) 2364

AWS Glue User Guide

A paginated token to offset the results.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum number of results to return.

• Filter – A TransformFilterCriteria object.

The filter transformation criteria.

• Sort – A TransformSortCriteria object.

The sorting criteria.

Response

• Transforms – Required: An array of MLTransform objects.

A list of machine learning transforms.

• NextToken – UTF-8 string.

A pagination token, if more results are available.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

ListMLTransforms action (Python: list_ml_transforms)

Retrieves a sortable, filterable list of existing AWS Glue machine learning transforms in this AWS
account, or the resources with the specified tag. This operation takes the optional Tags field, which
you can use as a filter of the responses so that tagged resources can be retrieved as a group. If you
choose to use tag filtering, only resources with the tags are retrieved.

Request

• NextToken – UTF-8 string.

ListMLTransforms (list_ml_transforms) 2365

AWS Glue User Guide

A continuation token, if this is a continuation request.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum size of a list to return.

• Filter – A TransformFilterCriteria object.

A TransformFilterCriteria used to filter the machine learning transforms.

• Sort – A TransformSortCriteria object.

A TransformSortCriteria used to sort the machine learning transforms.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

Specifies to return only these tagged resources.

Response

• TransformIds – Required: An array of UTF-8 strings.

The identifiers of all the machine learning transforms in the account, or the machine learning
transforms with the specified tags.

• NextToken – UTF-8 string.

A continuation token, if the returned list does not contain the last metric available.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

ListMLTransforms (list_ml_transforms) 2366

AWS Glue User Guide

StartMLEvaluationTaskRun action (Python:
start_ml_evaluation_task_run)

Starts a task to estimate the quality of the transform.

When you provide label sets as examples of truth, AWS Glue machine learning uses some of those
examples to learn from them. The rest of the labels are used as a test to estimate quality.

Returns a unique identifier for the run. You can call GetMLTaskRun to get more information about
the stats of the EvaluationTaskRun.

Request

• TransformId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The unique identifier of the machine learning transform.

Response

• TaskRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The unique identifier associated with this run.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

• ConcurrentRunsExceededException

• MLTransformNotReadyException

StartMLEvaluationTaskRun (start_ml_evaluation_task_run) 2367

AWS Glue User Guide

StartMLLabelingSetGenerationTaskRun action (Python:
start_ml_labeling_set_generation_task_run)

Starts the active learning workflow for your machine learning transform to improve the transform's
quality by generating label sets and adding labels.

When the StartMLLabelingSetGenerationTaskRun finishes, AWS Glue will have generated a
"labeling set" or a set of questions for humans to answer.

In the case of the FindMatches transform, these questions are of the form, "What is the correct
way to group these rows together into groups composed entirely of matching records?"

After the labeling process is finished, you can upload your labels with a call to
StartImportLabelsTaskRun. After StartImportLabelsTaskRun finishes, all future runs of
the machine learning transform will use the new and improved labels and perform a higher-quality
transformation.

Request

• TransformId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The unique identifier of the machine learning transform.

• OutputS3Path – Required: UTF-8 string.

The Amazon Simple Storage Service (Amazon S3) path where you generate the labeling set.

Response

• TaskRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The unique run identifier that is associated with this task run.

Errors

• EntityNotFoundException

• InvalidInputException

StartMLLabelingSetGenerationTaskRun (start_ml_labeling_set_generation_task_run) 2368

AWS Glue User Guide

• OperationTimeoutException

• InternalServiceException

• ConcurrentRunsExceededException

GetMLTaskRun action (Python: get_ml_task_run)

Gets details for a specific task run on a machine learning transform. Machine learning task runs
are asynchronous tasks that AWS Glue runs on your behalf as part of various machine learning
workflows. You can check the stats of any task run by calling GetMLTaskRun with the TaskRunID
and its parent transform's TransformID.

Request

• TransformId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The unique identifier of the machine learning transform.

• TaskRunId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The unique identifier of the task run.

Response

• TransformId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The unique identifier of the task run.

• TaskRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The unique run identifier associated with this run.

• Status – UTF-8 string (valid values: STARTING | RUNNING | STOPPING | STOPPED | SUCCEEDED |
FAILED | TIMEOUT).

The status for this task run.

• LogGroupName – UTF-8 string.

GetMLTaskRun (get_ml_task_run) 2369

AWS Glue User Guide

The names of the log groups that are associated with the task run.

• Properties – A TaskRunProperties object.

The list of properties that are associated with the task run.

• ErrorString – UTF-8 string.

The error strings that are associated with the task run.

• StartedOn – Timestamp.

The date and time when this task run started.

• LastModifiedOn – Timestamp.

The date and time when this task run was last modified.

• CompletedOn – Timestamp.

The date and time when this task run was completed.

• ExecutionTime – Number (integer).

The amount of time (in seconds) that the task run consumed resources.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

GetMLTaskRuns action (Python: get_ml_task_runs)

Gets a list of runs for a machine learning transform. Machine learning task runs are asynchronous
tasks that AWS Glue runs on your behalf as part of various machine learning workflows. You can
get a sortable, filterable list of machine learning task runs by calling GetMLTaskRuns with their
parent transform's TransformID and other optional parameters as documented in this section.

This operation returns a list of historic runs and must be paginated.

GetMLTaskRuns (get_ml_task_runs) 2370

AWS Glue User Guide

Request

• TransformId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The unique identifier of the machine learning transform.

• NextToken – UTF-8 string.

A token for pagination of the results. The default is empty.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum number of results to return.

• Filter – A TaskRunFilterCriteria object.

The filter criteria, in the TaskRunFilterCriteria structure, for the task run.

• Sort – A TaskRunSortCriteria object.

The sorting criteria, in the TaskRunSortCriteria structure, for the task run.

Response

• TaskRuns – An array of TaskRun objects.

A list of task runs that are associated with the transform.

• NextToken – UTF-8 string.

A pagination token, if more results are available.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

GetMLTaskRuns (get_ml_task_runs) 2371

AWS Glue User Guide

CancelMLTaskRun action (Python: cancel_ml_task_run)

Cancels (stops) a task run. Machine learning task runs are asynchronous tasks that AWS Glue
runs on your behalf as part of various machine learning workflows. You can cancel a machine
learning task run at any time by calling CancelMLTaskRun with a task run's parent transform's
TransformID and the task run's TaskRunId.

Request

• TransformId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The unique identifier of the machine learning transform.

• TaskRunId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

A unique identifier for the task run.

Response

• TransformId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The unique identifier of the machine learning transform.

• TaskRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The unique identifier for the task run.

• Status – UTF-8 string (valid values: STARTING | RUNNING | STOPPING | STOPPED | SUCCEEDED |
FAILED | TIMEOUT).

The status for this run.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

CancelMLTaskRun (cancel_ml_task_run) 2372

AWS Glue User Guide

• InternalServiceException

StartExportLabelsTaskRun action (Python:
start_export_labels_task_run)

Begins an asynchronous task to export all labeled data for a particular transform. This task is the
only label-related API call that is not part of the typical active learning workflow. You typically
use StartExportLabelsTaskRun when you want to work with all of your existing labels at the
same time, such as when you want to remove or change labels that were previously submitted
as truth. This API operation accepts the TransformId whose labels you want to export and an
Amazon Simple Storage Service (Amazon S3) path to export the labels to. The operation returns a
TaskRunId. You can check on the status of your task run by calling the GetMLTaskRun API.

Request

• TransformId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The unique identifier of the machine learning transform.

• OutputS3Path – Required: UTF-8 string.

The Amazon S3 path where you export the labels.

Response

• TaskRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The unique identifier for the task run.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

StartExportLabelsTaskRun (start_export_labels_task_run) 2373

AWS Glue User Guide

StartImportLabelsTaskRun action (Python:
start_import_labels_task_run)

Enables you to provide additional labels (examples of truth) to be used to teach the machine
learning transform and improve its quality. This API operation is generally used as part of the
active learning workflow that starts with the StartMLLabelingSetGenerationTaskRun call
and that ultimately results in improving the quality of your machine learning transform.

After the StartMLLabelingSetGenerationTaskRun finishes, AWS Glue machine learning
will have generated a series of questions for humans to answer. (Answering these questions
is often called 'labeling' in the machine learning workflows). In the case of the FindMatches
transform, these questions are of the form, "What is the correct way to group these rows
together into groups composed entirely of matching records?" After the labeling process is
finished, users upload their answers/labels with a call to StartImportLabelsTaskRun. After
StartImportLabelsTaskRun finishes, all future runs of the machine learning transform use the
new and improved labels and perform a higher-quality transformation.

By default, StartMLLabelingSetGenerationTaskRun continually learns from and
combines all labels that you upload unless you set Replace to true. If you set Replace to true,
StartImportLabelsTaskRun deletes and forgets all previously uploaded labels and learns
only from the exact set that you upload. Replacing labels can be helpful if you realize that you
previously uploaded incorrect labels, and you believe that they are having a negative effect on your
transform quality.

You can check on the status of your task run by calling the GetMLTaskRun operation.

Request

• TransformId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The unique identifier of the machine learning transform.

• InputS3Path – Required: UTF-8 string.

The Amazon Simple Storage Service (Amazon S3) path from where you import the labels.

• ReplaceAllLabels – Boolean.

Indicates whether to overwrite your existing labels.

StartImportLabelsTaskRun (start_import_labels_task_run) 2374

AWS Glue User Guide

Response

• TaskRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The unique identifier for the task run.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• ResourceNumberLimitExceededException

• InternalServiceException

Data Quality API

The Data Quality API describes the data quality data types, and includes the API for creating,
deleting, or updating data quality rulesets, runs and evaluations.

Data types

• DataSource structure

• DataQualityRulesetListDetails structure

• DataQualityTargetTable structure

• DataQualityRulesetEvaluationRunDescription structure

• DataQualityRulesetEvaluationRunFilter structure

• DataQualityEvaluationRunAdditionalRunOptions structure

• DataQualityRuleRecommendationRunDescription structure

• DataQualityRuleRecommendationRunFilter structure

• DataQualityResult structure

• DataQualityAnalyzerResult structure

• DataQualityObservation structure

• MetricBasedObservation structure

Data Quality 2375

AWS Glue User Guide

• DataQualityMetricValues structure

• DataQualityRuleResult structure

• DataQualityResultDescription structure

• DataQualityResultFilterCriteria structure

• DataQualityRulesetFilterCriteria structure

DataSource structure

A data source (an AWS Glue table) for which you want data quality results.

Fields

• GlueTable – Required: A GlueTable object.

An AWS Glue table.

DataQualityRulesetListDetails structure

Describes a data quality ruleset returned by GetDataQualityRuleset.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the data quality ruleset.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the data quality ruleset.

• CreatedOn – Timestamp.

The date and time the data quality ruleset was created.

• LastModifiedOn – Timestamp.

The date and time the data quality ruleset was last modified.

• TargetTable – A DataQualityTargetTable object.

DataSource 2376

AWS Glue User Guide

An object representing an AWS Glue table.

• RecommendationRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

When a ruleset was created from a recommendation run, this run ID is generated to link the two
together.

• RuleCount – Number (integer).

The number of rules in the ruleset.

DataQualityTargetTable structure

An object representing an AWS Glue table.

Fields

• TableName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The name of the AWS Glue table.

• DatabaseName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the database where the AWS Glue table exists.

• CatalogId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The catalog id where the AWS Glue table exists.

DataQualityRulesetEvaluationRunDescription structure

Describes the result of a data quality ruleset evaluation run.

Fields

• RunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

DataQualityTargetTable 2377

AWS Glue User Guide

The unique run identifier associated with this run.

• Status – UTF-8 string (valid values: STARTING | RUNNING | STOPPING | STOPPED | SUCCEEDED |
FAILED | TIMEOUT).

The status for this run.

• StartedOn – Timestamp.

The date and time when the run started.

• DataSource – A DataSource object.

The data source (an AWS Glue table) associated with the run.

DataQualityRulesetEvaluationRunFilter structure

The filter criteria.

Fields

• DataSource – Required: A DataSource object.

Filter based on a data source (an AWS Glue table) associated with the run.

• StartedBefore – Timestamp.

Filter results by runs that started before this time.

• StartedAfter – Timestamp.

Filter results by runs that started after this time.

DataQualityEvaluationRunAdditionalRunOptions structure

Additional run options you can specify for an evaluation run.

Fields

• CloudWatchMetricsEnabled – Boolean.

Whether or not to enable CloudWatch metrics.

• ResultsS3Prefix – UTF-8 string.

DataQualityRulesetEvaluationRunFilter 2378

AWS Glue User Guide

Prefix for Amazon S3 to store results.

• CompositeRuleEvaluationMethod – UTF-8 string (valid values: COLUMN | ROW).

Set the evaluation method for composite rules in the ruleset to ROW/COLUMN

DataQualityRuleRecommendationRunDescription structure

Describes the result of a data quality rule recommendation run.

Fields

• RunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The unique run identifier associated with this run.

• Status – UTF-8 string (valid values: STARTING | RUNNING | STOPPING | STOPPED | SUCCEEDED |
FAILED | TIMEOUT).

The status for this run.

• StartedOn – Timestamp.

The date and time when this run started.

• DataSource – A DataSource object.

The data source (AWS Glue table) associated with the recommendation run.

DataQualityRuleRecommendationRunFilter structure

A filter for listing data quality recommendation runs.

Fields

• DataSource – Required: A DataSource object.

Filter based on a specified data source (AWS Glue table).

• StartedBefore – Timestamp.

Filter based on time for results started before provided time.

DataQualityRuleRecommendationRunDescription 2379

AWS Glue User Guide

• StartedAfter – Timestamp.

Filter based on time for results started after provided time.

DataQualityResult structure

Describes a data quality result.

Fields

• ResultId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

A unique result ID for the data quality result.

• Score – Number (double), not more than 1.0.

An aggregate data quality score. Represents the ratio of rules that passed to the total number of
rules.

• DataSource – A DataSource object.

The table associated with the data quality result, if any.

• RulesetName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the ruleset associated with the data quality result.

• EvaluationContext – UTF-8 string.

In the context of a job in AWS Glue Studio, each node in the canvas is typically assigned
some sort of name and data quality nodes will have names. In the case of multiple nodes, the
evaluationContext can differentiate the nodes.

• StartedOn – Timestamp.

The date and time when this data quality run started.

• CompletedOn – Timestamp.

The date and time when this data quality run completed.

• JobName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

DataQualityResult 2380

AWS Glue User Guide

The job name associated with the data quality result, if any.

• JobRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The job run ID associated with the data quality result, if any.

• RulesetEvaluationRunId – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The unique run ID for the ruleset evaluation for this data quality result.

• RuleResults – An array of DataQualityRuleResult objects, not more than 2000 structures.

A list of DataQualityRuleResult objects representing the results for each rule.

• AnalyzerResults – An array of DataQualityAnalyzerResult objects, not more than 2000
structures.

A list of DataQualityAnalyzerResult objects representing the results for each analyzer.

• Observations – An array of DataQualityObservation objects, not more than 50 structures.

A list of DataQualityObservation objects representing the observations generated after
evaluating the rules and analyzers.

DataQualityAnalyzerResult structure

Describes the result of the evaluation of a data quality analyzer.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the data quality analyzer.

• Description – UTF-8 string, not more than 2048 bytes long, matching the URI address multi-
line string pattern.

A description of the data quality analyzer.

• EvaluationMessage – UTF-8 string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

DataQualityAnalyzerResult 2381

AWS Glue User Guide

An evaluation message.

• EvaluatedMetrics – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a Number (double).

A map of metrics associated with the evaluation of the analyzer.

DataQualityObservation structure

Describes the observation generated after evaluating the rules and analyzers.

Fields

• Description – UTF-8 string, not more than 2048 bytes long, matching the URI address multi-
line string pattern.

A description of the data quality observation.

• MetricBasedObservation – A MetricBasedObservation object.

An object of type MetricBasedObservation representing the observation that is based on
evaluated data quality metrics.

MetricBasedObservation structure

Describes the metric based observation generated based on evaluated data quality metrics.

Fields

• MetricName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the data quality metric used for generating the observation.

• MetricValues – A DataQualityMetricValues object.

An object of type DataQualityMetricValues representing the analysis of the data quality
metric value.

DataQualityObservation 2382

AWS Glue User Guide

• NewRules – An array of UTF-8 strings.

A list of new data quality rules generated as part of the observation based on the data quality
metric value.

DataQualityMetricValues structure

Describes the data quality metric value according to the analysis of historical data.

Fields

• ActualValue – Number (double).

The actual value of the data quality metric.

• ExpectedValue – Number (double).

The expected value of the data quality metric according to the analysis of historical data.

• LowerLimit – Number (double).

The lower limit of the data quality metric value according to the analysis of historical data.

• UpperLimit – Number (double).

The upper limit of the data quality metric value according to the analysis of historical data.

DataQualityRuleResult structure

Describes the result of the evaluation of a data quality rule.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the data quality rule.

• Description – UTF-8 string, not more than 2048 bytes long, matching the URI address multi-
line string pattern.

A description of the data quality rule.
DataQualityMetricValues 2383

AWS Glue User Guide

• EvaluationMessage – UTF-8 string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

An evaluation message.

• Result – UTF-8 string (valid values: PASS | FAIL | ERROR).

A pass or fail status for the rule.

• EvaluatedMetrics – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a Number (double).

A map of metrics associated with the evaluation of the rule.

DataQualityResultDescription structure

Describes a data quality result.

Fields

• ResultId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The unique result ID for this data quality result.

• DataSource – A DataSource object.

The table name associated with the data quality result.

• JobName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The job name associated with the data quality result.

• JobRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The job run ID associated with the data quality result.

• StartedOn – Timestamp.
DataQualityResultDescription 2384

AWS Glue User Guide

The time that the run started for this data quality result.

DataQualityResultFilterCriteria structure

Criteria used to return data quality results.

Fields

• DataSource – A DataSource object.

Filter results by the specified data source. For example, retrieving all results for an AWS Glue
table.

• JobName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Filter results by the specified job name.

• JobRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Filter results by the specified job run ID.

• StartedAfter – Timestamp.

Filter results by runs that started after this time.

• StartedBefore – Timestamp.

Filter results by runs that started before this time.

DataQualityRulesetFilterCriteria structure

The criteria used to filter data quality rulesets.

Fields

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the ruleset filter criteria.

DataQualityResultFilterCriteria 2385

AWS Glue User Guide

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

The description of the ruleset filter criteria.

• CreatedBefore – Timestamp.

Filter on rulesets created before this date.

• CreatedAfter – Timestamp.

Filter on rulesets created after this date.

• LastModifiedBefore – Timestamp.

Filter on rulesets last modified before this date.

• LastModifiedAfter – Timestamp.

Filter on rulesets last modified after this date.

• TargetTable – A DataQualityTargetTable object.

The name and database name of the target table.

Operations

• StartDataQualityRulesetEvaluationRun action (Python:
start_data_quality_ruleset_evaluation_run)

• CancelDataQualityRulesetEvaluationRun action (Python:
cancel_data_quality_ruleset_evaluation_run)

• GetDataQualityRulesetEvaluationRun action (Python: get_data_quality_ruleset_evaluation_run)

• ListDataQualityRulesetEvaluationRuns action (Python: list_data_quality_ruleset_evaluation_runs)

• StartDataQualityRuleRecommendationRun action (Python:
start_data_quality_rule_recommendation_run)

• CancelDataQualityRuleRecommendationRun action (Python:
cancel_data_quality_rule_recommendation_run)

• GetDataQualityRuleRecommendationRun action (Python:
get_data_quality_rule_recommendation_run)

• ListDataQualityRuleRecommendationRuns action (Python:
list_data_quality_rule_recommendation_runs)

 — operations — 2386

AWS Glue User Guide

• GetDataQualityResult action (Python: get_data_quality_result)

• BatchGetDataQualityResult action (Python: batch_get_data_quality_result)

• ListDataQualityResults action (Python: list_data_quality_results)

• CreateDataQualityRuleset action (Python: create_data_quality_ruleset)

• DeleteDataQualityRuleset action (Python: delete_data_quality_ruleset)

• GetDataQualityRuleset action (Python: get_data_quality_ruleset)

• ListDataQualityRulesets action (Python: list_data_quality_rulesets)

• UpdateDataQualityRuleset action (Python: update_data_quality_ruleset)

StartDataQualityRulesetEvaluationRun action (Python:
start_data_quality_ruleset_evaluation_run)

Once you have a ruleset definition (either recommended or your own), you call this operation to
evaluate the ruleset against a data source (AWS Glue table). The evaluation computes results which
you can retrieve with the GetDataQualityResult API.

Request

• DataSource – Required: A DataSource object.

The data source (AWS Glue table) associated with this run.

• Role – Required: UTF-8 string.

An IAM role supplied to encrypt the results of the run.

• NumberOfWorkers – Number (integer).

The number of G.1X workers to be used in the run. The default is 5.

• Timeout – Number (integer), at least 1.

The timeout for a run in minutes. This is the maximum time that a run can consume resources
before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours).

• ClientToken – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Used for idempotency and is recommended to be set to a random ID (such as a UUID) to avoid
creating or starting multiple instances of the same resource.

StartDataQualityRulesetEvaluationRun (start_data_quality_ruleset_evaluation_run) 2387

AWS Glue User Guide

• AdditionalRunOptions – A DataQualityEvaluationRunAdditionalRunOptions object.

Additional run options you can specify for an evaluation run.

• RulesetNames – Required: An array of UTF-8 strings, not less than 1 or more than 10 strings.

A list of ruleset names.

• AdditionalDataSources – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a A DataSource object.

A map of reference strings to additional data sources you can specify for an evaluation run.

Response

• RunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The unique run identifier associated with this run.

Errors

• InvalidInputException

• EntityNotFoundException

• OperationTimeoutException

• InternalServiceException

• ConflictException

CancelDataQualityRulesetEvaluationRun action (Python:
cancel_data_quality_ruleset_evaluation_run)

Cancels a run where a ruleset is being evaluated against a data source.

CancelDataQualityRulesetEvaluationRun (cancel_data_quality_ruleset_evaluation_run) 2388

AWS Glue User Guide

Request

• RunId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The unique run identifier associated with this run.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

GetDataQualityRulesetEvaluationRun action (Python:
get_data_quality_ruleset_evaluation_run)

Retrieves a specific run where a ruleset is evaluated against a data source.

Request

• RunId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The unique run identifier associated with this run.

Response

• RunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The unique run identifier associated with this run.

• DataSource – A DataSource object.

GetDataQualityRulesetEvaluationRun (get_data_quality_ruleset_evaluation_run) 2389

AWS Glue User Guide

The data source (an AWS Glue table) associated with this evaluation run.

• Role – UTF-8 string.

An IAM role supplied to encrypt the results of the run.

• NumberOfWorkers – Number (integer).

The number of G.1X workers to be used in the run. The default is 5.

• Timeout – Number (integer), at least 1.

The timeout for a run in minutes. This is the maximum time that a run can consume resources
before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours).

• AdditionalRunOptions – A DataQualityEvaluationRunAdditionalRunOptions object.

Additional run options you can specify for an evaluation run.

• Status – UTF-8 string (valid values: STARTING | RUNNING | STOPPING | STOPPED | SUCCEEDED |
FAILED | TIMEOUT).

The status for this run.

• ErrorString – UTF-8 string.

The error strings that are associated with the run.

• StartedOn – Timestamp.

The date and time when this run started.

• LastModifiedOn – Timestamp.

A timestamp. The last point in time when this data quality rule recommendation run was
modified.

• CompletedOn – Timestamp.

The date and time when this run was completed.

• ExecutionTime – Number (integer).

The amount of time (in seconds) that the run consumed resources.

• RulesetNames – An array of UTF-8 strings, not less than 1 or more than 10 strings.

A list of ruleset names for the run. Currently, this parameter takes only one Ruleset name.

GetDataQualityRulesetEvaluationRun (get_data_quality_ruleset_evaluation_run) 2390

AWS Glue User Guide

• ResultIds – An array of UTF-8 strings, not less than 1 or more than 10 strings.

A list of result IDs for the data quality results for the run.

• AdditionalDataSources – A map array of key-value pairs.

Each key is a UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

Each value is a A DataSource object.

A map of reference strings to additional data sources you can specify for an evaluation run.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

ListDataQualityRulesetEvaluationRuns action (Python:
list_data_quality_ruleset_evaluation_runs)

Lists all the runs meeting the filter criteria, where a ruleset is evaluated against a data source.

Request

• Filter – A DataQualityRulesetEvaluationRunFilter object.

The filter criteria.

• NextToken – UTF-8 string.

A paginated token to offset the results.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum number of results to return.

ListDataQualityRulesetEvaluationRuns (list_data_quality_ruleset_evaluation_runs) 2391

AWS Glue User Guide

Response

• Runs – An array of DataQualityRulesetEvaluationRunDescription objects.

A list of DataQualityRulesetEvaluationRunDescription objects representing data
quality ruleset runs.

• NextToken – UTF-8 string.

A pagination token, if more results are available.

Errors

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

StartDataQualityRuleRecommendationRun action (Python:
start_data_quality_rule_recommendation_run)

Starts a recommendation run that is used to generate rules when you don't know what rules
to write. AWS Glue Data Quality analyzes the data and comes up with recommendations for a
potential ruleset. You can then triage the ruleset and modify the generated ruleset to your liking.

Recommendation runs are automatically deleted after 90 days.

Request

• DataSource – Required: A DataSource object.

The data source (AWS Glue table) associated with this run.

• Role – Required: UTF-8 string.

An IAM role supplied to encrypt the results of the run.

• NumberOfWorkers – Number (integer).

The number of G.1X workers to be used in the run. The default is 5.

• Timeout – Number (integer), at least 1.

StartDataQualityRuleRecommendationRun (start_data_quality_rule_recommendation_run) 2392

AWS Glue User Guide

The timeout for a run in minutes. This is the maximum time that a run can consume resources
before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours).

• CreatedRulesetName – UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

A name for the ruleset.

• ClientToken – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Used for idempotency and is recommended to be set to a random ID (such as a UUID) to avoid
creating or starting multiple instances of the same resource.

Response

• RunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The unique run identifier associated with this run.

Errors

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

• ConflictException

CancelDataQualityRuleRecommendationRun action (Python:
cancel_data_quality_rule_recommendation_run)

Cancels the specified recommendation run that was being used to generate rules.

Request

• RunId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

CancelDataQualityRuleRecommendationRun (cancel_data_quality_rule_recommendation_run) 2393

AWS Glue User Guide

The unique run identifier associated with this run.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

GetDataQualityRuleRecommendationRun action (Python:
get_data_quality_rule_recommendation_run)

Gets the specified recommendation run that was used to generate rules.

Request

• RunId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

The unique run identifier associated with this run.

Response

• RunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The unique run identifier associated with this run.

• DataSource – A DataSource object.

The data source (an AWS Glue table) associated with this run.

• Role – UTF-8 string.

GetDataQualityRuleRecommendationRun (get_data_quality_rule_recommendation_run) 2394

AWS Glue User Guide

An IAM role supplied to encrypt the results of the run.

• NumberOfWorkers – Number (integer).

The number of G.1X workers to be used in the run. The default is 5.

• Timeout – Number (integer), at least 1.

The timeout for a run in minutes. This is the maximum time that a run can consume resources
before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours).

• Status – UTF-8 string (valid values: STARTING | RUNNING | STOPPING | STOPPED | SUCCEEDED |
FAILED | TIMEOUT).

The status for this run.

• ErrorString – UTF-8 string.

The error strings that are associated with the run.

• StartedOn – Timestamp.

The date and time when this run started.

• LastModifiedOn – Timestamp.

A timestamp. The last point in time when this data quality rule recommendation run was
modified.

• CompletedOn – Timestamp.

The date and time when this run was completed.

• ExecutionTime – Number (integer).

The amount of time (in seconds) that the run consumed resources.

• RecommendedRuleset – UTF-8 string, not less than 1 or more than 65536 bytes long.

When a start rule recommendation run completes, it creates a recommended ruleset (a set of
rules). This member has those rules in Data Quality Definition Language (DQDL) format.

• CreatedRulesetName – UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

The name of the ruleset that was created by the run.

GetDataQualityRuleRecommendationRun (get_data_quality_rule_recommendation_run) 2395

AWS Glue User Guide

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

ListDataQualityRuleRecommendationRuns action (Python:
list_data_quality_rule_recommendation_runs)

Lists the recommendation runs meeting the filter criteria.

Request

• Filter – A DataQualityRuleRecommendationRunFilter object.

The filter criteria.

• NextToken – UTF-8 string.

A paginated token to offset the results.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum number of results to return.

Response

• Runs – An array of DataQualityRuleRecommendationRunDescription objects.

A list of DataQualityRuleRecommendationRunDescription objects.

• NextToken – UTF-8 string.

A pagination token, if more results are available.

Errors

• InvalidInputException

• OperationTimeoutException

ListDataQualityRuleRecommendationRuns (list_data_quality_rule_recommendation_runs) 2396

AWS Glue User Guide

• InternalServiceException

GetDataQualityResult action (Python: get_data_quality_result)

Retrieves the result of a data quality rule evaluation.

Request

• ResultId – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

A unique result ID for the data quality result.

Response

• ResultId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

A unique result ID for the data quality result.

• Score – Number (double), not more than 1.0.

An aggregate data quality score. Represents the ratio of rules that passed to the total number of
rules.

• DataSource – A DataSource object.

The table associated with the data quality result, if any.

• RulesetName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the ruleset associated with the data quality result.

• EvaluationContext – UTF-8 string.

In the context of a job in AWS Glue Studio, each node in the canvas is typically assigned
some sort of name and data quality nodes will have names. In the case of multiple nodes, the
evaluationContext can differentiate the nodes.

• StartedOn – Timestamp.

The date and time when the run for this data quality result started.

GetDataQualityResult (get_data_quality_result) 2397

AWS Glue User Guide

• CompletedOn – Timestamp.

The date and time when the run for this data quality result was completed.

• JobName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The job name associated with the data quality result, if any.

• JobRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The job run ID associated with the data quality result, if any.

• RulesetEvaluationRunId – UTF-8 string, not less than 1 or more than 255 bytes long,
matching the Single-line string pattern.

The unique run ID associated with the ruleset evaluation.

• RuleResults – An array of DataQualityRuleResult objects, not more than 2000 structures.

A list of DataQualityRuleResult objects representing the results for each rule.

• AnalyzerResults – An array of DataQualityAnalyzerResult objects, not more than 2000
structures.

A list of DataQualityAnalyzerResult objects representing the results for each analyzer.

• Observations – An array of DataQualityObservation objects, not more than 50 structures.

A list of DataQualityObservation objects representing the observations generated after
evaluating the rules and analyzers.

Errors

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

• EntityNotFoundException

GetDataQualityResult (get_data_quality_result) 2398

AWS Glue User Guide

BatchGetDataQualityResult action (Python:
batch_get_data_quality_result)

Retrieves a list of data quality results for the specified result IDs.

Request

• ResultIds – Required: An array of UTF-8 strings, not less than 1 or more than 100 strings.

A list of unique result IDs for the data quality results.

Response

• Results – Required: An array of DataQualityResult objects.

A list of DataQualityResult objects representing the data quality results.

• ResultsNotFound – An array of UTF-8 strings, not less than 1 or more than 100 strings.

A list of result IDs for which results were not found.

Errors

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

ListDataQualityResults action (Python: list_data_quality_results)

Returns all data quality execution results for your account.

Request

• Filter – A DataQualityResultFilterCriteria object.

The filter criteria.

• NextToken – UTF-8 string.

A paginated token to offset the results.

BatchGetDataQualityResult (batch_get_data_quality_result) 2399

AWS Glue User Guide

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum number of results to return.

Response

• Results – Required: An array of DataQualityResultDescription objects.

A list of DataQualityResultDescription objects.

• NextToken – UTF-8 string.

A pagination token, if more results are available.

Errors

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

CreateDataQualityRuleset action (Python: create_data_quality_ruleset)

Creates a data quality ruleset with DQDL rules applied to a specified AWS Glue table.

You create the ruleset using the Data Quality Definition Language (DQDL). For more information,
see the AWS Glue developer guide.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

A unique name for the data quality ruleset.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the data quality ruleset.

• Ruleset – Required: UTF-8 string, not less than 1 or more than 65536 bytes long.

CreateDataQualityRuleset (create_data_quality_ruleset) 2400

AWS Glue User Guide

A Data Quality Definition Language (DQDL) ruleset. For more information, see the AWS Glue
developer guide.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

A list of tags applied to the data quality ruleset.

• TargetTable – A DataQualityTargetTable object.

A target table associated with the data quality ruleset.

• RecommendationRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

A unique run ID for the recommendation run.

• ClientToken – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

Used for idempotency and is recommended to be set to a random ID (such as a UUID) to avoid
creating or starting multiple instances of the same resource.

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

A unique name for the data quality ruleset.

Errors

• InvalidInputException

• AlreadyExistsException

• OperationTimeoutException

• InternalServiceException

• ResourceNumberLimitExceededException

CreateDataQualityRuleset (create_data_quality_ruleset) 2401

AWS Glue User Guide

DeleteDataQualityRuleset action (Python: delete_data_quality_ruleset)

Deletes a data quality ruleset.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

A name for the data quality ruleset.

Response

• No Response parameters.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

GetDataQualityRuleset action (Python: get_data_quality_ruleset)

Returns an existing ruleset by identifier or name.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the ruleset.

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

DeleteDataQualityRuleset (delete_data_quality_ruleset) 2402

AWS Glue User Guide

The name of the ruleset.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the ruleset.

• Ruleset – UTF-8 string, not less than 1 or more than 65536 bytes long.

A Data Quality Definition Language (DQDL) ruleset. For more information, see the AWS Glue
developer guide.

• TargetTable – A DataQualityTargetTable object.

The name and database name of the target table.

• CreatedOn – Timestamp.

A timestamp. The time and date that this data quality ruleset was created.

• LastModifiedOn – Timestamp.

A timestamp. The last point in time when this data quality ruleset was modified.

• RecommendationRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

When a ruleset was created from a recommendation run, this run ID is generated to link the two
together.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

ListDataQualityRulesets action (Python: list_data_quality_rulesets)

Returns a paginated list of rulesets for the specified list of AWS Glue tables.

ListDataQualityRulesets (list_data_quality_rulesets) 2403

AWS Glue User Guide

Request

• NextToken – UTF-8 string.

A paginated token to offset the results.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum number of results to return.

• Filter – A DataQualityRulesetFilterCriteria object.

The filter criteria.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

A list of key-value pair tags.

Response

• Rulesets – An array of DataQualityRulesetListDetails objects.

A paginated list of rulesets for the specified list of AWS Glue tables.

• NextToken – UTF-8 string.

A pagination token, if more results are available.

Errors

• EntityNotFoundException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

ListDataQualityRulesets (list_data_quality_rulesets) 2404

AWS Glue User Guide

UpdateDataQualityRuleset action (Python:
update_data_quality_ruleset)

Updates the specified data quality ruleset.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the data quality ruleset.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the ruleset.

• Ruleset – UTF-8 string, not less than 1 or more than 65536 bytes long.

A Data Quality Definition Language (DQDL) ruleset. For more information, see the AWS Glue
developer guide.

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the data quality ruleset.

• Description – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A description of the ruleset.

• Ruleset – UTF-8 string, not less than 1 or more than 65536 bytes long.

A Data Quality Definition Language (DQDL) ruleset. For more information, see the AWS Glue
developer guide.

Errors

• EntityNotFoundException

UpdateDataQualityRuleset (update_data_quality_ruleset) 2405

AWS Glue User Guide

• AlreadyExistsException

• IdempotentParameterMismatchException

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

• ResourceNumberLimitExceededException

Sensitive data detection API

The Sensitive data detection API describes the APIs used to detect sensitive data across the
columns and rows of your structured data.

Data types

• CustomEntityType structure

CustomEntityType structure

An object representing a custom pattern for detecting sensitive data across the columns and rows
of your structured data.

Fields

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

A name for the custom pattern that allows it to be retrieved or deleted later. This name must be
unique per AWS account.

• RegexString – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

A regular expression string that is used for detecting sensitive data in a custom pattern.

• ContextWords – An array of UTF-8 strings, not less than 1 or more than 20 strings.

A list of context words. If none of these context words are found within the vicinity of the regular
expression the data will not be detected as sensitive data.

Sensitive Data 2406

AWS Glue User Guide

If no context words are passed only a regular expression is checked.

Operations

• CreateCustomEntityType action (Python: create_custom_entity_type)

• DeleteCustomEntityType action (Python: delete_custom_entity_type)

• GetCustomEntityType action (Python: get_custom_entity_type)

• BatchGetCustomEntityTypes action (Python: batch_get_custom_entity_types)

• ListCustomEntityTypes action (Python: list_custom_entity_types)

CreateCustomEntityType action (Python: create_custom_entity_type)

Creates a custom pattern that is used to detect sensitive data across the columns and rows of your
structured data.

Each custom pattern you create specifies a regular expression and an optional list of context words.
If no context words are passed only a regular expression is checked.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

A name for the custom pattern that allows it to be retrieved or deleted later. This name must be
unique per AWS account.

• RegexString – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching
the Single-line string pattern.

A regular expression string that is used for detecting sensitive data in a custom pattern.

• ContextWords – An array of UTF-8 strings, not less than 1 or more than 20 strings.

A list of context words. If none of these context words are found within the vicinity of the regular
expression the data will not be detected as sensitive data.

If no context words are passed only a regular expression is checked.

• Tags – A map array of key-value pairs, not more than 50 pairs.

 — operations — 2407

AWS Glue User Guide

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

A list of tags applied to the custom entity type.

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the custom pattern you created.

Errors

• AccessDeniedException

• AlreadyExistsException

• IdempotentParameterMismatchException

• InternalServiceException

• InvalidInputException

• OperationTimeoutException

• ResourceNumberLimitExceededException

DeleteCustomEntityType action (Python: delete_custom_entity_type)

Deletes a custom pattern by specifying its name.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the custom pattern that you want to delete.

DeleteCustomEntityType (delete_custom_entity_type) 2408

AWS Glue User Guide

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the custom pattern you deleted.

Errors

• EntityNotFoundException

• AccessDeniedException

• InternalServiceException

• InvalidInputException

• OperationTimeoutException

GetCustomEntityType action (Python: get_custom_entity_type)

Retrieves the details of a custom pattern by specifying its name.

Request

• Name – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the custom pattern that you want to retrieve.

Response

• Name – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The name of the custom pattern that you retrieved.

• RegexString – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

A regular expression string that is used for detecting sensitive data in a custom pattern.

• ContextWords – An array of UTF-8 strings, not less than 1 or more than 20 strings.

GetCustomEntityType (get_custom_entity_type) 2409

AWS Glue User Guide

A list of context words if specified when you created the custom pattern. If none of these context
words are found within the vicinity of the regular expression the data will not be detected as
sensitive data.

Errors

• EntityNotFoundException

• AccessDeniedException

• InternalServiceException

• InvalidInputException

• OperationTimeoutException

BatchGetCustomEntityTypes action (Python:
batch_get_custom_entity_types)

Retrieves the details for the custom patterns specified by a list of names.

Request

• Names – Required: An array of UTF-8 strings, not less than 1 or more than 50 strings.

A list of names of the custom patterns that you want to retrieve.

Response

• CustomEntityTypes – An array of CustomEntityType objects.

A list of CustomEntityType objects representing the custom patterns that have been created.

• CustomEntityTypesNotFound – An array of UTF-8 strings, not less than 1 or more than 50
strings.

A list of the names of custom patterns that were not found.

Errors

• InvalidInputException

BatchGetCustomEntityTypes (batch_get_custom_entity_types) 2410

AWS Glue User Guide

• InternalServiceException

• OperationTimeoutException

ListCustomEntityTypes action (Python: list_custom_entity_types)

Lists all the custom patterns that have been created.

Request

• NextToken – UTF-8 string.

A paginated token to offset the results.

• MaxResults – Number (integer), not less than 1 or more than 1000.

The maximum number of results to return.

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

A list of key-value pair tags.

Response

• CustomEntityTypes – An array of CustomEntityType objects.

A list of CustomEntityType objects representing custom patterns.

• NextToken – UTF-8 string.

A pagination token, if more results are available.

Errors

• InvalidInputException

• OperationTimeoutException

• InternalServiceException

ListCustomEntityTypes (list_custom_entity_types) 2411

AWS Glue User Guide

Tagging APIs in AWS Glue

Data types

• Tag structure

Tag structure

The Tag object represents a label that you can assign to an AWS resource. Each tag consists of a
key and an optional value, both of which you define.

For more information about tags, and controlling access to resources in AWS Glue, see AWS Tags in
AWS Glue and Specifying AWS Glue Resource ARNs in the developer guide.

Fields

• key – UTF-8 string, not less than 1 or more than 128 bytes long.

The tag key. The key is required when you create a tag on an object. The key is case-sensitive,
and must not contain the prefix aws.

• value – UTF-8 string, not more than 256 bytes long.

The tag value. The value is optional when you create a tag on an object. The value is case-
sensitive, and must not contain the prefix aws.

Operations

• TagResource action (Python: tag_resource)

• UntagResource action (Python: untag_resource)

• GetTags action (Python: get_tags)

TagResource action (Python: tag_resource)

Adds tags to a resource. A tag is a label you can assign to an AWS resource. In AWS Glue, you can
tag only certain resources. For information about what resources you can tag, see AWS Tags in AWS
Glue.

Tagging APIs 2412

https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html
https://docs.aws.amazon.com/glue/latest/dg/glue-specifying-resource-arns.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html

AWS Glue User Guide

In addition to the tagging permissions to call tag related APIs, you also need the
glue:GetConnection permission to call tagging APIs on connections, and the
glue:GetDatabase permission to call tagging APIs on databases.

Request

• ResourceArn – Required: UTF-8 string, not less than 1 or more than 10240 bytes long,
matching the Custom string pattern #22.

The ARN of the AWS Glue resource to which to add the tags. For more information about AWS
Glue resource ARNs, see the AWS Glue ARN string pattern.

• TagsToAdd – Required: A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

Tags to add to this resource.

Response

• No Response parameters.

Errors

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• EntityNotFoundException

UntagResource action (Python: untag_resource)

Removes tags from a resource.

Request

• ResourceArn – Required: UTF-8 string, not less than 1 or more than 10240 bytes long,
matching the Custom string pattern #22.

UntagResource (untag_resource) 2413

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-common.html#aws-glue-api-regex-aws-glue-arn-id

AWS Glue User Guide

The Amazon Resource Name (ARN) of the resource from which to remove the tags.

• TagsToRemove – Required: An array of UTF-8 strings, not more than 50 strings.

Tags to remove from this resource.

Response

• No Response parameters.

Errors

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• EntityNotFoundException

GetTags action (Python: get_tags)

Retrieves a list of tags associated with a resource.

Request

• ResourceArn – Required: UTF-8 string, not less than 1 or more than 10240 bytes long,
matching the Custom string pattern #22.

The Amazon Resource Name (ARN) of the resource for which to retrieve tags.

Response

• Tags – A map array of key-value pairs, not more than 50 pairs.

Each key is a UTF-8 string, not less than 1 or more than 128 bytes long.

Each value is a UTF-8 string, not more than 256 bytes long.

The requested tags.

GetTags (get_tags) 2414

AWS Glue User Guide

Errors

• InvalidInputException

• InternalServiceException

• OperationTimeoutException

• EntityNotFoundException

Common data types

The Common data types describes miscellaneous common data types in AWS Glue.

Tag structure

The Tag object represents a label that you can assign to an AWS resource. Each tag consists of a
key and an optional value, both of which you define.

For more information about tags, and controlling access to resources in AWS Glue, see AWS Tags in
AWS Glue and Specifying AWS Glue Resource ARNs in the developer guide.

Fields

• key – UTF-8 string, not less than 1 or more than 128 bytes long.

The tag key. The key is required when you create a tag on an object. The key is case-sensitive,
and must not contain the prefix aws.

• value – UTF-8 string, not more than 256 bytes long.

The tag value. The value is optional when you create a tag on an object. The value is case-
sensitive, and must not contain the prefix aws.

DecimalNumber structure

Contains a numeric value in decimal format.

Fields

• UnscaledValue – Required: Blob.

The unscaled numeric value.

Common data types 2415

https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html
https://docs.aws.amazon.com/glue/latest/dg/glue-specifying-resource-arns.html

AWS Glue User Guide

• Scale – Required: Number (integer).

The scale that determines where the decimal point falls in the unscaled value.

ErrorDetail structure

Contains details about an error.

Fields

• ErrorCode – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The code associated with this error.

• ErrorMessage – Description string, not more than 2048 bytes long, matching the URI address
multi-line string pattern.

A message describing the error.

PropertyPredicate structure

Defines a property predicate.

Fields

• Key – Value string, not more than 1024 bytes long.

The key of the property.

• Value – Value string, not more than 1024 bytes long.

The value of the property.

• Comparator – UTF-8 string (valid values: EQUALS | GREATER_THAN | LESS_THAN |
GREATER_THAN_EQUALS | LESS_THAN_EQUALS).

The comparator used to compare this property to others.

ResourceUri structure

The URIs for function resources.

ErrorDetail 2416

AWS Glue User Guide

Fields

• ResourceType – UTF-8 string (valid values: JAR | FILE | ARCHIVE).

The type of the resource.

• Uri – Uniform resource identifier (uri), not less than 1 or more than 1024 bytes long, matching
the URI address multi-line string pattern.

The URI for accessing the resource.

ColumnStatistics structure

Represents the generated column-level statistics for a table or partition.

Fields

• ColumnName – Required: UTF-8 string, not less than 1 or more than 255 bytes long, matching the
Single-line string pattern.

Name of column which statistics belong to.

• ColumnType – Required: Type name, not more than 20000 bytes long, matching the Single-line
string pattern.

The data type of the column.

• AnalyzedTime – Required: Timestamp.

The timestamp of when column statistics were generated.

• StatisticsData – Required: A ColumnStatisticsData object.

A ColumnStatisticData object that contains the statistics data values.

ColumnStatisticsError structure

Encapsulates a ColumnStatistics object that failed and the reason for failure.

Fields

• ColumnStatistics – A ColumnStatistics object.
ColumnStatistics 2417

AWS Glue User Guide

The ColumnStatistics of the column.

• Error – An ErrorDetail object.

An error message with the reason for the failure of an operation.

ColumnError structure

Encapsulates a column name that failed and the reason for failure.

Fields

• ColumnName – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-
line string pattern.

The name of the column that failed.

• Error – An ErrorDetail object.

An error message with the reason for the failure of an operation.

ColumnStatisticsData structure

Contains the individual types of column statistics data. Only one data object should be set and
indicated by the Type attribute.

Fields

• Type – Required: UTF-8 string (valid values: BOOLEAN | DATE | DECIMAL | DOUBLE | LONG |
STRING | BINARY).

The type of column statistics data.

• BooleanColumnStatisticsData – A BooleanColumnStatisticsData object.

Boolean column statistics data.

• DateColumnStatisticsData – A DateColumnStatisticsData object.

Date column statistics data.

• DecimalColumnStatisticsData – A DecimalColumnStatisticsData object.

ColumnError 2418

AWS Glue User Guide

Decimal column statistics data. UnscaledValues within are Base64-encoded binary objects storing
big-endian, two's complement representations of the decimal's unscaled value.

• DoubleColumnStatisticsData – A DoubleColumnStatisticsData object.

Double column statistics data.

• LongColumnStatisticsData – A LongColumnStatisticsData object.

Long column statistics data.

• StringColumnStatisticsData – A StringColumnStatisticsData object.

String column statistics data.

• BinaryColumnStatisticsData – A BinaryColumnStatisticsData object.

Binary column statistics data.

BooleanColumnStatisticsData structure

Defines column statistics supported for Boolean data columns.

Fields

• NumberOfTrues – Required: Number (long), not more than None.

The number of true values in the column.

• NumberOfFalses – Required: Number (long), not more than None.

The number of false values in the column.

• NumberOfNulls – Required: Number (long), not more than None.

The number of null values in the column.

DateColumnStatisticsData structure

Defines column statistics supported for timestamp data columns.

Fields

• MinimumValue – Timestamp.

BooleanColumnStatisticsData 2419

AWS Glue User Guide

The lowest value in the column.

• MaximumValue – Timestamp.

The highest value in the column.

• NumberOfNulls – Required: Number (long), not more than None.

The number of null values in the column.

• NumberOfDistinctValues – Required: Number (long), not more than None.

The number of distinct values in a column.

DecimalColumnStatisticsData structure

Defines column statistics supported for fixed-point number data columns.

Fields

• MinimumValue – A DecimalNumber object.

The lowest value in the column.

• MaximumValue – A DecimalNumber object.

The highest value in the column.

• NumberOfNulls – Required: Number (long), not more than None.

The number of null values in the column.

• NumberOfDistinctValues – Required: Number (long), not more than None.

The number of distinct values in a column.

DoubleColumnStatisticsData structure

Defines column statistics supported for floating-point number data columns.

Fields

• MinimumValue – Number (double).

DecimalColumnStatisticsData 2420

AWS Glue User Guide

The lowest value in the column.

• MaximumValue – Number (double).

The highest value in the column.

• NumberOfNulls – Required: Number (long), not more than None.

The number of null values in the column.

• NumberOfDistinctValues – Required: Number (long), not more than None.

The number of distinct values in a column.

LongColumnStatisticsData structure

Defines column statistics supported for integer data columns.

Fields

• MinimumValue – Number (long).

The lowest value in the column.

• MaximumValue – Number (long).

The highest value in the column.

• NumberOfNulls – Required: Number (long), not more than None.

The number of null values in the column.

• NumberOfDistinctValues – Required: Number (long), not more than None.

The number of distinct values in a column.

StringColumnStatisticsData structure

Defines column statistics supported for character sequence data values.

Fields

• MaximumLength – Required: Number (long), not more than None.

LongColumnStatisticsData 2421

AWS Glue User Guide

The size of the longest string in the column.

• AverageLength – Required: Number (double), not more than None.

The average string length in the column.

• NumberOfNulls – Required: Number (long), not more than None.

The number of null values in the column.

• NumberOfDistinctValues – Required: Number (long), not more than None.

The number of distinct values in a column.

BinaryColumnStatisticsData structure

Defines column statistics supported for bit sequence data values.

Fields

• MaximumLength – Required: Number (long), not more than None.

The size of the longest bit sequence in the column.

• AverageLength – Required: Number (double), not more than None.

The average bit sequence length in the column.

• NumberOfNulls – Required: Number (long), not more than None.

The number of null values in the column.

String patterns

The API uses the following regular expressions to define what is valid content for various string
parameters and members:

• Single-line string pattern – "[\u0020-\uD7FF\uE000-\uFFFD\uD800\uDC00-\uDBFF\uDFFF
\t]*"

• URI address multi-line string pattern – "[\u0020-\uD7FF\uE000-\uFFFD\uD800\uDC00-
\uDBFF\uDFFF\r\n\t]*"

BinaryColumnStatisticsData 2422

AWS Glue User Guide

• A Logstash Grok string pattern – "[\u0020-\uD7FF\uE000-\uFFFD\uD800\uDC00-\uDBFF
\uDFFF\r\t]*"

• Identifier string pattern – "[A-Za-z_][A-Za-z0-9_]*"

• AWS IAM ARN string pattern – "arn:aws:iam::\d{12}:role/.*"

• Version string pattern – "^[a-zA-Z0-9-_]+$"

• Log group string pattern – "[\.\-_/#A-Za-z0-9]+"

• Log-stream string pattern – "[^:*]*"

• Custom string pattern #10 – "[^\r\n]"

• Custom string pattern #11 – "^arn:aws(-(cn|us-gov|iso(-
[bef])?))?:secretsmanager:.*$"

• Custom string pattern #12 – "^(https?)://[-a-zA-Z0-9+@#/%?=~_|!:,.;]*[-a-zA-
Z0-9+@#/%=~_|]"

• Custom string pattern #13 – "\S+"

• Custom string pattern #14 – "^(https?):\/\/[^\s/$.?#].[^\s]*$"

• Custom string pattern #15 – "^subnet-[a-z0-9]+$"

• Custom string pattern #16 – "[\p{L}\p{N}\p{P}]*"

• Custom string pattern #17 – "[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-
[a-f0-9]{12}"

• Custom string pattern #18 – "[a-zA-Z0-9-_$#.]+"

• Custom string pattern #19 – "^\w+\.\w+\.\w+$"

• Custom string pattern #20 – "^\w+\.\w+$"

• Custom string pattern #21 – "^([2-3]|3[.]9)$"

• Custom string pattern #22 – "arn:(aws|aws-us-gov|aws-cn):glue:.*"

• Custom string pattern #23 – "(^arn:aws:iam::\w{12}:root)"

• Custom string pattern #24 – "^arn:aws(-(cn|us-gov|iso(-[bef])?))?:iam::[0-9]
{12}:role/.+"

• Custom string pattern #25 – "arn:aws:kms:.*"

• Custom string pattern #26 – "arn:aws[^:]*:iam::[0-9]*:role/.+"

• Custom string pattern #27 – "[\.\-_A-Za-z0-9]+"

• Custom string pattern #28 – "^s3://([^/]+)/([^/]+/)*([^/]+)$"

• Custom string pattern #29 – ".*"

String patterns 2423

AWS Glue User Guide

• Custom string pattern #30 – "^(Sun|Mon|Tue|Wed|Thu|Fri|Sat):([01]?[0-9]|
2[0-3])$"

• Custom string pattern #31 – "[a-zA-Z0-9_.-]+"

• Custom string pattern #32 – ".*\S.*"

• Custom string pattern #33 – "[a-zA-Z0-9-=._/@]+"

• Custom string pattern #34 – "[1-9][0-9]*|[1-9][0-9]*-[1-9][0-9]*"

• Custom string pattern #35 – "[\s\S]*"

• Custom string pattern #36 – "([\u0020-\uD7FF\uE000-\uFFFD\uD800\uDC00-\uDBFF
\uDFFF]|[^\S\r\n"'= ;])*"

• Custom string pattern #37 – "[*A-Za-z0-9_-]*"

• Custom string pattern #38 – "([\u0020-\u007E\r\s\n])*"

• Custom string pattern #39 – "[A-Za-z0-9_-]*"

• Custom string pattern #40 – "([\u0020-\uD7FF\uE000-\uFFFD\uD800\uDC00-\uDBFF
\uDFFF]|[^\S\r\n"'])*"

• Custom string pattern #41 – "([\u0020-\uD7FF\uE000-\uFFFD\uD800\uDC00-\uDBFF
\uDFFF]|[^\S\r\n])*"

• Custom string pattern #42 – "([\u0020-\uD7FF\uE000-\uFFFD\uD800\uDC00-\uDBFF
\uDFFF\s])*"

• Custom string pattern #43 – "([\u0020-\uD7FF\uE000-\uFFFD\uD800\uDC00-\uDBFF
\uDFFF]|[^\r\n])*"

Exceptions

This section describes AWS Glue exceptions that you can use to find the source of problems and
fix them. For more information on HTTP error codes and strings for exceptions related to machine
learning, see the section called “AWS Glue machine learning exceptions”.

AccessDeniedException structure

Access to a resource was denied.

Fields

• Message – UTF-8 string.

Exceptions 2424

AWS Glue User Guide

A message describing the problem.

AlreadyExistsException structure

A resource to be created or added already exists.

Fields

• Message – UTF-8 string.

A message describing the problem.

ConcurrentModificationException structure

Two processes are trying to modify a resource simultaneously.

Fields

• Message – UTF-8 string.

A message describing the problem.

ConcurrentRunsExceededException structure

Too many jobs are being run concurrently.

Fields

• Message – UTF-8 string.

A message describing the problem.

CrawlerNotRunningException structure

The specified crawler is not running.

Fields

• Message – UTF-8 string.

AlreadyExistsException 2425

AWS Glue User Guide

A message describing the problem.

CrawlerRunningException structure

The operation cannot be performed because the crawler is already running.

Fields

• Message – UTF-8 string.

A message describing the problem.

CrawlerStoppingException structure

The specified crawler is stopping.

Fields

• Message – UTF-8 string.

A message describing the problem.

EntityNotFoundException structure

A specified entity does not exist

Fields

• Message – UTF-8 string.

A message describing the problem.

• FromFederationSource – Boolean.

Indicates whether or not the exception relates to a federated source.

FederationSourceException structure

A federation source failed.

CrawlerRunningException 2426

AWS Glue User Guide

Fields

• FederationSourceErrorCode – UTF-8 string (valid values: AccessDeniedException
| EntityNotFoundException | InvalidCredentialsException |
InvalidInputException | InvalidResponseException | OperationTimeoutException
| OperationNotSupportedException | InternalServiceException |
PartialFailureException | ThrottlingException).

The error code of the problem.

• Message – UTF-8 string.

The message describing the problem.

FederationSourceRetryableException structure

A federation source failed, but the operation may be retried.

Fields

• Message – UTF-8 string.

A message describing the problem.

GlueEncryptionException structure

An encryption operation failed.

Fields

• Message – UTF-8 string.

The message describing the problem.

IdempotentParameterMismatchException structure

The same unique identifier was associated with two different records.

Fields

• Message – UTF-8 string.

FederationSourceRetryableException 2427

AWS Glue User Guide

A message describing the problem.

IllegalWorkflowStateException structure

The workflow is in an invalid state to perform a requested operation.

Fields

• Message – UTF-8 string.

A message describing the problem.

InternalServiceException structure

An internal service error occurred.

Fields

• Message – UTF-8 string.

A message describing the problem.

InvalidExecutionEngineException structure

An unknown or invalid execution engine was specified.

Fields

• message – UTF-8 string.

A message describing the problem.

InvalidInputException structure

The input provided was not valid.

Fields

• Message – UTF-8 string.

IllegalWorkflowStateException 2428

AWS Glue User Guide

A message describing the problem.

• FromFederationSource – Boolean.

Indicates whether or not the exception relates to a federated source.

InvalidStateException structure

An error that indicates your data is in an invalid state.

Fields

• Message – UTF-8 string.

A message describing the problem.

InvalidTaskStatusTransitionException structure

Proper transition from one task to the next failed.

Fields

• message – UTF-8 string.

A message describing the problem.

JobDefinitionErrorException structure

A job definition is not valid.

Fields

• message – UTF-8 string.

A message describing the problem.

JobRunInTerminalStateException structure

The terminal state of a job run signals a failure.

InvalidStateException 2429

AWS Glue User Guide

Fields

• message – UTF-8 string.

A message describing the problem.

JobRunInvalidStateTransitionException structure

A job run encountered an invalid transition from source state to target state.

Fields

• jobRunId – UTF-8 string, not less than 1 or more than 255 bytes long, matching the Single-line
string pattern.

The ID of the job run in question.

• message – UTF-8 string.

A message describing the problem.

• sourceState – UTF-8 string (valid values: STARTING | RUNNING | STOPPING | STOPPED |
SUCCEEDED | FAILED | TIMEOUT | ERROR | WAITING | EXPIRED).

The source state.

• targetState – UTF-8 string (valid values: STARTING | RUNNING | STOPPING | STOPPED |
SUCCEEDED | FAILED | TIMEOUT | ERROR | WAITING | EXPIRED).

The target state.

JobRunNotInTerminalStateException structure

A job run is not in a terminal state.

Fields

• message – UTF-8 string.

A message describing the problem.

JobRunInvalidStateTransitionException 2430

AWS Glue User Guide

LateRunnerException structure

A job runner is late.

Fields

• Message – UTF-8 string.

A message describing the problem.

NoScheduleException structure

There is no applicable schedule.

Fields

• Message – UTF-8 string.

A message describing the problem.

OperationTimeoutException structure

The operation timed out.

Fields

• Message – UTF-8 string.

A message describing the problem.

ResourceNotReadyException structure

A resource was not ready for a transaction.

Fields

• Message – UTF-8 string.

A message describing the problem.

LateRunnerException 2431

AWS Glue User Guide

ResourceNumberLimitExceededException structure

A resource numerical limit was exceeded.

Fields

• Message – UTF-8 string.

A message describing the problem.

SchedulerNotRunningException structure

The specified scheduler is not running.

Fields

• Message – UTF-8 string.

A message describing the problem.

SchedulerRunningException structure

The specified scheduler is already running.

Fields

• Message – UTF-8 string.

A message describing the problem.

SchedulerTransitioningException structure

The specified scheduler is transitioning.

Fields

• Message – UTF-8 string.

A message describing the problem.

ResourceNumberLimitExceededException 2432

AWS Glue User Guide

UnrecognizedRunnerException structure

The job runner was not recognized.

Fields

• Message – UTF-8 string.

A message describing the problem.

ValidationException structure

A value could not be validated.

Fields

• Message – UTF-8 string.

A message describing the problem.

VersionMismatchException structure

There was a version conflict.

Fields

• Message – UTF-8 string.

A message describing the problem.

UnrecognizedRunnerException 2433

AWS Glue User Guide

AWS Glue API code examples using AWS SDKs

The following code examples show how to use AWS Glue with an AWS software development kit
(SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios and
cross-service examples.

Scenarios are code examples that show you how to accomplish a specific task by calling multiple
functions within the same service.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Get started

Hello AWS Glue

The following code examples show how to get started using AWS Glue.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

namespace GlueActions;

public class HelloGlue
{
 private static ILogger logger = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for AWS Glue.

2434

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS Glue User Guide

 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonGlue>()
 .AddTransient<GlueWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<HelloGlue>();
 var glueClient = host.Services.GetRequiredService<IAmazonGlue>();

 var request = new ListJobsRequest();

 var jobNames = new List<string>();

 do
 {
 var response = await glueClient.ListJobsAsync(request);
 jobNames.AddRange(response.JobNames);
 request.NextToken = response.NextToken;
 }
 while (request.NextToken is not null);

 Console.Clear();
 Console.WriteLine("Hello, Glue. Let's list your existing Glue Jobs:");
 if (jobNames.Count == 0)
 {
 Console.WriteLine("You don't have any AWS Glue jobs.");
 }
 else
 {
 jobNames.ForEach(Console.WriteLine);
 }
 }
}

2435

AWS Glue User Guide

• For API details, see ListJobs in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Code for the CMakeLists.txt CMake file.

Set the minimum required version of CMake for this project.
cmake_minimum_required(VERSION 3.13)

Set the AWS service components used by this project.
set(SERVICE_COMPONENTS glue)

Set this project's name.
project("hello_glue")

Set the C++ standard to use to build this target.
At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

Use the MSVC variable to determine if this is a Windows build.
set(WINDOWS_BUILD ${MSVC})

if (WINDOWS_BUILD) # Set the location where CMake can find the installed
 libraries for the AWS SDK.
 string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all")
 list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if (WINDOWS_BUILD AND AWSSDK_INSTALL_AS_SHARED_LIBS)

2436

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/ListJobs
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/glue/hello_glue#code-examples

AWS Glue User Guide

 # Copy relevant AWS SDK for C++ libraries into the current binary directory
 for running and debugging.

 # set(BIN_SUB_DIR "/Debug") # if you are building from the command line you
 may need to uncomment this
 # and set the proper subdirectory to the
 executables' location.

 AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS ""
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif ()

add_executable(${PROJECT_NAME}
 hello_glue.cpp)

target_link_libraries(${PROJECT_NAME}
 ${AWSSDK_LINK_LIBRARIES})

Code for the hello_glue.cpp source file.

#include <aws/core/Aws.h>
#include <aws/glue/GlueClient.h>
#include <aws/glue/model/ListJobsRequest.h>
#include <iostream>

/*
 * A "Hello Glue" starter application which initializes an AWS Glue client and
 lists the
 * AWS Glue job definitions.
 *
 * main function
 *
 * Usage: 'hello_glue'
 *
 */

int main(int argc, char **argv) {
 Aws::SDKOptions options;
 // Optionally change the log level for debugging.
// options.loggingOptions.logLevel = Utils::Logging::LogLevel::Debug;
 Aws::InitAPI(options); // Should only be called once.
 int result = 0;

2437

AWS Glue User Guide

 {
 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Glue::GlueClient glueClient(clientConfig);

 std::vector<Aws::String> jobs;

 Aws::String nextToken; // Used for pagination.
 do {
 Aws::Glue::Model::ListJobsRequest listJobsRequest;
 if (!nextToken.empty()) {
 listJobsRequest.SetNextToken(nextToken);
 }

 Aws::Glue::Model::ListJobsOutcome listRunsOutcome =
 glueClient.ListJobs(
 listJobsRequest);

 if (listRunsOutcome.IsSuccess()) {
 const std::vector<Aws::String> &jobNames =
 listRunsOutcome.GetResult().GetJobNames();
 jobs.insert(jobs.end(), jobNames.begin(), jobNames.end());

 nextToken = listRunsOutcome.GetResult().GetNextToken();
 } else {
 std::cerr << "Error listing jobs. "
 << listRunsOutcome.GetError().GetMessage()
 << std::endl;
 result = 1;
 break;
 }
 } while (!nextToken.empty());

 std::cout << "Your account has " << jobs.size() << " jobs."
 << std::endl;
 for (size_t i = 0; i < jobs.size(); ++i) {
 std::cout << " " << i + 1 << ". " << jobs[i] << std::endl;
 }
 }
 Aws::ShutdownAPI(options); // Should only be called once.
 return result;
}

2438

AWS Glue User Guide

• For API details, see ListJobs in AWS SDK for C++ API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

package com.example.glue;

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.glue.GlueClient;
import software.amazon.awssdk.services.glue.model.ListJobsRequest;
import software.amazon.awssdk.services.glue.model.ListJobsResponse;
import java.util.List;

public class HelloGlue {
 public static void main(String[] args) {
 GlueClient glueClient = GlueClient.builder()
 .region(Region.US_EAST_1)
 .build();

 listJobs(glueClient);
 }

 public static void listJobs(GlueClient glueClient) {
 ListJobsRequest request = ListJobsRequest.builder()
 .maxResults(10)
 .build();
 ListJobsResponse response = glueClient.listJobs(request);
 List<String> jobList = response.jobNames();
 jobList.forEach(job -> {
 System.out.println("Job Name: " + job);
 });
 }
}

2439

https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/ListJobs
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/glue#readme

AWS Glue User Guide

• For API details, see ListJobs in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { ListJobsCommand, GlueClient } from "@aws-sdk/client-glue";

const client = new GlueClient({});

export const main = async () => {
 const command = new ListJobsCommand({});

 const { JobNames } = await client.send(command);
 const formattedJobNames = JobNames.join("\n");
 console.log("Job names: ");
 console.log(formattedJobNames);
 return JobNames;
};

• For API details, see ListJobs in AWS SDK for JavaScript API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

2440

https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/ListJobs
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/ListJobsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/glue#code-examples

AWS Glue User Guide

 let mut list_jobs = glue.list_jobs().into_paginator().send();
 while let Some(list_jobs_output) = list_jobs.next().await {
 match list_jobs_output {
 Ok(list_jobs) => {
 let names = list_jobs.job_names();
 info!(?names, "Found these jobs")
 }
 Err(err) => return Err(GlueMvpError::from_glue_sdk(err)),
 }
 }

• For API details, see ListJobs in AWS SDK for Rust API reference.

Code examples

• Actions for AWS Glue using AWS SDKs

• Use CreateCrawler with an AWS SDK or CLI

• Use CreateJob with an AWS SDK or CLI

• Use DeleteCrawler with an AWS SDK or CLI

• Use DeleteDatabase with an AWS SDK or CLI

• Use DeleteJob with an AWS SDK or CLI

• Use DeleteTable with an AWS SDK or CLI

• Use GetCrawler with an AWS SDK or CLI

• Use GetDatabase with an AWS SDK or CLI

• Use GetDatabases with an AWS SDK or CLI

• Use GetJob with an AWS SDK or CLI

• Use GetJobRun with an AWS SDK or CLI

• Use GetJobRuns with an AWS SDK or CLI

• Use GetTables with an AWS SDK or CLI

• Use ListJobs with an AWS SDK or CLI

• Use StartCrawler with an AWS SDK or CLI

• Use StartJobRun with an AWS SDK or CLI

• Scenarios for AWS Glue using AWS SDKs

• Get started running AWS Glue crawlers and jobs using an AWS SDK
2441

https://docs.rs/releases/search?query=aws-sdk

AWS Glue User Guide

Actions for AWS Glue using AWS SDKs

The following code examples demonstrate how to perform individual AWS Glue actions with AWS
SDKs. These excerpts call the AWS Glue API and are code excerpts from larger programs that must
be run in context. Each example includes a link to GitHub, where you can find instructions for
setting up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
AWS Glue API Reference.

Examples

• Use CreateCrawler with an AWS SDK or CLI

• Use CreateJob with an AWS SDK or CLI

• Use DeleteCrawler with an AWS SDK or CLI

• Use DeleteDatabase with an AWS SDK or CLI

• Use DeleteJob with an AWS SDK or CLI

• Use DeleteTable with an AWS SDK or CLI

• Use GetCrawler with an AWS SDK or CLI

• Use GetDatabase with an AWS SDK or CLI

• Use GetDatabases with an AWS SDK or CLI

• Use GetJob with an AWS SDK or CLI

• Use GetJobRun with an AWS SDK or CLI

• Use GetJobRuns with an AWS SDK or CLI

• Use GetTables with an AWS SDK or CLI

• Use ListJobs with an AWS SDK or CLI

• Use StartCrawler with an AWS SDK or CLI

• Use StartJobRun with an AWS SDK or CLI

Use CreateCrawler with an AWS SDK or CLI

The following code examples show how to use CreateCrawler.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

Actions 2442

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api.html

AWS Glue User Guide

• Get started with crawlers and jobs

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name for the crawler.</param>
 /// <param name="crawlerDescription">A description of the crawler.</param>
 /// <param name="role">The AWS Identity and Access Management (IAM) role to
 /// be assumed by the crawler.</param>
 /// <param name="schedule">The schedule on which the crawler will be
 executed.</param>
 /// <param name="s3Path">The path to the Amazon Simple Storage Service
 (Amazon S3)
 /// bucket where the Python script has been stored.</param>
 /// <param name="dbName">The name to use for the database that will be
 /// created by the crawler.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> CreateCrawlerAsync(
 string crawlerName,
 string crawlerDescription,
 string role,
 string schedule,
 string s3Path,
 string dbName)
 {
 var s3Target = new S3Target
 {
 Path = s3Path,
 };

 var targetList = new List<S3Target>
 {

CreateCrawler 2443

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS Glue User Guide

 s3Target,
 };

 var targets = new CrawlerTargets
 {
 S3Targets = targetList,
 };

 var crawlerRequest = new CreateCrawlerRequest
 {
 DatabaseName = dbName,
 Name = crawlerName,
 Description = crawlerDescription,
 Targets = targets,
 Role = role,
 Schedule = schedule,
 };

 var response = await _amazonGlue.CreateCrawlerAsync(crawlerRequest);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see CreateCrawler in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Glue::GlueClient client(clientConfig);

CreateCrawler 2444

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/CreateCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/glue#code-examples

AWS Glue User Guide

 Aws::Glue::Model::S3Target s3Target;
 s3Target.SetPath("s3://crawler-public-us-east-1/flight/2016/csv");
 Aws::Glue::Model::CrawlerTargets crawlerTargets;
 crawlerTargets.AddS3Targets(s3Target);

 Aws::Glue::Model::CreateCrawlerRequest request;
 request.SetTargets(crawlerTargets);
 request.SetName(CRAWLER_NAME);
 request.SetDatabaseName(CRAWLER_DATABASE_NAME);
 request.SetTablePrefix(CRAWLER_DATABASE_PREFIX);
 request.SetRole(roleArn);

 Aws::Glue::Model::CreateCrawlerOutcome outcome =
 client.CreateCrawler(request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully created the crawler." << std::endl;
 }
 else {
 std::cerr << "Error creating a crawler. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 deleteAssets("", CRAWLER_DATABASE_NAME, "", bucketName,
 clientConfig);
 return false;
 }

• For API details, see CreateCrawler in AWS SDK for C++ API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;

CreateCrawler 2445

https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/CreateCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/glue#readme

AWS Glue User Guide

import software.amazon.awssdk.services.glue.GlueClient;
import software.amazon.awssdk.services.glue.model.CreateCrawlerRequest;
import software.amazon.awssdk.services.glue.model.CrawlerTargets;
import software.amazon.awssdk.services.glue.model.GlueException;
import software.amazon.awssdk.services.glue.model.S3Target;
import java.util.ArrayList;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CreateCrawler {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <IAM> <s3Path> <cron> <dbName> <crawlerName>

 Where:
 IAM - The ARN of the IAM role that has AWS Glue and S3
 permissions.\s
 s3Path - The Amazon Simple Storage Service (Amazon S3) target
 that contains data (for example, CSV data).
 cron - A cron expression used to specify the schedule (i.e.,
 cron(15 12 * * ? *).
 dbName - The database name.\s
 crawlerName - The name of the crawler.\s
 """;

 if (args.length != 5) {
 System.out.println(usage);
 System.exit(1);
 }

 String iam = args[0];
 String s3Path = args[1];
 String cron = args[2];
 String dbName = args[3];

CreateCrawler 2446

AWS Glue User Guide

 String crawlerName = args[4];
 Region region = Region.US_EAST_1;
 GlueClient glueClient = GlueClient.builder()
 .region(region)
 .build();

 createGlueCrawler(glueClient, iam, s3Path, cron, dbName, crawlerName);
 glueClient.close();
 }

 public static void createGlueCrawler(GlueClient glueClient,
 String iam,
 String s3Path,
 String cron,
 String dbName,
 String crawlerName) {

 try {
 S3Target s3Target = S3Target.builder()
 .path(s3Path)
 .build();

 // Add the S3Target to a list.
 List<S3Target> targetList = new ArrayList<>();
 targetList.add(s3Target);

 CrawlerTargets targets = CrawlerTargets.builder()
 .s3Targets(targetList)
 .build();

 CreateCrawlerRequest crawlerRequest = CreateCrawlerRequest.builder()
 .databaseName(dbName)
 .name(crawlerName)
 .description("Created by the AWS Glue Java API")
 .targets(targets)
 .role(iam)
 .schedule(cron)
 .build();

 glueClient.createCrawler(crawlerRequest);
 System.out.println(crawlerName + " was successfully created");

 } catch (GlueException e) {
 System.err.println(e.awsErrorDetails().errorMessage());

CreateCrawler 2447

AWS Glue User Guide

 System.exit(1);
 }
 }
}

• For API details, see CreateCrawler in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const createCrawler = (name, role, dbName, tablePrefix, s3TargetPath) => {
 const client = new GlueClient({});

 const command = new CreateCrawlerCommand({
 Name: name,
 Role: role,
 DatabaseName: dbName,
 TablePrefix: tablePrefix,
 Targets: {
 S3Targets: [{ Path: s3TargetPath }],
 },
 });

 return client.send(command);
};

• For API details, see CreateCrawler in AWS SDK for JavaScript API Reference.

CreateCrawler 2448

https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/CreateCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/CreateCrawlerCommand

AWS Glue User Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun createGlueCrawler(
 iam: String?,
 s3Path: String?,
 cron: String?,
 dbName: String?,
 crawlerName: String,
) {
 val s3Target =
 S3Target {
 path = s3Path
 }

 // Add the S3Target to a list.
 val targetList = mutableListOf<S3Target>()
 targetList.add(s3Target)

 val targetOb =
 CrawlerTargets {
 s3Targets = targetList
 }

 val request =
 CreateCrawlerRequest {
 databaseName = dbName
 name = crawlerName
 description = "Created by the AWS Glue Kotlin API"
 targets = targetOb
 role = iam
 schedule = cron
 }

 GlueClient { region = "us-west-2" }.use { glueClient ->

CreateCrawler 2449

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/glue#code-examples

AWS Glue User Guide

 glueClient.createCrawler(request)
 println("$crawlerName was successfully created")
 }
}

• For API details, see CreateCrawler in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 $crawlerName = "example-crawler-test-" . $uniqid;

 $role = $iamService->getRole("AWSGlueServiceRole-DocExample");

 $path = 's3://crawler-public-us-east-1/flight/2016/csv';
 $glueService->createCrawler($crawlerName, $role['Role']['Arn'],
 $databaseName, $path);

 public function createCrawler($crawlerName, $role, $databaseName, $path):
 Result
 {
 return $this->customWaiter(function () use ($crawlerName, $role,
 $databaseName, $path) {
 return $this->glueClient->createCrawler([
 'Name' => $crawlerName,
 'Role' => $role,
 'DatabaseName' => $databaseName,
 'Targets' => [
 'S3Targets' =>
 [[
 'Path' => $path,
]]
],
]);

CreateCrawler 2450

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/glue#code-examples

AWS Glue User Guide

 });
 }

• For API details, see CreateCrawler in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class GlueWrapper:
 """Encapsulates AWS Glue actions."""

 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 Glue client.
 """
 self.glue_client = glue_client

 def create_crawler(self, name, role_arn, db_name, db_prefix, s3_target):
 """
 Creates a crawler that can crawl the specified target and populate a
 database in your AWS Glue Data Catalog with metadata that describes the
 data
 in the target.

 :param name: The name of the crawler.
 :param role_arn: The Amazon Resource Name (ARN) of an AWS Identity and
 Access
 Management (IAM) role that grants permission to let AWS
 Glue
 access the resources it needs.
 :param db_name: The name to give the database that is created by the
 crawler.

CreateCrawler 2451

https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/CreateCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples

AWS Glue User Guide

 :param db_prefix: The prefix to give any database tables that are created
 by
 the crawler.
 :param s3_target: The URL to an S3 bucket that contains data that is
 the target of the crawler.
 """
 try:
 self.glue_client.create_crawler(
 Name=name,
 Role=role_arn,
 DatabaseName=db_name,
 TablePrefix=db_prefix,
 Targets={"S3Targets": [{"Path": s3_target}]},
)
 except ClientError as err:
 logger.error(
 "Couldn't create crawler. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see CreateCrawler in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing
 a simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods
 for interacting with Glue crawlers, databases, tables, jobs, and S3 resources.

CreateCrawler 2452

https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/CreateCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

AWS Glue User Guide

The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Creates a new crawler with the specified configuration.
 #
 # @param name [String] The name of the crawler.
 # @param role_arn [String] The ARN of the IAM role to be used by the crawler.
 # @param db_name [String] The name of the database where the crawler stores its
 metadata.
 # @param db_prefix [String] The prefix to be added to the names of tables that
 the crawler creates.
 # @param s3_target [String] The S3 path that the crawler will crawl.
 # @return [void]
 def create_crawler(name, role_arn, db_name, db_prefix, s3_target)
 @glue_client.create_crawler(
 name: name,
 role: role_arn,
 database_name: db_name,
 targets: {
 s3_targets: [
 {
 path: s3_target
 }
]
 }
)
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not create crawler: \n#{e.message}")
 raise
 end

• For API details, see CreateCrawler in AWS SDK for Ruby API Reference.

CreateCrawler 2453

https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/CreateCrawler

AWS Glue User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 let create_crawler = glue
 .create_crawler()
 .name(self.crawler())
 .database_name(self.database())
 .role(self.iam_role.expose_secret())
 .targets(
 CrawlerTargets::builder()
 .s3_targets(S3Target::builder().path(CRAWLER_TARGET).build())
 .build(),
)
 .send()
 .await;

 match create_crawler {
 Err(err) => {
 let glue_err: aws_sdk_glue::Error = err.into();
 match glue_err {
 aws_sdk_glue::Error::AlreadyExistsException(_) => {
 info!("Using existing crawler");
 Ok(())
 }
 _ => Err(GlueMvpError::GlueSdk(glue_err)),
 }
 }
 Ok(_) => Ok(()),
 }?;

• For API details, see CreateCrawler in AWS SDK for Rust API reference.

CreateCrawler 2454

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/glue#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Glue User Guide

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateJob with an AWS SDK or CLI

The following code examples show how to use CreateJob.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with crawlers and jobs

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create an AWS Glue job.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <param name="roleName">The name of the IAM role to be assumed by
 /// the job.</param>
 /// <param name="description">A description of the job.</param>
 /// <param name="scriptUrl">The URL to the script.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> CreateJobAsync(string dbName, string tableName,
 string bucketUrl, string jobName, string roleName, string description, string
 scriptUrl)
 {
 var command = new JobCommand
 {
 PythonVersion = "3",
 Name = "glueetl",
 ScriptLocation = scriptUrl,

CreateJob 2455

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS Glue User Guide

 };

 var arguments = new Dictionary<string, string>
 {
 { "--input_database", dbName },
 { "--input_table", tableName },
 { "--output_bucket_url", bucketUrl }
 };

 var request = new CreateJobRequest
 {
 Command = command,
 DefaultArguments = arguments,
 Description = description,
 GlueVersion = "3.0",
 Name = jobName,
 NumberOfWorkers = 10,
 Role = roleName,
 WorkerType = "G.1X"
 };

 var response = await _amazonGlue.CreateJobAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see CreateJob in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).

CreateJob 2456

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/CreateJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/glue#code-examples

AWS Glue User Guide

 // clientConfig.region = "us-east-1";

 Aws::Glue::GlueClient client(clientConfig);

 Aws::Glue::Model::CreateJobRequest request;
 request.SetName(JOB_NAME);
 request.SetRole(roleArn);
 request.SetGlueVersion(GLUE_VERSION);

 Aws::Glue::Model::JobCommand command;
 command.SetName(JOB_COMMAND_NAME);
 command.SetPythonVersion(JOB_PYTHON_VERSION);
 command.SetScriptLocation(
 Aws::String("s3://") + bucketName + "/" + PYTHON_SCRIPT);
 request.SetCommand(command);

 Aws::Glue::Model::CreateJobOutcome outcome = client.CreateJob(request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully created the job." << std::endl;
 }
 else {
 std::cerr << "Error creating the job. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, "", bucketName,
 clientConfig);
 return false;
 }

• For API details, see CreateJob in AWS SDK for C++ API Reference.

CLI

AWS CLI

To create a job to transform data

The following create-job example creates a streaming job that runs a script stored in S3.

aws glue create-job \
 --name my-testing-job \

CreateJob 2457

https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/CreateJob

AWS Glue User Guide

 --role AWSGlueServiceRoleDefault \
 --command '{ \
 "Name": "gluestreaming", \
 "ScriptLocation": "s3://DOC-EXAMPLE-BUCKET/folder/" \
 }' \
 --region us-east-1 \
 --output json \
 --default-arguments '{ \
 "--job-language":"scala", \
 "--class":"GlueApp" \
 }' \
 --profile my-profile \
 --endpoint https://glue.us-east-1.amazonaws.com

Contents of test_script.scala:

import com.amazonaws.services.glue.ChoiceOption
import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.MappingSpec
import com.amazonaws.services.glue.ResolveSpec
import com.amazonaws.services.glue.errors.CallSite
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import org.apache.spark.SparkContext
import scala.collection.JavaConverters._

object GlueApp {
 def main(sysArgs: Array[String]) {
 val spark: SparkContext = new SparkContext()
 val glueContext: GlueContext = new GlueContext(spark)
 // @params: [JOB_NAME]
 val args = GlueArgParser.getResolvedOptions(sysArgs,
 Seq("JOB_NAME").toArray)
 Job.init(args("JOB_NAME"), glueContext, args.asJava)
 // @type: DataSource
 // @args: [database = "tempdb", table_name = "s3-source",
 transformation_ctx = "datasource0"]
 // @return: datasource0
 // @inputs: []
 val datasource0 = glueContext.getCatalogSource(database = "tempdb",
 tableName = "s3-source", redshiftTmpDir = "", transformationContext =
 "datasource0").getDynamicFrame()

CreateJob 2458

AWS Glue User Guide

 // @type: ApplyMapping
 // @args: [mapping = [("sensorid", "int", "sensorid", "int"),
 ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string",
 "status", "string")], transformation_ctx = "applymapping1"]
 // @return: applymapping1
 // @inputs: [frame = datasource0]
 val applymapping1 = datasource0.applyMapping(mappings = Seq(("sensorid",
 "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature",
 "int"), ("status", "string", "status", "string")), caseSensitive = false,
 transformationContext = "applymapping1")
 // @type: SelectFields
 // @args: [paths = ["sensorid", "currenttemperature", "status"],
 transformation_ctx = "selectfields2"]
 // @return: selectfields2
 // @inputs: [frame = applymapping1]
 val selectfields2 = applymapping1.selectFields(paths = Seq("sensorid",
 "currenttemperature", "status"), transformationContext = "selectfields2")
 // @type: ResolveChoice
 // @args: [choice = "MATCH_CATALOG", database = "tempdb", table_name =
 "my-s3-sink", transformation_ctx = "resolvechoice3"]
 // @return: resolvechoice3
 // @inputs: [frame = selectfields2]
 val resolvechoice3 = selectfields2.resolveChoice(choiceOption =
 Some(ChoiceOption("MATCH_CATALOG")), database = Some("tempdb"), tableName =
 Some("my-s3-sink"), transformationContext = "resolvechoice3")
 // @type: DataSink
 // @args: [database = "tempdb", table_name = "my-s3-sink",
 transformation_ctx = "datasink4"]
 // @return: datasink4
 // @inputs: [frame = resolvechoice3]
 val datasink4 = glueContext.getCatalogSink(database = "tempdb",
 tableName = "my-s3-sink", redshiftTmpDir = "", transformationContext =
 "datasink4").writeDynamicFrame(resolvechoice3)
 Job.commit()
 }
}

Output:

{
 "Name": "my-testing-job"
}

CreateJob 2459

AWS Glue User Guide

For more information, see Authoring Jobs in AWS Glue in the AWS Glue Developer Guide.

• For API details, see CreateJob in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const createJob = (name, role, scriptBucketName, scriptKey) => {
 const client = new GlueClient({});

 const command = new CreateJobCommand({
 Name: name,
 Role: role,
 Command: {
 Name: "glueetl",
 PythonVersion: "3",
 ScriptLocation: `s3://${scriptBucketName}/${scriptKey}`,
 },
 GlueVersion: "3.0",
 });

 return client.send(command);
};

• For API details, see CreateJob in AWS SDK for JavaScript API Reference.

CreateJob 2460

https://docs.aws.amazon.com/glue/latest/dg/author-job.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glue/create-job.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/CreateJobCommand

AWS Glue User Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 $role = $iamService->getRole("AWSGlueServiceRole-DocExample");

 $jobName = 'test-job-' . $uniqid;

 $scriptLocation = "s3://$bucketName/run_job.py";
 $job = $glueService->createJob($jobName, $role['Role']['Arn'],
 $scriptLocation);

 public function createJob($jobName, $role, $scriptLocation, $pythonVersion =
 '3', $glueVersion = '3.0'): Result
 {
 return $this->glueClient->createJob([
 'Name' => $jobName,
 'Role' => $role,
 'Command' => [
 'Name' => 'glueetl',
 'ScriptLocation' => $scriptLocation,
 'PythonVersion' => $pythonVersion,
],
 'GlueVersion' => $glueVersion,
]);
 }

• For API details, see CreateJob in AWS SDK for PHP API Reference.

CreateJob 2461

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/glue#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/CreateJob

AWS Glue User Guide

PowerShell

Tools for PowerShell

Example 1: This example creates a new job in AWS Glue. The command name value is
always glueetl. AWS Glue supports running job scripts written in Python or Scala. In
this example, the job script (MyTestGlueJob.py) is written in Python. Python parameters
are specified in the $DefArgs variable, and then passed to the PowerShell command in
the DefaultArguments parameter, which accepts a hashtable. The parameters in the
$JobParams variable come from the CreateJob API, documented in the Jobs (https://
docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html) topic of the AWS
Glue API reference.

$Command = New-Object Amazon.Glue.Model.JobCommand
$Command.Name = 'glueetl'
$Command.ScriptLocation = 's3://aws-glue-scripts-000000000000-us-west-2/admin/
MyTestGlueJob.py'
$Command

$Source = "source_test_table"
$Target = "target_test_table"
$Connections = $Source, $Target

$DefArgs = @{
 '--TempDir' = 's3://aws-glue-temporary-000000000000-us-west-2/admin'
 '--job-bookmark-option' = 'job-bookmark-disable'
 '--job-language' = 'python'
 }
$DefArgs

$ExecutionProp = New-Object Amazon.Glue.Model.ExecutionProperty
$ExecutionProp.MaxConcurrentRuns = 1
$ExecutionProp

$JobParams = @{
 "AllocatedCapacity" = "5"
 "Command" = $Command
 "Connections_Connection" = $Connections
 "DefaultArguments" = $DefArgs
 "Description" = "This is a test"
 "ExecutionProperty" = $ExecutionProp
 "MaxRetries" = "1"

CreateJob 2462

AWS Glue User Guide

 "Name" = "MyOregonTestGlueJob"
 "Role" = "Amazon-GlueServiceRoleForSSM"
 "Timeout" = "20"
 }

New-GlueJob @JobParams

• For API details, see CreateJob in AWS Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class GlueWrapper:
 """Encapsulates AWS Glue actions."""

 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 Glue client.
 """
 self.glue_client = glue_client

 def create_job(self, name, description, role_arn, script_location):
 """
 Creates a job definition for an extract, transform, and load (ETL) job
 that can
 be run by AWS Glue.

 :param name: The name of the job definition.
 :param description: The description of the job definition.
 :param role_arn: The ARN of an IAM role that grants AWS Glue the
 permissions
 it requires to run the job.
 :param script_location: The Amazon S3 URL of a Python ETL script that is
 run as

CreateJob 2463

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples

AWS Glue User Guide

 part of the job. The script defines how the data
 is
 transformed.
 """
 try:
 self.glue_client.create_job(
 Name=name,
 Description=description,
 Role=role_arn,
 Command={
 "Name": "glueetl",
 "ScriptLocation": script_location,
 "PythonVersion": "3",
 },
 GlueVersion="3.0",
)
 except ClientError as err:
 logger.error(
 "Couldn't create job %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see CreateJob in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing
 a simplified interface for common operations.

CreateJob 2464

https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/CreateJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

AWS Glue User Guide

It encapsulates the functionality of the AWS SDK for Glue and provides methods
 for interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Creates a new job with the specified configuration.
 #
 # @param name [String] The name of the job.
 # @param description [String] The description of the job.
 # @param role_arn [String] The ARN of the IAM role to be used by the job.
 # @param script_location [String] The location of the ETL script for the job.
 # @return [void]
 def create_job(name, description, role_arn, script_location)
 @glue_client.create_job(
 name: name,
 description: description,
 role: role_arn,
 command: {
 name: "glueetl",
 script_location: script_location,
 python_version: "3"
 },
 glue_version: "3.0"
)
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not create job #{name}: \n#{e.message}")
 raise
 end

• For API details, see CreateJob in AWS SDK for Ruby API Reference.

CreateJob 2465

https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/CreateJob

AWS Glue User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 let create_job = glue
 .create_job()
 .name(self.job())
 .role(self.iam_role.expose_secret())
 .command(
 JobCommand::builder()
 .name("glueetl")
 .python_version("3")
 .script_location(format!("s3://{}/job.py", self.bucket()))
 .build(),
)
 .glue_version("3.0")
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?;

 let job_name = create_job.name().ok_or_else(|| {
 GlueMvpError::Unknown("Did not get job name after creating
 job".into())
 })?;

• For API details, see CreateJob in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteCrawler with an AWS SDK or CLI

The following code examples show how to use DeleteCrawler.

DeleteCrawler 2466

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/glue#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Glue User Guide

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with crawlers and jobs

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name of the crawler.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteCrawlerAsync(string crawlerName)
 {
 var response = await _amazonGlue.DeleteCrawlerAsync(new
 DeleteCrawlerRequest { Name = crawlerName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteCrawler in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

DeleteCrawler 2467

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/glue#code-examples

AWS Glue User Guide

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Glue::GlueClient client(clientConfig);

 Aws::Glue::Model::DeleteCrawlerRequest request;
 request.SetName(crawler);

 Aws::Glue::Model::DeleteCrawlerOutcome outcome =
 client.DeleteCrawler(request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted the crawler." << std::endl;
 }
 else {
 std::cerr << "Error deleting the crawler. "
 << outcome.GetError().GetMessage() << std::endl;
 result = false;
 }

• For API details, see DeleteCrawler in AWS SDK for C++ API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const deleteCrawler = (crawlerName) => {
 const client = new GlueClient({});

 const command = new DeleteCrawlerCommand({
 Name: crawlerName,
 });

DeleteCrawler 2468

https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/DeleteCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples

AWS Glue User Guide

 return client.send(command);
};

• For API details, see DeleteCrawler in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 echo "Delete the crawler.\n";
 $glueClient->deleteCrawler([
 'Name' => $crawlerName,
]);

 public function deleteCrawler($crawlerName)
 {
 return $this->glueClient->deleteCrawler([
 'Name' => $crawlerName,
]);
 }

• For API details, see DeleteCrawler in AWS SDK for PHP API Reference.

DeleteCrawler 2469

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteCrawlerCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/glue#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/DeleteCrawler

AWS Glue User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class GlueWrapper:
 """Encapsulates AWS Glue actions."""

 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 Glue client.
 """
 self.glue_client = glue_client

 def delete_crawler(self, name):
 """
 Deletes a crawler.

 :param name: The name of the crawler to delete.
 """
 try:
 self.glue_client.delete_crawler(Name=name)
 except ClientError as err:
 logger.error(
 "Couldn't delete crawler %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeleteCrawler in AWS SDK for Python (Boto3) API Reference.

DeleteCrawler 2470

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/DeleteCrawler

AWS Glue User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing
 a simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods
 for interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Deletes a crawler with the specified name.
 #
 # @param name [String] The name of the crawler to delete.
 # @return [void]
 def delete_crawler(name)
 @glue_client.delete_crawler(name: name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete crawler #{name}: \n#{e.message}")
 raise
 end

• For API details, see DeleteCrawler in AWS SDK for Ruby API Reference.

DeleteCrawler 2471

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/DeleteCrawler

AWS Glue User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 glue.delete_crawler()
 .name(self.crawler())
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?;

• For API details, see DeleteCrawler in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteDatabase with an AWS SDK or CLI

The following code examples show how to use DeleteDatabase.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with crawlers and jobs

DeleteDatabase 2472

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/glue#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Glue User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete the AWS Glue database.
 /// </summary>
 /// <param name="dbName">The name of the database.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteDatabaseAsync(string dbName)
 {
 var response = await _amazonGlue.DeleteDatabaseAsync(new
 DeleteDatabaseRequest { Name = dbName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteDatabase in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

DeleteDatabase 2473

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteDatabase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/glue#code-examples

AWS Glue User Guide

 Aws::Glue::GlueClient client(clientConfig);

 Aws::Glue::Model::DeleteDatabaseRequest request;
 request.SetName(database);

 Aws::Glue::Model::DeleteDatabaseOutcome outcome = client.DeleteDatabase(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted the database." << std::endl;
 }
 else {
 std::cerr << "Error deleting database. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }

• For API details, see DeleteDatabase in AWS SDK for C++ API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const deleteDatabase = (databaseName) => {
 const client = new GlueClient({});

 const command = new DeleteDatabaseCommand({
 Name: databaseName,
 });

 return client.send(command);
};

DeleteDatabase 2474

https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/DeleteDatabase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples

AWS Glue User Guide

• For API details, see DeleteDatabase in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 echo "Delete the databases.\n";
 $glueClient->deleteDatabase([
 'Name' => $databaseName,
]);

 public function deleteDatabase($databaseName)
 {
 return $this->glueClient->deleteDatabase([
 'Name' => $databaseName,
]);
 }

• For API details, see DeleteDatabase in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

DeleteDatabase 2475

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteDatabaseCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/glue#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/DeleteDatabase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples

AWS Glue User Guide

class GlueWrapper:
 """Encapsulates AWS Glue actions."""

 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 Glue client.
 """
 self.glue_client = glue_client

 def delete_database(self, name):
 """
 Deletes a metadata database from your Data Catalog.

 :param name: The name of the database to delete.
 """
 try:
 self.glue_client.delete_database(Name=name)
 except ClientError as err:
 logger.error(
 "Couldn't delete database %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeleteDatabase in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

DeleteDatabase 2476

https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/DeleteDatabase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples

AWS Glue User Guide

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing
 a simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods
 for interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Removes a specified database from a Data Catalog.
 #
 # @param database_name [String] The name of the database to delete.
 # @return [void]
 def delete_database(database_name)
 @glue_client.delete_database(name: database_name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete database: \n#{e.message}")
 end

• For API details, see DeleteDatabase in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 glue.delete_database()
 .name(self.database())
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?;

DeleteDatabase 2477

https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/DeleteDatabase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/glue#code-examples

AWS Glue User Guide

• For API details, see DeleteDatabase in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteJob with an AWS SDK or CLI

The following code examples show how to use DeleteJob.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with crawlers and jobs

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete an AWS Glue job.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteJobAsync(string jobName)
 {
 var response = await _amazonGlue.DeleteJobAsync(new DeleteJobRequest
 { JobName = jobName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

DeleteJob 2478

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS Glue User Guide

• For API details, see DeleteJob in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Glue::GlueClient client(clientConfig);

 Aws::Glue::Model::DeleteJobRequest request;
 request.SetJobName(job);

 Aws::Glue::Model::DeleteJobOutcome outcome = client.DeleteJob(request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted the job." << std::endl;
 }
 else {
 std::cerr << "Error deleting the job. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }

• For API details, see DeleteJob in AWS SDK for C++ API Reference.

DeleteJob 2479

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/glue#code-examples
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/DeleteJob

AWS Glue User Guide

CLI

AWS CLI

To delete a job

The following delete-job example deletes a job that is no longer needed.

aws glue delete-job \
 --job-name my-testing-job

Output:

{
 "JobName": "my-testing-job"
}

For more information, see Working with Jobs on the AWS Glue Console in the AWS Glue
Developer Guide.

• For API details, see DeleteJob in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const deleteJob = (jobName) => {
 const client = new GlueClient({});

 const command = new DeleteJobCommand({
 JobName: jobName,
 });

 return client.send(command);

DeleteJob 2480

https://docs.aws.amazon.com/glue/latest/dg/console-jobs.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glue/delete-job.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples

AWS Glue User Guide

};

• For API details, see DeleteJob in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 echo "Delete the job.\n";
 $glueClient->deleteJob([
 'JobName' => $job['Name'],
]);

 public function deleteJob($jobName)
 {
 return $this->glueClient->deleteJob([
 'JobName' => $jobName,
]);
 }

• For API details, see DeleteJob in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

DeleteJob 2481

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteJobCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/glue#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/DeleteJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples

AWS Glue User Guide

class GlueWrapper:
 """Encapsulates AWS Glue actions."""

 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 Glue client.
 """
 self.glue_client = glue_client

 def delete_job(self, job_name):
 """
 Deletes a job definition. This also deletes data about all runs that are
 associated with this job definition.

 :param job_name: The name of the job definition to delete.
 """
 try:
 self.glue_client.delete_job(JobName=job_name)
 except ClientError as err:
 logger.error(
 "Couldn't delete job %s. Here's why: %s: %s",
 job_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeleteJob in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

DeleteJob 2482

https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/DeleteJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

AWS Glue User Guide

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing
 a simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods
 for interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Deletes a job with the specified name.
 #
 # @param job_name [String] The name of the job to delete.
 # @return [void]
 def delete_job(job_name)
 @glue_client.delete_job(job_name: job_name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete job: \n#{e.message}")
 end

• For API details, see DeleteJob in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 glue.delete_job()
 .job_name(self.job())
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?;

DeleteJob 2483

https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/DeleteJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/glue#code-examples

AWS Glue User Guide

• For API details, see DeleteJob in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteTable with an AWS SDK or CLI

The following code examples show how to use DeleteTable.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with crawlers and jobs

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete a table from an AWS Glue database.
 /// </summary>
 /// <param name="tableName">The table to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteTableAsync(string dbName, string tableName)
 {
 var response = await _amazonGlue.DeleteTableAsync(new DeleteTableRequest
 { Name = tableName, DatabaseName = dbName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

DeleteTable 2484

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS Glue User Guide

• For API details, see DeleteTable in AWS SDK for .NET API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const deleteTable = (databaseName, tableName) => {
 const client = new GlueClient({});

 const command = new DeleteTableCommand({
 DatabaseName: databaseName,
 Name: tableName,
 });

 return client.send(command);
};

• For API details, see DeleteTable in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 echo "Delete the tables.\n";

DeleteTable 2485

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteTableCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/glue#code-examples

AWS Glue User Guide

 foreach ($tables['TableList'] as $table) {
 $glueService->deleteTable($table['Name'], $databaseName);
 }

 public function deleteTable($tableName, $databaseName)
 {
 return $this->glueClient->deleteTable([
 'DatabaseName' => $databaseName,
 'Name' => $tableName,
]);
 }

• For API details, see DeleteTable in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class GlueWrapper:
 """Encapsulates AWS Glue actions."""

 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 Glue client.
 """
 self.glue_client = glue_client

 def delete_table(self, db_name, table_name):
 """
 Deletes a table from a metadata database.

 :param db_name: The name of the database that contains the table.
 :param table_name: The name of the table to delete.
 """

DeleteTable 2486

https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/DeleteTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples

AWS Glue User Guide

 try:
 self.glue_client.delete_table(DatabaseName=db_name, Name=table_name)
 except ClientError as err:
 logger.error(
 "Couldn't delete table %s. Here's why: %s: %s",
 table_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeleteTable in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing
 a simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods
 for interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Deletes a table with the specified name.
 #
 # @param database_name [String] The name of the catalog database in which the
 table resides.

DeleteTable 2487

https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/DeleteTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

AWS Glue User Guide

 # @param table_name [String] The name of the table to be deleted.
 # @return [void]
 def delete_table(database_name, table_name)
 @glue_client.delete_table(database_name: database_name, name: table_name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete job: \n#{e.message}")
 end

• For API details, see DeleteTable in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 for t in &self.tables {
 glue.delete_table()
 .name(t.name())
 .database_name(self.database())
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?;
 }

• For API details, see DeleteTable in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetCrawler with an AWS SDK or CLI

The following code examples show how to use GetCrawler.

GetCrawler 2488

https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/DeleteTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/glue#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Glue User Guide

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with crawlers and jobs

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get information about an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name of the crawler.</param>
 /// <returns>A Crawler object describing the crawler.</returns>
 public async Task<Crawler?> GetCrawlerAsync(string crawlerName)
 {
 var crawlerRequest = new GetCrawlerRequest
 {
 Name = crawlerName,
 };

 var response = await _amazonGlue.GetCrawlerAsync(crawlerRequest);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 var databaseName = response.Crawler.DatabaseName;
 Console.WriteLine($"{crawlerName} has the database {databaseName}");
 return response.Crawler;
 }

 Console.WriteLine($"No information regarding {crawlerName} could be
 found.");
 return null;
 }

GetCrawler 2489

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS Glue User Guide

• For API details, see GetCrawler in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Glue::GlueClient client(clientConfig);

 Aws::Glue::Model::GetCrawlerRequest request;
 request.SetName(CRAWLER_NAME);

 Aws::Glue::Model::GetCrawlerOutcome outcome = client.GetCrawler(request);

 if (outcome.IsSuccess()) {
 Aws::Glue::Model::CrawlerState crawlerState =
 outcome.GetResult().GetCrawler().GetState();
 std::cout << "Retrieved crawler with state " <<

 Aws::Glue::Model::CrawlerStateMapper::GetNameForCrawlerState(
 crawlerState)
 << "." << std::endl;
 }
 else {
 std::cerr << "Error retrieving a crawler. "
 << outcome.GetError().GetMessage() << std::endl;
 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, "", bucketName,
 clientConfig);
 return false;
 }

GetCrawler 2490

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/glue#code-examples

AWS Glue User Guide

• For API details, see GetCrawler in AWS SDK for C++ API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.glue.GlueClient;
import software.amazon.awssdk.services.glue.model.GetCrawlerRequest;
import software.amazon.awssdk.services.glue.model.GetCrawlerResponse;
import software.amazon.awssdk.services.glue.model.GlueException;
import java.time.Instant;
import java.time.ZoneId;
import java.time.format.DateTimeFormatter;
import java.time.format.FormatStyle;
import java.util.Locale;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class GetCrawler {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <crawlerName>

 Where:
 crawlerName - The name of the crawler.\s
 """;

GetCrawler 2491

https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/GetCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/glue#readme

AWS Glue User Guide

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String crawlerName = args[0];
 Region region = Region.US_EAST_1;
 GlueClient glueClient = GlueClient.builder()
 .region(region)
 .build();

 getSpecificCrawler(glueClient, crawlerName);
 glueClient.close();
 }

 public static void getSpecificCrawler(GlueClient glueClient, String
 crawlerName) {
 try {
 GetCrawlerRequest crawlerRequest = GetCrawlerRequest.builder()
 .name(crawlerName)
 .build();

 GetCrawlerResponse response = glueClient.getCrawler(crawlerRequest);
 Instant createDate = response.crawler().creationTime();

 // Convert the Instant to readable date
 DateTimeFormatter formatter =
 DateTimeFormatter.ofLocalizedDateTime(FormatStyle.SHORT)
 .withLocale(Locale.US)
 .withZone(ZoneId.systemDefault());

 formatter.format(createDate);
 System.out.println("The create date of the Crawler is " +
 createDate);

 } catch (GlueException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

GetCrawler 2492

AWS Glue User Guide

• For API details, see GetCrawler in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const getCrawler = (name) => {
 const client = new GlueClient({});

 const command = new GetCrawlerCommand({
 Name: name,
 });

 return client.send(command);
};

• For API details, see GetCrawler in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun getSpecificCrawler(crawlerName: String?) {
 val request =
 GetCrawlerRequest {
 name = crawlerName

GetCrawler 2493

https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/GetCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/GetCrawlerCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/glue#code-examples

AWS Glue User Guide

 }
 GlueClient { region = "us-east-1" }.use { glueClient ->
 val response = glueClient.getCrawler(request)
 val role = response.crawler?.role
 println("The role associated with this crawler is $role")
 }
}

• For API details, see GetCrawler in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 echo "Waiting for crawler";
 do {
 $crawler = $glueService->getCrawler($crawlerName);
 echo ".";
 sleep(10);
 } while ($crawler['Crawler']['State'] != "READY");
 echo "\n";

 public function getCrawler($crawlerName)
 {
 return $this->customWaiter(function () use ($crawlerName) {
 return $this->glueClient->getCrawler([
 'Name' => $crawlerName,
]);
 });
 }

• For API details, see GetCrawler in AWS SDK for PHP API Reference.

GetCrawler 2494

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/glue#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/GetCrawler

AWS Glue User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class GlueWrapper:
 """Encapsulates AWS Glue actions."""

 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 Glue client.
 """
 self.glue_client = glue_client

 def get_crawler(self, name):
 """
 Gets information about a crawler.

 :param name: The name of the crawler to look up.
 :return: Data about the crawler.
 """
 crawler = None
 try:
 response = self.glue_client.get_crawler(Name=name)
 crawler = response["Crawler"]
 except ClientError as err:
 if err.response["Error"]["Code"] == "EntityNotFoundException":
 logger.info("Crawler %s doesn't exist.", name)
 else:
 logger.error(
 "Couldn't get crawler %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

GetCrawler 2495

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples

AWS Glue User Guide

 return crawler

• For API details, see GetCrawler in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing
 a simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods
 for interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Retrieves information about a specific crawler.
 #
 # @param name [String] The name of the crawler to retrieve information about.
 # @return [Aws::Glue::Types::Crawler, nil] The crawler object if found, or nil
 if not found.
 def get_crawler(name)
 @glue_client.get_crawler(name: name)
 rescue Aws::Glue::Errors::EntityNotFoundException
 @logger.info("Crawler #{name} doesn't exist.")
 false
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get crawler #{name}: \n#{e.message}")
 raise

GetCrawler 2496

https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/GetCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

AWS Glue User Guide

 end

• For API details, see GetCrawler in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 let tmp_crawler = glue
 .get_crawler()
 .name(self.crawler())
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?;

• For API details, see GetCrawler in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetDatabase with an AWS SDK or CLI

The following code examples show how to use GetDatabase.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with crawlers and jobs

GetDatabase 2497

https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/GetCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/glue#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Glue User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get information about an AWS Glue database.
 /// </summary>
 /// <param name="dbName">The name of the database.</param>
 /// <returns>A Database object containing information about the database.</
returns>
 public async Task<Database> GetDatabaseAsync(string dbName)
 {
 var databasesRequest = new GetDatabaseRequest
 {
 Name = dbName,
 };

 var response = await _amazonGlue.GetDatabaseAsync(databasesRequest);
 return response.Database;
 }

• For API details, see GetDatabase in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

GetDatabase 2498

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetDatabase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/glue#code-examples

AWS Glue User Guide

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Glue::GlueClient client(clientConfig);

 Aws::Glue::Model::GetDatabaseRequest request;
 request.SetName(CRAWLER_DATABASE_NAME);

 Aws::Glue::Model::GetDatabaseOutcome outcome =
 client.GetDatabase(request);

 if (outcome.IsSuccess()) {
 const Aws::Glue::Model::Database &database =
 outcome.GetResult().GetDatabase();

 std::cout << "Successfully retrieve the database\n" <<
 database.Jsonize().View().WriteReadable() << "'." <<
 std::endl;
 }
 else {
 std::cerr << "Error getting the database. "
 << outcome.GetError().GetMessage() << std::endl;
 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, "", bucketName,
 clientConfig);
 return false;
 }

• For API details, see GetDatabase in AWS SDK for C++ API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

GetDatabase 2499

https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/GetDatabase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/glue#readme

AWS Glue User Guide

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.glue.GlueClient;
import software.amazon.awssdk.services.glue.model.GetDatabaseRequest;
import software.amazon.awssdk.services.glue.model.GetDatabaseResponse;
import software.amazon.awssdk.services.glue.model.GlueException;
import java.time.Instant;
import java.time.ZoneId;
import java.time.format.DateTimeFormatter;
import java.time.format.FormatStyle;
import java.util.Locale;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class GetDatabase {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <databaseName>

 Where:
 databaseName - The name of the database.\s
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String databaseName = args[0];
 Region region = Region.US_EAST_1;
 GlueClient glueClient = GlueClient.builder()
 .region(region)
 .build();

 getSpecificDatabase(glueClient, databaseName);

GetDatabase 2500

AWS Glue User Guide

 glueClient.close();
 }

 public static void getSpecificDatabase(GlueClient glueClient, String
 databaseName) {
 try {
 GetDatabaseRequest databasesRequest = GetDatabaseRequest.builder()
 .name(databaseName)
 .build();

 GetDatabaseResponse response =
 glueClient.getDatabase(databasesRequest);
 Instant createDate = response.database().createTime();

 // Convert the Instant to readable date.
 DateTimeFormatter formatter =
 DateTimeFormatter.ofLocalizedDateTime(FormatStyle.SHORT)
 .withLocale(Locale.US)
 .withZone(ZoneId.systemDefault());

 formatter.format(createDate);
 System.out.println("The create date of the database is " +
 createDate);

 } catch (GlueException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see GetDatabase in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

GetDatabase 2501

https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/GetDatabase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples

AWS Glue User Guide

const getDatabase = (name) => {
 const client = new GlueClient({});

 const command = new GetDatabaseCommand({
 Name: name,
 });

 return client.send(command);
};

• For API details, see GetDatabase in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun getSpecificDatabase(databaseName: String?) {
 val request =
 GetDatabaseRequest {
 name = databaseName
 }

 GlueClient { region = "us-east-1" }.use { glueClient ->
 val response = glueClient.getDatabase(request)
 val dbDesc = response.database?.description
 println("The database description is $dbDesc")
 }
}

• For API details, see GetDatabase in AWS SDK for Kotlin API reference.

GetDatabase 2502

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/GetDatabaseCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/glue#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

AWS Glue User Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 $databaseName = "doc-example-database-$uniqid";

 $database = $glueService->getDatabase($databaseName);
 echo "Found a database named " . $database['Database']['Name'] . "\n";

 public function getDatabase(string $databaseName): Result
 {
 return $this->customWaiter(function () use ($databaseName) {
 return $this->glueClient->getDatabase([
 'Name' => $databaseName,
]);
 });
 }

• For API details, see GetDatabase in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class GlueWrapper:
 """Encapsulates AWS Glue actions."""

GetDatabase 2503

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/glue#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/GetDatabase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples

AWS Glue User Guide

 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 Glue client.
 """
 self.glue_client = glue_client

 def get_database(self, name):
 """
 Gets information about a database in your Data Catalog.

 :param name: The name of the database to look up.
 :return: Information about the database.
 """
 try:
 response = self.glue_client.get_database(Name=name)
 except ClientError as err:
 logger.error(
 "Couldn't get database %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["Database"]

• For API details, see GetDatabase in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

GetDatabase 2504

https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/GetDatabase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

AWS Glue User Guide

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing
 a simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods
 for interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Retrieves information about a specific database.
 #
 # @param name [String] The name of the database to retrieve information about.
 # @return [Aws::Glue::Types::Database, nil] The database object if found, or
 nil if not found.
 def get_database(name)
 response = @glue_client.get_database(name: name)
 response.database
rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get database #{name}: \n#{e.message}")
 raise
 end

• For API details, see GetDatabase in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 let database = glue
 .get_database()
 .name(self.database())
 .send()

GetDatabase 2505

https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/GetDatabase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/glue#code-examples

AWS Glue User Guide

 .await
 .map_err(GlueMvpError::from_glue_sdk)?
 .to_owned();
 let database = database
 .database()
 .ok_or_else(|| GlueMvpError::Unknown("Could not find
 database".into()))?;

• For API details, see GetDatabase in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetDatabases with an AWS SDK or CLI

The following code examples show how to use GetDatabases.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with crawlers and jobs

CLI

AWS CLI

To list the definitions of some or all of the databases in the AWS Glue Data Catalog

The following get-databases example returns information about the databases in the
Data Catalog.

aws glue get-databases

Output:

{
 "DatabaseList": [
 {
 "Name": "default",

GetDatabases 2506

https://docs.rs/releases/search?query=aws-sdk

AWS Glue User Guide

 "Description": "Default Hive database",
 "LocationUri": "file:/spark-warehouse",
 "CreateTime": 1602084052.0,
 "CreateTableDefaultPermissions": [
 {
 "Principal": {
 "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS"
 },
 "Permissions": [
 "ALL"
]
 }
],
 "CatalogId": "111122223333"
 },
 {
 "Name": "flights-db",
 "CreateTime": 1587072847.0,
 "CreateTableDefaultPermissions": [
 {
 "Principal": {
 "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS"
 },
 "Permissions": [
 "ALL"
]
 }
],
 "CatalogId": "111122223333"
 },
 {
 "Name": "legislators",
 "CreateTime": 1601415625.0,
 "CreateTableDefaultPermissions": [
 {
 "Principal": {
 "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS"
 },
 "Permissions": [
 "ALL"
]
 }
],
 "CatalogId": "111122223333"

GetDatabases 2507

AWS Glue User Guide

 },
 {
 "Name": "tempdb",
 "CreateTime": 1601498566.0,
 "CreateTableDefaultPermissions": [
 {
 "Principal": {
 "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS"
 },
 "Permissions": [
 "ALL"
]
 }
],
 "CatalogId": "111122223333"
 }
]
}

For more information, see Defining a Database in Your Data Catalog in the AWS Glue
Developer Guide.

• For API details, see GetDatabases in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const getDatabases = () => {
 const client = new GlueClient({});

 const command = new GetDatabasesCommand({});

 return client.send(command);
};

GetDatabases 2508

https://docs.aws.amazon.com/glue/latest/dg/define-database.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glue/get-databases.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples

AWS Glue User Guide

• For API details, see GetDatabases in AWS SDK for JavaScript API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetJob with an AWS SDK or CLI

The following code examples show how to use GetJob.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with crawlers and jobs

CLI

AWS CLI

To retrieve information about a job

The following get-job example retrieves information about a job.

aws glue get-job \
 --job-name my-testing-job

Output:

{
 "Job": {
 "Name": "my-testing-job",
 "Role": "Glue_DefaultRole",
 "CreatedOn": 1602805698.167,
 "LastModifiedOn": 1602805698.167,
 "ExecutionProperty": {
 "MaxConcurrentRuns": 1
 },
 "Command": {

GetJob 2509

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/GetDatabasesCommand

AWS Glue User Guide

 "Name": "gluestreaming",
 "ScriptLocation": "s3://janetst-bucket-01/Scripts/test_script.scala",
 "PythonVersion": "2"
 },
 "DefaultArguments": {
 "--class": "GlueApp",
 "--job-language": "scala"
 },
 "MaxRetries": 0,
 "AllocatedCapacity": 10,
 "MaxCapacity": 10.0,
 "GlueVersion": "1.0"
 }
}

For more information, see Jobs in the AWS Glue Developer Guide.

• For API details, see GetJob in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const getJob = (jobName) => {
 const client = new GlueClient({});

 const command = new GetJobCommand({
 JobName: jobName,
 });

 return client.send(command);
};

• For API details, see GetJob in AWS SDK for JavaScript API Reference.

GetJob 2510

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glue/get-job.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/GetJobCommand

AWS Glue User Guide

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetJobRun with an AWS SDK or CLI

The following code examples show how to use GetJobRun.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with crawlers and jobs

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get information about a specific AWS Glue job run.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <param name="jobRunId">The Id of the job run.</param>
 /// <returns>A JobRun object with information about the job run.</returns>
 public async Task<JobRun> GetJobRunAsync(string jobName, string jobRunId)
 {
 var response = await _amazonGlue.GetJobRunAsync(new GetJobRunRequest
 { JobName = jobName, RunId = jobRunId });
 return response.JobRun;
 }

• For API details, see GetJobRun in AWS SDK for .NET API Reference.

GetJobRun 2511

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetJobRun

AWS Glue User Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Glue::GlueClient client(clientConfig);

 Aws::Glue::Model::GetJobRunRequest jobRunRequest;
 jobRunRequest.SetJobName(jobName);
 jobRunRequest.SetRunId(jobRunID);

 Aws::Glue::Model::GetJobRunOutcome jobRunOutcome = client.GetJobRun(
 jobRunRequest);

 if (jobRunOutcome.IsSuccess()) {
 std::cout << "Displaying the job run JSON description." << std::endl;
 std::cout
 <<
 jobRunOutcome.GetResult().GetJobRun().Jsonize().View().WriteReadable()
 << std::endl;
 }
 else {
 std::cerr << "Error get a job run. "
 << jobRunOutcome.GetError().GetMessage()
 << std::endl;
 }

• For API details, see GetJobRun in AWS SDK for C++ API Reference.

GetJobRun 2512

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/glue#code-examples
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/GetJobRun

AWS Glue User Guide

CLI

AWS CLI

To get information about a job run

The following get-job-run example retrieves information about a job run.

aws glue get-job-run \
 --job-name "Combine legistators data" \
 --run-id jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e

Output:

{
 "JobRun": {
 "Id":
 "jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e",
 "Attempt": 0,
 "JobName": "Combine legistators data",
 "StartedOn": 1602873931.255,
 "LastModifiedOn": 1602874075.985,
 "CompletedOn": 1602874075.985,
 "JobRunState": "SUCCEEDED",
 "Arguments": {
 "--enable-continuous-cloudwatch-log": "true",
 "--enable-metrics": "",
 "--enable-spark-ui": "true",
 "--job-bookmark-option": "job-bookmark-enable",
 "--spark-event-logs-path": "s3://aws-glue-assets-111122223333-us-
east-1/sparkHistoryLogs/"
 },
 "PredecessorRuns": [],
 "AllocatedCapacity": 10,
 "ExecutionTime": 117,
 "Timeout": 2880,
 "MaxCapacity": 10.0,
 "WorkerType": "G.1X",
 "NumberOfWorkers": 10,
 "LogGroupName": "/aws-glue/jobs",
 "GlueVersion": "2.0"
 }
}

GetJobRun 2513

AWS Glue User Guide

For more information, see Job Runs in the AWS Glue Developer Guide.

• For API details, see GetJobRun in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const getJobRun = (jobName, jobRunId) => {
 const client = new GlueClient({});
 const command = new GetJobRunCommand({
 JobName: jobName,
 RunId: jobRunId,
 });

 return client.send(command);
};

• For API details, see GetJobRun in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 $jobName = 'test-job-' . $uniqid;

 $outputBucketUrl = "s3://$bucketName";

GetJobRun 2514

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-runs.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glue/get-job-run.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/GetJobRunCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/glue#code-examples

AWS Glue User Guide

 $runId = $glueService->startJobRun($jobName, $databaseName, $tables,
 $outputBucketUrl)['JobRunId'];

 echo "waiting for job";
 do {
 $jobRun = $glueService->getJobRun($jobName, $runId);
 echo ".";
 sleep(10);
 } while (!array_intersect([$jobRun['JobRun']['JobRunState']],
 ['SUCCEEDED', 'STOPPED', 'FAILED', 'TIMEOUT']));
 echo "\n";

 public function getJobRun($jobName, $runId, $predecessorsIncluded = false):
 Result
 {
 return $this->glueClient->getJobRun([
 'JobName' => $jobName,
 'RunId' => $runId,
 'PredecessorsIncluded' => $predecessorsIncluded,
]);
 }

• For API details, see GetJobRun in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class GlueWrapper:
 """Encapsulates AWS Glue actions."""

 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 Glue client.
 """

GetJobRun 2515

https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/GetJobRun
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples

AWS Glue User Guide

 self.glue_client = glue_client

 def get_job_run(self, name, run_id):
 """
 Gets information about a single job run.

 :param name: The name of the job definition for the run.
 :param run_id: The ID of the run.
 :return: Information about the run.
 """
 try:
 response = self.glue_client.get_job_run(JobName=name, RunId=run_id)
 except ClientError as err:
 logger.error(
 "Couldn't get job run %s/%s. Here's why: %s: %s",
 name,
 run_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["JobRun"]

• For API details, see GetJobRun in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing
 a simplified interface for common operations.

GetJobRun 2516

https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/GetJobRun
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

AWS Glue User Guide

It encapsulates the functionality of the AWS SDK for Glue and provides methods
 for interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Retrieves data for a specific job run.
 #
 # @param job_name [String] The name of the job run to retrieve data for.
 # @return [Glue::Types::GetJobRunResponse]
 def get_job_run(job_name, run_id)
 @glue_client.get_job_run(job_name: job_name, run_id: run_id)
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get job runs: \n#{e.message}")
 end

• For API details, see GetJobRun in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 let get_job_run = || async {
 Ok::<JobRun, GlueMvpError>(
 glue.get_job_run()
 .job_name(self.job())
 .run_id(job_run_id.to_string())
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?
 .job_run()

GetJobRun 2517

https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/GetJobRun
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/glue#code-examples

AWS Glue User Guide

 .ok_or_else(|| GlueMvpError::Unknown("Failed to get
 job_run".into()))?
 .to_owned(),
)
 };

 let mut job_run = get_job_run().await?;
 let mut state =
 job_run.job_run_state().unwrap_or(&unknown_state).to_owned();

 while matches!(
 state,
 JobRunState::Starting | JobRunState::Stopping | JobRunState::Running
) {
 info!(?state, "Waiting for job to finish");
 tokio::time::sleep(self.wait_delay).await;

 job_run = get_job_run().await?;
 state = job_run.job_run_state().unwrap_or(&unknown_state).to_owned();
 }

• For API details, see GetJobRun in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetJobRuns with an AWS SDK or CLI

The following code examples show how to use GetJobRuns.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with crawlers and jobs

GetJobRuns 2518

https://docs.rs/releases/search?query=aws-sdk

AWS Glue User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get information about all AWS Glue runs of a specific job.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <returns>A list of JobRun objects.</returns>
 public async Task<List<JobRun>> GetJobRunsAsync(string jobName)
 {
 var jobRuns = new List<JobRun>();

 var request = new GetJobRunsRequest
 {
 JobName = jobName,
 };

 // No need to loop to get all the log groups--the SDK does it for us
 behind the scenes
 var paginatorForJobRuns =
 _amazonGlue.Paginators.GetJobRuns(request);

 await foreach (var response in paginatorForJobRuns.Responses)
 {
 response.JobRuns.ForEach(jobRun =>
 {
 jobRuns.Add(jobRun);
 });
 }

 return jobRuns;
 }

GetJobRuns 2519

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS Glue User Guide

• For API details, see GetJobRuns in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Glue::GlueClient client(clientConfig);

 Aws::Glue::Model::GetJobRunsRequest getJobRunsRequest;
 getJobRunsRequest.SetJobName(jobName);

 Aws::String nextToken; // Used for pagination.
 std::vector<Aws::Glue::Model::JobRun> allJobRuns;
 do {
 if (!nextToken.empty()) {
 getJobRunsRequest.SetNextToken(nextToken);
 }
 Aws::Glue::Model::GetJobRunsOutcome jobRunsOutcome =
 client.GetJobRuns(
 getJobRunsRequest);

 if (jobRunsOutcome.IsSuccess()) {
 const std::vector<Aws::Glue::Model::JobRun> &jobRuns =
 jobRunsOutcome.GetResult().GetJobRuns();
 allJobRuns.insert(allJobRuns.end(), jobRuns.begin(),
 jobRuns.end());

 nextToken = jobRunsOutcome.GetResult().GetNextToken();
 }
 else {
 std::cerr << "Error getting job runs. "

GetJobRuns 2520

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetJobRuns
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/glue#code-examples

AWS Glue User Guide

 << jobRunsOutcome.GetError().GetMessage()
 << std::endl;
 break;
 }
 } while (!nextToken.empty());

• For API details, see GetJobRuns in AWS SDK for C++ API Reference.

CLI

AWS CLI

To get information about all job runs for a job

The following get-job-runs example retrieves information about job runs for a job.

aws glue get-job-runs \
 --job-name "my-testing-job"

Output:

{
 "JobRuns": [
 {
 "Id":
 "jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e",
 "Attempt": 0,
 "JobName": "my-testing-job",
 "StartedOn": 1602873931.255,
 "LastModifiedOn": 1602874075.985,
 "CompletedOn": 1602874075.985,
 "JobRunState": "SUCCEEDED",
 "Arguments": {
 "--enable-continuous-cloudwatch-log": "true",
 "--enable-metrics": "",
 "--enable-spark-ui": "true",
 "--job-bookmark-option": "job-bookmark-enable",
 "--spark-event-logs-path": "s3://aws-glue-assets-111122223333-us-
east-1/sparkHistoryLogs/"
 },
 "PredecessorRuns": [],
 "AllocatedCapacity": 10,

GetJobRuns 2521

https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/GetJobRuns

AWS Glue User Guide

 "ExecutionTime": 117,
 "Timeout": 2880,
 "MaxCapacity": 10.0,
 "WorkerType": "G.1X",
 "NumberOfWorkers": 10,
 "LogGroupName": "/aws-glue/jobs",
 "GlueVersion": "2.0"
 },
 {
 "Id":
 "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_2",
 "Attempt": 2,
 "PreviousRunId":
 "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_1",
 "JobName": "my-testing-job",
 "StartedOn": 1602811168.496,
 "LastModifiedOn": 1602811282.39,
 "CompletedOn": 1602811282.39,
 "JobRunState": "FAILED",
 "ErrorMessage": "An error occurred while calling
 o122.pyWriteDynamicFrame.
 Access Denied (Service: Amazon S3; Status Code: 403; Error Code:
 AccessDenied;
 Request ID: 021AAB703DB20A2D;
 S3 Extended Request ID: teZk24Y09TkXzBvMPG502L5VJBhe9DJuWA9/
TXtuGOqfByajkfL/Tlqt5JBGdEGpigAqzdMDM/U=)",
 "PredecessorRuns": [],
 "AllocatedCapacity": 10,
 "ExecutionTime": 110,
 "Timeout": 2880,
 "MaxCapacity": 10.0,
 "WorkerType": "G.1X",
 "NumberOfWorkers": 10,
 "LogGroupName": "/aws-glue/jobs",
 "GlueVersion": "2.0"
 },
 {
 "Id":
 "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_1",
 "Attempt": 1,
 "PreviousRunId":
 "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f",
 "JobName": "my-testing-job",
 "StartedOn": 1602811020.518,

GetJobRuns 2522

AWS Glue User Guide

 "LastModifiedOn": 1602811138.364,
 "CompletedOn": 1602811138.364,
 "JobRunState": "FAILED",
 "ErrorMessage": "An error occurred while calling
 o122.pyWriteDynamicFrame.
 Access Denied (Service: Amazon S3; Status Code: 403; Error Code:
 AccessDenied;
 Request ID: 2671D37856AE7ABB;
 S3 Extended Request ID: RLJCJw20brV
+PpC6GpORahyF2fp9flB5SSb2bTGPnUSPVizLXRl1PN3QZldb+v1o9qRVktNYbW8=)",
 "PredecessorRuns": [],
 "AllocatedCapacity": 10,
 "ExecutionTime": 113,
 "Timeout": 2880,
 "MaxCapacity": 10.0,
 "WorkerType": "G.1X",
 "NumberOfWorkers": 10,
 "LogGroupName": "/aws-glue/jobs",
 "GlueVersion": "2.0"
 }
]
}

For more information, see Job Runs in the AWS Glue Developer Guide.

• For API details, see GetJobRuns in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const getJobRuns = (jobName) => {
 const client = new GlueClient({});
 const command = new GetJobRunsCommand({
 JobName: jobName,
 });

GetJobRuns 2523

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-runs.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glue/get-job-runs.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples

AWS Glue User Guide

 return client.send(command);
};

• For API details, see GetJobRuns in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 $jobName = 'test-job-' . $uniqid;

 $jobRuns = $glueService->getJobRuns($jobName);

 public function getJobRuns($jobName, $maxResults = 0, $nextToken = ''):
 Result
 {
 $arguments = ['JobName' => $jobName];
 if ($maxResults) {
 $arguments['MaxResults'] = $maxResults;
 }
 if ($nextToken) {
 $arguments['NextToken'] = $nextToken;
 }
 return $this->glueClient->getJobRuns($arguments);
 }

• For API details, see GetJobRuns in AWS SDK for PHP API Reference.

GetJobRuns 2524

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/GetJobRunsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/glue#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/GetJobRuns

AWS Glue User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class GlueWrapper:
 """Encapsulates AWS Glue actions."""

 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 Glue client.
 """
 self.glue_client = glue_client

 def get_job_runs(self, job_name):
 """
 Gets information about runs that have been performed for a specific job
 definition.

 :param job_name: The name of the job definition to look up.
 :return: The list of job runs.
 """
 try:
 response = self.glue_client.get_job_runs(JobName=job_name)
 except ClientError as err:
 logger.error(
 "Couldn't get job runs for %s. Here's why: %s: %s",
 job_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["JobRuns"]

GetJobRuns 2525

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples

AWS Glue User Guide

• For API details, see GetJobRuns in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing
 a simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods
 for interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Retrieves a list of job runs for the specified job.
 #
 # @param job_name [String] The name of the job to retrieve job runs for.
 # @return [Array<Aws::Glue::Types::JobRun>]
 def get_job_runs(job_name)
 response = @glue_client.get_job_runs(job_name: job_name)
 response.job_runs
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get job runs: \n#{e.message}")
 end

• For API details, see GetJobRuns in AWS SDK for Ruby API Reference.

GetJobRuns 2526

https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/GetJobRuns
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/GetJobRuns

AWS Glue User Guide

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetTables with an AWS SDK or CLI

The following code examples show how to use GetTables.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with crawlers and jobs

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of tables for an AWS Glue database.
 /// </summary>
 /// <param name="dbName">The name of the database.</param>
 /// <returns>A list of Table objects.</returns>
 public async Task<List<Table>> GetTablesAsync(string dbName)
 {
 var request = new GetTablesRequest { DatabaseName = dbName };
 var tables = new List<Table>();

 // Get a paginator for listing the tables.
 var tablePaginator = _amazonGlue.Paginators.GetTables(request);

 await foreach (var response in tablePaginator.Responses)
 {
 tables.AddRange(response.TableList);
 }

GetTables 2527

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS Glue User Guide

 return tables;
 }

• For API details, see GetTables in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Glue::GlueClient client(clientConfig);

 Aws::Glue::Model::GetTablesRequest request;
 request.SetDatabaseName(CRAWLER_DATABASE_NAME);
 std::vector<Aws::Glue::Model::Table> all_tables;
 Aws::String nextToken; // Used for pagination.
 do {
 Aws::Glue::Model::GetTablesOutcome outcome =
 client.GetTables(request);

 if (outcome.IsSuccess()) {
 const std::vector<Aws::Glue::Model::Table> &tables =
 outcome.GetResult().GetTableList();
 all_tables.insert(all_tables.end(), tables.begin(),
 tables.end());
 nextToken = outcome.GetResult().GetNextToken();
 }
 else {
 std::cerr << "Error getting the tables. "

GetTables 2528

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/glue#code-examples

AWS Glue User Guide

 << outcome.GetError().GetMessage()
 << std::endl;
 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, "", bucketName,
 clientConfig);
 return false;
 }
 } while (!nextToken.empty());

 std::cout << "The database contains " << all_tables.size()
 << (all_tables.size() == 1 ?
 " table." : "tables.") << std::endl;
 std::cout << "Here is a list of the tables in the database.";
 for (size_t index = 0; index < all_tables.size(); ++index) {
 std::cout << " " << index + 1 << ": " <<
 all_tables[index].GetName()
 << std::endl;
 }

 if (!all_tables.empty()) {
 int tableIndex = askQuestionForIntRange(
 "Enter an index to display the database detail ",
 1, static_cast<int>(all_tables.size()));
 std::cout << all_tables[tableIndex -
 1].Jsonize().View().WriteReadable()
 << std::endl;

 tableName = all_tables[tableIndex - 1].GetName();
 }

• For API details, see GetTables in AWS SDK for C++ API Reference.

CLI

AWS CLI

To list the definitions of some or all of the tables in the specified database

The following get-tables example returns information about the tables in the specified
database.

aws glue get-tables --database-name 'tempdb'

GetTables 2529

https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/GetTables

AWS Glue User Guide

Output:

{
 "TableList": [
 {
 "Name": "my-s3-sink",
 "DatabaseName": "tempdb",
 "CreateTime": 1602730539.0,
 "UpdateTime": 1602730539.0,
 "Retention": 0,
 "StorageDescriptor": {
 "Columns": [
 {
 "Name": "sensorid",
 "Type": "int"
 },
 {
 "Name": "currenttemperature",
 "Type": "int"
 },
 {
 "Name": "status",
 "Type": "string"
 }
],
 "Location": "s3://janetst-bucket-01/test-s3-output/",
 "Compressed": false,
 "NumberOfBuckets": 0,
 "SerdeInfo": {
 "SerializationLibrary": "org.openx.data.jsonserde.JsonSerDe"
 },
 "SortColumns": [],
 "StoredAsSubDirectories": false
 },
 "Parameters": {
 "classification": "json"
 },
 "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN",
 "IsRegisteredWithLakeFormation": false,
 "CatalogId": "007436865787"
 },
 {
 "Name": "s3-source",
 "DatabaseName": "tempdb",

GetTables 2530

AWS Glue User Guide

 "CreateTime": 1602730658.0,
 "UpdateTime": 1602730658.0,
 "Retention": 0,
 "StorageDescriptor": {
 "Columns": [
 {
 "Name": "sensorid",
 "Type": "int"
 },
 {
 "Name": "currenttemperature",
 "Type": "int"
 },
 {
 "Name": "status",
 "Type": "string"
 }
],
 "Location": "s3://janetst-bucket-01/",
 "Compressed": false,
 "NumberOfBuckets": 0,
 "SortColumns": [],
 "StoredAsSubDirectories": false
 },
 "Parameters": {
 "classification": "json"
 },
 "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN",
 "IsRegisteredWithLakeFormation": false,
 "CatalogId": "007436865787"
 },
 {
 "Name": "test-kinesis-input",
 "DatabaseName": "tempdb",
 "CreateTime": 1601507001.0,
 "UpdateTime": 1601507001.0,
 "Retention": 0,
 "StorageDescriptor": {
 "Columns": [
 {
 "Name": "sensorid",
 "Type": "int"
 },
 {

GetTables 2531

AWS Glue User Guide

 "Name": "currenttemperature",
 "Type": "int"
 },
 {
 "Name": "status",
 "Type": "string"
 }
],
 "Location": "my-testing-stream",
 "Compressed": false,
 "NumberOfBuckets": 0,
 "SerdeInfo": {
 "SerializationLibrary": "org.openx.data.jsonserde.JsonSerDe"
 },
 "SortColumns": [],
 "Parameters": {
 "kinesisUrl": "https://kinesis.us-east-1.amazonaws.com",
 "streamName": "my-testing-stream",
 "typeOfData": "kinesis"
 },
 "StoredAsSubDirectories": false
 },
 "Parameters": {
 "classification": "json"
 },
 "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN",
 "IsRegisteredWithLakeFormation": false,
 "CatalogId": "007436865787"
 }
]
}

For more information, see Defining Tables in the AWS Glue Data Catalog in the AWS Glue
Developer Guide.

• For API details, see GetTables in AWS CLI Command Reference.

GetTables 2532

https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glue/get-tables.html

AWS Glue User Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.glue.GlueClient;
import software.amazon.awssdk.services.glue.model.GetTableRequest;
import software.amazon.awssdk.services.glue.model.GetTableResponse;
import software.amazon.awssdk.services.glue.model.GlueException;
import java.time.Instant;
import java.time.ZoneId;
import java.time.format.DateTimeFormatter;
import java.time.format.FormatStyle;
import java.util.Locale;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class GetTable {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <dbName> <tableName>

 Where:
 dbName - The database name.\s
 tableName - The name of the table.\s
 """;

GetTables 2533

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/glue#readme

AWS Glue User Guide

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String dbName = args[0];
 String tableName = args[1];
 Region region = Region.US_EAST_1;
 GlueClient glueClient = GlueClient.builder()
 .region(region)
 .build();

 getGlueTable(glueClient, dbName, tableName);
 glueClient.close();
 }

 public static void getGlueTable(GlueClient glueClient, String dbName, String
 tableName) {
 try {
 GetTableRequest tableRequest = GetTableRequest.builder()
 .databaseName(dbName)
 .name(tableName)
 .build();

 GetTableResponse tableResponse = glueClient.getTable(tableRequest);
 Instant createDate = tableResponse.table().createTime();

 // Convert the Instant to readable date.
 DateTimeFormatter formatter =
 DateTimeFormatter.ofLocalizedDateTime(FormatStyle.SHORT)
 .withLocale(Locale.US)
 .withZone(ZoneId.systemDefault());

 formatter.format(createDate);
 System.out.println("The create date of the table is " + createDate);

 } catch (GlueException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

GetTables 2534

AWS Glue User Guide

• For API details, see GetTables in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const getTables = (databaseName) => {
 const client = new GlueClient({});

 const command = new GetTablesCommand({
 DatabaseName: databaseName,
 });

 return client.send(command);
};

• For API details, see GetTables in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 $databaseName = "doc-example-database-$uniqid";

 $tables = $glueService->getTables($databaseName);

GetTables 2535

https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/GetTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/GetTablesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/glue#code-examples

AWS Glue User Guide

 public function getTables($databaseName): Result
 {
 return $this->glueClient->getTables([
 'DatabaseName' => $databaseName,
]);
 }

• For API details, see GetTables in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class GlueWrapper:
 """Encapsulates AWS Glue actions."""

 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 Glue client.
 """
 self.glue_client = glue_client

 def get_tables(self, db_name):
 """
 Gets a list of tables in a Data Catalog database.

 :param db_name: The name of the database to query.
 :return: The list of tables in the database.
 """
 try:
 response = self.glue_client.get_tables(DatabaseName=db_name)
 except ClientError as err:
 logger.error(
 "Couldn't get tables %s. Here's why: %s: %s",

GetTables 2536

https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/GetTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples

AWS Glue User Guide

 db_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["TableList"]

• For API details, see GetTables in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing
 a simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods
 for interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Retrieves a list of tables in the specified database.
 #
 # @param db_name [String] The name of the database to retrieve tables from.
 # @return [Array<Aws::Glue::Types::Table>]
 def get_tables(db_name)
 response = @glue_client.get_tables(database_name: db_name)
 response.table_list

GetTables 2537

https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/GetTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

AWS Glue User Guide

 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get tables #{db_name}: \n#{e.message}")
 raise
 end

• For API details, see GetTables in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 let tables = glue
 .get_tables()
 .database_name(self.database())
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?;

 let tables = tables.table_list();

• For API details, see GetTables in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListJobs with an AWS SDK or CLI

The following code examples show how to use ListJobs.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

ListJobs 2538

https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/GetTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/glue#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Glue User Guide

• Get started with crawlers and jobs

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// List AWS Glue jobs using a paginator.
 /// </summary>
 /// <returns>A list of AWS Glue job names.</returns>
 public async Task<List<string>> ListJobsAsync()
 {
 var jobNames = new List<string>();

 var listJobsPaginator = _amazonGlue.Paginators.ListJobs(new
 ListJobsRequest { MaxResults = 10 });
 await foreach (var response in listJobsPaginator.Responses)
 {
 jobNames.AddRange(response.JobNames);
 }

 return jobNames;
 }

• For API details, see ListJobs in AWS SDK for .NET API Reference.

ListJobs 2539

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/ListJobs

AWS Glue User Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Glue::GlueClient client(clientConfig);

 Aws::Glue::Model::ListJobsRequest listJobsRequest;

 Aws::String nextToken;
 std::vector<Aws::String> allJobNames;

 do {
 if (!nextToken.empty()) {
 listJobsRequest.SetNextToken(nextToken);
 }
 Aws::Glue::Model::ListJobsOutcome listRunsOutcome = client.ListJobs(
 listJobsRequest);

 if (listRunsOutcome.IsSuccess()) {
 const std::vector<Aws::String> &jobNames =
 listRunsOutcome.GetResult().GetJobNames();
 allJobNames.insert(allJobNames.end(), jobNames.begin(),
 jobNames.end());
 nextToken = listRunsOutcome.GetResult().GetNextToken();
 }
 else {
 std::cerr << "Error listing jobs. "
 << listRunsOutcome.GetError().GetMessage()
 << std::endl;
 }
 } while (!nextToken.empty());

ListJobs 2540

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/glue#code-examples

AWS Glue User Guide

• For API details, see ListJobs in AWS SDK for C++ API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const listJobs = () => {
 const client = new GlueClient({});

 const command = new ListJobsCommand({});

 return client.send(command);
};

• For API details, see ListJobs in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 $jobs = $glueService->listJobs();
 echo "Current jobs:\n";
 foreach ($jobs['JobNames'] as $jobsName) {

ListJobs 2541

https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/ListJobs
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/ListJobsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/glue#code-examples

AWS Glue User Guide

 echo "{$jobsName}\n";
 }

 public function listJobs($maxResults = null, $nextToken = null, $tags = []):
 Result
 {
 $arguments = [];
 if ($maxResults) {
 $arguments['MaxResults'] = $maxResults;
 }
 if ($nextToken) {
 $arguments['NextToken'] = $nextToken;
 }
 if (!empty($tags)) {
 $arguments['Tags'] = $tags;
 }
 return $this->glueClient->listJobs($arguments);
 }

• For API details, see ListJobs in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class GlueWrapper:
 """Encapsulates AWS Glue actions."""

 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 Glue client.
 """
 self.glue_client = glue_client

ListJobs 2542

https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/ListJobs
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples

AWS Glue User Guide

 def list_jobs(self):
 """
 Lists the names of job definitions in your account.

 :return: The list of job definition names.
 """
 try:
 response = self.glue_client.list_jobs()
 except ClientError as err:
 logger.error(
 "Couldn't list jobs. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["JobNames"]

• For API details, see ListJobs in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing
 a simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods
 for interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client

ListJobs 2543

https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/ListJobs
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

AWS Glue User Guide

 @logger = logger
 end

 # Retrieves a list of jobs in AWS Glue.
 #
 # @return [Aws::Glue::Types::ListJobsResponse]
 def list_jobs
 @glue_client.list_jobs
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not list jobs: \n#{e.message}")
 raise
 end

• For API details, see ListJobs in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 let mut list_jobs = glue.list_jobs().into_paginator().send();
 while let Some(list_jobs_output) = list_jobs.next().await {
 match list_jobs_output {
 Ok(list_jobs) => {
 let names = list_jobs.job_names();
 info!(?names, "Found these jobs")
 }
 Err(err) => return Err(GlueMvpError::from_glue_sdk(err)),
 }
 }

• For API details, see ListJobs in AWS SDK for Rust API reference.

ListJobs 2544

https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/ListJobs
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/glue#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Glue User Guide

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use StartCrawler with an AWS SDK or CLI

The following code examples show how to use StartCrawler.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with crawlers and jobs

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Start an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name of the crawler.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> StartCrawlerAsync(string crawlerName)
 {
 var crawlerRequest = new StartCrawlerRequest
 {
 Name = crawlerName,
 };

 var response = await _amazonGlue.StartCrawlerAsync(crawlerRequest);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

StartCrawler 2545

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS Glue User Guide

• For API details, see StartCrawler in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Glue::GlueClient client(clientConfig);

 Aws::Glue::Model::StartCrawlerRequest request;
 request.SetName(CRAWLER_NAME);

 Aws::Glue::Model::StartCrawlerOutcome outcome =
 client.StartCrawler(request);

 if (outcome.IsSuccess() || (Aws::Glue::GlueErrors::CRAWLER_RUNNING ==
 outcome.GetError().GetErrorType())) {
 if (!outcome.IsSuccess()) {
 std::cout << "Crawler was already started." << std::endl;
 }
 else {
 std::cout << "Successfully started crawler." << std::endl;
 }

 std::cout << "This may take a while to run." << std::endl;

 Aws::Glue::Model::CrawlerState crawlerState =
 Aws::Glue::Model::CrawlerState::NOT_SET;
 int iterations = 0;
 while (Aws::Glue::Model::CrawlerState::READY != crawlerState) {
 std::this_thread::sleep_for(std::chrono::seconds(1));

StartCrawler 2546

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/StartCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/glue#code-examples

AWS Glue User Guide

 ++iterations;
 if ((iterations % 10) == 0) { // Log status every 10 seconds.
 std::cout << "Crawler status " <<

 Aws::Glue::Model::CrawlerStateMapper::GetNameForCrawlerState(
 crawlerState)
 << ". After " << iterations
 << " seconds elapsed."
 << std::endl;
 }
 Aws::Glue::Model::GetCrawlerRequest getCrawlerRequest;
 getCrawlerRequest.SetName(CRAWLER_NAME);

 Aws::Glue::Model::GetCrawlerOutcome getCrawlerOutcome =
 client.GetCrawler(
 getCrawlerRequest);

 if (getCrawlerOutcome.IsSuccess()) {
 crawlerState =
 getCrawlerOutcome.GetResult().GetCrawler().GetState();
 }
 else {
 std::cerr << "Error getting crawler. "
 << getCrawlerOutcome.GetError().GetMessage() <<
 std::endl;
 break;
 }
 }

 if (Aws::Glue::Model::CrawlerState::READY == crawlerState) {
 std::cout << "Crawler finished running after " << iterations
 << " seconds."
 << std::endl;
 }
 }
 else {
 std::cerr << "Error starting a crawler. "
 << outcome.GetError().GetMessage()
 << std::endl;

 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, "", bucketName,
 clientConfig);
 return false;
 }

StartCrawler 2547

AWS Glue User Guide

• For API details, see StartCrawler in AWS SDK for C++ API Reference.

CLI

AWS CLI

To start a crawler

The following start-crawler example starts a crawler.

aws glue start-crawler --name my-crawler

Output:

None

For more information, see Defining Crawlers in the AWS Glue Developer Guide.

• For API details, see StartCrawler in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.glue.GlueClient;
import software.amazon.awssdk.services.glue.model.GlueException;
import software.amazon.awssdk.services.glue.model.StartCrawlerRequest;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *

StartCrawler 2548

https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/StartCrawler
https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glue/start-crawler.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/glue#readme

AWS Glue User Guide

 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class StartCrawler {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <crawlerName>

 Where:
 crawlerName - The name of the crawler.\s
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String crawlerName = args[0];
 Region region = Region.US_EAST_1;
 GlueClient glueClient = GlueClient.builder()
 .region(region)
 .build();

 startSpecificCrawler(glueClient, crawlerName);
 glueClient.close();
 }

 public static void startSpecificCrawler(GlueClient glueClient, String
 crawlerName) {
 try {
 StartCrawlerRequest crawlerRequest = StartCrawlerRequest.builder()
 .name(crawlerName)
 .build();

 glueClient.startCrawler(crawlerRequest);

 } catch (GlueException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }

StartCrawler 2549

AWS Glue User Guide

 }
}

• For API details, see StartCrawler in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const startCrawler = (name) => {
 const client = new GlueClient({});

 const command = new StartCrawlerCommand({
 Name: name,
 });

 return client.send(command);
};

• For API details, see StartCrawler in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

StartCrawler 2550

https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/StartCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/StartCrawlerCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/glue#code-examples

AWS Glue User Guide

suspend fun startSpecificCrawler(crawlerName: String?) {
 val request =
 StartCrawlerRequest {
 name = crawlerName
 }

 GlueClient { region = "us-west-2" }.use { glueClient ->
 glueClient.startCrawler(request)
 println("$crawlerName was successfully started.")
 }
}

• For API details, see StartCrawler in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 $crawlerName = "example-crawler-test-" . $uniqid;

 $databaseName = "doc-example-database-$uniqid";

 $glueService->startCrawler($crawlerName);

 public function startCrawler($crawlerName): Result
 {
 return $this->glueClient->startCrawler([
 'Name' => $crawlerName,
]);
 }

• For API details, see StartCrawler in AWS SDK for PHP API Reference.

StartCrawler 2551

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/glue#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/StartCrawler

AWS Glue User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class GlueWrapper:
 """Encapsulates AWS Glue actions."""

 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 Glue client.
 """
 self.glue_client = glue_client

 def start_crawler(self, name):
 """
 Starts a crawler. The crawler crawls its configured target and creates
 metadata that describes the data it finds in the target data source.

 :param name: The name of the crawler to start.
 """
 try:
 self.glue_client.start_crawler(Name=name)
 except ClientError as err:
 logger.error(
 "Couldn't start crawler %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see StartCrawler in AWS SDK for Python (Boto3) API Reference.

StartCrawler 2552

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/StartCrawler

AWS Glue User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing
 a simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods
 for interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Starts a crawler with the specified name.
 #
 # @param name [String] The name of the crawler to start.
 # @return [void]
 def start_crawler(name)
 @glue_client.start_crawler(name: name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not start crawler #{name}: \n#{e.message}")
 raise
 end

• For API details, see StartCrawler in AWS SDK for Ruby API Reference.

StartCrawler 2553

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/StartCrawler

AWS Glue User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 let start_crawler =
 glue.start_crawler().name(self.crawler()).send().await;

 match start_crawler {
 Ok(_) => Ok(()),
 Err(err) => {
 let glue_err: aws_sdk_glue::Error = err.into();
 match glue_err {
 aws_sdk_glue::Error::CrawlerRunningException(_) => Ok(()),
 _ => Err(GlueMvpError::GlueSdk(glue_err)),
 }
 }
 }?;

• For API details, see StartCrawler in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use StartJobRun with an AWS SDK or CLI

The following code examples show how to use StartJobRun.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with crawlers and jobs

StartJobRun 2554

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/glue#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Glue User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Start an AWS Glue job run.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <returns>A string representing the job run Id.</returns>
 public async Task<string> StartJobRunAsync(
 string jobName,
 string inputDatabase,
 string inputTable,
 string bucketName)
 {
 var request = new StartJobRunRequest
 {
 JobName = jobName,
 Arguments = new Dictionary<string, string>
 {
 {"--input_database", inputDatabase},
 {"--input_table", inputTable},
 {"--output_bucket_url", $"s3://{bucketName}/"}
 }
 };

 var response = await _amazonGlue.StartJobRunAsync(request);
 return response.JobRunId;
 }

• For API details, see StartJobRun in AWS SDK for .NET API Reference.

StartJobRun 2555

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/StartJobRun

AWS Glue User Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Glue::GlueClient client(clientConfig);

 Aws::Glue::Model::StartJobRunRequest request;
 request.SetJobName(JOB_NAME);

 Aws::Map<Aws::String, Aws::String> arguments;
 arguments["--input_database"] = CRAWLER_DATABASE_NAME;
 arguments["--input_table"] = tableName;
 arguments["--output_bucket_url"] = Aws::String("s3://") + bucketName +
 "/";
 request.SetArguments(arguments);

 Aws::Glue::Model::StartJobRunOutcome outcome =
 client.StartJobRun(request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully started the job." << std::endl;

 Aws::String jobRunId = outcome.GetResult().GetJobRunId();

 int iterator = 0;
 bool done = false;
 while (!done) {
 ++iterator;
 std::this_thread::sleep_for(std::chrono::seconds(1));
 Aws::Glue::Model::GetJobRunRequest jobRunRequest;
 jobRunRequest.SetJobName(JOB_NAME);

StartJobRun 2556

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/glue#code-examples

AWS Glue User Guide

 jobRunRequest.SetRunId(jobRunId);

 Aws::Glue::Model::GetJobRunOutcome jobRunOutcome =
 client.GetJobRun(
 jobRunRequest);

 if (jobRunOutcome.IsSuccess()) {
 const Aws::Glue::Model::JobRun &jobRun =
 jobRunOutcome.GetResult().GetJobRun();
 Aws::Glue::Model::JobRunState jobRunState =
 jobRun.GetJobRunState();

 if ((jobRunState == Aws::Glue::Model::JobRunState::STOPPED)
 ||
 (jobRunState == Aws::Glue::Model::JobRunState::FAILED) ||
 (jobRunState == Aws::Glue::Model::JobRunState::TIMEOUT))
 {
 std::cerr << "Error running job. "
 << jobRun.GetErrorMessage()
 << std::endl;
 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME,
 JOB_NAME,
 bucketName,
 clientConfig);
 return false;
 }
 else if (jobRunState ==
 Aws::Glue::Model::JobRunState::SUCCEEDED) {
 std::cout << "Job run succeeded after " << iterator <<
 " seconds elapsed." << std::endl;
 done = true;
 }
 else if ((iterator % 10) == 0) { // Log status every 10
 seconds.
 std::cout << "Job run status " <<

 Aws::Glue::Model::JobRunStateMapper::GetNameForJobRunState(
 jobRunState) <<
 ". " << iterator <<
 " seconds elapsed." << std::endl;
 }
 }
 else {
 std::cerr << "Error retrieving job run state. "

StartJobRun 2557

AWS Glue User Guide

 << jobRunOutcome.GetError().GetMessage()
 << std::endl;
 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, JOB_NAME,
 bucketName, clientConfig);
 return false;
 }
 }
 }
 else {
 std::cerr << "Error starting a job. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, JOB_NAME,
 bucketName,
 clientConfig);
 return false;
 }

• For API details, see StartJobRun in AWS SDK for C++ API Reference.

CLI

AWS CLI

To start running a job

The following start-job-run example starts a job.

aws glue start-job-run \
 --job-name my-job

Output:

{
 "JobRunId":
 "jr_22208b1f44eb5376a60569d4b21dd20fcb8621e1a366b4e7b2494af764b82ded"
}

For more information, see Authoring Jobs in the AWS Glue Developer Guide.

• For API details, see StartJobRun in AWS CLI Command Reference.

StartJobRun 2558

https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/StartJobRun
https://docs.aws.amazon.com/glue/latest/dg/author-job.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glue/start-job-run.html

AWS Glue User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const startJobRun = (jobName, dbName, tableName, bucketName) => {
 const client = new GlueClient({});

 const command = new StartJobRunCommand({
 JobName: jobName,
 Arguments: {
 "--input_database": dbName,
 "--input_table": tableName,
 "--output_bucket_url": `s3://${bucketName}/`,
 },
 });

 return client.send(command);
};

• For API details, see StartJobRun in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 $jobName = 'test-job-' . $uniqid;

StartJobRun 2559

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/StartJobRunCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/glue#code-examples

AWS Glue User Guide

 $databaseName = "doc-example-database-$uniqid";

 $tables = $glueService->getTables($databaseName);

 $outputBucketUrl = "s3://$bucketName";
 $runId = $glueService->startJobRun($jobName, $databaseName, $tables,
 $outputBucketUrl)['JobRunId'];

 public function startJobRun($jobName, $databaseName, $tables,
 $outputBucketUrl): Result
 {
 return $this->glueClient->startJobRun([
 'JobName' => $jobName,
 'Arguments' => [
 'input_database' => $databaseName,
 'input_table' => $tables['TableList'][0]['Name'],
 'output_bucket_url' => $outputBucketUrl,
 '--input_database' => $databaseName,
 '--input_table' => $tables['TableList'][0]['Name'],
 '--output_bucket_url' => $outputBucketUrl,
],
]);
 }

• For API details, see StartJobRun in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class GlueWrapper:
 """Encapsulates AWS Glue actions."""

 def __init__(self, glue_client):
 """

StartJobRun 2560

https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/StartJobRun
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples

AWS Glue User Guide

 :param glue_client: A Boto3 Glue client.
 """
 self.glue_client = glue_client

 def start_job_run(self, name, input_database, input_table,
 output_bucket_name):
 """
 Starts a job run. A job run extracts data from the source, transforms it,
 and loads it to the output bucket.

 :param name: The name of the job definition.
 :param input_database: The name of the metadata database that contains
 tables
 that describe the source data. This is typically
 created
 by a crawler.
 :param input_table: The name of the table in the metadata database that
 describes the source data.
 :param output_bucket_name: The S3 bucket where the output is written.
 :return: The ID of the job run.
 """
 try:
 # The custom Arguments that are passed to this function are used by
 the
 # Python ETL script to determine the location of input and output
 data.
 response = self.glue_client.start_job_run(
 JobName=name,
 Arguments={
 "--input_database": input_database,
 "--input_table": input_table,
 "--output_bucket_url": f"s3://{output_bucket_name}/",
 },
)
 except ClientError as err:
 logger.error(
 "Couldn't start job run %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:

StartJobRun 2561

AWS Glue User Guide

 return response["JobRunId"]

• For API details, see StartJobRun in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing
 a simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods
 for interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Starts a job run for the specified job.
 #
 # @param name [String] The name of the job to start the run for.
 # @param input_database [String] The name of the input database for the job.
 # @param input_table [String] The name of the input table for the job.
 # @param output_bucket_name [String] The name of the output S3 bucket for the
 job.
 # @return [String] The ID of the started job run.
 def start_job_run(name, input_database, input_table, output_bucket_name)
 response = @glue_client.start_job_run(
 job_name: name,
 arguments: {
 '--input_database': input_database,

StartJobRun 2562

https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/StartJobRun
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

AWS Glue User Guide

 '--input_table': input_table,
 '--output_bucket_url': "s3://#{output_bucket_name}/"
 }
)
 response.job_run_id
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not start job run #{name}: \n#{e.message}")
 raise
 end

• For API details, see StartJobRun in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 let job_run_output = glue
 .start_job_run()
 .job_name(self.job())
 .arguments("--input_database", self.database())
 .arguments(
 "--input_table",
 self.tables
 .first()
 .ok_or_else(|| GlueMvpError::Unknown("Missing crawler
 table".into()))?
 .name(),
)
 .arguments("--output_bucket_url", self.bucket())
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?;

 let job = job_run_output
 .job_run_id()

StartJobRun 2563

https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/StartJobRun
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/glue#code-examples

AWS Glue User Guide

 .ok_or_else(|| GlueMvpError::Unknown("Missing run id from just
 started job".into()))?
 .to_string();

• For API details, see StartJobRun in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Scenarios for AWS Glue using AWS SDKs

The following code examples show you how to implement common scenarios in AWS Glue with
AWS SDKs. These scenarios show you how to accomplish specific tasks by calling multiple functions
within AWS Glue. Each scenario includes a link to GitHub, where you can find instructions on how
to set up and run the code.

Examples

• Get started running AWS Glue crawlers and jobs using an AWS SDK

Get started running AWS Glue crawlers and jobs using an AWS SDK

The following code examples show how to:

• Create a crawler that crawls a public Amazon S3 bucket and generates a database of CSV-
formatted metadata.

• List information about databases and tables in your AWS Glue Data Catalog.

• Create a job to extract CSV data from the S3 bucket, transform the data, and load JSON-
formatted output into another S3 bucket.

• List information about job runs, view transformed data, and clean up resources.

For more information, see Tutorial: Getting started with AWS Glue Studio.

Scenarios 2564

https://docs.rs/releases/search?query=aws-sdk
https://docs.aws.amazon.com/glue/latest/ug/tutorial-create-job.html

AWS Glue User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a class that wraps AWS Glue functions that are used in the scenario.

using System.Net;

namespace GlueActions;

public class GlueWrapper
{
 private readonly IAmazonGlue _amazonGlue;

 /// <summary>
 /// Constructor for the AWS Glue actions wrapper.
 /// </summary>
 /// <param name="amazonGlue"></param>
 public GlueWrapper(IAmazonGlue amazonGlue)
 {
 _amazonGlue = amazonGlue;
 }

 /// <summary>
 /// Create an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name for the crawler.</param>
 /// <param name="crawlerDescription">A description of the crawler.</param>
 /// <param name="role">The AWS Identity and Access Management (IAM) role to
 /// be assumed by the crawler.</param>
 /// <param name="schedule">The schedule on which the crawler will be
 executed.</param>
 /// <param name="s3Path">The path to the Amazon Simple Storage Service
 (Amazon S3)
 /// bucket where the Python script has been stored.</param>
 /// <param name="dbName">The name to use for the database that will be

Get started with crawlers and jobs 2565

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS Glue User Guide

 /// created by the crawler.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> CreateCrawlerAsync(
 string crawlerName,
 string crawlerDescription,
 string role,
 string schedule,
 string s3Path,
 string dbName)
 {
 var s3Target = new S3Target
 {
 Path = s3Path,
 };

 var targetList = new List<S3Target>
 {
 s3Target,
 };

 var targets = new CrawlerTargets
 {
 S3Targets = targetList,
 };

 var crawlerRequest = new CreateCrawlerRequest
 {
 DatabaseName = dbName,
 Name = crawlerName,
 Description = crawlerDescription,
 Targets = targets,
 Role = role,
 Schedule = schedule,
 };

 var response = await _amazonGlue.CreateCrawlerAsync(crawlerRequest);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Create an AWS Glue job.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>

Get started with crawlers and jobs 2566

AWS Glue User Guide

 /// <param name="roleName">The name of the IAM role to be assumed by
 /// the job.</param>
 /// <param name="description">A description of the job.</param>
 /// <param name="scriptUrl">The URL to the script.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> CreateJobAsync(string dbName, string tableName,
 string bucketUrl, string jobName, string roleName, string description, string
 scriptUrl)
 {
 var command = new JobCommand
 {
 PythonVersion = "3",
 Name = "glueetl",
 ScriptLocation = scriptUrl,
 };

 var arguments = new Dictionary<string, string>
 {
 { "--input_database", dbName },
 { "--input_table", tableName },
 { "--output_bucket_url", bucketUrl }
 };

 var request = new CreateJobRequest
 {
 Command = command,
 DefaultArguments = arguments,
 Description = description,
 GlueVersion = "3.0",
 Name = jobName,
 NumberOfWorkers = 10,
 Role = roleName,
 WorkerType = "G.1X"
 };

 var response = await _amazonGlue.CreateJobAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name of the crawler.</param>

Get started with crawlers and jobs 2567

AWS Glue User Guide

 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteCrawlerAsync(string crawlerName)
 {
 var response = await _amazonGlue.DeleteCrawlerAsync(new
 DeleteCrawlerRequest { Name = crawlerName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete the AWS Glue database.
 /// </summary>
 /// <param name="dbName">The name of the database.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteDatabaseAsync(string dbName)
 {
 var response = await _amazonGlue.DeleteDatabaseAsync(new
 DeleteDatabaseRequest { Name = dbName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an AWS Glue job.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteJobAsync(string jobName)
 {
 var response = await _amazonGlue.DeleteJobAsync(new DeleteJobRequest
 { JobName = jobName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete a table from an AWS Glue database.
 /// </summary>
 /// <param name="tableName">The table to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteTableAsync(string dbName, string tableName)
 {
 var response = await _amazonGlue.DeleteTableAsync(new DeleteTableRequest
 { Name = tableName, DatabaseName = dbName });

Get started with crawlers and jobs 2568

AWS Glue User Guide

 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Get information about an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name of the crawler.</param>
 /// <returns>A Crawler object describing the crawler.</returns>
 public async Task<Crawler?> GetCrawlerAsync(string crawlerName)
 {
 var crawlerRequest = new GetCrawlerRequest
 {
 Name = crawlerName,
 };

 var response = await _amazonGlue.GetCrawlerAsync(crawlerRequest);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 var databaseName = response.Crawler.DatabaseName;
 Console.WriteLine($"{crawlerName} has the database {databaseName}");
 return response.Crawler;
 }

 Console.WriteLine($"No information regarding {crawlerName} could be
 found.");
 return null;
 }

 /// <summary>
 /// Get information about the state of an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name of the crawler.</param>
 /// <returns>A value describing the state of the crawler.</returns>
 public async Task<CrawlerState> GetCrawlerStateAsync(string crawlerName)
 {
 var response = await _amazonGlue.GetCrawlerAsync(
 new GetCrawlerRequest { Name = crawlerName });
 return response.Crawler.State;
 }

 /// <summary>

Get started with crawlers and jobs 2569

AWS Glue User Guide

 /// Get information about an AWS Glue database.
 /// </summary>
 /// <param name="dbName">The name of the database.</param>
 /// <returns>A Database object containing information about the database.</
returns>
 public async Task<Database> GetDatabaseAsync(string dbName)
 {
 var databasesRequest = new GetDatabaseRequest
 {
 Name = dbName,
 };

 var response = await _amazonGlue.GetDatabaseAsync(databasesRequest);
 return response.Database;
 }

 /// <summary>
 /// Get information about a specific AWS Glue job run.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <param name="jobRunId">The Id of the job run.</param>
 /// <returns>A JobRun object with information about the job run.</returns>
 public async Task<JobRun> GetJobRunAsync(string jobName, string jobRunId)
 {
 var response = await _amazonGlue.GetJobRunAsync(new GetJobRunRequest
 { JobName = jobName, RunId = jobRunId });
 return response.JobRun;
 }

 /// <summary>
 /// Get information about all AWS Glue runs of a specific job.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <returns>A list of JobRun objects.</returns>
 public async Task<List<JobRun>> GetJobRunsAsync(string jobName)
 {
 var jobRuns = new List<JobRun>();

 var request = new GetJobRunsRequest
 {
 JobName = jobName,
 };

Get started with crawlers and jobs 2570

AWS Glue User Guide

 // No need to loop to get all the log groups--the SDK does it for us
 behind the scenes
 var paginatorForJobRuns =
 _amazonGlue.Paginators.GetJobRuns(request);

 await foreach (var response in paginatorForJobRuns.Responses)
 {
 response.JobRuns.ForEach(jobRun =>
 {
 jobRuns.Add(jobRun);
 });
 }

 return jobRuns;
 }

 /// <summary>
 /// Get a list of tables for an AWS Glue database.
 /// </summary>
 /// <param name="dbName">The name of the database.</param>
 /// <returns>A list of Table objects.</returns>
 public async Task<List<Table>> GetTablesAsync(string dbName)
 {
 var request = new GetTablesRequest { DatabaseName = dbName };
 var tables = new List<Table>();

 // Get a paginator for listing the tables.
 var tablePaginator = _amazonGlue.Paginators.GetTables(request);

 await foreach (var response in tablePaginator.Responses)
 {
 tables.AddRange(response.TableList);
 }

 return tables;
 }

 /// <summary>
 /// List AWS Glue jobs using a paginator.
 /// </summary>
 /// <returns>A list of AWS Glue job names.</returns>

Get started with crawlers and jobs 2571

AWS Glue User Guide

 public async Task<List<string>> ListJobsAsync()
 {
 var jobNames = new List<string>();

 var listJobsPaginator = _amazonGlue.Paginators.ListJobs(new
 ListJobsRequest { MaxResults = 10 });
 await foreach (var response in listJobsPaginator.Responses)
 {
 jobNames.AddRange(response.JobNames);
 }

 return jobNames;
 }

 /// <summary>
 /// Start an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name of the crawler.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> StartCrawlerAsync(string crawlerName)
 {
 var crawlerRequest = new StartCrawlerRequest
 {
 Name = crawlerName,
 };

 var response = await _amazonGlue.StartCrawlerAsync(crawlerRequest);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Start an AWS Glue job run.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <returns>A string representing the job run Id.</returns>
 public async Task<string> StartJobRunAsync(
 string jobName,
 string inputDatabase,
 string inputTable,
 string bucketName)
 {

Get started with crawlers and jobs 2572

AWS Glue User Guide

 var request = new StartJobRunRequest
 {
 JobName = jobName,
 Arguments = new Dictionary<string, string>
 {
 {"--input_database", inputDatabase},
 {"--input_table", inputTable},
 {"--output_bucket_url", $"s3://{bucketName}/"}
 }
 };

 var response = await _amazonGlue.StartJobRunAsync(request);
 return response.JobRunId;
 }

}

Create a class that runs the scenario.

global using Amazon.Glue;
global using GlueActions;
global using Microsoft.Extensions.Configuration;
global using Microsoft.Extensions.DependencyInjection;
global using Microsoft.Extensions.Hosting;
global using Microsoft.Extensions.Logging;
global using Microsoft.Extensions.Logging.Console;
global using Microsoft.Extensions.Logging.Debug;

using Amazon.Glue.Model;
using Amazon.S3;
using Amazon.S3.Model;

namespace GlueBasics;

public class GlueBasics
{
 private static ILogger logger = null!;
 private static IConfiguration _configuration = null!;

Get started with crawlers and jobs 2573

AWS Glue User Guide

 static async Task Main(string[] args)
 {
 // Set up dependency injection for AWS Glue.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonGlue>()
 .AddTransient<GlueWrapper>()
 .AddTransient<UiWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<GlueBasics>();

 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 // These values are stored in settings.json
 // Once you have run the CDK script to deploy the resources,
 // edit the file to set "BucketName", "RoleName", and "ScriptURL"
 // to the appropriate values. Also set "CrawlerName" to the name
 // you want to give the crawler when it is created.
 string bucketName = _configuration["BucketName"]!;
 string bucketUrl = _configuration["BucketUrl"]!;
 string crawlerName = _configuration["CrawlerName"]!;
 string roleName = _configuration["RoleName"]!;
 string sourceData = _configuration["SourceData"]!;
 string dbName = _configuration["DbName"]!;
 string cron = _configuration["Cron"]!;
 string scriptUrl = _configuration["ScriptURL"]!;
 string jobName = _configuration["JobName"]!;

 var wrapper = host.Services.GetRequiredService<GlueWrapper>();
 var uiWrapper = host.Services.GetRequiredService<UiWrapper>();

Get started with crawlers and jobs 2574

AWS Glue User Guide

 uiWrapper.DisplayOverview();
 uiWrapper.PressEnter();

 // Create the crawler and wait for it to be ready.
 uiWrapper.DisplayTitle("Create AWS Glue crawler");
 Console.WriteLine("Let's begin by creating the AWS Glue crawler.");

 var crawlerDescription = "Crawler created for the AWS Glue Basics
 scenario.";
 var crawlerCreated = await wrapper.CreateCrawlerAsync(crawlerName,
 crawlerDescription, roleName, cron, sourceData, dbName);
 if (crawlerCreated)
 {
 Console.WriteLine($"The crawler: {crawlerName} has been created. Now
 let's wait until it's ready.");
 CrawlerState crawlerState;
 do
 {
 crawlerState = await wrapper.GetCrawlerStateAsync(crawlerName);
 }
 while (crawlerState != "READY");
 Console.WriteLine($"The crawler {crawlerName} is now ready for
 use.");
 }
 else
 {
 Console.WriteLine($"Couldn't create crawler {crawlerName}.");
 return; // Exit the application.
 }

 uiWrapper.DisplayTitle("Start AWS Glue crawler");
 Console.WriteLine("Now let's wait until the crawler has successfully
 started.");
 var crawlerStarted = await wrapper.StartCrawlerAsync(crawlerName);
 if (crawlerStarted)
 {
 CrawlerState crawlerState;
 do
 {
 crawlerState = await wrapper.GetCrawlerStateAsync(crawlerName);
 }
 while (crawlerState != "READY");

Get started with crawlers and jobs 2575

AWS Glue User Guide

 Console.WriteLine($"The crawler {crawlerName} is now ready for
 use.");
 }
 else
 {
 Console.WriteLine($"Couldn't start the crawler {crawlerName}.");
 return; // Exit the application.
 }

 uiWrapper.PressEnter();

 Console.WriteLine($"\nLet's take a look at the database: {dbName}");
 var database = await wrapper.GetDatabaseAsync(dbName);

 if (database != null)
 {
 uiWrapper.DisplayTitle($"{database.Name} Details");
 Console.WriteLine($"{database.Name} created on
 {database.CreateTime}");
 Console.WriteLine(database.Description);
 }

 uiWrapper.PressEnter();

 var tables = await wrapper.GetTablesAsync(dbName);
 if (tables.Count > 0)
 {
 tables.ForEach(table =>
 {
 Console.WriteLine($"{table.Name}\tCreated:
 {table.CreateTime}\tUpdated: {table.UpdateTime}");
 });
 }

 uiWrapper.PressEnter();

 uiWrapper.DisplayTitle("Create AWS Glue job");
 Console.WriteLine("Creating a new AWS Glue job.");
 var description = "An AWS Glue job created using the AWS SDK for .NET";
 await wrapper.CreateJobAsync(dbName, tables[0].Name, bucketUrl, jobName,
 roleName, description, scriptUrl);

 uiWrapper.PressEnter();

Get started with crawlers and jobs 2576

AWS Glue User Guide

 uiWrapper.DisplayTitle("Starting AWS Glue job");
 Console.WriteLine("Starting the new AWS Glue job...");
 var jobRunId = await wrapper.StartJobRunAsync(jobName, dbName,
 tables[0].Name, bucketName);
 var jobRunComplete = false;
 var jobRun = new JobRun();
 do
 {
 jobRun = await wrapper.GetJobRunAsync(jobName, jobRunId);
 if (jobRun.JobRunState == "SUCCEEDED" || jobRun.JobRunState ==
 "STOPPED" ||
 jobRun.JobRunState == "FAILED" || jobRun.JobRunState ==
 "TIMEOUT")
 {
 jobRunComplete = true;
 }
 } while (!jobRunComplete);

 uiWrapper.DisplayTitle($"Data in {bucketName}");

 // Get the list of data stored in the S3 bucket.
 var s3Client = new AmazonS3Client();

 var response = await s3Client.ListObjectsAsync(new ListObjectsRequest
 { BucketName = bucketName });
 response.S3Objects.ForEach(s3Object =>
 {
 Console.WriteLine(s3Object.Key);
 });

 uiWrapper.DisplayTitle("AWS Glue jobs");
 var jobNames = await wrapper.ListJobsAsync();
 jobNames.ForEach(jobName =>
 {
 Console.WriteLine(jobName);
 });

 uiWrapper.PressEnter();

 uiWrapper.DisplayTitle("Get AWS Glue job run information");
 Console.WriteLine("Getting information about the AWS Glue job.");
 var jobRuns = await wrapper.GetJobRunsAsync(jobName);

 jobRuns.ForEach(jobRun =>

Get started with crawlers and jobs 2577

AWS Glue User Guide

 {

 Console.WriteLine($"{jobRun.JobName}\t{jobRun.JobRunState}\t{jobRun.CompletedOn}");
 });

 uiWrapper.PressEnter();

 uiWrapper.DisplayTitle("Deleting resources");
 Console.WriteLine("Deleting the AWS Glue job used by the example.");
 await wrapper.DeleteJobAsync(jobName);

 Console.WriteLine("Deleting the tables from the database.");
 tables.ForEach(async table =>
 {
 await wrapper.DeleteTableAsync(dbName, table.Name);
 });

 Console.WriteLine("Deleting the database.");
 await wrapper.DeleteDatabaseAsync(dbName);

 Console.WriteLine("Deleting the AWS Glue crawler.");
 await wrapper.DeleteCrawlerAsync(crawlerName);

 Console.WriteLine("The AWS Glue scenario has completed.");
 uiWrapper.PressEnter();
 }
}

namespace GlueBasics;

public class UiWrapper
{
 public readonly string SepBar = new string('-', Console.WindowWidth);

 /// <summary>
 /// Show information about the scenario.
 /// </summary>
 public void DisplayOverview()
 {
 Console.Clear();
 DisplayTitle("Amazon Glue: get started with crawlers and jobs");

 Console.WriteLine("This example application does the following:");

Get started with crawlers and jobs 2578

AWS Glue User Guide

 Console.WriteLine("\t 1. Create a crawler, pass it the IAM role and the
 URL to the public S3 bucket that contains the source data");
 Console.WriteLine("\t 2. Start the crawler.");
 Console.WriteLine("\t 3. Get the database created by the crawler and the
 tables in the database.");
 Console.WriteLine("\t 4. Create a job.");
 Console.WriteLine("\t 5. Start a job run.");
 Console.WriteLine("\t 6. Wait for the job run to complete.");
 Console.WriteLine("\t 7. Show the data stored in the bucket.");
 Console.WriteLine("\t 8. List jobs for the account.");
 Console.WriteLine("\t 9. Get job run details for the job that was run.");
 Console.WriteLine("\t10. Delete the demo job.");
 Console.WriteLine("\t11. Delete the database and tables created for the
 demo.");
 Console.WriteLine("\t12. Delete the crawler.");
 }

 /// <summary>
 /// Display a message and wait until the user presses enter.
 /// </summary>
 public void PressEnter()
 {
 Console.Write("\nPlease press <Enter> to continue. ");
 _ = Console.ReadLine();
 }

 /// <summary>
 /// Pad a string with spaces to center it on the console display.
 /// </summary>
 /// <param name="strToCenter">The string to center on the screen.</param>
 /// <returns>The string padded to make it center on the screen.</returns>
 public string CenterString(string strToCenter)
 {
 var padAmount = (Console.WindowWidth - strToCenter.Length) / 2;
 var leftPad = new string(' ', padAmount);
 return $"{leftPad}{strToCenter}";
 }

 /// <summary>
 /// Display a line of hyphens, the centered text of the title and another
 /// line of hyphens.
 /// </summary>
 /// <param name="strTitle">The string to be displayed.</param>
 public void DisplayTitle(string strTitle)

Get started with crawlers and jobs 2579

AWS Glue User Guide

 {
 Console.WriteLine(SepBar);
 Console.WriteLine(CenterString(strTitle));
 Console.WriteLine(SepBar);
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateCrawler

• CreateJob

• DeleteCrawler

• DeleteDatabase

• DeleteJob

• DeleteTable

• GetCrawler

• GetDatabase

• GetDatabases

• GetJob

• GetJobRun

• GetJobRuns

• GetTables

• ListJobs

• StartCrawler

• StartJobRun

Get started with crawlers and jobs 2580

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/CreateCrawler
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/CreateJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteCrawler
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteDatabase
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteTable
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetCrawler
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetDatabase
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetDatabases
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetJobRun
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetJobRuns
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetTables
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/ListJobs
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/StartCrawler
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/StartJobRun

AWS Glue User Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Scenario which demonstrates using AWS Glue to add a crawler and run a job.
/*!
 \\sa runGettingStartedWithGlueScenario()
 \param bucketName: An S3 bucket created in the setup.
 \param roleName: An AWS Identity and Access Management (IAM) role created in the
 setup.
 \param clientConfig: AWS client configuration.
 \return bool: Successful completion.
 */

bool AwsDoc::Glue::runGettingStartedWithGlueScenario(const Aws::String
 &bucketName,
 const Aws::String &roleName,
 const
 Aws::Client::ClientConfiguration &clientConfig) {
 Aws::Glue::GlueClient client(clientConfig);

 Aws::String roleArn;
 if (!getRoleArn(roleName, roleArn, clientConfig)) {
 std::cerr << "Error getting role ARN for role." << std::endl;
 return false;
 }

 // 1. Upload the job script to the S3 bucket.
 {
 std::cout << "Uploading the job script '"
 << AwsDoc::Glue::PYTHON_SCRIPT
 << "'." << std::endl;

 if (!AwsDoc::Glue::uploadFile(bucketName,
 AwsDoc::Glue::PYTHON_SCRIPT_PATH,
 AwsDoc::Glue::PYTHON_SCRIPT,

Get started with crawlers and jobs 2581

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/glue#code-examples

AWS Glue User Guide

 clientConfig)) {
 std::cerr << "Error uploading the job file." << std::endl;
 return false;
 }
 }

 // 2. Create a crawler.
 {
 Aws::Glue::Model::S3Target s3Target;
 s3Target.SetPath("s3://crawler-public-us-east-1/flight/2016/csv");
 Aws::Glue::Model::CrawlerTargets crawlerTargets;
 crawlerTargets.AddS3Targets(s3Target);

 Aws::Glue::Model::CreateCrawlerRequest request;
 request.SetTargets(crawlerTargets);
 request.SetName(CRAWLER_NAME);
 request.SetDatabaseName(CRAWLER_DATABASE_NAME);
 request.SetTablePrefix(CRAWLER_DATABASE_PREFIX);
 request.SetRole(roleArn);

 Aws::Glue::Model::CreateCrawlerOutcome outcome =
 client.CreateCrawler(request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully created the crawler." << std::endl;
 }
 else {
 std::cerr << "Error creating a crawler. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 deleteAssets("", CRAWLER_DATABASE_NAME, "", bucketName,
 clientConfig);
 return false;
 }
 }

 // 3. Get a crawler.
 {
 Aws::Glue::Model::GetCrawlerRequest request;
 request.SetName(CRAWLER_NAME);

 Aws::Glue::Model::GetCrawlerOutcome outcome = client.GetCrawler(request);

 if (outcome.IsSuccess()) {

Get started with crawlers and jobs 2582

AWS Glue User Guide

 Aws::Glue::Model::CrawlerState crawlerState =
 outcome.GetResult().GetCrawler().GetState();
 std::cout << "Retrieved crawler with state " <<

 Aws::Glue::Model::CrawlerStateMapper::GetNameForCrawlerState(
 crawlerState)
 << "." << std::endl;
 }
 else {
 std::cerr << "Error retrieving a crawler. "
 << outcome.GetError().GetMessage() << std::endl;
 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, "", bucketName,
 clientConfig);
 return false;
 }
 }

 // 4. Start a crawler.
 {
 Aws::Glue::Model::StartCrawlerRequest request;
 request.SetName(CRAWLER_NAME);

 Aws::Glue::Model::StartCrawlerOutcome outcome =
 client.StartCrawler(request);

 if (outcome.IsSuccess() || (Aws::Glue::GlueErrors::CRAWLER_RUNNING ==
 outcome.GetError().GetErrorType())) {
 if (!outcome.IsSuccess()) {
 std::cout << "Crawler was already started." << std::endl;
 }
 else {
 std::cout << "Successfully started crawler." << std::endl;
 }

 std::cout << "This may take a while to run." << std::endl;

 Aws::Glue::Model::CrawlerState crawlerState =
 Aws::Glue::Model::CrawlerState::NOT_SET;
 int iterations = 0;
 while (Aws::Glue::Model::CrawlerState::READY != crawlerState) {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 ++iterations;
 if ((iterations % 10) == 0) { // Log status every 10 seconds.

Get started with crawlers and jobs 2583

AWS Glue User Guide

 std::cout << "Crawler status " <<

 Aws::Glue::Model::CrawlerStateMapper::GetNameForCrawlerState(
 crawlerState)
 << ". After " << iterations
 << " seconds elapsed."
 << std::endl;
 }
 Aws::Glue::Model::GetCrawlerRequest getCrawlerRequest;
 getCrawlerRequest.SetName(CRAWLER_NAME);

 Aws::Glue::Model::GetCrawlerOutcome getCrawlerOutcome =
 client.GetCrawler(
 getCrawlerRequest);

 if (getCrawlerOutcome.IsSuccess()) {
 crawlerState =
 getCrawlerOutcome.GetResult().GetCrawler().GetState();
 }
 else {
 std::cerr << "Error getting crawler. "
 << getCrawlerOutcome.GetError().GetMessage() <<
 std::endl;
 break;
 }
 }

 if (Aws::Glue::Model::CrawlerState::READY == crawlerState) {
 std::cout << "Crawler finished running after " << iterations
 << " seconds."
 << std::endl;
 }
 }
 else {
 std::cerr << "Error starting a crawler. "
 << outcome.GetError().GetMessage()
 << std::endl;

 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, "", bucketName,
 clientConfig);
 return false;
 }
 }

Get started with crawlers and jobs 2584

AWS Glue User Guide

 // 5. Get a database.
 {
 Aws::Glue::Model::GetDatabaseRequest request;
 request.SetName(CRAWLER_DATABASE_NAME);

 Aws::Glue::Model::GetDatabaseOutcome outcome =
 client.GetDatabase(request);

 if (outcome.IsSuccess()) {
 const Aws::Glue::Model::Database &database =
 outcome.GetResult().GetDatabase();

 std::cout << "Successfully retrieve the database\n" <<
 database.Jsonize().View().WriteReadable() << "'." <<
 std::endl;
 }
 else {
 std::cerr << "Error getting the database. "
 << outcome.GetError().GetMessage() << std::endl;
 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, "", bucketName,
 clientConfig);
 return false;
 }
 }

 // 6. Get tables.
 Aws::String tableName;
 {
 Aws::Glue::Model::GetTablesRequest request;
 request.SetDatabaseName(CRAWLER_DATABASE_NAME);
 std::vector<Aws::Glue::Model::Table> all_tables;
 Aws::String nextToken; // Used for pagination.
 do {
 Aws::Glue::Model::GetTablesOutcome outcome =
 client.GetTables(request);

 if (outcome.IsSuccess()) {
 const std::vector<Aws::Glue::Model::Table> &tables =
 outcome.GetResult().GetTableList();
 all_tables.insert(all_tables.end(), tables.begin(),
 tables.end());
 nextToken = outcome.GetResult().GetNextToken();
 }
 else {

Get started with crawlers and jobs 2585

AWS Glue User Guide

 std::cerr << "Error getting the tables. "
 << outcome.GetError().GetMessage()
 << std::endl;
 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, "", bucketName,
 clientConfig);
 return false;
 }
 } while (!nextToken.empty());

 std::cout << "The database contains " << all_tables.size()
 << (all_tables.size() == 1 ?
 " table." : "tables.") << std::endl;
 std::cout << "Here is a list of the tables in the database.";
 for (size_t index = 0; index < all_tables.size(); ++index) {
 std::cout << " " << index + 1 << ": " <<
 all_tables[index].GetName()
 << std::endl;
 }

 if (!all_tables.empty()) {
 int tableIndex = askQuestionForIntRange(
 "Enter an index to display the database detail ",
 1, static_cast<int>(all_tables.size()));
 std::cout << all_tables[tableIndex -
 1].Jsonize().View().WriteReadable()
 << std::endl;

 tableName = all_tables[tableIndex - 1].GetName();
 }
 }

 // 7. Create a job.
 {
 Aws::Glue::Model::CreateJobRequest request;
 request.SetName(JOB_NAME);
 request.SetRole(roleArn);
 request.SetGlueVersion(GLUE_VERSION);

 Aws::Glue::Model::JobCommand command;
 command.SetName(JOB_COMMAND_NAME);
 command.SetPythonVersion(JOB_PYTHON_VERSION);
 command.SetScriptLocation(
 Aws::String("s3://") + bucketName + "/" + PYTHON_SCRIPT);
 request.SetCommand(command);

Get started with crawlers and jobs 2586

AWS Glue User Guide

 Aws::Glue::Model::CreateJobOutcome outcome = client.CreateJob(request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully created the job." << std::endl;
 }
 else {
 std::cerr << "Error creating the job. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, "", bucketName,
 clientConfig);
 return false;
 }
 }

 // 8. Start a job run.
 {
 Aws::Glue::Model::StartJobRunRequest request;
 request.SetJobName(JOB_NAME);

 Aws::Map<Aws::String, Aws::String> arguments;
 arguments["--input_database"] = CRAWLER_DATABASE_NAME;
 arguments["--input_table"] = tableName;
 arguments["--output_bucket_url"] = Aws::String("s3://") + bucketName +
 "/";
 request.SetArguments(arguments);

 Aws::Glue::Model::StartJobRunOutcome outcome =
 client.StartJobRun(request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully started the job." << std::endl;

 Aws::String jobRunId = outcome.GetResult().GetJobRunId();

 int iterator = 0;
 bool done = false;
 while (!done) {
 ++iterator;
 std::this_thread::sleep_for(std::chrono::seconds(1));
 Aws::Glue::Model::GetJobRunRequest jobRunRequest;
 jobRunRequest.SetJobName(JOB_NAME);
 jobRunRequest.SetRunId(jobRunId);

Get started with crawlers and jobs 2587

AWS Glue User Guide

 Aws::Glue::Model::GetJobRunOutcome jobRunOutcome =
 client.GetJobRun(
 jobRunRequest);

 if (jobRunOutcome.IsSuccess()) {
 const Aws::Glue::Model::JobRun &jobRun =
 jobRunOutcome.GetResult().GetJobRun();
 Aws::Glue::Model::JobRunState jobRunState =
 jobRun.GetJobRunState();

 if ((jobRunState == Aws::Glue::Model::JobRunState::STOPPED)
 ||
 (jobRunState == Aws::Glue::Model::JobRunState::FAILED) ||
 (jobRunState == Aws::Glue::Model::JobRunState::TIMEOUT))
 {
 std::cerr << "Error running job. "
 << jobRun.GetErrorMessage()
 << std::endl;
 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME,
 JOB_NAME,
 bucketName,
 clientConfig);
 return false;
 }
 else if (jobRunState ==
 Aws::Glue::Model::JobRunState::SUCCEEDED) {
 std::cout << "Job run succeeded after " << iterator <<
 " seconds elapsed." << std::endl;
 done = true;
 }
 else if ((iterator % 10) == 0) { // Log status every 10
 seconds.
 std::cout << "Job run status " <<

 Aws::Glue::Model::JobRunStateMapper::GetNameForJobRunState(
 jobRunState) <<
 ". " << iterator <<
 " seconds elapsed." << std::endl;
 }
 }
 else {
 std::cerr << "Error retrieving job run state. "
 << jobRunOutcome.GetError().GetMessage()

Get started with crawlers and jobs 2588

AWS Glue User Guide

 << std::endl;
 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, JOB_NAME,
 bucketName, clientConfig);
 return false;
 }
 }
 }
 else {
 std::cerr << "Error starting a job. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, JOB_NAME,
 bucketName,
 clientConfig);
 return false;
 }
 }

 // 9. List the output data stored in the S3 bucket.
 {
 Aws::S3::S3Client s3Client;
 Aws::S3::Model::ListObjectsV2Request request;
 request.SetBucket(bucketName);
 request.SetPrefix(OUTPUT_FILE_PREFIX);

 Aws::String continuationToken; // Used for pagination.
 std::vector<Aws::S3::Model::Object> allObjects;
 do {
 if (!continuationToken.empty()) {
 request.SetContinuationToken(continuationToken);
 }
 Aws::S3::Model::ListObjectsV2Outcome outcome =
 s3Client.ListObjectsV2(
 request);

 if (outcome.IsSuccess()) {
 const std::vector<Aws::S3::Model::Object> &objects =
 outcome.GetResult().GetContents();
 allObjects.insert(allObjects.end(), objects.begin(),
 objects.end());
 continuationToken =
 outcome.GetResult().GetNextContinuationToken();
 }
 else {

Get started with crawlers and jobs 2589

AWS Glue User Guide

 std::cerr << "Error listing objects. "
 << outcome.GetError().GetMessage()
 << std::endl;
 break;
 }
 } while (!continuationToken.empty());

 std::cout << "Data from your job is in " << allObjects.size() <<
 " files in the S3 bucket, " << bucketName << "." << std::endl;

 for (size_t i = 0; i < allObjects.size(); ++i) {
 std::cout << " " << i + 1 << ". " << allObjects[i].GetKey()
 << std::endl;
 }

 int objectIndex = askQuestionForIntRange(
 std::string(
 "Enter the number of a block to download it and see the
 first ") +
 std::to_string(LINES_OF_RUN_FILE_TO_DISPLAY) +
 " lines of JSON output in the block: ", 1,
 static_cast<int>(allObjects.size()));

 Aws::String objectKey = allObjects[objectIndex - 1].GetKey();

 std::stringstream stringStream;
 if (getObjectFromBucket(bucketName, objectKey, stringStream,
 clientConfig)) {
 for (int i = 0; i < LINES_OF_RUN_FILE_TO_DISPLAY && stringStream; +
+i) {
 std::string line;
 std::getline(stringStream, line);
 std::cout << " " << line << std::endl;
 }
 }
 else {
 deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, JOB_NAME,
 bucketName,
 clientConfig);
 return false;
 }
 }

 // 10. List all the jobs.

Get started with crawlers and jobs 2590

AWS Glue User Guide

 Aws::String jobName;
 {
 Aws::Glue::Model::ListJobsRequest listJobsRequest;

 Aws::String nextToken;
 std::vector<Aws::String> allJobNames;

 do {
 if (!nextToken.empty()) {
 listJobsRequest.SetNextToken(nextToken);
 }
 Aws::Glue::Model::ListJobsOutcome listRunsOutcome = client.ListJobs(
 listJobsRequest);

 if (listRunsOutcome.IsSuccess()) {
 const std::vector<Aws::String> &jobNames =
 listRunsOutcome.GetResult().GetJobNames();
 allJobNames.insert(allJobNames.end(), jobNames.begin(),
 jobNames.end());
 nextToken = listRunsOutcome.GetResult().GetNextToken();
 }
 else {
 std::cerr << "Error listing jobs. "
 << listRunsOutcome.GetError().GetMessage()
 << std::endl;
 }
 } while (!nextToken.empty());
 std::cout << "Your account has " << allJobNames.size() << " jobs."
 << std::endl;
 for (size_t i = 0; i < allJobNames.size(); ++i) {
 std::cout << " " << i + 1 << ". " << allJobNames[i] << std::endl;
 }
 int jobIndex = askQuestionForIntRange(
 Aws::String("Enter a number between 1 and ") +
 std::to_string(allJobNames.size()) +
 " to see the list of runs for a job: ",
 1, static_cast<int>(allJobNames.size()));

 jobName = allJobNames[jobIndex - 1];
 }

 // 11. Get the job runs for a job.
 Aws::String jobRunID;
 if (!jobName.empty()) {

Get started with crawlers and jobs 2591

AWS Glue User Guide

 Aws::Glue::Model::GetJobRunsRequest getJobRunsRequest;
 getJobRunsRequest.SetJobName(jobName);

 Aws::String nextToken; // Used for pagination.
 std::vector<Aws::Glue::Model::JobRun> allJobRuns;
 do {
 if (!nextToken.empty()) {
 getJobRunsRequest.SetNextToken(nextToken);
 }
 Aws::Glue::Model::GetJobRunsOutcome jobRunsOutcome =
 client.GetJobRuns(
 getJobRunsRequest);

 if (jobRunsOutcome.IsSuccess()) {
 const std::vector<Aws::Glue::Model::JobRun> &jobRuns =
 jobRunsOutcome.GetResult().GetJobRuns();
 allJobRuns.insert(allJobRuns.end(), jobRuns.begin(),
 jobRuns.end());

 nextToken = jobRunsOutcome.GetResult().GetNextToken();
 }
 else {
 std::cerr << "Error getting job runs. "
 << jobRunsOutcome.GetError().GetMessage()
 << std::endl;
 break;
 }
 } while (!nextToken.empty());

 std::cout << "There are " << allJobRuns.size() << " runs in the job '"
 <<
 jobName << "'." << std::endl;

 for (size_t i = 0; i < allJobRuns.size(); ++i) {
 std::cout << " " << i + 1 << ". " << allJobRuns[i].GetJobName()
 << std::endl;
 }

 int runIndex = askQuestionForIntRange(
 Aws::String("Enter a number between 1 and ") +
 std::to_string(allJobRuns.size()) +
 " to see details for a run: ",
 1, static_cast<int>(allJobRuns.size()));
 jobRunID = allJobRuns[runIndex - 1].GetId();

Get started with crawlers and jobs 2592

AWS Glue User Guide

 }

 // 12. Get a single job run.
 if (!jobRunID.empty()) {
 Aws::Glue::Model::GetJobRunRequest jobRunRequest;
 jobRunRequest.SetJobName(jobName);
 jobRunRequest.SetRunId(jobRunID);

 Aws::Glue::Model::GetJobRunOutcome jobRunOutcome = client.GetJobRun(
 jobRunRequest);

 if (jobRunOutcome.IsSuccess()) {
 std::cout << "Displaying the job run JSON description." << std::endl;
 std::cout
 <<
 jobRunOutcome.GetResult().GetJobRun().Jsonize().View().WriteReadable()
 << std::endl;
 }
 else {
 std::cerr << "Error get a job run. "
 << jobRunOutcome.GetError().GetMessage()
 << std::endl;
 }
 }

 return deleteAssets(CRAWLER_NAME, CRAWLER_DATABASE_NAME, JOB_NAME,
 bucketName,
 clientConfig);
}

//! Cleanup routine to delete created assets.
/*!
 \\sa deleteAssets()
 \param crawler: Name of an AWS Glue crawler.
 \param database: The name of an AWS Glue database.
 \param job: The name of an AWS Glue job.
 \param bucketName: The name of an S3 bucket.
 \param clientConfig: AWS client configuration.
 \return bool: Successful completion.
 */
bool AwsDoc::Glue::deleteAssets(const Aws::String &crawler, const Aws::String
 &database,
 const Aws::String &job, const Aws::String
 &bucketName,

Get started with crawlers and jobs 2593

AWS Glue User Guide

 const Aws::Client::ClientConfiguration
 &clientConfig) {
 const Aws::Glue::GlueClient client(clientConfig);
 bool result = true;

 // 13. Delete a job.
 if (!job.empty()) {
 Aws::Glue::Model::DeleteJobRequest request;
 request.SetJobName(job);

 Aws::Glue::Model::DeleteJobOutcome outcome = client.DeleteJob(request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted the job." << std::endl;
 }
 else {
 std::cerr << "Error deleting the job. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }
 }

 // 14. Delete a database.
 if (!database.empty()) {
 Aws::Glue::Model::DeleteDatabaseRequest request;
 request.SetName(database);

 Aws::Glue::Model::DeleteDatabaseOutcome outcome = client.DeleteDatabase(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted the database." << std::endl;
 }
 else {
 std::cerr << "Error deleting database. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }
 }

 // 15. Delete a crawler.

Get started with crawlers and jobs 2594

AWS Glue User Guide

 if (!crawler.empty()) {
 Aws::Glue::Model::DeleteCrawlerRequest request;
 request.SetName(crawler);

 Aws::Glue::Model::DeleteCrawlerOutcome outcome =
 client.DeleteCrawler(request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted the crawler." << std::endl;
 }
 else {
 std::cerr << "Error deleting the crawler. "
 << outcome.GetError().GetMessage() << std::endl;
 result = false;
 }
 }

 // 16. Delete the job script and run data from the S3 bucket.
 result &= AwsDoc::Glue::deleteAllObjectsInS3Bucket(bucketName,
 clientConfig);
 return result;
}

//! Routine which uploads a file to an S3 bucket.
/*!
 \\sa uploadFile()
 \param bucketName: An S3 bucket created in the setup.
 \param filePath: The path of the file to upload.
 \param fileName The name for the uploaded file.
 \param clientConfig: AWS client configuration.
 \return bool: Successful completion.
 */
bool
AwsDoc::Glue::uploadFile(const Aws::String &bucketName,
 const Aws::String &filePath,
 const Aws::String &fileName,
 const Aws::Client::ClientConfiguration &clientConfig) {
 Aws::S3::S3Client s3_client(clientConfig);

 Aws::S3::Model::PutObjectRequest request;
 request.SetBucket(bucketName);
 request.SetKey(fileName);

 std::shared_ptr<Aws::IOStream> inputData =

Get started with crawlers and jobs 2595

AWS Glue User Guide

 Aws::MakeShared<Aws::FStream>("SampleAllocationTag",
 filePath.c_str(),
 std::ios_base::in |
 std::ios_base::binary);

 if (!*inputData) {
 std::cerr << "Error unable to read file " << filePath << std::endl;
 return false;
 }

 request.SetBody(inputData);

 Aws::S3::Model::PutObjectOutcome outcome =
 s3_client.PutObject(request);

 if (!outcome.IsSuccess()) {
 std::cerr << "Error: PutObject: " <<
 outcome.GetError().GetMessage() << std::endl;
 }
 else {
 std::cout << "Added object '" << filePath << "' to bucket '"
 << bucketName << "'." << std::endl;
 }

 return outcome.IsSuccess();
}

//! Routine which deletes all objects in an S3 bucket.
/*!
 \\sa deleteAllObjectsInS3Bucket()
 \param bucketName: The S3 bucket name.
 \param clientConfig: AWS client configuration.
 \return bool: Successful completion.
 */
bool AwsDoc::Glue::deleteAllObjectsInS3Bucket(const Aws::String &bucketName,
 const
 Aws::Client::ClientConfiguration &clientConfig) {
 Aws::S3::S3Client client(clientConfig);
 Aws::S3::Model::ListObjectsV2Request listObjectsRequest;
 listObjectsRequest.SetBucket(bucketName);

 Aws::String continuationToken; // Used for pagination.
 bool result = true;
 do {

Get started with crawlers and jobs 2596

AWS Glue User Guide

 if (!continuationToken.empty()) {
 listObjectsRequest.SetContinuationToken(continuationToken);
 }

 Aws::S3::Model::ListObjectsV2Outcome listObjectsOutcome =
 client.ListObjectsV2(
 listObjectsRequest);

 if (listObjectsOutcome.IsSuccess()) {
 const std::vector<Aws::S3::Model::Object> &objects =
 listObjectsOutcome.GetResult().GetContents();
 if (!objects.empty()) {
 Aws::S3::Model::DeleteObjectsRequest deleteObjectsRequest;
 deleteObjectsRequest.SetBucket(bucketName);

 std::vector<Aws::S3::Model::ObjectIdentifier> objectIdentifiers;
 for (const Aws::S3::Model::Object &object: objects) {
 objectIdentifiers.push_back(
 Aws::S3::Model::ObjectIdentifier().WithKey(
 object.GetKey()));
 }
 Aws::S3::Model::Delete objectsDelete;
 objectsDelete.SetObjects(objectIdentifiers);
 objectsDelete.SetQuiet(true);
 deleteObjectsRequest.SetDelete(objectsDelete);

 Aws::S3::Model::DeleteObjectsOutcome deleteObjectsOutcome =
 client.DeleteObjects(deleteObjectsRequest);

 if (!deleteObjectsOutcome.IsSuccess()) {
 std::cerr << "Error deleting objects. " <<
 deleteObjectsOutcome.GetError().GetMessage() <<
 std::endl;
 result = false;
 break;
 }
 else {
 std::cout << "Successfully deleted the objects." <<
 std::endl;

 }
 }
 else {
 std::cout << "No objects to delete in '" << bucketName << "'."

Get started with crawlers and jobs 2597

AWS Glue User Guide

 << std::endl;
 }

 continuationToken =
 listObjectsOutcome.GetResult().GetNextContinuationToken();
 }
 else {
 std::cerr << "Error listing objects. "
 << listObjectsOutcome.GetError().GetMessage() << std::endl;
 result = false;
 break;
 }
 } while (!continuationToken.empty());

 return result;
}

//! Routine which retrieves an object from an S3 bucket.
/*!
 \\sa getObjectFromBucket()
 \param bucketName: The S3 bucket name.
 \param objectKey: The object's name.
 \param objectStream: A stream to receive the retrieved data.
 \param clientConfig: AWS client configuration.
 \return bool: Successful completion.
 */
bool AwsDoc::Glue::getObjectFromBucket(const Aws::String &bucketName,
 const Aws::String &objectKey,
 std::ostream &objectStream,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::S3::S3Client client(clientConfig);
 Aws::S3::Model::GetObjectRequest request;
 request.SetBucket(bucketName);
 request.SetKey(objectKey);

 Aws::S3::Model::GetObjectOutcome outcome = client.GetObject(request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully retrieved '" << objectKey << "'." <<
 std::endl;
 auto &body = outcome.GetResult().GetBody();
 objectStream << body.rdbuf();

Get started with crawlers and jobs 2598

AWS Glue User Guide

 }
 else {
 std::cerr << "Error retrieving object. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see the following topics in AWS SDK for C++ API Reference.

• CreateCrawler

• CreateJob

• DeleteCrawler

• DeleteDatabase

• DeleteJob

• DeleteTable

• GetCrawler

• GetDatabase

• GetDatabases

• GetJob

• GetJobRun

• GetJobRuns

• GetTables

• ListJobs

• StartCrawler

• StartJobRun

Get started with crawlers and jobs 2599

https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/CreateCrawler
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/CreateJob
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/DeleteCrawler
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/DeleteDatabase
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/DeleteJob
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/DeleteTable
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/GetCrawler
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/GetDatabase
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/GetDatabases
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/GetJob
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/GetJobRun
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/GetJobRuns
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/GetTables
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/ListJobs
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/StartCrawler
https://docs.aws.amazon.com/goto/SdkForCpp/glue-2017-03-31/StartJobRun

AWS Glue User Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
 *
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * To set up the resources, see this documentation topic:
 *
 * https://docs.aws.amazon.com/glue/latest/ug/tutorial-add-crawler.html
 *
 * This example performs the following tasks:
 *
 * 1. Create a database.
 * 2. Create a crawler.
 * 3. Get a crawler.
 * 4. Start a crawler.
 * 5. Get a database.
 * 6. Get tables.
 * 7. Create a job.
 * 8. Start a job run.
 * 9. List all jobs.
 * 10. Get job runs.
 * 11. Delete a job.
 * 12. Delete a database.
 * 13. Delete a crawler.
 */

public class GlueScenario {

Get started with crawlers and jobs 2600

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/glue#readme

AWS Glue User Guide

 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");

 public static void main(String[] args) throws InterruptedException {
 final String usage = """

 Usage:
 <iam> <s3Path> <cron> <dbName> <crawlerName> <jobName>\s

 Where:
 iam - The ARN of the IAM role that has AWS Glue and S3
 permissions.\s
 s3Path - The Amazon Simple Storage Service (Amazon S3) target
 that contains data (for example, CSV data).
 cron - A cron expression used to specify the schedule (i.e.,
 cron(15 12 * * ? *).
 dbName - The database name.\s
 crawlerName - The name of the crawler.\s
 jobName - The name you assign to this job definition.
 scriptLocation - The Amazon S3 path to a script that runs a
 job.
 locationUri - The location of the database
 bucketNameSc - The Amazon S3 bucket name used when creating a
 job
 """;

 if (args.length != 9) {
 System.out.println(usage);
 System.exit(1);
 }

 String iam = args[0];
 String s3Path = args[1];
 String cron = args[2];
 String dbName = args[3];
 String crawlerName = args[4];
 String jobName = args[5];
 String scriptLocation = args[6];
 String locationUri = args[7];
 String bucketNameSc = args[8];

 Region region = Region.US_EAST_1;
 GlueClient glueClient = GlueClient.builder()
 .region(region)

Get started with crawlers and jobs 2601

AWS Glue User Guide

 .build();
 System.out.println(DASHES);
 System.out.println("Welcome to the AWS Glue scenario.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("1. Create a database.");
 createDatabase(glueClient, dbName, locationUri);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("2. Create a crawler.");
 createGlueCrawler(glueClient, iam, s3Path, cron, dbName, crawlerName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("3. Get a crawler.");
 getSpecificCrawler(glueClient, crawlerName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("4. Start a crawler.");
 startSpecificCrawler(glueClient, crawlerName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("5. Get a database.");
 getSpecificDatabase(glueClient, dbName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("*** Wait 5 min for the tables to become available");
 TimeUnit.MINUTES.sleep(5);
 System.out.println("6. Get tables.");
 String myTableName = getGlueTables(glueClient, dbName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("7. Create a job.");
 createJob(glueClient, jobName, iam, scriptLocation);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("8. Start a Job run.");

Get started with crawlers and jobs 2602

AWS Glue User Guide

 startJob(glueClient, jobName, dbName, myTableName, bucketNameSc);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("9. List all jobs.");
 getAllJobs(glueClient);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("10. Get job runs.");
 getJobRuns(glueClient, jobName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("11. Delete a job.");
 deleteJob(glueClient, jobName);
 System.out.println("*** Wait 5 MIN for the " + crawlerName + " to stop");
 TimeUnit.MINUTES.sleep(5);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("12. Delete a database.");
 deleteDatabase(glueClient, dbName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("Delete a crawler.");
 deleteSpecificCrawler(glueClient, crawlerName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("Successfully completed the AWS Glue Scenario");
 System.out.println(DASHES);
 }

 public static void createDatabase(GlueClient glueClient, String dbName,
 String locationUri) {
 try {
 DatabaseInput input = DatabaseInput.builder()
 .description("Built with the AWS SDK for Java V2")
 .name(dbName)
 .locationUri(locationUri)
 .build();

Get started with crawlers and jobs 2603

AWS Glue User Guide

 CreateDatabaseRequest request = CreateDatabaseRequest.builder()
 .databaseInput(input)
 .build();

 glueClient.createDatabase(request);
 System.out.println(dbName + " was successfully created");

 } catch (GlueException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void createGlueCrawler(GlueClient glueClient,
 String iam,
 String s3Path,
 String cron,
 String dbName,
 String crawlerName) {

 try {
 S3Target s3Target = S3Target.builder()
 .path(s3Path)
 .build();

 List<S3Target> targetList = new ArrayList<>();
 targetList.add(s3Target);
 CrawlerTargets targets = CrawlerTargets.builder()
 .s3Targets(targetList)
 .build();

 CreateCrawlerRequest crawlerRequest = CreateCrawlerRequest.builder()
 .databaseName(dbName)
 .name(crawlerName)
 .description("Created by the AWS Glue Java API")
 .targets(targets)
 .role(iam)
 .schedule(cron)
 .build();

 glueClient.createCrawler(crawlerRequest);
 System.out.println(crawlerName + " was successfully created");

 } catch (GlueException e) {

Get started with crawlers and jobs 2604

AWS Glue User Guide

 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void getSpecificCrawler(GlueClient glueClient, String
 crawlerName) {
 try {
 GetCrawlerRequest crawlerRequest = GetCrawlerRequest.builder()
 .name(crawlerName)
 .build();

 boolean ready = false;
 while (!ready) {
 GetCrawlerResponse response =
 glueClient.getCrawler(crawlerRequest);
 String status = response.crawler().stateAsString();
 if (status.compareTo("READY") == 0) {
 ready = true;
 }
 Thread.sleep(3000);
 }

 System.out.println("The crawler is now ready");

 } catch (GlueException | InterruptedException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void startSpecificCrawler(GlueClient glueClient, String
 crawlerName) {
 try {
 StartCrawlerRequest crawlerRequest = StartCrawlerRequest.builder()
 .name(crawlerName)
 .build();

 glueClient.startCrawler(crawlerRequest);
 System.out.println(crawlerName + " was successfully started!");

 } catch (GlueException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);

Get started with crawlers and jobs 2605

AWS Glue User Guide

 }
 }

 public static void getSpecificDatabase(GlueClient glueClient, String
 databaseName) {
 try {
 GetDatabaseRequest databasesRequest = GetDatabaseRequest.builder()
 .name(databaseName)
 .build();

 GetDatabaseResponse response =
 glueClient.getDatabase(databasesRequest);
 Instant createDate = response.database().createTime();

 // Convert the Instant to readable date.
 DateTimeFormatter formatter =
 DateTimeFormatter.ofLocalizedDateTime(FormatStyle.SHORT)
 .withLocale(Locale.US)
 .withZone(ZoneId.systemDefault());

 formatter.format(createDate);
 System.out.println("The create date of the database is " +
 createDate);

 } catch (GlueException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static String getGlueTables(GlueClient glueClient, String dbName) {
 String myTableName = "";
 try {
 GetTablesRequest tableRequest = GetTablesRequest.builder()
 .databaseName(dbName)
 .build();

 GetTablesResponse response = glueClient.getTables(tableRequest);
 List<Table> tables = response.tableList();
 if (tables.isEmpty()) {
 System.out.println("No tables were returned");
 } else {
 for (Table table : tables) {
 myTableName = table.name();

Get started with crawlers and jobs 2606

AWS Glue User Guide

 System.out.println("Table name is: " + myTableName);
 }
 }

 } catch (GlueException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return myTableName;
 }

 public static void startJob(GlueClient glueClient, String jobName, String
 inputDatabase, String inputTable,
 String outBucket) {
 try {
 Map<String, String> myMap = new HashMap<>();
 myMap.put("--input_database", inputDatabase);
 myMap.put("--input_table", inputTable);
 myMap.put("--output_bucket_url", outBucket);

 StartJobRunRequest runRequest = StartJobRunRequest.builder()
 .workerType(WorkerType.G_1_X)
 .numberOfWorkers(10)
 .arguments(myMap)
 .jobName(jobName)
 .build();

 StartJobRunResponse response = glueClient.startJobRun(runRequest);
 System.out.println("The request Id of the job is " +
 response.responseMetadata().requestId());

 } catch (GlueException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void createJob(GlueClient glueClient, String jobName, String
 iam, String scriptLocation) {
 try {
 JobCommand command = JobCommand.builder()
 .pythonVersion("3")
 .name("glueetl")
 .scriptLocation(scriptLocation)

Get started with crawlers and jobs 2607

AWS Glue User Guide

 .build();

 CreateJobRequest jobRequest = CreateJobRequest.builder()
 .description("A Job created by using the AWS SDK for Java
 V2")
 .glueVersion("2.0")
 .workerType(WorkerType.G_1_X)
 .numberOfWorkers(10)
 .name(jobName)
 .role(iam)
 .command(command)
 .build();

 glueClient.createJob(jobRequest);
 System.out.println(jobName + " was successfully created.");

 } catch (GlueException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void getAllJobs(GlueClient glueClient) {
 try {
 GetJobsRequest jobsRequest = GetJobsRequest.builder()
 .maxResults(10)
 .build();

 GetJobsResponse jobsResponse = glueClient.getJobs(jobsRequest);
 List<Job> jobs = jobsResponse.jobs();
 for (Job job : jobs) {
 System.out.println("Job name is : " + job.name());
 System.out.println("The job worker type is : " +
 job.workerType().name());
 }

 } catch (GlueException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void getJobRuns(GlueClient glueClient, String jobName) {
 try {

Get started with crawlers and jobs 2608

AWS Glue User Guide

 GetJobRunsRequest runsRequest = GetJobRunsRequest.builder()
 .jobName(jobName)
 .maxResults(20)
 .build();

 boolean jobDone = false;
 while (!jobDone) {
 GetJobRunsResponse response = glueClient.getJobRuns(runsRequest);
 List<JobRun> jobRuns = response.jobRuns();
 for (JobRun jobRun : jobRuns) {
 String jobState = jobRun.jobRunState().name();
 if (jobState.compareTo("SUCCEEDED") == 0) {
 System.out.println(jobName + " has succeeded");
 jobDone = true;

 } else if (jobState.compareTo("STOPPED") == 0) {
 System.out.println("Job run has stopped");
 jobDone = true;

 } else if (jobState.compareTo("FAILED") == 0) {
 System.out.println("Job run has failed");
 jobDone = true;

 } else if (jobState.compareTo("TIMEOUT") == 0) {
 System.out.println("Job run has timed out");
 jobDone = true;

 } else {
 System.out.println("*** Job run state is " +
 jobRun.jobRunState().name());
 System.out.println("Job run Id is " + jobRun.id());
 System.out.println("The Glue version is " +
 jobRun.glueVersion());
 }
 TimeUnit.SECONDS.sleep(5);
 }
 }

 } catch (GlueException | InterruptedException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

Get started with crawlers and jobs 2609

AWS Glue User Guide

 public static void deleteJob(GlueClient glueClient, String jobName) {
 try {
 DeleteJobRequest jobRequest = DeleteJobRequest.builder()
 .jobName(jobName)
 .build();

 glueClient.deleteJob(jobRequest);
 System.out.println(jobName + " was successfully deleted");

 } catch (GlueException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void deleteDatabase(GlueClient glueClient, String databaseName)
 {
 try {
 DeleteDatabaseRequest request = DeleteDatabaseRequest.builder()
 .name(databaseName)
 .build();

 glueClient.deleteDatabase(request);
 System.out.println(databaseName + " was successfully deleted");

 } catch (GlueException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void deleteSpecificCrawler(GlueClient glueClient, String
 crawlerName) {
 try {
 DeleteCrawlerRequest deleteCrawlerRequest =
 DeleteCrawlerRequest.builder()
 .name(crawlerName)
 .build();

 glueClient.deleteCrawler(deleteCrawlerRequest);
 System.out.println(crawlerName + " was deleted");

 } catch (GlueException e) {
 System.err.println(e.awsErrorDetails().errorMessage());

Get started with crawlers and jobs 2610

AWS Glue User Guide

 System.exit(1);
 }
 }
}

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• CreateCrawler

• CreateJob

• DeleteCrawler

• DeleteDatabase

• DeleteJob

• DeleteTable

• GetCrawler

• GetDatabase

• GetDatabases

• GetJob

• GetJobRun

• GetJobRuns

• GetTables

• ListJobs

• StartCrawler

• StartJobRun

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Get started with crawlers and jobs 2611

https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/CreateCrawler
https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/CreateJob
https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/DeleteCrawler
https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/DeleteDatabase
https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/DeleteJob
https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/DeleteTable
https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/GetCrawler
https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/GetDatabase
https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/GetDatabases
https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/GetJob
https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/GetJobRun
https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/GetJobRuns
https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/GetTables
https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/ListJobs
https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/StartCrawler
https://docs.aws.amazon.com/goto/SdkForJavaV2/glue-2017-03-31/StartJobRun
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples

AWS Glue User Guide

Create and run a crawler that crawls a public Amazon Simple Storage Service (Amazon S3)
bucket and generates a metadata database that describes the CSV-formatted data it finds.

const createCrawler = (name, role, dbName, tablePrefix, s3TargetPath) => {
 const client = new GlueClient({});

 const command = new CreateCrawlerCommand({
 Name: name,
 Role: role,
 DatabaseName: dbName,
 TablePrefix: tablePrefix,
 Targets: {
 S3Targets: [{ Path: s3TargetPath }],
 },
 });

 return client.send(command);
};

const getCrawler = (name) => {
 const client = new GlueClient({});

 const command = new GetCrawlerCommand({
 Name: name,
 });

 return client.send(command);
};

const startCrawler = (name) => {
 const client = new GlueClient({});

 const command = new StartCrawlerCommand({
 Name: name,
 });

 return client.send(command);
};

const crawlerExists = async ({ getCrawler }, crawlerName) => {
 try {
 await getCrawler(crawlerName);
 return true;

Get started with crawlers and jobs 2612

AWS Glue User Guide

 } catch {
 return false;
 }
};

/**
 * @param {{ createCrawler: import('../../../actions/create-
crawler.js').createCrawler}} actions
 */
const makeCreateCrawlerStep = (actions) => async (context) => {
 if (await crawlerExists(actions, process.env.CRAWLER_NAME)) {
 log("Crawler already exists. Skipping creation.");
 } else {
 await actions.createCrawler(
 process.env.CRAWLER_NAME,
 process.env.ROLE_NAME,
 process.env.DATABASE_NAME,
 process.env.TABLE_PREFIX,
 process.env.S3_TARGET_PATH,
);

 log("Crawler created successfully.", { type: "success" });
 }

 return { ...context };
};

/**
 * @param {(name: string) => Promise<import('@aws-sdk/client-
glue').GetCrawlerCommandOutput>} getCrawler
 * @param {string} crawlerName
 */
const waitForCrawler = async (getCrawler, crawlerName) => {
 const waitTimeInSeconds = 30;
 const { Crawler } = await getCrawler(crawlerName);

 if (!Crawler) {
 throw new Error(`Crawler with name ${crawlerName} not found.`);
 }

 if (Crawler.State === "READY") {
 return;
 }

Get started with crawlers and jobs 2613

AWS Glue User Guide

 log(`Crawler is ${Crawler.State}. Waiting ${waitTimeInSeconds} seconds...`);
 await wait(waitTimeInSeconds);
 return waitForCrawler(getCrawler, crawlerName);
};

const makeStartCrawlerStep =
 ({ startCrawler, getCrawler }) =>
 async (context) => {
 log("Starting crawler.");
 await startCrawler(process.env.CRAWLER_NAME);
 log("Crawler started.", { type: "success" });

 log("Waiting for crawler to finish running. This can take a while.");
 await waitForCrawler(getCrawler, process.env.CRAWLER_NAME);
 log("Crawler ready.", { type: "success" });

 return { ...context };
 };

List information about databases and tables in your AWS Glue Data Catalog.

const getDatabase = (name) => {
 const client = new GlueClient({});

 const command = new GetDatabaseCommand({
 Name: name,
 });

 return client.send(command);
};

const getTables = (databaseName) => {
 const client = new GlueClient({});

 const command = new GetTablesCommand({
 DatabaseName: databaseName,
 });

 return client.send(command);
};

const makeGetDatabaseStep =

Get started with crawlers and jobs 2614

AWS Glue User Guide

 ({ getDatabase }) =>
 async (context) => {
 const {
 Database: { Name },
 } = await getDatabase(process.env.DATABASE_NAME);
 log(`Database: ${Name}`);
 return { ...context };
 };

/**
 * @param {{ getTables: () => Promise<import('@aws-sdk/client-
glue').GetTablesCommandOutput}} config
 */
const makeGetTablesStep =
 ({ getTables }) =>
 async (context) => {
 const { TableList } = await getTables(process.env.DATABASE_NAME);
 log("Tables:");
 log(TableList.map((table) => ` • ${table.Name}\n`));
 return { ...context };
 };

Create and run a job that extracts CSV data from the source Amazon S3 bucket, transforms
it by removing and renaming fields, and loads JSON-formatted output into another Amazon
S3 bucket.

const createJob = (name, role, scriptBucketName, scriptKey) => {
 const client = new GlueClient({});

 const command = new CreateJobCommand({
 Name: name,
 Role: role,
 Command: {
 Name: "glueetl",
 PythonVersion: "3",
 ScriptLocation: `s3://${scriptBucketName}/${scriptKey}`,
 },
 GlueVersion: "3.0",
 });

 return client.send(command);
};

Get started with crawlers and jobs 2615

AWS Glue User Guide

const startJobRun = (jobName, dbName, tableName, bucketName) => {
 const client = new GlueClient({});

 const command = new StartJobRunCommand({
 JobName: jobName,
 Arguments: {
 "--input_database": dbName,
 "--input_table": tableName,
 "--output_bucket_url": `s3://${bucketName}/`,
 },
 });

 return client.send(command);
};

const makeCreateJobStep =
 ({ createJob }) =>
 async (context) => {
 log("Creating Job.");
 await createJob(
 process.env.JOB_NAME,
 process.env.ROLE_NAME,
 process.env.BUCKET_NAME,
 process.env.PYTHON_SCRIPT_KEY,
);
 log("Job created.", { type: "success" });

 return { ...context };
 };

/**
 * @param {(name: string, runId: string) => Promise<import('@aws-sdk/client-
glue').GetJobRunCommandOutput> } getJobRun
 * @param {string} jobName
 * @param {string} jobRunId
 */
const waitForJobRun = async (getJobRun, jobName, jobRunId) => {
 const waitTimeInSeconds = 30;
 const { JobRun } = await getJobRun(jobName, jobRunId);

 if (!JobRun) {
 throw new Error(`Job run with id ${jobRunId} not found.`);
 }

Get started with crawlers and jobs 2616

AWS Glue User Guide

 switch (JobRun.JobRunState) {
 case "FAILED":
 case "TIMEOUT":
 case "STOPPED":
 throw new Error(
 `Job ${JobRun.JobRunState}. Error: ${JobRun.ErrorMessage}`,
);
 case "RUNNING":
 break;
 case "SUCCEEDED":
 return;
 default:
 throw new Error(`Unknown job run state: ${JobRun.JobRunState}`);
 }

 log(
 `Job ${JobRun.JobRunState}. Waiting ${waitTimeInSeconds} more seconds...`,
);
 await wait(waitTimeInSeconds);
 return waitForJobRun(getJobRun, jobName, jobRunId);
};

/**
 * @param {{ prompter: { prompt: () => Promise<{ shouldOpen: boolean }>} }}
 context
 */
const promptToOpen = async (context) => {
 const { shouldOpen } = await context.prompter.prompt({
 name: "shouldOpen",
 type: "confirm",
 message: "Open the output bucket in your browser?",
 });

 if (shouldOpen) {
 return open(
 `https://s3.console.aws.amazon.com/s3/buckets/${process.env.BUCKET_NAME} to
 view the output.`,
);
 }
};

const makeStartJobRunStep =
 ({ startJobRun, getJobRun }) =>

Get started with crawlers and jobs 2617

AWS Glue User Guide

 async (context) => {
 log("Starting job.");
 const { JobRunId } = await startJobRun(
 process.env.JOB_NAME,
 process.env.DATABASE_NAME,
 process.env.TABLE_NAME,
 process.env.BUCKET_NAME,
);
 log("Job started.", { type: "success" });

 log("Waiting for job to finish running. This can take a while.");
 await waitForJobRun(getJobRun, process.env.JOB_NAME, JobRunId);
 log("Job run succeeded.", { type: "success" });

 await promptToOpen(context);

 return { ...context };
 };

List information about job runs and view some of the transformed data.

const getJobRuns = (jobName) => {
 const client = new GlueClient({});
 const command = new GetJobRunsCommand({
 JobName: jobName,
 });

 return client.send(command);
};

const getJobRun = (jobName, jobRunId) => {
 const client = new GlueClient({});
 const command = new GetJobRunCommand({
 JobName: jobName,
 RunId: jobRunId,
 });

 return client.send(command);
};

/**
 * @typedef {{ prompter: { prompt: () => Promise<{jobName: string}> } }} Context

Get started with crawlers and jobs 2618

AWS Glue User Guide

 */

/**
 * @typedef {() => Promise<import('@aws-sdk/client-
glue').GetJobRunCommandOutput>} getJobRun
 */

/**
 * @typedef {() => Promise<import('@aws-sdk/client-
glue').GetJobRunsCommandOutput} getJobRuns
 */

/**
 *
 * @param {getJobRun} getJobRun
 * @param {string} jobName
 * @param {string} jobRunId
 */
const logJobRunDetails = async (getJobRun, jobName, jobRunId) => {
 const { JobRun } = await getJobRun(jobName, jobRunId);
 log(JobRun, { type: "object" });
};

/**
 *
 * @param {{getJobRuns: getJobRuns, getJobRun: getJobRun }} funcs
 */
const makePickJobRunStep =
 ({ getJobRuns, getJobRun }) =>
 async (/** @type { Context } */ context) => {
 if (context.selectedJobName) {
 const { JobRuns } = await getJobRuns(context.selectedJobName);

 const { jobRunId } = await context.prompter.prompt({
 name: "jobRunId",
 type: "list",
 message: "Select a job run to see details.",
 choices: JobRuns.map((run) => run.Id),
 });

 logJobRunDetails(getJobRun, context.selectedJobName, jobRunId);
 }

 return { ...context };

Get started with crawlers and jobs 2619

AWS Glue User Guide

 };

Delete all resources created by the demo.

const deleteJob = (jobName) => {
 const client = new GlueClient({});

 const command = new DeleteJobCommand({
 JobName: jobName,
 });

 return client.send(command);
};

const deleteTable = (databaseName, tableName) => {
 const client = new GlueClient({});

 const command = new DeleteTableCommand({
 DatabaseName: databaseName,
 Name: tableName,
 });

 return client.send(command);
};

const deleteDatabase = (databaseName) => {
 const client = new GlueClient({});

 const command = new DeleteDatabaseCommand({
 Name: databaseName,
 });

 return client.send(command);
};

const deleteCrawler = (crawlerName) => {
 const client = new GlueClient({});

 const command = new DeleteCrawlerCommand({
 Name: crawlerName,
 });

Get started with crawlers and jobs 2620

AWS Glue User Guide

 return client.send(command);
};

/**
 *
 * @param {import('../../../actions/delete-job.js').deleteJob} deleteJobFn
 * @param {string[]} jobNames
 * @param {{ prompter: { prompt: () => Promise<any> }}} context
 */
const handleDeleteJobs = async (deleteJobFn, jobNames, context) => {
 /**
 * @type {{ selectedJobNames: string[] }}
 */
 const { selectedJobNames } = await context.prompter.prompt({
 name: "selectedJobNames",
 type: "checkbox",
 message: "Let's clean up jobs. Select jobs to delete.",
 choices: jobNames,
 });

 if (selectedJobNames.length === 0) {
 log("No jobs selected.");
 } else {
 log("Deleting jobs.");
 await Promise.all(
 selectedJobNames.map((n) => deleteJobFn(n).catch(console.error)),
);
 log("Jobs deleted.", { type: "success" });
 }
};

/**
 * @param {{
 * listJobs: import('../../../actions/list-jobs.js').listJobs,
 * deleteJob: import('../../../actions/delete-job.js').deleteJob
 * }} config
 */
const makeCleanUpJobsStep =
 ({ listJobs, deleteJob }) =>
 async (context) => {
 const { JobNames } = await listJobs();
 if (JobNames.length > 0) {
 await handleDeleteJobs(deleteJob, JobNames, context);
 }

Get started with crawlers and jobs 2621

AWS Glue User Guide

 return { ...context };
 };

/**
 * @param {import('../../../actions/delete-table.js').deleteTable} deleteTable
 * @param {string} databaseName
 * @param {string[]} tableNames
 */
const deleteTables = (deleteTable, databaseName, tableNames) =>
 Promise.all(
 tableNames.map((tableName) =>
 deleteTable(databaseName, tableName).catch(console.error),
),
);

/**
 * @param {{
 * getTables: import('../../../actions/get-tables.js').getTables,
 * deleteTable: import('../../../actions/delete-table.js').deleteTable
 * }} config
 */
const makeCleanUpTablesStep =
 ({ getTables, deleteTable }) =>
 /**
 * @param {{ prompter: { prompt: () => Promise<any>}}} context
 */
 async (context) => {
 const { TableList } = await getTables(process.env.DATABASE_NAME).catch(
 () => ({ TableList: null }),
);

 if (TableList && TableList.length > 0) {
 /**
 * @type {{ tableNames: string[] }}
 */
 const { tableNames } = await context.prompter.prompt({
 name: "tableNames",
 type: "checkbox",
 message: "Let's clean up tables. Select tables to delete.",
 choices: TableList.map((t) => t.Name),
 });

 if (tableNames.length === 0) {

Get started with crawlers and jobs 2622

AWS Glue User Guide

 log("No tables selected.");
 } else {
 log("Deleting tables.");
 await deleteTables(deleteTable, process.env.DATABASE_NAME, tableNames);
 log("Tables deleted.", { type: "success" });
 }
 }

 return { ...context };
 };

/**
 * @param {import('../../../actions/delete-database.js').deleteDatabase}
 deleteDatabase
 * @param {string[]} databaseNames
 */
const deleteDatabases = (deleteDatabase, databaseNames) =>
 Promise.all(
 databaseNames.map((dbName) => deleteDatabase(dbName).catch(console.error)),
);

/**
 * @param {{
 * getDatabases: import('../../../actions/get-databases.js').getDatabases
 * deleteDatabase: import('../../../actions/delete-database.js').deleteDatabase
 * }} config
 */
const makeCleanUpDatabasesStep =
 ({ getDatabases, deleteDatabase }) =>
 /**
 * @param {{ prompter: { prompt: () => Promise<any>}} context
 */
 async (context) => {
 const { DatabaseList } = await getDatabases();

 if (DatabaseList.length > 0) {
 /** @type {{ dbNames: string[] }} */
 const { dbNames } = await context.prompter.prompt({
 name: "dbNames",
 type: "checkbox",
 message: "Let's clean up databases. Select databases to delete.",
 choices: DatabaseList.map((db) => db.Name),
 });

Get started with crawlers and jobs 2623

AWS Glue User Guide

 if (dbNames.length === 0) {
 log("No databases selected.");
 } else {
 log("Deleting databases.");
 await deleteDatabases(deleteDatabase, dbNames);
 log("Databases deleted.", { type: "success" });
 }
 }

 return { ...context };
 };

const cleanUpCrawlerStep = async (context) => {
 log(`Deleting crawler.`);

 try {
 await deleteCrawler(process.env.CRAWLER_NAME);
 log("Crawler deleted.", { type: "success" });
 } catch (err) {
 if (err.name === "EntityNotFoundException") {
 log(`Crawler is already deleted.`);
 } else {
 throw err;
 }
 }

 return { ...context };
};

• For API details, see the following topics in AWS SDK for JavaScript API Reference.

• CreateCrawler

• CreateJob

• DeleteCrawler

• DeleteDatabase

• DeleteJob

• DeleteTable

• GetCrawler

• GetDatabase

• GetDatabases

Get started with crawlers and jobs 2624

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/CreateCrawlerCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/CreateJobCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteCrawlerCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteDatabaseCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteJobCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteTableCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/GetCrawlerCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/GetDatabaseCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/GetDatabasesCommand

AWS Glue User Guide

• GetJob

• GetJobRun

• GetJobRuns

• GetTables

• ListJobs

• StartCrawler

• StartJobRun

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun main(args: Array<String>) {
 val usage = """
 Usage:
 <iam> <s3Path> <cron> <dbName> <crawlerName> <jobName>
 <scriptLocation> <locationUri>

 Where:
 iam - The Amazon Resource Name (ARN) of the AWS Identity and Access
 Management (IAM) role that has AWS Glue and Amazon Simple Storage Service
 (Amazon S3) permissions.
 s3Path - The Amazon Simple Storage Service (Amazon S3) target that
 contains data (for example, CSV data).
 cron - A cron expression used to specify the schedule (for example,
 cron(15 12 * * ? *).
 dbName - The database name.
 crawlerName - The name of the crawler.
 jobName - The name you assign to this job definition.
 scriptLocation - Specifies the Amazon S3 path to a script that runs a
 job.
 locationUri - Specifies the location of the database
 """

Get started with crawlers and jobs 2625

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/GetJobCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/GetJobRunCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/GetJobRunsCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/GetTablesCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/ListJobsCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/StartCrawlerCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/glue/command/StartJobRunCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/glue#code-examples

AWS Glue User Guide

 if (args.size != 8) {
 println(usage)
 exitProcess(1)
 }

 val iam = args[0]
 val s3Path = args[1]
 val cron = args[2]
 val dbName = args[3]
 val crawlerName = args[4]
 val jobName = args[5]
 val scriptLocation = args[6]
 val locationUri = args[7]

 println("About to start the AWS Glue Scenario")
 createDatabase(dbName, locationUri)
 createCrawler(iam, s3Path, cron, dbName, crawlerName)
 getCrawler(crawlerName)
 startCrawler(crawlerName)
 getDatabase(dbName)
 getGlueTables(dbName)
 createJob(jobName, iam, scriptLocation)
 startJob(jobName)
 getJobs()
 getJobRuns(jobName)
 deleteJob(jobName)
 println("*** Wait for 5 MIN so the $crawlerName is ready to be deleted")
 TimeUnit.MINUTES.sleep(5)
 deleteMyDatabase(dbName)
 deleteCrawler(crawlerName)
}

suspend fun createDatabase(
 dbName: String?,
 locationUriVal: String?,
) {
 val input =
 DatabaseInput {
 description = "Built with the AWS SDK for Kotlin"
 name = dbName
 locationUri = locationUriVal
 }

Get started with crawlers and jobs 2626

AWS Glue User Guide

 val request =
 CreateDatabaseRequest {
 databaseInput = input
 }

 GlueClient { region = "us-east-1" }.use { glueClient ->
 glueClient.createDatabase(request)
 println("The database was successfully created")
 }
}

suspend fun createCrawler(
 iam: String?,
 s3Path: String?,
 cron: String?,
 dbName: String?,
 crawlerName: String,
) {
 val s3Target =
 S3Target {
 path = s3Path
 }

 val targetList = ArrayList<S3Target>()
 targetList.add(s3Target)

 val targetOb =
 CrawlerTargets {
 s3Targets = targetList
 }

 val crawlerRequest =
 CreateCrawlerRequest {
 databaseName = dbName
 name = crawlerName
 description = "Created by the AWS Glue Java API"
 targets = targetOb
 role = iam
 schedule = cron
 }

 GlueClient { region = "us-east-1" }.use { glueClient ->
 glueClient.createCrawler(crawlerRequest)
 println("$crawlerName was successfully created")

Get started with crawlers and jobs 2627

AWS Glue User Guide

 }
}

suspend fun getCrawler(crawlerName: String?) {
 val request =
 GetCrawlerRequest {
 name = crawlerName
 }

 GlueClient { region = "us-east-1" }.use { glueClient ->
 val response = glueClient.getCrawler(request)
 val role = response.crawler?.role
 println("The role associated with this crawler is $role")
 }
}

suspend fun startCrawler(crawlerName: String) {
 val crawlerRequest =
 StartCrawlerRequest {
 name = crawlerName
 }

 GlueClient { region = "us-east-1" }.use { glueClient ->
 glueClient.startCrawler(crawlerRequest)
 println("$crawlerName was successfully started.")
 }
}

suspend fun getDatabase(databaseName: String?) {
 val request =
 GetDatabaseRequest {
 name = databaseName
 }

 GlueClient { region = "us-east-1" }.use { glueClient ->
 val response = glueClient.getDatabase(request)
 val dbDesc = response.database?.description
 println("The database description is $dbDesc")
 }
}

suspend fun getGlueTables(dbName: String?) {
 val tableRequest =
 GetTablesRequest {

Get started with crawlers and jobs 2628

AWS Glue User Guide

 databaseName = dbName
 }

 GlueClient { region = "us-east-1" }.use { glueClient ->
 val response = glueClient.getTables(tableRequest)
 response.tableList?.forEach { tableName ->
 println("Table name is ${tableName.name}")
 }
 }
}

suspend fun startJob(jobNameVal: String?) {
 val runRequest =
 StartJobRunRequest {
 workerType = WorkerType.G1X
 numberOfWorkers = 10
 jobName = jobNameVal
 }

 GlueClient { region = "us-east-1" }.use { glueClient ->
 val response = glueClient.startJobRun(runRequest)
 println("The job run Id is ${response.jobRunId}")
 }
}

suspend fun createJob(
 jobName: String,
 iam: String?,
 scriptLocationVal: String?,
) {
 val commandOb =
 JobCommand {
 pythonVersion = "3"
 name = "MyJob1"
 scriptLocation = scriptLocationVal
 }

 val jobRequest =
 CreateJobRequest {
 description = "A Job created by using the AWS SDK for Java V2"
 glueVersion = "2.0"
 workerType = WorkerType.G1X
 numberOfWorkers = 10
 name = jobName

Get started with crawlers and jobs 2629

AWS Glue User Guide

 role = iam
 command = commandOb
 }

 GlueClient { region = "us-east-1" }.use { glueClient ->
 glueClient.createJob(jobRequest)
 println("$jobName was successfully created.")
 }
}

suspend fun getJobs() {
 val request =
 GetJobsRequest {
 maxResults = 10
 }

 GlueClient { region = "us-east-1" }.use { glueClient ->
 val response = glueClient.getJobs(request)
 response.jobs?.forEach { job ->
 println("Job name is ${job.name}")
 }
 }
}

suspend fun getJobRuns(jobNameVal: String?) {
 val request =
 GetJobRunsRequest {
 jobName = jobNameVal
 }

 GlueClient { region = "us-east-1" }.use { glueClient ->
 val response = glueClient.getJobRuns(request)
 response.jobRuns?.forEach { job ->
 println("Job name is ${job.jobName}")
 }
 }
}

suspend fun deleteJob(jobNameVal: String) {
 val jobRequest =
 DeleteJobRequest {
 jobName = jobNameVal
 }

Get started with crawlers and jobs 2630

AWS Glue User Guide

 GlueClient { region = "us-east-1" }.use { glueClient ->
 glueClient.deleteJob(jobRequest)
 println("$jobNameVal was successfully deleted")
 }
}

suspend fun deleteMyDatabase(databaseName: String) {
 val request =
 DeleteDatabaseRequest {
 name = databaseName
 }

 GlueClient { region = "us-east-1" }.use { glueClient ->
 glueClient.deleteDatabase(request)
 println("$databaseName was successfully deleted")
 }
}

suspend fun deleteCrawler(crawlerName: String) {
 val request =
 DeleteCrawlerRequest {
 name = crawlerName
 }
 GlueClient { region = "us-east-1" }.use { glueClient ->
 glueClient.deleteCrawler(request)
 println("$crawlerName was deleted")
 }
}

• For API details, see the following topics in AWS SDK for Kotlin API reference.

• CreateCrawler

• CreateJob

• DeleteCrawler

• DeleteDatabase

• DeleteJob

• DeleteTable

• GetCrawler

• GetDatabase

• GetDatabases

Get started with crawlers and jobs 2631

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html

AWS Glue User Guide

• GetJob

• GetJobRun

• GetJobRuns

• GetTables

• ListJobs

• StartCrawler

• StartJobRun

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

namespace Glue;

use Aws\Glue\GlueClient;
use Aws\S3\S3Client;
use AwsUtilities\AWSServiceClass;
use GuzzleHttp\Psr7\Stream;
use Iam\IAMService;

class GettingStartedWithGlue
{
 public function run()
 {
 echo("\n");
 echo("--------------------------------------\n");
 print("Welcome to the AWS Glue getting started demo using PHP!\n");
 echo("--------------------------------------\n");

 $clientArgs = [
 'region' => 'us-west-2',
 'version' => 'latest',
 'profile' => 'default',

Get started with crawlers and jobs 2632

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/glue#code-examples

AWS Glue User Guide

];
 $uniqid = uniqid();

 $glueClient = new GlueClient($clientArgs);
 $glueService = new GlueService($glueClient);
 $iamService = new IAMService();
 $crawlerName = "example-crawler-test-" . $uniqid;

 AWSServiceClass::$waitTime = 5;
 AWSServiceClass::$maxWaitAttempts = 20;

 $role = $iamService->getRole("AWSGlueServiceRole-DocExample");

 $databaseName = "doc-example-database-$uniqid";
 $path = 's3://crawler-public-us-east-1/flight/2016/csv';
 $glueService->createCrawler($crawlerName, $role['Role']['Arn'],
 $databaseName, $path);
 $glueService->startCrawler($crawlerName);

 echo "Waiting for crawler";
 do {
 $crawler = $glueService->getCrawler($crawlerName);
 echo ".";
 sleep(10);
 } while ($crawler['Crawler']['State'] != "READY");
 echo "\n";

 $database = $glueService->getDatabase($databaseName);
 echo "Found a database named " . $database['Database']['Name'] . "\n";

 //Upload job script
 $s3client = new S3Client($clientArgs);
 $bucketName = "test-glue-bucket-" . $uniqid;
 $s3client->createBucket([
 'Bucket' => $bucketName,
 'CreateBucketConfiguration' => ['LocationConstraint' => 'us-west-2'],
]);

 $s3client->putObject([
 'Bucket' => $bucketName,
 'Key' => 'run_job.py',
 'SourceFile' => __DIR__ . '/flight_etl_job_script.py'
]);
 $s3client->putObject([

Get started with crawlers and jobs 2633

AWS Glue User Guide

 'Bucket' => $bucketName,
 'Key' => 'setup_scenario_getting_started.yaml',
 'SourceFile' => __DIR__ . '/setup_scenario_getting_started.yaml'
]);

 $tables = $glueService->getTables($databaseName);

 $jobName = 'test-job-' . $uniqid;
 $scriptLocation = "s3://$bucketName/run_job.py";
 $job = $glueService->createJob($jobName, $role['Role']['Arn'],
 $scriptLocation);

 $outputBucketUrl = "s3://$bucketName";
 $runId = $glueService->startJobRun($jobName, $databaseName, $tables,
 $outputBucketUrl)['JobRunId'];

 echo "waiting for job";
 do {
 $jobRun = $glueService->getJobRun($jobName, $runId);
 echo ".";
 sleep(10);
 } while (!array_intersect([$jobRun['JobRun']['JobRunState']],
 ['SUCCEEDED', 'STOPPED', 'FAILED', 'TIMEOUT']));
 echo "\n";

 $jobRuns = $glueService->getJobRuns($jobName);

 $objects = $s3client->listObjects([
 'Bucket' => $bucketName,
])['Contents'];

 foreach ($objects as $object) {
 echo $object['Key'] . "\n";
 }

 echo "Downloading " . $objects[1]['Key'] . "\n";
 /** @var Stream $downloadObject */
 $downloadObject = $s3client->getObject([
 'Bucket' => $bucketName,
 'Key' => $objects[1]['Key'],
])['Body']->getContents();
 echo "Here is the first 1000 characters in the object.";
 echo substr($downloadObject, 0, 1000);

Get started with crawlers and jobs 2634

AWS Glue User Guide

 $jobs = $glueService->listJobs();
 echo "Current jobs:\n";
 foreach ($jobs['JobNames'] as $jobsName) {
 echo "{$jobsName}\n";
 }

 echo "Delete the job.\n";
 $glueClient->deleteJob([
 'JobName' => $job['Name'],
]);

 echo "Delete the tables.\n";
 foreach ($tables['TableList'] as $table) {
 $glueService->deleteTable($table['Name'], $databaseName);
 }

 echo "Delete the databases.\n";
 $glueClient->deleteDatabase([
 'Name' => $databaseName,
]);

 echo "Delete the crawler.\n";
 $glueClient->deleteCrawler([
 'Name' => $crawlerName,
]);

 $deleteObjects = $s3client->listObjectsV2([
 'Bucket' => $bucketName,
]);
 echo "Delete all objects in the bucket.\n";
 $deleteObjects = $s3client->deleteObjects([
 'Bucket' => $bucketName,
 'Delete' => [
 'Objects' => $deleteObjects['Contents'],
]
]);
 echo "Delete the bucket.\n";
 $s3client->deleteBucket(['Bucket' => $bucketName]);

 echo "This job was brought to you by the number $uniqid\n";
 }
}

namespace Glue;

Get started with crawlers and jobs 2635

AWS Glue User Guide

use Aws\Glue\GlueClient;
use Aws\Result;

use function PHPUnit\Framework\isEmpty;

class GlueService extends \AwsUtilities\AWSServiceClass
{
 protected GlueClient $glueClient;

 public function __construct($glueClient)
 {
 $this->glueClient = $glueClient;
 }

 public function getCrawler($crawlerName)
 {
 return $this->customWaiter(function () use ($crawlerName) {
 return $this->glueClient->getCrawler([
 'Name' => $crawlerName,
]);
 });
 }

 public function createCrawler($crawlerName, $role, $databaseName, $path):
 Result
 {
 return $this->customWaiter(function () use ($crawlerName, $role,
 $databaseName, $path) {
 return $this->glueClient->createCrawler([
 'Name' => $crawlerName,
 'Role' => $role,
 'DatabaseName' => $databaseName,
 'Targets' => [
 'S3Targets' =>
 [[
 'Path' => $path,
]]
],
]);
 });
 }

 public function startCrawler($crawlerName): Result

Get started with crawlers and jobs 2636

AWS Glue User Guide

 {
 return $this->glueClient->startCrawler([
 'Name' => $crawlerName,
]);
 }

 public function getDatabase(string $databaseName): Result
 {
 return $this->customWaiter(function () use ($databaseName) {
 return $this->glueClient->getDatabase([
 'Name' => $databaseName,
]);
 });
 }

 public function getTables($databaseName): Result
 {
 return $this->glueClient->getTables([
 'DatabaseName' => $databaseName,
]);
 }

 public function createJob($jobName, $role, $scriptLocation, $pythonVersion =
 '3', $glueVersion = '3.0'): Result
 {
 return $this->glueClient->createJob([
 'Name' => $jobName,
 'Role' => $role,
 'Command' => [
 'Name' => 'glueetl',
 'ScriptLocation' => $scriptLocation,
 'PythonVersion' => $pythonVersion,
],
 'GlueVersion' => $glueVersion,
]);
 }

 public function startJobRun($jobName, $databaseName, $tables,
 $outputBucketUrl): Result
 {
 return $this->glueClient->startJobRun([
 'JobName' => $jobName,
 'Arguments' => [
 'input_database' => $databaseName,

Get started with crawlers and jobs 2637

AWS Glue User Guide

 'input_table' => $tables['TableList'][0]['Name'],
 'output_bucket_url' => $outputBucketUrl,
 '--input_database' => $databaseName,
 '--input_table' => $tables['TableList'][0]['Name'],
 '--output_bucket_url' => $outputBucketUrl,
],
]);
 }

 public function listJobs($maxResults = null, $nextToken = null, $tags = []):
 Result
 {
 $arguments = [];
 if ($maxResults) {
 $arguments['MaxResults'] = $maxResults;
 }
 if ($nextToken) {
 $arguments['NextToken'] = $nextToken;
 }
 if (!empty($tags)) {
 $arguments['Tags'] = $tags;
 }
 return $this->glueClient->listJobs($arguments);
 }

 public function getJobRuns($jobName, $maxResults = 0, $nextToken = ''):
 Result
 {
 $arguments = ['JobName' => $jobName];
 if ($maxResults) {
 $arguments['MaxResults'] = $maxResults;
 }
 if ($nextToken) {
 $arguments['NextToken'] = $nextToken;
 }
 return $this->glueClient->getJobRuns($arguments);
 }

 public function getJobRun($jobName, $runId, $predecessorsIncluded = false):
 Result
 {
 return $this->glueClient->getJobRun([
 'JobName' => $jobName,
 'RunId' => $runId,

Get started with crawlers and jobs 2638

AWS Glue User Guide

 'PredecessorsIncluded' => $predecessorsIncluded,
]);
 }

 public function deleteJob($jobName)
 {
 return $this->glueClient->deleteJob([
 'JobName' => $jobName,
]);
 }

 public function deleteTable($tableName, $databaseName)
 {
 return $this->glueClient->deleteTable([
 'DatabaseName' => $databaseName,
 'Name' => $tableName,
]);
 }

 public function deleteDatabase($databaseName)
 {
 return $this->glueClient->deleteDatabase([
 'Name' => $databaseName,
]);
 }

 public function deleteCrawler($crawlerName)
 {
 return $this->glueClient->deleteCrawler([
 'Name' => $crawlerName,
]);
 }
}

• For API details, see the following topics in AWS SDK for PHP API Reference.

• CreateCrawler

• CreateJob

• DeleteCrawler

• DeleteDatabase

• DeleteJob

Get started with crawlers and jobs 2639

https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/CreateCrawler
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/CreateJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/DeleteCrawler
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/DeleteDatabase
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/DeleteJob

AWS Glue User Guide

• DeleteTable

• GetCrawler

• GetDatabase

• GetDatabases

• GetJob

• GetJobRun

• GetJobRuns

• GetTables

• ListJobs

• StartCrawler

• StartJobRun

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a class that wraps AWS Glue functions used in the scenario.

class GlueWrapper:
 """Encapsulates AWS Glue actions."""

 def __init__(self, glue_client):
 """
 :param glue_client: A Boto3 Glue client.
 """
 self.glue_client = glue_client

 def get_crawler(self, name):
 """
 Gets information about a crawler.

Get started with crawlers and jobs 2640

https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/DeleteTable
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/GetCrawler
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/GetDatabase
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/GetDatabases
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/GetJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/GetJobRun
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/GetJobRuns
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/GetTables
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/ListJobs
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/StartCrawler
https://docs.aws.amazon.com/goto/SdkForPHPV3/glue-2017-03-31/StartJobRun
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples

AWS Glue User Guide

 :param name: The name of the crawler to look up.
 :return: Data about the crawler.
 """
 crawler = None
 try:
 response = self.glue_client.get_crawler(Name=name)
 crawler = response["Crawler"]
 except ClientError as err:
 if err.response["Error"]["Code"] == "EntityNotFoundException":
 logger.info("Crawler %s doesn't exist.", name)
 else:
 logger.error(
 "Couldn't get crawler %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 return crawler

 def create_crawler(self, name, role_arn, db_name, db_prefix, s3_target):
 """
 Creates a crawler that can crawl the specified target and populate a
 database in your AWS Glue Data Catalog with metadata that describes the
 data
 in the target.

 :param name: The name of the crawler.
 :param role_arn: The Amazon Resource Name (ARN) of an AWS Identity and
 Access
 Management (IAM) role that grants permission to let AWS
 Glue
 access the resources it needs.
 :param db_name: The name to give the database that is created by the
 crawler.
 :param db_prefix: The prefix to give any database tables that are created
 by
 the crawler.
 :param s3_target: The URL to an S3 bucket that contains data that is
 the target of the crawler.
 """
 try:

Get started with crawlers and jobs 2641

AWS Glue User Guide

 self.glue_client.create_crawler(
 Name=name,
 Role=role_arn,
 DatabaseName=db_name,
 TablePrefix=db_prefix,
 Targets={"S3Targets": [{"Path": s3_target}]},
)
 except ClientError as err:
 logger.error(
 "Couldn't create crawler. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

 def start_crawler(self, name):
 """
 Starts a crawler. The crawler crawls its configured target and creates
 metadata that describes the data it finds in the target data source.

 :param name: The name of the crawler to start.
 """
 try:
 self.glue_client.start_crawler(Name=name)
 except ClientError as err:
 logger.error(
 "Couldn't start crawler %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

 def get_database(self, name):
 """
 Gets information about a database in your Data Catalog.

 :param name: The name of the database to look up.
 :return: Information about the database.
 """
 try:
 response = self.glue_client.get_database(Name=name)

Get started with crawlers and jobs 2642

AWS Glue User Guide

 except ClientError as err:
 logger.error(
 "Couldn't get database %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["Database"]

 def get_tables(self, db_name):
 """
 Gets a list of tables in a Data Catalog database.

 :param db_name: The name of the database to query.
 :return: The list of tables in the database.
 """
 try:
 response = self.glue_client.get_tables(DatabaseName=db_name)
 except ClientError as err:
 logger.error(
 "Couldn't get tables %s. Here's why: %s: %s",
 db_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["TableList"]

 def create_job(self, name, description, role_arn, script_location):
 """
 Creates a job definition for an extract, transform, and load (ETL) job
 that can
 be run by AWS Glue.

 :param name: The name of the job definition.
 :param description: The description of the job definition.
 :param role_arn: The ARN of an IAM role that grants AWS Glue the
 permissions
 it requires to run the job.

Get started with crawlers and jobs 2643

AWS Glue User Guide

 :param script_location: The Amazon S3 URL of a Python ETL script that is
 run as
 part of the job. The script defines how the data
 is
 transformed.
 """
 try:
 self.glue_client.create_job(
 Name=name,
 Description=description,
 Role=role_arn,
 Command={
 "Name": "glueetl",
 "ScriptLocation": script_location,
 "PythonVersion": "3",
 },
 GlueVersion="3.0",
)
 except ClientError as err:
 logger.error(
 "Couldn't create job %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

 def start_job_run(self, name, input_database, input_table,
 output_bucket_name):
 """
 Starts a job run. A job run extracts data from the source, transforms it,
 and loads it to the output bucket.

 :param name: The name of the job definition.
 :param input_database: The name of the metadata database that contains
 tables
 that describe the source data. This is typically
 created
 by a crawler.
 :param input_table: The name of the table in the metadata database that
 describes the source data.
 :param output_bucket_name: The S3 bucket where the output is written.
 :return: The ID of the job run.

Get started with crawlers and jobs 2644

AWS Glue User Guide

 """
 try:
 # The custom Arguments that are passed to this function are used by
 the
 # Python ETL script to determine the location of input and output
 data.
 response = self.glue_client.start_job_run(
 JobName=name,
 Arguments={
 "--input_database": input_database,
 "--input_table": input_table,
 "--output_bucket_url": f"s3://{output_bucket_name}/",
 },
)
 except ClientError as err:
 logger.error(
 "Couldn't start job run %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["JobRunId"]

 def list_jobs(self):
 """
 Lists the names of job definitions in your account.

 :return: The list of job definition names.
 """
 try:
 response = self.glue_client.list_jobs()
 except ClientError as err:
 logger.error(
 "Couldn't list jobs. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["JobNames"]

Get started with crawlers and jobs 2645

AWS Glue User Guide

 def get_job_runs(self, job_name):
 """
 Gets information about runs that have been performed for a specific job
 definition.

 :param job_name: The name of the job definition to look up.
 :return: The list of job runs.
 """
 try:
 response = self.glue_client.get_job_runs(JobName=job_name)
 except ClientError as err:
 logger.error(
 "Couldn't get job runs for %s. Here's why: %s: %s",
 job_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["JobRuns"]

 def get_job_run(self, name, run_id):
 """
 Gets information about a single job run.

 :param name: The name of the job definition for the run.
 :param run_id: The ID of the run.
 :return: Information about the run.
 """
 try:
 response = self.glue_client.get_job_run(JobName=name, RunId=run_id)
 except ClientError as err:
 logger.error(
 "Couldn't get job run %s/%s. Here's why: %s: %s",
 name,
 run_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["JobRun"]

Get started with crawlers and jobs 2646

AWS Glue User Guide

 def delete_job(self, job_name):
 """
 Deletes a job definition. This also deletes data about all runs that are
 associated with this job definition.

 :param job_name: The name of the job definition to delete.
 """
 try:
 self.glue_client.delete_job(JobName=job_name)
 except ClientError as err:
 logger.error(
 "Couldn't delete job %s. Here's why: %s: %s",
 job_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

 def delete_table(self, db_name, table_name):
 """
 Deletes a table from a metadata database.

 :param db_name: The name of the database that contains the table.
 :param table_name: The name of the table to delete.
 """
 try:
 self.glue_client.delete_table(DatabaseName=db_name, Name=table_name)
 except ClientError as err:
 logger.error(
 "Couldn't delete table %s. Here's why: %s: %s",
 table_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

 def delete_database(self, name):
 """
 Deletes a metadata database from your Data Catalog.

Get started with crawlers and jobs 2647

AWS Glue User Guide

 :param name: The name of the database to delete.
 """
 try:
 self.glue_client.delete_database(Name=name)
 except ClientError as err:
 logger.error(
 "Couldn't delete database %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

 def delete_crawler(self, name):
 """
 Deletes a crawler.

 :param name: The name of the crawler to delete.
 """
 try:
 self.glue_client.delete_crawler(Name=name)
 except ClientError as err:
 logger.error(
 "Couldn't delete crawler %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

Create a class that runs the scenario.

class GlueCrawlerJobScenario:
 """
 Encapsulates a scenario that shows how to create an AWS Glue crawler and job
 and use
 them to transform data from CSV to JSON format.
 """

Get started with crawlers and jobs 2648

AWS Glue User Guide

 def __init__(self, glue_client, glue_service_role, glue_bucket):
 """
 :param glue_client: A Boto3 AWS Glue client.
 :param glue_service_role: An AWS Identity and Access Management (IAM)
 role
 that AWS Glue can assume to gain access to the
 resources it requires.
 :param glue_bucket: An S3 bucket that can hold a job script and output
 data
 from AWS Glue job runs.
 """
 self.glue_client = glue_client
 self.glue_service_role = glue_service_role
 self.glue_bucket = glue_bucket

 @staticmethod
 def wait(seconds, tick=12):
 """
 Waits for a specified number of seconds, while also displaying an
 animated
 spinner.

 :param seconds: The number of seconds to wait.
 :param tick: The number of frames per second used to animate the spinner.
 """
 progress = "|/-\\"
 waited = 0
 while waited < seconds:
 for frame in range(tick):
 sys.stdout.write(f"\r{progress[frame % len(progress)]}")
 sys.stdout.flush()
 time.sleep(1 / tick)
 waited += 1

 def upload_job_script(self, job_script):
 """
 Uploads a Python ETL script to an S3 bucket. The script is used by the
 AWS Glue
 job to transform data.

 :param job_script: The relative path to the job script.
 """
 try:

Get started with crawlers and jobs 2649

AWS Glue User Guide

 self.glue_bucket.upload_file(Filename=job_script, Key=job_script)
 print(f"Uploaded job script '{job_script}' to the example bucket.")
 except S3UploadFailedError as err:
 logger.error("Couldn't upload job script. Here's why: %s", err)
 raise

 def run(self, crawler_name, db_name, db_prefix, data_source, job_script,
 job_name):
 """
 Runs the scenario. This is an interactive experience that runs at a
 command
 prompt and asks you for input throughout.

 :param crawler_name: The name of the crawler used in the scenario. If the
 crawler does not exist, it is created.
 :param db_name: The name to give the metadata database created by the
 crawler.
 :param db_prefix: The prefix to give tables added to the database by the
 crawler.
 :param data_source: The location of the data source that is targeted by
 the
 crawler and extracted during job runs.
 :param job_script: The job script that is used to transform data during
 job
 runs.
 :param job_name: The name to give the job definition that is created
 during the
 scenario.
 """
 wrapper = GlueWrapper(self.glue_client)
 print(f"Checking for crawler {crawler_name}.")
 crawler = wrapper.get_crawler(crawler_name)
 if crawler is None:
 print(f"Creating crawler {crawler_name}.")
 wrapper.create_crawler(
 crawler_name,
 self.glue_service_role.arn,
 db_name,
 db_prefix,
 data_source,
)
 print(f"Created crawler {crawler_name}.")
 crawler = wrapper.get_crawler(crawler_name)
 pprint(crawler)

Get started with crawlers and jobs 2650

AWS Glue User Guide

 print("-" * 88)

 print(
 f"When you run the crawler, it crawls data stored in {data_source}
 and "
 f"creates a metadata database in the AWS Glue Data Catalog that
 describes "
 f"the data in the data source."
)
 print("In this example, the source data is in CSV format.")
 ready = False
 while not ready:
 ready = Question.ask_question(
 "Ready to start the crawler? (y/n) ", Question.is_yesno
)
 wrapper.start_crawler(crawler_name)
 print("Let's wait for the crawler to run. This typically takes a few
 minutes.")
 crawler_state = None
 while crawler_state != "READY":
 self.wait(10)
 crawler = wrapper.get_crawler(crawler_name)
 crawler_state = crawler["State"]
 print(f"Crawler is {crawler['State']}.")
 print("-" * 88)

 database = wrapper.get_database(db_name)
 print(f"The crawler created database {db_name}:")
 pprint(database)
 print(f"The database contains these tables:")
 tables = wrapper.get_tables(db_name)
 for index, table in enumerate(tables):
 print(f"\t{index + 1}. {table['Name']}")
 table_index = Question.ask_question(
 f"Enter the number of a table to see more detail: ",
 Question.is_int,
 Question.in_range(1, len(tables)),
)
 pprint(tables[table_index - 1])
 print("-" * 88)

 print(f"Creating job definition {job_name}.")
 wrapper.create_job(
 job_name,

Get started with crawlers and jobs 2651

AWS Glue User Guide

 "Getting started example job.",
 self.glue_service_role.arn,
 f"s3://{self.glue_bucket.name}/{job_script}",
)
 print("Created job definition.")
 print(
 f"When you run the job, it extracts data from {data_source},
 transforms it "
 f"by using the {job_script} script, and loads the output into "
 f"S3 bucket {self.glue_bucket.name}."
)
 print(
 "In this example, the data is transformed from CSV to JSON, and only
 a few "
 "fields are included in the output."
)
 job_run_status = None
 if Question.ask_question(f"Ready to run? (y/n) ", Question.is_yesno):
 job_run_id = wrapper.start_job_run(
 job_name, db_name, tables[0]["Name"], self.glue_bucket.name
)
 print(f"Job {job_name} started. Let's wait for it to run.")
 while job_run_status not in ["SUCCEEDED", "STOPPED", "FAILED",
 "TIMEOUT"]:
 self.wait(10)
 job_run = wrapper.get_job_run(job_name, job_run_id)
 job_run_status = job_run["JobRunState"]
 print(f"Job {job_name}/{job_run_id} is {job_run_status}.")
 print("-" * 88)

 if job_run_status == "SUCCEEDED":
 print(
 f"Data from your job run is stored in your S3 bucket
 '{self.glue_bucket.name}':"
)
 try:
 keys = [
 obj.key for obj in
 self.glue_bucket.objects.filter(Prefix="run-")
]
 for index, key in enumerate(keys):
 print(f"\t{index + 1}: {key}")
 lines = 4
 key_index = Question.ask_question(

Get started with crawlers and jobs 2652

AWS Glue User Guide

 f"Enter the number of a block to download it and see the
 first {lines} "
 f"lines of JSON output in the block: ",
 Question.is_int,
 Question.in_range(1, len(keys)),
)
 job_data = io.BytesIO()
 self.glue_bucket.download_fileobj(keys[key_index - 1], job_data)
 job_data.seek(0)
 for _ in range(lines):
 print(job_data.readline().decode("utf-8"))
 except ClientError as err:
 logger.error(
 "Couldn't get job run data. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 print("-" * 88)

 job_names = wrapper.list_jobs()
 if job_names:
 print(f"Your account has {len(job_names)} jobs defined:")
 for index, job_name in enumerate(job_names):
 print(f"\t{index + 1}. {job_name}")
 job_index = Question.ask_question(
 f"Enter a number between 1 and {len(job_names)} to see the list
 of runs for "
 f"a job: ",
 Question.is_int,
 Question.in_range(1, len(job_names)),
)
 job_runs = wrapper.get_job_runs(job_names[job_index - 1])
 if job_runs:
 print(f"Found {len(job_runs)} runs for job {job_names[job_index -
 1]}:")
 for index, job_run in enumerate(job_runs):
 print(
 f"\t{index + 1}. {job_run['JobRunState']} on "
 f"{job_run['CompletedOn']:%Y-%m-%d %H:%M:%S}"
)
 run_index = Question.ask_question(
 f"Enter a number between 1 and {len(job_runs)} to see details
 for a run: ",

Get started with crawlers and jobs 2653

AWS Glue User Guide

 Question.is_int,
 Question.in_range(1, len(job_runs)),
)
 pprint(job_runs[run_index - 1])
 else:
 print(f"No runs found for job {job_names[job_index - 1]}")
 else:
 print("Your account doesn't have any jobs defined.")
 print("-" * 88)

 print(
 f"Let's clean up. During this example we created job definition
 '{job_name}'."
)
 if Question.ask_question(
 "Do you want to delete the definition and all runs? (y/n) ",
 Question.is_yesno,
):
 wrapper.delete_job(job_name)
 print(f"Job definition '{job_name}' deleted.")
 tables = wrapper.get_tables(db_name)
 print(f"We also created database '{db_name}' that contains these
 tables:")
 for table in tables:
 print(f"\t{table['Name']}")
 if Question.ask_question(
 "Do you want to delete the tables and the database? (y/n) ",
 Question.is_yesno,
):
 for table in tables:
 wrapper.delete_table(db_name, table["Name"])
 print(f"Deleted table {table['Name']}.")
 wrapper.delete_database(db_name)
 print(f"Deleted database {db_name}.")
 print(f"We also created crawler '{crawler_name}'.")
 if Question.ask_question(
 "Do you want to delete the crawler? (y/n) ", Question.is_yesno
):
 wrapper.delete_crawler(crawler_name)
 print(f"Deleted crawler {crawler_name}.")
 print("-" * 88)

def parse_args(args):

Get started with crawlers and jobs 2654

AWS Glue User Guide

 """
 Parse command line arguments.

 :param args: The command line arguments.
 :return: The parsed arguments.
 """
 parser = argparse.ArgumentParser(
 description="Runs the AWS Glue getting started with crawlers and jobs
 scenario. "
 "Before you run this scenario, set up scaffold resources by running "
 "'python scaffold.py deploy'."
)
 parser.add_argument(
 "role_name",
 help="The name of an IAM role that AWS Glue can assume. This role must
 grant access "
 "to Amazon S3 and to the permissions granted by the AWSGlueServiceRole "
 "managed policy.",
)
 parser.add_argument(
 "bucket_name",
 help="The name of an S3 bucket that AWS Glue can access to get the job
 script and "
 "put job results.",
)
 parser.add_argument(
 "--job_script",
 default="flight_etl_job_script.py",
 help="The name of the job script file that is used in the scenario.",
)
 return parser.parse_args(args)

def main():
 args = parse_args(sys.argv[1:])
 try:
 print("-" * 88)
 print(
 "Welcome to the AWS Glue getting started with crawlers and jobs
 scenario."
)
 print("-" * 88)
 scenario = GlueCrawlerJobScenario(
 boto3.client("glue"),

Get started with crawlers and jobs 2655

AWS Glue User Guide

 boto3.resource("iam").Role(args.role_name),
 boto3.resource("s3").Bucket(args.bucket_name),
)
 scenario.upload_job_script(args.job_script)
 scenario.run(
 "doc-example-crawler",
 "doc-example-database",
 "doc-example-",
 "s3://crawler-public-us-east-1/flight/2016/csv",
 args.job_script,
 "doc-example-job",
)
 print("-" * 88)
 print(
 "To destroy scaffold resources, including the IAM role and S3 bucket
 "
 "used in this scenario, run 'python scaffold.py destroy'."
)
 print("\nThanks for watching!")
 print("-" * 88)
 except Exception:
 logging.exception("Something went wrong with the example.")

Create an ETL script that is used by AWS Glue to extract, transform, and load data during job
runs.

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

"""
These custom arguments must be passed as Arguments to the StartJobRun request.
 --input_database The name of a metadata database that is contained in
 your
 AWS Glue Data Catalog and that contains tables that
 describe
 the data to be processed.

Get started with crawlers and jobs 2656

AWS Glue User Guide

 --input_table The name of a table in the database that describes the
 data to
 be processed.
 --output_bucket_url An S3 bucket that receives the transformed output data.
"""
args = getResolvedOptions(
 sys.argv, ["JOB_NAME", "input_database", "input_table", "output_bucket_url"]
)
sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args["JOB_NAME"], args)

Script generated for node S3 Flight Data.
S3FlightData_node1 = glueContext.create_dynamic_frame.from_catalog(
 database=args["input_database"],
 table_name=args["input_table"],
 transformation_ctx="S3FlightData_node1",
)

This mapping performs two main functions:
1. It simplifies the output by removing most of the fields from the data.
2. It renames some fields. For example, `fl_date` is renamed to `flight_date`.
ApplyMapping_node2 = ApplyMapping.apply(
 frame=S3FlightData_node1,
 mappings=[
 ("year", "long", "year", "long"),
 ("month", "long", "month", "tinyint"),
 ("day_of_month", "long", "day", "tinyint"),
 ("fl_date", "string", "flight_date", "string"),
 ("carrier", "string", "carrier", "string"),
 ("fl_num", "long", "flight_num", "long"),
 ("origin_city_name", "string", "origin_city_name", "string"),
 ("origin_state_abr", "string", "origin_state_abr", "string"),
 ("dest_city_name", "string", "dest_city_name", "string"),
 ("dest_state_abr", "string", "dest_state_abr", "string"),
 ("dep_time", "long", "departure_time", "long"),
 ("wheels_off", "long", "wheels_off", "long"),
 ("wheels_on", "long", "wheels_on", "long"),
 ("arr_time", "long", "arrival_time", "long"),
 ("mon", "string", "mon", "string"),
],
 transformation_ctx="ApplyMapping_node2",

Get started with crawlers and jobs 2657

AWS Glue User Guide

)

Script generated for node Revised Flight Data.
RevisedFlightData_node3 = glueContext.write_dynamic_frame.from_options(
 frame=ApplyMapping_node2,
 connection_type="s3",
 format="json",
 connection_options={"path": args["output_bucket_url"], "partitionKeys": []},
 transformation_ctx="RevisedFlightData_node3",
)

job.commit()

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• CreateCrawler

• CreateJob

• DeleteCrawler

• DeleteDatabase

• DeleteJob

• DeleteTable

• GetCrawler

• GetDatabase

• GetDatabases

• GetJob

• GetJobRun

• GetJobRuns

• GetTables

• ListJobs

• StartCrawler

• StartJobRun

Get started with crawlers and jobs 2658

https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/CreateCrawler
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/CreateJob
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/DeleteCrawler
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/DeleteDatabase
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/DeleteJob
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/DeleteTable
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/GetCrawler
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/GetDatabase
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/GetDatabases
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/GetJob
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/GetJobRun
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/GetJobRuns
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/GetTables
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/ListJobs
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/StartCrawler
https://docs.aws.amazon.com/goto/boto3/glue-2017-03-31/StartJobRun

AWS Glue User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a class that wraps AWS Glue functions used in the scenario.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing
 a simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods
 for interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Retrieves information about a specific crawler.
 #
 # @param name [String] The name of the crawler to retrieve information about.
 # @return [Aws::Glue::Types::Crawler, nil] The crawler object if found, or nil
 if not found.
 def get_crawler(name)
 @glue_client.get_crawler(name: name)
 rescue Aws::Glue::Errors::EntityNotFoundException
 @logger.info("Crawler #{name} doesn't exist.")
 false
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get crawler #{name}: \n#{e.message}")
 raise
 end

 # Creates a new crawler with the specified configuration.
 #
 # @param name [String] The name of the crawler.

Get started with crawlers and jobs 2659

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

AWS Glue User Guide

 # @param role_arn [String] The ARN of the IAM role to be used by the crawler.
 # @param db_name [String] The name of the database where the crawler stores its
 metadata.
 # @param db_prefix [String] The prefix to be added to the names of tables that
 the crawler creates.
 # @param s3_target [String] The S3 path that the crawler will crawl.
 # @return [void]
 def create_crawler(name, role_arn, db_name, db_prefix, s3_target)
 @glue_client.create_crawler(
 name: name,
 role: role_arn,
 database_name: db_name,
 targets: {
 s3_targets: [
 {
 path: s3_target
 }
]
 }
)
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not create crawler: \n#{e.message}")
 raise
 end

 # Starts a crawler with the specified name.
 #
 # @param name [String] The name of the crawler to start.
 # @return [void]
 def start_crawler(name)
 @glue_client.start_crawler(name: name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not start crawler #{name}: \n#{e.message}")
 raise
 end

 # Deletes a crawler with the specified name.
 #
 # @param name [String] The name of the crawler to delete.
 # @return [void]
 def delete_crawler(name)
 @glue_client.delete_crawler(name: name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete crawler #{name}: \n#{e.message}")

Get started with crawlers and jobs 2660

AWS Glue User Guide

 raise
 end

 # Retrieves information about a specific database.
 #
 # @param name [String] The name of the database to retrieve information about.
 # @return [Aws::Glue::Types::Database, nil] The database object if found, or
 nil if not found.
 def get_database(name)
 response = @glue_client.get_database(name: name)
 response.database
rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get database #{name}: \n#{e.message}")
 raise
 end

 # Retrieves a list of tables in the specified database.
 #
 # @param db_name [String] The name of the database to retrieve tables from.
 # @return [Array<Aws::Glue::Types::Table>]
 def get_tables(db_name)
 response = @glue_client.get_tables(database_name: db_name)
 response.table_list
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get tables #{db_name}: \n#{e.message}")
 raise
 end

 # Creates a new job with the specified configuration.
 #
 # @param name [String] The name of the job.
 # @param description [String] The description of the job.
 # @param role_arn [String] The ARN of the IAM role to be used by the job.
 # @param script_location [String] The location of the ETL script for the job.
 # @return [void]
 def create_job(name, description, role_arn, script_location)
 @glue_client.create_job(
 name: name,
 description: description,
 role: role_arn,
 command: {
 name: "glueetl",
 script_location: script_location,
 python_version: "3"

Get started with crawlers and jobs 2661

AWS Glue User Guide

 },
 glue_version: "3.0"
)
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not create job #{name}: \n#{e.message}")
 raise
 end

 # Starts a job run for the specified job.
 #
 # @param name [String] The name of the job to start the run for.
 # @param input_database [String] The name of the input database for the job.
 # @param input_table [String] The name of the input table for the job.
 # @param output_bucket_name [String] The name of the output S3 bucket for the
 job.
 # @return [String] The ID of the started job run.
 def start_job_run(name, input_database, input_table, output_bucket_name)
 response = @glue_client.start_job_run(
 job_name: name,
 arguments: {
 '--input_database': input_database,
 '--input_table': input_table,
 '--output_bucket_url': "s3://#{output_bucket_name}/"
 }
)
 response.job_run_id
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not start job run #{name}: \n#{e.message}")
 raise
 end

 # Retrieves a list of jobs in AWS Glue.
 #
 # @return [Aws::Glue::Types::ListJobsResponse]
 def list_jobs
 @glue_client.list_jobs
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not list jobs: \n#{e.message}")
 raise
 end

 # Retrieves a list of job runs for the specified job.
 #
 # @param job_name [String] The name of the job to retrieve job runs for.

Get started with crawlers and jobs 2662

AWS Glue User Guide

 # @return [Array<Aws::Glue::Types::JobRun>]
 def get_job_runs(job_name)
 response = @glue_client.get_job_runs(job_name: job_name)
 response.job_runs
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get job runs: \n#{e.message}")
 end

 # Retrieves data for a specific job run.
 #
 # @param job_name [String] The name of the job run to retrieve data for.
 # @return [Glue::Types::GetJobRunResponse]
 def get_job_run(job_name, run_id)
 @glue_client.get_job_run(job_name: job_name, run_id: run_id)
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get job runs: \n#{e.message}")
 end

 # Deletes a job with the specified name.
 #
 # @param job_name [String] The name of the job to delete.
 # @return [void]
 def delete_job(job_name)
 @glue_client.delete_job(job_name: job_name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete job: \n#{e.message}")
 end

 # Deletes a table with the specified name.
 #
 # @param database_name [String] The name of the catalog database in which the
 table resides.
 # @param table_name [String] The name of the table to be deleted.
 # @return [void]
 def delete_table(database_name, table_name)
 @glue_client.delete_table(database_name: database_name, name: table_name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete job: \n#{e.message}")
 end

 # Removes a specified database from a Data Catalog.
 #
 # @param database_name [String] The name of the database to delete.
 # @return [void]

Get started with crawlers and jobs 2663

AWS Glue User Guide

 def delete_database(database_name)
 @glue_client.delete_database(name: database_name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete database: \n#{e.message}")
 end

 # Uploads a job script file to an S3 bucket.
 #
 # @param file_path [String] The local path of the job script file.
 # @param bucket_resource [Aws::S3::Bucket] The S3 bucket resource to upload the
 file to.
 # @return [void]
 def upload_job_script(file_path, bucket_resource)
 File.open(file_path) do |file|
 bucket_resource.client.put_object({
 body: file,
 bucket: bucket_resource.name,
 key: file_path
 })
 end
 rescue Aws::S3::Errors::S3UploadFailedError => e
 @logger.error("S3 could not upload job script: \n#{e.message}")
 raise
 end

end

Create a class that runs the scenario.

class GlueCrawlerJobScenario
 def initialize(glue_client, glue_service_role, glue_bucket, logger)
 @glue_client = glue_client
 @glue_service_role = glue_service_role
 @glue_bucket = glue_bucket
 @logger = logger
 end

 def run(crawler_name, db_name, db_prefix, data_source, job_script, job_name)
 wrapper = GlueWrapper.new(@glue_client, @logger)

 new_step(1, "Create a crawler")
 puts "Checking for crawler #{crawler_name}."

Get started with crawlers and jobs 2664

AWS Glue User Guide

 crawler = wrapper.get_crawler(crawler_name)
 if crawler == false
 puts "Creating crawler #{crawler_name}."
 wrapper.create_crawler(crawler_name, @glue_service_role.arn, db_name,
 db_prefix, data_source)
 puts "Successfully created #{crawler_name}:"
 crawler = wrapper.get_crawler(crawler_name)
 puts JSON.pretty_generate(crawler).yellow
 end
 print "\nDone!\n".green

 new_step(2, "Run a crawler to output a database.")
 puts "Location of input data analyzed by crawler: #{data_source}"
 puts "Outputs: a Data Catalog database in CSV format containing metadata on
 input."
 wrapper.start_crawler(crawler_name)
 puts "Starting crawler... (this typically takes a few minutes)"
 crawler_state = nil
 while crawler_state != "READY"
 custom_wait(15)
 crawler = wrapper.get_crawler(crawler_name)
 crawler_state = crawler[0]["state"]
 print "Status check: #{crawler_state}.".yellow
 end
 print "\nDone!\n".green

 new_step(3, "Query the database.")
 database = wrapper.get_database(db_name)
 puts "The crawler created database #{db_name}:"
 print "#{database}".yellow
 puts "\nThe database contains these tables:"
 tables = wrapper.get_tables(db_name)
 tables.each_with_index do |table, index|
 print "\t#{index + 1}. #{table['name']}".yellow
 end
 print "\nDone!\n".green

 new_step(4, "Create a job definition that runs an ETL script.")
 puts "Uploading Python ETL script to S3..."
 wrapper.upload_job_script(job_script, @glue_bucket)
 puts "Creating job definition #{job_name}:\n"
 response = wrapper.create_job(job_name, "Getting started example job.",
 @glue_service_role.arn, "s3://#{@glue_bucket.name}/#{job_script}")
 puts JSON.pretty_generate(response).yellow

Get started with crawlers and jobs 2665

AWS Glue User Guide

 print "\nDone!\n".green

 new_step(5, "Start a new job")
 job_run_status = nil
 job_run_id = wrapper.start_job_run(
 job_name,
 db_name,
 tables[0]["name"],
 @glue_bucket.name
)
 puts "Job #{job_name} started. Let's wait for it to run."
 until ["SUCCEEDED", "STOPPED", "FAILED", "TIMEOUT"].include?(job_run_status)
 custom_wait(10)
 job_run = wrapper.get_job_runs(job_name)
 job_run_status = job_run[0]["job_run_state"]
 print "Status check: #{job_name}/#{job_run_id} - #{job_run_status}.".yellow
 end
 print "\nDone!\n".green

 new_step(6, "View results from a successful job run.")
 if job_run_status == "SUCCEEDED"
 puts "Data from your job run is stored in your S3 bucket
 '#{@glue_bucket.name}'. Files include:"
 begin

 # Print the key name of each object in the bucket.
 @glue_bucket.objects.each do |object_summary|
 if object_summary.key.include?("run-")
 print "#{object_summary.key}".yellow
 end
 end

 # Print the first 256 bytes of a run file
 desired_sample_objects = 1
 @glue_bucket.objects.each do |object_summary|
 if object_summary.key.include?("run-")
 if desired_sample_objects > 0
 sample_object = @glue_bucket.object(object_summary.key)
 sample = sample_object.get(range: "bytes=0-255").body.read
 puts "\nSample run file contents:"
 print "#{sample}".yellow
 desired_sample_objects -= 1
 end
 end

Get started with crawlers and jobs 2666

AWS Glue User Guide

 end
 rescue Aws::S3::Errors::ServiceError => e
 logger.error(
 "Couldn't get job run data. Here's why: %s: %s",
 e.response.error.code, e.response.error.message
)
 raise
 end
 end
 print "\nDone!\n".green

 new_step(7, "Delete job definition and crawler.")
 wrapper.delete_job(job_name)
 puts "Job deleted: #{job_name}."
 wrapper.delete_crawler(crawler_name)
 puts "Crawler deleted: #{crawler_name}."
 wrapper.delete_table(db_name, tables[0]["name"])
 puts "Table deleted: #{tables[0]["name"]} in #{db_name}."
 wrapper.delete_database(db_name)
 puts "Database deleted: #{db_name}."
 print "\nDone!\n".green
 end
end

def main

 banner("../../helpers/banner.txt")
 puts
 "##".yellow
 puts "#
 #".yellow
 puts "# EXAMPLE CODE DEMO:
 #".yellow
 puts "# AWS Glue
 #".yellow
 puts "#
 #".yellow
 puts
 "##".yellow
 puts ""
 puts "You have launched a demo of AWS Glue using the AWS for Ruby v3 SDK. Over
 the next 60 seconds, it will"
 puts "do the following:"
 puts " 1. Create a crawler."

Get started with crawlers and jobs 2667

AWS Glue User Guide

 puts " 2. Run a crawler to output a database."
 puts " 3. Query the database."
 puts " 4. Create a job definition that runs an ETL script."
 puts " 5. Start a new job."
 puts " 6. View results from a successful job run."
 puts " 7. Delete job definition and crawler."
 puts ""

 confirm_begin
 billing
 security
 puts "\e[H\e[2J"

 # Set input file names
 job_script_filepath = "job_script.py"
 resource_names = YAML.load_file("resource_names.yaml")

 # Instantiate existing IAM role.
 iam = Aws::IAM::Resource.new(region: "us-east-1")
 iam_role_name = resource_names["glue_service_role"]
 iam_role = iam.role(iam_role_name)

 # Instantiate existing S3 bucket.
 s3 = Aws::S3::Resource.new(region: "us-east-1")
 s3_bucket_name = resource_names["glue_bucket"]
 s3_bucket = s3.bucket(s3_bucket_name)

 scenario = GlueCrawlerJobScenario.new(
 Aws::Glue::Client.new(region: "us-east-1"),
 iam_role,
 s3_bucket,
 @logger
)

 random_int = rand(10 ** 4)
 scenario.run(
 "doc-example-crawler-#{random_int}",
 "doc-example-database-#{random_int}",
 "doc-example-#{random_int}-",
 "s3://crawler-public-us-east-1/flight/2016/csv",
 job_script_filepath,
 "doc-example-job-#{random_int}"
)

Get started with crawlers and jobs 2668

AWS Glue User Guide

 puts "-" * 88
 puts "You have reached the end of this tour of AWS Glue."
 puts "To destroy CDK-created resources, run:\n cdk destroy"
 puts "-" * 88

end

Create an ETL script that is used by AWS Glue to extract, transform, and load data during job
runs.

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

"""
These custom arguments must be passed as Arguments to the StartJobRun request.
 --input_database The name of a metadata database that is contained in
 your
 AWS Glue Data Catalog and that contains tables that
 describe
 the data to be processed.
 --input_table The name of a table in the database that describes the
 data to
 be processed.
 --output_bucket_url An S3 bucket that receives the transformed output data.
"""
args = getResolvedOptions(
 sys.argv, ["JOB_NAME", "input_database", "input_table", "output_bucket_url"]
)
sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args["JOB_NAME"], args)

Script generated for node S3 Flight Data.
S3FlightData_node1 = glueContext.create_dynamic_frame.from_catalog(
 database=args["input_database"],
 table_name=args["input_table"],

Get started with crawlers and jobs 2669

AWS Glue User Guide

 transformation_ctx="S3FlightData_node1",
)

This mapping performs two main functions:
1. It simplifies the output by removing most of the fields from the data.
2. It renames some fields. For example, `fl_date` is renamed to `flight_date`.
ApplyMapping_node2 = ApplyMapping.apply(
 frame=S3FlightData_node1,
 mappings=[
 ("year", "long", "year", "long"),
 ("month", "long", "month", "tinyint"),
 ("day_of_month", "long", "day", "tinyint"),
 ("fl_date", "string", "flight_date", "string"),
 ("carrier", "string", "carrier", "string"),
 ("fl_num", "long", "flight_num", "long"),
 ("origin_city_name", "string", "origin_city_name", "string"),
 ("origin_state_abr", "string", "origin_state_abr", "string"),
 ("dest_city_name", "string", "dest_city_name", "string"),
 ("dest_state_abr", "string", "dest_state_abr", "string"),
 ("dep_time", "long", "departure_time", "long"),
 ("wheels_off", "long", "wheels_off", "long"),
 ("wheels_on", "long", "wheels_on", "long"),
 ("arr_time", "long", "arrival_time", "long"),
 ("mon", "string", "mon", "string"),
],
 transformation_ctx="ApplyMapping_node2",
)

Script generated for node Revised Flight Data.
RevisedFlightData_node3 = glueContext.write_dynamic_frame.from_options(
 frame=ApplyMapping_node2,
 connection_type="s3",
 format="json",
 connection_options={"path": args["output_bucket_url"], "partitionKeys": []},
 transformation_ctx="RevisedFlightData_node3",
)

job.commit()

• For API details, see the following topics in AWS SDK for Ruby API Reference.

• CreateCrawler

• CreateJob

Get started with crawlers and jobs 2670

https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/CreateCrawler
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/CreateJob

AWS Glue User Guide

• DeleteCrawler

• DeleteDatabase

• DeleteJob

• DeleteTable

• GetCrawler

• GetDatabase

• GetDatabases

• GetJob

• GetJobRun

• GetJobRuns

• GetTables

• ListJobs

• StartCrawler

• StartJobRun

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create and run a crawler that crawls a public Amazon Simple Storage Service (Amazon S3)
bucket and generates a metadata database that describes the CSV-formatted data it finds.

 let create_crawler = glue
 .create_crawler()
 .name(self.crawler())
 .database_name(self.database())
 .role(self.iam_role.expose_secret())
 .targets(
 CrawlerTargets::builder()
 .s3_targets(S3Target::builder().path(CRAWLER_TARGET).build())

Get started with crawlers and jobs 2671

https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/DeleteCrawler
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/DeleteDatabase
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/DeleteJob
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/DeleteTable
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/GetCrawler
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/GetDatabase
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/GetDatabases
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/GetJob
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/GetJobRun
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/GetJobRuns
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/GetTables
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/ListJobs
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/StartCrawler
https://docs.aws.amazon.com/goto/SdkForRubyV3/glue-2017-03-31/StartJobRun
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/glue#code-examples

AWS Glue User Guide

 .build(),
)
 .send()
 .await;

 match create_crawler {
 Err(err) => {
 let glue_err: aws_sdk_glue::Error = err.into();
 match glue_err {
 aws_sdk_glue::Error::AlreadyExistsException(_) => {
 info!("Using existing crawler");
 Ok(())
 }
 _ => Err(GlueMvpError::GlueSdk(glue_err)),
 }
 }
 Ok(_) => Ok(()),
 }?;

 let start_crawler =
 glue.start_crawler().name(self.crawler()).send().await;

 match start_crawler {
 Ok(_) => Ok(()),
 Err(err) => {
 let glue_err: aws_sdk_glue::Error = err.into();
 match glue_err {
 aws_sdk_glue::Error::CrawlerRunningException(_) => Ok(()),
 _ => Err(GlueMvpError::GlueSdk(glue_err)),
 }
 }
 }?;

List information about databases and tables in your AWS Glue Data Catalog.

 let database = glue
 .get_database()
 .name(self.database())
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?
 .to_owned();

Get started with crawlers and jobs 2672

AWS Glue User Guide

 let database = database
 .database()
 .ok_or_else(|| GlueMvpError::Unknown("Could not find
 database".into()))?;

 let tables = glue
 .get_tables()
 .database_name(self.database())
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?;

 let tables = tables.table_list();

Create and run a job that extracts CSV data from the source Amazon S3 bucket, transforms
it by removing and renaming fields, and loads JSON-formatted output into another Amazon
S3 bucket.

 let create_job = glue
 .create_job()
 .name(self.job())
 .role(self.iam_role.expose_secret())
 .command(
 JobCommand::builder()
 .name("glueetl")
 .python_version("3")
 .script_location(format!("s3://{}/job.py", self.bucket()))
 .build(),
)
 .glue_version("3.0")
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?;

 let job_name = create_job.name().ok_or_else(|| {
 GlueMvpError::Unknown("Did not get job name after creating
 job".into())
 })?;

 let job_run_output = glue
 .start_job_run()
 .job_name(self.job())

Get started with crawlers and jobs 2673

AWS Glue User Guide

 .arguments("--input_database", self.database())
 .arguments(
 "--input_table",
 self.tables
 .first()
 .ok_or_else(|| GlueMvpError::Unknown("Missing crawler
 table".into()))?
 .name(),
)
 .arguments("--output_bucket_url", self.bucket())
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?;

 let job = job_run_output
 .job_run_id()
 .ok_or_else(|| GlueMvpError::Unknown("Missing run id from just
 started job".into()))?
 .to_string();

Delete all resources created by the demo.

 glue.delete_job()
 .job_name(self.job())
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?;

 for t in &self.tables {
 glue.delete_table()
 .name(t.name())
 .database_name(self.database())
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?;
 }

 glue.delete_database()
 .name(self.database())
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?;

Get started with crawlers and jobs 2674

AWS Glue User Guide

 glue.delete_crawler()
 .name(self.crawler())
 .send()
 .await
 .map_err(GlueMvpError::from_glue_sdk)?;

• For API details, see the following topics in AWS SDK for Rust API reference.

• CreateCrawler

• CreateJob

• DeleteCrawler

• DeleteDatabase

• DeleteJob

• DeleteTable

• GetCrawler

• GetDatabase

• GetDatabases

• GetJob

• GetJobRun

• GetJobRuns

• GetTables

• ListJobs

• StartCrawler

• StartJobRun

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Get started with crawlers and jobs 2675

https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk

AWS Glue User Guide

Security in AWS Glue

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to AWS Glue, see AWS
Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using AWS Glue. The following topics show you how to configure AWS Glue to meet your security
and compliance objectives. You also learn how to use other AWS services that help you to monitor
and secure your AWS Glue resources.

Topics

• Data protection in AWS Glue

• Identity and access management for AWS Glue

• Logging and monitoring in AWS Glue

• Compliance validation for AWS Glue

• Resilience in AWS Glue

• Infrastructure security in AWS Glue

Data protection in AWS Glue

AWS Glue offers several features that are designed to help protect your data.

Data protection 2676

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS Glue User Guide

Topics

• Encryption at rest

• Encryption in transit

• FIPS compliance

• Key management

• AWS Glue dependency on other AWS services

• Development endpoints

Encryption at rest

AWS Glue supports data encryption at rest for Building visual ETL jobs with AWS Glue Studio and
Developing scripts using development endpoints. You can configure extract, transform, and load
(ETL) jobs and development endpoints to use AWS Key Management Service (AWS KMS) keys
to write encrypted data at rest. You can also encrypt the metadata stored in the AWS Glue Data
Catalog using keys that you manage with AWS KMS. Additionally, you can use AWS KMS keys to
encrypt job bookmarks and the logs generated by crawlers and ETL jobs.

You can encrypt metadata objects in your AWS Glue Data Catalog in addition to the data written to
Amazon Simple Storage Service (Amazon S3) and Amazon CloudWatch Logs by jobs, crawlers, and
development endpoints. When you create jobs, crawlers, and development endpoints in AWS Glue,
you can provide encryption settings by attaching a security configuration. Security configurations
contain Amazon S3-managed server-side encryption keys (SSE-S3) or customer master keys (CMKs)
stored in AWS KMS (SSE-KMS). You can create security configurations using the AWS Glue console.

You can also turn on encryption of the entire Data Catalog in your account. You do so by specifying
CMKs stored in AWS KMS.

Important

AWS Glue supports only symmetric customer managed keys. For more information, see
Customer Managed Keys (CMKs) in the AWS Key Management Service Developer Guide.

With encryption turned on, when you add Data Catalog objects, run crawlers, run jobs, or start
development endpoints, SSE-S3 or SSE-KMS keys are used to write data at rest. In addition, you

Encryption at rest 2677

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS Glue User Guide

can configure AWS Glue to only access Java Database Connectivity (JDBC) data stores through a
trusted Transport Layer Security (TLS) protocol.

In AWS Glue, you control encryption settings in the following places:

• The settings of your Data Catalog.

• The security configurations that you create.

• The server-side encryption setting (SSE-S3 or SSE-KMS) that is passed as a parameter to your
AWS Glue ETL (extract, transform, and load) job.

For more information about how to set up encryption, see Setting up encryption in AWS Glue.

Topics

• Encrypting your Data Catalog

• Encrypting connection passwords

• Encrypting data written by AWS Glue

Encrypting your Data Catalog

AWS Glue Data Catalog encryption provides enhanced security for your sensitive data. AWS Glue
integrates with AWS Key Management Service (AWS KMS) to encrypt metadata that's stored in the
Data Catalog. You can enable or disable encryption settings for resources in the Data Catalog using
the AWS Glue console or the AWS CLI.

When you enable encryption for your Data Catalog, all new objects that you create will be
encrypted. When you disable encryption, the new objects you create will not be encrypted, but
existing encrypted objects will remain encrypted.

You can encrypt your entire Data Catalog using AWS managed encryption keys or customer
managed encryption keys. For more information on key types and states, see AWS Key
Management Service concepts in the AWS Key Management Service Developer Guide.

AWS managed keys

AWS managed keys are KMS keys in your account that are created, managed, and used on your
behalf by an AWS service that's integrated with AWS KMS. You can view the AWS managed keys in
your account, view their key policies, and audit their use in AWS CloudTrail logs. However, you can't
manage these keys or change their permissions.

Encryption at rest 2678

https://docs.aws.amazon.com/kms/latest/developerguide/key-state.html#key-state-cmk-type
https://docs.aws.amazon.com/kms/latest/developerguide/key-state.html#key-state-cmk-type

AWS Glue User Guide

Encryption at rest automatically integrates with AWS KMS for managing the AWS managed keys
for AWS Glue that are used to encrypt your metadata. If an AWS managed key doesn't exist when
you enable metadata encryption, AWS KMS automatically creates a new key for you.

For more information, see AWS managed keys.

Customer managed keys

Customer managed keys are KMS keys in your AWS account that you create, own, and manage. You
have full control over these KMS keys. You can:

• Establish and maintain their key policies, IAM policies, and grants

• Enable and disable them

• Rotate their cryptographic material

• Add tags

• Create aliases that refer to them

• Schedule them for deletion

For more information about managing the permissions of a customer managed key, see Customer
managed keys.

Important

AWS Glue supports only symmetric customer managed keys. The KMS key list displays only
symmetric keys. However, if you select Choose a KMS key ARN, the console lets you enter
an ARN for any key type. Ensure that you enter only ARNs for symmetric keys.
To create a symmetric customer managed key, follow the steps for creating symmetric
customer managed keys in the AWS Key Management Service Developer Guide.

When you enable Data Catalog encryption at rest, the following resource types are encrypted using
KMS keys:

• Databases

• Tables

• Partitions

Encryption at rest 2679

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk

AWS Glue User Guide

• Table versions

• Column statistics

• User-defined functions

• Data Catalog views

AWS Glue encryption context

An encryption context is an optional set of key-value pairs that contain additional contextual
information about the data. AWS KMS uses the encryption context as additional authenticated
data to support authenticated encryption. When you include an encryption context in a request to
encrypt data, AWS KMS binds the encryption context to the encrypted data. To decrypt data, you
include the same encryption context in the request. AWS Glue uses the same encryption context in
all AWS KMS cryptographic operations, where the key is glue_catalog_id and the value is the
catalogId.

"encryptionContext": {
 "glue_catalog_id": "111122223333"
}

When you use an AWS managed key or a symmetric customer managed key to encrypt your Data
Catalog, you can also use the encryption context in audit records and logs to identify how the key
is being used. The encryption context also appears in logs that are generated by AWS CloudTrail or
Amazon CloudWatch logs.

Enabling encryption

You can enable encryption for your AWS Glue Data Catalog objects in the Data Catalog settings in
the AWS Glue console or by using the AWS CLI.

Console

To enable encryption using the console

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. Choose Data Catalog in the navigation pane.

3. On the Data Catalog settings page, select the Metadata encryption check box, and choose
an AWS KMS key.

Encryption at rest 2680

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-authenticated-encryption
https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

When you enable encryption, if you don’t specify a customer managed key, the encryption
settings use an AWS managed KMS key.

4. (Optional) When you use a customer managed key to encrypt your Data Catalog, the Data
Catalog provides an option to register an IAM role to encrypt and decrypt resources. You
need to grant your IAM role permissions that AWS Glue can assume on your behalf. This
includes AWS KMS permissions to encrypt and decrypt data.

When you create a new resource in the Data Catalog, AWS Glue assumes the IAM role
that's provided to encrypt the data. Similarly, when a consumer accesses the resource, AWS
Glue assumes the IAM role to decrypt data. If you register an IAM role with the required
permissions, the calling principal no longer requires permissions to access the key and
decrypt the data.

Important

You can delegate KMS operations to an IAM role only when you use a customer
managed key to encrypt the Data Catalog resources. KMS role delegation feature
doesn't support using AWS managed keys for encrypting Data Catalog resources at
this time.

Warning

When you enable an IAM role to delegate KMS operations, you can no longer access
the Data Catalog resources that were encrypted previously with an AWS managed
key.

a. To enable an IAM role that AWS Glue can assume to encrypt and decrypt data on your
behalf, select the Delegate KMS operations to an IAM role option.

b. Next, choose an IAM role.

To create an IAM role, see Create an IAM role for AWS Glue.

The IAM role that AWS Glue assumes to access the Data Catalog must have the
permissions to encrypt and decrypt metadata in the Data Catalog. You can create an
IAM role, and attach the following inline policies:

Encryption at rest 2681

https://docs.aws.amazon.com/glue/latest/dg/create-an-iam-role.html

AWS Glue User Guide

• Add the following policy to include AWS KMS permissions to encrypt and decrypt
the Data Catalog.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:Encrypt",
 "kms:GenerateDataKey"
],
 "Resource": "arn:aws:kms:<region>:<account-id>:key/<key-id>"
 }
]
}

• Next, add the following trust policy to the role for AWS Glue service to assume the
IAM role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "glue.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }

• Next, add the iam:PassRole permission to the IAM role.

 {
 "Version": "2012-10-17",
 "Statement": [

Encryption at rest 2682

AWS Glue User Guide

 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::<account-id>:role/<encryption-role-name>"
]
 }
]
}

When you enable encryption, if you haven't specified an IAM role for AWS Glue to assume,
the principal accessing the Data Catalog must have permissions to perform the following
API operations:

• kms:Decrypt

• kms:Encrypt

• kms:GenerateDataKey

AWS CLI

To enable encryption using the SDK or AWS CLI

• Use the PutDataCatalogEncryptionSettings API operation. If no key is specified,
AWS Glue uses AWS managed encryption key for the customer account to encrypt the Data
Catalog.

aws glue put-data-catalog-encryption-settings \
 --data-catalog-encryption-settings '{
 "EncryptionAtRest": {
 "CatalogEncryptionMode": "SSE-KMS-WITH-SERVICE-ROLE",
 "SseAwsKmsKeyId": "arn:aws:kms:<region>:<account-id>:key/<key-id>",
 "CatalogEncryptionServiceRole":"arn:aws:iam::<account-
id>:role/<encryption-role-name>"
 }

 }'

Encryption at rest 2683

AWS Glue User Guide

When you enable encryption, all objects that you create in the Data Catalog objects are encrypted.
If you clear this setting, the objects you create in the Data Catalog are no longer encrypted. You
can continue to access the existing encrypted objects in the Data Catalog with the required KMS
permissions.

Important

The AWS KMS key must remain available in the AWS KMS key store for any objects that
are encrypted with it in the Data Catalog. If you remove the key, the objects can no
longer be decrypted. You might want this in some scenarios to prevent access to Data
Catalog metadata.

Monitoring your KMS keys for AWS Glue

When you use KMS keys with your Data Catalog resources, you can use AWS CloudTrail or Amazon
CloudWatch Logs to track requests that AWS Glue sends to AWS KMS. AWS CloudTrail monitors
and records KMS operations that AWS Glue calls to access data that’s encrypted by your KMS keys.

The following examples are AWS CloudTrail events for the Decrypt and GenerateDataKey
operations.

Decrypt

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAXPHTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/Sampleuser01",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAXPHTESTANDEXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/Admin",

Encryption at rest 2684

AWS Glue User Guide

 "accountId": "111122223333",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2024-01-10T14:33:56Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "glue.amazonaws.com"
 },
 "eventTime": "2024-01-10T15:18:11Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "eu-west-2",
 "sourceIPAddress": "glue.amazonaws.com",
 "userAgent": "glue.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {
 "glue_catalog_id": "111122223333"
 },
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT"
 },
 "responseElements": null,
 "requestID": "43b019aa-34b8-4798-9b98-ee968b2d63df",
 "eventID": "d7614763-d3fe-4f84-a1e1-3ca4d2a5bbd5",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:<region>:111122223333:key/<key-id>"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management",
 "sessionCredentialFromConsole": "true"
}

Encryption at rest 2685

AWS Glue User Guide

GenerateDataKey

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId":
 "AROAXPHTESTANDEXAMPLE:V_00_GLUE_KMS_GENERATE_DATA_KEY_111122223333",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/
V_00_GLUE_KMS_GENERATE_DATA_KEY_111122223333",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAXPHTESTANDEXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/Admin",
 "accountId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2024-01-05T21:15:47Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "glue.amazonaws.com"
 },
 "eventTime": "2024-01-05T21:15:47Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "eu-west-2",
 "sourceIPAddress": "glue.amazonaws.com",
 "userAgent": "glue.amazonaws.com",
 "requestParameters": {
 "keyId": "arn:aws:kms:eu-west-2:AKIAIOSFODNN7EXAMPLE:key/
AKIAIOSFODNN7EXAMPLE",
 "encryptionContext": {
 "glue_catalog_id": "111122223333"
 },
 "keySpec": "AES_256"
 },
 "responseElements": null,
 "requestID": "64d1783a-4b62-44ba-b0ab-388b50188070",

Encryption at rest 2686

AWS Glue User Guide

 "eventID": "1c73689b-2ef2-443b-aed7-8c126585ca5e",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:eu-west-2:111122223333:key/AKIAIOSFODNN7EXAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Encrypting connection passwords

You can retrieve connection passwords in the AWS Glue Data Catalog by using the
GetConnection and GetConnections API operations. These passwords are stored in the Data
Catalog connection and are used when AWS Glue connects to a Java Database Connectivity (JDBC)
data store. When the connection was created or updated, an option in the Data Catalog settings
determined whether the password was encrypted, and if so, what AWS Key Management Service
(AWS KMS) key was specified.

On the AWS Glue console, you can turn on this option on the Data catalog settings page.

To encrypt connection passwords

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. Choose Settings in the navigation pane.

3. On the Data catalog settings page, select Encrypt connection passwords, and choose an AWS
KMS key.

Encryption at rest 2687

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

AWS Glue User Guide

Important

AWS Glue supports only symmetric customer master keys (CMKs). The AWS KMS key
list displays only symmetric keys. However, if you select Choose a AWS KMS key ARN,
the console lets you enter an ARN for any key type. Ensure that you enter only ARNs
for symmetric keys.

For more information, see Data Catalog settings .

Encrypting data written by AWS Glue

A security configuration is a set of security properties that can be used by AWS Glue. You can use a
security configuration to encrypt data at rest. The following scenarios show some of the ways that
you can use a security configuration.

• Attach a security configuration to an AWS Glue crawler to write encrypted Amazon CloudWatch
Logs. For more information about attaching security configurations to crawlers, see the section
called “Step 3: Configure security settings”.

• Attach a security configuration to an extract, transform, and load (ETL) job to write encrypted
Amazon Simple Storage Service (Amazon S3) targets and encrypted CloudWatch Logs.

• Attach a security configuration to an ETL job to write its jobs bookmarks as encrypted Amazon
S3 data.

• Attach a security configuration to a development endpoint to write encrypted Amazon S3
targets.

Important

Currently, a security configuration overrides any server-side encryption (SSE-S3) setting
that is passed as an ETL job parameter. Thus, if both a security configuration and an SSE-S3
parameter are associated with a job, the SSE-S3 parameter is ignored.

For more information about security configurations, see Working with security configurations on
the AWS Glue console.

Encryption at rest 2688

AWS Glue User Guide

Topics

• Setting Up AWS Glue to use security configurations

• Creating a route to AWS KMS for VPC jobs and crawlers

• Working with security configurations on the AWS Glue console

Setting Up AWS Glue to use security configurations

Follow these steps to set up your AWS Glue environment to use security configurations.

1. Create or update your AWS Key Management Service (AWS KMS) keys to grant AWS KMS
permissions to the IAM roles that are passed to AWS Glue crawlers and jobs to encrypt
CloudWatch Logs. For more information, see Encrypt Log Data in CloudWatch Logs Using AWS
KMS in the Amazon CloudWatch Logs User Guide.

In the following example, "role1", "role2", and "role3" are IAM roles that are passed to
crawlers and jobs.

{
 "Effect": "Allow",
 "Principal": { "Service": "logs.region.amazonaws.com",
 "AWS": [
 "role1",
 "role2",
 "role3"
] },
 "Action": [
 "kms:Encrypt*",
 "kms:Decrypt*",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:Describe*"
],
 "Resource": "*"
}

The Service statement, shown as "Service": "logs.region.amazonaws.com", is
required if you use the key to encrypt CloudWatch Logs.

2. Ensure that the AWS KMS key is ENABLED before it is used.

Encryption at rest 2689

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html

AWS Glue User Guide

Note

If you are using Iceberg as your data lake framework, Iceberg tables have their own
mechanisms to enable server-side encryption. You should enable these configuration in
addition to AWS Glue's security configurations. To enable server-side encryption on Iceberg
tables, review the guidance from Iceberg documentation.

Creating a route to AWS KMS for VPC jobs and crawlers

You can connect directly to AWS KMS through a private endpoint in your virtual private cloud (VPC)
instead of connecting over the internet. When you use a VPC endpoint, communication between
your VPC and AWS KMS is conducted entirely within the AWS network.

You can create an AWS KMS VPC endpoint within a VPC. Without this step, your jobs or crawlers
might fail with a kms timeout on jobs or an internal service exception on crawlers.
For detailed instructions, see Connecting to AWS KMS Through a VPC Endpoint in the AWS Key
Management Service Developer Guide.

As you follow these instructions, on the VPC console, you must do the following:

• Select Enable Private DNS name.

• Choose the Security group (with self-referencing rule) that you use for your job or crawler that
accesses Java Database Connectivity (JDBC). For more information about AWS Glue connections,
see Connecting to data.

When you add a security configuration to a crawler or job that accesses JDBC data stores, AWS Glue
must have a route to the AWS KMS endpoint. You can provide the route with a network address
translation (NAT) gateway or with an AWS KMS VPC endpoint. To create a NAT gateway, see NAT
Gateways in the Amazon VPC User Guide.

Working with security configurations on the AWS Glue console

Warning

AWS Glue security configurations are not currently supported in Ray jobs.

Encryption at rest 2690

https://iceberg.apache.org/docs/latest/aws/#s3-server-side-encryption
https://docs.aws.amazon.com/kms/latest/developerguide/kms-vpc-endpoint.html
https://console.aws.amazon.com//vpc
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

AWS Glue User Guide

A security configuration in AWS Glue contains the properties that are needed when you write
encrypted data. You create security configurations on the AWS Glue console to provide the
encryption properties that are used by crawlers, jobs, and development endpoints.

To see a list of all the security configurations that you have created, open the AWS Glue console
at https://console.aws.amazon.com/glue/ and choose Security configurations in the navigation
pane.

The Security configurations list displays the following properties about each configuration:

Name

The unique name you provided when you created the configuration. The name may contain
letters (A-Z), numbers (0-9), hypens (-), or underscores (_), and be up to 255 characters long.

Enable Amazon S3 encryption

If turned on, the Amazon Simple Storage Service (Amazon S3) encryption mode such as SSE-
KMS or SSE-S3 is enabled for metadata store in the data catalog.

Enable Amazon CloudWatch logs encryption

If turned on, the Amazon S3 encryption mode such as SSE-KMS is enabled when writing logs to
Amazon CloudWatch.

Advanced settings: Enable job bookmark encryption

If turned on, the Amazon S3 encryption mode such as CSE-KMS is enabled when jobs are
bookmarked.

You can add or delete configurations in the Security configurations section on the console. To
see more details for a configuration, choose the configuration name in the list. Details include the
information that you defined when you created the configuration.

Adding a security configuration

To add a security configuration using the AWS Glue console, on the Security configurations page,
choose Add security configuration.

Encryption at rest 2691

https://console.aws.amazon.com/glue/

AWS Glue User Guide

Security configuration properties

Enter a unique security configuration name. The name may contain letters (A-Z), numbers (0-9),
hyphens (-), or underscores (_), and can be up to 255 characters long.

Encryption settings

You can enable at-rest encryption for metadata stored in the Data Catalog in Amazon S3 and logs
in Amazon CloudWatch. To set up encryption of data and metadata with AWS Key Management
Service (AWS KMS) keys on the AWS Glue console, add a policy to the console user. This policy
must specify the allowed resources as key Amazon Resource Names (ARNs) that are used to encrypt
Amazon S3 data stores, as in the following example.

Encryption at rest 2692

AWS Glue User Guide

{
"Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt",
 "kms:Encrypt"],
 "Resource": "arn:aws:kms:region:account-id:key/key-id"}
}

Important

When a security configuration is attached to a crawler or job, the IAM role that is passed
must have AWS KMS permissions. For more information, see Encrypting data written by
AWS Glue.

When you define a configuration, you can provide values for the following properties:

Enable S3 encryption

When you are writing Amazon S3 data, you use either server-side encryption with Amazon
S3 managed keys (SSE-S3) or server-side encryption with AWS KMS managed keys (SSE-
KMS). This field is optional. To allow access to Amazon S3, choose an AWS KMS key, or
choose Enter a key ARN and provide the ARN for the key. Enter the ARN in the form
arn:aws:kms:region:account-id:key/key-id. You can also provide the ARN as a key
alias, such as arn:aws:kms:region:account-id:alias/alias-name.

If you enable Spark UI for your job, the Spark UI log file uploaded to Amazon S3 will be applied
with the same encryption.

Important

AWS Glue supports only symmetric customer master keys (CMKs). The AWS KMS key
list displays only symmetric keys. However, if you select Choose a AWS KMS key ARN,
the console lets you enter an ARN for any key type. Ensure that you enter only ARNs for
symmetric keys.

Encryption at rest 2693

AWS Glue User Guide

Enable CloudWatch Logs encryption

Server-side (SSE-KMS) encryption is used to encrypt CloudWatch Logs. This field is optional. To
turn it on, choose an AWS KMS key, or choose Enter a key ARN and provide the ARN for the key.
Enter the ARN in the form arn:aws:kms:region:account-id:key/key-id. You can also
provide the ARN as a key alias, such as arn:aws:kms:region:account-id:alias/alias-
name.

Advanced settings: Job bookmark encryption

Client-side (CSE-KMS) encryption is used to encrypt job bookmarks. This field is optional. The
bookmark data is encrypted before it is sent to Amazon S3 for storage. To turn it on, choose an
AWS KMS key, or choose Enter a key ARN and provide the ARN for the key. Enter the ARN in the
form arn:aws:kms:region:account-id:key/key-id. You can also provide the ARN as a
key alias, such as arn:aws:kms:region:account-id:alias/alias-name.

For more information, see the following topics in the Amazon Simple Storage Service User Guide:

• For information about SSE-S3, see Protecting Data Using Server-Side Encryption with Amazon
S3-Managed Encryption Keys (SSE-S3).

• For information about SSE-KMS, see Protecting Data Using Server-Side Encryption with AWS
KMS keys.

• For information about CSE-KMS, see Using a KMS key stored in AWS KMS.

Encryption in transit

AWS provides Transport Layer Security (TLS) encryption for data in motion. You can configure
encryption settings for crawlers, ETL jobs, and development endpoints using security
configurations in AWS Glue. You can turn on AWS Glue Data Catalog encryption via the settings for
the Data Catalog.

As of September 4, 2018, AWS KMS (bring your own key and server-side encryption) for AWS Glue
ETL and the AWS Glue Data Catalog is supported.

Encryption in transit 2694

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html#client-side-encryption-kms-managed-master-key-intro
https://docs.aws.amazon.com/glue/latest/dg/console-security-configurations.html
https://docs.aws.amazon.com/glue/latest/dg/console-security-configurations.html

AWS Glue User Guide

FIPS compliance

If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

Key management

You can use AWS Identity and Access Management (IAM) with AWS Glue to define users, AWS
resources, groups, roles and fine-grained policies regarding access, denial, and more.

You can define the access to the metadata using both resource-based and identity-based policies,
depending on your organization’s needs. Resource-based policies list the principals that are
allowed or denied access to your resources, allowing you to set up policies such as cross-account
access. Identity policies are specifically attached to users, groups, and roles within IAM.

For a step-by-step example, see Restrict access to your AWS Glue Data Catalog with resource-level
IAM permissions and resource-based policies on the AWS Big Data Blog.

The fine-grained access portion of the policy is defined within the Resource clause. This portion
defines both the AWS Glue Data Catalog object that the action can be performed on, and what
resulting objects get returned by that operation.

A development endpoint is an environment that you can use to develop and test your AWS Glue
scripts. You can add, delete, or rotate the SSH key of a development endpoint.

As of September 4, 2018, AWS KMS (bring your own key and server-side encryption) for AWS Glue
ETL and the AWS Glue Data Catalog is supported.

AWS Glue dependency on other AWS services

For a user to work with the AWS Glue console, that user must have a minimum set of permissions
that allows them to work with the AWS Glue resources for their AWS account. In addition to these
AWS Glue permissions, the console requires permissions from the following services:

• Amazon CloudWatch Logs permissions to display logs.

• AWS Identity and Access Management (IAM) permissions to list and pass roles.

• AWS CloudFormation permissions to work with stacks.

FIPS compliance 2695

https://aws.amazon.com/compliance/fips/
https://aws.amazon.com/blogs/big-data/restrict-access-to-your-aws-glue-data-catalog-with-resource-level-iam-permissions-and-resource-based-policies/
https://aws.amazon.com/blogs/big-data/restrict-access-to-your-aws-glue-data-catalog-with-resource-level-iam-permissions-and-resource-based-policies/

AWS Glue User Guide

• Amazon Elastic Compute Cloud (Amazon EC2) permissions to list virtual private clouds (VPCs),
subnets, security groups, instances, and other objects (to set up Amazon EC2 items such as VPCs
when running jobs, crawlers, and creating development endpoints).

• Amazon Simple Storage Service (Amazon S3) permissions to list buckets and objects, and to
retrieve and save scripts.

• Amazon Redshift permissions to work with clusters.

• Amazon Relational Database Service (Amazon RDS) permissions to list instances.

Development endpoints

A development endpoint is an environment that you can use to develop and test your AWS Glue
scripts. You can use AWS Glue to create, edit, and delete development endpoints. You can list
all the development endpoints that are created. You can add, delete, or rotate the SSH key of a
development endpoint. You can also create notebooks that use the development endpoint.

You provide configuration values to provision the development environments. These values tell
AWS Glue how to set up the network so that you can access the development endpoint securely,
and so that your endpoint can access your data stores. Then, you can create a notebook that
connects to the development endpoint. You use your notebook to author and test your ETL script.

Use an AWS Identity and Access Management (IAM) role with permissions similar to the IAM role
that you use to run AWS Glue ETL jobs. Use a virtual private cloud (VPC), a subnet, and a security
group to create a development endpoint that can connect to your data resources securely. You
generate an SSH key pair to connect to the development environment using SSH.

You can create development endpoints for Amazon S3 data and within a VPC that you can use to
access datasets using JDBC.

You can install a Jupyter notebook client on your local machine and use it to debug and test ETL
scripts on a development endpoint. Or, you can use a Sagemaker notebook to author ETL scripts in
JupyterLab on AWS. See Use a SageMaker notebook with your development endpoint .

AWS Glue tags Amazon EC2 instances with a name that is prefixed with aws-glue-dev-
endpoint.

You can set up a notebook server on a development endpoint to run PySpark with AWS Glue
extensions.

Development endpoints 2696

https://docs.aws.amazon.com/glue/latest/dg/dev-endpoint-tutorial-sage.html

AWS Glue User Guide

Identity and access management for AWS Glue

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS Glue resources. IAM is an AWS service that you can
use with no additional charge.

Note

You can grant access to your data in the AWS Glue Data Catalog using either AWS Glue
methods or AWS Lake Formation grants. You can use AWS Identity and Access Management
(IAM) policies to set fine-grained access control with AWS Glue methods. Lake Formation
uses a simpler GRANT/REVOKE permissions model that is similar to the GRANT/REVOKE
commands in a relational database system.
This section includes information about how to use the AWS Glue methods. For information
about using Lake Formation grants, see Granting Lake Formation permissions in the AWS
Lake Formation Developer Guide.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS Glue works with IAM

• Configuring IAM permissions for AWS Glue

• AWS Glue access control policy examples

• AWS managed policies for AWS Glue

• Specifying AWS Glue resource ARNs

• Granting cross-account access

• Troubleshooting AWS Glue identity and access

Identity and access management 2697

https://docs.aws.amazon.com/lake-formation/latest/dg/lake-formation-permissions.html

AWS Glue User Guide

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS Glue.

Service user – If you use the AWS Glue service to do your job, then your administrator provides you
with the credentials and permissions that you need. As you use more AWS Glue features to do your
work, you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator. If you cannot access a feature in AWS Glue,
see Troubleshooting AWS Glue identity and access.

Service administrator – If you're in charge of AWS Glue resources at your company, you probably
have full access to AWS Glue. It's your job to determine which AWS Glue features and resources
your service users should access. You must then submit requests to your IAM administrator to
change the permissions of your service users. Review the information on this page to understand
the basic concepts of IAM. To learn more about how your company can use IAM with AWS Glue, see
How AWS Glue works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to AWS Glue. To view example AWS Glue identity-based
policies that you can use in IAM, see Identity-based policy examples for AWS Glue.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If

Audience 2698

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

AWS Glue User Guide

you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating

Authenticating with identities 2699

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html

AWS Glue User Guide

IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource

Authenticating with identities 2700

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS Glue User Guide

(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Authenticating with identities 2701

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role

AWS Glue User Guide

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific

Managing access using policies 2702

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline

AWS Glue User Guide

resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's

Managing access using policies 2703

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html

AWS Glue User Guide

permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS Glue works with IAM

Before you use IAM to manage access to AWS Glue, learn what IAM features are available to use
with AWS Glue.

IAM features you can use with AWS Glue

IAM feature AWS Glue support

Identity-based policies Yes

Resource-based policies Partial

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Principal permissions No

Service roles Yes

Service-linked roles No

How AWS Glue works with IAM 2704

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

AWS Glue User Guide

To get a high-level view of how AWS Glue and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for AWS Glue

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

AWS Glue supports identity-based policies (IAM policies) for all AWS Glue operations. By attaching
a policy, you can grant permissions to create, access, or modify an AWS Glue resource, such as a
table in the AWS Glue Data Catalog.

Identity-based policy examples for AWS Glue

To view examples of AWS Glue identity-based policies, see Identity-based policy examples for AWS
Glue.

Resource-based policies within AWS Glue

Supports resource-based policies Partial

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal

How AWS Glue works with IAM 2705

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS Glue User Guide

in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Note

You can only use an AWS Glue resource policy to manage permissions for Data Catalog
resources. You can't attach it to any other AWS Glue resources such as jobs, triggers,
development endpoints, crawlers, or classifiers.
Only one resource policy is allowed per catalog, and its size is limited to 10 KB.

In AWS Glue, a resource policy is attached to a catalog, which is a virtual container for all the kinds
of Data Catalog resources mentioned previously. Each AWS account owns a single catalog in an
AWS Region whose catalog ID is the same as the AWS account ID. You cannot delete or modify a
catalog.

A resource policy is evaluated for all API calls to the catalog where the caller principal is included in
the "Principal" block of the policy document.

To view examples of AWS Glue resource-based policies, see Resource-based policy examples for
AWS Glue.

Policy actions for AWS Glue

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How AWS Glue works with IAM 2706

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS Glue User Guide

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of AWS Glue actions, see Actions defined by AWS Glue in the Service Authorization
Reference.

Policy actions in AWS Glue use the following prefix before the action:

glue

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "glue:action1",
 "glue:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Get, include the following action:

"Action": "glue:Get*"

To view example policies, see AWS Glue access control policy examples.

Policy resources for AWS Glue

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How AWS Glue works with IAM 2707

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsglue.html#awsglue-actions-as-permissions

AWS Glue User Guide

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

For more information about how to control access to AWS Glue resources using ARNs, see
Specifying AWS Glue resource ARNs.

To see a list of AWS Glue resource types and their ARNs, see Resources defined by AWS Glue in
the Service Authorization Reference. To learn which actions you can use to specify the ARN of each
resource, see Actions defined by AWS Glue.

Policy condition keys for AWS Glue

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

How AWS Glue works with IAM 2708

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsglue.html#awsglue-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsglue.html#awsglue-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html

AWS Glue User Guide

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of AWS Glue condition keys, see Condition keys for AWS Glue in the Service
Authorization Reference. To learn which actions and resources you can use a condition key with, see
Actions defined by AWS Glue.

To view example policies, see Control settings using condition keys or context keys.

ACLs in AWS Glue

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with AWS Glue

Supports ABAC (tags in policies) Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

How AWS Glue works with IAM 2709

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsglue.html#awsglue-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsglue.html#awsglue-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS Glue User Guide

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Important

The condition context keys apply only to AWS Glue API actions on crawlers, jobs, triggers,
and development endpoints. For more information about which API operations are
affected, see Condition keys for AWS Glue.
The AWS Glue Data Catalog API operations don't currently support the aws:referer and
aws:UserAgent global condition context keys.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see Grant access using tags.

Using temporary credentials with AWS Glue

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

How AWS Glue works with IAM 2710

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsglue.html#awsglue-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

AWS Glue User Guide

Cross-service principal permissions for AWS Glue

Supports forward access sessions (FAS) No

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for AWS Glue

Supports service roles Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break AWS Glue functionality. Edit
service roles only when AWS Glue provides guidance to do so.

For detailed instructions on creating a service role for AWS Glue, see Step 1: Create an IAM policy
for the AWS Glue service and Step 2: Create an IAM role for AWS Glue.

Service-linked roles for AWS Glue

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS

How AWS Glue works with IAM 2711

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Glue User Guide

account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Configuring IAM permissions for AWS Glue

You use AWS Identity and Access Management (IAM) to define policies and roles that AWS Glue
uses to access resources. The following steps lead you through various options for setting up the
permissions for AWS Glue. Depending on your business needs, you might have to add or reduce
access to your resources.

Note

To get started with basic IAM permissions for AWS Glue instead, see Setting up IAM
permissions for AWS Glue.

1. Create an IAM policy for the AWS Glue service: Create a service policy that allows access to AWS
Glue resources.

2. Create an IAM role for AWS Glue: Create an IAM role, and attach the AWS Glue service policy and
a policy for your Amazon Simple Storage Service (Amazon S3) resources that are used by AWS
Glue.

3. Attach a policy to users or groups that access AWS Glue: Attach policies to any users or groups
that sign in to the AWS Glue console.

4. Create an IAM policy for notebooks: Create a notebook server policy to use in the creation of
notebook servers on development endpoints.

5. Create an IAM role for notebooks: Create an IAM role and attach the notebook server policy.

6. Create an IAM policy for Amazon SageMaker notebooks: Create an IAM policy to use when
creating Amazon SageMaker notebooks on development endpoints.

7. Create an IAM role for Amazon SageMaker notebooks: Create an IAM role and attach the policy
to grant permissions when creating Amazon SageMaker notebooks on development endpoints.

Configuring IAM permissions for AWS Glue 2712

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Glue User Guide

Step 1: Create an IAM policy for the AWS Glue service

For any operation that accesses data on another AWS resource, such as accessing your objects in
Amazon S3, AWS Glue needs permission to access the resource on your behalf. You provide those
permissions by using AWS Identity and Access Management (IAM).

Note

You can skip this step if you use the AWS managed policy AWSGlueServiceRole.

In this step, you create a policy that is similar to AWSGlueServiceRole. You can find the most
current version of AWSGlueServiceRole on the IAM console.

To create an IAM policy for AWS Glue

This policy grants permission for some Amazon S3 actions to manage resources in your account
that are needed by AWS Glue when it assumes the role using this policy. Some of the resources
that are specified in this policy refer to default names that are used by AWS Glue for Amazon S3
buckets, Amazon S3 ETL scripts, CloudWatch Logs, and Amazon EC2 resources. For simplicity, AWS
Glue writes some Amazon S3 objects into buckets in your account prefixed with aws-glue-* by
default.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Policies.

3. Choose Create Policy.

4. On the Create Policy screen, navigate to a tab to edit JSON. Create a policy document with the
following JSON statements, and then choose Review policy.

Note

Add any permissions needed for Amazon S3 resources. You might want to scope the
resources section of your access policy to only those resources that are required.

{
 "Version": "2012-10-17",

Configuring IAM permissions for AWS Glue 2713

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Glue User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:*",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:ListAllMyBuckets",
 "s3:GetBucketAcl",
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeRouteTables",
 "ec2:CreateNetworkInterface",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcAttribute",
 "iam:ListRolePolicies",
 "iam:GetRole",
 "iam:GetRolePolicy",
 "cloudwatch:PutMetricData"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:PutBucketPublicAccessBlock"
],
 "Resource": [
 "arn:aws:s3:::aws-glue-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [

Configuring IAM permissions for AWS Glue 2714

AWS Glue User Guide

 "arn:aws:s3:::aws-glue-*/*",
 "arn:aws:s3:::*/*aws-glue-*/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::crawler-public*",
 "arn:aws:s3:::aws-glue-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:AssociateKmsKey"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:/aws-glue/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags",
 "ec2:DeleteTags"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 "aws:TagKeys": [
 "aws-glue-service-resource"
]
 }
 },
 "Resource": [
 "arn:aws:ec2:*:*:network-interface/*",
 "arn:aws:ec2:*:*:security-group/*",
 "arn:aws:ec2:*:*:instance/*"
]

Configuring IAM permissions for AWS Glue 2715

AWS Glue User Guide

 }
]
}

The following table describes the permissions granted by this policy.

Action Resource Description

"glue:*" "*" Grants permission to run all
AWS Glue API operations.

"s3:GetBucketLocat
ion", "s3:ListBucket",
"s3:ListAllMyBuckets",
"s3:GetBucketAcl",

"*" Allows listing of Amazon S3
buckets from crawlers, jobs,
development endpoints,
and notebook servers.

"ec2:DescribeVpcEn
dpoints", "ec2:Desc
ribeRouteTables",
"ec2:CreateNetwork
Interface", "ec2:Dele
teNetworkInterface
", "ec2:DescribeNetwo
rkInterfaces",
"ec2:DescribeSecur
ityGroups", "ec2:Desc
ribeSubnets", "ec2:Desc
ribeVpcAttribute",

"*" Allows the setup of Amazon
EC2 network items, such
as virtual private clouds
(VPCs) when running jobs,
crawlers, and development
endpoints.

"iam:ListRolePolicies",
"iam:GetRole", "iam:GetR
olePolicy"

"*" Allows listing IAM roles
from crawlers, jobs,
development endpoints,
and notebook servers.

"cloudwatch:PutMet
ricData"

"*" Allows writing CloudWatch
metrics for jobs.

Configuring IAM permissions for AWS Glue 2716

AWS Glue User Guide

Action Resource Description

"s3:CreateBucket",
 "s3:PutBucketPubli
cAccessBlock"

"arn:aws:s3:::aws-
glue-*"

Allows the creation of
Amazon S3 buckets in your
account from jobs and
notebook servers.

Naming convention: Uses
Amazon S3 folders named
aws-glue-.

Enables AWS Glue to create
buckets that block public
access.

"s3:GetObject",
"s3:PutObject",
"s3:DeleteObject"

"arn:aws:s3:::aws-
glue-*/*",
"arn:aws:s3:::*/*a
ws-glue-*/*"

Allows get, put, and delete
of Amazon S3 objects
into your account when
storing objects such as ETL
scripts and notebook server
locations.

Naming convention: Grants
permission to Amazon S3
buckets or folders whose
names are prefixed with
aws-glue-.

"s3:GetObject" "arn:aws:s3:::craw
ler-public*",
"arn:aws:s3:::aws-
glue-*"

Allows get of Amazon S3
objects used by examples
and tutorials from crawlers
and jobs.

Naming convention:
Amazon S3 bucket names
begin with crawler-public
and aws-glue-.

Configuring IAM permissions for AWS Glue 2717

AWS Glue User Guide

Action Resource Description

"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:PutLogEvents"

"arn:aws:logs:*:*:
log-group:/aws-glu
e/*"

Allows writing logs to
CloudWatch Logs.

Naming convention: AWS
Glue writes logs to log
groups whose names begin
with aws-glue.

"ec2:CreateTags",
"ec2:DeleteTags"

"arn:aws:ec2:*:*:n
etwork-interface/
*", "arn:aws:
ec2:*:*:security-g
roup/*", "arn:aws:
ec2:*:*:instance/*
"

Allows tagging of Amazon
EC2 resources created for
development endpoints.

Naming convention: AWS
Glue tags Amazon EC2
network interfaces, security
groups, and instances with
aws-glue-service-resource.

5. On the Review Policy screen, enter your Policy Name, for example GlueServiceRolePolicy.
Enter an optional description, and when you're satisfied with the policy, choose Create policy.

Step 2: Create an IAM role for AWS Glue

You need to grant your IAM role permissions that AWS Glue can assume when calling other services
on your behalf. This includes access to Amazon S3 for any sources, targets, scripts, and temporary
directories that you use with AWS Glue. Permission is needed by crawlers, jobs, and development
endpoints.

You provide those permissions by using AWS Identity and Access Management (IAM). Add a policy
to the IAM role that you pass to AWS Glue.

To create an IAM role for AWS Glue

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. Choose Create role.

Configuring IAM permissions for AWS Glue 2718

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Glue User Guide

4. For role type, choose AWS Service, find and choose Glue, and choose Next: Permissions.

5. On the Attach permissions policy page, choose the policies that contain the required
permissions; for example, the AWS managed policy AWSGlueServiceRole for general AWS
Glue permissions and the AWS managed policy AmazonS3FullAccess for access to Amazon S3
resources. Then choose Next: Review.

Note

Ensure that one of the policies in this role grants permissions to your Amazon
S3 sources and targets. You might want to provide your own policy for access
to specific Amazon S3 resources. Data sources require s3:ListBucket and
s3:GetObject permissions. Data targets require s3:ListBucket, s3:PutObject,
and s3:DeleteObject permissions. For more information about creating an Amazon
S3 policy for your resources, see Specifying Resources in a Policy. For an example
Amazon S3 policy, see Writing IAM Policies: How to Grant Access to an Amazon S3
Bucket.
If you plan to access Amazon S3 sources and targets that are encrypted with SSE-
KMS, attach a policy that allows AWS Glue crawlers, jobs, and development endpoints
to decrypt the data. For more information, see Protecting Data Using Server-Side
Encryption with AWS KMS-Managed Keys (SSE-KMS).
The following is an example.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "kms:Decrypt"
],
 "Resource":[
 "arn:aws:kms:*:account-id-without-hyphens:key/key-id"
]
 }
]
}

6. For Role name, enter a name for your role; for example, AWSGlueServiceRoleDefault.
Create the role with the name prefixed with the string AWSGlueServiceRole to allow the

Configuring IAM permissions for AWS Glue 2719

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-arn-format.html
https://aws.amazon.com/blogs/security/writing-iam-policies-how-to-grant-access-to-an-amazon-s3-bucket/
https://aws.amazon.com/blogs/security/writing-iam-policies-how-to-grant-access-to-an-amazon-s3-bucket/
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html

AWS Glue User Guide

role to be passed from console users to the service. AWS Glue provided policies expect IAM
service roles to begin with AWSGlueServiceRole. Otherwise, you must add a policy to allow
your users the iam:PassRole permission for IAM roles to match your naming convention.
Choose Create Role.

Note

When you create a notebook with a role, that role is then passed to interactive
sessions so that the same role can be used in both places. As such, the iam:PassRole
permission needs to be part of the role's policy.
Create a new policy for your role using the following example. Replace the account
number with your own and the role name.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::090000000210:role/<role_name>"
 }
]
}

Step 3: Attach a policy to users or groups that access AWS Glue

The administrator must assign permissions to any users, groups, or roles using the AWS Glue
console or AWS Command Line Interface (AWS CLI). You provide those permissions by using AWS
Identity and Access Management (IAM), through policies. This step describes assigning permissions
to users or groups.

When you finish this step, your user or group has the following policies attached:

• The AWS managed policy AWSGlueConsoleFullAccess or the custom policy
GlueConsoleAccessPolicy

• AWSGlueConsoleSageMakerNotebookFullAccess

Configuring IAM permissions for AWS Glue 2720

AWS Glue User Guide

• CloudWatchLogsReadOnlyAccess

• AWSCloudFormationReadOnlyAccess

• AmazonAthenaFullAccess

To attach an inline policy and embed it in a user or group

You can attach an AWS managed policy or an inline policy to a user or group to access the AWS
Glue console. Some of the resources specified in this policy refer to default names that are used by
AWS Glue for Amazon S3 buckets, Amazon S3 ETL scripts, CloudWatch Logs, AWS CloudFormation,
and Amazon EC2 resources. For simplicity, AWS Glue writes some Amazon S3 objects into buckets
in your account prefixed with aws-glue-* by default.

Note

You can skip this step if you use the AWS managed policy AWSGlueConsoleFullAccess.

Important

AWS Glue needs permission to assume a role that is used to perform work on your behalf.
To accomplish this, you add the iam:PassRole permissions to your AWS Glue users
or groups. This policy grants permission to roles that begin with AWSGlueServiceRole
for AWS Glue service roles, and AWSGlueServiceNotebookRole for roles that are
required when you create a notebook server. You can also create your own policy for
iam:PassRole permissions that follows your naming convention.
Per security best practices, it is recommended to restrict access by tightening policies to
further restrict access to Amazon S3 bucket and Amazon CloudWatch log groups. For an
example Amazon S3 policy, see Writing IAM Policies: How to Grant Access to an Amazon S3
Bucket.

In this step, you create a policy that is similar to AWSGlueConsoleFullAccess. You can find the
most current version of AWSGlueConsoleFullAccess on the IAM console.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users or User groups.

Configuring IAM permissions for AWS Glue 2721

https://aws.amazon.com/blogs/security/writing-iam-policies-how-to-grant-access-to-an-amazon-s3-bucket/
https://aws.amazon.com/blogs/security/writing-iam-policies-how-to-grant-access-to-an-amazon-s3-bucket/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Glue User Guide

3. In the list, choose the name of the user or group to embed a policy in.

4. Choose the Permissions tab and, if necessary, expand the Permissions policies section.

5. Choose the Add Inline policy link.

6. On the Create Policy screen, navigate to a tab to edit JSON. Create a policy document with the
following JSON statements, and then choose Review policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:*",
 "redshift:DescribeClusters",
 "redshift:DescribeClusterSubnetGroups",
 "iam:ListRoles",
 "iam:ListUsers",
 "iam:ListGroups",
 "iam:ListRolePolicies",
 "iam:GetRole",
 "iam:GetRolePolicy",
 "iam:ListAttachedRolePolicies",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeRouteTables",
 "ec2:DescribeVpcAttribute",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeInstances",
 "rds:DescribeDBInstances",
 "rds:DescribeDBClusters",
 "rds:DescribeDBSubnetGroups",
 "s3:ListAllMyBuckets",
 "s3:ListBucket",
 "s3:GetBucketAcl",
 "s3:GetBucketLocation",
 "cloudformation:DescribeStacks",
 "cloudformation:GetTemplateSummary",
 "dynamodb:ListTables",
 "kms:ListAliases",
 "kms:DescribeKey",

Configuring IAM permissions for AWS Glue 2722

AWS Glue User Guide

 "cloudwatch:GetMetricData",
 "cloudwatch:ListDashboards"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::*/*aws-glue-*/*",
 "arn:aws:s3:::aws-glue-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "tag:GetResources"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:PutBucketPublicAccessBlock"],
 "Resource": [
 "arn:aws:s3:::aws-glue-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:GetLogEvents"
],
 "Resource": [
 "arn:aws:logs:*:*:/aws-glue/*"
]

Configuring IAM permissions for AWS Glue 2723

AWS Glue User Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateStack",
 "cloudformation:DeleteStack"
],
 "Resource": "arn:aws:cloudformation:*:*:stack/aws-glue*/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:RunInstances"
],
 "Resource": [
 "arn:aws:ec2:*:*:instance/*",
 "arn:aws:ec2:*:*:key-pair/*",
 "arn:aws:ec2:*:*:image/*",
 "arn:aws:ec2:*:*:security-group/*",
 "arn:aws:ec2:*:*:network-interface/*",
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:volume/*"
]
 },
 {
 "Action": [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/AWSGlueServiceRole*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "glue.amazonaws.com"
]
 }
 }
 },
 {
 "Action": [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/AWSGlueServiceNotebookRole*",

Configuring IAM permissions for AWS Glue 2724

AWS Glue User Guide

 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "ec2.amazonaws.com"
]
 }
 }
 },
 {
 "Action": [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iam::*:role/service-role/AWSGlueServiceRole*"
],
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "glue.amazonaws.com"
]
 }
 }
 }
]
}

The following table describes the permissions granted by this policy.

Configuring IAM permissions for AWS Glue 2725

AWS Glue User Guide

Action Resource Description

"glue:*" "*" Grants permission to
run all AWS Glue API
operations.

If you had previousl
y created your policy
without the "glue:*"
action, you must add
the following individua
l permissions to your
policy:

• "glue:ListCrawlers"

• "glue:BatchGetCraw
lers"

• "glue:ListTriggers"

• "glue:BatchGetTrig
gers"

• "glue:ListDevEndpo
ints"

• "glue:BatchGetDevE
ndpoints"

• "glue:ListJobs"

• "glue:BatchGetJobs"

"redshift:Describe
Clusters", "redshift
:DescribeClusterSu
bnetGroups"

"*" Allows creation of
connections to Amazon
Redshift.

Configuring IAM permissions for AWS Glue 2726

AWS Glue User Guide

Action Resource Description

"iam:ListRoles", "iam:List
RolePolicies", "iam:GetR
ole", "iam:GetRolePolicy
", "iam:ListAttachedR
olePolicies"

"*" Allows listing IAM
roles when working
with crawlers, jobs,
development endpoints
, and notebook servers.

"ec2:DescribeSecur
ityGroups", "ec2:Desc
ribeSubnets", "ec2:Desc
ribeVpcs", "ec2:Desc
ribeVpcEndpoints",
"ec2:DescribeRouteTables",
"ec2:DescribeVpcAt
tribute", "ec2:Desc
ribeKeyPairs", "ec2:Desc
ribeInstances"

"*" Allows setup of
Amazon EC2 network
items, such as VPCs,
when running
jobs, crawlers, and
development endpoints
.

"rds:DescribeDBInstances" "*" Allows creation of
connections to Amazon
RDS.

"s3:ListAllMyBuckets",
"s3:ListBucket", "s3:GetBu
cketAcl", "s3:GetBu
cketLocation"

"*" Allows listing of
Amazon S3 buckets
when working
with crawlers, jobs,
development endpoints
, and notebook servers.

"dynamodb:ListTables" "*" Allows listing of
DynamoDB tables.

"kms:ListAliases",
"kms:DescribeKey"

"*" Allows working with
KMS keys.

Configuring IAM permissions for AWS Glue 2727

AWS Glue User Guide

Action Resource Description

"cloudwatch:GetMet
ricData", "cloudwat
ch:ListDashboards"

"*" Allows working with
CloudWatch metrics.

"s3:GetObject", "s3:PutOb
ject"

"arn:aws:s3::: aws-
glue-*/*", "arn:aws:
s3::: */*aws-glue-
/", "arn:aws:s3:::
aws-glue-*"

Allows get and put of
Amazon S3 objects
into your account
when storing objects
such as ETL scripts
and notebook server
locations.

Naming convention:
Grants permission to
Amazon S3 buckets or
folders whose names
are prefixed with aws-
glue-.

"tag:GetResources" "*" Allows retrieval of AWS
tags.

Configuring IAM permissions for AWS Glue 2728

AWS Glue User Guide

Action Resource Description

"s3:CreateBucket",
 "s3:PutBucketPubli
cAccessBlock"

"arn:aws:s3::: aws-
glue-*"

Allows creation of an
Amazon S3 bucket
into your account
when storing objects
such as ETL scripts
and notebook server
locations.

Naming convention:
Grants permission to
Amazon S3 buckets
whose names are
prefixed with aws-glue-
.

Enables AWS Glue to
create buckets that
block public access.

"logs:GetLogEvents" "arn:aws:logs:*:*: /
aws-glue/*"

Allows retrieval of
CloudWatch Logs.

Naming convention:
AWS Glue writes logs
to log groups whose
names begin with aws-
glue-.

Configuring IAM permissions for AWS Glue 2729

AWS Glue User Guide

Action Resource Description

"cloudformation:Cr
eateStack", "cloudfor
mation:DeleteStack"

"arn:aws:cloudform
ation:*:*:stack/
aws-glue*/*"

Allows managing AWS
CloudFormation stacks
when working with
notebook servers.

Naming conventio
n: AWS Glue creates
stacks whose names
begin with aws-glue.

"ec2:RunInstances" "arn:aws:ec2:*:*:i
nstance/*",
"arn:aws:ec2:*:*:k
ey-pair/*",
"arn:aws:ec2:*:*:i
mage/*", "arn:aws:
ec2:*:*:security-g
roup/*", "arn:aws:
ec2:*:*:network-
interface/*",
"arn:aws:ec2:*:*:s
ubnet/*", "arn:aws:
ec2:*:*:volume/*"

Allows running of
development endpoints
and notebook servers.

"iam:PassRole" "arn:aws:iam::*:ro
le/ AWSGlueSe
rviceRole*"

Allows AWS Glue to
assume PassRole
permission for
roles that begin
with AWSGlueSe
rviceRole .

Configuring IAM permissions for AWS Glue 2730

AWS Glue User Guide

Action Resource Description

"iam:PassRole" "arn:aws:iam::*:ro
le/ AWSGlueSe
rviceNotebookRole*"

Allows Amazon EC2
to assume PassRole
permission for
roles that begin
with AWSGlueSe
rviceNote
bookRole .

"iam:PassRole" "arn:aws:iam::*:ro
le/service-role/
AWSGlueServiceRole*"

Allows AWS Glue to
assume PassRole
permission for roles
that begin with
service-role/
AWSGlueService
Role .

7. On the Review policy screen, enter a name for the policy, for example
GlueConsoleAccessPolicy. When you're satisfied with the policy, choose Create policy. Ensure
that no errors appear in a red box at the top of the screen. Correct any that are reported.

Note

If Use autoformatting is selected, the policy is reformatted whenever you open a
policy or choose Validate Policy.

To attach the AWSGlueConsoleFullAccess managed policy

You can attach the AWSGlueConsoleFullAccess policy to provide permissions that are required
by the AWS Glue console user.

Note

You can skip this step if you created your own policy for AWS Glue console access.

Configuring IAM permissions for AWS Glue 2731

AWS Glue User Guide

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, select the check box next to the AWSGlueConsoleFullAccess. You can use
the Filter menu and the search box to filter the list of policies.

4. Choose Policy actions, and then choose Attach.

5. Choose the user to attach the policy to. You can use the Filter menu and the search box to
filter the list of principal entities. After choosing the user to attach the policy to, choose
Attach policy.

To attach the AWSGlueConsoleSageMakerNotebookFullAccess managed policy

You can attach the AWSGlueConsoleSageMakerNotebookFullAccess policy to a user to
manage SageMaker notebooks created on the AWS Glue console. In addition to other required
AWS Glue console permissions, this policy grants access to resources needed to manage SageMaker
notebooks.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, select the check box next to the
AWSGlueConsoleSageMakerNotebookFullAccess. You can use the Filter menu and the search
box to filter the list of policies.

4. Choose Policy actions, and then choose Attach.

5. Choose the user to attach the policy to. You can use the Filter menu and the search box to
filter the list of principal entities. After choosing the user to attach the policy to, choose
Attach policy.

To attach the CloudWatchLogsReadOnlyAccess managed policy

You can attach the CloudWatchLogsReadOnlyAccess policy to a user to view the logs created by
AWS Glue on the CloudWatch Logs console.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

Configuring IAM permissions for AWS Glue 2732

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Glue User Guide

2. In the navigation pane, choose Policies.

3. In the list of policies, select the check box next to the CloudWatchLogsReadOnlyAccess. You
can use the Filter menu and the search box to filter the list of policies.

4. Choose Policy actions, and then choose Attach.

5. Choose the user to attach the policy to. You can use the Filter menu and the search box to
filter the list of principal entities. After choosing the user to attach the policy to, choose
Attach policy.

To attach the AWSCloudFormationReadOnlyAccess managed policy

You can attach the AWSCloudFormationReadOnlyAccess policy to a user to view the AWS
CloudFormation stacks used by AWS Glue on the AWS CloudFormation console.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, select the check box next to AWSCloudFormationReadOnlyAccess. You
can use the Filter menu and the search box to filter the list of policies.

4. Choose Policy actions, and then choose Attach.

5. Choose the user to attach the policy to. You can use the Filter menu and the search box to
filter the list of principal entities. After choosing the user to attach the policy to, choose
Attach policy.

To attach the AmazonAthenaFullAccess managed policy

You can attach the AmazonAthenaFullAccess policy to a user to view Amazon S3 data in the
Athena console.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, select the check box next to the AmazonAthenaFullAccess. You can use
the Filter menu and the search box to filter the list of policies.

4. Choose Policy actions, and then choose Attach.

Configuring IAM permissions for AWS Glue 2733

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Glue User Guide

5. Choose the user to attach the policy to. You can use the Filter menu and the search box to
filter the list of principal entities. After choosing the user to attach the policy to, choose
Attach policy.

Step 4: Create an IAM policy for notebook servers

If you plan to use notebooks with development endpoints, you must specify permissions when
you create the notebook server. You provide those permissions by using AWS Identity and Access
Management (IAM).

This policy grants permission for some Amazon S3 actions to manage resources in your account
that are needed by AWS Glue when it assumes the role using this policy. Some of the resources
that are specified in this policy refer to default names used by AWS Glue for Amazon S3 buckets,
Amazon S3 ETL scripts, and Amazon EC2 resources. For simplicity, AWS Glue defaults writing some
Amazon S3 objects into buckets in your account prefixed with aws-glue-*.

Note

You can skip this step if you use the AWS managed policy
AWSGlueServiceNotebookRole.

In this step, you create a policy that is similar to AWSGlueServiceNotebookRole. You can find
the most current version of AWSGlueServiceNotebookRole on the IAM console.

To create an IAM policy for notebooks

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Policies.

3. Choose Create Policy.

4. On the Create Policy screen, navigate to a tab to edit JSON. Create a policy document with the
following JSON statements, and then choose Review policy.

{
 "Version":"2012-10-17",
 "Statement":[
 {

Configuring IAM permissions for AWS Glue 2734

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Glue User Guide

 "Effect":"Allow",
 "Action":[
 "glue:CreateDatabase",
 "glue:CreatePartition",
 "glue:CreateTable",
 "glue:DeleteDatabase",
 "glue:DeletePartition",
 "glue:DeleteTable",
 "glue:GetDatabase",
 "glue:GetDatabases",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:GetTable",
 "glue:GetTableVersions",
 "glue:GetTables",
 "glue:UpdateDatabase",
 "glue:UpdatePartition",
 "glue:UpdateTable",
 "glue:GetJobBookmark",
 "glue:ResetJobBookmark",
 "glue:CreateConnection",
 "glue:CreateJob",
 "glue:DeleteConnection",
 "glue:DeleteJob",
 "glue:GetConnection",
 "glue:GetConnections",
 "glue:GetDevEndpoint",
 "glue:GetDevEndpoints",
 "glue:GetJob",
 "glue:GetJobs",
 "glue:UpdateJob",
 "glue:BatchDeleteConnection",
 "glue:UpdateConnection",
 "glue:GetUserDefinedFunction",
 "glue:UpdateUserDefinedFunction",
 "glue:GetUserDefinedFunctions",
 "glue:DeleteUserDefinedFunction",
 "glue:CreateUserDefinedFunction",
 "glue:BatchGetPartition",
 "glue:BatchDeletePartition",
 "glue:BatchCreatePartition",
 "glue:BatchDeleteTable",
 "glue:UpdateDevEndpoint",
 "s3:GetBucketLocation",

Configuring IAM permissions for AWS Glue 2735

AWS Glue User Guide

 "s3:ListBucket",
 "s3:ListAllMyBuckets",
 "s3:GetBucketAcl"
],
 "Resource":[
 "*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObject"
],
 "Resource":[
 "arn:aws:s3:::crawler-public*",
 "arn:aws:s3:::aws-glue*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource":[
 "arn:aws:s3:::aws-glue*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "ec2:CreateTags",
 "ec2:DeleteTags"
],
 "Condition":{
 "ForAllValues:StringEquals":{
 "aws:TagKeys":[
 "aws-glue-service-resource"
]
 }
 },
 "Resource":[
 "arn:aws:ec2:*:*:network-interface/*",
 "arn:aws:ec2:*:*:security-group/*",

Configuring IAM permissions for AWS Glue 2736

AWS Glue User Guide

 "arn:aws:ec2:*:*:instance/*"
]
 }
]
}

The following table describes the permissions granted by this policy.

Action Resource Description

"glue:*" "*" Grants permission to
run all AWS Glue API
operations.

"s3:GetBucketLocat
ion", "s3:ListB
ucket", "s3:ListA
llMyBuckets",
"s3:GetBucketAcl"

"*" Allows listing of Amazon
S3 buckets from notebook
servers.

"s3:GetObject" "arn:aws:s3:::crawler-
public*", "arn:aws:
s3:::aws-glue-*"

Allows get of Amazon
S3 objects used by
examples and tutorials
 from notebooks.

Naming convention:
Amazon S3 bucket names
begin with crawler-public
and aws-glue-.

"s3:PutObject",
"s3:DeleteObject"

"arn:aws:s3:::aws-
glue*"

Allows put and delete
of Amazon S3 objects
into your account from
notebooks.

Naming convention: Uses
Amazon S3 folders named
aws-glue.

Configuring IAM permissions for AWS Glue 2737

AWS Glue User Guide

Action Resource Description

"ec2:CreateTags",
"ec2:DeleteTags"

"arn:aws:ec2:*:*:n
etwork-interface/*
", "arn:aws:ec2:*:*:s
ecurity-group/*",
"arn:aws:ec2:*:*:i
nstance/*"

Allows tagging of Amazon
EC2 resources created for
notebook servers.

Naming convention: AWS
Glue tags Amazon EC2
instances with aws-glue-
service-resource.

5. On the Review Policy screen, enter your Policy Name, for example
GlueServiceNotebookPolicyDefault. Enter an optional description, and when you're satisfied
with the policy, choose Create policy.

Step 5: Create an IAM role for notebook servers

If you plan to use notebooks with development endpoints, you need to grant the IAM role
permissions. You provide those permissions by using AWS Identity and Access Management IAM,
through an IAM role.

Note

When you create an IAM role using the IAM console, the console creates an instance profile
automatically and gives it the same name as the role to which it corresponds.

To create an IAM role for notebooks

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. Choose Create role.

4. For role type, choose AWS Service, find and choose EC2, and choose the EC2 use case, then
choose Next: Permissions.

5. On the Attach permissions policy page, choose the policies that contain the required
permissions; for example, AWSGlueServiceNotebookRole for general AWS Glue permissions

Configuring IAM permissions for AWS Glue 2738

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Glue User Guide

and the AWS managed policy AmazonS3FullAccess for access to Amazon S3 resources. Then
choose Next: Review.

Note

Ensure that one of the policies in this role grants permissions to your Amazon S3
sources and targets. Also confirm that your policy allows full access to the location
where you store your notebook when you create a notebook server. You might want
to provide your own policy for access to specific Amazon S3 resources. For more
information about creating an Amazon S3 policy for your resources, see Specifying
Resources in a Policy.
If you plan to access Amazon S3 sources and targets that are encrypted with SSE-KMS,
attach a policy that allows notebooks to decrypt the data. For more information, see
Protecting Data Using Server-Side Encryption with AWS KMS-Managed Keys (SSE-
KMS).
The following is an example.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "kms:Decrypt"
],
 "Resource":[
 "arn:aws:kms:*:account-id-without-hyphens:key/key-id"
]
 }
]
}

6. For Role name, enter a name for your role. Create the role with the name prefixed with the
string AWSGlueServiceNotebookRole to allow the role to be passed from console users
to the notebook server. AWS Glue provided policies expect IAM service roles to begin with
AWSGlueServiceNotebookRole. Otherwise you must add a policy to your users to allow
the iam:PassRole permission for IAM roles to match your naming convention. For example,
enter AWSGlueServiceNotebookRoleDefault. Then choose Create role.

Configuring IAM permissions for AWS Glue 2739

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-arn-format.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-arn-format.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html

AWS Glue User Guide

Step 6: Create an IAM policy for SageMaker notebooks

If you plan to use SageMaker notebooks with development endpoints, you must specify
permissions when you create the notebook. You provide those permissions by using AWS Identity
and Access Management (IAM).

To create an IAM policy for SageMaker notebooks

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Policies.

3. Choose Create Policy.

4. On the Create Policy page, navigate to a tab to edit the JSON. Create a policy document with
the following JSON statements. Edit bucket-name, region-code, and account-id for your
environment.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:ListBucket"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::bucket-name"
]
 },
 {
 "Action": [
 "s3:GetObject"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::bucket-name*"
]
 },
 {
 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",

Configuring IAM permissions for AWS Glue 2740

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Glue User Guide

 "logs:PutLogEvents",
 "logs:CreateLogGroup"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:logs:region-code:account-id:log-group:/aws/sagemaker/*",
 "arn:aws:logs:region-code:account-id:log-group:/aws/sagemaker/
:log-stream:aws-glue-"
]
 },
 {
 "Action": [
 "glue:UpdateDevEndpoint",
 "glue:GetDevEndpoint",
 "glue:GetDevEndpoints"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:glue:region-code:account-id:devEndpoint/*"
]
 },
 {
 "Action": [
 "sagemaker:ListTags"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:sagemaker:region-code:account-id:notebook-instance/*"
]
 }
]
}

Then choose Review policy.

The following table describes the permissions granted by this policy.

Action Resource Description

"s3:ListBucket*" "arn:aws:s3::: bucket-
name "

Grants permission to list
Amazon S3 buckets.

Configuring IAM permissions for AWS Glue 2741

AWS Glue User Guide

Action Resource Description

"s3:GetObject" "arn:aws:s3::: bucket-
name *"

Grants permission to get
Amazon S3 objects that
are used by SageMaker
notebooks.

"logs:CreateLogStr
eam", "logs:Des
cribeLogStreams",
"logs:PutLogEvents",
"logs:CreateLogGro
up"

"arn:aws:logs: region-
code :account-i
d :log-group:/aws/
sagemaker/*",
"arn:aws:logs: region-
code :account-i
d :log-group:/aws/sa
gemaker/*:log-stre
am:aws-glue-*"

Grants permission to write
logs to Amazon CloudWatch
Logs from notebooks.

Naming convention: Writes
to log groups whose names
begin with aws-glue.

"glue:UpdateDevEnd
point", "glue:Get
DevEndpoint",
"glue:GetDevEndpoi
nts"

"arn:aws:glue: region-
code :account-i
d :devEndpoint/*"

Grants permission to use a
development endpoint from
SageMaker notebooks.

"sagemaker:ListTags" "arn:aws:sagemaker
: region-co
de :account-i
d :notebook-instance
/*"

Grants permission to return
tags for an SageMaker
resource. The aws-glue-
dev-endpoint tag is
required on the SageMaker
notebook for connecting the
notebook to a development
endpoint.

5. On the Review Policy screen, enter your Policy Name, for example
AWSGlueSageMakerNotebook. Enter an optional description, and when you're satisfied with
the policy, choose Create policy.

Configuring IAM permissions for AWS Glue 2742

AWS Glue User Guide

Step 7: Create an IAM role for SageMaker notebooks

If you plan to use SageMaker notebooks with development endpoints, you need to grant the IAM
role permissions. You provide those permissions by using AWS Identity and Access Management
(IAM), through an IAM role.

To create an IAM role for SageMaker notebooks

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. Choose Create role.

4. For role type, choose AWS Service, find and choose SageMaker, and then choose the
SageMaker - Execution use case. Then choose Next: Permissions.

5. On the Attach permissions policy page, choose the policies that contain the required
permissions; for example, AmazonSageMakerFullAccess. Choose Next: Review.

If you plan to access Amazon S3 sources and targets that are encrypted with SSE-KMS, attach
a policy that allows notebooks to decrypt the data, as shown in the following example. For
more information, see Protecting Data Using Server-Side Encryption with AWS KMS-Managed
Keys (SSE-KMS).

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "kms:Decrypt"
],
 "Resource":[
 "arn:aws:kms:*:account-id-without-hyphens:key/key-id"
]
 }
]
}

6. For Role name, enter a name for your role. To allow the role to be passed
from console users to SageMaker, use a name that is prefixed with the string
AWSGlueServiceSageMakerNotebookRole. AWS Glue provided policies expect IAM roles

Configuring IAM permissions for AWS Glue 2743

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html

AWS Glue User Guide

to begin with AWSGlueServiceSageMakerNotebookRole. Otherwise you must add a policy
to your users to allow the iam:PassRole permission for IAM roles to match your naming
convention.

For example, enter AWSGlueServiceSageMakerNotebookRole-Default, and then choose
Create role.

7. After you create the role, attach the policy that allows additional permissions required to
create SageMaker notebooks from AWS Glue.

Open the role that you just created, AWSGlueServiceSageMakerNotebookRole-
Default, and choose Attach policies. Attach the policy that you created named
AWSGlueSageMakerNotebook to the role.

AWS Glue access control policy examples

This section contains examples of both identity-based (IAM) access control policies and AWS Glue
resource policies.

Contents

• Identity-based policy examples for AWS Glue

• Policy best practices

• Resource-level permissions only apply to specific AWS Glue objects

• Using the AWS Glue console

• Allow users to view their own permissions

• Grant read-only permission to a table

• Filter tables by GetTables permission

• Grant full access to a table and all partitions

• Control access by name prefix and explicit denial

• Grant access using tags

• Deny access using tags

• Use tags with list and batch API operations

• Control settings using condition keys or context keys

• Control policies that control settings using condition keys

• Control policies that control settings using context keysAWS Glue access control policy examples 2744

AWS Glue User Guide

• Deny an identity the ability to create data preview sessions

• Resource-based policy examples for AWS Glue

• Considerations for using resource-based policies with AWS Glue

• Use a resource policy to control access in the same account

Identity-based policy examples for AWS Glue

By default, users and roles don't have permission to create or modify AWS Glue resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by AWS Glue, including the format of the
ARNs for each of the resource types, see Actions, resources, and condition keys for AWS Glue in the
Service Authorization Reference.

Note

The examples provided in this section all use the us-west-2 Region. You can replace this
with the AWS Region that you want to use.

Topics

• Policy best practices

• Resource-level permissions only apply to specific AWS Glue objects

• Using the AWS Glue console

• Allow users to view their own permissions

• Grant read-only permission to a table

• Filter tables by GetTables permission

• Grant full access to a table and all partitions

AWS Glue access control policy examples 2745

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsglue.html

AWS Glue User Guide

• Control access by name prefix and explicit denial

• Grant access using tags

• Deny access using tags

• Use tags with list and batch API operations

• Control settings using condition keys or context keys

• Deny an identity the ability to create data preview sessions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS Glue
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

AWS Glue access control policy examples 2746

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

AWS Glue User Guide

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Resource-level permissions only apply to specific AWS Glue objects

You can only define fine-grained control for specific objects in AWS Glue. Therefore you must write
your client's IAM policy so that API operations that allow Amazon Resource Names (ARNs) for the
Resource statement are not mixed with API operations that don't allow ARNs.

For example, the following IAM policy allows API operations for GetClassifier and GetJobRun.
It defines the Resource as * because AWS Glue doesn't allow ARNs for classifiers and job runs.
Because ARNs are allowed for specific API operations such as GetDatabase and GetTable, ARNs
can be specified in the second half of the policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetClassifier*",
 "glue:GetJobRun*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:Get*"
],
 "Resource": [
 "arn:aws:glue:us-east-1:123456789012:catalog",
 "arn:aws:glue:us-east-1:123456789012:database/default",
 "arn:aws:glue:us-east-1:123456789012:table/default/e*1*",
 "arn:aws:glue:us-east-1:123456789012:connection/connection2"
]

AWS Glue access control policy examples 2747

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS Glue User Guide

 }
]
}

For a list of AWS Glue objects that allow ARNs, see Resource ARNs.

Using the AWS Glue console

To access the AWS Glue console, you must have a minimum set of permissions. These permissions
must allow you to list and view details about the AWS Glue resources in your AWS account. If you
create an identity-based policy that is more restrictive than the minimum required permissions, the
console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the AWS Glue console, also attach the AWS Glue
ConsoleAccess or ReadOnly AWS managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

For a user to work with the AWS Glue console, that user must have a minimum set of permissions
that allows them to work with the AWS Glue resources for their AWS account. In addition to these
AWS Glue permissions, the console requires permissions from the following services:

• Amazon CloudWatch Logs permissions to display logs.

• AWS Identity and Access Management (IAM) permissions to list and pass roles.

• AWS CloudFormation permissions to work with stacks.

• Amazon Elastic Compute Cloud (Amazon EC2) permissions to list VPCs, subnets, security groups,
instances, and other objects.

• Amazon Simple Storage Service (Amazon S3) permissions to list buckets and objects, and to
retrieve and save scripts.

• Amazon Redshift permissions to work with clusters.

• Amazon Relational Database Service (Amazon RDS) permissions to list instances.

For more information about the permissions that users require to view and work with the AWS
Glue console, see Step 3: Attach a policy to users or groups that access AWS Glue.

AWS Glue access control policy examples 2748

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS Glue User Guide

If you create an IAM policy that is more restrictive than the minimum required permissions, the
console won't function as intended for users with that IAM policy. To ensure that those users can
still use the AWS Glue console, also attach the AWSGlueConsoleFullAccess managed policy as
described in AWS managed (predefined) policies for AWS Glue.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]

AWS Glue access control policy examples 2749

AWS Glue User Guide

}

Grant read-only permission to a table

The following policy grants read-only permission to a books table in database db1. For more
information about resource Amazon Resource Names (ARNs), see Data Catalog ARNs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "GetTablesActionOnBooks",
 "Effect": "Allow",
 "Action": [
 "glue:GetTables",
 "glue:GetTable"
],
 "Resource": [
 "arn:aws:glue:us-west-2:123456789012:catalog",
 "arn:aws:glue:us-west-2:123456789012:database/db1",
 "arn:aws:glue:us-west-2:123456789012:table/db1/books"
]
 }
]
}

This policy grants read-only permission to a table named books in the database named db1. To
grant Get permission to a table, permission to the catalog and database resources is also required.

The following policy grants the minimum necessary permissions to create table tb1 in database
db1:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateTable"
],
 "Resource": [
 "arn:aws:glue:us-west-2:123456789012:table/db1/tbl1",

AWS Glue access control policy examples 2750

AWS Glue User Guide

 "arn:aws:glue:us-west-2:123456789012:database/db1",
 "arn:aws:glue:us-west-2:123456789012:catalog"
]
 }
]
}

Filter tables by GetTables permission

Assume that there are three tables—customers, stores, and store_sales—in database
db1. The following policy grants GetTables permission to stores and store_sales, but
not to customers. When you call GetTables with this policy, the result contains only the two
authorized tables (the customers table is not returned).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "GetTablesExample",
 "Effect": "Allow",
 "Action": [
 "glue:GetTables"
],
 "Resource": [
 "arn:aws:glue:us-west-2:123456789012:catalog",
 "arn:aws:glue:us-west-2:123456789012:database/db1",
 "arn:aws:glue:us-west-2:123456789012:table/db1/store_sales",
 "arn:aws:glue:us-west-2:123456789012:table/db1/stores"
]
 }
]
}

You can simplify the preceding policy by using store* to match any table names that start with
store.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "GetTablesExample2",
 "Effect": "Allow",

AWS Glue access control policy examples 2751

AWS Glue User Guide

 "Action": [
 "glue:GetTables"
],
 "Resource": [
 "arn:aws:glue:us-west-2:123456789012:catalog",
 "arn:aws:glue:us-west-2:123456789012:database/db1",
 "arn:aws:glue:us-west-2:123456789012:table/db1/store*"
]
 }
]
}

Similarly, using /db1/* to match all tables in db1, the following policy grants GetTables access
to all the tables in db1.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "GetTablesReturnAll",
 "Effect": "Allow",
 "Action": [
 "glue:GetTables"
],
 "Resource": [
 "arn:aws:glue:us-west-2:123456789012:catalog",
 "arn:aws:glue:us-west-2:123456789012:database/db1",
 "arn:aws:glue:us-west-2:123456789012:table/db1/*"
]
 }
]
}

If no table ARN is provided, a call to GetTables succeeds, but it returns an empty list.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "GetTablesEmptyResults",
 "Effect": "Allow",
 "Action": [
 "glue:GetTables"

AWS Glue access control policy examples 2752

AWS Glue User Guide

],
 "Resource": [
 "arn:aws:glue:us-west-2:123456789012:catalog",
 "arn:aws:glue:us-west-2:123456789012:database/db1"
]
 }
]
}

If the database ARN is missing in the policy, a call to GetTables fails with an
AccessDeniedException.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "GetTablesAccessDeny",
 "Effect": "Allow",
 "Action": [
 "glue:GetTables"
],
 "Resource": [
 "arn:aws:glue:us-west-2:123456789012:catalog",
 "arn:aws:glue:us-west-2:123456789012:table/db1/*"
]
 }
]
}

Grant full access to a table and all partitions

The following policy grants all permissions on a table named books in database db1. This includes
read and write permissions on the table itself, on archived versions of it, and on all its partitions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FullAccessOnTable",
 "Effect": "Allow",
 "Action": [
 "glue:CreateTable",

AWS Glue access control policy examples 2753

AWS Glue User Guide

 "glue:GetTable",
 "glue:GetTables",
 "glue:UpdateTable",
 "glue:DeleteTable",
 "glue:BatchDeleteTable",
 "glue:GetTableVersion",
 "glue:GetTableVersions",
 "glue:DeleteTableVersion",
 "glue:BatchDeleteTableVersion",
 "glue:CreatePartition",
 "glue:BatchCreatePartition",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:BatchGetPartition",
 "glue:UpdatePartition",
 "glue:DeletePartition",
 "glue:BatchDeletePartition"
],
 "Resource": [
 "arn:aws:glue:us-west-2:123456789012:catalog",
 "arn:aws:glue:us-west-2:123456789012:database/db1",
 "arn:aws:glue:us-west-2:123456789012:table/db1/books"
]
 }
]
}

The preceding policy can be simplified in practice.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FullAccessOnTable",
 "Effect": "Allow",
 "Action": [
 "glue:*Table*",
 "glue:*Partition*"
],
 "Resource": [
 "arn:aws:glue:us-west-2:123456789012:catalog",
 "arn:aws:glue:us-west-2:123456789012:database/db1",
 "arn:aws:glue:us-west-2:123456789012:table/db1/books"

AWS Glue access control policy examples 2754

AWS Glue User Guide

]
 }
]
}

Notice that the minimum granularity of fine-grained access control is at the table level. This means
that you can't grant a user access to some partitions in a table but not others, or to some table
columns but not to others. A user either has access to all of a table, or to none of it.

Control access by name prefix and explicit denial

In this example, suppose that the databases and tables in your AWS Glue Data Catalog are
organized using name prefixes. The databases in the development stage have the name prefix
dev-, and those in production have the name prefix prod-. You can use the following policy to
grant developers full access to all databases, tables, UDFs, and so on, that have the dev- prefix.
But you grant read-only access to everything with the prod- prefix.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DevAndProdFullAccess",
 "Effect": "Allow",
 "Action": [
 "glue:*Database*",
 "glue:*Table*",
 "glue:*Partition*",
 "glue:*UserDefinedFunction*",
 "glue:*Connection*"
],
 "Resource": [
 "arn:aws:glue:us-west-2:123456789012:catalog",
 "arn:aws:glue:us-west-2:123456789012:database/dev-*",
 "arn:aws:glue:us-west-2:123456789012:database/prod-*",
 "arn:aws:glue:us-west-2:123456789012:table/dev-*/*",
 "arn:aws:glue:us-west-2:123456789012:table/*/dev-*",
 "arn:aws:glue:us-west-2:123456789012:table/prod-*/*",
 "arn:aws:glue:us-west-2:123456789012:table/*/prod-*",
 "arn:aws:glue:us-west-2:123456789012:userDefinedFunction/dev-*/*",
 "arn:aws:glue:us-west-2:123456789012:userDefinedFunction/*/dev-*",
 "arn:aws:glue:us-west-2:123456789012:userDefinedFunction/prod-*/*",
 "arn:aws:glue:us-west-2:123456789012:userDefinedFunction/*/prod-*",

AWS Glue access control policy examples 2755

AWS Glue User Guide

 "arn:aws:glue:us-west-2:123456789012:connection/dev-*",
 "arn:aws:glue:us-west-2:123456789012:connection/prod-*"
]
 },
 {
 "Sid": "ProdWriteDeny",
 "Effect": "Deny",
 "Action": [
 "glue:*Create*",
 "glue:*Update*",
 "glue:*Delete*"
],
 "Resource": [
 "arn:aws:glue:us-west-2:123456789012:database/prod-*",
 "arn:aws:glue:us-west-2:123456789012:table/prod-*/*",
 "arn:aws:glue:us-west-2:123456789012:table/*/prod-*",
 "arn:aws:glue:us-west-2:123456789012:userDefinedFunction/prod-*/*",
 "arn:aws:glue:us-west-2:123456789012:userDefinedFunction/*/prod-*",
 "arn:aws:glue:us-west-2:123456789012:connection/prod-*"
]
 }
]
}

The second statement in the preceding policy uses explicit deny. You can use explicit deny to
overwrite any allow permissions that are granted to the principal. This lets you lock down access
to critical resources and prevent another policy from accidentally granting access to them.

In the preceding example, even though the first statement grants full access to prod- resources,
the second statement explicitly revokes write access to them, leaving only read access to prod-
resources.

Grant access using tags

For example, suppose that you want to limit access to a trigger t2 to a specific user named Tom in
your account. All other users, including Sam, have access to trigger t1. The triggers t1 and t2 have
the following properties.

aws glue get-triggers
{
 "Triggers": [
 {

AWS Glue access control policy examples 2756

AWS Glue User Guide

 "State": "CREATED",
 "Type": "SCHEDULED",
 "Name": "t1",
 "Actions": [
 {
 "JobName": "j1"
 }
],
 "Schedule": "cron(0 0/1 * * ? *)"
 },
 {
 "State": "CREATED",
 "Type": "SCHEDULED",
 "Name": "t2",
 "Actions": [
 {
 "JobName": "j1"
 }
],
 "Schedule": "cron(0 0/1 * * ? *)"
 }
]
}

The AWS Glue administrator attached a tag value Tom (aws:ResourceTag/Name": "Tom") to
trigger t2. The AWS Glue administrator also gave Tom an IAM policy with a condition statement
based on the tag. As a result, Tom can only use an AWS Glue operation that acts on resources with
the tag value Tom.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "glue:*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Name": "Tom"
 }
 }
 }
]

AWS Glue access control policy examples 2757

AWS Glue User Guide

}

When Tom tries to access the trigger t1, he receives an access denied message. Meanwhile, he can
successfully retrieve trigger t2.

aws glue get-trigger --name t1

An error occurred (AccessDeniedException) when calling the GetTrigger operation:
 User: Tom is not authorized to perform: glue:GetTrigger on resource: arn:aws:glue:us-
east-1:123456789012:trigger/t1

aws glue get-trigger --name t2
{
 "Trigger": {
 "State": "CREATED",
 "Type": "SCHEDULED",
 "Name": "t2",
 "Actions": [
 {
 "JobName": "j1"
 }
],
 "Schedule": "cron(0 0/1 * * ? *)"
 }
}

Tom can't use the plural GetTriggers API operation to list triggers because this operation doesn't
support filtering on tags.

To give Tom access to GetTriggers, the AWS Glue administrator creates a policy that splits the
permissions into two sections. One section allows Tom access to all triggers with the GetTriggers
API operation. The second section allows Tom access to API operations that are tagged with the
value Tom. With this policy, Tom is allowed both GetTriggers and GetTrigger access to trigger
t2.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "glue:GetTriggers",

AWS Glue access control policy examples 2758

AWS Glue User Guide

 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "glue:*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Name": "Tom"
 }
 }
 }
]
}

Deny access using tags

Another resource policy approach is to explicitly deny access to resources.

Important

An explicit denial policy does not work for plural API operations such as GetTriggers.

In the following example policy, all AWS Glue job operations are allowed. However, the second
Effect statement explicitly denies access to jobs tagged with the Team key and Special value.

When an administrator attaches the following policy to an identity, the identity can access all jobs
except those tagged with the Team key and Special value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "glue:*",
 "Resource": "arn:aws:glue:us-east-1:123456789012:job/*"
 },
 {
 "Effect": "Deny",
 "Action": "glue:*",
 "Resource": "arn:aws:glue:us-east-1:123456789012:job/*",

AWS Glue access control policy examples 2759

AWS Glue User Guide

 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Team": "Special"
 }
 }
 }
]
}

Use tags with list and batch API operations

A third approach to writing a resource policy is to allow access to resources using a List API
operation to list out resources for a tag value. Then, use the corresponding Batch API operation
to allow access to details of specific resources. With this approach, the administrator doesn't need
to allow access to the plural GetCrawlers, GetDevEndpoints, GetJobs, or GetTriggers
API operations. Instead, you can allow the ability to list the resources with the following API
operations:

• ListCrawlers

• ListDevEndpoints

• ListJobs

• ListTriggers

And, you can allow the ability to get details about individual resources with the following API
operations:

• BatchGetCrawlers

• BatchGetDevEndpoints

• BatchGetJobs

• BatchGetTriggers

As an administrator, to use this approach, you can do the following:

1. Add tags to your crawlers, development endpoints, jobs, and triggers.

2. Deny user access to Get API operations such as GetCrawlers, GetDevEndponts, GetJobs,
and GetTriggers.

AWS Glue access control policy examples 2760

AWS Glue User Guide

3. To enable users to find out which tagged resources they have access to, allow user access
to List API operations such as ListCrawlers, ListDevEndponts, ListJobs, and
ListTriggers.

4. Deny user access to AWS Glue tagging APIs, such as TagResource and UntagResource.

5. Allow user access to resource details with BatchGet API operations such as
BatchGetCrawlers, BatchGetDevEndponts, BatchGetJobs, and BatchGetTriggers.

For example, when calling the ListCrawlers operation, provide a tag value to match the user
name. Then the result is a list of crawlers that match the provided tag values. Provide the list of
names to BatchGetCrawlers to get details about each crawler with the given tag.

For example, if Tom should only be able to retrieve details of triggers that are tagged with Tom, the
administrator can add tags to triggers for Tom, deny access to the GetTriggers API operation to
all users, and allow access to all users to ListTriggers and BatchGetTriggers.

The following is the resource policy that the AWS Glue administrator grants to Tom. In the first
section of the policy, AWS Glue API operations are denied for GetTriggers. In the second section
of the policy, ListTriggers is allowed for all resources. However, in the third section, those
resources tagged with Tom are allowed access with the BatchGetTriggers access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "glue:GetTriggers",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:ListTriggers"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [

AWS Glue access control policy examples 2761

AWS Glue User Guide

 "glue:BatchGetTriggers"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Name": "Tom"
 }
 }
 }
]
}

Using the same triggers as the previous example, Tom can access trigger t2, but not trigger
t1. The following example shows the results when Tom tries to access t1 and t2 with
BatchGetTriggers.

aws glue batch-get-triggers --trigger-names t2
{
 "Triggers": {
 "State": "CREATED",
 "Type": "SCHEDULED",
 "Name": "t2",
 "Actions": [
 {
 "JobName": "j2"
 }
],
 "Schedule": "cron(0 0/1 * * ? *)"
 }
}

aws glue batch-get-triggers --trigger-names t1

An error occurred (AccessDeniedException) when calling the BatchGetTriggers operation:
 No access to any requested resource.

The following example shows the results when Tom tries to access both trigger t2 and trigger t3
(which does not exist) in the same BatchGetTriggers call. Notice that because Tom has access to
trigger t2 and it exists, only t2 is returned. Although Tom is allowed to access trigger t3, trigger
t3 does not exist, so t3 is returned in the response in a list of "TriggersNotFound": [].

AWS Glue access control policy examples 2762

AWS Glue User Guide

aws glue batch-get-triggers --trigger-names t2 t3
{
 "Triggers": {
 "State": "CREATED",
 "Type": "SCHEDULED",
 "Name": "t2",
 "Actions": [
 {
 "JobName": "j2"
 }
],
 "TriggersNotFound": ["t3"],
 "Schedule": "cron(0 0/1 * * ? *)"
 }
}

Control settings using condition keys or context keys

You can use condition keys or context keys when granting permissions to create and update jobs.
These sections discuss the keys:

• Control policies that control settings using condition keys

• Control policies that control settings using context keys

Control policies that control settings using condition keys

AWS Glue provides three IAM condition keys glue:VpcIds, glue:SubnetIds, and
glue:SecurityGroupIds. You can use the condition keys in IAM policies when granting
permissions to create and update jobs. You can use this setting to ensure that jobs or sessions
are not created (or updated to) to run outside of a desired VPC environment. The VPC setting
information is not a direct input from the CreateJob request, but inferred from the job
"connections" field that points to an AWS Glue connection.

Example usage

Create an AWS Glue network type connection named "traffic-monitored-connection" with the
desired VpcId "vpc-id1234", SubnetIds, and SecurityGroupIds.

Specify the condition keys condition for the CreateJob and UpdateJob action in the IAM policy.

{

AWS Glue access control policy examples 2763

AWS Glue User Guide

 "Effect": "Allow",
 "Action": [
 "glue:CreateJob",
 "glue:UpdateJob"
],
 "Resource": [
 "*"
],
 "Condition": {
 "ForAnyValue:StringLike": {
 "glue:VpcIds": [
 "vpc-id1234"
]
 }
 }
}

You can create a similar IAM policy to prohibit creating an AWS Glue job without specifying
connection information.

Restricting sessions on VPCs

To enforce created sessions to run within a specified VPC, you restrict role permission by adding a
Deny effect on the glue:CreateSession action with the condition that the glue:vpc-id not equal
to vpc-<123>. For example:

"Effect": "Deny",
"Action": [
 "glue:CreateSession"
],
"Condition": {
 "StringNotEquals" : {"glue:VpcIds" : ["vpc-123"]}
}

You also can enforce created sessions to run within a VPC by adding a Deny effect on the
glue:CreateSession action with the condition that the glue:vpc-id is null. For example:

{
 "Effect": "Deny",
 "Action": [
 "glue:CreateSession"

AWS Glue access control policy examples 2764

AWS Glue User Guide

],
 "Condition": {
 "Null": {"glue:VpcIds": true}
 }
},
{
 "Effect": "Allow",
 "Action": [
 "glue:CreateSession"
],
 "Resource": ["*"]
}

Control policies that control settings using context keys

AWS Glue provides a context key (glue:CredentialIssuingService=
glue.amazonaws.com) to each role session that AWS Glue makes available to
the job and developer endpoint. This allows you to implement security controls
for the actions taken by AWS Glue scripts. AWS Glue provides another context key
(glue:RoleAssumedBy=glue.amazonaws.com) to each role session where AWS Glue makes a
call to another AWS service on the customer's behalf (not by a job/dev endpoint, but directly by
the AWS Glue service).

Example usage

Specify the conditional permission in an IAM policy and attach it to the role to be used by an AWS
Glue job. This ensures certain actions are allowed/denied based on whether the role session is used
for an AWS Glue job runtime environment.

{
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::confidential-bucket/*",
 "Condition": {
 "StringEquals": {
 "glue:CredentialIssuingService": "glue.amazonaws.com"
 }
 }
}

AWS Glue access control policy examples 2765

AWS Glue User Guide

Deny an identity the ability to create data preview sessions

This section contains an IAM policy example used to deny an identity the ability to create data
preview sessions. Attach this policy to the identity, which is separate from the role used by the data
preview session during its run.

{
 "Sid": "DatapreviewDeny",
 "Effect": "Deny",
 "Action": [
 "glue:CreateSession"
],
 "Resource": [
 "arn:aws:glue:*:*:session/glue-studio-datapreview*"
]
 }

Resource-based policy examples for AWS Glue

This section contains example resource-based policies, including policies that grant cross-account
access.

The examples use the AWS Command Line Interface (AWS CLI) to interact with AWS Glue service
API operations. You can perform the same operations on the AWS Glue console or using one of the
AWS SDKs.

Important

By changing an AWS Glue resource policy, you might accidentally revoke permissions for
existing AWS Glue users in your account and cause unexpected disruptions. Try these
examples only in development or test accounts, and ensure that they don't break any
existing workflows before you make the changes.

Topics

• Considerations for using resource-based policies with AWS Glue

• Use a resource policy to control access in the same account

AWS Glue access control policy examples 2766

AWS Glue User Guide

Considerations for using resource-based policies with AWS Glue

Note

Both IAM policies and an AWS Glue resource policy take a few seconds to propagate. After
you attach a new policy, you might notice that the old policy is still in effect until the new
policy has propagated through the system.

You use a policy document written in JSON format to create or modify a resource policy. The policy
syntax is the same as for an identity-based IAM policy (see IAM JSON policy reference), with the
following exceptions:

• A "Principal" or "NotPrincipal" block is required for each policy statement.

• The "Principal" or "NotPrincipal" must identify valid existing principals. Wildcard
patterns (like arn:aws:iam::account-id:user/*) are not allowed.

• The "Resource" block in the policy requires all resource ARNs to match the following regular
expression syntax (where the first %s is the region, and the second %s is the account-id):

arn:aws:glue:%s:%s:(|[a-zA-Z*]+\/?.*)

For example, both arn:aws:glue:us-west-2:account-id:* and arn:aws:glue:us-
west-2:account-id:database/default are allowed, but * is not allowed.

• Unlike identity-based policies, an AWS Glue resource policy must only contain Amazon Resource
Names (ARNs) of resources that belong to the catalog that the policy is attached to. Such ARNs
always start with arn:aws:glue:.

• A policy cannot cause the identity that creates it to be locked out of further policy creation or
modification.

• A resource-policy JSON document cannot exceed 10 KB in size.

Use a resource policy to control access in the same account

In this example, an admin user in Account A creates a resource policy that grants IAM user Alice in
Account A full access to the catalog. Alice has no IAM policy attached.

To do this, the admin user runs the following AWS CLI command.

AWS Glue access control policy examples 2767

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

AWS Glue User Guide

Run as admin of Account A
$ aws glue put-resource-policy --profile administrator-name --region us-west-2 --
policy-in-json '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Principal": {
 "AWS": [
 "arn:aws:iam::account-A-id:user/Alice"
]
 },
 "Effect": "Allow",
 "Action": [
 "glue:*"
],
 "Resource": [
 "arn:aws:glue:us-west-2:account-A-id:*"
]
 }
]
}'

Instead of entering the JSON policy document as a part of your AWS CLI command, you can save
a policy document in a file and reference the file path in the AWS CLI command, prefixed by
file://. The following is an example of how you might do that.

$ echo '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Principal": {
 "AWS": [
 "arn:aws:iam::account-A-id:user/Alice"
]
 },
 "Effect": "Allow",
 "Action": [
 "glue:*"
],
 "Resource": [
 "arn:aws:glue:us-west-2:account-A-id:*"
]

AWS Glue access control policy examples 2768

AWS Glue User Guide

 }
]
}' > /temp/policy.json

$ aws glue put-resource-policy --profile admin1 \
 --region us-west-2 --policy-in-json file:///temp/policy.json

After this resource policy has propagated, Alice can access all AWS Glue resources in Account A, as
follows.

Run as user Alice
$ aws glue create-database --profile alice --region us-west-2 --database-input '{
 "Name": "new_database",
 "Description": "A new database created by Alice",
 "LocationUri": "s3://my-bucket"
}'

$ aws glue get-table --profile alice --region us-west-2 --database-name "default" --
table-name "tbl1"}

In response to Alice's get-table call, the AWS Glue service returns the following.

{
 "Table": {
 "Name": "tbl1",
 "PartitionKeys": [],
 "StorageDescriptor": {

 },

 }
}

AWS managed policies for AWS Glue

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you

AWS managed policies 2769

AWS Glue User Guide

reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed (predefined) policies for AWS Glue

AWS addresses many common use cases by providing standalone IAM policies that are created
and administered by AWS. These AWS managed policies grant necessary permissions for common
use cases so that you can avoid having to investigate what permissions are needed. For more
information, see AWS managed policies in the IAM User Guide.

The following AWS managed policies, which you can attach to identities in your account, are
specific to AWS Glue and are grouped by use case scenario:

• AWSGlueConsoleFullAccess – Grants full access to AWS Glue resources when an identity that the
policy is attached to uses the AWS Management Console. If you follow the naming convention
for resources specified in this policy, users have full console capabilities. This policy is typically
attached to users of the AWS Glue console.

• AWSGlueServiceRole – Grants access to resources that various AWS Glue processes require to
run on your behalf. These resources include AWS Glue, Amazon S3, IAM, CloudWatch Logs, and
Amazon EC2. If you follow the naming convention for resources specified in this policy, AWS Glue
processes have the required permissions. This policy is typically attached to roles specified when
defining crawlers, jobs, and development endpoints.

• AwsGlueSessionUserRestrictedServiceRole – Provides full access to all AWS Glue resources except
for sessions. It allows users to create and use only the interactive sessions that are associated
with the user. This policy includes other permissions needed by AWS Glue to manage AWS Glue
resources in other AWS services. The policy also allows adding tags to AWS Glue resources in
other AWS services.

AWS managed policies 2770

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSGlueConsoleFullAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSGlueServiceRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AwsGlueSessionUserRestrictedServiceRole

AWS Glue User Guide

Note

To achieve the full security benefits, do not grant this policy to a user that
was assigned the AWSGlueServiceRole, AWSGlueConsoleFullAccess, or
AWSGlueConsoleSageMakerNotebookFullAccess policy.

• AwsGlueSessionUserRestrictedPolicy – Provides access to create AWS Glue interactive sessions
using the CreateSession API operation only if a tag key “owner” and value that match the
assignee's AWS user ID are provided. This identity policy is attached to the IAM user that invokes
the CreateSession API operation. This policy also permits the assignee to interact with the
AWS Glue interactive session resources that were created with an “owner” tag and value that
match their AWS user ID. This policy denies permission to change or remove "owner" tags from
an AWS Glue session resource after the session is created.

Note

To achieve the full security benefits, do not grant this policy to a user that
was assigned the AWSGlueServiceRole, AWSGlueConsoleFullAccess, or
AWSGlueConsoleSageMakerNotebookFullAccess policy.

• AwsGlueSessionUserRestrictedNotebookServiceRole – Provides sufficient access to the AWS Glue
Studio notebook session to interact with specific AWS Glue interactive session resources. These
are resources that are created with the “owner” tag value that matches the AWS user ID of the
principal (IAM user or role) that creates the notebook. For more information about these tags,
see the Principal key values chart in the IAM User Guide.

This service-role policy is attached to the role that is specified with a magic command within the
notebook or is passed as a role to the CreateSession API operation. This policy also permits
the principal to create an AWS Glue interactive session from the AWS Glue Studio notebook
interface only if a tag key “owner” and value match the AWS user ID of the principal. This policy
denies permission to change or remove "owner" tags from an AWS Glue session resource after
the session is created. This policy also includes permissions for writing and reading from Amazon
S3 buckets, writing CloudWatch logs, and creating and deleting tags for Amazon EC2 resources
used by AWS Glue.

AWS managed policies 2771

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AwsGlueSessionUserRestrictedPolicy
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AwsGlueSessionUserRestrictedNotebookServiceRole
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html#policy-vars-infotouse

AWS Glue User Guide

Note

To achieve the full security benefits, do not grant this policy to a role that
was assigned the AWSGlueServiceRole, AWSGlueConsoleFullAccess, or
AWSGlueConsoleSageMakerNotebookFullAccess policy.

• AwsGlueSessionUserRestrictedNotebookPolicy – Provides access to create an AWS Glue
interactive session from the AWS Glue Studio notebook interface only if there is a tag key
“owner” and value that match the AWS user IDof the principal (IAM user or role) that creates the
notebook. For more information about these tags, see the Principal key values chart in the IAM
User Guide.

This policy is attached to the principal (IAM user or role) that creates sessions from the AWS
Glue Studio notebook interface. This policy also permits sufficient access to the AWS Glue Studio
notebook to interact with specific AWS Glue interactive session resources. These are resources
that are created with the “owner” tag value that matches the AWS user ID of the principal. This
policy denies permission to change or remove "owner" tags from an AWS Glue session resource
after the session is created.

• AWSGlueServiceNotebookRole – Grants access to AWS Glue sessions started in an AWS Glue
Studio notebook. This policy allows listing and getting session information for all sessions, but
only permits users to create and use the sessions tagged with their AWS user ID. This policy
denies permission to change or remove “owner” tags from AWS Glue session resources tagged
with their AWS ID.

Assign this policy to the AWS user who creates jobs using the notebook interface in AWS Glue
Studio.

• AWSGlueConsoleSageMakerNotebookFullAccess – Grants full access to AWS Glue and SageMaker
resources when the identity that the policy is attached to uses the AWS Management Console. If
you follow the naming convention for resources specified in this policy, users have full console
capabilities. This policy is typically attached to users of the AWS Glue console who manage
SageMaker notebooks.

• AWSGlueSchemaRegistryFullAccess – Grants full access to AWS Glue Schema Registry resources
when the identity that the policy is attached to uses the AWS Management Console or AWS CLI.
If you follow the naming convention for resources specified in this policy, users have full console
capabilities. This policy is typically attached to users of the AWS Glue console or AWS CLI who
manage the AWS Glue Schema Registry.

AWS managed policies 2772

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AwsGlueSessionUserRestrictedNotebookPolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html#policy-vars-infotouse
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSGlueServiceNotebookRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSGlueConsoleSageMakerNotebookFullAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSGlueSchemaRegistryFullAccess

AWS Glue User Guide

• AWSGlueSchemaRegistryReadonlyAccess – Grants read-only access to AWS Glue Schema Registry
resources when an identity that the policy is attached to uses the AWS Management Console or
AWS CLI. If you follow the naming convention for resources specified in this policy, users have
full console capabilities. This policy is typically attached to users of the AWS Glue console or AWS
CLI who use the AWS Glue Schema Registry.

Note

You can review these permissions policies by signing in to the IAM console and searching
for specific policies there.

You can also create your own custom IAM policies to allow permissions for AWS Glue actions and
resources. You can attach these custom policies to the IAM users or groups that require those
permissions.

AWS Glue updates to AWS managed policies

View details about updates to AWS managed policies for AWS Glue since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the AWS Glue Document history page.

Change Description Date

AwsGlueSessionUserRestricte
dPolicy – Minor update to an
existing policy.

Add glue:StartCompleti
on and glue:GetC
ompletion to policy.
Required for Amazon Q data
integration in AWS Glue.

April, 30, 2024

AwsGlueSessionUserRestricte
dNotebookServiceRole –
Minor update to an existing
policy.

Add glue:StartCompleti
on and glue:GetC
ompletion to policy.
Required for Amazon Q data
integration in AWS Glue.

April, 30, 2024

AWS managed policies 2773

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSGlueSchemaRegistryReadonlyAccess

AWS Glue User Guide

Change Description Date

AwsGlueSessionUserRestricte
dServiceRole – Minor update
to an existing policy.

Add glue:StartCompleti
on and glue:GetC
ompletion to policy.
Required for Amazon Q data
integration in AWS Glue.

April, 30, 2024

AWSGlueServiceNote
bookRole – Minor update to
an existing policy.

Add glue:StartCompleti
on and glue:GetC
ompletion to policy.
Required for Amazon Q data
integration in AWS Glue.

Jan 30, 2024

AwsGlueSessionUserRestricte
dNotebookPolicy – Minor
update to an existing policy.

Add glue:StartCompleti
on and glue:GetC
ompletion to policy.
Required for Amazon Q data
integration in AWS Glue.

Nov 29, 2023

AWSGlueServiceNote
bookRole – Minor update to
an existing policy.

Add codewhisperer:Gene
rateRecommendation
s to policy. Required for a
new feature where AWS Glue
generates CodeWhisperer
recommendations.

Oct 9, 2023

AWSGlueServiceRole – Minor
update to an existing policy.

Tighten scope of CloudWatch
permissions to better reflect
AWS Glue logging.

Aug 4, 2023

AWSGlueConsoleFullAccess –
Minor update to an existing
policy.

Add databrew recipe List
and Describe permissions to
policy. Required to provide
full administrative access for
new features where AWS Glue
can access recipes.

May 9, 2023

AWS managed policies 2774

AWS Glue User Guide

Change Description Date

AWSGlueConsoleFullAccess –
Minor update to an existing
policy.

Add cloudformation:Lis
tStacks to policy.
Preserves existing capabilit
ies after changes to AWS
CloudFormation authorization
requirements.

March 28, 2023

New managed policies added
for the interactive sessions
feature:

• AwsGlueSessionUser
RestrictedServiceRole

• AwsGlueSessionUser
RestrictedPolicy

• AwsGlueSessionUser
RestrictedNotebook
ServiceRole

• AwsGlueSessionUser
RestrictedNotebookPolicy

These policies were designed
to provide additional security
for interactive sessions and
notebooks in AWS Glue
Studio. The policies restrict
access to the CreateSes
sion API operation so that
only the owner has access.

November 30, 2021

AWS managed policies 2775

AWS Glue User Guide

Change Description Date

AWSGlueConsoleSage
MakerNotebookFullAccess –
Update to an existing policy.

Removed a redundant
resource ARN (arn:aws:s
3:::aws-glue-*/*)
for the action that grants
read/write permissions on
Amazon S3 buckets that AWS
Glue uses to store scripts and
temporary files.

Fixed a syntax issue by
changing "StringEquals"
to "ForAnyValue:Strin
gLike" , and moved the
"Effect": "Allow" lines
to precede the "Action":
line in each place where they
were out of order.

July 15, 2021

AWSGlueConsoleFullAccess –
Update to an existing policy.

Removed a redundant
resource ARN (arn:aws:s
3:::aws-glue-*/*)
for the action that grants
read/write permissions on
Amazon S3 buckets that AWS
Glue uses to store scripts and
temporary files.

July 15, 2021

AWS Glue started tracking
changes.

AWS Glue started tracking
changes for its AWS managed
policies.

June 10, 2021

AWS managed policies 2776

AWS Glue User Guide

Specifying AWS Glue resource ARNs

In AWS Glue, you can control access to resources using an AWS Identity and Access Management
(IAM) policy. In a policy, you use an Amazon Resource Name (ARN) to identify the resource that the
policy applies to. Not all resources in AWS Glue support ARNs.

Topics

• Data Catalog ARNs

• ARNs for non-catalog objects in AWS Glue

• Access control for AWS Glue non-catalog singular API operations

• Access control for AWS Glue non-catalog API operations that retrieve multiple items

• Access control for AWS Glue non-catalog BatchGet API operations

Data Catalog ARNs

Data Catalog resources have a hierarchical structure, with catalog as the root.

arn:aws:glue:region:account-id:catalog

Each AWS account has a single Data Catalog in an AWS Region with the 12-digit account ID as the
catalog ID. Resources have unique ARNs associated with them, as shown in the following table.

Resource type ARN format

Catalog arn:aws:glue: region:account-id :catalog

For example: arn:aws:glue:us-east-1:123456789012:
catalog

Database arn:aws:glue: region:account-id :database/ database
name

For example: arn:aws:glue:us-east-1:123456789012:
database/db1

Table arn:aws:glue: region:account-id :table/database
name/table name

Resource ARNs 2777

AWS Glue User Guide

Resource type ARN format

For example: arn:aws:glue:us-east-1:123456789012:
table/db1/tbl1

User-defined function arn:aws:glue: region:account-id :userDefinedFuncti
on/ database name/user-defined function name

For example: arn:aws:glue:us-east-1:123456789012:
userDefinedFunction/db1/func1

Connection arn:aws:glue: region:account-id :connection/ connectio
n name

For example: arn:aws:glue:us-east-1:123456789012:
connection/connection1

Interactive Session arn:aws:glue: region:account-id :session/ interactive
session id

For example: arn:aws:glue:us-east-1:123456789012:
session/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111

To enable fine-grained access control, you can use these ARNs in your IAM policies and resource
policies to grant and deny access to specific resources. Wildcards are allowed in the policies. For
example, the following ARN matches all tables in database default.

arn:aws:glue:us-east-1:123456789012:table/default/*

Important

All operations performed on a Data Catalog resource require permission on the resource
and all the ancestors of that resource. For example, to create a partition for a table requires
permission on the table, database, and catalog where the table is located. The following
example shows the permission required to create partitions on table PrivateTable in
database PrivateDatabase in the Data Catalog.

{

Resource ARNs 2778

AWS Glue User Guide

 "Sid": "GrantCreatePartitions",
 "Effect": "Allow",
 "Action": [
 "glue:BatchCreatePartitions"
],
 "Resource": [
 "arn:aws:glue:us-east-1:123456789012:table/PrivateDatabase/PrivateTable",
 "arn:aws:glue:us-east-1:123456789012:database/PrivateDatabase",
 "arn:aws:glue:us-east-1:123456789012:catalog"
]
}

In addition to permission on the resource and all its ancestors, all delete operations require
permission on all children of that resource. For example, deleting a database requires
permission on all the tables and user-defined functions in the database, in addition to the
database and the catalog where the database is located. The following example shows the
permission required to delete database PrivateDatabase in the Data Catalog.

{
 "Sid": "GrantDeleteDatabase",
 "Effect": "Allow",
 "Action": [
 "glue:DeleteDatabase"
],
 "Resource": [
 "arn:aws:glue:us-east-1:123456789012:table/PrivateDatabase/*",
 "arn:aws:glue:us-east-1:123456789012:userDefinedFunction/PrivateDatabase/
*",
 "arn:aws:glue:us-east-1:123456789012:database/PrivateDatabase",
 "arn:aws:glue:us-east-1:123456789012:catalog"
]
}

In summary, actions on Data Catalog resources follow these permission rules:

• Actions on the catalog require permission on the catalog only.

• Actions on a database require permission on the database and catalog.

• Delete actions on a database require permission on the database and catalog plus all
tables and user-defined functions in the database.

Resource ARNs 2779

AWS Glue User Guide

• Actions on a table, partition, or table version require permission on the table, database,
and catalog.

• Actions on a user-defined function require permission on the user-defined function,
database, and catalog.

• Actions on a connection require permission on the connection and catalog.

ARNs for non-catalog objects in AWS Glue

Some AWS Glue resources allow resource-level permissions to control access using an ARN. You can
use these ARNs in your IAM policies to enable fine-grained access control. The following table lists
the resources that can contain resource ARNs.

Resource type ARN format

Crawler arn:aws:glue: region:account-id :crawler/ crawler-n
ame

For example: arn:aws:glue:us-east-1:123456789012:
crawler/mycrawler

Job arn:aws:glue: region:account-id :job/job-name

For example: arn:aws:glue:us-east-1:123456789012:
job/testjob

Trigger arn:aws:glue: region:account-id :trigger/ trigger-n
ame

For example: arn:aws:glue:us-east-1:123456789012:
trigger/sampletrigger

Development
endpoint

arn:aws:glue: region:account-id :devEndpo
int/ development-endpoint-name

For example: arn:aws:glue:us-east-1:123456789012:
devEndpoint/temporarydevendpoint

Resource ARNs 2780

AWS Glue User Guide

Resource type ARN format

Machine learning
transform

arn:aws:glue: region:account-id :mlTransf
orm/ transform-id

For example: arn:aws:glue:us-east-1:123456789012:
mlTransform/tfm-1234567890

Access control for AWS Glue non-catalog singular API operations

AWS Glue non-catalog singular API operations act on a single item (development endpoint).
Examples are GetDevEndpoint, CreateUpdateDevEndpoint, and UpdateDevEndpoint. For
these operations, a policy must put the API name in the "action" block and the resource ARN in
the "resource" block.

Suppose that you want to allow a user to call the GetDevEndpoint operation. The following
policy grants the minimum necessary permissions to an endpoint named myDevEndpoint-1.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "MinimumPermissions",
 "Effect": "Allow",
 "Action": "glue:GetDevEndpoint",
 "Resource": "arn:aws:glue:us-east-1:123456789012:devEndpoint/
myDevEndpoint-1"
 }
]
}

The following policy allows UpdateDevEndpoint access to resources that match
myDevEndpoint- with a wildcard (*).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PermissionWithWildcard",
 "Effect": "Allow",

Resource ARNs 2781

AWS Glue User Guide

 "Action": "glue:UpdateDevEndpoint",
 "Resource": "arn:aws:glue:us-east-1:123456789012:devEndpoint/myDevEndpoint-
*"
 }
]
}

You can combine the two policies as in the following example. You might see
EntityNotFoundException for any development endpoint whose name begins with A. However,
an access denied error is returned when you try to access other development endpoints.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CombinedPermissions",
 "Effect": "Allow",
 "Action": [
 "glue:UpdateDevEndpoint",
 "glue:GetDevEndpoint"
],
 "Resource": "arn:aws:glue:us-east-1:123456789012:devEndpoint/A*"
 }
]
}

Access control for AWS Glue non-catalog API operations that retrieve multiple
items

Some AWS Glue API operations retrieve multiple items (such as multiple development endpoints);
for example, GetDevEndpoints. For this operation, you can specify only a wildcard (*) resource,
and not specific ARNs.

For example, to include GetDevEndpoints in the policy, the resource must be scoped to
the wildcard (*). The singular operations (GetDevEndpoint, CreateDevEndpoint, and
DeleteDevendpoint) are also scoped to all (*) resources in the example.

{
 "Sid": "PluralAPIIncluded",
 "Effect": "Allow",
 "Action": [

Resource ARNs 2782

AWS Glue User Guide

 "glue:GetDevEndpoints",
 "glue:GetDevEndpoint",
 "glue:CreateDevEndpoint",
 "glue:UpdateDevEndpoint"
],
 "Resource": [
 "*"
]
}

Access control for AWS Glue non-catalog BatchGet API operations

Some AWS Glue API operations retrieve multiple items (such as multiple development endpoints);
for example, BatchGetDevEndpoints. For this operation, you can specify an ARN to limit the
scope of resources that can be accessed.

For example, to allow access to a specific development endpoint, include
BatchGetDevEndpoints in the policy with its resource ARN.

{
 "Sid": "BatchGetAPIIncluded",
 "Effect": "Allow",
 "Action": [
 "glue:BatchGetDevEndpoints"
],
 "Resource": [
 "arn:aws:glue:us-east-1:123456789012:devEndpoint/de1"
]
}

With this policy, you can successfully access the development endpoint named de1. However, if you
try to access the development endpoint named de2, an error is returned.

An error occurred (AccessDeniedException) when calling the BatchGetDevEndpoints
 operation: No access to any requested resource.

Resource ARNs 2783

AWS Glue User Guide

Important

For alternative approaches to setting up IAM policies, such as using List and BatchGet
API operations, see Identity-based policy examples for AWS Glue.

Granting cross-account access

Granting access to Data Catalog resources across accounts enables your extract, transform, and
load (ETL) jobs to query and join data from different accounts.

Topics

• Methods for granting cross-account access in AWS Glue

• Adding or updating the Data Catalog resource policy

• Making a cross-account API call

• Making a cross-account ETL call

• Cross-account CloudTrail logging

• Cross-account resource ownership and billing

• Cross-account access limitations

Methods for granting cross-account access in AWS Glue

You can grant access to your data to external AWS accounts by using AWS Glue methods or by
using AWS Lake Formation cross-account grants. The AWS Glue methods use AWS Identity and
Access Management (IAM) policies to achieve fine-grained access control. Lake Formation uses
a simpler GRANT/REVOKE permissions model similar to the GRANT/REVOKE commands in a
relational database system.

This section describes using the AWS Glue methods. For information about using Lake Formation
cross-account grants, see Granting Lake Formation Permissions in the AWS Lake Formation
Developer Guide.

There are two AWS Glue methods for granting cross-account access to a resource:

• Use a Data Catalog resource policy

• Use an IAM role

Granting cross-account access 2784

https://docs.aws.amazon.com/lake-formation/latest/dg/lake-formation-permissions.html

AWS Glue User Guide

Granting cross-account access using a resource policy

The following are the general steps for granting cross-account access using a Data Catalog resource
policy:

1. An administrator (or other authorized identity) in Account A attaches a resource policy to the
Data Catalog in Account A. This policy grants Account B specific cross-account permissions to
perform operations on a resource in Account A's catalog.

2. An administrator in Account B attaches an IAM policy to an IAM identity in Account B that
delegates the permissions received from Account A.

The identity in Account B now has access to the specified resource in Account A.

The identity needs permission from both the resource owner (Account A) and their parent
account (Account B) to be able to access the resource.

Granting cross-account access using an IAM role

The following are the general steps for granting cross-account access using an IAM role:

1. An administrator (or other authorized identity) in the account that owns the resource (Account
A) creates an IAM role.

2. The administrator in Account A attaches a policy to the role that grants cross-account
permissions for access to the resource in question.

3. The administrator in Account A attaches a trust policy to the role that identifies an IAM identity
in a different account (Account B) as the principal who can assume the role.

The principal in the trust policy can also be an AWS service principal if you want to grant an AWS
service permission to assume the role.

4. An administrator in Account B now delegates permissions to one or more IAM identities in
Account B so that they can assume that role. Doing so gives those identities in Account B access
to the resource in account A.

For more information about using IAM to delegate permissions, see Access management in the IAM
User Guide. For more information about users, groups, roles, and permissions, see Identities (users,
groups, and roles) in the IAM User Guide.

Granting cross-account access 2785

https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

AWS Glue User Guide

For a comparison of these two approaches, see How IAM roles differ from resource-based policies
in the IAM User Guide. AWS Glue supports both options, with the restriction that a resource policy
can grant access only to Data Catalog resources.

For example, to give the Dev role in Account B access to database db1 in Account A, attach the
following resource policy to the catalog in Account A.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetDatabase"
],
 "Principal": {"AWS": [
 "arn:aws:iam::account-B-id:role/Dev"
]},
 "Resource": [
 "arn:aws:glue:us-east-1:account-A-id:catalog",
 "arn:aws:glue:us-east-1:account-A-id:database/db1"
]
 }
]
}

In addition, Account B would have to attach the following IAM policy to the Dev role before it
would actually get access to db1 in Account A.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetDatabase"
],
 "Resource": [
 "arn:aws:glue:us-east-1:account-A-id:catalog",
 "arn:aws:glue:us-east-1:account-A-id:database/db1"
]
 }

Granting cross-account access 2786

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

AWS Glue User Guide

]
}

Adding or updating the Data Catalog resource policy

You can add or update the AWS Glue Data Catalog resource policy using the console, API, or AWS
Command Line Interface (AWS CLI).

Important

If you have already made cross-account permission grants from your account with AWS
Lake Formation, adding or updating the Data Catalog resource policy requires an extra step.
For more information, see Managing cross-account permissions using both AWS Glue and
Lake Formation in the AWS Lake Formation Developer Guide.
To determine if Lake Formation cross-account grants exist, use the
glue:GetResourcePolicies API operation or the AWS CLI. If
glue:GetResourcePolicies returns any policies other than an already existing Data
Catalog policy, then Lake Formation grants exist. For more information, see Viewing
all cross-account grants using the GetResourcePolicies API operation in the AWS Lake
Formation Developer Guide.

To add or update the Data Catalog resource policy (console)

1. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

Sign in as an AWS Identity and Access Management (IAM) administrative user who has the
glue:PutResourcePolicy permission.

2. In the navigation pane, choose Settings.

3. On the Data catalog settings page, under Permissions, paste a resource policy into the text
area. Then choose Save.

If the console displays a alert stating that the permissions in the policy will be in addition to
any permissions granted using Lake Formation, choose Proceed.

Granting cross-account access 2787

https://docs.aws.amazon.com/lake-formation/latest/dg/hybrid-cross-account.html
https://docs.aws.amazon.com/lake-formation/latest/dg/hybrid-cross-account.html
https://docs.aws.amazon.com/lake-formation/latest/dg/cross-account-getresourcepolicies.html
https://docs.aws.amazon.com/lake-formation/latest/dg/cross-account-getresourcepolicies.html
https://console.aws.amazon.com/glue/

AWS Glue User Guide

To add or update the Data Catalog resource policy (AWS CLI)

• Submit an aws glue put-resource-policy command. If Lake Formation grants already
exist, ensure that you include the --enable-hybrid option with the value 'TRUE'.

For examples of using this command, see Resource-based policy examples for AWS Glue.

Making a cross-account API call

All AWS Glue Data Catalog operations have a CatalogId field. If the required permissions have
been granted to enable cross-account access, a caller can make Data Catalog API calls across
accounts. The caller does this by passing the target AWS account ID in CatalogId so as to access
the resource in that target account.

If no CatalogId value is provided, AWS Glue uses the caller's own account ID by default, and the
call is not cross-account.

Making a cross-account ETL call

Some AWS Glue PySpark and Scala APIs have a catalog ID field. If all the required permissions have
been granted to enable cross-account access, an ETL job can make PySpark and Scala calls to API
operations across accounts by passing the target AWS account ID in the catalog ID field to access
Data Catalog resources in a target account.

If no catalog ID value is provided, AWS Glue uses the caller's own account ID by default, and the
call is not cross-account.

For PySpark APIs that support catalog_id, see GlueContext class. For Scala APIs that support
catalogId, see AWS Glue Scala GlueContext APIs.

The following example shows the permissions required by the grantee to run an ETL job. In this
example, grantee-account-id is the catalog-id of the client running the job and grantor-
account-id is the owner of the resource. This example grants permission to all catalog resources
in the grantor's account. To limit the scope of resources granted, you can provide specific ARNs for
the catalog, database, table, and connection.

{
 "Version": "2012-10-17",
 "Statement": [

Granting cross-account access 2788

AWS Glue User Guide

 {
 "Effect": "Allow",
 "Action": [
 "glue:GetConnection",
 "glue:GetDatabase",
 "glue:GetTable",
 "glue:GetPartition"
],
 "Principal": {"AWS": ["arn:aws:iam::grantee-account-id:root"]},
 "Resource": [
 "arn:aws:glue:us-east-1:grantor-account-id:*"
]
 }
]
}

Note

If a table in the grantor's account points to an Amazon S3 location that is also in the
grantor's account, the IAM role used to run an ETL job in the grantee's account must have
permission to list and get objects from the grantor's account.

Given that the client in Account A already has permission to create and run ETL jobs, the following
are the basic steps to set up an ETL job for cross-account access:

1. Allow cross-account data access (skip this step if Amazon S3 cross-account access is already set
up).

a. Update the Amazon S3 bucket policy in Account B to allow cross-account access from
Account A.

b. Update the IAM policy in Account A to allow access to the bucket in Account B.

2. Allow cross-account Data Catalog access.

a. Create or update the resource policy attached to the Data Catalog in Account B to allow
access from Account A.

b. Update the IAM policy in Account A to allow access to the Data Catalog in Account B.

Granting cross-account access 2789

AWS Glue User Guide

Cross-account CloudTrail logging

When an AWS Glue extract, transform, and load (ETL) job accesses the underlying data of a Data
Catalog table shared through AWS Lake Formation cross-account grants, there is additional AWS
CloudTrail logging behavior.

For purposes of this discussion, the AWS account that shared the table is the owner account,
and the account that the table was shared with is the recipient account. When an ETL job in the
recipient account accesses data in the table in the owner account, the data-access CloudTrail event
that is added to the logs for the recipient account gets copied to the owner account's CloudTrail
logs. This is so owner accounts can track data accesses by the various recipient accounts. By default,
the CloudTrail events do not include a human-readable principal identifier (principal ARN). An
administrator in the recipient account can opt in to include the principal ARN in the logs.

For more information, see Cross-account CloudTrail logging in the AWS Lake Formation Developer
Guide.

See Also

• the section called “Logging and monitoring”

Cross-account resource ownership and billing

When a user in one AWS account (Account A) creates a new resource such as a database in a
different account (Account B), that resource is then owned by Account B, the account where it
was created. An administrator in Account B automatically gets full permissions to access the
new resource, including reading, writing, and granting access permissions to a third account. The
user in Account A can access the resource that they just created only if they have the appropriate
permissions granted by Account B.

Storage costs and other costs that are directly associated with the new resource are billed to
Account B, the resource owner. The cost of requests from the user who created the resource are
billed to the requester's account, Account A.

For more information about AWS Glue billing and pricing, see How AWS Pricing Works.

Cross-account access limitations

AWS Glue cross-account access has the following limitations:

Granting cross-account access 2790

https://docs.aws.amazon.com/lake-formation/latest/dg/cross-account-logging.html
https://d0.awsstatic.com/whitepapers/aws_pricing_overview.pdf

AWS Glue User Guide

• Cross-account access to AWS Glue is not allowed if you created databases and tables using
Amazon Athena orAmazon Redshift Spectrum prior to a region's support for AWS Glue and the
resource owner account has not migrated the Amazon Athena data catalog to AWS Glue. You can
find the current migration status using the GetCatalogImportStatus (get_catalog_import_status).
For more details on how to migrate an Athena catalog to AWS Glue, see Upgrading to the AWS
Glue Data Catalog step-by-step in the Amazon Athena User Guide.

• Cross-account access is only supported for Data Catalog resources, including databases, tables,
user-defined functions, and connections.

• Cross-account access to the Data Catalog from Athena requires you to register the catalog as an
Athena DataCatalog resource. For instructions, see Registering an AWS Glue Data Catalog from
another account in the Amazon Athena User Guide.

Troubleshooting AWS Glue identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS Glue and IAM.

Topics

• I am not authorized to perform an action in AWS Glue

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AWS Glue resources

I am not authorized to perform an action in AWS Glue

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
glue:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 glue:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the glue:GetWidget action.

Troubleshooting 2791

https://docs.aws.amazon.com/athena/latest/ug/glue-upgrade.html
https://docs.aws.amazon.com/athena/latest/ug/glue-upgrade.html
https://docs.aws.amazon.com/athena/latest/ug/data-sources-glue-cross-account.html
https://docs.aws.amazon.com/athena/latest/ug/data-sources-glue-cross-account.html

AWS Glue User Guide

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS Glue.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AWS Glue. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my AWS Glue
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether AWS Glue supports these features, see How AWS Glue works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

Troubleshooting 2792

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html

AWS Glue User Guide

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Logging and monitoring in AWS Glue

You can automate the running of your ETL (extract, transform, and load) jobs. AWS Glue provides
metrics for crawlers and jobs that you can monitor. After you set up the AWS Glue Data Catalog
with the required metadata, AWS Glue provides statistics about the health of your environment.
You can automate the invocation of crawlers and jobs with a time-based schedule based on cron.
You can also trigger jobs when an event-based trigger fires.

AWS Glue is integrated with AWS CloudTrail, a service that provides a record of actions taken by a
user, role, or AWS service in AWS Glue. If you create a trail, you can enable continuous delivery of
CloudTrail events to an Amazon Simple Storage Service (Amazon S3) bucket, Amazon CloudWatch
Logs, and Amazon CloudWatch Events. Every event or log entry contains information about who
generated the request.

Use Amazon CloudWatch Events to automate your AWS services and respond automatically to
system events such as application availability issues or resource changes. Events from AWS services
are delivered to CloudWatch Events in near-real time. You can write simple rules to indicate which
events are of interest and what automated actions to take when an event matches a rule.

See also

• Automating AWS Glue with CloudWatch Events

• Cross-account CloudTrail logging

An important facet of security in the cloud is logging. You must configure logging in a way that
does not capture secrets and confidential material while capturing information necessary to debug
and secure your cloud infastructure. Make sure to familizarize yourself with what is being logged.

Logging and monitoring 2793

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS Glue User Guide

Compliance validation for AWS Glue

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your

Compliance validation 2794

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

AWS Glue User Guide

compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in AWS Glue

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

For more information about AWS Glue job resiliency, see Error: Failover behavior between VPCs in
AWS Glue.

Infrastructure security in AWS Glue

As a managed service, AWS Glue is protected by the AWS global network security procedures that
are described in the Amazon Web Services: Overview of Security Processes whitepaper.

You use AWS published API calls to access AWS Glue through the network. Clients must support
Transport Layer Security (TLS) 1.0 or later. We recommend TLS 1.2 or later. Clients must also
support cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE)
or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Resilience 2795

https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://docs.aws.amazon.com/glue/latest/dg/glue-troubleshooting-errors.html#vpc-failover-behavior-error-10
https://docs.aws.amazon.com/glue/latest/dg/glue-troubleshooting-errors.html#vpc-failover-behavior-error-10
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

AWS Glue User Guide

Topics

• AWS Glue and interface VPC endpoints (AWS PrivateLink)

• Shared Amazon VPCs

AWS Glue and interface VPC endpoints (AWS PrivateLink)

You can establish a private connection between your VPC and AWS Glue by creating an interface
VPC endpoint. Interface endpoints are powered by AWS PrivateLink, a technology that enables
you to privately access AWS Glue APIs without an internet gateway, NAT device, VPN connection,
or AWS Direct Connect connection. Instances in your VPC don't need public IP addresses to
communicate with AWS Glue APIs. Traffic between your VPC and AWS Glue does not leave the
Amazon network.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your subnets.

For more information, see Interface VPC endpoints (AWS PrivateLink) in the Amazon VPC User
Guide.

Considerations for AWS Glue VPC endpoints

Before you set up an interface VPC endpoint for AWS Glue, ensure that you review Interface
endpoint properties and limitations in the Amazon VPC User Guide.

AWS Glue supports making calls to all of its API actions from your VPC.

Creating an interface VPC endpoint for AWS Glue

You can create a VPC endpoint for the AWS Glue service using either the Amazon VPC console
or the AWS Command Line Interface (AWS CLI). For more information, see Creating an interface
endpoint in the Amazon VPC User Guide.

Create a VPC endpoint for AWS Glue using the following service name:

• com.amazonaws.region.glue

If you enable private DNS for the endpoint, you can make API requests to AWS Glue using its
default DNS name for the Region, for example, glue.us-east-1.amazonaws.com.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

VPC endpoints (AWS PrivateLink) 2796

https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint

AWS Glue User Guide

Creating a VPC endpoint policy for AWS Glue

You can attach an endpoint policy to your VPC endpoint that controls access to AWS Glue. The
policy specifies the following information:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: VPC endpoint policy for AWS Glue to allow job creation and update

The following is an example of an endpoint policy for AWS Glue. When attached to an endpoint,
this policy grants access to the listed AWS Glue actions for all principals on all resources.

{
 "Statement":[
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "glue:CreateJob",
 "glue:UpdateJob",
 "iam:PassRole"
],
 "Resource":"*"
 }
]
}

Example: VPC endpoint policy to allow read-only Data Catalog access

The following is an example of an endpoint policy for AWS Glue. When attached to an endpoint,
this policy grants access to the listed AWS Glue actions for all principals on all resources.

{
 "Statement": [
 {

VPC endpoints (AWS PrivateLink) 2797

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

AWS Glue User Guide

 "Principal": "*",
 "Effect": "Allow",
 "Action": [
 "glue:GetDatabase",
 "glue:GetDatabases",
 "glue:GetTable",
 "glue:GetTables",
 "glue:GetTableVersion",
 "glue:GetTableVersions",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:BatchGetPartition",
 "glue:SearchTables"
],
 "Resource": "*"
 }
]
}

Shared Amazon VPCs

AWS Glue supports shared virtual private clouds (VPCs) in Amazon Virtual Private Cloud. Amazon
VPC sharing allows multiple AWS accounts to create their application resources, such as Amazon
EC2 instances and Amazon Relational Database Service (Amazon RDS) databases, into shared,
centrally-managed Amazon VPCs. In this model, the account that owns the VPC (owner) shares one
or more subnets with other accounts (participants) that belong to the same organization from AWS
Organizations. After a subnet is shared, the participants can view, create, modify, and delete their
application resources in the subnets that are shared with them.

In AWS Glue, to create a connection with a shared subnet, you must create a security group within
your account and attach the security group to the shared subnet.

For more information, see these topics:

• Working with Shared VPCs in the Amazon VPC User Guide

• What Is AWS Organizations? in the AWS Organizations User Guide

Shared Amazon VPCs 2798

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html

AWS Glue User Guide

Troubleshooting AWS Glue

Topics

• Gathering AWS Glue troubleshooting information

• Troubleshooting errors in AWS Glue for Spark

• Troubleshooting AWS Glue for Ray errors from logs

• AWS Glue machine learning exceptions

• AWS Glue quotas

Gathering AWS Glue troubleshooting information

If you encounter errors or unexpected behavior in AWS Glue and need to contact AWS Support,
you should first gather information about names, IDs, and logs that are associated with the failed
action. Having this information available enables AWS Support to help you resolve the problems
you're experiencing.

Along with your account ID, gather the following information for each of these types of failures:

When a crawler fails, gather the following information:

• Crawler name

Logs from crawler runs are located in CloudWatch Logs under /aws-glue/crawlers.

When a test connection fails, gather the following information:

• Connection name

• Connection ID

• JDBC connection string in the form jdbc:protocol://host:port/database-name.

Logs from test connections are located in CloudWatch Logs under /aws-glue/
testconnection.

When a job fails, gather the following information:

• Job name

• Job run ID in the form jr_xxxxx.

Logs from job runs are located in CloudWatch Logs under /aws-glue/jobs.

Gathering AWS Glue troubleshooting information 2799

AWS Glue User Guide

Troubleshooting errors in AWS Glue for Spark

If you encounter errors in AWS Glue, use the following solutions to help you find the source of the
problems and fix them.

Note

The AWS Glue GitHub repository contains additional troubleshooting guidance in AWS Glue
Frequently Asked Questions.

Topics

• Error: Resource unavailable

• Error: Could not find S3 endpoint or NAT gateway for subnetId in VPC

• Error: Inbound rule in security group required

• Error: Outbound rule in security group required

• Error: Job run failed because the role passed should be given assume role permissions for the
AWS Glue service

• Error: DescribeVpcEndpoints action is unauthorized. unable to validate VPC ID vpc-id

• Error: DescribeRouteTables action is unauthorized. unable to validate subnet id: Subnet-id in VPC
id: vpc-id

• Error: Failed to call ec2:DescribeSubnets

• Error: Failed to call ec2:DescribeSecurityGroups

• Error: Could not find subnet for AZ

• Error: Job run exception when writing to a JDBC target

• Error: Amazon S3: The operation is not valid for the object's storage class

• Error: Amazon S3 timeout

• Error: Amazon S3 access denied

• Error: Amazon S3 access key ID does not exist

• Error: Job run fails when accessing Amazon S3 with an s3a:// URI

• Error: Amazon S3 service token expired

• Error: No private DNS for network interface found

Troubleshooting Spark errors 2800

https://github.com/aws-samples/aws-glue-samples/blob/master/FAQ_and_How_to.md
https://github.com/aws-samples/aws-glue-samples/blob/master/FAQ_and_How_to.md

AWS Glue User Guide

• Error: Development endpoint provisioning failed

• Error: Notebook server CREATE_FAILED

• Error: Local notebook fails to start

• Error: Running crawler failed

• Error: Partitions were not updated

• Error: Job bookmark update failed due to version mismatch

• Error: A job is reprocessing data when job bookmarks are enabled

• Error: Failover behavior between VPCs in AWS Glue

• Troubleshoot crawler errors when the crawler is using Lake Formation credentials

Error: Resource unavailable

If AWS Glue returns a resource unavailable message, you can view error messages or logs to help
you learn more about the issue. The following tasks describe general methods for troubleshooting.

• For any connections and development endpoints that you use, check that your cluster has not
run out of elastic network interfaces.

Error: Could not find S3 endpoint or NAT gateway for subnetId in VPC

Check the subnet ID and VPC ID in the message to help you diagnose the issue.

• Check that you have an Amazon S3 VPC endpoint set up, which is required with AWS Glue. In
addition, check your NAT gateway if that's part of your configuration. For more information, see
Amazon VPC endpoints for Amazon S3.

Error: Inbound rule in security group required

At least one security group must open all ingress ports. To limit traffic, the source security group in
your inbound rule can be restricted to the same security group.

• For any connections that you use, check your security group for an inbound rule that is self-
referencing. For more information, see Setting up network access to data stores.

• When you are using a development endpoint, check your security group for an inbound rule that
is self-referencing. For more information, see Setting up network access to data stores.

Error: Resource unavailable 2801

AWS Glue User Guide

Error: Outbound rule in security group required

At least one security group must open all egress ports. To limit traffic, the source security group in
your outbound rule can be restricted to the same security group.

• For any connections that you use, check your security group for an outbound rule that is self-
referencing. For more information, see Setting up network access to data stores.

• When you are using a development endpoint, check your security group for an outbound rule
that is self-referencing. For more information, see Setting up network access to data stores.

Error: Job run failed because the role passed should be given assume
role permissions for the AWS Glue service

The user who defines a job must have permission for iam:PassRole for AWS Glue.

• When a user creates an AWS Glue job, confirm that the user's role contains a policy that contains
iam:PassRole for AWS Glue. For more information, see Step 3: Attach a policy to users or
groups that access AWS Glue.

Error: DescribeVpcEndpoints action is unauthorized. unable to validate
VPC ID vpc-id

• Check the policy passed to AWS Glue for the ec2:DescribeVpcEndpoints permission.

Error: DescribeRouteTables action is unauthorized. unable to validate
subnet id: Subnet-id in VPC id: vpc-id

• Check the policy passed to AWS Glue for the ec2:DescribeRouteTables permission.

Error: Failed to call ec2:DescribeSubnets

• Check the policy passed to AWS Glue for the ec2:DescribeSubnets permission.

Error: Outbound rule in security group required 2802

AWS Glue User Guide

Error: Failed to call ec2:DescribeSecurityGroups

• Check the policy passed to AWS Glue for the ec2:DescribeSecurityGroups permission.

Error: Could not find subnet for AZ

• The Availability Zone might not be available to AWS Glue. Create and use a new subnet in a
different Availability Zone from the one specified in the message.

Error: Job run exception when writing to a JDBC target

When you are running a job that writes to a JDBC target, the job might encounter errors in the
following scenarios:

• If your job writes to a Microsoft SQL Server table, and the table has columns defined as type
Boolean, then the table must be predefined in the SQL Server database. When you define the
job on the AWS Glue console using a SQL Server target with the option Create tables in your
data target, don't map any source columns to a target column with data type Boolean. You
might encounter an error when the job runs.

You can avoid the error by doing the following:

• Choose an existing table with the Boolean column.

• Edit the ApplyMapping transform and map the Boolean column in the source to a number or
string in the target.

• Edit the ApplyMapping transform to remove the Boolean column from the source.

• If your job writes to an Oracle table, you might need to adjust the length of names of Oracle
objects. In some versions of Oracle, the maximum identifier length is limited to 30 bytes or 128
bytes. This limit affects the table names and column names of Oracle target data stores.

You can avoid the error by doing the following:

• Name Oracle target tables within the limit for your version.

• The default column names are generated from the field names in the data. To handle the
case when the column names are longer than the limit, use ApplyMapping or RenameField
transforms to change the name of the column to be within the limit.

Error: Failed to call ec2:DescribeSecurityGroups 2803

AWS Glue User Guide

Error: Amazon S3: The operation is not valid for the object's storage
class

If AWS Glue returns this error, your AWS Glue job may have been reading data from tables that
have partitions across Amazon S3 storage class tiers.

• By using storage class exclusions, you can ensure that your AWS Glue jobs will work on tables
that have partitions across these storage class tiers. Without exclusions, jobs that read data from
these tiers fail with the following error: AmazonS3Exception: The operation is not
valid for the object's storage class.

For more information, see Excluding Amazon S3 storage classes.

Error: Amazon S3 timeout

If AWS Glue returns a connect timed out error, it might be because it is trying to access an Amazon
S3 bucket in another AWS Region.

• An Amazon S3 VPC endpoint can only route traffic to buckets within an AWS Region. If you need
to connect to buckets in other Regions, a possible workaround is to use a NAT gateway. For more
information, see NAT Gateways.

Error: Amazon S3 access denied

If AWS Glue returns an access denied error to an Amazon S3 bucket or object, it might be because
the IAM role provided does not have a policy with permission to your data store.

• An ETL job must have access to an Amazon S3 data store used as a source or target. A crawler
must have access to an Amazon S3 data store that it crawls. For more information, see Step 2:
Create an IAM role for AWS Glue.

Error: Amazon S3 access key ID does not exist

If AWS Glue returns an access key ID does not exist error when running a job, it might be because
of one of the following reasons:

Error: Amazon S3: The operation is not valid for the object's storage class 2804

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

AWS Glue User Guide

• An ETL job uses an IAM role to access data stores, confirm that the IAM role for your job was not
deleted before the job started.

• An IAM role contains permissions to access your data stores, confirm that any attached Amazon
S3 policy containing s3:ListBucket is correct.

Error: Job run fails when accessing Amazon S3 with an s3a:// URI

If a job run returns an error like Failed to parse XML document with handler class , it might be
because of a failure trying to list hundreds of files using an s3a:// URI. Access your data store
using an s3:// URI instead. The following exception trace highlights the errors to look for:

1. com.amazonaws.SdkClientException: Failed to parse XML document with handler class
 com.amazonaws.services.s3.model.transform.XmlResponsesSaxParser$ListBucketHandler
2. at
 com.amazonaws.services.s3.model.transform.XmlResponsesSaxParser.parseXmlInputStream(XmlResponsesSaxParser.java:161)
3. at
 com.amazonaws.services.s3.model.transform.XmlResponsesSaxParser.parseListBucketObjectsResponse(XmlResponsesSaxParser.java:317)
4. at com.amazonaws.services.s3.model.transform.Unmarshallers
$ListObjectsUnmarshaller.unmarshall(Unmarshallers.java:70)
5. at com.amazonaws.services.s3.model.transform.Unmarshallers
$ListObjectsUnmarshaller.unmarshall(Unmarshallers.java:59)
6. at
 com.amazonaws.services.s3.internal.S3XmlResponseHandler.handle(S3XmlResponseHandler.java:62)
7. at
 com.amazonaws.services.s3.internal.S3XmlResponseHandler.handle(S3XmlResponseHandler.java:31)
8. at
 com.amazonaws.http.response.AwsResponseHandlerAdapter.handle(AwsResponseHandlerAdapter.java:70)
9. at com.amazonaws.http.AmazonHttpClient
$RequestExecutor.handleResponse(AmazonHttpClient.java:1554)
10. at com.amazonaws.http.AmazonHttpClient
$RequestExecutor.executeOneRequest(AmazonHttpClient.java:1272)
11. at com.amazonaws.http.AmazonHttpClient
$RequestExecutor.executeHelper(AmazonHttpClient.java:1056)
12. at com.amazonaws.http.AmazonHttpClient
$RequestExecutor.doExecute(AmazonHttpClient.java:743)
13. at com.amazonaws.http.AmazonHttpClient
$RequestExecutor.executeWithTimer(AmazonHttpClient.java:717)
14. at com.amazonaws.http.AmazonHttpClient
$RequestExecutor.execute(AmazonHttpClient.java:699)

Error: Job run fails when accessing Amazon S3 with an s3a:// URI 2805

AWS Glue User Guide

15. at com.amazonaws.http.AmazonHttpClient$RequestExecutor.access
$500(AmazonHttpClient.java:667)
16. at com.amazonaws.http.AmazonHttpClient
$RequestExecutionBuilderImpl.execute(AmazonHttpClient.java:649)
17. at com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:513)
18. at com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:4325)
19. at com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:4272)
20. at com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:4266)
21. at com.amazonaws.services.s3.AmazonS3Client.listObjects(AmazonS3Client.java:834)
22. at org.apache.hadoop.fs.s3a.S3AFileSystem.getFileStatus(S3AFileSystem.java:971)
23. at
 org.apache.hadoop.fs.s3a.S3AFileSystem.deleteUnnecessaryFakeDirectories(S3AFileSystem.java:1155)
24. at org.apache.hadoop.fs.s3a.S3AFileSystem.finishedWrite(S3AFileSystem.java:1144)
25. at org.apache.hadoop.fs.s3a.S3AOutputStream.close(S3AOutputStream.java:142)
26. at org.apache.hadoop.fs.FSDataOutputStream
$PositionCache.close(FSDataOutputStream.java:74)
27. at org.apache.hadoop.fs.FSDataOutputStream.close(FSDataOutputStream.java:108)
28. at org.apache.parquet.hadoop.ParquetFileWriter.end(ParquetFileWriter.java:467)
29. at
 org.apache.parquet.hadoop.InternalParquetRecordWriter.close(InternalParquetRecordWriter.java:117)
30. at
 org.apache.parquet.hadoop.ParquetRecordWriter.close(ParquetRecordWriter.java:112)
31. at
 org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.close(ParquetOutputWriter.scala:44)
32. at org.apache.spark.sql.execution.datasources.FileFormatWriter
$SingleDirectoryWriteTask.releaseResources(FileFormatWriter.scala:252)
33. at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun
orgapache$spark$sql$execution$datasources$FileFormatWriter$$executeTask
$3.apply(FileFormatWriter.scala:191)
34. at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun
orgapache$spark$sql$execution$datasources$FileFormatWriter$$executeTask
$3.apply(FileFormatWriter.scala:188)
35. at org.apache.spark.util.Utils
$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1341)
36. at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark
sqlexecution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:193)
37. at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$
$anonfun$3.apply(FileFormatWriter.scala:129)
38. at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$
$anonfun$3.apply(FileFormatWriter.scala:128)
39. at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
40. at org.apache.spark.scheduler.Task.run(Task.scala:99)
41. at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
42. at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)

Error: Job run fails when accessing Amazon S3 with an s3a:// URI 2806

AWS Glue User Guide

43. at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
44. at java.lang.Thread.run(Thread.java:748)

Error: Amazon S3 service token expired

When moving data to and from Amazon Redshift, temporary Amazon S3 credentials, which
expire after 1 hour, are used. If you have a long running job, it might fail. For information about
how to set up your long running jobs to move data to and from Amazon Redshift, see aws-glue-
programming-etl-connect-redshift-home.

Error: No private DNS for network interface found

If a job fails or a development endpoint fails to provision, it might be because of a problem in the
network setup.

• If you are using the Amazon provided DNS, the value of enableDnsHostnames must be set to
true. For more information, see DNS .

Error: Development endpoint provisioning failed

If AWS Glue fails to successfully provision a development endpoint, it might be because of a
problem in the network setup.

• When you define a development endpoint, the VPC, subnet, and security groups are validated to
confirm that they meet certain requirements.

• If you provided the optional SSH public key, check that it is a valid SSH public key.

• Check in the VPC console that your VPC uses a valid DHCP option set. For more information, see
DHCP option sets.

• If the cluster remains in the PROVISIONING state, contact AWS Support.

Error: Notebook server CREATE_FAILED

If AWS Glue fails to create the notebook server for a development endpoint, it might be because of
one of the following problems:

• AWS Glue passes an IAM role to Amazon EC2 when it is setting up the notebook server. The IAM
role must have a trust relationship to Amazon EC2.

Error: Amazon S3 service token expired 2807

aws-glue-programming-etl-connect-redshift-home
aws-glue-programming-etl-connect-redshift-home
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html

AWS Glue User Guide

• The IAM role must have an instance profile of the same name. When you create the
role for Amazon EC2 with the IAM console, the instance profile with the same name is
automatically created. Check for an error in the log regarding the instance profile name
iamInstanceProfile.name that is not valid. For more information, see Using Instance
Profiles .

• Check that your role has permission to access aws-glue* buckets in the policy that you pass to
create the notebook server.

Error: Local notebook fails to start

If your local notebook fails to start and reports errors that a directory or folder cannot be found, it
might be because of one of the following problems:

• If you are running on Microsoft Windows, make sure that the JAVA_HOME environment variable
points to the correct Java directory. It's possible to update Java without updating this variable,
and if it points to a folder that no longer exists, Jupyter notebooks fail to start.

Error: Running crawler failed

If AWS Glue fails to successfully run a crawler to catalog your data, it might be because of one of
the following reasons. First check if an error is listed in the AWS Glue console crawlers list. Check if
there is an exclamation icon next to the crawler name and hover over the icon to see any associated
messages.

• Check the logs for the crawler run in CloudWatch Logs under /aws-glue/crawlers.

Error: Partitions were not updated

In case your partitions were not updated in the Data Catalog when you ran an ETL job, these log
statements from the DataSink class in the CloudWatch logs may be helpful:

• "Attempting to fast-forward updates to the Catalog - nameSpace:" — Shows
which database, table, and catalogId are attempted to be modified by this job. If this statement
is not here, check if enableUpdateCatalog is set to true and properly passed as a getSink()
parameter or in additional_options.

Error: Local notebook fails to start 2808

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html

AWS Glue User Guide

• "Schema change policy behavior:" — Shows which schema updateBehavior value
you passed in.

• "Schemas qualify (schema compare):" — Will be true or false.

• "Schemas qualify (case-insensitive compare):" — Will be true or false.

• If both are false and your updateBehavior is not set to UPDATE_IN_DATABASE, then your
DynamicFrame schema needs to be identical or contain a subset of the columns seen in the Data
Catalog table schema.

For more information on updating partitions, see Updating the schema, and adding new partitions
in the Data Catalog using AWS Glue ETL jobs.

Error: Job bookmark update failed due to version mismatch

You may be trying to parametize AWS Glue jobs to apply the same transformation/logic on
different datasets in Amazon S3. You want to track processed files on the locations provided.
When you run the same job on the same source bucket and write to the same/different destination
concurrently (concurrency >1) the job fails with this error:

py4j.protocol.Py4JJavaError: An error occurred while
 callingz:com.amazonaws.services.glue.util.Job.commit.:com.amazonaws.services.gluejobexecutor.model.VersionMismatchException:
 Continuation update failed due to version mismatch. Expected version 2 but found
 version 3

Solution: set concurrency to 1 or don't run the job concurrently.

Currently AWS Glue bookmarks don't support concurrent job runs and commits will fail.

Error: A job is reprocessing data when job bookmarks are enabled

There might be cases when you have enabled AWS Glue job bookmarks, but your ETL job is
reprocessing data that was already processed in an earlier run. Check for these common causes of
this error:

Max Concurrency

Setting the maximum number of concurrent runs for the job greater than the default value of 1
can interfere with job bookmarks. This can occur when job bookmarks check the last modified time
of objects to verify which objects need to be reprocessed. For more information, see the discussion
of max concurrency in Configuring job properties for Spark jobs in AWS Glue.

Error: Job bookmark update failed due to version mismatch 2809

AWS Glue User Guide

Missing Job Object

Ensure that your job run script ends with the following commit:

job.commit()

When you include this object, AWS Glue records the timestamp and path of the job run. If you run
the job again with the same path, AWS Glue processes only the new files. If you don't include this
object and job bookmarks are enabled, the job reprocesses the already processed files along with
the new files and creates redundancy in the job's target data store.

Missing Transformation Context Parameter

Transformation context is an optional parameter in the GlueContext class, but job bookmarks
don't work if you don't include it. To resolve this error, add the transformation context parameter
when you create the DynamicFrame, as shown following:

sample_dynF=create_dynamic_frame_from_catalog(database,
 table_name,transformation_ctx="sample_dynF")

Input Source

If you are using a relational database (a JDBC connection) for the input source, job bookmarks work
only if the table's primary keys are in sequential order. Job bookmarks work for new rows, but not
for updated rows. That is because job bookmarks look for the primary keys, which already exist.
This does not apply if your input source is Amazon Simple Storage Service (Amazon S3).

Last Modified Time

For Amazon S3 input sources, job bookmarks check the last modified time of the objects, rather
than the file names, to verify which objects need to be reprocessed. If your input source data has
been modified since your last job run, the files are reprocessed when you run the job again.

Error: Failover behavior between VPCs in AWS Glue

The following process is used for failover for jobs in AWS Glue 4.0 and previous versions.

Summary: an AWS Glue connection is selected at the time a job run is submitted. If the job run
encounters some issues, (lack of IP addresses, connectivity to source, routing problem), the job run
will fail. If retries are configured, AWS Glue will retry with the same connection.

Error: Failover behavior between VPCs in AWS Glue 2810

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-create_dynamic_frame_from_catalog

AWS Glue User Guide

1. For each run attempt, AWS Glue will check the connections health in the order listed in the job
configuration, given until it finds one it can use. In the case of an Availability Zone (AZ) failure,
the connections from that AZ will fail the check and will be skipped.

2. AWS Glue validates the connection with the following:

• checks for valid Amazon VPC id and subnet.

• checks that a NAT gateway or Amazon VPC endpoint exists.

• checks that the subnet has more than 0 allocated IP addresses.

• checks that the AZ is healthy.

AWS Glue cannot verify connectivity at the time of job run submission.

3. For jobs using Amazon VPC, all drivers and executors will be created in the same AZ with the
connection selected at the time of job run submission.

4. If retries are configured, AWS Glue will retry with the same connection. This is because we
cannot guarantee problems with this connection are long-running. If an AZ fails, existing job
runs (depending on the stage of the job run) in that AZ can fail. A retry should detect an AZ
failure and choose another AZ for the new run.

Troubleshoot crawler errors when the crawler is using Lake Formation
credentials

Use the information below to diagnose and fix various issues while configuring the crawler using
Lake Formation credentials.

Error: The S3 location: s3://examplepath is not registered

For a crawler to run using Lake Formation credentials, you need to first set up Lake Formation
permissions. To resolve this error, please register the target Amazon S3 location with Lake
Formation. For more information, see Registering an Amazon S3 location.

Error: User/Role is not authorized to perform: lakeformation:GetDataAccess on
resource

Please add the lakeformation:GetDataAccess permission to the crawler role using the
IAM console or AWS CLI. With this permission, Lake Formation grants the request for temporary
credentials to access the data. See the policy below:

Troubleshoot crawler errors when the crawler is using Lake Formation credentials 2811

https://docs.aws.amazon.com/lake-formation/latest/dg/register-location.html

AWS Glue User Guide

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "lakeformation:GetDataAccess"
],
 "Resource": "*"
 }
}

Error: Insufficient Lake Formation permission(s) on (Database name:
exampleDatabase, Table Name: exampleTable)

In the Lake Formation console (https://console.aws.amazon.com/lakeformation/), grant the
crawler role access permissions (Create, Describe, Alter) on the database, which is specified
as the output database. You can grant permissions on the table as well. For more information, see
Granting database permissions using the named resource method.

Error: Insufficient Lake Formation permission(s) on s3://examplepath

1. Cross-account crawling

a. Log in to the Lake Formation console (https://console.aws.amazon.com/lakeformation/)
using the account where Amazon S3 bucket is registred (account B). Grant data location
permissions to the account where the crawler will be run. This will allow the crawler to read
data from the target Amazon S3 location.

b. In the account where the crawler is created (account A), grant data location permissions on
the target Amazon S3 location to the IAM role used for the crawler run so that the crawler
can read the data from the destination in Lake Formation. For more information, see Granting
data location permissions (external account).

2. In-account (crawler and registered Amazon S3 location are in the same account) crawling
‐ Grant data location permissions to the IAM role used for the crawler run on the Amazon S3
location so that the crawler can read the data from the target in Lake Formation. For more
information, see Granting data location permissions (same account).

Troubleshoot crawler errors when the crawler is using Lake Formation credentials 2812

https://console.aws.amazon.com/lakeformation/
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-cat-perms-named-resource.html
https://console.aws.amazon.com/lakeformation/
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-location-permissions-external.html
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-location-permissions-external.html
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-location-permissions-local.html

AWS Glue User Guide

Frequently asked questions about crawler configuration using Lake Formation
credentials

1. How do I configure a crawler to run using Lake Formation credentials using the AWS console?

In the AWS Glue console (https://console.aws.amazon.com/glue/), while configuring the crawler,
select the option Use Lake Formation credentials for crawling Amazon S3 data source. For
cross-account crawling, specify the AWS account ID where the target Amazon S3 location is
registered with Lake Formation. For in-account crawling, the accountId field is optional.

2. How do I configure a crawler to run using Lake Formation credentials using AWS CLI?

During CreateCrawler API call, add LakeFormationConfiguration :

"LakeFormationConfiguration": {
 "UseLakeFormationCredentials": true,
 "AccountId": "111111111111" (AWS account ID where the target Amazon S3 location
 is registered with Lake Formation)
 }

3. What are the supported targets for a crawler using Lake Formation credentials?

A crawler using Lake Formation credentials is only supported for Amazon S3 (in-account and
cross-account crawling), in-account Data Catalog targets (where the underlying location is
Amazon S3), and Apache Iceberg targets.

4. Can I crawl multiple Amazon S3 buckets as part of a single crawler using Lake Formation
credentials?

No, for crawling targets using Lake Formation credential vending, the underlying Amazon S3
locations must belong to the same bucket. For example, customers can use multiple target
locations (s3://bucket1/folder1, s3://bucket1/folder2) if they are under the same
bucket (bucket1). Specifying different buckets (s3://bucket1/folder1, s3://bucket2/folder2) is
not supported.

Troubleshooting AWS Glue for Ray errors from logs

AWS Glue provides access to logs that are emitted by Ray processes during the job run. If you
encounter errors or unexpected behavior in Ray jobs, first gather information from the logs to

Troubleshooting Ray errors 2813

https://console.aws.amazon.com/glue/

AWS Glue User Guide

determine the cause of failure. We also provide similar logs for interactive sessions. Sessions logs
are provided with the /aws-glue/ray/sessions prefix.

Log lines are sent to CloudWatch in real time, as your job is run. Print statements are appended to
the CloudWatch logs after the run completes. Logs are retained for two weeks after a job is run.

Inspecting Ray job logs

When a job fails, gather your job name and job run ID. You can find these in the AWS Glue console.
Navigate to the job page, and then navigate to the Runs tab. Ray job logs are stored in the
following dedicated CloudWatch log groups.

• /aws-glue/ray/jobs/script-log/ – Stores logs emitted by your main Ray script.

• /aws-glue/ray/jobs/ray-monitor-log/ – Stores logs emitted by the Ray autoscaler
process. These logs are generated for the head node and not for other worker nodes.

• /aws-glue/ray/jobs/ray-gcs-logs/ – Stores logs emitted by the GCS (global control
store) process. These logs are generated for the head node and not for other worker nodes.

• /aws-glue/ray/jobs/ray-process-logs/ – Stores logs emitted by other Ray processes
(primarily the dashboard agent) running on the head node. These logs are generated for the
head node and not for other worker nodes.

• /aws-glue/ray/jobs/ray-raylet-logs/ – Stores logs emitted by each raylet process.
These logs are collected in a single stream for each worker node, including the head node.

• /aws-glue/ray/jobs/ray-worker-out-logs/ – Stores stdout logs for each worker in the
cluster. These logs are generated for each worker node, including the head node.

• /aws-glue/ray/jobs/ray-worker-err-logs/ – Stores stderr logs for each worker in the
cluster. These logs are generated for each worker node, including the head node.

• /aws-glue/ray/jobs/ray-runtime-env-log/ – Stores logs about the Ray setup process.
These logs are generated for each worker node, including the head node.

Troubleshooting Ray job errors

To understand the organization of Ray log groups, and to find the log groups that will help you
troubleshoot your errors, it helps to have background information about Ray architecture.

In AWS Glue ETL, a worker corresponds to an instance. When you configure workers for an AWS
Glue job, you're setting the type and quantity of instances that are dedicated to the job. Ray uses
the term worker in different ways.

Inspecting Ray job logs 2814

AWS Glue User Guide

Ray uses head node and worker node to distinguish the responsibilities of an instance within a
Ray cluster. A Ray worker node can host multiple actor processes that perform computations to
achieve the result of your distributed computation. Actors that run a replica of a function are called
replicas. Replica actors can also be called worker processes. Replicas can also run on the head node,
which is known as the head because it runs additional processes to coordinate the cluster.

Each actor that contributes to your computation generates its own log stream. This provides us
with some insights:

• The number of processes that emit logs might be larger than the number of workers that are
allocated to the job. Often, each core on each instance has an actor.

• Ray head nodes emit cluster management and startup logs. In contrast, Ray worker nodes only
emit logs for the work performed on them.

For more information about Ray architecture, see Architecture Whitepapers in the Ray
documentation.

Problem area: Amazon S3 access

Check the failure message of the job run. If that doesn't provide enough information, check /aws-
glue/ray/jobs/script-log/.

Problem area: PIP dependency management

Check /aws-glue/ray/jobs/ray-runtime-env-log/.

Problem area: Inspecting intermediate values in main process

Write to stderr or stdout from your main script, and retrieve logs from /aws-glue/ray/jobs/
script-log/.

Problem area: Inspecting intermediate values in a child process

Write to stderr or stdout from your remote function. Then, retrieve logs from /aws-glue/
ray/jobs/ray-worker-out-logs/ or /aws-glue/ray/jobs/ray-worker-err-logs/. Your
function might have run on any replica, so you might have to examine multiple logs to find your
intended output.

Troubleshooting Ray job errors 2815

https://docs.ray.io/en/latest/ray-contribute/whitepaper.html

AWS Glue User Guide

Problem area: Interpreting IP addresses in error messages

In certain error situations, your job might emit an error message that contains an IP address. These
IP addresses are ephemeral, and are used by the cluster to identify and communicate between
nodes. Logs for a node will be published to a log stream with a unique suffix based on the IP
address.

In CloudWatch, you can filter down your logs to inspect those specific to this IP address by
identifying this suffix. For example, given FAILED_IP and JOB_RUN_ID, you can identify the suffix
with:

filter @logStream like /JOB_RUN_ID/
| filter @message like /IP-/
| parse @message "IP-[*]" as ip
| filter ip like /FAILED_IP/
| fields replace(ip, ":", "_") as uIP
| stats count_distinct by uIP as logStreamSuffix
| display logStreamSuffix

AWS Glue machine learning exceptions

This topic describes HTTP error codes and strings for AWS Glue exceptions related to machine
learning. The error codes and error strings are provided for each machine learning activity that
may occur when you perform an operation. Also, you can see whether it is possible to retry the
operation that resulted in the error.

CancelMLTaskRunActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName].”

• “No ML Task Run found for [taskRunId]: in account [accountId] for transform
[transformName].”

OK to retry: No.

AWS Glue machine learning exceptions 2816

AWS Glue User Guide

CreateMLTaskRunActivity

This activity has the following exceptions:

• InvalidInputException (400)

• “Internal service failure due to unexpected input.”

• “An AWS Glue Table input source should be specified in transform.”

• “Input source column [columnName] has an invalid data type defined in the catalog.”

• “Exactly one input record table must be provided.”

• “Should specify database name.”

• “Should specify table name.”

• “Schema is not defined on the transform.”

• “Schema should contain given primary key: [primaryKey].”

• “Problem fetching the data catalog schema: [message].”

• “Cannot set Max Capacity and Worker Num/Type at the same time.”

• “Both WorkerType and NumberOfWorkers should be set.”

• “MaxCapacity should be >= [maxCapacity].”

• “NumberOfWorkers should be >= [maxCapacity].”

• “Max retries should be non-negative.”

• “Find Matches parameters have not been set.”

• “A primary key must be specified in Find Matches parameters.”

OK to retry: No.

• AlreadyExistsException (400)

• “Transform with name [transformName] already exists.”

OK to retry: No.

• IdempotentParameterMismatchException (400)

• “Idempotent create request for transform [transformName] had mismatching parameters.”

OK to retry: No.

• InternalServiceException (500)

• “Dependency failure.”
CreateMLTaskRunActivity 2817

AWS Glue User Guide

OK to retry: Yes.

• ResourceNumberLimitExceededException (400)

• “ML Transforms count ([count]) has exceeded the limit of [limit] transforms.”

OK to retry: Yes, once you’ve deleted a transform to make room for this new one.

DeleteMLTransformActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName]”

OK to retry: No.

GetMLTaskRunActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName].”

• “No ML Task Run found for [taskRunId]: in account [accountId] for transform
[transformName].”

OK to retry: No.

GetMLTaskRunsActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName].”

• “No ML Task Run found for [taskRunId]: in account [accountId] for transform
[transformName].”

OK to retry: No.

DeleteMLTransformActivity 2818

AWS Glue User Guide

GetMLTransformActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName].”

OK to retry: No.

GetMLTransformsActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName].”

OK to retry: No.

• InvalidInputException (400)

• “Account ID can't be blank.”

• “Sorting not supported for column [column].”

• “[column] can't be blank.”

• “Internal service failure due to unexpected input.”

OK to retry: No.

GetSaveLocationForTransformArtifactActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName].”

OK to retry: No.

• InvalidInputException (400)

• “Unsupported artifact type [artifactType].”

• “Internal service failure due to unexpected input.”
GetMLTransformActivity 2819

AWS Glue User Guide

OK to retry: No.

GetTaskRunArtifactActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName].”

• “No ML Task Run found for [taskRunId]: in account [accountId] for transform
[transformName].”

OK to retry: No.

• InvalidInputException (400)

• “File name ‘[fileName]’ is invalid for publish.”

• “Cannot retrieve artifact for [taskType] task type.”

• “Cannot retrieve artifact for [artifactType].”

• “Internal service failure due to unexpected input.”

OK to retry: No.

PublishMLTransformModelActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName].”

• “An existing model with version - [version] cannot be found for account id - [accountId] - and
transform id - [transformId].”

OK to retry: No.

• InvalidInputException (400)

• “File name ‘[fileName]’ is invalid for publish.”

• “Illegal leading minus sign on unsigned string [string].”

• “Bad digit at end of [string].”
GetTaskRunArtifactActivity 2820

AWS Glue User Guide

• “String value [string] exceeds range of unsigned long.”

• “Internal service failure due to unexpected input.”

OK to retry: No.

PullLatestMLTransformModelActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName].”

OK to retry: No.

• InvalidInputException (400)

• “Internal service failure due to unexpected input.”

OK to retry: No.

• ConcurrentModificationException (400)

• “Cannot create model version to train due to racing inserts with mismatching parameters.”

• “The ML Transform model for transform id [transformId] is stale or being updated by another
process; Please retry.”

OK to retry: Yes.

PutJobMetadataForMLTransformActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName].”

• “No ML Task Run found for [taskRunId]: in account [accountId] for transform
[transformName].”

OK to retry: No.

• InvalidInputException (400)

• “Internal service failure due to unexpected input.”

PullLatestMLTransformModelActivity 2821

AWS Glue User Guide

• “Unknown job metadata type [jobType].”

• “Must provide a task run ID to update.”

OK to retry: No.

StartExportLabelsTaskRunActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName].”

• “No labelset exists for transformId [transformId] in account id [accountId].”

OK to retry: No.

• InvalidInputException (400)

• “[message].”

• “S3 path provided is not in the same region as transform. Expecting region - [region], but got -
[region].”

OK to retry: No.

StartImportLabelsTaskRunActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName].”

OK to retry: No.

• InvalidInputException (400)

• “[message].”

• “Invalid label file path.”

• “Cannot access the label file at [labelPath]. [message].”

• “Cannot use IAM role provided in the transform. Role: [role].”

• “Invalid label file of size 0.”StartExportLabelsTaskRunActivity 2822

AWS Glue User Guide

• “S3 path provided is not in the same region as transform. Expecting region - [region], but got -
[region].”

OK to retry: No.

• ResourceNumberLimitExceededException (400)

• “Label file has exceeded the limit of [limit] MB.”

OK to retry: No. Consider breaking your label file into several smaller files.

StartMLEvaluationTaskRunActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName].”

OK to retry: No.

• InvalidInputException (400)

• “Exactly one input record table must be provided.”

• “Should specify database name.”

• “Should specify table name.”

• “Find Matches parameters have not been set.”

• “A primary key must be specified in Find Matches parameters.”

OK to retry: No.

• MLTransformNotReadyException (400)

• “This operation can only be applied to a transform that is in a READY state.”

OK to retry: No.

• InternalServiceException (500)

• “Dependency failure.”

OK to retry: Yes.

• ConcurrentRunsExceededException (400)

• “ML Task Runs count [count] has exceeded the transform limit of [limit] task runs.”StartMLEvaluationTaskRunActivity 2823

AWS Glue User Guide

• “ML Task Runs count [count] has exceeded the limit of [limit] task runs.”

OK to retry: Yes, after waiting for task runs to finish.

StartMLLabelingSetGenerationTaskRunActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName].”

OK to retry: No.

• InvalidInputException (400)

• “Exactly one input record table must be provided.”

• “Should specify database name.”

• “Should specify table name.”

• “Find Matches parameters have not been set.”

• “A primary key must be specified in Find Matches parameters.”

OK to retry: No.

• InternalServiceException (500)

• “Dependency failure.”

OK to retry: Yes.

• ConcurrentRunsExceededException (400)

• “ML Task Runs count [count] has exceeded the transform limit of [limit] task runs.”

OK to retry: Yes, after task runs have completed.

UpdateMLTransformActivity

This activity has the following exceptions:

• EntityNotFoundException (400)

• “Cannot find MLTransform in account [accountId] with handle [transformName].”
StartMLLabelingSetGenerationTaskRunActivity 2824

AWS Glue User Guide

OK to retry: No.

• InvalidInputException (400)

• “Another transform with name [transformName] already exists.”

• “[message].”

• “Transform name cannot be blank.”

• “Cannot set Max Capacity and Worker Num/Type at the same time.”

• “Both WorkerType and NumberOfWorkers should be set.”

• “MaxCapacity should be >= [minMaxCapacity].”

• “NumberOfWorkers should be >= [minNumWorkers].”

• “Max retries should be non-negative.”

• “Internal service failure due to unexpected input.”

• “Find Matches parameters have not been set.”

• “A primary key must be specified in Find Matches parameters.”

OK to retry: No.

• AlreadyExistsException (400)

• “Transform with name [transformName] already exists.”

OK to retry: No.

• IdempotentParameterMismatchException (400)

• “Idempotent create request for transform [transformName] had mismatching parameters.”

OK to retry: No.

AWS Glue quotas

You can contact AWS Support to request a quota increase for the service quotas listed in the AWS
General Reference. Unless otherwise noted, each quota is Region-specific. For more information,
see AWS Glue Endpoints and Quotas.

AWS Glue quotas 2825

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/glue.html

AWS Glue User Guide

Improving AWS Glue performance

Baseline strategy for performance tuning

In order to improve AWS Glue performance, you may consider updating certain performance
related AWS Glue parameters. When preparing to tune parameters, use the following best
practices:

• Determine your performance goals before beginning to identify problems.

• Use metrics to identify problems before attempting to change tuning parameters.

For the most consistent results when tuning a job, develop a baseline strategy for your tuning
work.

Generally, performance tuning is performed in the following workflow:

1. Determine performance goals.

2. Measure metrics.

3. Identify bottlenecks.

4. Reduce the impact of the bottlenecks.

5. Repeat steps 2-4 until you achieve the intended target.

Tuning strategies for your job type

Spark jobs–follow the guidance in Best practices for performance tuning AWS Glue for Apache
Spark jobs on AWS Prescriptive Guidance.

Other jobs–you can tune AWS Glue for Ray and AWS Glue Python shell jobs by adapting strategies
available in other runtime environments.

Improving performance for AWS Glue for Apache Spark jobs

In order to improve AWS Glue for Spark performance, you may consider updating certain
performance related AWS Glue and Spark parameters.

Tuning strategies for your job type 2826

https://docs.aws.amazon.com/prescriptive-guidance/latest/tuning-aws-glue-for-apache-spark/introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/tuning-aws-glue-for-apache-spark/introduction.html

AWS Glue User Guide

For more information about specific strategies for identifying bottlenecks through metrics and
reducing their impact, see Best practices for performance tuning AWS Glue for Apache Spark jobs
on AWS Prescriptive Guidance. This guide introduces you to key topics applicable to Apache Spark
in all runtime environments, such as Spark architecture and Resilient Distributed Datasets. Using
those topics, the guide guides you to implement specific performance tuning strategies, such as
optimizing shuffles and parallelizing tasks.

You can identify bottlenecks by configuring AWS Glue to show the Spark UI. For more information,
see the section called “Monitoring with the Spark UI”.

Additionally, AWS Glue provides performance features that may be applicable to the specific type
of data store your job connects to. Reference information about performance parameters for data
stores can be found in the section called “Connection parameters”.

Optimizing reads with pushdown in AWS Glue ETL

Pushdown is an optimization technique that pushes logic about retrieving data closer to the source
of your data. The source could be a database or a file system such as Amazon S3. When executing
certain operations directly on the source, you can save time and processing power by not bringing
all the data over the network to the Spark engine managed by AWS Glue.

Another way of saying this is that pushdown reduces data scan. For more information about the
process of identifying when this technique is appropriate, consult Reduce the amount of data
scan in the Best practices for performance tuning AWS Glue for Apache Spark jobs guide on AWS
Prescriptive Guidance.

Predicate pushdown on files stored on Amazon S3

When working with files on Amazon S3 that have been organized by prefix, you can filter your
target Amazon S3 paths by defining a pushdown predicate. Rather than reading the complete
dataset and applying filters within a DynamicFrame, you can directly apply the filter to the
partition metadata stored in the AWS Glue Data Catalog. This approach allows you to selectively
list and read only the necessary data. For more information about this process, including writing to
a bucket by partitions, see the section called “Managing partitions”.

You achieve predicate pushdown in Amazon S3 by using the push_down_predicate parameter.
Consider a bucket in Amazon S3 you've partitioned by year, month and day. If you want to retrieve
customer data for June of 2022, you can instruct AWS Glue to read only relevant Amazon S3

Optimizing reads with pushdown 2827

https://docs.aws.amazon.com/prescriptive-guidance/latest/tuning-aws-glue-for-apache-spark/introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/tuning-aws-glue-for-apache-spark/reduce-data-scan.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/tuning-aws-glue-for-apache-spark/reduce-data-scan.html

AWS Glue User Guide

paths. The push_down_predicate in this case is year='2022' and month='06'. Putting it all
together, the read operation can be achieved as below:

Python

customer_records = glueContext.create_dynamic_frame.from_catalog(
 database = "customer_db",
 table_name = "customer_tbl",
 push_down_predicate = "year='2022' and month='06'"
)

Scala

val customer_records = glueContext.getCatalogSource(
database="customer_db",
tableName="customer_tbl",
pushDownPredicate="year='2022' and month='06'"
).getDynamicFrame()

In the previous scenario, push_down_predicate retrieves a list of all partitions from the AWS
Glue Data Catalog and filters them before reading the underlying Amazon S3 files. Though this
helps in most cases, when working with datasets that have millions of partitions, the process of
listing partitions can be time consuming. To address this issue, server-side pruning of partitions
can be used to improve performance. This is done by building a Partition index for your data in
the AWS Glue Data Catalog. For more information about partition indices, see the section called
“Working with partition indexes”. You can then use the catalogPartitionPredicate option to
reference the index. For an example retrieving partitions with catalogPartitionPredicate, see
the section called “Catalog partition predicates”.

Pushdown when working with JDBC sources

The AWS Glue JDBC reader used in the GlueContext supports pushdown on supported databases
by providing custom SQL queries that can run directly on the source. This can be achieved by
setting the sampleQuery parameter. Your sample query can specify which columns to select as
well as provide a pushdown predicate to limit the data transferred to the Spark engine.

By default, sample queries operate on a single node, which can result in job failures when dealing
with large data volumes. To use this feature to query data at scale, you should configure query
partitioning by setting enablePartitioningForSampleQuery to true, which will distribute

Pushdown when working with JDBC sources 2828

AWS Glue User Guide

the query to multiple nodes across a key of your choice. Query partitioning also requires a few
other necessary configuration parameters. For more information about query partitioning, see the
section called “Reading from JDBC in parallel”.

When setting enablePartitioningForSampleQuery, AWS Glue will combine your pushdown
predicate with a partitioning predicate when querying your database. Your sampleQuery
must end with an AND for AWS Glue to append partitioning conditions. (If you do not provide a
pushdown predicate, sampleQuery must end with an WHERE). See an example below, where we
push down a predicate to only retrieve rows whose id is greater than 1000. This sampleQuery will
only return the name and location columns for rows where id is greater than the specified value:

Python

sample_query = "select name, location from customer_tbl WHERE id>=1000 AND"
customer_records = glueContext.create_dynamic_frame.from_catalog(
 database="customer_db",
 table_name="customer_tbl",
 sample_query = "select name, location from customer_tbl WHERE id>=1000 AND",

 additional_options = {
 "hashpartitions": 36 ,
 "hashfield":"id",
 "enablePartitioningForSampleQuery":True,
 "sampleQuery":sample_query
 }
)

Scala

val additionalOptions = Map(
 "hashpartitions" -> "36",
 "hashfield" -> "id",
 "enablePartitioningForSampleQuery" -> "true",
 "sampleQuery" -> "select name, location from customer_tbl WHERE id >= 1000
 AND"
)

 val customer_records = glueContext.getCatalogSource(
 database="customer_db",
 tableName="customer_tbl").getDynamicFrame()

Pushdown when working with JDBC sources 2829

AWS Glue User Guide

Note

If customer_tbl has a different name in your Data Catalog and underlying datastore, you
must provide the underlying table name in sample_query, since the query is passed to the
underlying datastore.

You can also query against JDBC tables without integrating with the AWS Glue Data Catalog.
Instead of providing username and password as parameters to the method, you can reuse
credentials from a preexisting connection by providing useConnectionProperties
and connectionName. In this example, we retrieve credentials from a connection called
my_postgre_connection.

Python

connection_options_dict = {
 "useConnectionProperties": True,
 "connectionName": "my_postgre_connection",
 "dbtable":"customer_tbl",
 "sampleQuery":"select name, location from customer_tbl WHERE id>=1000 AND",
 "enablePartitioningForSampleQuery":True,
 "hashfield":"id",
 "hashpartitions":36
 }

customer_records = glueContext.create_dynamic_frame.from_options(
 connection_type="postgresql",
 connection_options=connection_options_dict
)

Scala

val connectionOptionsJson = """
 {
 "useConnectionProperties": true,
 "connectionName": "my_postgre_connection",
 "dbtable": "customer_tbl",
 "sampleQuery": "select name, location from customer_tbl WHERE id>=1000 AND",
 "enablePartitioningForSampleQuery" : true,
 "hashfield" : "id",
 "hashpartitions" : 36

Pushdown when working with JDBC sources 2830

AWS Glue User Guide

 }
 """

 val connectionOptions = new JsonOptions(connectionOptionsJson)

 val dyf = glueContext.getSource("postgresql",
 connectionOptions).getDynamicFrame()

Notes and limitations for pushdown in AWS Glue

Pushdown, as a concept, is applicable when reading from non-streaming sources. AWS Glue
supports a variety of sources - the ability to pushdown depends on the source and connector.

• When connecting to Snowflake, you can use the query option. Similar functionality exists in the
Redshift connector in AWS Glue 4.0 and later versions. For more information about reading from
Snowflake with query, see the section called “Read from Snowflake”.

• The DynamoDB ETL reader does not support filters or pushdown predicates. MongoDB and
DocumentDB also do not support this sort of functionality.

• When reading from data stored in Amazon S3 in open table formats, the partitioning method
for files in Amazon S3 is no longer sufficient. To read and write from partitions using open table
formats, consult documentation for the format.

• DynamicFrame methods do not perform Amazon S3 projection pushdown. All columns will be
read from files that pass the predicate filter.

• When working with custom.jdbc connectors in AWS Glue, the ability to pushdown depends on
the source and connector. Please review the appropriate connector documentation to confirm if
and how it supports pushdown in AWS Glue.

Using auto scaling for AWS Glue

Auto Scaling is available for your AWS Glue ETL and streaming jobs with AWS Glue version 3.0 or
later.

With Auto Scaling enabled, you will get the following benefits:

• AWS Glue automatically adds and removes workers from the cluster depending on the
parallelism at each stage or microbatch of the job run.

Notes and limitations for pushdown in AWS Glue 2831

AWS Glue User Guide

• It removes the need for you to experiment and decide on the number of workers to assign for
your AWS Glue ETL jobs.

• If you choose the maximum number of workers, AWS Glue will choose the right size resources for
the workload.

• You can see how the size of the cluster changes during the job run by looking at CloudWatch
metrics on the job run details page in AWS Glue Studio.

Auto Scaling for AWS Glue ETL and streaming jobs enables on-demand scaling up and scaling
down of the computing resources of your AWS Glue jobs. On-demand scale-up helps you to only
allocate the required computing resources initially on job run startup, and also to provision the
required resources as per demand during the job.

Auto Scaling also supports dynamic scale-down of the AWS Glue job resources over the course of
a job. Over a job run, when more executors are requested by your Spark application, more workers
will be added to the cluster. When the executor has been idle without active computation tasks, the
executor and the corresponding worker will be removed.

Common scenarios where Auto Scaling helps with cost and utilization for your Spark applications
include a Spark driver listing a large number of files in Amazon S3 or performing a load while
executors are inactive, Spark stages running with only a few executors due to overprovisioning, and
data skews or uneven computation demand across Spark stages.

Requirements

Auto Scaling is only available for AWS Glue version 3.0 or later. To use Auto Scaling, you can follow
the migration guide to migrate your existing jobs to AWS Glue version 3.0 or later or create new
jobs with AWS Glue version 3.0 or later.

Auto Scaling is available for AWS Glue jobs with the G.1X, G.2X, G.4X, G.8X, or G.025X (only for
Streaming jobs) worker types. Standard DPUs are not supported.

Enabling Auto Scaling in AWS Glue Studio

On the Job details tab in AWS Glue Studio, choose the type as Spark or Spark Streaming, and
Glue version as Glue 3.0 or Glue 4.0. Then a check box will show up below Worker type.

• Select the Automatically scale the number of workers option.

Requirements 2832

https://docs.aws.amazon.com/glue/latest/dg/migrating-version-30.html

AWS Glue User Guide

• Set the Maximum number of workers to define the maximum number of workers that can be
vended to the job run.

Enabling Auto Scaling with the AWS CLI or SDK

To enable Auto Scaling From the AWS CLI for your job run, run start-job-run with the following
configuration:

{
 "JobName": "<your job name>",

Enabling Auto Scaling with the AWS CLI or SDK 2833

AWS Glue User Guide

 "Arguments": {
 "--enable-auto-scaling": "true"
 },
 "WorkerType": "G.2X", // G.1X and G.2X are allowed for Auto Scaling Jobs
 "NumberOfWorkers": 20, // represents Maximum number of workers
 ...other job run configurations...
}

Once at ETL job run is finished, you can also call get-job-run to check the actual resource usage
of the job run in DPU-seconds. Note: the new field DPUSeconds will only show up for your batch
jobs on AWS Glue 3.0 or later enabled with Auto Scaling. This field is not supported for streaming
jobs.

$ aws glue get-job-run --job-name your-job-name --run-id jr_xx --endpoint https://
glue.us-east-1.amazonaws.com --region us-east-1
{
 "JobRun": {
 ...
 "GlueVersion": "3.0",
 "DPUSeconds": 386.0
 }
}

You can also configure job runs with Auto Scaling using the AWS Glue SDK with the same
configuration.

Monitoring Auto Scaling with Amazon CloudWatch metrics

The CloudWatch executor metrics are available for your AWS Glue 3.0 or later jobs if you enable
Auto Scaling. The metrics can be used to monitor the demand and optimized usage of executors
in their Spark applications enabled with Auto Scaling. For more information, see Monitoring AWS
Glue using Amazon CloudWatch metrics.

• glue.driver.ExecutorAllocationManager.executors.numberAllExecutors

• glue.driver.ExecutorAllocationManager.executors.numberMaxNeededExecutors

Monitoring Auto Scaling with Amazon CloudWatch metrics 2834

https://docs.aws.amazon.com/glue/latest/webapi/API_StartJobRun.html

AWS Glue User Guide

For more details on these metrics, see Monitoring for DPU capacity planning.

Monitoring Auto Scaling with Spark UI

With Auto Scaling enabled, you can also monitor executors being added and removed with
dynamic scale-up and scale-down based on the demand in your AWS Glue jobs using the Glue
Spark UI. For more information, see Enabling the Apache Spark web UI for AWS Glue jobs.

Monitoring Auto Scaling job run DPU usage

You may use the AWS Glue Studio Job run view to check the DPU usage of your Auto Scaling jobs.

1. Choose Monitoring from the AWS Glue Studio navigation pane. The Monitoring page appears.

Monitoring Auto Scaling with Spark UI 2835

https://docs.aws.amazon.com/glue/latest/ug/monitoring-chapter.html

AWS Glue User Guide

2. Scroll down to the Job runs chart.

3. Navigate to the job run you are interested and scroll to the DPU hours column to check the
usage for the specific job run.

Limitations

AWS Glue streaming Auto Scaling currently doesn't support a streaming DataFrame join with
a static DataFrame created outside of ForEachBatch. A static DataFrame created inside the
ForEachBatch will work as expected.

Workload partitioning with bounded execution

Errors in Spark applications commonly arise from inefficient Spark scripts, distributed in-memory
execution of large-scale transformations, and dataset abnormalities. There are many reasons that
may cause driver or executor out of memory issues, for example a data skew, listing too many
objects, or large data shuffles. These issues often appear when you are processing huge amounts of
backlog data with Spark.

AWS Glue allows you to solve OOM issues and make your ETL processing easier with workload
partitioning. With workload partitioning enabled, each ETL job run only picks unprocessed data,
with an upper bound on the dataset size or the number of files to be processed with this job run.
Future job runs will process the remaining data. For example, if there are 1000 files need to be
processed, you can set the number of files to be 500 and separate them into two job runs.

Workload partitioning is supported only for Amazon S3 data sources.

Enabling workload partitioning

You can enable bounded execution by manually setting the options in your script or by adding
catalog table properties.

To enable workload partitioning with bounded execution in your script:

1. To avoid reprocessing data, enable job bookmarks in the new job or existing job. For more
information, see Tracking Processed Data Using Job Bookmarks.

2. Modify your script and set the bounded limit in the additional options in the AWS Glue
getSource API. You should also set the transformation context for the job bookmark to store
the state element. For example:

Limitations 2836

https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html

AWS Glue User Guide

Python

glueContext.create_dynamic_frame.from_catalog(
 database = "database",
 table_name = "table_name",
 redshift_tmp_dir = "",
 transformation_ctx = "datasource0",
 additional_options = {
 "boundedFiles" : "500", # need to be string
 # "boundedSize" : "1000000000" unit is byte
 }
)

Scala

val datasource0 = glueContext.getCatalogSource(
 database = "database", tableName = "table_name", redshiftTmpDir = "",
 transformationContext = "datasource0",
 additionalOptions = JsonOptions(
 Map("boundedFiles" -> "500") // need to be string
 //"boundedSize" -> "1000000000" unit is byte
)
).getDynamicFrame()

val connectionOptions = JsonOptions(
 Map("paths" -> List(baseLocation), "boundedFiles" -> "30")
)
val source = glueContext.getSource("s3", connectionOptions, "datasource0", "")

To enable workload partitioning with bounded execution in your Data Catalog table:

1. Set the key-value pairs in the parameters field of your table structure in the Data Catalog.
For more information, see Viewing and Editing Table Details.

2. Set the upper limit for the dataset size or the number of files processed:

• Set boundedSize to the target size of the dataset in bytes. The job run will stop after
reaching the target size from the table.

Enabling workload partitioning 2837

https://docs.aws.amazon.com/glue/latest/dg/console-tables.html#console-tables-details

AWS Glue User Guide

• Set boundedFiles to the target number of files. The job run will stop after processing the
target number of files.

Note

You should only set one of boundedSize or boundedFiles, as only a single
boundary is supported.

Setting up an AWS Glue trigger to automatically run the job

Once you have enabled bounded execution, you can set up an AWS Glue trigger to automatically
run the job and incrementally load the data in sequential runs. Go to the AWS Glue Console and
create a trigger, setup the schedule time, and attach to your job. Then it will automatically trigger
the next job run and process the new batch of data.

You can also use AWS Glue workflows to orchestrate multiple jobs to process data from different
partitions in parallel. For more information, see AWS Glue Triggers and AWS Glue Workflows.

For more information on use cases and options, please refer to the blog Optimizing Spark
applications with workload partitioning in AWS Glue.

Setting up an AWS Glue trigger to automatically run the job 2838

https://docs.aws.amazon.com/glue/latest/dg/about-triggers.html
https://docs.aws.amazon.com/glue/latest/dg/workflows_overview.html
https://aws.amazon.com/blogs/big-data/optimizing-spark-applications-with-workload-partitioning-in-aws-glue/
https://aws.amazon.com/blogs/big-data/optimizing-spark-applications-with-workload-partitioning-in-aws-glue/

AWS Glue User Guide

Known issues for AWS Glue

Note the following known issues for AWS Glue.

Topics

• Preventing cross-job data access

Preventing cross-job data access

Consider the situation where you have two AWS Glue Spark jobs in a single AWS Account, each
running in a separate AWS Glue Spark cluster. The jobs are using AWS Glue connections to access
resources in the same virtual private cloud (VPC). In this situation, a job running in one cluster
might be able to access the data from the job running in the other cluster.

The following diagram illustrates an example of this situation.

Preventing cross-job data access 2839

AWS Glue User Guide

In the diagram, AWS Glue Job-1 is running in Cluster-1, and Job-2 is running in Cluster-2.
Both jobs are working with the same instance of Amazon Redshift, which resides in Subnet-1 of a
VPC. Subnet-1 could be a public or private subnet.

Job-1 is transforming data from Amazon Simple Storage Service (Amazon S3) Bucket-1 and
writing the data to Amazon Redshift. Job-2 is doing the same with data in Bucket-2. Job-1 uses
the AWS Identity and Access Management (IAM) role Role-1 (not shown), which gives access to
Bucket-1. Job-2 uses Role-2 (not shown), which gives access to Bucket-2.

These jobs have network paths that enable them to communicate with each other's clusters and
thus access each other's data. For example, Job-2 could access data in Bucket-1. In the diagram,
this is shown as the path in red.

Preventing cross-job data access 2840

AWS Glue User Guide

To prevent this situation, we recommend that you attach different security configurations to Job-1
and Job-2. By attaching the security configurations, cross-job access to data is blocked by virtue
of certificates that AWS Glue creates. The security configurations can be dummy configurations.
That is, you can create the security configurations without enabling encryption of Amazon S3 data,
Amazon CloudWatch data, or job bookmarks. All three encryption options can be disabled.

For information about security configurations, see the section called “Encrypting data written by
AWS Glue”.

To attach a security configuration to a job

1. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

2. On the Configure the job properties page for the job, expand the Security configuration,
script libraries, and job parameters section.

3. Select a security configuration in the list.

Preventing cross-job data access 2841

https://console.aws.amazon.com/glue/

AWS Glue User Guide

Documentation history for AWS Glue

Change Description Date

Support for AWS Glue usage
profiles

Admins can create AWS
Glue usage profiles for
various classes of users
within the account, such
as developers, testers, and
product teams. This flexibili
ty allows administrators to
apply different usage and
cost controls for each class
of users. For more informati
on, see Setting up AWS Glue
usage profiles.

June 18, 2024

Support for a Salesforce
connector for AWS Glue for
Spark

Added information about
a new AWS Glue connector
for Salesforce. This feature
allows you to use AWS Glue
for Spark to read from and
write to Salesforce in AWS
Glue 4.0 and later versions.
For more information, see
Connecting to Salesforce.

May 22, 2024

Amazon Q data integration in
AWS Glue (GA)

Amazon Q data integrati
on in AWS Glue is a new
generative AI capability of
AWS Glue that enables data
engineers and ETL developer
s to build data integration
jobs using natural language.
Engineers and developer
s can ask Q to author jobs,

April 30, 2024

2842

https://docs.aws.amazon.com/glue/latest/dg/start-usage-profiles.html
https://docs.aws.amazon.com/glue/latest/dg/start-usage-profiles.html
https://docs.aws.amazon.com/glue/latest/dg/connecting-to-data-salesforce.html

AWS Glue User Guide

troubleshoot issues and
answer questions about AWS
Glue and data integration.
For more information, see
Amazon Q data integration
in AWS Glue. This feature
includes an update to the
AwsGlueSessionUser
RestrictedPolicy ,
AwsGlueSessionUser
RestrictedNotebook
ServiceRole , and
AwsGlueSessionUser
RestrictedServiceR
ole AWS managed policies.
For more information, see
AWS Glue updates to AWS
managed policies.

2843

https://docs.aws.amazon.com/glue/latest/dg/q.html
https://docs.aws.amazon.com/glue/latest/dg/q.html
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-updates

AWS Glue User Guide

Amazon Q data integration in
AWS Glue (preview)

Amazon Q data integrati
on in AWS Glue is a new
generative AI capability of
AWS Glue that enables data
engineers and ETL developer
s to build data integration
jobs using natural language.
Engineers and developer
s can ask Q to author jobs,
troubleshoot issues and
answer questions about AWS
Glue and data integration.
For more information, see
Amazon Q data integration
in AWS Glue. This feature
includes an update to the
AwsGlueSessionUser
RestrictedNotebook
Policy AWS managed
policy. For more information,
see AWS Glue updates to AWS
managed policies.

January 30, 2024

Update to the documentation
for AWS Glue Streaming

Added a new chapter with
new and reorganized content
for AWS Glue Streaming.
This content describes how
streaming works with AWS
Glue, the characteristics of
real-time data processing,
and how to monitor your
streaming jobs. For more
information, see AWS Glue
Streaming.

December 27, 2023

2844

https://docs.aws.amazon.com/glue/latest/dg/q.html
https://docs.aws.amazon.com/glue/latest/dg/q.html
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/glue/latest/dg/streaming-chapter.html
https://docs.aws.amazon.com/glue/latest/dg/streaming-chapter.html

AWS Glue User Guide

Support for using fine-grai
ned sensitive data detection

The Detect Sensitive Data
transform provides the ability
to detect, mask, or remove
entities that you define,
or are pre-defined by AWS
Glue. Fine-grained actions
further allows you to apply a
specific action per entity. For
more information, see Using
fine-grained sensitive data
detection .

November 26, 2023

Support for monitoring jobs
with AWS Glue Observability
metrics

Use AWS Glue Observability
metrics to generate insights
into what is happening
inside your AWS Glue for
Apache Spark jobs to improve
triaging and analysis of issues.
For more information, see
Monitoring with AWS Glue
Observability metrics .

November 26, 2023

Support for anomaly
detection in AWS Glue Data
Quality

AWS Glue Data Quality
anomaly detection applies
machine learning (ML)
algorithms on data statistics
over time to detect abnormal
patterns and hidden data
quality issues that are hard
to detect through rules.
For more information, see
Anomaly detection in AWS
Glue Data Quality .

November 26, 2023

2845

https://docs.aws.amazon.com/glue/latest/dg/sensitive-data-fine-grained-actions.html
https://docs.aws.amazon.com/glue/latest/dg/sensitive-data-fine-grained-actions.html
https://docs.aws.amazon.com/glue/latest/dg/sensitive-data-fine-grained-actions.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-observability.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-observability.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-observability.html
https://docs.aws.amazon.com/glue/latest/dg/data-quality-anomaly-detection.html
https://docs.aws.amazon.com/glue/latest/dg/data-quality-anomaly-detection.html
https://docs.aws.amazon.com/glue/latest/dg/data-quality-anomaly-detection.html

AWS Glue User Guide

Update to default Spark UI
logging behavior

Spark jobs generating Spark
UI logs will now write with
a different filename pattern
to support Spark UI in the
AWS Glue console. This does
not change CloudWatch log
behavior. You can revert
to the legacy behavior by
updating your job configura
tion. For more information,
see Monitoring jobs using the
Apache Spark web UI.

November 17, 2023

Support for new data sources
in AWS Glue for Spark

Connections to Amazon
OpenSearch Service, Azure
SQL, Azure Cosmos for
NoSQL, SAP HANA Teradata
Vantage and Vertica are now
supported natively within
AWS Glue. Additionally,
connections to these data
sources, along with MongoDB,
are now available for use in
the AWS Glue Studio visual
editor. For more informati
on, see Connection types
and options for ETL in AWS
Glue for Spark for informati
on about AWS Glue for Spark
support and Adding an AWS
Glue connection for informati
on about use in the AWS Glue
Studio visual editor.

November 17, 2023

2846

https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html
https://docs.aws.amazon.com/glue/latest/dg/console-connections.html
https://docs.aws.amazon.com/glue/latest/dg/console-connections.html

AWS Glue User Guide

Support for generating
column statistics

You can compute column-
level statistics for AWS Glue
Data Catalog tables in data
formats such as Parquet, ORC,
JSON, ION, CSV, and XML
without setting up additiona
l data pipelines. For more
information, see Working with
column statistics.

November 16, 2023

Support for data compaction
for Iceberg tables

For better read performan
ce by AWS analytics services
such as Amazon Athena
and Amazon EMR, and AWS
Glue ETL jobs, Data Catalog
provides managed compactio
n (a process that compacts
small Amazon S3 objects into
larger objects) for Iceberg
tables in Data Catalog.
For more information, see
Optimizing Iceberg tables.

November 13, 2023

Update to job run wait
behavior

Standard Spark and Python
shell job runs will now
transition to WAITING in
certain situations, rather than
immediately transitioning to
FAILED. For more informati
on, see AWS Glue job run
statuses.

November 8, 2023

2847

https://docs.aws.amazon.com/glue/latest/dg/column-statistics.html
https://docs.aws.amazon.com/glue/latest/dg/column-statistics.html
https://docs.aws.amazon.com/glue/latest/dg/console-tables.html#data-compaction
https://docs.aws.amazon.com/glue/latest/dg/job-run-statuses.html
https://docs.aws.amazon.com/glue/latest/dg/job-run-statuses.html

AWS Glue User Guide

AWS Glue Studio user guide
consolidated into AWS Glue
developer guide

The AWS Glue Studio user
guide has been moved into
the developer guide to create
a single unified user guide for
AWS Glue Studio, the AWS
Glue console, and AWS Glue
Studio programmatic access.

October 25, 2023

Update to the AWSGlueSe
rviceNotebookRole AWS
managed policy

Added information about
a minor update to the
AWSGlueServiceNote
bookRole AWS managed
policy. For more informati
on, see AWS Glue Updates to
AWS Managed Policies.

October 9, 2023

AWS Glue Studio supports
five new built-in transforms

AWS Glue Studio supports the
following five new built-in
transforms: Record matching,
Remove null rows, Parse JSON
column, Extract JSON path,
and Regex extractor. For more
information, see Editing AWS
Glue managed data transform
nodes.

August 11, 2023

Update to the AWSGlueSe
rviceRole AWS managed
policy

Added information about
a minor update to the
AWSGlueServiceRole AWS
managed policy. For more
information, see AWS Glue
Updates to AWS Managed
Policies.

August 4, 2023

2848

https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/glue/latest/ug/edit-jobs-transforms.html
https://docs.aws.amazon.com/glue/latest/ug/edit-jobs-transforms.html
https://docs.aws.amazon.com/glue/latest/ug/edit-jobs-transforms.html
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-updates

AWS Glue User Guide

Support for crawling Apache
Hudi tables

Added information about
using AWS Glue to crawl Hudi
tables in Amazon S3 buckets
and registering the Hudi
tables to the AWS Glue Data
Catalog. For more informati
on, see Which data stores
can I crawl?, and Crawler
properties.

July 21, 2023

Update to the AWSGlueCo
nsoleFullAccess AWS
managed policy

Added information about
a minor update to the
AWSGlueConsoleFullAccess
AWS managed policy. For
more information, see
AWS Glue Updates to AWS
Managed Policies.

July 14, 2023

Support for crawling Apache
Iceberg tables

Added information about
using AWS Glue to crawl
Iceberg tables in Amazon
S3 buckets and registering
the Iceberg tables to the
AWS Glue Data Catalog. For
more information, see Which
data stores can I crawl?, and
Crawler properties.

July 7, 2023

Support for AWS Glue with
Ray

Added information about
AWS Glue with Ray, a new
engine that can back AWS
Glue jobs. Reorganized
existing AWS Glue with Spark
content to disambiguate.

May 30, 2023

2849

https://docs.aws.amazon.com/glue/latest/dg/crawler-data-stores.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-data-stores.html
https://docs.aws.amazon.com/glue/latest/dg/define-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/define-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/glue/latest/dg/crawler-data-stores.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-data-stores.html
https://docs.aws.amazon.com/glue/latest/dg/define-crawler.html

AWS Glue User Guide

Support for AWS Glue Data
Quality (GA)

AWS Glue Data Quality is
now generally available.
AWS Glue Data Quality helps
you evaluate and monitor
the quality of your data. For
information about how to
use AWS Glue Data Quality
with Data Catalog, see AWS
Glue Data Quality. To learn
about AWS Glue Data Quality
for AWS Glue Studio, see
Evaluating data quality with
AWS Glue Studio.

May 24, 2023

Support for larger worker
types for Apache Spark jobs

Support is now available for
use of the G.4X and G.8X
worker types for Apache
Spark jobs. These worker
types are appropriate for jobs
whose workloads contain your
most demanding transform
s, aggregations, joins, and
queries. For more informati
on, see Adding jobs in AWS
Glue.

May 8, 2023

Support for creating partition
indexes when crawling tables

Added information about how
crawlers support the creation
of partition indexes for tables
that the crawler detects. For
more information, see Setting
the partition index crawler
configuration option.

April 24, 2023

2850

https://docs.aws.amazon.com/glue/latest/dg/glue-data-quality
https://docs.aws.amazon.com/glue/latest/dg/glue-data-quality
https://docs.aws.amazon.com/glue/latest/ug/gs-data-quality-chapter.html
https://docs.aws.amazon.com/glue/latest/ug/gs-data-quality-chapter.html
https://docs.aws.amazon.com/glue/latest/dg/add-job.html
https://docs.aws.amazon.com/glue/latest/dg/add-job.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-configure-partition-indexes
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-configure-partition-indexes
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-configure-partition-indexes

AWS Glue User Guide

Support for resource usage
metrics

Added information about
viewing the service's resource
usage and configuring alarms
in Amazon CloudWatch. For
more information, see AWS
Glue resource monitoring.

April 7, 2023

Update to the AWSGlueCo
nsoleFullAccess AWS
managed policy

Added information about
a minor update to the
AWSGlueConsoleFullAccess
AWS managed policy. For
more information, see
AWS Glue Updates to AWS
Managed Policies.

March 28, 2023

Added guidance for using
AWS Glue with an AWS SDK
with examples

The AWS Glue Developer
Guide has two new sections
that provide information
to help you use AWS Glue
with an AWS SDK. For more
information, see Using AWS
Glue with an AWS SDK and
Code examples for AWS Glue
using AWS SDKs.

February 23, 2023

Update to the documentation
for IAM with AWS Glue

Reorganized and added
information on using IAM
with AWS Glue. For more
information, see Identity and
access management for AWS
Glue.

February 15, 2023

2851

https://docs.aws.amazon.com/glue/latest/dg/monitor-resource-metrics
https://docs.aws.amazon.com/glue/latest/dg/monitor-resource-metrics
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/glue/latest/dg/sdk-general-information-section.html
https://docs.aws.amazon.com/glue/latest/dg/sdk-general-information-section.html
https://docs.aws.amazon.com/glue/latest/dg/service_code_examples.html
https://docs.aws.amazon.com/glue/latest/dg/service_code_examples.html
https://docs.aws.amazon.com/glue/latest/dg/security-iam
https://docs.aws.amazon.com/glue/latest/dg/security-iam
https://docs.aws.amazon.com/glue/latest/dg/security-iam

AWS Glue User Guide

Support for running
streaming ETL jobs in AWS
Glue version 4.0

Added information about
support for running
streaming ETL jobs in
Glue version 4.0, and new
options for connecting to a
Kafka cluster or an Amazon
Managed Streaming for
Apache Kafka cluster, and
Amazon Kinesis Data Streams.
For more information, see
Adding Streaming ETL Jobs
in AWS Glue and Connection
types and options for ETL in
AWS Glue.

February 8, 2023

Support for crawling
MongoDB Atlas data sources

Added information about
using AWS Glue to crawl
MongoDB Atlas data sources.
For more information,
see Which data stores can
I crawl?, MongoDB and
MongoDB Atlas connectio
n properties , and Using a
MongoDB or MongoDB Atlas
connection.

February 6, 2023

2852

https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-data-stores
https://docs.aws.amazon.com/glue/latest/dg/crawler-data-stores
https://docs.aws.amazon.com/glue/latest/dg/connection-properties.html#connection-properties-mongodb
https://docs.aws.amazon.com/glue/latest/dg/connection-properties.html#connection-properties-mongodb
https://docs.aws.amazon.com/glue/latest/dg/connection-properties.html#connection-properties-mongodb
https://docs.aws.amazon.com/glue/latest/dg/connection-mongodb
https://docs.aws.amazon.com/glue/latest/dg/connection-mongodb
https://docs.aws.amazon.com/glue/latest/dg/connection-mongodb

AWS Glue User Guide

Support for crawling Delta
Lake tables using a native
Delta Lake connector

Added information about
using AWS Glue to crawl Delta
Lake tables using a native
Delta Lake connector. This
feature allows you to use AWS
query engines to query the
Delta transaction log directly
and use features such as time
travel and ACID guarantees,
and to sync your Delta Lake
metadata from Amazon S3
transaction files into the Data
Catalog to enable column
permissions on your queries
in Lake Formation. For more
information, see How to
specify configuration options
for a Delta Lake data store,
and Querying Delta Lake
tables.

December 15, 2022

Support for AWS Glue Data
Quality (preview)

Support is now available
for AWS Glue Data Quality
(preview). AWS Glue Data
Quality helps you evaluate
and monitor the quality
of your data when you use
AWS Glue 3.0. For informati
on about how to use AWS
Glue Data Quality with Data
Catalog, see AWS Glue Data
Quality (preview). To learn
about AWS Glue Data Quality
for AWS Glue Studio, see
Evaluating data quality with
AWS Glue Studio.

November 30, 2022

2853

https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-delta-lake
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-delta-lake
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-delta-lake
https://docs.aws.amazon.com/athena/latest/ug/delta-lake-tables.html
https://docs.aws.amazon.com/athena/latest/ug/delta-lake-tables.html
https://docs.aws.amazon.com/glue/latest/dg/glue-data-quality
https://docs.aws.amazon.com/glue/latest/dg/glue-data-quality
https://docs.aws.amazon.com/glue/latest/ug/gs-data-quality-chapter.html
https://docs.aws.amazon.com/glue/latest/ug/gs-data-quality-chapter.html

AWS Glue User Guide

Support for a new Amazon
Redshift Spark connector with
new features and performan
ce improvements

Support is now available for a
new Amazon Redshift Spark
connector with a new JDBC
driver for use with AWS Glue
ETL jobs to build Apache
Spark applications that read
from and write to data in
Amazon Redshift as part
of your data ingestion and
transformation pipelines. For
more information, see Moving
data to and from Amazon
Redshift.

November 29, 2022

Support for AWS Glue version
4.0.

Added information about
support for AWS Glue version
4.0. Features include native
support for open-data lake
frameworks with Apache
Hudi, Delta Lake, and Apache
Iceberg, and native support
for the Amazon S3-based
Cloud Shuffle Storage Plugin
(an Apache Spark plugin) to
use Amazon S3 for shuffling
and elastic storage capacity.
For more information, see
AWS Glue Release Notes and
Migrating AWS Glue jobs to
AWS Glue version 4.0.

November 28, 2022

2854

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect-redshift-home.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect-redshift-home.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect-redshift-home.html
https://docs.aws.amazon.com/glue/latest/dg/release-notes.html
https://docs.aws.amazon.com/glue/latest/dg/migrating-version-40.html
https://docs.aws.amazon.com/glue/latest/dg/migrating-version-40.html

AWS Glue User Guide

AWS Glue Studio now offers
custom visual transforms

Custom visual transforms
let customers define, reuse,
and share business-specific
ETL logic among their teams.
For more information, see
Custom visual transforms .

November 28, 2022

Support for using the AWS
Glue crawler to publish
metadata for JDBC data
stores

Support is now available for
using the AWS Glue crawler
to publish metadata such
as comments and rawtypes
to the Data Catalog for
JDBC data stores. For more
information, see Parameters
set on Data Catalog tables by
crawler, Crawler properties,
and JdbcTarget structure.

November 18, 2022

Support for crawling
Snowflake data stores

Support is now available
for using AWS Glue to crawl
Snowflake tables and views,
and to publish the metadata
to the Data Catalog as a
table entry. For Snowflake
external tables in Amazon
S3, the crawler also crawls
the Amazon S3 location and
the file format type of the
external table and populates
as Table parameters. For
more information, see Which
data stores can I crawl?, AWS
Glue connection properties,
and Parameters set on Data
Catalog tables by crawler.

November 18, 2022

2855

https://docs.aws.amazon.com/glue/latest/ug/custom-visual-transform.html
https://docs.aws.amazon.com/glue/latest/dg/table-properties-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/table-properties-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/table-properties-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/define-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-crawling.html#aws-glue-api-crawler-crawling-JdbcTarget
https://docs.aws.amazon.com/glue/latest/dg/crawler-data-stores.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-data-stores.html
https://docs.aws.amazon.com/glue/latest/dg/connection-properties.html
https://docs.aws.amazon.com/glue/latest/dg/connection-properties.html
https://docs.aws.amazon.com/glue/latest/dg/table-properties-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/table-properties-crawler.html

AWS Glue User Guide

Support for improved shuffle
management of your Spark
applications

Support is now available for
a new Cloud Shuffle Storage
Plugin for Apache Spark. For
more information, see AWS
Glue Spark shuffle plugin with
Amazon S3 and Cloud Shuffle
Storage Plugin for Apache
Spark.

November 15, 2022

Added support for Data
Catalog targets when
accelerating crawls Amazon
S3 event notifications

In addition to the existing
support for Amazon S3
targets, support is now
available for accelerating
crawls for Data Catalog
targets using Amazon S3
event notifications. For more
information, see Accelerat
ing Crawls Using Amazon S3
Event Notifications.

October 13, 2022

Support for specifying the
maximum number of tables a
crawler can create

Support is now available for
specifying the maximum
number of tables the crawler
is allowed to create. For
more information, see How
to specify the maximum
number of tables the crawler
is allowed to create.

September 6, 2022

Support for Python 3.9 in
Python shell jobs in AWS Glue

Support is now available for
running scripts compatible
with Python 3.9 in Python
shell jobs in AWS Glue, and
for choosing to use pre-packa
ged library sets. For more
information, see Python shell
jobs in AWS Glue.

August 11, 2022

2856

https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-shuffle-manager.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-shuffle-manager.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-shuffle-manager.html
https://docs.aws.amazon.com/glue/latest/dg/cloud-shuffle-storage-plugin.html
https://docs.aws.amazon.com/glue/latest/dg/cloud-shuffle-storage-plugin.html
https://docs.aws.amazon.com/glue/latest/dg/cloud-shuffle-storage-plugin.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-s3-event-notifications.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-s3-event-notifications.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-s3-event-notifications.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-maximum-number-of-tables
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-maximum-number-of-tables
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-maximum-number-of-tables
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-maximum-number-of-tables
https://docs.aws.amazon.com/glue/latest/dg/add-job-python.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-python.html

AWS Glue User Guide

Support for running non-
urgent or non-time sensitive
AWS Glue jobs on spare
capacity

Support is now available for
the configuration of flexible
job runs for non-urgent jobs
such as pre-production jobs,
testing, and one-time data
loads. For more information,
see Adding jobs in AWS Glue.

August 9, 2022

Support for a new worker
type for streaming jobs

Support is now available
for use of the G.025X
worker type for low volume
streaming jobs. For more
information, see Adding jobs
in AWS Glue.

July 14, 2022

Support for the use of Kafka
SASL in AWS Glue connectio
ns

Support is now available for
use of Kafka SASL in AWS
Glue connections. For more
information, see AWS Glue
Kafka connection properties
for client authentication.

July 5, 2022

Support for Apache kafka
connector for protobuf
schemas

Support is now available for
Apache Kafka Connector for
Protobuf schemas. For more
information, see AWS Glue
Schema Registry.

June 9, 2022

Support for Auto Scaling for
AWS Glue jobs (GA)

Added information on using
Auto Scaling for jobs in AWS
Glue version 3.0 to dynamical
ly scale compute resources
. For more information, see
Using Auto Scaling for AWS
Glue.

April 14, 2022

2857

https://docs.aws.amazon.com/glue/latest/dg/add-job.html
https://docs.aws.amazon.com/glue/latest/dg/add-job.html
https://docs.aws.amazon.com/glue/latest/dg/add-job.html
https://docs.aws.amazon.com/glue/latest/dg/connection-properties.html#connection-properties-authentication
https://docs.aws.amazon.com/glue/latest/dg/connection-properties.html#connection-properties-authentication
https://docs.aws.amazon.com/glue/latest/dg/connection-properties.html#connection-properties-authentication
https://docs.aws.amazon.com/glue/latest/dg/schema-registry.html
https://docs.aws.amazon.com/glue/latest/dg/schema-registry.html
https://docs.aws.amazon.com/glue/latest/dg/auto-scaling.html
https://docs.aws.amazon.com/glue/latest/dg/auto-scaling.html

AWS Glue User Guide

Update to the documentation
for AWS Glue developing and
testing AWS Glue job scripts

Reorganized and added
information on the available
development and testing
methods for AWS Glue,
including instructions for
developing with Docker.
For more information, see
Developing and testing AWS
Glue job scripts.

March 14, 2022

Addition of protocol buffers
(protobuf) as a supported
data format for the AWS Glue
schema registry

Added information about
Protobuf as a supported
data format (in addition to
AVRO and JSON). For more
information, see AWS Glue
Schema Registry.

February 25, 2022

Support for crawling Delta
Lake tables

Added information about
using AWS Glue to crawl
Delta Lake tables. For more
information, see How to
specify configuration options
for a Delta Lake data store.

February 24, 2022

Support for AWS Glue job
insights

Added information about
using AWS Glue job insights
to simplify job debugging and
optimization for your AWS
Glue jobs. For more informati
on, see Monitoring with AWS
Glue job insights.

February 8, 2022

2858

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://docs.aws.amazon.com/glue/latest/dg/schema-registry.html
https://docs.aws.amazon.com/glue/latest/dg/schema-registry.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-delta-lake
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-delta-lake
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-delta-lake
https://docs.aws.amazon.com/glue/latest/dg/monitor-job-insights.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-job-insights.html

AWS Glue User Guide

Support for crawling Amazon
S3 backed Data Catalog
tables using a VPC endpoint

In addition to Amazon S3
data stores, you can configure
your Amazon S3 backed Data
Catalog tables to be accessed
only by an Amazon Virtual
Private Cloud environment
(Amazon VPC), for security,
 auditing, or control purposes.
For more information, see
Crawling an Amazon S3 Data
Store or Amazon S3 backed
Data Catalog tables using a
VPC Endpoint.

February 3, 2022

Support for Lake Formation
governed tables

Added information about
AWS Glue support for
Lake Formation governed
tables, which support ACID
transactions, automatic data
compaction, and time-travel
queries. For more informati
on, see AWS Glue API and
the AWS Lake Formation
developer guide.

November 30, 2021

New AWS managed policies
added for interactive sessions
and notebooks

New managed policies for
IAM provided enhanced
security for using AWS Glue
with interactive sessions
and notebooks. For more
information, see AWS
Managed Policies for AWS
Glue.

November 30, 2021

2859

https://docs.aws.amazon.com/glue/latest/dg/connection-S3-VPC.html
https://docs.aws.amazon.com/glue/latest/dg/connection-S3-VPC.html
https://docs.aws.amazon.com/glue/latest/dg/connection-S3-VPC.html
https://docs.aws.amazon.com/glue/latest/dg/connection-S3-VPC.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api.html
https://docs.aws.amazon.com/lake-formation/latest/dg/governed-tables.html
https://docs.aws.amazon.com/lake-formation/latest/dg/governed-tables.html
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol

AWS Glue User Guide

Glue schema registry now
supported with streaming
jobs

You can create streaming
jobs that access tables
that are part of the Glue
Schema Registry. For more
information see AWS Glue
Schema Registry and Adding
Streaming ETL Jobs in AWS
Glue.

November 15, 2021

Support for new machine
learning features

Added information about new
features for the Find matches
machine learning transform
, including incremental
matching and match scoring.
For more information, see
Finding Incremental Matches
and Estimating the Quality
of Matches using Match
Confidence Scores.

October 31, 2021

(Private preview) Support for
AWS Glue flex jobs

Added information about
configuring AWS Glue Spark
jobs with a flexible execution
class, appropriate for time-
insensitive jobs whose start
and completion times may
vary. For more information,
see Adding Jobs in AWS Glue.

October 29, 2021

Support for accelerating
crawls using Amazon S3 event
notifications

Added information about
accelerating crawls using
Amazon S3 event notificat
ions. For more information,
see Accelerating Crawls Using
Amazon S3 Event Notificat
ions.

October 15, 2021

2860

https://docs.aws.amazon.com/glue/latest/dg/schema-registry.html
https://docs.aws.amazon.com/glue/latest/dg/schema-registry.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/glue/latest/dg/machine-learning-incremental-matches.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-machine-learning-transform-tuning.html#match-scoring
https://docs.aws.amazon.com/glue/latest/dg/add-job-machine-learning-transform-tuning.html#match-scoring
https://docs.aws.amazon.com/glue/latest/dg/add-job-machine-learning-transform-tuning.html#match-scoring
https://docs.aws.amazon.com/glue/latest/dg/add-job.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-s3-event-notifications.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-s3-event-notifications.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-s3-event-notifications.html

AWS Glue User Guide

Additional security configura
tion options related to access-
control and VPCs

Added information about
how you can configure new
access control permissions on
AWS Glue and configuration
of VPCs. For more informati
on, see AWS Tags in AWS
Glue, Identity-Based Policies
(IAM Policies) that Control
Settings Using Condition
Keys or Context Keys, and
Configuring all AWS calls to
go through your VPC.

October 13, 2021

Support for VPC endpoint
policies

Added information about
support for Virtual Private
Cloud (VPC) endpoint policies
in AWS Glue. For more
information, see AWS Glue
and interface VPC endpoints
(AWS PrivateLink).

October 11, 2021

Glue Studio is now available
in China

AWS Glue Studio is now
available in the China Beijing
and Ningxia regions.

October 11, 2021

AWS Glue Studio offers
notebook authoring, for
interactive job editing

Notebooks help you to write
and execute code, visualize
the results, and share insights.
Typically, data scientists use
notebooks for experiments
and data exploration tasks.
For more information, see
Using Notebooks.

October 1, 2021

2861

https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html
https://docs.aws.amazon.com/glue/latest/dg/security_iam_id-based-policy-examples.html#glue-identity-based-policy-condition-keys
https://docs.aws.amazon.com/glue/latest/dg/security_iam_id-based-policy-examples.html#glue-identity-based-policy-condition-keys
https://docs.aws.amazon.com/glue/latest/dg/security_iam_id-based-policy-examples.html#glue-identity-based-policy-condition-keys
https://docs.aws.amazon.com/glue/latest/dg/security_iam_id-based-policy-examples.html#glue-identity-based-policy-condition-keys
https://docs.aws.amazon.com/glue/latest/dg/connection-VPC-disable-proxy.html
https://docs.aws.amazon.com/glue/latest/dg/connection-VPC-disable-proxy.html
https://docs.aws.amazon.com/glue/latest/dg/vpc-interface-endpoints.html
https://docs.aws.amazon.com/glue/latest/dg/vpc-interface-endpoints.html
https://docs.aws.amazon.com/glue/latest/dg/vpc-interface-endpoints.html
https://docs.aws.amazon.com/glue/latest/ug/notebooks-chapter.html

AWS Glue User Guide

Direct access to streaming
sources now available

When adding data sources
to your ETL job in the visual
editor, you can supply
information to access the data
stream instead of having to
use a Data Catalog database
and table.

September 30, 2021

Documented the AWS Glue
version support policy

Added information about the
AWS Glue version support
policy and the end of life
phases for certain AWS Glue
versions. For more informati
on, see AWS Glue version
support policy.

September 24, 2021

Custom connectors can now
be used with data previews

When editing data source
node using a custom
connector, you can preview
the dataset by choosing the
Dat preview tab. For more
information, see Custom
Connectors .

September 24, 2021

2862

https://docs.aws.amazon.com/glue/latest/dg/glue-version-support-policy.html
https://docs.aws.amazon.com/glue/latest/dg/glue-version-support-policy.html
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html

AWS Glue User Guide

Support for AWS Glue
interactive sessions (private
preview)

(Private preview) Added
information about using AWS
Glue interactive sessions
to run Spark workloads in
the cloud from any Jupyter
Notebook. Interactive
sessions are the preferred
method for developing your
AWS Glue extract, transform
, and load (ETL) code when
you use AWS Glue 2.0 or later.
For more information, see
Setting Up and Running AWS
Glue interactive sessions for
Jupyter Notebook.

August 24, 2021

Support for creating
workflows from blueprints
(GA)

Added information about
coding common extract,
transform, and load (ETL)
use cases in blueprints and
then creating workflows
from blueprints. Enables data
analysts to easily create and
run complex ETL processes
. For more information, see
Performing Complex ETL
Activities Using blueprints
and Workflows in AWS Glue.

August 23, 2021

2863

https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions.html
https://docs.aws.amazon.com/glue/latest/dg/orchestrate-using-workflows.html
https://docs.aws.amazon.com/glue/latest/dg/orchestrate-using-workflows.html
https://docs.aws.amazon.com/glue/latest/dg/orchestrate-using-workflows.html

AWS Glue User Guide

Support for AWS Glue version
3.0.

Added information about
support for AWS Glue version
3.0 which supports the
Apache Spark 3.0 engine
upgrade for running Apache
Spark ETL jobs, and other
optimizations and upgrades.
For more information, see
AWS Glue Release Notes and
Migrating AWS Glue jobs
to AWS Glue version 3.0.
Other features in this release
include the AWS Glue shuffle
manager, a SIMD vectorize
d CSV reader, and catalog
partition predicates. For more
information see AWS Glue
Spark shuffle manager with
Amazon S3, Format Options
for ETL Inputs and Outputs
in AWS Glue, and Server-
side filtering using catalog
partition predicates.

August 18, 2021

AWS GovCloud (US) Region AWS Glue Studio is now
available in the AWS
GovCloud (US) Region

August 18, 2021

Python shell authoring
available in AWS Glue Studio

When creating a new job, you
can now choose to create a
Python shell job. For more
information, see Start the job
creation process and Editing
Python shell jobs in AWS Glue
Studio.

August 13, 2021

2864

https://docs.aws.amazon.com/glue/latest/dg/release-notes.html
https://docs.aws.amazon.com/glue/latest/dg/migrating-version-30.html
https://docs.aws.amazon.com/glue/latest/dg/migrating-version-30.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-shuffle-manager.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-shuffle-manager.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-shuffle-manager.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format.html#aws-glue-programming-etl-format-csv
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format.html#aws-glue-programming-etl-format-csv
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format.html#aws-glue-programming-etl-format-csv
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-cat-predicates
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-cat-predicates
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-cat-predicates
https://docs.aws.amazon.com/glue/latest/ug/creating-jobs-chapter.html#create-jobs-start
https://docs.aws.amazon.com/glue/latest/ug/creating-jobs-chapter.html#create-jobs-start
https://docs.aws.amazon.com/glue/latest/ug/edit-script.html#edit-job-python-shell
https://docs.aws.amazon.com/glue/latest/ug/edit-script.html#edit-job-python-shell
https://docs.aws.amazon.com/glue/latest/ug/edit-script.html#edit-job-python-shell

AWS Glue User Guide

Support for starting a
workflow with an Amazon
EventBridge event

Added information about how
AWS Glue can be an event
consumer in an event-dri
ven architecture. For more
information, see Starting an
AWS Glue Workflow with an
Amazon EventBridge Event
and Viewing the EventBrid
ge Events That Started a
Workflow.

July 14, 2021

Addition of JSON as a
supported data format for the
AWS Glue schema registry

Added information about
JSON as a supported data
format (in addition to AVRO).
For more information, see
AWS Glue Schema Registry.

June 30, 2021

Create AWS Glue streaming
jobs without a Data Catalog
table

The create_data_frame_
from_options Python
function or getSource for
Scala scripts support creating
streaming ETL jobs that
reference the data streams
directly instead of requiring a
Data Catalog table.

June 15, 2021

AWS Glue machine learning
transforms now support AWS
Key Management Service keys

You can specify a security
configuration or AWS KMS
key when configuring AWS
Glue Machine Learning
transforms with the console,
the CLI, or the AWS Glue APIs.
For more information, see
Using Data Encryption with
Machine Learning Transform
s and AWS Glue Machine
Learning API.

June 15, 2021

2865

https://docs.aws.amazon.com/glue/latest/dg/starting-workflow-eventbridge.html
https://docs.aws.amazon.com/glue/latest/dg/starting-workflow-eventbridge.html
https://docs.aws.amazon.com/glue/latest/dg/starting-workflow-eventbridge.html
https://docs.aws.amazon.com/glue/latest/dg/viewing-start-event-info.html
https://docs.aws.amazon.com/glue/latest/dg/viewing-start-event-info.html
https://docs.aws.amazon.com/glue/latest/dg/viewing-start-event-info.html
https://docs.aws.amazon.com/glue/latest/dg/schema-registry.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-create-dataframe-from-options
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-create-dataframe-from-options
https://docs.aws.amazon.com/glue/latest/dg/glue-etl-scala-apis-glue-gluecontext.html#glue-etl-scala-apis-glue-gluecontext-defs-getSource
https://docs.aws.amazon.com/glue/latest/dg/console-machine-learning-transforms.html#console-machine-learning-transforms-actions
https://docs.aws.amazon.com/glue/latest/dg/console-machine-learning-transforms.html#console-machine-learning-transforms-actions
https://docs.aws.amazon.com/glue/latest/dg/console-machine-learning-transforms.html#console-machine-learning-transforms-actions
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-machine-learning-api.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-machine-learning-api.html

AWS Glue User Guide

Update to the AWSGlueCo
nsoleFullAccess AWS
managed policy

Added information about
a minor update to the
AWSGlueConsoleFullAccess
AWS managed policy. For
more information, see
AWS Glue Updates to AWS
Managed Policies.

June 10, 2021

View your job's dataset while
creating and editing jobs

You can use the new Data
preview tab for a node in
your job diagram to see a
sample of the data processed
by that node. For more
information, see Using data
previews in the visual job
editor.

June 7, 2021

Support for specifying a
value that indicates the
table location for the crawler
output.

Added information about
specifying a value that
indicates the table location
when configuring the
crawler's output. For more
information, see How to
specify the table location.

June 4, 2021

Support for crawling a sample
of files in a dataset when
crawling an Amazon S3 data
store

Added information about
how to crawl a sample of files
when crawling Amazon S3.
For more information, see
Crawler Properties.

May 10, 2021

2866

https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/glue/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/glue/latest/ug/job-editor-features.html#data-previews
https://docs.aws.amazon.com/glue/latest/ug/job-editor-features.html#data-previews
https://docs.aws.amazon.com/glue/latest/ug/job-editor-features.html#data-previews
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-table-level
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html#crawler-table-level
https://docs.aws.amazon.com/glue/latest/dg/define-crawler.html

AWS Glue User Guide

Support for the AWS Glue
optimized parquet writer

Added information about
using the AWS Glue optimized
parquet writer for DynamicFr
ames to create or update
tables with the parquet
classification. For more
information, see Creating
Tables, Updating Schema, and
Adding New Partitions in the
Data Catalog from AWS Glue
ETL Jobs and Format Options
for ETL Inputs and Outputs in
AWS Glue.

May 4, 2021

Support for kafka client
authentication passwords

Added information about
how streaming ETL jobs in
AWS Glue support SSL client
certificate authentication
with Apache Kafka stream
producers. You can now
provide a custom certifica
te while defining an AWS
Glue connection to an Apache
Kafka cluster, which AWS Glue
will use when authenticating
with it. For more informati
on, see AWS Glue Connectio
n Properties and Connection
API.

April 28, 2021

2867

https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format.html
https://docs.aws.amazon.com/glue/latest/dg/connection-properties.html
https://docs.aws.amazon.com/glue/latest/dg/connection-properties.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-connections.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-connections.html

AWS Glue User Guide

Support for consuming data
from Amazon Kinesis Data
Streams in another account in
streaming ETL jobs

Added information about
to create a streaming ETL
job to consume data from
Amazon Kinesis Data Streams
in another account. For more
information, see Adding
Streaming ETL Jobs in AWS
Glue.

March 30, 2021

SQL transform available You can use a SQL transform
node to write your own
transform in the form of
a SQL query. For more
information, see Using a SQL
query to transform data.

March 23, 2021

Support for creating
workflows from blueprints
(public preview)

(Public preview) Added
information about coding
common extract, transform
, and load (ETL) use cases in
blueprints and then creating
workflows from blueprint
s. Enables data analysts to
easily create and run complex
ETL processes. For more
information, see Performing
Complex ETL Activities Using
blueprints and Workflows in
AWS Glue.

March 22, 2021

Connectors can be used for
data targets

Using a custom or AWS
Marketplace connector
for your data target is
now supported. For more
information, see Authoring
jobs with custom connectors.

March 15, 2021

2868

https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/glue/latest/ug/edit-jobs-transforms.html#transforms-sql
https://docs.aws.amazon.com/glue/latest/ug/edit-jobs-transforms.html#transforms-sql
https://docs.aws.amazon.com/glue/latest/dg/orchestrate-using-workflows.html
https://docs.aws.amazon.com/glue/latest/dg/orchestrate-using-workflows.html
https://docs.aws.amazon.com/glue/latest/dg/orchestrate-using-workflows.html
https://docs.aws.amazon.com/glue/latest/dg/orchestrate-using-workflows.html
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#job-authoring-custom-connectors
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#job-authoring-custom-connectors

AWS Glue User Guide

Support for column
importance metrics for
AWS Glue machine learning
transforms

Added information about
viewing column importanc
e metrics when working
with AWS Glue machine
learning transforms. For more
information see Working with
Machine Learning Transforms
on the AWS Glue Console

February 5, 2021

Job scheduling now available
in AWS Glue Studio

You can define a time-base
d schedule for your job runs
in AWS Glue Studio. You can
use the console to create a
basic schedule, or define a
more complex schedule using
the Unix-like cron syntax.
For more information, see
Schedule job runs.

December 21, 2020

AWS Glue Custom Connectors
released

AWS Glue Custom Connector
s allow you to discover and
subscribe to connectors in
AWS Marketplace. We also
released AWS Glue Spark
runtime interfaces to plug in
connectors built for Apache
Spark Datasource, Athena
federated query, and JDBC
APIs. For more information,
see Using Connectors and
connections with AWS Glue
Studio.

December 21, 2020

2869

https://docs.aws.amazon.com/glue/latest/dg/console-machine-learning-transforms.html
https://docs.aws.amazon.com/glue/latest/dg/console-machine-learning-transforms.html
https://docs.aws.amazon.com/glue/latest/dg/console-machine-learning-transforms.html
http://en.wikipedia.org/wiki/Cron
https://docs.aws.amazon.com/glue/latest/ug/managing-jobs-chapter.html#schedule-jobs
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html

AWS Glue User Guide

Support for running
streaming ETL jobs in AWS
Glue version 2.0

Added information about
support for running
streaming ETL jobs in
Glue version 2.0. For more
information, see Adding
Streaming ETL Jobs in AWS
Glue.

December 18, 2020

Support for workload
partitioning with bounded
execution

Added information about
enabling workload partition
ing to configure the upper
bounds on the dataset size, or
the number of files processed
on ETL job runs. For more
information, see Workload
Partitioning with Bounded
Execution.

November 23, 2020

Support for enhanced
partition management

Added information about
how to use new APIs to
add or delete a partition
index to/from an existing
table. For more information,
see Working with Partition
 Indexes.

November 23, 2020

Support for the AWS Glue
schema registry

Added information about
using the AWS Glue Schema
Registry to centrally discover,
control, and evolve schemas.
For more information,
seeAWS Glue Schema
Registry.

November 19, 2020

2870

https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/glue/latest/dg/bounded-execution.html
https://docs.aws.amazon.com/glue/latest/dg/bounded-execution.html
https://docs.aws.amazon.com/glue/latest/dg/bounded-execution.html
https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://docs.aws.amazon.com/glue/latest/dg/schema-registry.html
https://docs.aws.amazon.com/glue/latest/dg/schema-registry.html

AWS Glue User Guide

Support for the grok input
format in streaming ETL jobs

Added information about
applying Grok patterns to
streaming sources such as log
files. For more information,
see Applying Grok Patterns to
Streaming Sources.

November 17, 2020

Support for adding tags to
workflows on the AWS Glue
console

Added information about
adding tags when creating a
workflow using the AWS Glue
console. For more informati
on, see Creating and Building
Out a Workflow Using the
AWS Glue Console.

October 27, 2020

Support for incremental
crawler runs

Added information about
support for incremental
crawler runs, which crawl only
Amazon S3 folders added
since the last run. For more
information, see Incremental
Crawls.

October 21, 2020

2871

https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html#create-table-streaming-grok
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html#create-table-streaming-grok
https://docs.aws.amazon.com/glue/latest/dg/creating_running_workflows.html#creating_workflow
https://docs.aws.amazon.com/glue/latest/dg/creating_running_workflows.html#creating_workflow
https://docs.aws.amazon.com/glue/latest/dg/creating_running_workflows.html#creating_workflow
https://docs.aws.amazon.com/glue/latest/dg/incremental-crawls.html
https://docs.aws.amazon.com/glue/latest/dg/incremental-crawls.html

AWS Glue User Guide

Support for schema detection
for streaming ETL data
sources. support for Avro
streaming ETL data sources
and self-managed kafka

Streaming extract, transform
, and load (ETL) jobs in AWS
Glue can now automatic
ally detect the schema of
incoming records and handle
schema changes on a per-
record basis. Self-mana
ged Kafka data sources are
now supported. Streaming
 ETL jobs now support the
Avro format in data sources.
For more information, see
Streaming ETL in AWS Glue,
Defining Job Properties for
a Streaming ETL Job, and
Notes and Restrictions for
Avro Streaming Sources.

October 7, 2020

Support for crawling
MongoDB and DocumentDB
data sources

Added information about
support for crawling
MongoDB and Amazon
DocumentDB (with MongoDB
compatibility) data sources.
For more information, see
Defining Crawlers.

October 5, 2020

Support for FIPS compliance Added information about FIPS
endpoints for customers who
require FIPS 140-2 validated
cryptographic modules when
accessing data using AWS
Glue. For more information,
see FIPS Compliance.

September 23, 2020

2872

https://docs.aws.amazon.com/glue/latest/dg/components-overview.html#streaming-etl-intro
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html#create-job-streaming-properties
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html#create-job-streaming-properties
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html#create-table-streaming
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html#create-table-streaming
https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/fips-compliance.html

AWS Glue User Guide

AWS Glue Studio provides an
easy to use visual interface
for creating and monitoring
jobs

You can now use a simple
graph-based interface to
compose jobs that move and
transform data and run them
on AWS Glue. You can then
use the job run dashboard in
AWS Glue Studio to monitor
ETL execution and ensure that
your jobs are operating as
intended. For more informati
on, see AWS Glue Studio User
Guide.

September 23, 2020

Support for creating table
indexes to improve query
performance

Added information about
creating table indexes to
allow you to retrieve a subset
of the partitions from a
table. For more information,
see Working with Partition
 Indexes.

September 9, 2020

Support for reduced startup
times when running Apache
Spark ETL jobs in AWS Glue
version 2.0.

Added information about
support for AWS Glue
version 2.0 which provides
an upgraded infrastructure
for running Apache Spark
ETL jobs with reduced startup
times, changes in logging,
and support for specifying
additional Python modules
at the job level. For more
information, see AWS Glue
Release Notes and Running
Spark ETL Jobs with Reduced
Startup Times.

August 10, 2020

2873

https://docs.aws.amazon.com/glue/latest/ug/
https://docs.aws.amazon.com/glue/latest/ug/
https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://docs.aws.amazon.com/glue/latest/dg/release-notes.html
https://docs.aws.amazon.com/glue/latest/dg/release-notes.html
https://docs.aws.amazon.com/glue/latest/dg/reduced-start-times-spark-etl-jobs.html
https://docs.aws.amazon.com/glue/latest/dg/reduced-start-times-spark-etl-jobs.html
https://docs.aws.amazon.com/glue/latest/dg/reduced-start-times-spark-etl-jobs.html

AWS Glue User Guide

Support for limiting the
number of concurrent
workflow runs.

Added information about
how to limit the number of
concurrent workflow runs
for a particular workflow.
For more information, see
Creating and Building Out a
Workflow Using the AWS Glue
Console.

August 10, 2020

Support for crawling an
Amazon S3 data store using a
VPC endpoint

Added information about
configuring your Amazon S3
data store to be accessed only
by an Amazon Virtual Private
Cloud environment (Amazon
VPC), for security, auditing,
or control purposes. For more
information, see Crawling an
Amazon S3 Data Store using a
VPC Endpoint.

August 7, 2020

Support for resuming
workflow runs

Added information about
how to resume workflow
runs that only partially
 completed because one or
more nodes (jobs or crawlers)
did not complete successfu
lly. For more information, see
Repairing and Resuming a
Workflow Run.

July 27, 2020

2874

https://docs.aws.amazon.com/glue/latest/dg/creating_running_workflows.html#creating_workflow
https://docs.aws.amazon.com/glue/latest/dg/creating_running_workflows.html#creating_workflow
https://docs.aws.amazon.com/glue/latest/dg/creating_running_workflows.html#creating_workflow
https://docs.aws.amazon.com/glue/latest/dg/connection-S3-VPC.html
https://docs.aws.amazon.com/glue/latest/dg/connection-S3-VPC.html
https://docs.aws.amazon.com/glue/latest/dg/connection-S3-VPC.html
https://docs.aws.amazon.com/glue/latest/dg/resuming-workflow.html
https://docs.aws.amazon.com/glue/latest/dg/resuming-workflow.html

AWS Glue User Guide

Support for enabling private
CA certificates in kafka
connections in AWS Glue.

Added information about
new connection options that
support enabling private
CA certificates for Kafka
connections in AWS Glue.
For more information, see
Connection Types and
Options for ETL in AWS Glue
and Special Parameters Used
by AWS Glue.

July 20, 2020

Support for reading
DynamoDB data in another
account

Added information about
AWS Glue support for reading
data from another AWS
account's DynamoDB table
For more information, see
Reading from DynamoDB
Data in Another Account.

July 17, 2020

Support for a DynamoDB
writer connection in AWS
Glue version 1.0 or later

Added information about
support for DynamoDB
writer, and new or updated
connection options for
DynamoDB to read or write.
For more information, see
Connection Types and
Options for ETL in AWS Glue.

July 17, 2020

2875

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-dynamo-db-cross-account.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-dynamo-db-cross-account.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html

AWS Glue User Guide

Support for resource links
and for cross-account access
control using both AWS Glue
and Lake Formation

Added content about new
Data Catalog objects called
resource links, and about
how to manage sharing Data
Catalog resources across
accounts with both AWS Glue
and AWS Lake Formation.
For more information, see
Granting Cross-Account
Access and Table Resource
Links.

July 7, 2020

Support for sampling records
when crawling DynamoDB
data stores

Added information about
new properties that you can
configure when crawling a
DynamoDB data store. For
more information, see Crawler
Properties.

June 12, 2020

Support for stopping a
workflow run.

Added information about how
to stop a workflow run for a
particular workflow. For more
information, see Stopping a
Workflow Run.

May 14, 2020

Support for Spark streaming
ETL jobs

Added information about
creating extract, transform
, and load (ETL) jobs with
streaming data sources. For
more information, see Adding
Streaming ETL Jobs in AWS
Glue.

April 27, 2020

2876

https://docs.aws.amazon.com/glue/latest/dg/cross-account-access.html#cross-account-adding-resource-policy
https://docs.aws.amazon.com/glue/latest/dg/cross-account-access.html#cross-account-adding-resource-policy
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html#tables-resource-links
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html#tables-resource-links
https://docs.aws.amazon.com/glue/latest/dg/define-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/define-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/workflow-stopping.html
https://docs.aws.amazon.com/glue/latest/dg/workflow-stopping.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html

AWS Glue User Guide

Support for creating tables,
updating the schema, and
adding new partitions in the
Data Catalog after running an
ETL job

Added information about
how you can enable creating
tables, updating the schema,
and adding new partitions to
see the results of your ETL job
in the Data Catalog. For more
information, see Creating
Tables, Updating Schema, and
Adding New Partitions in the
Data Catalog from AWS Glue
ETL Jobs.

April 2, 2020

Support for specifying a
version for the Apache Avro
data format as an ETL input
and output in AWS Glue

Added information about
specifying a version for the
Apache Avro data format as
an ETL input and output in
AWS Glue. The default version
1.7. You can use the version
format option to specify
Avro version 1.8 to enable
logical reading/writing. For
more information, see Format
Options for ETL Inputs and
Outputs in AWS Glue.

March 31, 2020

Support for the EMRFS S3-
optimized committer for
writing Parquet data into
Amazon S3

Added information about how
to set a new flag to enable
the EMRFR S3-optimized
committer for writing Parquet
data into Amazon S3 when
creating or updating an AWS
Glue job. For more informati
on, see Special Parameters
Used by AWS Glue.

March 30, 2020

2877

https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html

AWS Glue User Guide

Support for machine learning
transforms as a resource
managed by AWS resource
tags

Added information about
using AWS resource tags to
manage and control access
to your machine learning
transforms in AWS Glue. You
can assign AWS resource tags
to jobs, triggers, endpoints
, crawlers, and machine
learning transforms in AWS
Glue. For more information,
see AWS Tags in AWS Glue.

March 2, 2020

Support for non-overrideable
job arguments

Added information about
support for special job
parameters that cannot be
overridden in triggers or when
you run the job. For more
information see Adding Jobs
in AWS Glue.

February 12, 2020

Support for new transform
s to work with datasets in
Amazon S3

Added information about new
transforms (Merge, Purge,
and Transition) and Amazon
S3 storage class exclusions
for Apache Spark applicati
ons to work with datasets
in Amazon S3. For more
information on support for
these transforms for Python,
see mergeDynamicFrame
and Working with Datasets
in Amazon S3. For Scala, see
mergeDynamicFrames and
AWS Glue Scala GlueContext
APIs.

January 16, 2020

2878

https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html
https://docs.aws.amazon.com/glue/latest/dg/add-job.html
https://docs.aws.amazon.com/glue/latest/dg/add-job.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-dynamic-frame.html#aws-glue-api-crawler-pyspark-extensions-dynamic-frame-merge
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-_storage_layer
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-_storage_layer
https://docs.aws.amazon.com/glue/latest/dg/glue-etl-scala-apis-glue-dynamicframe-class.html#glue-etl-scala-apis-glue-dynamicframe-class-defs-merge
https://docs.aws.amazon.com/glue/latest/dg/glue-etl-scala-apis-glue-gluecontext.html
https://docs.aws.amazon.com/glue/latest/dg/glue-etl-scala-apis-glue-gluecontext.html

AWS Glue User Guide

Support for updating the
Data Catalog with new
partition information from an
ETL job

Added information about
how to code an extract,
transform, and load (ETL)
script to update the AWS
Glue Data Catalog with new
partition information. With
this capability, you no longer
have to rerun the crawler
after job completion to view
the new partitions. For more
information see Updating
the Data Catalog with New
Partitions.

January 15, 2020

New tutorial: Using an
SageMaker notebook

Added a tutorial that
demonstrates how to use an
Amazon SageMaker notebook
to help develop your ETL
and machine learning scripts.
See Tutorial: Use an Amazon
SageMaker Notebook with
Your Development Endpoint.

January 3, 2020

Support for reading from
MongoDB and Amazon
DocumentDB (with MongoDB
compatibility)

Added information about
new connection types and
connection options for
reading from and writing
to MongoDB and Amazon
DocumentDB (with MongoDB
Compatibility). For more
information, see Connection
Types and Options for ETL in
AWS Glue.

December 17, 2019

2879

https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
https://docs.aws.amazon.com/glue/latest/dg/dev-endpoint-tutorial-sage.html
https://docs.aws.amazon.com/glue/latest/dg/dev-endpoint-tutorial-sage.html
https://docs.aws.amazon.com/glue/latest/dg/dev-endpoint-tutorial-sage.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html

AWS Glue User Guide

Various corrections and
clarifications

Added corrections and
clarifications throughout.
Removed entries from the
Known Issues chapter. Added
warnings that AWS Glue
supports only symmetrical
customer master keys (CMKs)
when specifying Data Catalog
encryption settings and
creating security configura
tions. Added a note that AWS
Glue does not support writing
to Amazon DynamoDB.

December 9, 2019

Support for custom JDBC
drivers

Added information about
connecting to data sources
and targets with JDBC drivers
that AWS Glue does not
natively support, such as
MySQL version 8 and Oracle
Database version 18. For
more information see JDBC
connectionType Values.

November 25, 2019

2880

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-jdbc
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-jdbc

AWS Glue User Guide

Support for connecting
SageMaker notebooks to
different development
endpoints

Added information about
how you can connect an
SageMaker notebook to
different development
endpoints. Updates to
describe the new console
action for switching to a
new development endpoint,
and the new SageMaker IAM
policy. For more information,
see Working with Notebooks
on the AWS Glue Console
and Create an IAM Policy
for Amazon SageMaker
Notebooks.

November 21, 2019

Support for AWS Glue version
in machine learning transform
s

Added information about
defining the AWS Glue
version in a machine learning
transform to indicate the
which version of AWS Glue a
machine learning transform
is compatible with. For more
information see Working with
Machine Learning Transforms
on the AWS Glue Console.

November 21, 2019

2881

https://docs.aws.amazon.com/glue/latest/dg/console-notebooks.html
https://docs.aws.amazon.com/glue/latest/dg/console-notebooks.html
https://docs.aws.amazon.com/glue/latest/dg/create-sagemaker-notebook-policy.html
https://docs.aws.amazon.com/glue/latest/dg/create-sagemaker-notebook-policy.html
https://docs.aws.amazon.com/glue/latest/dg/create-sagemaker-notebook-policy.html
https://docs.aws.amazon.com/glue/latest/dg/console-machine-learning-transforms.html
https://docs.aws.amazon.com/glue/latest/dg/console-machine-learning-transforms.html
https://docs.aws.amazon.com/glue/latest/dg/console-machine-learning-transforms.html

AWS Glue User Guide

Support for rewinding your
job bookmarks

Added information
about rewinding your
job bookmarks to any
previous job run, resulting
in the subsequent job run
reprocessing data only from
the bookmarked job run.
Described two new sub-optio
ns for the job-bookmark-
pause option that allow
you to run a job between
two bookmarks. For more
information, see Tracking
Processed Data Using Job
Bookmarks and Special
Parameters Used by AWS
Glue.

October 22, 2019

Support for custom JDBC
certificates for connecting to
a data store

Added information about
AWS Glue support of custom
JDBC certificates for SSL
connections to AWS Glue data
sources or targets. For more
information, see Working with
Connections on the AWS Glue
Console.

October 10, 2019

Support for Python wheel Added information about
AWS Glue support of wheel
files (along with egg files)
as dependencies for Python
shell jobs. For more informati
on, see Providing Your Own
Python Library.

September 26, 2019

2882

https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
https://docs.aws.amazon.com/glue/latest/dg/console-connections.html
https://docs.aws.amazon.com/glue/latest/dg/console-connections.html
https://docs.aws.amazon.com/glue/latest/dg/console-connections.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-python.html#create-python-extra-library
https://docs.aws.amazon.com/glue/latest/dg/add-job-python.html#create-python-extra-library

AWS Glue User Guide

Support for versioning of
development endpoints in
AWS Glue

Added information about
defining the Glue version
in development endpoints.
Glue version determines
the versions of Apache Spark
and Python that AWS Glue
supports. For more informati
on, see Adding a Developme
nt Endpoint.

September 19, 2019

Support for monitoring AWS
Glue using Spark UI

Added information about
using Apache Spark UI to
monitor and debug AWS
Glue ETL jobs running on the
AWS Glue job system, and
Spark applications on AWS
Glue development endpoints
. For more information, see
Monitoring AWS Glue Using
Spark UI.

September 19, 2019

Enhancement of support for
local ETL script developme
nt using the public AWS Glue
ETL library

Updated the AWS Glue ETL
library content to reflect
that AWS Glue version 1.0
is now supported. For more
information, see Developin
g and Testing ETL Scripts
Locally Using the AWS Glue
ETL Library.

September 18, 2019

2883

https://docs.aws.amazon.com/glue/latest/dg/add-dev-endpoint.html
https://docs.aws.amazon.com/glue/latest/dg/add-dev-endpoint.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html

AWS Glue User Guide

Support for excluding
Amazon S3 storage classes
when running jobs

Added information about
excluding Amazon S3 storage
classes when running AWS
Glue ETL jobs that read files
or partitions from Amazon
S3. For more information, see
Excluding Amazon S3 Storage
Classes.

August 29, 2019

Support for local ETL script
development using the public
AWS Glue ETL library

Added information about
how to develop and test
Python and Scala ETL scripts
locally without the need for a
network connection. For more
information, see Developin
g and Testing ETL Scripts
Locally Using the AWS Glue
ETL Library.

August 28, 2019

Known issues Added information about
known issues in AWS Glue. For
more information, see Known
Issues for AWS Glue.

August 28, 2019

Support for machine learning
transforms in AWS Glue

Added information about
machine learning capabilit
ies provided by AWS Glue
to create custom transform
s. You can create these
transforms when you create a
job. For more information, see
Machine Learning Transforms
in AWS Glue.

August 8, 2019

2884

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-storage-classes.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-storage-classes.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://docs.aws.amazon.com/glue/latest/dg/glue-known-issues.html
https://docs.aws.amazon.com/glue/latest/dg/glue-known-issues.html
https://docs.aws.amazon.com/glue/latest/dg/machine-learning.html
https://docs.aws.amazon.com/glue/latest/dg/machine-learning.html

AWS Glue User Guide

Support for shared Amazon
Virtual Private Cloud

Added information about
AWS Glue support for shared
Amazon Virtual Private Cloud.
For more information, see
Shared Amazon VPCs.

August 6, 2019

Support for versioning in AWS
Glue

Added information about
defining the Glue version
in job properties. AWS Glue
version determines the
versions of Apache Spark
and Python that AWS Glue
supports. For more informati
on, see Adding Jobs in AWS
Glue.

July 24, 2019

Support for additional
configuration options for
development endpoints

Added information about
configuration options for
development endpoints
that have memory-intensive
workloads. You can choose
from two new configurations
that provide more memory
per executor. For more
information, see Working with
Development Endpoints on
the AWS Glue Console.

July 24, 2019

2885

https://docs.aws.amazon.com/glue/latest/dg/shared-vpc.html
https://docs.aws.amazon.com/glue/latest/dg/add-job.html
https://docs.aws.amazon.com/glue/latest/dg/add-job.html
https://docs.aws.amazon.com/glue/latest/dg/console-development-endpoint.html
https://docs.aws.amazon.com/glue/latest/dg/console-development-endpoint.html
https://docs.aws.amazon.com/glue/latest/dg/console-development-endpoint.html

AWS Glue User Guide

Support for performin
g extract, transfer, and
load (ETL) activities using
workflows

Added information about
using a new construct called a
workflow to design a complex
multi-job extract, transform
, and load (ETL) activity that
AWS Glue can run and track
as a single entity. For more
information, see Performing
Complex ETL Activities Using
Workflows in AWS Glue.

June 20, 2019

Support for Python 3.6 in
Python shell jobs

Added information about
support for Python 3.6 in
Python shell jobs. You can
specify either Python 2.7 or
Python 3.6 as a job property.
For more information, see
Adding Python Shell Jobs
inAWS Glue.

June 5, 2019

Support for virtual private
cloud (VPC) endpoints

Added information about
connecting directly to AWS
Glue through an interface
 endpoint in your VPC. When
you use a VPC interface
endpoint, communication
between your VPC and AWS
Glue is conducted entirely
and securely within the AWS
network. For more informati
on, see Using AWS Glue with
VPC Endpoints.

June 4, 2019

2886

https://docs.aws.amazon.com/glue/latest/dg/orchestrate-using-workflows.html
https://docs.aws.amazon.com/glue/latest/dg/orchestrate-using-workflows.html
https://docs.aws.amazon.com/glue/latest/dg/orchestrate-using-workflows.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-python.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-python.html
https://docs.aws.amazon.com/glue/latest/dg/vpc-endpoint.html
https://docs.aws.amazon.com/glue/latest/dg/vpc-endpoint.html

AWS Glue User Guide

Support for real-time,
continuous logging for AWS
Glue jobs.

Added information about
enabling and viewing real-
time Apache Spark job logs
in CloudWatch including
the driver logs, each of the
executor logs, and a Spark
job progress bar. For more
information, see Continuous
Logging for AWS Glue Jobs.

May 28, 2019

Support for existing Data
Catalog tables as crawler
sources

Added information about
specifying a list of existing
Data Catalog tables as
crawler sources. Crawlers
can then detect changes
to table schemas, update
table definitions, and register
new partitions as new data
becomes available. For more
information, see Crawler
Properties.

May 10, 2019

Support for additional
configuration options for
memory-intensive jobs

Added information about
configuration options for
Apache Spark jobs with
memory-intensive workloads.
You can choose from two new
configurations that provide
more memory per executor.
For more information, see
Adding Jobs in AWS Glue.

April 5, 2019

2887

https://docs.aws.amazon.com/glue/latest/dg/monitor-continuous-logging.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-continuous-logging.html
https://docs.aws.amazon.com/glue/latest/dg/define-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/define-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/add-job.html

AWS Glue User Guide

Support for CSV custom
classifiers

Added information about
using a custom CSV classifier
to infer the schema of various
types of CSV data. For more
information, see Writing
Custom Classifiers.

March 26, 2019

Support for AWS resource
tags

Added information about
using AWS resource tags to
help you manage and control
access to your AWS Glue
resources. You can assign AWS
resource tags to jobs, triggers,
endpoints, and crawlers in
AWS Glue. For more informati
on, see AWS Tags in AWS
Glue.

March 20, 2019

Support of Data Catalog for
Spark SQL jobs

Added information about
configuring your AWS
Glue jobs and developme
nt endpoints to use the
AWS Glue Data Catalog as
an external Apache Hive
Metastore. This allows jobs
and development endpoints
to directly run Apache Spark
SQL queries against the
tables stored in the AWS
Glue Data Catalog. For more
information, see AWS Glue
Data Catalog Support for
Spark SQL Jobs.

March 14, 2019

2888

https://docs.aws.amazon.com/glue/latest/dg/custom-classifier.html
https://docs.aws.amazon.com/glue/latest/dg/custom-classifier.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-data-catalog-hive.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-data-catalog-hive.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-data-catalog-hive.html

AWS Glue User Guide

Support for Python shell jobs Added information about
Python shell jobs and the new
field Maximum capacity. For
more information, see Adding
Python Shell Jobs in AWS
Glue.

January 18, 2019

Support for notifications
when there are changes to
databases and tables

Added information about
events that are generated
for changes to database,
 table, and partition API calls.
You can configure actions
in CloudWatch Events to
respond to these events.
For more information, see
Automating AWS Glue with
CloudWatch Events.

January 16, 2019

Support for encrypting
connection passwords

Added information about
encrypting passwords used in
connection objects. For more
information, see Encrypting
Connection Passwords.

December 11, 2018

Support for resource-level
permission and resource-
based policies

Added information about
using resource-level permissio
ns and resource-based
policies with AWS Glue. For
more information, see the
topics within Security in AWS
Glue.

October 15, 2018

Support for SageMaker
notebooks

Added information about
using SageMaker notebooks
with AWS Glue development
endpoints. For more informati
on, see Managing Notebooks.

October 5, 2018

2889

https://docs.aws.amazon.com/glue/latest/dg/add-job-python.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-python.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-python.html
https://docs.aws.amazon.com/glue/latest/dg/automating-awsglue-with-cloudwatch-events.html
https://docs.aws.amazon.com/glue/latest/dg/automating-awsglue-with-cloudwatch-events.html
https://docs.aws.amazon.com/glue/latest/dg/encrypt-connection-passwords.html
https://docs.aws.amazon.com/glue/latest/dg/encrypt-connection-passwords.html
https://docs.aws.amazon.com/glue/latest/dg/security-glue.html
https://docs.aws.amazon.com/glue/latest/dg/security-glue.html
https://docs.aws.amazon.com/glue/latest/dg/notebooks-with-glue.html

AWS Glue User Guide

Support for encryption Added information about
using encryption with AWS
Glue. For more informati
on, see Encryption at Rest,
Encryption in Transit, and
Setting Up Encryption in AWS
Glue.

August 24, 2018

Support for Apache Spark job
metrics

Added information about
the use of Apache Spark
metrics for better debugging
 and profiling of ETL jobs.
You can easily track runtime
metrics such as bytes read
and written, memory usage
and CPU load of the driver
and executors, and data
shuffles among executors
from the AWS Glue console.
For more information, see
Monitoring AWS Glue Using
CloudWatch Metrics, Job
Monitoring and Debugging,
and Working with Jobs on the
AWS Glue Console.

July 13, 2018

Support of DynamoDB as a
data source

Added information about
crawling DynamoDB and
using it as a data source of
ETL jobs. For more informati
on, see Cataloging Tables with
a Crawler and Connection
Parameters.

July 10, 2018

2890

https://docs.aws.amazon.com/glue/latest/dg/encryption-at-rest.html
https://docs.aws.amazon.com/glue/latest/dg/encryption-in-transit.html
https://docs.aws.amazon.com/glue/latest/dg/encryption-in-transit.html
https://docs.aws.amazon.com/glue/latest/dg/set-up-encryption.html
https://docs.aws.amazon.com/glue/latest/dg/set-up-encryption.html
https://docs.aws.amazon.com/glue/latest/dg/monitoring-awsglue-with-cloudwatch-metrics.html
https://docs.aws.amazon.com/glue/latest/dg/monitoring-awsglue-with-cloudwatch-metrics.html
https://docs.aws.amazon.com/glue/latest/dg/monitoring-awsglue-with-cloudwatch-metrics.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-profile-glue-job-cloudwatch-metrics.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-profile-glue-job-cloudwatch-metrics.html
https://docs.aws.amazon.com/glue/latest/dg/console-jobs.html
https://docs.aws.amazon.com/glue/latest/dg/console-jobs.html
https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html

AWS Glue User Guide

Updates to create notebook
server procedure

Updated information about
how to create a notebook
server on an Amazon EC2
instance associated with
a development endpoint.
For more information, see
Creating a Notebook Server
Associated with a Developme
nt Endpoint.

July 9, 2018

Updates now available over
RSS

You can now subscribe to an
RSS feed to receive notificat
ions about updates to the
AWS Glue Developer Guide.

June 25, 2018

Support delay notifications
for jobs

Added information about
configuring a delay threshold
when a job runs. For more
information, see Adding Jobs
in AWS Glue.

May 25, 2018

Configure a crawler to append
new columns

Added information about
new configuration option for
crawlers, MergeNewColumns.
For more information, see
Configuring a Crawler.

May 7, 2018

Support timeout of jobs Added information about
setting a timeout threshold
when a job runs. For more
information, see Adding Jobs
in AWS Glue.

April 10, 2018

2891

https://docs.aws.amazon.com/glue/latest/dg/dev-endpoint-notebook-server-considerations.html
https://docs.aws.amazon.com/glue/latest/dg/dev-endpoint-notebook-server-considerations.html
https://docs.aws.amazon.com/glue/latest/dg/dev-endpoint-notebook-server-considerations.html
https://docs.aws.amazon.com/glue/latest/dg/add-job.html
https://docs.aws.amazon.com/glue/latest/dg/add-job.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-configuration.html
https://docs.aws.amazon.com/glue/latest/dg/add-job.html
https://docs.aws.amazon.com/glue/latest/dg/add-job.html

AWS Glue User Guide

Support Scala ETL script
and trigger jobs based on
additional run states

Added information about
using Scala as the ETL
programming language.
In addition, the trigger API
now supports firing when
any conditions are met (in
addition to all conditions).
Also, jobs can be triggered
based on a "failed" or
"stopped" job run (in addition
to a "succeeded" job run).

January 12, 2018

Earlier updates

The following table describes the important changes in each release of the AWS Glue Developer
Guide before January 2018.

Change Description Date

Support XML data
sources and new
crawler configura
tion option

Added information about classifying
XML data sources and new crawler
option for partition changes.

November 16, 2017

New transform
s, support for
additional Amazon
RDS database
engines, and
developme
nt endpoint
enhancements

Added information about the map and
filter transforms, support for Amazon
RDS Microsoft SQL Server, and Amazon
RDS Oracle, and new features for
development endpoints.

September 29, 2017

AWS Glue initial
release

This is the initial release of the AWS Glue
Developer Guide.

August 14, 2017

Earlier updates 2892

AWS Glue User Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

2893

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	AWS Glue
	Table of Contents
	What is AWS Glue?
	AWS Glue features
	Learning about innovations in AWS Glue
	Getting started with AWS Glue
	Accessing AWS Glue
	Related services

	AWS Glue: How it works
	Serverless ETL jobs run in isolation
	AWS Glue concepts
	AWS Glue terminology
	AWS Glue Data Catalog
	Classifier
	Connection
	Crawler
	Database
	Data store, data source, data target
	Development endpoint
	Dynamic Frame
	Job
	Job performance dashboard
	Notebook interface
	Script
	Table
	Transform
	Trigger
	Visual job editor
	Worker

	AWS Glue components
	AWS Glue console
	AWS Glue Data Catalog
	AWS Glue crawlers and classifiers
	AWS Glue ETL operations
	Streaming ETL in AWS Glue
	The AWS Glue jobs system
	Visual ETL components
	ETL job menu
	Visual ETL panels
	Job canvas
	Resource panel
	Popular transforms & data
	Transforms and Data

	AWS Glue for Spark and AWS Glue for Ray
	What is AWS Glue for Ray?

	Converting semi-structured schemas to relational schemas with AWS Glue
	AWS Glue type systems
	AWS Glue Data Catalog Types
	Validation, compatibility and other uses

	Types in AWS Glue with Spark scripts
	The Choice Type

	AWS Glue Crawler Types

	Getting started with AWS Glue
	Overview of using AWS Glue
	Setting up IAM permissions for AWS Glue
	Next steps
	Setting up for AWS Glue Studio
	Review IAM permissions needed for the AWS Glue Studio user
	AWS Glue service permissions
	Creating Custom IAM Policies for AWS Glue Studio
	Accessing AWS Glue Studio APIs

	Notebook and data preview permissions
	Amazon CloudWatch permissions

	Review IAM permissions needed for ETL jobs
	Data source and data target permissions
	Permissions required for deleting jobs
	AWS Key Management Service permissions
	Permissions required for using connectors

	Set up IAM permissions for AWS Glue Studio
	Attach policies to the AWS Glue Studio user
	Create an IAM policy for roles not named "AWSGlueServiceRole*"

	Configure a VPC for your ETL job

	Getting started with notebooks in AWS Glue Studio
	Granting permissions for the IAM role
	Actions needed for a trust relationship with AWS Glue
	Policies containing the API operations for notebooks
	IAM policy to pass a role

	Setting up AWS Glue usage profiles
	Creating and managing usage profiles
	Creating an AWS Glue usage profile
	Editing a usage profile
	Assigning a usage profile
	Viewing your assigned usage profile

	Usage profiles and jobs
	Authoring jobs with usage profiles
	Running jobs with usage profiles
	Viewing a usage profile assigned for jobs
	Updating or deleting a usage profile attached to a job

	Getting started with the AWS Glue Data Catalog
	Overview
	Step 1: Create a database
	Step 2. Create a table
	Next steps

	Setting up network access to data stores
	Setting up a VPC to connect to PyPI for AWS Glue
	Setting up an internet gateway
	Setting up an Amazon S3 bucket to host a targeted PyPI/simple repo
	Setting up a CodeArtifact mirror of pypi attached to your VPC

	Setting up DNS in your VPC

	Setting up encryption in AWS Glue
	Setting up networking for development for AWS Glue
	Setting up your network for a development endpoint
	Setting up Amazon EC2 for a notebook server

	Data discovery and cataloging in AWS Glue
	Populating the AWS Glue Data Catalog
	Using crawlers to populate the Data Catalog
	Workflow
	How crawlers work
	Which data stores can I crawl?
	How does a crawler determine when to create partitions?
	Crawler prerequisites
	Configuring a crawler
	Step 1: Set crawler properties
	Step 2: Choose data sources and classifiers
	Step 3: Configure security settings
	Step 4: Set output and scheduling
	Step 5: Review and create

	Adding classifiers to a crawler in AWS Glue
	When do I use a classifier?
	Custom classifiers
	Built-in classifiers in AWS Glue
	Built-in CSV classifier

	Writing custom classifiers
	Writing grok custom classifiers
	Custom classifier values in AWS Glue
	AWS Glue built-in patterns

	Writing XML custom classifiers
	Custom classifier values in AWS Glue

	Writing JSON custom classifiers
	Custom classifier values in AWS Glue

	Writing CSV custom classifiers
	Custom classifier values in AWS Glue

	Working with classifiers on the AWS Glue console
	Viewing classifiers
	Managing classifiers
	Creating classifiers

	Scheduling an AWS Glue crawler
	Viewing crawler results and details
	
	Parameters set on Data Catalog tables by crawler

	Customizing crawler behavior
	Incremental crawls for adding new partitions
	Setting the partition index crawler configuration option
	Usage notes for partition indexes

	Accelerating crawls using Amazon S3 event notifications
	Catalog target
	Setting up your account for Amazon S3 event notifications
	Prerequisites
	SQS policy
	Script to generate SQS and configure Amazon S3 events from the target
	Setting up a crawler for Amazon S3 event notifications using the console (Amazon S3 target)
	Setting up a crawler for Amazon S3 event notifications using the AWS CLI
	Setting up a crawler for Amazon S3 event notifications using the console (Data Catalog target)

	Using encryption with the Amazon S3 event crawler
	Enabling encryption on SQS only
	Enabling encryption on both SQS and Amazon S3
	FAQ

	How to prevent the crawler from changing an existing schema
	How to create a single schema for each Amazon S3 include path
	How to specify the table location and partitioning level
	How to specify the maximum number of tables the crawler is allowed to create
	How to specify configuration options for a Delta Lake data store
	How to configure a crawler to use Lake Formation credentials
	Setup required when the crawler and registered Amazon S3 location or Data Catalog table reside in the same account (in-account crawling)
	Setup required when the crawler and registered Amazon S3 location reside in different accounts (cross-account crawling)

	Tutorial: Adding an AWS Glue crawler
	Prerequisites
	Step 1: Add a crawler
	Step 2: Run the crawler
	Step 3: View AWS Glue Data Catalog objects

	Defining metadata manually
	Creating databases
	Database resource links

	Creating tables
	Table partitions
	Table resource links
	Updating manually created Data Catalog tables using crawlers
	Data Catalog table properties
	Working with tables on the AWS Glue console
	Adding tables on the console
	Table attributes
	Viewing and editing table details
	Compare table schema versions

	Working with partition indexes in AWS Glue
	About partition indexes
	Creating a table with partition indexes
	Adding a partition index to an existing table
	Describing partition indexes on a table
	Limitations on using partition indexes
	Using indexes for an optimized GetPartitions call
	Integration with engines
	Enable partition filtering

	Integrating with other AWS services
	AWS Lake Formation
	Amazon Athena

	Data Catalog settings

	Populating and managing transactional tables
	Creating Apache Iceberg tables
	Prerequisites
	Creating an Iceberg table

	Optimizing Iceberg tables
	Table optimization prerequisites
	Enabling compaction
	Disabling compaction
	Viewing compaction details
	Viewing Amazon CloudWatch metrics
	Deleting an optimizer
	Supported formats and limitations for managed data compaction

	Managing the Data Catalog
	Updating the schema, and adding new partitions in the Data Catalog using AWS Glue ETL jobs
	New partitions
	Updating table schema
	Creating new tables
	Restrictions
	Working with MongoDB connections in ETL jobs

	Optimizing query performance using column statistics
	Prerequisites for generating column statistics
	Generating column statistics
	Viewing column statistics
	Updating column statistics
	Deleting column statistics
	Viewing column statistics task runs
	Stopping column statistics task run
	Considerations and limitations

	Encrypting your Data Catalog
	Securing your Data Catalog using Lake Formation

	Accessing the Data Catalog
	AWS Glue Data Catalog best practices
	AWS Glue Schema Registry
	Schemas
	Registries
	Schema versioning and compatibility
	Open source Serde libraries
	Quotas of the Schema Registry
	How the Schema Registry works
	Getting started with Schema Registry
	Installing SerDe Libraries
	Using AWS CLI for the AWS Glue Schema Registry APIs
	Creating a registry
	Dealing with a specific record (JAVA POJO) for JSON
	Creating a schema
	Working with Avro data format
	Working with JSON data format

	Updating a schema or registry
	Updating a registry
	Updating a schema
	Adding a schema version
	Example of a schema version comparison

	Deleting a schema or registry
	Deleting a schema
	Deleting a schema version
	Deleting a registry

	IAM examples for serializers
	IAM examples for deserializers
	Private connectivity using AWS PrivateLink
	Accessing Amazon CloudWatch metrics
	Sample AWS CloudFormation template for Schema Registry

	Integrating with AWS Glue Schema Registry
	Use case: Connecting Schema Registry to Amazon MSK or Apache Kafka
	Use case: Integrating Amazon Kinesis Data Streams with the AWS Glue Schema Registry
	Interacting with Data Using Kinesis SDK V2
	Interacting with data using the KPL/KCL libraries
	Setting up the Schema Registry in KPL
	Setting up the Kinesis client library

	Interacting with data using the Kinesis Data Streams APIs
	Interacting with data using the Kinesis Data Streams APIs

	Use case: Amazon Managed Service for Apache Flink
	Apache Flink Kafka connector
	Apache Flink Kinesis streams Connector
	Integrating with Apache Flink
	Adding an AWS Glue Schema Registry dependency into the Apache Flink application
	Integrating Kafka or Amazon MSK with Apache Flink
	Integrating Kinesis Data Streams with Apache Flink

	Use Case: Integration with AWS Lambda
	Use case: AWS Glue Data Catalog
	Adding a table or updating the schema for a table
	Adding a table from an existing schema
	Updating the schema for a table

	Use case: AWS Glue streaming
	Use case: Apache Kafka Streams
	Integrating with the SerDes Libraries
	Kafka Streams application example code
	Implementation results

	Use case: Apache Kafka Connect

	Migration from a third-party schema registry to AWS Glue Schema Registry

	Connecting to data
	AWS Glue connection properties
	Required connection properties
	AWS Glue JDBC connection properties
	AWS Glue MongoDB and MongoDB Atlas connection properties
	Salesforce connection properties
	Snowflake connection
	Vertica connection
	SAP HANA connection
	Azure SQL connection
	Teradata Vantage connection
	OpenSearch Service connection
	Azure Cosmos connection
	AWS Glue SSL connection properties
	Apache Kafka connection properties for client authentication
	Google BigQuery connection
	Vertica connection

	Storing connection credentials in AWS Secrets Manager
	Adding an AWS Glue connection
	Connecting to Amazon Redshift in AWS Glue Studio
	Creating an Amazon Redshift connection
	Permissions needed
	Overview

	Creating a Amazon Redshift source node
	Permissions needed
	Adding an Amazon Redshift data source

	Creating an Amazon Redshift target node
	Permissions needed
	Adding an Amazon Redshift target node

	Advanced options

	Connecting to Azure Cosmos DB in AWS Glue Studio
	Creating a Azure Cosmos DB connection
	Creating a Azure Cosmos DB source node
	Prerequisites needed
	Adding a Azure Cosmos DB data source

	Creating a Azure Cosmos DB target node
	Prerequisites needed
	Adding a Azure Cosmos DB data target

	Advanced options

	Connecting to Azure SQL in AWS Glue Studio
	Creating a Azure SQL connection
	Creating a Azure SQL source node
	Prerequisites needed
	Adding a Azure SQL data source

	Creating a Azure SQL target node
	Prerequisites needed
	Adding a Azure SQL data target

	Advanced options

	Connecting to Google BigQuery in AWS Glue Studio
	Creating a BigQuery connection
	Creating a BigQuery source node
	Prerequisites needed
	Adding a BigQuery data source

	Creating a BigQuery target node
	Prerequisites needed
	Adding a BigQuery data target

	Advanced options

	Connecting to MongoDB in AWS Glue Studio
	Creating a MongoDB connection
	Creating a MongoDB source node
	Prerequisites needed
	Adding a MongoDB data source

	Creating a MongoDB target node
	Prerequisites needed
	Adding a MongoDB data target

	Advanced options

	Connecting to OpenSearch Service in AWS Glue Studio
	Creating a OpenSearch Service connection
	Creating a OpenSearch Service source node
	Prerequisites needed
	Adding a OpenSearch Service data source

	Creating a OpenSearch Service target node
	Prerequisites needed
	Adding a OpenSearch Service data target

	Advanced options

	Connecting to Salesforce in AWS Glue Studio
	AWS Glue support for Salesforce
	Policies containing the API operations for creating and using connections
	Configuring Salesforce
	Minimum requirements
	The AWS managed connected app for Salesforce

	Configuring Salesforce connections
	Reading from Salesforce entities
	Partitioning queries

	Writing to Salesforce
	Salesforce connection options
	Limitations for Salesforce connector
	Set up the JWT bearer OAuth flow for Salesforce
	Creating a cert/key pair of PEM files
	Creating a Salesforce connected app with JWT
	Generating a JSON Web Token (JWT)

	Connecting to SAP HANA in AWS Glue Studio
	Creating a SAP HANA connection
	Creating a SAP HANA source node
	Prerequisites needed
	Adding a SAP HANA data source

	Creating a SAP HANA target node
	Prerequisites needed
	Adding a SAP HANA data target

	Advanced options

	Connecting to Snowflake in AWS Glue Studio
	Creating a Snowflake connection
	Creating a Snowflake source node
	Permissions needed
	Adding a Snowflake data source

	Creating a Snowflake target node
	Permissions needed
	Adding a Snowflake data target

	Advanced options

	Connecting to Teradata Vantage in AWS Glue Studio
	Creating a Teradata Vantage connection
	Creating a Teradata source node
	Prerequisites needed
	Adding a Teradata data source

	Creating a Teradata target node
	Prerequisites needed
	Adding a Teradata data target

	Advanced options

	Connecting to Vertica in AWS Glue Studio
	Creating a Vertica connection
	Creating a Vertica source node
	Prerequisites needed
	Adding a Vertica data source

	Creating a Vertica target node
	Prerequisites needed
	Adding a Vertica data target

	Advanced options

	Using connectors and connections with AWS Glue Studio
	Overview of using connectors and connections
	Adding connectors to AWS Glue Studio
	Subscribing to AWS Marketplace connectors
	Creating custom connectors

	Available connections
	Creating connections for connectors
	Creating a Kafka connection

	Authoring jobs with custom connectors
	Create jobs that use a connector for the data source
	Configure source properties for nodes that use connectors
	Configure target properties for nodes that use connectors

	Managing connectors and connections
	Viewing connector and connection details
	Editing connectors and connections
	Deleting connectors and connections
	Cancel a subscription for a connector

	Developing custom connectors
	Developing Spark connectors
	Developing Athena connectors
	Developing JDBC connectors
	Examples of using custom connectors with AWS Glue Studio
	Developing AWS Glue connectors for AWS Marketplace

	Restrictions for using connectors and connections in AWS Glue Studio

	Connecting to data sources using Visual ETL jobs
	Modifying properties of a data source node
	Using Data Catalog tables for the data source
	Using a connector for the data source
	Using files in Amazon S3 for the data source
	Using a streaming data source
	

	References

	Adding a JDBC connection using your own JDBC drivers
	Supported datasources
	Adding a JDBC driver to a JDBC connection

	Testing an AWS Glue connection
	Configuring AWS calls to go through your VPC
	Connecting to a JDBC data store in a VPC
	Accessing VPC Data Using elastic network interfaces
	Elastic network interface properties

	Using a MongoDB or MongoDB Atlas connection
	Crawling an Amazon S3 data store using a VPC endpoint
	Prerequisites
	Creating the connection to Amazon S3
	Testing the connection to Amazon S3
	Creating a crawler for an Amazon S3 data store
	Creating a crawler for Amazon S3 backed Data Catalog tables
	Running a crawler
	Troubleshooting

	Troubleshooting connection issues in AWS Glue
	Tutorial: Using the AWS Glue Connector for Elasticsearch
	Prerequisites
	Step 1: (Optional) Create an AWS secret for your OpenSearch cluster information
	Next step

	Step 2: Subscribe to the connector
	Next step

	Step 3: Activate the connector in AWS Glue Studio and create a connection
	Next step

	Step 4: Configure an IAM role for your ETL job
	Next step

	Step 5: Create a job that uses the OpenSearch connection
	Next step

	Step 6: Run the job

	Building AWS Glue jobs with interactive sessions
	Overview of AWS Glue interactive sessions
	Limitations

	Getting started with AWS Glue interactive sessions
	Prerequisites for setting up interactive sessions locally
	Installing Jupyter and AWS Glue interactive sessions Jupyter kernels
	Running Jupyter
	Configuring session credentials and region
	MacOS/Linux instructions
	Windows instructions

	Upgrading from the interactive sessions preview
	Using interactive sessions with SageMaker Studio
	Using interactive sessions with Microsoft Visual Studio Code

	Configuring AWS Glue interactive sessions for Jupyter and AWS Glue Studio notebooks
	Introduction to Jupyter Magics
	Magics supported by AWS Glue interactive sessions for Jupyter
	Naming sessions
	Specifying an IAM role for interactive sessions
	Configuring sessions with named profiles

	Getting started with AWS Glue for Ray interactive sessions (preview)
	Ray interactive sessions in the AWS Glue Studio Console
	Ray interactive sessions using the Jupyter Kernel
	Ray interactive session timeout defaults
	Magics supported by AWS Glue Ray interactive sessions

	Interactive sessions with IAM
	IAM principals used with interactive sessions
	Setting up a client principal
	Setting up a runtime role
	Make your session private with TagOnCreate
	AWSGlueSessionUserRestrictedNotebookPolicy
	AWSGlueSessionUserRestrictedNotebookServiceRole
	Make your session private with user policies
	AWSGlueSessionUserRestrictedPolicy
	AWSGlueSessionUserRestrictedServiceRole

	IAM policy considerations

	Converting a script or notebook into an AWS Glue job
	AWS Glue interactive sessions for streaming
	Switching streaming session type
	Sampling input stream for interactive development
	Running streaming applications in interactive sessions

	Developing and testing AWS Glue job scripts locally
	Developing using AWS Glue Studio
	Developing using interactive sessions
	Developing using a Docker image
	Prerequisites
	Configuring AWS
	Setting up and running the container
	Pulling the image from Docker Hub
	Running the container
	spark-submit
	REPL shell (Pyspark)
	Pytest
	Jupyter Lab

	Setting up the container to use Visual Studio Code

	Appendix: AWS Glue job sample code for testing

	Developing using the AWS Glue ETL library
	Local development restrictions
	Developing locally with Python
	Prerequisites for local Python development
	Running your Python ETL script

	Developing locally with Scala
	Prerequisites for local Scala development
	Step 1: Install software
	Step 2: Configure your Maven project

	Running your Scala ETL script

	Configuring a test environment

	Development endpoints
	Migrating from dev endpoints to interactive sessions
	Developing scripts using development endpoints
	Managing your development environment
	Development endpoint workflow
	How AWS Glue development endpoints work with SageMaker notebooks
	Default behavior for AWS Glue development endpoints and SageMaker notebooks

	Adding a development endpoint
	Accessing your development endpoint
	Tutorial: Set up a Jupyter notebook in JupyterLab to test and debug ETL scripts
	Step 1: Install JupyterLab and Sparkmagic
	Step 2: Start JupyterLab
	Step 3: Initiate SSH port forwarding to connect to your development endpoint
	Step 4: Run a simple script fragment in a notebook paragraph
	Troubleshooting

	Tutorial: Use a SageMaker notebook with your development endpoint
	Tutorial: Use a REPL shell with your development endpoint
	Tutorial: Set up PyCharm professional with a development endpoint
	Connecting PyCharm professional to a development endpoint
	Deploying the script to your development endpoint
	Configuring a remote interpreter
	Running your script on the development endpoint

	Advanced configuration: sharing development endpoints among multiple users
	Single-tenancy configuration
	Multi-tenancy configuration
	(A) Use the %%configure -f directive
	(B) Modify the SparkMagic config file

	Guidelines and best practices
	Trade-offs
	Other notes

	Common issues
	Session not found
	Not enough YARN resources

	Monitoring and debugging
	Monitoring and debugging cluster resource allocation
	Free unneeded Livy sessions

	Managing notebooks

	Building visual ETL jobs with AWS Glue Studio
	Signing in to the AWS Glue console
	Next steps for creating a job in AWS Glue Studio
	Visual ETL with AWS Glue Studio
	Starting jobs in AWS Glue Studio
	Creating a job in AWS Glue Studio from scratch
	Creating a job in AWS Glue Studio from an example job

	Job editor features
	Using schema previews in the visual job editor
	Using data previews in the visual job editor
	Restrictions when using data previews
	Script code generation

	Editing AWS Glue managed data transform nodes
	AWS Glue managed data transform nodes
	Using a data preparation recipe in AWS Glue Studio
	Prerequisites
	IAM permissions for AWS Glue DataBrew

	Limitations
	How to use AWS Glue DataBrew recipes in AWS Glue Studio

	Using Change Schema to remap data property keys
	Using Change Schema with decimal datatype
	Adding a Change Schema transform to your job

	Using Drop Duplicates
	Using SelectFields to remove most data property keys
	Using DropFields to keep most data property keys
	Renaming a field in the dataset
	Using Spigot to sample your dataset
	Joining datasets
	Using Union to combine rows
	Using SplitFields to split a dataset into two
	Overview of SelectFromCollection transform
	Using SelectFromCollection to choose which dataset to keep
	Find and fill missing values in a dataset
	Filtering keys within a dataset
	Using DropNullFields to remove fields with null values
	Using a SQL query to transform data
	Using Aggregate to perform summary calculations on selected fields
	Flatten nested structs
	Add a UUID column
	Add an identifier column
	Convert a column to timestamp type
	Convert a timestamp column to a formatted string
	Creating a Conditional Router transformation
	Using the Concatenate Columns transform to append columns
	Using the Split String transform to break up a string column
	Using the Array To Columns transform to extract the elements of an array into top level columns
	Using the Add Current Timestamp transform
	Using the Pivot Rows to Columns transform
	Using the Unpivot Columns To Rows transform
	Using the Autobalance Processing transform to optimize your runtime
	Using the Derived Column transform to combine other columns
	Using the Lookup transform to add matching data from a catalog table
	Using the Explode Array or Map Into Rows transform
	Using the Record Matching transform to invoke an existing data classification transform
	Removing null rows
	Parsing a string column containing JSON data
	Extracting a JSON path
	Extracting string fragments using a regular expression
	Creating a custom transformation
	Adding a custom code transform node to the job diagram
	Entering code for the custom transform node
	Editing the schema in a custom transform node
	Configure the custom transform output

	AWS Glue custom visual transforms
	Getting started with custom visual transforms
	
	Prerequisites
	Recommended convention for transform file name
	Setting up the Amazon S3 bucket

	Step 1. Create a JSON config file
	JSON file structure
	Transform parameters in AWS Glue Studio
	Displaying a column selector as parameter

	Step 2. Implement the transform logic
	Step 3. Validate and troubleshoot custom visual transforms in AWS Glue Studio
	Step 4. Update custom visual transforms as needed
	Step 5. Use custom visual transforms in AWS Glue Studio
	Usage examples
	Examples of custom visual scripts
	Video

	Using Data Lake frameworks with AWS Glue Studio
	Overview
	Creating open table formats from an AWS Glue Streaming source
	Using Hudi framework in AWS Glue Studio
	
	Using Apache Hudi framework in Data Catalog data sources
	Using Hudi framework in Amazon S3 data sources

	Using Apache Hudi framework in data targets
	Using Apache Hudi framework in Data Catalog data targets
	Using Apache Hudi framework in Amazon S3 data targets

	Generating code through AWS Glue Studio
	Overriding AWS Glue-provided libraries

	Using Delta Lake framework in AWS Glue Studio
	Using Delta Lake framework in data sources
	Using Delta Lake framework in Amazon S3 data sources
	Using Delta Lake framework in Data Catalog data sources

	Using Delta Lake formats in data targets
	Using Delta Lake formats in Data Catalog data targets
	Using Delta Lake formats in Amazon S3 data sources

	Using Apache Iceberg framework in AWS Glue Studio
	Using Apache Iceberg framework in data targets
	Using Apache Iceberg framework in Data Catalog data targets
	Using Apache Iceberg framework in Amazon S3 data targets

	Using Apache Iceberg framework in Amazon S3 data sources
	Using Apache Iceberg framework in Data Catalog data sources
	Using Apache Iceberg framework in Amazon S3 data sources

	Configuring data target nodes
	Overview of data target options
	Editing the data target node
	Using Amazon S3 for the data target
	Using Data Catalog tables for the data target
	Using a connector for the data target

	Editing or uploading a job script
	Creating and editing Scala scripts in AWS Glue Studio
	Creating and editing Python shell jobs in AWS Glue Studio

	Changing the parent nodes for a node in the job diagram
	Deleting nodes from the job diagram
	Adding source and target parameters to the AWS Glue Data Catalog node
	Using Git version control systems in AWS Glue
	IAM permissions
	Prerequisites
	Limitations
	Connecting version control repositories with AWS Glue
	Pushing AWS Glue jobs to the source repository
	Pulling AWS Glue jobs from the source repository

	Authoring code with AWS Glue Studio notebooks
	Overview of using notebooks
	Creating an ETL job using notebooks in AWS Glue Studio
	Notebook editor components
	The notebook editor
	AWS Glue Studio job editing tabs

	Saving your notebook and job script
	Managing notebook sessions
	Change the default timeout for all notebook sessions
	Installing additional Python modules
	Changing AWS Glue Configuration
	Stop a notebook session

	Using CodeWhisperer with AWS Glue Studio notebooks
	What is Amazon CodeWhisperer?

	AWS Glue job run statuses on the console
	Accessing the job monitoring dashboard
	Overview of the job monitoring dashboard
	Job runs view
	Viewing the job run logs
	Viewing the details of a job run
	Viewing Amazon CloudWatch metrics for a Spark job run
	Viewing Amazon CloudWatch metrics for a Ray job run

	Detect and process sensitive data
	Choosing how you want the data to be scanned
	Choosing the PII entities to detect
	Choose from all available PII patterns
	Select categories
	Select specific patterns

	Specifying the level of detection sensitivity
	Choosing what to do with identified PII data
	Differences between AWS Glue versions 2.0 and 3.0+

	Adding fine-grained action overrides

	Managing ETL jobs with AWS Glue Studio
	Start a job run
	Schedule job runs
	Manage job schedules
	Stop job runs
	View your jobs
	Customize the job display

	View information for recent job runs
	View the job script
	Modify the job properties
	Store Spark shuffle files on Amazon S3

	Save the job
	Troubleshooting errors when saving a job

	Clone a job
	Delete jobs

	Working with jobs in AWS Glue
	AWS Glue versions
	AWS Glue versions
	Running Spark ETL jobs with reduced startup times
	New features supported
	Support for specifying additional Python modules at the job level
	Python modules already provided in AWS Glue version 2.0

	Logging behavior
	Driver and executor streams
	Output and errors streams
	Logging rules

	Features not supported

	Migrating AWS Glue for Spark jobs to AWS Glue version 3.0
	New features supported
	Actions to migrate to AWS Glue 3.0
	Migration check list
	Migrating from AWS Glue 0.9 to AWS Glue 3.0
	Migrating from AWS Glue 1.0 to AWS Glue 3.0
	Migrating from AWS Glue 2.0 to AWS Glue 3.0
	Appendix A: notable dependency upgrades
	Appendix B: JDBC driver upgrades

	Migrating AWS Glue for Spark jobs to AWS Glue version 4.0
	New features supported
	Actions to migrate to AWS Glue 4.0
	Migration checklist
	Migrating from AWS Glue 3.0 to AWS Glue 4.0
	Migrating from AWS Glue 2.0 to AWS Glue 4.0
	Migrating from AWS Glue 1.0 to AWS Glue 4.0
	Migrating from AWS Glue 0.9 to AWS Glue 4.0
	Connector and JDBC driver migration for AWS Glue 4.0
	Hudi
	PostgreSQL
	MongoDB
	Delta Lake
	Apache Iceberg
	Oracle
	MySQL
	Amazon Redshift

	Appendix A: Notable dependency upgrades
	Appendix B: JDBC driver upgrades
	Appendix C: Connector upgrades

	Migrating AWS Glue for Ray from preview to the Ray2.4 runtime environment
	AWS Glue version support policy
	Support policy

	Working with Spark jobs in AWS Glue
	AWS Glue job parameters
	Setting job parameters
	Accessing job parameters
	Job parameter reference
	

	AWS Glue Spark and PySpark jobs
	Adding Spark and PySpark jobs in AWS Glue
	Configuring job properties for Spark jobs in AWS Glue
	Defining job properties for Spark jobs
	Restrictions for jobs that access Lake Formation managed tables

	Editing Spark scripts in the AWS Glue console
	Additional libraries or files

	Jobs (legacy)
	Script editor

	Tracking processed data using job bookmarks
	Using job bookmarks in AWS Glue
	Operational details of the job bookmarks feature

	AWS Glue Spark shuffle plugin with Amazon S3
	Prerequisites for using Cloud Shuffle Storage Plugin
	Using AWS Glue Spark shuffle manager from the AWS console
	Using AWS Glue Spark shuffle plugin
	Cloud Shuffle Storage Plugin for Apache Spark
	Bundling the plugin with your Spark applications
	Optional configurations
	Plugin versions
	License

	Monitoring AWS Glue Spark jobs
	Spark Metrics available in AWS Glue Studio
	Monitoring jobs using the Apache Spark web UI
	Permissions
	Limitations
	Example: Apache Spark web UI
	Enabling the Apache Spark web UI for AWS Glue jobs
	Configuring the Spark UI (console)
	Configuring the Spark UI (AWS CLI)
	Configuring the Spark UI for sessions using Notebooks
	Enable rolling logs

	Launching the Spark history server
	Launching the Spark history server and viewing the Spark UI using AWS CloudFormation
	Launching the Spark history server and viewing the Spark UI using Docker

	Monitoring with AWS Glue job run insights
	Requirements
	Enabling job run insights for an AWS Glue ETL job
	AWS Glue Studio
	Command line

	Accessing the job run insights log streams in CloudWatch
	Example for AWS Glue job run insights

	Monitoring with Amazon CloudWatch
	Monitoring AWS Glue using Amazon CloudWatch metrics
	AWS Glue metrics overview
	AWS Glue metrics behavior for Spark jobs

	AWS Glue metrics
	Dimensions for AWS Glue Metrics

	Setting up Amazon CloudWatch alarms on AWS Glue job profiles
	Continuous logging for AWS Glue jobs
	Enabling continuous logging for AWS Glue jobs
	Using the AWS Management Console
	Using the AWS CLI

	Logging application-specific messages using the custom script logger
	Enabling the progress bar to show job progress
	Security configuration with continuous logging

	Viewing continuous logging for AWS Glue jobs

	Monitoring with AWS Glue Observability metrics
	Getting started with AWS Glue Observability metrics
	Using AWS Glue observability
	Using AWS Glue observability in the Amazon CloudWatch console

	Observability metrics
	Error categories
	Limitations
	Limitations and considerations for throughput metrics

	Job monitoring and debugging
	Debugging OOM exceptions and job abnormalities
	Debugging a driver OOM exception
	Visualize the profiled metrics on the AWS Glue console
	Fix the processing of multiple files using grouping

	Debugging an executor OOM exception
	Visualize the profiled metrics on the AWS Glue console
	Fix the fetch size setting using AWS Glue dynamic frames

	Debugging demanding stages and straggler tasks
	Coalescing small input files into larger output files
	Visualize the profiled metrics on the AWS Glue console
	Fix straggling executors using grouping

	Monitoring the progress of multiple jobs
	Profiled code
	Visualize the profiled metrics on the AWS Glue console
	Fix the processing of files

	Monitoring for DPU capacity planning
	Profiled code
	Visualize the profiled metrics on the AWS Glue console
	Determine the optimal DPU capacity
	Identify overprovisioned DPUs
	Compare time differences

	Streaming ETL jobs in AWS Glue
	Creating an AWS Glue connection for an Apache Kafka data stream
	AWS Glue Kafka connection properties for client authentication

	Creating a Data Catalog table for a streaming source
	Kinesis data source
	Kafka data source
	AWS Glue Schema Registry table source

	Notes and restrictions for Avro streaming sources
	Applying grok patterns to streaming sources
	Defining job properties for a streaming ETL job
	Streaming ETL notes and restrictions

	Record matching with AWS Lake Formation FindMatches
	Types of machine learning transforms
	Using the FindMatches transform
	Getting started using the Find Matches transform
	Labeling
	Tips for editing labeling files in a spreadsheet

	Labeling file format

	Tuning machine learning transforms in AWS Glue
	Machine learning measurements
	Deciding between precision and recall
	Deciding Between accuracy and cost
	Estimating the quality of matches using match confidence scores
	Generating match confidence scores
	Match scoring examples

	Teaching the Find Matches transform

	Working with machine learning transforms on the AWS Glue console
	Transform properties
	Adding and editing machine learning transforms
	Creating a new ML transform
	Step 1. Set transform properties.
	Step 2. Choose table and primary key.
	Step 3. Select tuning options.
	Step 4. Review and create.

	Using data encryption with machine learning transforms

	Viewing transform details
	Viewing transform properties
	History, Estimate quality and Tags tabs
	History
	Estimate quality
	Quality estimates versus end-to-end (true) quality
	Tags

	Teach transforms using labels

	Tutorial: Creating a machine learning transform with AWS Glue
	Step 1: Crawl the source data
	Step 2: Add a machine learning transform
	Step 3: Teach your machine learning transform
	Step 4: Estimate the quality of your machine learning transform
	Step 5: Add and run a job with your machine learning transform
	Step 6: Verify output data from Amazon S3

	Finding incremental matches
	Running an incremental matching job

	Using FindMatches in a visual job
	Prerequisites
	Adding a FindMatches transform
	Adding a FindMatches incrementally transformation

	Migrate Apache Spark programs to AWS Glue
	Run Spark code
	Common procedures needed for migrating Spark programs
	Assess Spark version support
	Include third-party libraries
	Manage data source credentials
	Configure Apache Spark
	Set custom configuration
	Migrate Java code

	Working with Ray jobs in AWS Glue
	Getting started with AWS Glue for Ray
	Ray jobs in the AWS Glue Studio console
	Ray jobs in the AWS CLI and SDK

	Supported Ray runtime environments
	Accounting for workers in Ray jobs
	Using job parameters in Ray jobs
	Configure how Ray jobs generate logs
	Reference

	Monitoring Ray jobs with metrics
	Monitoring Ray jobs in the AWS Glue console
	Overview of Ray jobs metrics in CloudWatch

	Configuring job properties for Python shell jobs in AWS Glue
	Limitations
	Defining job properties for Python shell jobs
	AWS Glue Studio
	CLI

	Supported libraries for Python shell jobs
	Providing your own Python library
	Using PIP
	Using an Egg or Whl file

	Use AWS CloudFormation with Python shell jobs in AWS Glue

	Monitoring AWS Glue
	AWS tags in AWS Glue
	Tagging support for AWS Glue connections
	Examples

	Automating AWS Glue with CloudWatch Events
	AWS Glue resource monitoring
	Configuring and using resource metrics

	Logging AWS Glue API calls with AWS CloudTrail
	AWS Glue information in CloudTrail
	Understanding AWS Glue log file entries

	AWS Glue job run statuses

	AWS Glue Streaming
	Use cases for streaming
	What are the benefits of using AWS Glue Streaming?
	When to use AWS Glue Streaming?
	Supported data sources
	Supported data targets
	Tutorial: Build your first streaming workload using AWS Glue Studio
	Prerequisites
	Consume streaming data from Amazon Kinesis
	Generating mock data with Kinesis Data Generator
	Creating an AWS Glue streaming job with AWS Glue Studio
	Performing a transformation and storing the transformed result in Amazon S3

	Tutorial: Build your first streaming workload using AWS Glue Studio notebooks
	Prerequisites
	Consume streaming data from Amazon Kinesis
	Generating mock data with Kinesis Data Generator
	Creating an AWS Glue streaming job with AWS Glue Studio
	Set up the AWS Glue Streaming interactive sessions job
	Run the notebook cells
	Save and run the AWS Glue job

	Clean up
	Conclusion

	AWS Glue Streaming concepts
	Anatomy of a AWS Glue streaming job
	forEachBatch
	Source
	Mapping
	Sink
	AWS Glue Catalog sink

	Kafka connections
	
	Configure Kafka
	

	Example: Reading from Kafka streams
	

	Example: Writing to Kafka streams
	

	Kafka connection option reference
	

	Kinesis connections
	
	Configure Kinesis
	

	Read from Kinesis
	Example: Reading from Kinesis streams

	Write to Kinesis
	Example: Writing to Kinesis streams

	Kinesis connection parameters
	

	AWS Glue Streaming options
	

	AWS Glue streaming autoscaling
	Enabling Auto Scaling in AWS Glue Studio
	Enabling Auto Scaling with the AWS CLI or SDK
	How it works

	Maintenance windows for AWS Glue Streaming
	Setting up a maintenance window
	Setting up a maintenance windows in AWS Glue Studio
	Setting up a maintenance windows in the API

	Maintenance window behavior
	Job monitoring
	Data loss handling

	Advanced AWS Glue streaming concepts
	Time considerations when processing streams
	Windowing
	Tumbling window
	Sliding window
	Process data in a sliding window

	Session window
	Process data in a session window

	Output modes

	Handling late data and watermarks
	Using watermarks in AWS Glue

	Monitoring AWS Glue streaming jobs
	Visualizing metrics
	Metrics deep dive
	Number of records (metric: streaming.numRecords)
	Batch processing time (metric: streaming.batchProcessingTimeInMs)
	Consumer lag (metric: streaming.maxConsumerLagInMs)
	Derived metrics
	Autoscaling metrics

	How to get the best performance

	AWS Glue Data Quality
	Benefits and key features
	How it works
	Data quality for the AWS Glue Data Catalog
	Data quality for AWS Glue ETL jobs
	Comparing data quality for the Data Catalog to data quality for ETL jobs

	Considerations
	Terminology
	Limits
	Release notes for AWS Glue Data Quality
	General availability: new features
	Nov 27, 2023 (Preview)
	Mar 12, 2024
	June 26, 2024

	Anomaly detection in AWS Glue Data Quality
	How it works
	Using analyzers to inspect your data
	Using the DetectAnomaly Rule
	Benefits and use cases of Anomaly Detection

	Configure IAM permissions for AWS Glue Data Quality
	IAM permissions for AWS Glue Data Quality
	IAM setup required for scheduling evaluation runs
	IAM permissions
	IAM trusted entities

	Example IAM policies
	Minimum permissions to get recommended data quality rules
	Minimum permissions to run a data quality task

	Getting started with AWS Glue Data Quality for the Data Catalog
	Prerequisites
	Step-by-step example
	Generating rule recommendations
	What the recommended rules mean

	Monitoring rule recommendations
	Editing recommended rulesets
	Creating a new ruleset
	Evaluating data quality across multiple datasets

	Running a ruleset to evaluate data quality
	Viewing the data quality score and results
	Related topics

	Evaluating data quality with AWS Glue Studio
	Benefits
	Evaluating data quality for ETL jobs in AWS Glue Studio
	Step 1: Add the Evaluate Data Quality transform node to the visual job
	Step 2: Create a rule using DQDL
	Step 3: Configure data quality outputs
	Step 4. Configure data quality actions
	Step 5: View data quality results

	Data Quality rule builder
	Evaluate Data Quality node
	Components
	Data quality rule types
	Schema
	Rule editor

	

	Configuring Anomaly detection and generating insights
	Enabling anomaly detection in AWS Glue Studio
	
	Applying a recommend rule to your Data quality node

	Data Quality for ETL jobs in AWS Glue Studio notebooks
	Prerequisites
	Creating an ETL job in AWS Glue Studio

	Data Quality Definition Language (DQDL) reference
	DQDL syntax
	Rule structure
	Composite rules
	How Composite rules work

	Expressions
	Keywords for NULL, EMPTY and WHITESPACES_ONLY
	Filtering with Where Clause

	Dynamic rules
	Analyzers
	Comments

	DQDL rule type reference
	AggregateMatch
	ColumnCorrelation
	ColumnCount
	ColumnDataType
	ColumnExists
	ColumnLength
	ColumnNamesMatchPattern
	ColumnValues
	Completeness
	CustomSQL
	DataFreshness
	DatasetMatch
	DistinctValuesCount
	Entropy
	IsComplete
	IsPrimaryKey
	IsUnique
	Mean
	ReferentialIntegrity
	RowCount
	RowCountMatch
	StandardDeviation
	Sum
	SchemaMatch
	Uniqueness
	UniqueValueRatio
	DetectAnomalies

	Using APIs to measure and manage data quality
	Prerequisites
	Working with AWS Glue Data Quality recommendations
	Working with AWS Glue Data Quality rulesets
	Working with AWS Glue Data Quality runs
	Working with AWS Glue Data Quality results

	Setting up alerts, deployments, and scheduling
	Setting up alerts and notifications in Amazon EventBridge integration
	Additional configuration options for the event pattern
	Formatting notifications as emails

	Set up alerts and notifications in CloudWatch integration
	Querying data quality results to build dashboards
	Deploying data quality rules using AWS CloudFormation
	Scheduling data quality rules

	Troubleshooting AWS Glue Data Quality errors
	Error: missing AWS Glue Data Quality module
	Error: insufficient AWS Lake Formation permissions
	Error: rulesets are not uniquely named
	Error: tables with special characters
	Error: overflow error with a large ruleset
	Error: overall rule status is failed
	AnalysisException: Unable to verify existence of default database
	Error Message: Provided key map not suitable for given data frames
	Exception in User Class: java.lang.RuntimeException : Failed to fetch data. Check the logs in CloudWatch to get more details
	LAUNCH ERROR: Error downloading from S3 for bucket
	InvalidInputException (status: 400): DataQuality rules cannot be parsed
	Error: Eventbridge is not triggering Glue DQ jobs based on the schedule I setup
	CustomSQL errors
	Dynamic Rules
	Exception in User Class: org.apache.spark.sql.AnalysisException: org.apache.hadoop.hive.ql.metadata.HiveException
	UNCLASSIFIED_ERROR; IllegalArgumentException: Parsing Error: No rules or analyzers provided., no viable alternative at input

	Amazon Q data integration in AWS Glue
	What is Amazon Q?
	What is Amazon Q data integration in AWS Glue?
	Working with Amazon Q data integration in AWS Glue?
	Best practices for interacting with Amazon Q data integration
	Amazon Q data integration in AWS Glue service improvement
	Considerations
	Setting up Amazon Q data integration in AWS Glue
	Configuring IAM permissions
	Configuring IAM permissions for Amazon Q chat
	Configuring IAM permissions for AWS Glue Studio notebooks
	Assigning permissions

	Supported code generation abilities
	Example interactions
	Amazon Q chat interactions
	AWS Glue Studio notebook interactions
	Complex prompts

	Orchestration in AWS Glue
	Starting jobs and crawlers using triggers
	AWS Glue triggers
	Adding triggers
	Time-based schedules for jobs and crawlers
	Cron expressions

	Activating and deactivating triggers

	Performing complex ETL activities using blueprints and workflows in AWS Glue
	Overview of workflows in AWS Glue
	Creating and building out a workflow manually in AWS Glue
	Step 1: Create the workflow
	Step 2: Add a start trigger
	Step 3: Add more triggers

	Starting an AWS Glue workflow with an Amazon EventBridge event
	Viewing the EventBridge events that started a workflow
	Running and monitoring a workflow in AWS Glue
	Stopping a workflow run
	Repairing and resuming a workflow run
	Resuming a workflow run: How it works
	Resuming a workflow run
	Notes and limitations for resuming workflow runs

	Getting and setting workflow run properties in AWS Glue
	Querying workflows using the AWS Glue API
	Querying static views
	Graph definition
	Example of querying a static view

	Querying dynamic views
	Example 1: Dynamic view
	Example 2: Multiple jobs with a conditional trigger

	Blueprint and workflow restrictions in AWS Glue
	Blueprint restrictions
	Workflow restrictions

	Troubleshooting blueprint errors in AWS Glue
	Error: missing PySpark module
	Error: missing blueprint config file
	Error: missing imported file
	Error: not authorized to perform iamPassRole on resource
	Error: invalid cron schedule
	Error: a trigger with the same name already exists
	Error: workflow with name: foo already exists.
	Error: module not found in specified layoutGenerator path
	Error: validation error in Connections field

	Permissions for personas and roles for AWS Glue blueprints
	Blueprint personas
	Permissions for blueprint personas
	AWS Glue developer permissions for blueprints
	AWS Glue administrator permissions for blueprints
	Data analyst permissions for blueprints

	Permissions for blueprint roles

	Developing blueprints in AWS Glue
	Overview of blueprints in AWS Glue
	Developing blueprints in AWS Glue
	Overview of developing blueprints
	Prerequisites for developing blueprints
	Download the Python libraries
	Set up the AWS Java SDK
	Set up the AWS Python SDK
	Set up the preview AWS CLI

	Writing the blueprint code
	Creating the blueprint layout script
	Using the DependsOn argument
	Using the WaitForDependencies argument
	Using the OnSchedule argument

	Creating the configuration file
	Specifying blueprint parameters

	Sample blueprint project
	Testing a blueprint
	Publishing a blueprint
	AWS Glue blueprint classes reference
	Job class
	Crawler class
	Workflow class
	Class methods

	Blueprint samples

	Registering a blueprint in AWS Glue
	Viewing blueprints in AWS Glue
	Updating a blueprint in AWS Glue
	Creating a workflow from a blueprint in AWS Glue
	Viewing blueprint runs in AWS Glue

	AWS CloudFormation for AWS Glue
	Sample AWS CloudFormation template for an AWS Glue database
	Sample AWS CloudFormation template for an AWS Glue database, table, and partition
	Sample AWS CloudFormation template for an AWS Glue grok classifier
	Sample AWS CloudFormation template for an AWS Glue JSON classifier
	Sample AWS CloudFormation template for an AWS Glue XML classifier
	Sample AWS CloudFormation template for an AWS Glue crawler for Amazon S3
	Sample AWS CloudFormation template for an AWS Glue connection
	Sample AWS CloudFormation template for an AWS Glue crawler for JDBC
	Sample AWS CloudFormation template for an AWS Glue job for Amazon S3 to Amazon S3
	Sample AWS CloudFormation template for an AWS Glue job for JDBC to Amazon S3
	Sample AWS CloudFormation template for an AWS Glue on-demand trigger
	Sample AWS CloudFormation template for an AWS Glue scheduled trigger
	Sample AWS CloudFormation template for an AWS Glue conditional trigger
	Sample AWS CloudFormation template for an AWS Glue development endpoint
	Sample AWS CloudFormation template for an AWS Glue Data Quality ruleset
	Sample AWS CloudFormation template for an AWS Glue Data Quality ruleset with EventBridge scheduler
	Sample AWS CloudFormation template for an AWS Glue development endpoint

	AWS Glue programming guide
	Providing your own custom scripts
	Programming Spark scripts
	Tutorial: Writing an AWS Glue for Spark script
	Prerequisites
	Generate a sample script
	Tutorial sample script

	Step 1. Create a job and paste your script
	Step 2. Import AWS Glue libraries
	Step 3. Extract data from a source
	Step 4. Transform data with AWS Glue
	Step 5. Load data into a target
	Step 6. Commit the Job object
	Optional - Enable job bookmarks
	Step 7. Run your code as a job
	More information

	Program AWS Glue ETL scripts in PySpark
	Using Python with AWS Glue
	AWS Glue PySpark extensions
	AWS Glue PySpark transforms
	Setting up to use Python with AWS Glue
	Calling AWS Glue APIs in Python
	AWS Glue API names in Python
	Passing and accessing Python parameters in AWS Glue
	Example: Create and run a job

	Using Python libraries with AWS Glue
	Installing additional Python modules with pip in AWS Glue 2.0+
	Including Python files with PySpark native features
	Programming scripts that use visual transforms
	Python modules already provided in AWS Glue
	Zipping libraries for inclusion
	Loading Python libraries in AWS Glue Studio notebooks
	Loading Python libraries in a development endpoint
	Using Python libraries in a job or JobRun

	AWS Glue Python code samples
	Code example: Joining and relationalizing data
	Step 1: Crawl the data in the Amazon S3 bucket
	Step 2: Add boilerplate script to the development endpoint notebook
	Step 3: Examine the schemas from the data in the Data Catalog
	Step 4: Filter the data
	Step 5: Put it all together
	Step 6: Transform the data for relational databases
	Conclusion

	Code example: Data preparation using ResolveChoice, Lambda, and ApplyMapping
	Step 1: Crawl the data in the Amazon S3 bucket
	Step 2: Add boilerplate script to the development endpoint notebook
	Step 3: Compare different schema parsings
	Step 4: Map the data and use Apache Spark Lambda functions
	Step 5: Write the data to Apache Parquet

	AWS Glue PySpark extensions reference
	Accessing parameters using getResolvedOptions
	PySpark extension types
	DataType
	AtomicType and simple derivatives
	DecimalType(AtomicType)
	EnumType(AtomicType)
	 collection types
	ArrayType(DataType)
	ChoiceType(DataType)
	MapType(DataType)
	Field(Object)
	StructType(DataType)
	EntityType(DataType)
	 other types
	DataSource(object)
	DataSink(object)

	DynamicFrame class
	 — construction —
	__init__
	fromDF
	toDF
	 — information —
	count
	schema
	printSchema
	show
	repartition
	coalesce
	 — transforms —
	apply_mapping
	Example: Use apply_mapping to rename fields and change field types
	Output

	drop_fields
	Example: Use drop_fields to remove fields from a DynamicFrame
	Output

	filter
	Example: Use filter to get a filtered selection of fields
	Output

	join
	Example: Use join to combine DynamicFrames
	Output

	map
	Example: Use map to apply a function to every record in a DynamicFrame
	Output

	mergeDynamicFrame
	Example: Use mergeDynamicFrame to merge two DynamicFrames based on a primary key
	Output

	relationalize
	Example: Use relationalize to flatten a nested schema in a DynamicFrame
	Output

	rename_field
	Example: Use rename_field to rename fields in a DynamicFrame
	Output

	resolveChoice
	Example: Use resolveChoice to handle a column that contains multiple types
	Output

	select_fields
	Example: Use select_fields to create a new DynamicFrame with chosen fields
	Output

	simplify_ddb_json
	Example: Use simplify_ddb_json to invoke a DynamoDB JSON simplify

	spigot
	Example: Use spigot to write sample fields from a DynamicFrame to Amazon S3
	Output

	split_fields
	Example: Use split_fields to split selected fields into a separate DynamicFrame
	Output

	split_rows
	Example: Use split_rows to split rows in a DynamicFrame
	Output

	unbox
	Example: Use unbox to unbox a string field into a struct
	Output

	union
	unnest
	Example: Use unnest to turn nested fields into top-level fields
	Output

	unnest_ddb_json
	write
	 — errors —
	assertErrorThreshold
	errorsAsDynamicFrame
	Example: Use errorsAsDynamicFrame to view error records
	Output

	errorsCount
	stageErrorsCount

	DynamicFrameCollection class
	__init__
	Keys
	Values
	Select
	Map
	Flatmap

	DynamicFrameWriter class
	 methods
	__init__
	from_options
	from_catalog
	from_jdbc_conf
	Example for write_dynamic_frame

	DynamicFrameReader class
	 — methods —
	__init__
	from_rdd
	from_options
	from_catalog

	GlueContext class
	__init__
	Creating
	getSource
	create_dynamic_frame_from_rdd
	create_dynamic_frame_from_catalog
	create_dynamic_frame_from_options
	create_sample_dynamic_frame_from_catalog
	create_sample_dynamic_frame_from_options
	add_ingestion_time_columns
	create_data_frame_from_catalog
	create_data_frame_from_options
	forEachBatch
	Working with datasets in Amazon S3
	purge_table
	purge_s3_path
	transition_table
	transition_s3_path
	Extracting
	extract_jdbc_conf
	Transactions
	start_transaction
	commit_transaction
	cancel_transaction
	Writing
	getSink
	write_dynamic_frame_from_options
	write_from_options
	write_dynamic_frame_from_catalog
	write_data_frame_from_catalog
	write_dynamic_frame_from_jdbc_conf
	write_from_jdbc_conf

	AWS Glue PySpark transforms reference
	GlueTransform base class
	Methods
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	ApplyMapping class
	Example
	Methods
	__call__(frame, mappings, transformation_ctx = "", info = "", stageThreshold = 0, totalThreshold = 0)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	DropFields class
	Example
	Methods
	__call__(frame, paths, transformation_ctx = "", info = "", stageThreshold = 0, totalThreshold = 0)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	DropNullFields class
	Example
	Output

	Methods
	__call__(frame, transformation_ctx = "", info = "", stageThreshold = 0, totalThreshold = 0)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	ErrorsAsDynamicFrame class
	Example
	Methods
	__call__(frame)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	EvaluateDataQuality class
	Example
	Output

	Methods
	__call__(frame, ruleset, publishing_options = {})
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	FillMissingValues class
	Methods
	apply(frame, missing_values_column, output_column ="", transformation_ctx ="", info ="", stageThreshold = 0, totalThreshold = 0)

	Filter class
	Example
	Methods
	__call__(frame, f, transformation_ctx="", info="", stageThreshold=0, totalThreshold=0))
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	FindIncrementalMatches class
	Methods
	apply(existingFrame, incrementalFrame, transformId, transformation_ctx = "", info = "", stageThreshold = 0, totalThreshold = 0, enforcedMatches = none, computeMatchConfidenceScores = 0)

	FindMatches class
	Methods
	apply(frame, transformId, transformation_ctx = "", info = "", stageThreshold = 0, totalThreshold = 0, enforcedMatches = none, computeMatchConfidenceScores = 0)

	FlatMap class
	Examples for FlatMap
	Example JSON data
	Example output

	Methods
	__call__(dfc, BaseTransform, frame_name, transformation_ctx = "", **base_kwargs)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	Join class
	Example
	Methods
	__call__(frame1, frame2, keys1, keys2, transformation_ctx = "")
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	Map class
	Example
	Methods
	__call__(frame, f, transformation_ctx="", info="", stageThreshold=0, totalThreshold=0)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	MapToCollection class
	Methods
	__call__(dfc, BaseTransform, frame_name, transformation_ctx = "", **base_kwargs)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	Relationalize class
	Example
	Methods
	__call__(frame, staging_path=None, name='roottable', options=None, transformation_ctx = "", info = "", stageThreshold = 0, totalThreshold = 0)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	RenameField class
	Example
	Methods
	__call__(frame, old_name, new_name, transformation_ctx = "", info = "", stageThreshold = 0, totalThreshold = 0)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	ResolveChoice class
	Example
	Methods
	__call__(frame, specs = none, choice = "", transformation_ctx = "", info = "", stageThreshold = 0, totalThreshold = 0)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	SelectFields class
	Example
	Methods
	__call__(frame, paths, transformation_ctx = "", info = "", stageThreshold = 0, totalThreshold = 0)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	SelectFromCollection class
	Example
	Output

	Methods
	__call__(dfc, key, transformation_ctx = "")
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	Simplify_ddb_json class
	Example

	Spigot class
	Example
	Methods
	__call__(frame, path, options, transformation_ctx = "")
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	SplitFields class
	Example
	Methods
	__call__(frame, paths, name1 = none, name2 = none, transformation_ctx = "", info = "", stageThreshold = 0, totalThreshold = 0)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	SplitRows class
	Example
	Methods
	__call__(frame, comparison_dict, name1="frame1", name2="frame2", transformation_ctx = "", info = none, stageThreshold = 0, totalThreshold = 0)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	Unbox class
	Example
	Methods
	__call__(frame, path, format, transformation_ctx = "", info="", stageThreshold=0, totalThreshold=0, **options)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	UnnestFrame class
	Example
	Methods
	__call__(frame, transformation_ctx = "", info="", stageThreshold=0, totalThreshold=0)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	FlagDuplicatesInColumn class
	Example
	Output
	Methods
	__call__(spark_context, data_frame, source_column, target_column, true_string=DEFAULT_TRUE_STRING, false_string=DEFAULT_FALSE_STRING)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	FormatPhoneNumber class
	Example
	Output
	Methods
	__call__(spark_context, data_frame, source_column, phone_number_format=None, default_region=None, default_region_column=None)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	FormatCase class
	Example
	Output
	Methods
	__call__(spark_context, data_frame, source_column, case_type)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	FillWithMode class
	Example
	Output
	Methods
	__call__(spark_context, data_frame, source_column, mode_type)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	FlagDuplicateRows class
	Example
	Output
	Methods
	__call__(spark_context, data_frame, target_column, true_string=DEFAULT_TRUE_STRING, false_string=DEFAULT_FALSE_STRING, target_index=None)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	RemoveDuplicates class
	Example
	Output
	Methods
	__call__(spark_context, data_frame, source_column)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	MonthName class
	Example
	Output
	Methods
	__call__(spark_context, data_frame, target_column, source_column=None, value=None)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	IsEven class
	Example
	Output
	Methods
	__call__(spark_context, data_frame, target_column, source_column=None, true_string=DEFAULT_TRUE_STRING, false_string=DEFAULT_FALSE_STRING, value=None)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	CryptographicHash class
	Example
	Output
	Methods
	__call__(spark_context, data_frame, source_columns, secret_id, algorithm=None, secret_version=None, create_secret_if_missing=False, output_format=None, entity_type_filter=None)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	Decrypt class
	Example
	Output
	Methods
	__call__(spark_context, data_frame, source_columns, kms_key_arn)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	Encrypt class
	Example
	Output
	Methods
	__call__(spark_context, data_frame, source_columns, kms_key_arn, entity_type_filter=None, preserve_data_type=None)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	IntToIp class
	Example
	Output
	Methods
	__call__(spark_context, data_frame, target_column, source_column=None, value=None)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	IpToInt class
	Example
	Output
	Methods
	__call__(spark_context, data_frame, target_column, source_column=None, value=None)
	apply(cls, *args, **kwargs)
	name(cls)
	describeArgs(cls)
	describeReturn(cls)
	describeTransform(cls)
	describeErrors(cls)
	describe(cls)

	Data integration transforms
	Maven: Bundle the plugin with your Spark applications

	Programming AWS Glue ETL scripts in Scala
	Using Scala to program AWS Glue ETL scripts
	Testing a Scala ETL program in a Jupyter notebook on a development endpoint
	Testing a Scala ETL program in a Scala REPL

	Scala script example - streaming ETL
	APIs in the AWS Glue Scala library
	com.amazonaws.services.glue
	com.amazonaws.services.glue.ml
	com.amazonaws.services.glue.dq
	com.amazonaws.services.glue.types
	com.amazonaws.services.glue.util
	AWS Glue Scala ChoiceOption APIs
	ChoiceOption trait
	ChoiceOption object
	Def apply

	Case class ChoiceOptionWithResolver
	Case class MatchCatalogSchemaChoiceOption

	Abstract DataSink class
	Def writeDynamicFrame
	Def pyWriteDynamicFrame
	Def writeDataFrame
	Def pyWriteDataFrame
	Def setCatalogInfo
	Def supportsFormat
	Def setFormat
	Def withFormat
	Def setAccumulableSize
	Def getOutputErrorRecordsAccumulable
	Def errorsAsDynamicFrame
	DataSink object
	Def recordMetrics

	AWS Glue Scala DataSource trait
	AWS Glue Scala DynamicFrame APIs
	AWS Glue Scala DynamicFrame class
	Val errorsCount
	Def applyMapping
	Def assertErrorThreshold
	Def count
	Def dropField
	Def dropFields
	Def dropNulls
	Def errorsAsDynamicFrame
	Def filter
	Def getName
	Def getNumPartitions
	Def getSchemaIfComputed
	Def isSchemaComputed
	Def javaToPython
	Def join
	Def map
	Def mergeDynamicFrames
	Def printSchema
	Def recomputeSchema
	Def relationalize
	Def renameField
	Def repartition
	Def resolveChoice
	Def schema
	Def selectField
	Def selectFields
	Def show
	Def simplifyDDBJson
	Example output

	Def spigot
	Def splitFields
	Def splitRows
	Def stageErrorsCount
	Def toDF
	Def unbox
	Def unnest
	Def unnestDDBJson
	Def withFrameSchema
	Def withName
	Def withTransformationContext

	The DynamicFrame object
	Def apply
	Def emptyDynamicFrame
	Def fromPythonRDD
	Def ignoreErrors
	Def inlineErrors
	Def newFrameWithErrors

	AWS Glue Scala DynamicRecord class
	Def addField
	Def dropField
	Def setError
	Def isError
	Def getError
	Def clearError
	Def write
	Def readFields
	Def clone
	Def schema
	Def getRoot
	Def toJson
	Def getFieldNode
	Def getField
	Def hashCode
	Def equals
	DynamicRecord object
	Def apply

	RecordTraverser trait

	AWS Glue Scala GlueContext APIs
	def addIngestionTimeColumns
	def createDataFrameFromOptions
	forEachBatch
	def getCatalogSink
	def getCatalogSource
	def getJDBCSink
	def getSink
	def getSinkWithFormat
	def getSource
	def getSourceWithFormat
	def getSparkSession
	def startTransaction
	def commitTransaction
	def cancelTransaction
	def this
	def this
	def this

	MappingSpec
	MappingSpec case class
	MappingSpec object
	Val orderingByTarget
	Def apply
	Def apply
	Def apply

	AWS Glue Scala ResolveSpec APIs
	ResolveSpec object
	Def
	Def

	ResolveSpec case class
	ResolveSpec def methods

	AWS Glue Scala ArrayNode APIs
	ArrayNode case class
	ArrayNode def methods

	AWS Glue Scala BinaryNode APIs
	BinaryNode case class
	BinaryNode val fields
	BinaryNode def methods

	AWS Glue Scala BooleanNode APIs
	BooleanNode case class
	BooleanNode val fields
	BooleanNode def methods

	AWS Glue Scala ByteNode APIs
	ByteNode case class
	ByteNode val fields
	ByteNode def methods

	AWS Glue Scala DateNode APIs
	DateNode case class
	DateNode val fields
	DateNode def methods

	AWS Glue Scala DecimalNode APIs
	DecimalNode case class
	DecimalNode val fields
	DecimalNode def methods

	AWS Glue Scala DoubleNode APIs
	DoubleNode case class
	DoubleNode val fields
	DoubleNode def methods

	AWS Glue Scala DynamicNode APIs
	DynamicNode class
	DynamicNode def methods

	DynamicNode object
	DynamicNode def methods

	EvaluateDataQuality class
	Def apply
	Example

	AWS Glue Scala FloatNode APIs
	FloatNode case class
	FloatNode val fields
	FloatNode def methods

	FillMissingValues class
	Def apply

	FindMatches class
	Def apply

	FindIncrementalMatches class
	Def apply

	AWS Glue Scala IntegerNode APIs
	IntegerNode case class
	IntegerNode val fields
	IntegerNode def methods

	AWS Glue Scala LongNode APIs
	LongNode case class
	LongNode val fields
	LongNode def methods

	AWS Glue Scala MapLikeNode APIs
	MapLikeNode class
	MapLikeNode def methods

	AWS Glue Scala MapNode APIs
	MapNode case class
	MapNode def methods

	AWS Glue Scala NullNode APIs
	NullNode class
	NullNode case object

	AWS Glue Scala ObjectNode APIs
	ObjectNode object
	ObjectNode def methods

	ObjectNode case class
	ObjectNode def methods

	AWS Glue Scala ScalarNode APIs
	ScalarNode class
	ScalarNode def methods

	ScalarNode object
	ScalarNode def methods

	AWS Glue Scala ShortNode APIs
	ShortNode case class
	ShortNode val fields
	ShortNode def methods

	AWS Glue Scala StringNode APIs
	StringNode case class
	StringNode val fields
	StringNode def methods

	AWS Glue Scala TimestampNode APIs
	TimestampNode case class
	TimestampNode val fields
	TimestampNode def methods

	AWS Glue Scala GlueArgParser APIs
	GlueArgParser object
	GlueArgParser def methods

	AWS Glue Scala job APIs
	Job object
	Job def methods

	Features and optimizations for programming AWS Glue for Spark ETL scripts
	Connection types and options for ETL in AWS Glue for Spark
	DynamoDB connections
	Configuring DynamoDB connections
	Reading from and writing to DynamoDB
	Using the DynamoDB export connector
	Simplifying usage of DynamoDB export JSON
	Configuring paralleism in DynamoDB operations
	DynamoDB connection option reference
	"connectionType": "dynamodb" with the ETL connector as source
	"connectionType": "dynamodb" with the AWS Glue DynamoDB export connector as source
	"connectionType": "dynamodb" with the ETL connector as sink

	Cross-account cross-Region access to DynamoDB tables
	Create a role
	Grant access to the role
	Assume the role in the AWS Glue job script

	Kinesis connections
	
	Configure Kinesis
	

	Example: Reading from Kinesis streams
	Example: Reading from Kinesis streams

	Example: Writing to Kinesis streams
	Example: Reading from Kinesis streams

	Kinesis connection option reference
	

	Using enhanced fan-out in Kinesis streaming jobs

	Amazon S3 connections
	Configuring S3 connections
	Amazon S3 connection option reference
	Deprecated connection syntaxes for data formats
	"connectionType": "Orc"
	"connectionType": "parquet"

	Excluding Amazon S3 storage classes
	Excluding Amazon S3 storage classes when creating a Dynamic Frame
	Excluding Amazon S3 storage classes on a Data Catalog table

	Managing partitions for ETL output in AWS Glue
	Pre-filtering using pushdown predicates
	Server-side filtering using catalog partition predicates
	Writing partitions

	Reading input files in larger groups
	Amazon VPC endpoints for Amazon S3

	Amazon DocumentDB connections
	Reading and writing to Amazon DocumentDB collections
	Amazon DocumentDB connection option reference
	"connectionType": "Documentdb" as source
	"connectionType": "Documentdb" as sink

	OpenSearch Service connections
	Configuring OpenSearch Service connections
	Reading from OpenSearch Service indexes
	Writing to OpenSearch Service tables
	OpenSearch Service connection option reference

	Redshift connections
	Configuring Redshift connections
	Configuring IAM roles
	Set up Amazon VPC
	Set up AWS Glue

	Example: Reading from Amazon Redshift tables
	Example: Writing to Amazon Redshift tables
	Amazon Redshift connection option reference
	Additional connection options available in AWS Glue 4.0+

	Migrating from AWS Glue version 3.0 to version 4.0

	Kafka connections
	
	Configure Kafka
	

	Example: Reading from Kafka streams
	

	Example: Writing to Kafka streams
	

	Kafka connection option reference
	

	Azure Cosmos DB connections
	Configuring Azure Cosmos DB connections
	Reading from Azure Cosmos DB for NoSQL containers
	Writing to Azure Cosmos DB for NoSQL containers
	Azure Cosmos DB connection option reference

	Azure SQL connections
	Configuring Azure SQL connections
	Reading from Azure SQL tables
	Writing to Azure SQL tables
	Azure SQL connection option reference

	BigQuery connections
	Configuring BigQuery connections
	Reading from BigQuery tables
	Writing to BigQuery tables
	BigQuery connection option reference
	Using indirect write with Google BigQuery

	JDBC connections
	JDBC connection option reference
	Use sampleQuery
	Use custom JDBC driver
	Reading from JDBC tables in parallel
	Setting up Amazon VPC for JDBC connections to Amazon RDS data stores from AWS Glue

	MongoDB connections
	Configuring MongoDB connections
	Reading from MongoDB using a AWS Glue connection
	Writing to MongoDB tables
	Reading and writing to MongoDB tables
	MongoDB connection option reference
	"connectionType": "mongodb" as source
	"connectionType": "mongodb" as sink

	SAP HANA connections
	Configuring SAP HANA connections
	Reading from SAP HANA tables
	Writing to SAP HANA tables
	SAP HANA connection option reference

	Snowflake connections
	Configuring Snowflake connections
	Reading from Snowflake tables
	Writing to Snowflake tables
	Snowflake connection option reference
	Snowflake connector limitations

	Teradata Vantage connections
	Configuring Teradata connections
	Reading from Teradata
	Writing to Teradata tables
	Teradata connection option reference

	Vertica connections
	Configuring Vertica connections
	Reading from Vertica
	Writing to Vertica tables
	Vertica connection option reference

	Custom and AWS Marketplace connectionType values
	Connection options for type custom.jdbc or marketplace.jdbc
	Connection options for type custom.athena or marketplace.athena
	Connection options for type custom.spark or marketplace.spark

	General options

	Data format options for inputs and outputs in AWS Glue for Spark
	Feature support across data formats in AWS Glue
	Parameters used to interact with data formats in AWS Glue
	Using the CSV format in AWS Glue
	Example: Read CSV files or folders from S3
	Example: Write CSV files and folders to S3
	CSV configuration reference
	Optimize read performance with vectorized SIMD CSV reader

	Using the Parquet format in AWS Glue
	Example: Read Parquet files or folders from S3
	Example: Write Parquet files and folders to S3
	Parquet configuration reference
	Optimize write performance with AWS Glue Parquet writer

	Using the XML format in AWS Glue
	Example: Read XML from S3
	XML configuration reference
	Manually specify the XML schema

	Using the Avro format in AWS Glue
	Example: Read Avro files or folders from S3
	Example: Write Avro files and folders to S3
	Avro configuration reference
	Avro Spark DataFrame support

	Using the grokLog format in AWS Glue
	grokLog configuration reference

	Using the Ion format in AWS Glue
	Example: Read Ion files and folders from S3
	Ion configuration reference

	Using the JSON format in AWS Glue
	Example: Read JSON files or folders from S3
	Example: Write JSON files and folders to S3
	Json configuration reference
	Using vectorized SIMD JSON reader with Apache Arrow columnar format

	Using the ORC format in AWS Glue
	Example: Read ORC files or folders from S3
	Example: Write ORC files and folders to S3
	ORC configuration reference

	Using data lake frameworks with AWS Glue ETL jobs
	Limitations
	Limitations for data lake format tables managed by Lake Formation permissions

	Using the Hudi framework in AWS Glue
	Enabling Hudi
	Example: Write a Hudi table to Amazon S3 and register it in the AWS Glue Data Catalog
	Example: Read a Hudi table from Amazon S3 using the AWS Glue Data Catalog
	Example: Update and insert a DataFrame into a Hudi table in Amazon S3
	Example: Read a Hudi table from Amazon S3 using Spark
	Example: Write a Hudi table to Amazon S3 using Spark
	Example: Read and write Hudi table with Lake Formation permission control

	Using the Delta Lake framework in AWS Glue
	Enabling Delta Lake for AWS Glue
	Example: Write a Delta Lake table to Amazon S3 and register it to the AWS Glue Data Catalog
	Example: Read a Delta Lake table from Amazon S3 using the AWS Glue Data Catalog
	Example: Insert a DataFrame into a Delta Lake table in Amazon S3 using the AWS Glue Data Catalog
	Example: Read a Delta Lake table from Amazon S3 using the Spark API
	Example: Write a Delta Lake table to Amazon S3 using Spark
	Example: Read and write Delta Lake table with Lake Formation permission control

	Using the Iceberg framework in AWS Glue
	Enabling the Iceberg framework
	Example: Write an Iceberg table to Amazon S3 and register it to the AWS Glue Data Catalog
	Example: Read an Iceberg table from Amazon S3 using the AWS Glue Data Catalog
	Example: Insert a DataFrame into an Iceberg table in Amazon S3 using the AWS Glue Data Catalog
	Example: Read an Iceberg table from Amazon S3 using Spark
	Example: Read and write Iceberg table with Lake Formation permission control

	Shared configuration reference

	AWS Glue Data Catalog support for Spark SQL jobs
	Using job bookmarks
	Specify bookmark keys
	Transformation context
	Examples

	Using Sensitive Data Detection outside AWS Glue Studio
	Detecting Sensitive Data Detection using AWS Managed PII types
	Row-level detection
	Row-level detection with fine-grained actions
	Column-level detection

	Detecting Sensitive Data Detection using AWS CustomEntityType PII types
	Detection parameters for using detect()
	Detection Parameters for classifyColumns()
	Managed Sensitive Data Types
	Using fine-grained sensitive data detection
	Using Sensitive Data Detection APIs with fine-grained actions
	Using the detect API with fine-grained actions
	Persistent Audit Log

	AWS Glue Visual Job API
	API design and CRUD APIs
	Getting started
	Visual job limitations

	Programming Ray scripts
	Tutorial: Writing an ETL script in AWS Glue for Ray
	Step 1: Create a bucket in Amazon S3 to hold your output data
	Step 2: Create an IAM role and policy for your Ray job
	Step 3: Create and run an AWS Glue for Ray job
	Step 4: Inspect your output
	Next steps

	Using Ray Core and Ray Data in AWS Glue for Ray
	What is Ray Core?
	Ray Core in AWS Glue for Ray
	What is Ray Data?
	Ray Data in AWS Glue for Ray

	Providing files and Python libraries to Ray jobs
	Modules provided with Ray jobs
	Providing files to your Ray job
	Additional Python modules for Ray jobs
	Including Python code in Ray jobs

	Connecting to data in Ray jobs
	Common libraries for working with data in Ray
	Connecting to data through the Data Catalog

	Using this service with an AWS SDK
	AWS Glue API
	Security APIs in AWS Glue
	Data types
	DataCatalogEncryptionSettings structure
	EncryptionAtRest structure
	ConnectionPasswordEncryption structure
	EncryptionConfiguration structure
	S3Encryption structure
	CloudWatchEncryption structure
	JobBookmarksEncryption structure
	SecurityConfiguration structure
	GluePolicy structure
	Operations
	GetDataCatalogEncryptionSettings action (Python: get_data_catalog_encryption_settings)
	PutDataCatalogEncryptionSettings action (Python: put_data_catalog_encryption_settings)
	PutResourcePolicy action (Python: put_resource_policy)
	GetResourcePolicy action (Python: get_resource_policy)
	DeleteResourcePolicy action (Python: delete_resource_policy)
	CreateSecurityConfiguration action (Python: create_security_configuration)
	DeleteSecurityConfiguration action (Python: delete_security_configuration)
	GetSecurityConfiguration action (Python: get_security_configuration)
	GetSecurityConfigurations action (Python: get_security_configurations)
	GetResourcePolicies action (Python: get_resource_policies)

	Catalog API
	Database API
	Data types
	Database structure
	DatabaseInput structure
	PrincipalPermissions structure
	DataLakePrincipal structure
	DatabaseIdentifier structure
	FederatedDatabase structure
	Operations
	CreateDatabase action (Python: create_database)
	UpdateDatabase action (Python: update_database)
	DeleteDatabase action (Python: delete_database)
	GetDatabase action (Python: get_database)
	GetDatabases action (Python: get_databases)

	Table API
	Data types
	Table structure
	TableInput structure
	FederatedTable structure
	Column structure
	StorageDescriptor structure
	SchemaReference structure
	SerDeInfo structure
	Order structure
	SkewedInfo structure
	TableVersion structure
	TableError structure
	TableVersionError structure
	SortCriterion structure
	TableIdentifier structure
	KeySchemaElement structure
	PartitionIndex structure
	PartitionIndexDescriptor structure
	BackfillError structure
	IcebergInput structure
	OpenTableFormatInput structure
	ViewDefinition structure
	ViewDefinitionInput structure
	ViewRepresentation structure
	ViewRepresentationInput structure
	Operations
	CreateTable action (Python: create_table)
	UpdateTable action (Python: update_table)
	DeleteTable action (Python: delete_table)
	BatchDeleteTable action (Python: batch_delete_table)
	GetTable action (Python: get_table)
	GetTables action (Python: get_tables)
	GetTableVersion action (Python: get_table_version)
	GetTableVersions action (Python: get_table_versions)
	DeleteTableVersion action (Python: delete_table_version)
	BatchDeleteTableVersion action (Python: batch_delete_table_version)
	SearchTables action (Python: search_tables)
	GetPartitionIndexes action (Python: get_partition_indexes)
	CreatePartitionIndex action (Python: create_partition_index)
	DeletePartitionIndex action (Python: delete_partition_index)
	GetColumnStatisticsForTable action (Python: get_column_statistics_for_table)
	UpdateColumnStatisticsForTable action (Python: update_column_statistics_for_table)
	DeleteColumnStatisticsForTable action (Python: delete_column_statistics_for_table)

	Partition API
	Data types
	Partition structure
	PartitionInput structure
	PartitionSpecWithSharedStorageDescriptor structure
	PartitionListComposingSpec structure
	PartitionSpecProxy structure
	PartitionValueList structure
	Segment structure
	PartitionError structure
	BatchUpdatePartitionFailureEntry structure
	BatchUpdatePartitionRequestEntry structure
	StorageDescriptor structure
	SchemaReference structure
	SerDeInfo structure
	SkewedInfo structure
	Operations
	CreatePartition action (Python: create_partition)
	BatchCreatePartition action (Python: batch_create_partition)
	UpdatePartition action (Python: update_partition)
	DeletePartition action (Python: delete_partition)
	BatchDeletePartition action (Python: batch_delete_partition)
	GetPartition action (Python: get_partition)
	GetPartitions action (Python: get_partitions)
	BatchGetPartition action (Python: batch_get_partition)
	BatchUpdatePartition action (Python: batch_update_partition)
	GetColumnStatisticsForPartition action (Python: get_column_statistics_for_partition)
	UpdateColumnStatisticsForPartition action (Python: update_column_statistics_for_partition)
	DeleteColumnStatisticsForPartition action (Python: delete_column_statistics_for_partition)

	Connection API
	Data types
	Connection structure
	ConnectionInput structure
	PhysicalConnectionRequirements structure
	GetConnectionsFilter structure
	Operations
	CreateConnection action (Python: create_connection)
	DeleteConnection action (Python: delete_connection)
	GetConnection action (Python: get_connection)
	GetConnections action (Python: get_connections)
	UpdateConnection action (Python: update_connection)
	BatchDeleteConnection action (Python: batch_delete_connection)
	Authentication configuration
	AuthenticationConfiguration structure
	AuthenticationConfigurationInput structure
	OAuth2Properties structure
	OAuth2PropertiesInput structure
	OAuth2ClientApplication structure
	AuthorizationCodeProperties structure

	User-defined Function API
	Data types
	UserDefinedFunction structure
	UserDefinedFunctionInput structure
	Operations
	CreateUserDefinedFunction action (Python: create_user_defined_function)
	UpdateUserDefinedFunction action (Python: update_user_defined_function)
	DeleteUserDefinedFunction action (Python: delete_user_defined_function)
	GetUserDefinedFunction action (Python: get_user_defined_function)
	GetUserDefinedFunctions action (Python: get_user_defined_functions)

	Importing an Athena catalog to AWS Glue
	Data types
	CatalogImportStatus structure
	Operations
	ImportCatalogToGlue action (Python: import_catalog_to_glue)
	GetCatalogImportStatus action (Python: get_catalog_import_status)

	Table optimizer API
	Data types
	TableOptimizer structure
	TableOptimizerConfiguration structure
	TableOptimizerRun structure
	RunMetrics structure
	BatchGetTableOptimizerEntry structure
	BatchTableOptimizer structure
	BatchGetTableOptimizerError structure
	Operations
	GetTableOptimizer action (Python: get_table_optimizer)
	BatchGetTableOptimizer action (Python: batch_get_table_optimizer)
	ListTableOptimizerRuns action (Python: list_table_optimizer_runs)
	CreateTableOptimizer action (Python: create_table_optimizer)
	DeleteTableOptimizer action (Python: delete_table_optimizer)
	UpdateTableOptimizer action (Python: update_table_optimizer)

	Crawlers and classifiers API
	Classifier API
	Data types
	Classifier structure
	GrokClassifier structure
	XMLClassifier structure
	JsonClassifier structure
	CsvClassifier structure
	CreateGrokClassifierRequest structure
	UpdateGrokClassifierRequest structure
	CreateXMLClassifierRequest structure
	UpdateXMLClassifierRequest structure
	CreateJsonClassifierRequest structure
	UpdateJsonClassifierRequest structure
	CreateCsvClassifierRequest structure
	UpdateCsvClassifierRequest structure
	Operations
	CreateClassifier action (Python: create_classifier)
	DeleteClassifier action (Python: delete_classifier)
	GetClassifier action (Python: get_classifier)
	GetClassifiers action (Python: get_classifiers)
	UpdateClassifier action (Python: update_classifier)

	Crawler API
	Data types
	Crawler structure
	Schedule structure
	CrawlerTargets structure
	S3Target structure
	S3DeltaCatalogTarget structure
	S3DeltaDirectTarget structure
	JdbcTarget structure
	MongoDBTarget structure
	DynamoDBTarget structure
	DeltaTarget structure
	IcebergTarget structure
	HudiTarget structure
	CatalogTarget structure
	CrawlerMetrics structure
	CrawlerHistory structure
	CrawlsFilter structure
	SchemaChangePolicy structure
	LastCrawlInfo structure
	RecrawlPolicy structure
	LineageConfiguration structure
	LakeFormationConfiguration structure
	Operations
	CreateCrawler action (Python: create_crawler)
	DeleteCrawler action (Python: delete_crawler)
	GetCrawler action (Python: get_crawler)
	GetCrawlers action (Python: get_crawlers)
	GetCrawlerMetrics action (Python: get_crawler_metrics)
	UpdateCrawler action (Python: update_crawler)
	StartCrawler action (Python: start_crawler)
	StopCrawler action (Python: stop_crawler)
	BatchGetCrawlers action (Python: batch_get_crawlers)
	ListCrawlers action (Python: list_crawlers)
	ListCrawls action (Python: list_crawls)

	Column statistics API
	Data types
	ColumnStatisticsTaskRun structure
	ColumnStatisticsTaskRunningException structure
	ColumnStatisticsTaskNotRunningException structure
	ColumnStatisticsTaskStoppingException structure
	Operations
	StartColumnStatisticsTaskRun action (Python: start_column_statistics_task_run)
	GetColumnStatisticsTaskRun action (Python: get_column_statistics_task_run)
	GetColumnStatisticsTaskRuns action (Python: get_column_statistics_task_runs)
	ListColumnStatisticsTaskRuns action (Python: list_column_statistics_task_runs)
	StopColumnStatisticsTaskRun action (Python: stop_column_statistics_task_run)

	Crawler scheduler API
	Data types
	Schedule structure
	Operations
	UpdateCrawlerSchedule action (Python: update_crawler_schedule)
	StartCrawlerSchedule action (Python: start_crawler_schedule)
	StopCrawlerSchedule action (Python: stop_crawler_schedule)

	Autogenerating ETL Scripts API
	Data types
	CodeGenNode structure
	CodeGenNodeArg structure
	CodeGenEdge structure
	Location structure
	CatalogEntry structure
	MappingEntry structure
	Operations
	CreateScript action (Python: create_script)
	GetDataflowGraph action (Python: get_dataflow_graph)
	GetMapping action (Python: get_mapping)
	GetPlan action (Python: get_plan)

	Visual job API
	Data types
	CodeGenConfigurationNode structure
	JDBCConnectorOptions structure
	StreamingDataPreviewOptions structure
	AthenaConnectorSource structure
	JDBCConnectorSource structure
	SparkConnectorSource structure
	CatalogSource structure
	MySQLCatalogSource structure
	PostgreSQLCatalogSource structure
	OracleSQLCatalogSource structure
	MicrosoftSQLServerCatalogSource structure
	CatalogKinesisSource structure
	DirectKinesisSource structure
	KinesisStreamingSourceOptions structure
	CatalogKafkaSource structure
	DirectKafkaSource structure
	KafkaStreamingSourceOptions structure
	RedshiftSource structure
	AmazonRedshiftSource structure
	AmazonRedshiftNodeData structure
	AmazonRedshiftAdvancedOption structure
	Option structure
	S3CatalogSource structure
	S3SourceAdditionalOptions structure
	S3CsvSource structure
	DirectJDBCSource structure
	S3DirectSourceAdditionalOptions structure
	S3JsonSource structure
	S3ParquetSource structure
	S3DeltaSource structure
	S3CatalogDeltaSource structure
	CatalogDeltaSource structure
	S3HudiSource structure
	S3CatalogHudiSource structure
	CatalogHudiSource structure
	DynamoDBCatalogSource structure
	RelationalCatalogSource structure
	JDBCConnectorTarget structure
	SparkConnectorTarget structure
	BasicCatalogTarget structure
	MySQLCatalogTarget structure
	PostgreSQLCatalogTarget structure
	OracleSQLCatalogTarget structure
	MicrosoftSQLServerCatalogTarget structure
	RedshiftTarget structure
	AmazonRedshiftTarget structure
	UpsertRedshiftTargetOptions structure
	S3CatalogTarget structure
	S3GlueParquetTarget structure
	CatalogSchemaChangePolicy structure
	S3DirectTarget structure
	S3HudiCatalogTarget structure
	S3HudiDirectTarget structure
	S3DeltaCatalogTarget structure
	S3DeltaDirectTarget structure
	DirectSchemaChangePolicy structure
	ApplyMapping structure
	Mapping structure
	SelectFields structure
	DropFields structure
	RenameField structure
	Spigot structure
	Join structure
	JoinColumn structure
	SplitFields structure
	SelectFromCollection structure
	FillMissingValues structure
	Filter structure
	FilterExpression structure
	FilterValue structure
	CustomCode structure
	SparkSQL structure
	SqlAlias structure
	DropNullFields structure
	NullCheckBoxList structure
	NullValueField structure
	Datatype structure
	Merge structure
	Union structure
	PIIDetection structure
	Aggregate structure
	DropDuplicates structure
	GovernedCatalogTarget structure
	GovernedCatalogSource structure
	AggregateOperation structure
	GlueSchema structure
	GlueStudioSchemaColumn structure
	GlueStudioColumn structure
	DynamicTransform structure
	TransformConfigParameter structure
	EvaluateDataQuality structure
	DQResultsPublishingOptions structure
	DQStopJobOnFailureOptions structure
	EvaluateDataQualityMultiFrame structure
	Recipe structure
	RecipeReference structure
	SnowflakeNodeData structure
	SnowflakeSource structure
	SnowflakeTarget structure
	ConnectorDataSource structure
	ConnectorDataTarget structure

	Jobs API
	Jobs
	Data types
	Job structure
	ExecutionProperty structure
	NotificationProperty structure
	JobCommand structure
	ConnectionsList structure
	JobUpdate structure
	SourceControlDetails structure
	Operations
	CreateJob action (Python: create_job)
	UpdateJob action (Python: update_job)
	GetJob action (Python: get_job)
	GetJobs action (Python: get_jobs)
	DeleteJob action (Python: delete_job)
	ListJobs action (Python: list_jobs)
	BatchGetJobs action (Python: batch_get_jobs)

	Job runs
	Data types
	JobRun structure
	Predecessor structure
	JobBookmarkEntry structure
	BatchStopJobRunSuccessfulSubmission structure
	BatchStopJobRunError structure
	NotificationProperty structure
	Operations
	StartJobRun action (Python: start_job_run)
	BatchStopJobRun action (Python: batch_stop_job_run)
	GetJobRun action (Python: get_job_run)
	GetJobRuns action (Python: get_job_runs)
	GetJobBookmark action (Python: get_job_bookmark)
	GetJobBookmarks action (Python: get_job_bookmarks)
	ResetJobBookmark action (Python: reset_job_bookmark)

	Triggers
	Data types
	Trigger structure
	TriggerUpdate structure
	Predicate structure
	Condition structure
	Action structure
	EventBatchingCondition structure
	Operations
	CreateTrigger action (Python: create_trigger)
	StartTrigger action (Python: start_trigger)
	GetTrigger action (Python: get_trigger)
	GetTriggers action (Python: get_triggers)
	UpdateTrigger action (Python: update_trigger)
	StopTrigger action (Python: stop_trigger)
	DeleteTrigger action (Python: delete_trigger)
	ListTriggers action (Python: list_triggers)
	BatchGetTriggers action (Python: batch_get_triggers)

	Interactive sessions API
	Data types
	Session structure
	SessionCommand structure
	Statement structure
	StatementOutput structure
	StatementOutputData structure
	ConnectionsList structure
	Operations
	CreateSession action (Python: create_session)
	StopSession action (Python: stop_session)
	DeleteSession action (Python: delete_session)
	GetSession action (Python: get_session)
	ListSessions action (Python: list_sessions)
	RunStatement action (Python: run_statement)
	CancelStatement action (Python: cancel_statement)
	GetStatement action (Python: get_statement)
	ListStatements action (Python: list_statements)

	Development endpoints API
	Data types
	DevEndpoint structure
	DevEndpointCustomLibraries structure
	Operations
	CreateDevEndpoint action (Python: create_dev_endpoint)
	UpdateDevEndpoint action (Python: update_dev_endpoint)
	DeleteDevEndpoint action (Python: delete_dev_endpoint)
	GetDevEndpoint action (Python: get_dev_endpoint)
	GetDevEndpoints action (Python: get_dev_endpoints)
	BatchGetDevEndpoints action (Python: batch_get_dev_endpoints)
	ListDevEndpoints action (Python: list_dev_endpoints)

	Schema registry
	Data types
	RegistryId structure
	RegistryListItem structure
	MetadataInfo structure
	OtherMetadataValueListItem structure
	SchemaListItem structure
	SchemaVersionListItem structure
	MetadataKeyValuePair structure
	SchemaVersionErrorItem structure
	ErrorDetails structure
	SchemaVersionNumber structure
	SchemaId structure
	Operations
	CreateRegistry action (Python: create_registry)
	CreateSchema action (Python: create_schema)
	GetSchema action (Python: get_schema)
	ListSchemaVersions action (Python: list_schema_versions)
	GetSchemaVersion action (Python: get_schema_version)
	GetSchemaVersionsDiff action (Python: get_schema_versions_diff)
	ListRegistries action (Python: list_registries)
	ListSchemas action (Python: list_schemas)
	RegisterSchemaVersion action (Python: register_schema_version)
	UpdateSchema action (Python: update_schema)
	CheckSchemaVersionValidity action (Python: check_schema_version_validity)
	UpdateRegistry action (Python: update_registry)
	GetSchemaByDefinition action (Python: get_schema_by_definition)
	GetRegistry action (Python: get_registry)
	PutSchemaVersionMetadata action (Python: put_schema_version_metadata)
	QuerySchemaVersionMetadata action (Python: query_schema_version_metadata)
	RemoveSchemaVersionMetadata action (Python: remove_schema_version_metadata)
	DeleteRegistry action (Python: delete_registry)
	DeleteSchema action (Python: delete_schema)
	DeleteSchemaVersions action (Python: delete_schema_versions)

	Workflows
	Data types
	JobNodeDetails structure
	CrawlerNodeDetails structure
	TriggerNodeDetails structure
	Crawl structure
	Node structure
	Edge structure
	Workflow structure
	WorkflowGraph structure
	WorkflowRun structure
	WorkflowRunStatistics structure
	StartingEventBatchCondition structure
	Blueprint structure
	BlueprintDetails structure
	LastActiveDefinition structure
	BlueprintRun structure
	Operations
	CreateWorkflow action (Python: create_workflow)
	UpdateWorkflow action (Python: update_workflow)
	DeleteWorkflow action (Python: delete_workflow)
	GetWorkflow action (Python: get_workflow)
	ListWorkflows action (Python: list_workflows)
	BatchGetWorkflows action (Python: batch_get_workflows)
	GetWorkflowRun action (Python: get_workflow_run)
	GetWorkflowRuns action (Python: get_workflow_runs)
	GetWorkflowRunProperties action (Python: get_workflow_run_properties)
	PutWorkflowRunProperties action (Python: put_workflow_run_properties)
	CreateBlueprint action (Python: create_blueprint)
	UpdateBlueprint action (Python: update_blueprint)
	DeleteBlueprint action (Python: delete_blueprint)
	ListBlueprints action (Python: list_blueprints)
	BatchGetBlueprints action (Python: batch_get_blueprints)
	StartBlueprintRun action (Python: start_blueprint_run)
	GetBlueprintRun action (Python: get_blueprint_run)
	GetBlueprintRuns action (Python: get_blueprint_runs)
	StartWorkflowRun action (Python: start_workflow_run)
	StopWorkflowRun action (Python: stop_workflow_run)
	ResumeWorkflowRun action (Python: resume_workflow_run)

	Usage profiles
	Data types
	ProfileConfiguration structure
	ConfigurationObject structure
	UsageProfileDefinition structure
	Operations
	CreateUsageProfile action (Python: create_usage_profile)
	GetUsageProfile action (Python: get_usage_profile)
	UpdateUsageProfile action (Python: update_usage_profile)
	DeleteUsageProfile action (Python: delete_usage_profile)
	ListUsageProfiles action (Python: list_usage_profiles)

	Machine learning API
	Data types
	TransformParameters structure
	EvaluationMetrics structure
	MLTransform structure
	FindMatchesParameters structure
	FindMatchesMetrics structure
	ConfusionMatrix structure
	GlueTable structure
	TaskRun structure
	TransformFilterCriteria structure
	TransformSortCriteria structure
	TaskRunFilterCriteria structure
	TaskRunSortCriteria structure
	TaskRunProperties structure
	FindMatchesTaskRunProperties structure
	ImportLabelsTaskRunProperties structure
	ExportLabelsTaskRunProperties structure
	LabelingSetGenerationTaskRunProperties structure
	SchemaColumn structure
	TransformEncryption structure
	MLUserDataEncryption structure
	ColumnImportance structure
	Operations
	CreateMLTransform action (Python: create_ml_transform)
	UpdateMLTransform action (Python: update_ml_transform)
	DeleteMLTransform action (Python: delete_ml_transform)
	GetMLTransform action (Python: get_ml_transform)
	GetMLTransforms action (Python: get_ml_transforms)
	ListMLTransforms action (Python: list_ml_transforms)
	StartMLEvaluationTaskRun action (Python: start_ml_evaluation_task_run)
	StartMLLabelingSetGenerationTaskRun action (Python: start_ml_labeling_set_generation_task_run)
	GetMLTaskRun action (Python: get_ml_task_run)
	GetMLTaskRuns action (Python: get_ml_task_runs)
	CancelMLTaskRun action (Python: cancel_ml_task_run)
	StartExportLabelsTaskRun action (Python: start_export_labels_task_run)
	StartImportLabelsTaskRun action (Python: start_import_labels_task_run)

	Data Quality API
	Data types
	DataSource structure
	DataQualityRulesetListDetails structure
	DataQualityTargetTable structure
	DataQualityRulesetEvaluationRunDescription structure
	DataQualityRulesetEvaluationRunFilter structure
	DataQualityEvaluationRunAdditionalRunOptions structure
	DataQualityRuleRecommendationRunDescription structure
	DataQualityRuleRecommendationRunFilter structure
	DataQualityResult structure
	DataQualityAnalyzerResult structure
	DataQualityObservation structure
	MetricBasedObservation structure
	DataQualityMetricValues structure
	DataQualityRuleResult structure
	DataQualityResultDescription structure
	DataQualityResultFilterCriteria structure
	DataQualityRulesetFilterCriteria structure
	Operations
	StartDataQualityRulesetEvaluationRun action (Python: start_data_quality_ruleset_evaluation_run)
	CancelDataQualityRulesetEvaluationRun action (Python: cancel_data_quality_ruleset_evaluation_run)
	GetDataQualityRulesetEvaluationRun action (Python: get_data_quality_ruleset_evaluation_run)
	ListDataQualityRulesetEvaluationRuns action (Python: list_data_quality_ruleset_evaluation_runs)
	StartDataQualityRuleRecommendationRun action (Python: start_data_quality_rule_recommendation_run)
	CancelDataQualityRuleRecommendationRun action (Python: cancel_data_quality_rule_recommendation_run)
	GetDataQualityRuleRecommendationRun action (Python: get_data_quality_rule_recommendation_run)
	ListDataQualityRuleRecommendationRuns action (Python: list_data_quality_rule_recommendation_runs)
	GetDataQualityResult action (Python: get_data_quality_result)
	BatchGetDataQualityResult action (Python: batch_get_data_quality_result)
	ListDataQualityResults action (Python: list_data_quality_results)
	CreateDataQualityRuleset action (Python: create_data_quality_ruleset)
	DeleteDataQualityRuleset action (Python: delete_data_quality_ruleset)
	GetDataQualityRuleset action (Python: get_data_quality_ruleset)
	ListDataQualityRulesets action (Python: list_data_quality_rulesets)
	UpdateDataQualityRuleset action (Python: update_data_quality_ruleset)

	Sensitive data detection API
	Data types
	CustomEntityType structure
	Operations
	CreateCustomEntityType action (Python: create_custom_entity_type)
	DeleteCustomEntityType action (Python: delete_custom_entity_type)
	GetCustomEntityType action (Python: get_custom_entity_type)
	BatchGetCustomEntityTypes action (Python: batch_get_custom_entity_types)
	ListCustomEntityTypes action (Python: list_custom_entity_types)

	Tagging APIs in AWS Glue
	Data types
	Tag structure
	Operations
	TagResource action (Python: tag_resource)
	UntagResource action (Python: untag_resource)
	GetTags action (Python: get_tags)

	Common data types
	Tag structure
	DecimalNumber structure
	ErrorDetail structure
	PropertyPredicate structure
	ResourceUri structure
	ColumnStatistics structure
	ColumnStatisticsError structure
	ColumnError structure
	ColumnStatisticsData structure
	BooleanColumnStatisticsData structure
	DateColumnStatisticsData structure
	DecimalColumnStatisticsData structure
	DoubleColumnStatisticsData structure
	LongColumnStatisticsData structure
	StringColumnStatisticsData structure
	BinaryColumnStatisticsData structure
	String patterns

	Exceptions
	AccessDeniedException structure
	AlreadyExistsException structure
	ConcurrentModificationException structure
	ConcurrentRunsExceededException structure
	CrawlerNotRunningException structure
	CrawlerRunningException structure
	CrawlerStoppingException structure
	EntityNotFoundException structure
	FederationSourceException structure
	FederationSourceRetryableException structure
	GlueEncryptionException structure
	IdempotentParameterMismatchException structure
	IllegalWorkflowStateException structure
	InternalServiceException structure
	InvalidExecutionEngineException structure
	InvalidInputException structure
	InvalidStateException structure
	InvalidTaskStatusTransitionException structure
	JobDefinitionErrorException structure
	JobRunInTerminalStateException structure
	JobRunInvalidStateTransitionException structure
	JobRunNotInTerminalStateException structure
	LateRunnerException structure
	NoScheduleException structure
	OperationTimeoutException structure
	ResourceNotReadyException structure
	ResourceNumberLimitExceededException structure
	SchedulerNotRunningException structure
	SchedulerRunningException structure
	SchedulerTransitioningException structure
	UnrecognizedRunnerException structure
	ValidationException structure
	VersionMismatchException structure

	AWS Glue API code examples using AWS SDKs
	Hello AWS Glue
	Actions for AWS Glue using AWS SDKs
	Use CreateCrawler with an AWS SDK or CLI
	Use CreateJob with an AWS SDK or CLI
	Use DeleteCrawler with an AWS SDK or CLI
	Use DeleteDatabase with an AWS SDK or CLI
	Use DeleteJob with an AWS SDK or CLI
	Use DeleteTable with an AWS SDK or CLI
	Use GetCrawler with an AWS SDK or CLI
	Use GetDatabase with an AWS SDK or CLI
	Use GetDatabases with an AWS SDK or CLI
	Use GetJob with an AWS SDK or CLI
	Use GetJobRun with an AWS SDK or CLI
	Use GetJobRuns with an AWS SDK or CLI
	Use GetTables with an AWS SDK or CLI
	Use ListJobs with an AWS SDK or CLI
	Use StartCrawler with an AWS SDK or CLI
	Use StartJobRun with an AWS SDK or CLI

	Scenarios for AWS Glue using AWS SDKs
	Get started running AWS Glue crawlers and jobs using an AWS SDK

	Security in AWS Glue
	Data protection in AWS Glue
	Encryption at rest
	Encrypting your Data Catalog
	AWS managed keys
	Customer managed keys
	AWS Glue encryption context
	Enabling encryption
	Monitoring your KMS keys for AWS Glue

	Encrypting connection passwords
	Encrypting data written by AWS Glue
	Setting Up AWS Glue to use security configurations
	Creating a route to AWS KMS for VPC jobs and crawlers
	Working with security configurations on the AWS Glue console
	Adding a security configuration

	Encryption in transit
	FIPS compliance
	Key management
	AWS Glue dependency on other AWS services
	Development endpoints

	Identity and access management for AWS Glue
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS Glue works with IAM
	Identity-based policies for AWS Glue
	Identity-based policy examples for AWS Glue

	Resource-based policies within AWS Glue
	Policy actions for AWS Glue
	Policy resources for AWS Glue
	Policy condition keys for AWS Glue
	ACLs in AWS Glue
	ABAC with AWS Glue
	Using temporary credentials with AWS Glue
	Cross-service principal permissions for AWS Glue
	Service roles for AWS Glue
	Service-linked roles for AWS Glue

	Configuring IAM permissions for AWS Glue
	Step 1: Create an IAM policy for the AWS Glue service
	Step 2: Create an IAM role for AWS Glue
	Step 3: Attach a policy to users or groups that access AWS Glue
	Step 4: Create an IAM policy for notebook servers
	Step 5: Create an IAM role for notebook servers
	Step 6: Create an IAM policy for SageMaker notebooks
	Step 7: Create an IAM role for SageMaker notebooks

	AWS Glue access control policy examples
	Identity-based policy examples for AWS Glue
	Policy best practices
	Resource-level permissions only apply to specific AWS Glue objects
	Using the AWS Glue console
	Allow users to view their own permissions
	Grant read-only permission to a table
	Filter tables by GetTables permission
	Grant full access to a table and all partitions
	Control access by name prefix and explicit denial
	Grant access using tags
	Deny access using tags
	Use tags with list and batch API operations
	Control settings using condition keys or context keys
	Control policies that control settings using condition keys
	Control policies that control settings using context keys

	Deny an identity the ability to create data preview sessions

	Resource-based policy examples for AWS Glue
	Considerations for using resource-based policies with AWS Glue
	Use a resource policy to control access in the same account

	AWS managed policies for AWS Glue
	AWS managed (predefined) policies for AWS Glue
	AWS Glue updates to AWS managed policies

	Specifying AWS Glue resource ARNs
	Data Catalog ARNs
	ARNs for non-catalog objects in AWS Glue
	Access control for AWS Glue non-catalog singular API operations
	Access control for AWS Glue non-catalog API operations that retrieve multiple items
	Access control for AWS Glue non-catalog BatchGet API operations

	Granting cross-account access
	Methods for granting cross-account access in AWS Glue
	Adding or updating the Data Catalog resource policy
	Making a cross-account API call
	Making a cross-account ETL call
	Cross-account CloudTrail logging
	Cross-account resource ownership and billing
	Cross-account access limitations

	Troubleshooting AWS Glue identity and access
	I am not authorized to perform an action in AWS Glue
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS Glue resources

	Logging and monitoring in AWS Glue
	Compliance validation for AWS Glue
	Resilience in AWS Glue
	Infrastructure security in AWS Glue
	AWS Glue and interface VPC endpoints (AWS PrivateLink)
	Considerations for AWS Glue VPC endpoints
	Creating an interface VPC endpoint for AWS Glue
	Creating a VPC endpoint policy for AWS Glue

	Shared Amazon VPCs

	Troubleshooting AWS Glue
	Gathering AWS Glue troubleshooting information
	Troubleshooting errors in AWS Glue for Spark
	Error: Resource unavailable
	Error: Could not find S3 endpoint or NAT gateway for subnetId in VPC
	Error: Inbound rule in security group required
	Error: Outbound rule in security group required
	Error: Job run failed because the role passed should be given assume role permissions for the AWS Glue service
	Error: DescribeVpcEndpoints action is unauthorized. unable to validate VPC ID vpc-id
	Error: DescribeRouteTables action is unauthorized. unable to validate subnet id: Subnet-id in VPC id: vpc-id
	Error: Failed to call ec2:DescribeSubnets
	Error: Failed to call ec2:DescribeSecurityGroups
	Error: Could not find subnet for AZ
	Error: Job run exception when writing to a JDBC target
	Error: Amazon S3: The operation is not valid for the object's storage class
	Error: Amazon S3 timeout
	Error: Amazon S3 access denied
	Error: Amazon S3 access key ID does not exist
	Error: Job run fails when accessing Amazon S3 with an s3a:// URI
	Error: Amazon S3 service token expired
	Error: No private DNS for network interface found
	Error: Development endpoint provisioning failed
	Error: Notebook server CREATE_FAILED
	Error: Local notebook fails to start
	Error: Running crawler failed
	Error: Partitions were not updated
	Error: Job bookmark update failed due to version mismatch
	Error: A job is reprocessing data when job bookmarks are enabled
	Error: Failover behavior between VPCs in AWS Glue
	Troubleshoot crawler errors when the crawler is using Lake Formation credentials
	Error: The S3 location: s3://examplepath is not registered
	Error: User/Role is not authorized to perform: lakeformation:GetDataAccess on resource
	Error: Insufficient Lake Formation permission(s) on (Database name: exampleDatabase, Table Name: exampleTable)
	Error: Insufficient Lake Formation permission(s) on s3://examplepath
	Frequently asked questions about crawler configuration using Lake Formation credentials

	Troubleshooting AWS Glue for Ray errors from logs
	Inspecting Ray job logs
	Troubleshooting Ray job errors
	Problem area: Amazon S3 access
	Problem area: PIP dependency management
	Problem area: Inspecting intermediate values in main process
	Problem area: Inspecting intermediate values in a child process
	Problem area: Interpreting IP addresses in error messages

	AWS Glue machine learning exceptions
	CancelMLTaskRunActivity
	CreateMLTaskRunActivity
	DeleteMLTransformActivity
	GetMLTaskRunActivity
	GetMLTaskRunsActivity
	GetMLTransformActivity
	GetMLTransformsActivity
	GetSaveLocationForTransformArtifactActivity
	GetTaskRunArtifactActivity
	PublishMLTransformModelActivity
	PullLatestMLTransformModelActivity
	PutJobMetadataForMLTransformActivity
	StartExportLabelsTaskRunActivity
	StartImportLabelsTaskRunActivity
	StartMLEvaluationTaskRunActivity
	StartMLLabelingSetGenerationTaskRunActivity
	UpdateMLTransformActivity

	AWS Glue quotas

	Improving AWS Glue performance
	Tuning strategies for your job type
	Improving performance for AWS Glue for Apache Spark jobs
	Optimizing reads with pushdown in AWS Glue ETL
	Predicate pushdown on files stored on Amazon S3
	Pushdown when working with JDBC sources
	Notes and limitations for pushdown in AWS Glue

	Using auto scaling for AWS Glue
	Requirements
	Enabling Auto Scaling in AWS Glue Studio
	Enabling Auto Scaling with the AWS CLI or SDK
	Monitoring Auto Scaling with Amazon CloudWatch metrics
	Monitoring Auto Scaling with Spark UI
	Monitoring Auto Scaling job run DPU usage
	Limitations

	Workload partitioning with bounded execution
	Enabling workload partitioning
	Setting up an AWS Glue trigger to automatically run the job

	Known issues for AWS Glue
	Preventing cross-job data access

	Documentation history for AWS Glue
	Earlier updates

	AWS Glossary

