
Developer Guide

AWS HealthLake

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS HealthLake Developer Guide

AWS HealthLake: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS HealthLake Developer Guide

Table of Contents

What is AWS HealthLake? ... 1
Benefits of AWS HealthLake .. 1
HealthLake use cases ... 2
Accessing HealthLake ... 3
HIPAA eligibility and data security ... 3
Pricing ... 3

How AWS HealthLake works ... 4
Creating and monitoring data stores ... 4
Using Create, Read, Update, and Delete (CRUD) operations ... 4
Automated Resource generation from FHIR DocumentReference resource extensions 5
Querying a data store by using SQL .. 6
Searching a data store using FHIR REST API operations .. 6
Importing data .. 6
Exporting data ... 6

Getting Started .. 7
Prerequisites: Sign up for AWS .. 7
Create an IAM user ... 8
Step 1: Configure an IAM user or role ... 8
Step 2: Add an inline policy .. 11
Step 3: Add a Data Lake Administrator in Lake Formation ... 12
Step 4: Create a data store .. 14
Step 5: Perform a search ... 15
Preloaded data types .. 15

Supported profile validations ... 17
Validating FHIR profiles specified in a resource .. 18

Using a HealthLake data store ... 20
CreateFHIRDatastore .. 21
DescribeFHIRDatastore .. 25
ListFHIRDatastores ... 28
DeleteFHIRDataStore ... 29
Importing files .. 32

Performing an import .. 33
Importing files by using the API operations .. 33
Importing files by using the console ... 34

iii

AWS HealthLake Developer Guide

IAM policies .. 34
Example: Starting and monitoring import jobs by using the AWS CLI 36

Exporting files ... 38
SDK based export ... 39
REST based export ... 42

FHIR REST API reference ... 51
Supported resource types .. 53
CRUD operations .. 55

POST requests .. 56
GET requests .. 57
PUT requests .. 58
DELETE requests ... 61
Bundle requests ... 62

Search a data store .. 70
Search parameters .. 71
POST requests ... 84
GET requests .. 94

FHIR Operations ... 112
Patient $everything ... 112
Export requests ... 120

Query with SQL ... 121
Connect your data store ... 122

Granting access ... 122
Getting started with Athena .. 124

Sample SQL queries .. 126
Additional SQL queries ... 133

VPC endpoints (AWS PrivateLink) .. 139
Considerations for HealthLake VPC endpoints .. 139
Creating an interface VPC endpoint for HealthLake; ... 139
Creating a VPC endpoint policy for HealthLake .. 140

Tagging resources in AWS HealthLake ... 141
Important notice .. 141
Tagging using HealthLake resources ... 141
Best practices .. 142
Tagging requirements ... 142
Adding a tag to a data store ... 143

iv

AWS HealthLake Developer Guide

Listing tags for a data store .. 144
Removing tags from a data store .. 144

Monitoring HealthLake ... 146
Monitoring with CloudWatch .. 146

Viewing HealthLake metrics ... 149
Creating an alarm ... 149

SMART on FHIR .. 151
Authentication requirements ... 153

Required authorization server elements .. 154
Required claims ... 154

Supported scopes .. 154
Standalone launch scope .. 155
HealthLake data store FHIR resource specific scopes ... 155

Performing token validation ... 156
AWS Lambda function ... 158
Create a service role .. 163
Lambda execution role .. 166
Triggering your Lambda function ... 167
Provisioning concurrency for your Lambda function .. 167

Create a SMART on FHIR enabled data store .. 168
Create data store .. 168

Enabling fine-grained authorization .. 170
Fetch the Discovery Document ... 171
Example FHIR REST request .. 172

An example request from client application containing a JWT in the authorization header
and how Lambda should decode that response .. 172

Setting up resources needed to implement a SMART on FHIR compliant data store 173
How a client application launches and requests data from a SMART on FHIR enable
HealthLake data store ... 174

Integrated natural language processing .. 176
Amazon Comprehend Medical integrated with HealthLake ... 177

Integration with the FHIR REST API operations ... 178
Examples of how Amazon Comprehend Medical API operations are integrated into
HealthLake ... 179

Search parameters ... 195
Security .. 199

v

AWS HealthLake Developer Guide

Data Protection .. 200
Encryption at rest .. 200

AWS owned KMS key ... 201
Customer managed KMS keys ... 201
Create a customer managed key .. 202
Required IAM permissions for using a customer managed KMS key 203

Encryption in transit ... 210
Identity and access management ... 210

Audience ... 210
Authenticating with identities ... 211
Managing access using policies ... 214
How AWS HealthLake works with IAM .. 217
Identity-based policy examples ... 224
AWS managed policies .. 227
Troubleshooting .. 231

Logging AWS HealthLake API Calls with AWS CloudTrail ... 233
AWS HealthLake Information in CloudTrail .. 233
Understanding AWS HealthLake Log File Entries .. 235

Compliance Validation .. 236
Resilience ... 238
Infrastructure Security .. 238
Security best practices .. 238

Quotas .. 240
Service endpoints ... 240
Service quotas for HealthLake .. 240

Troubleshooting ... 248
Why can't I create a HealthLake data store? ... 248
Exceeded number of data stores allowed per account .. 249
How do I create authorization for the FHIR RESTful APIs? .. 249
My data isn't in FHIR R4 format- can I still use HealthLake? .. 250
Why am I receiving AccessDenied errors when using the FHIR RESTful APIs for a data store
encrypted with a customer managed KMS key? ... 250
Why did my import fail? .. 250
How do I find DocumentReference resources that could not be processed? 254
Migrating an existing data store to use Amazon Athena .. 255
Connecting search results in Athena to other AWS services .. 255

vi

AWS HealthLake Developer Guide

The Athena console is not working after importing data into a new data store 255
Why do I get a Lake Formation permissions error: lakeformation:PutDataLakeSettings when
adding a new data lake administrator? .. 256
How do I turn on HealthLake's integrated natural language processing feature? 256
My data store status is not changing from Creating .. 257
My SDK data store creation status returns an exception or unknown status 257
My FHIR POST API operation with a 10MB document to HealthLake gets a 413Request Entity
Too Large error. .. 257

Document History .. 258
AWS Glossary ... 260

vii

AWS HealthLake Developer Guide

What is AWS HealthLake?

Note

After February 20, 2023, HealthLake data stores do not use integrated natural language
processing (NLP) by default. If you are interested in turning on this feature on your data
store, see How do I turn on HealthLake's integrated natural language processing feature? in
the Troubleshooting chapter.

AWS HealthLake is a HIPAA eligible service for clinical data ingestion, storage, and analysis utilizing
the Healthcare Interoperability FHIR (R4) specification.

Health data is frequently incomplete and inconsistent. It's also often unstructured, with
information contained in clinical notes, lab reports, insurance claims, medical images, recorded
conversations, and time-series data (for example, heart ECG or brain EEG traces).

Healthcare providers can use HealthLake to store, transform, query, and analyze data in the AWS
Cloud. Using the HealthLake integrated medical natural language processing (NLP) capabilities, you
can analyze unstructured clinical text from diverse sources. HealthLake transforms unstructured
data using natural language processing models, and provides powerful query and search
capabilities. You can use HealthLake to organize, index, and structure patient information in a way
that is secure, compliant, and can be audited.

HealthLake is also integrated with Amazon Athena and AWS Lake Formation. You can use this
integration to query your data store using SQL.

Benefits of AWS HealthLake

With AWS HealthLake, you can:

• Quickly and easily ingest health data – You can bulk import on-premises Fast Healthcare
Interoperability Resources (FHIR) files, including clinical notes, lab reports, insurance claims, and
more, to an Amazon Simple Storage Service (Amazon S3) bucket. You can then use the data in
downstream applications or workflows.

• Use the FHIR REST API operations – HealthLake supports using the FHIR REST API operations to
perform CRUD (Create/Read/Update/Delete) operations on your data store. FHIR search is also
supported.

Benefits of AWS HealthLake 1

AWS HealthLake Developer Guide

• Store your data in the AWS Cloud in a secure, HIPAA-eligibile manner that can be audited –
You can store data in the FHIR format, so it can be easily queried. HealthLake creates a complete,
chronological view of each patient’s medical history, and structures it in the R4 FHIR standard
format.

• Athena integration – HealthLake's integration with Athena means you can create powerful
SQL-based queries that you can use to create and save complex filter criteria. Then, you can use
this data in downstream applications such as SageMaker to train a machine learning model or
Amazon QuickSight to create dashboards and data visualizations.

• Transform unstructured data using specialized machine learning (ML) models – HealthLake
provides integrated medical natural language processing (NLP) using Amazon Comprehend
Medical. Raw medical text data is transformed using specialized ML models. These models have
been trained to understand and extract meaningful information from unstructured healthcare
data. With integrated medical NLP, you can automatically extract entities (for example, medical
procedures and medications), entity relationships (for example, a medication and its dosage),
and entity traits (for example, positive or negative test result or time of procedure) data from
your medical text. HealthLake then creates new resources based on the traits sign, symptom, and
condition. These are added as new Condition, Observation, and MedicationStatement resource
types.

HealthLake use cases

You can use HealthLake for the following healthcare applications:

• Population health management – HealthLake helps healthcare organizations analyze
population health trends, outcomes, and costs. This helps organizations to identify the most
appropriate intervention for a patient population and choose better care management options.

• Improving quality of care – HealthLake aids hospitals, health insurance companies, and life
sciences organizations close gaps in care, improve quality of care, and reduce cost by compiling a
complete view of a patient’s medical history.

• Optimizing hospital efficiency – HealthLake offers hospitals key analytics and machine learning
tools to improve efficiency and reduce hospital waste.

HealthLake use cases 2

AWS HealthLake Developer Guide

Accessing HealthLake

You can access HealthLake through the AWS Management Console, AWS Command Line Interface
(AWS CLI), or the AWS SDKs.

1. AWS Management Console – Provides a web interface that you can use to access HealthLake.

2. AWS Command Line Interface (AWS CLI) – Provides commands for a broad set of AWS services,
including HealthLake, and is supported on Windows, macOS, and Linux. For more information
about installing the AWS CLI, see AWS Command Line Interface.

3. AWS SDKs – AWS provides SDKs (software development kits) that consist of libraries and sample
code for various programming languages and platforms (Java, Python, Ruby, .NET, iOS, Android,
and so on). The SDKs provide a convenient way to create programmatic access to HealthLake
and AWS. For more information, see the AWS SDK for Python.

HIPAA eligibility and data security

This is a HIPAA Eligible Service. For more information about AWS, U.S. Health Insurance Portability
and Accountability Act of 1996 (HIPAA), and using AWS services to process, store, and transmit
protected health information (PHI), see HIPAA Overview.

Connections to HealthLake containing Personally identifiable information (PII) must be encrypted.
By default, all connections to HealthLake use HTTPS over TLS. HealthLake stores encrypted
customer content and operates by the AWS Shared Responsibility principle.

Pricing

For information about HealthLake pricing, see the AWS HealthLake pricing page. To better estimate
potential costs associated with HealthLake, you can use the HealthLake pricing calculator.

Accessing HealthLake 3

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/index.html
https://aws.amazon.com/compliance/hipaa-compliance/
https://aws.amazon.com/healthlake/pricing/
https://calculator.aws/#/createCalculator/HealthLake

AWS HealthLake Developer Guide

How AWS HealthLake works

Note

After February 20, 2023, HealthLake data stores do not use integrated natural language
processing (NLP) by default. If you are interested in turning on this feature on your data
store, see How do I turn on HealthLake's integrated natural language processing feature? in
the Troubleshooting chapter.

AWS HealthLake creates a data store that stores health records utilizing the Healthcare
Interoperability FHIR (R4) specification. With HealthLake, you can perform the following tasks.

• Create, monitor, and delete a data stores.

• Use StartFHIRImportJob to import healthcare data in bulk from an Amazon Simple Storage
Service (Amazon S3) bucket into a data store.

• Use Create, Read, Update, and Delete (CRUD) operations to manage data stored in your data
store.

• Use SQL in Amazon Athena to query your data store.

• Use an HTTP client in the FHIR REST API operations to search your data store.

• Enable the Amazon Comprehend Medical API operations to search for medical insights in your
data using natural language processing (NLP).

Creating and monitoring data stores

With HealthLake, you can create and monitor data stores that can store Fast Healthcare
Interoperability Resources (FHIR) data.

To create a new data store, you can use the CreateFHIRDatastore or the HealthLake console. To
see the status of a data store, use DescribeFHIRDatastore. To see the status of multiple active data
stores, use ListFHIRDatastores. To delete a data store, use DeleteFHIRDatastore.

Using Create, Read, Update, and Delete (CRUD) operations

You can use the FHIR REST API operations to perform Create, Read, Update, Delete (CRUD)
operations on your HealthLake data store. To learn more about how HealthLake supports the FHIR

Creating and monitoring data stores 4

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_CreateFHIRDatastore.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRDatastore.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ListFHIRDatastore.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DeleteFHIRDatastore.html

AWS HealthLake Developer Guide

REST API operations, see Managing and searching resources in AWS HealthLake by using FHIR REST
API operations.

Automated Resource generation from FHIR DocumentReference
resource extensions

Note

When you create a HealthLake data store and add data that contains the
DocumentReference, you will incur charges in your AWS account. For more details, see
AWS HealthLake pricing.

HealthLake provides NLP on documents found in the DocumentReference resource type. To
analyze the text, HealthLake uses the following Amazon Comprehend Medical API operations.

• DetectEntitiesV2: Inspects the clinical text for a variety of medical entities and returns
specific information about them, such as entity category, location, and confidence score.

• InferICD10CM: Inspects the clinical text to detect medical conditions as entities listed in
a patient record and links those entities to normalized concept identifiers in the ICD-10-CM
knowledge base from the Centers for Disease Control.

• InferRxNorm: Inspects the clinical text to detect medications as entities listed in a patient
record and links to the normalized concept identifiers in the RxNorm database from the National
Library of Medicine.

HealthLake automatically analyzes data found in the DocumentReference resource type when
it is added to your data store. The original DocumentReference resource files stay unchanged.
The extracted medical information is automatically appended as FHIR-compliant extensions.
To learn more about how NLP works in HealthLake, see Using automated resource generation
based on natural language processing (NLP) of the FHIR DocumentReference resource type in AWS
HealthLake.

Automated Resource generation from FHIR DocumentReference resource extensions 5

https://aws.amazon.com/healthlake/pricing/

AWS HealthLake Developer Guide

Querying a data store by using SQL

Note

For data stores created before November, 14, 2022, your search is limited to the FHIR
REST API operations. To use SQL-based queries for data in your HealthLake data store, see
Getting started with AWS HealthLake.

Amazon Athena is a serverless SQL-based query service. HealthLake data stores are ingested into
Athena as Apache Iceberg tables. These tables are designed to support large analytic datasets. In
Athena, each FHIR resource type is represented as a table. Using Athena, you can only make READ
requests on your data store. To learn more about SQL-based searching, see Query your HealthLake
data store using SQL.

Searching a data store using FHIR REST API operations

You can search the health records stored in your data store either by specifying a resource type
with supported search parameters, or by using a resource ID found in the server, without specifying
the resource type. To learn more about searching by using the FHIR REST API operations, see
Managing and searching resources in AWS HealthLake by using FHIR REST API operations.

Importing data

Use AWS HealthLake to import your files in bulk from an Amazon S3 bucket. Use either the
console or StartFHIRImportJob to begin an import job. After importing your files, you can use
DescribeFHIRImportJob to monitor the status of the job. After the import job is complete, the data
can then be added to Athena, transformed, or analyzed and used in downstream applications.

Exporting data

Use HealthLake to export your files in bulk to an Amazon S3 bucket. Use either the console
or StartFHIRExportJob to begin an export job. After exporting your files, you can use
DescribeFHIRExportJob to monitor the status of the job and view its properties. After the export
job is complete, you can visualize the data by using Amazon QuickSight or you can access it by
using other AWS services.

Querying a data store by using SQL 6

https://iceberg.apache.org/
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_StartFHIRImportJob.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRImportJob.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_StartFHIRExportJob.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRExportJob.html

AWS HealthLake Developer Guide

Getting started with AWS HealthLake

In this chapter, you use the AWS Management Console to set up permissions, create a data store,
import resources, and configure an IAM user or role to be a data lake administrator in AWS Lake
Formation. The data lake administrator grants access Lake Formation resources needed to use
Amazon Athena to query a data store.

As an alternative to using the AWS Management Console, you can perform many of the same tasks
highlighted in this exercise using the AWS Command Line Interface or the AWS SDKs. Before you
use the AWS Command Line Interface or SDKs, download and configure them. See AWS Command
Line Interface, AWS SDK for Python, or the AWS SDK for Java for more information.

The sections in this chapter walk you through all the steps required to get started with HealthLake.

Prerequisites: Sign up for AWS

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up
for all AWS services.

If you are a new AWS customer, you can get started with AWS HealthLake at no charge. For more
information, see AWS Free Usage Tier.

If you already have an AWS account, skip to the next section.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Record your AWS account ID because you'll need it for the next task.

Prerequisites: Sign up for AWS 7

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/index.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-install.html
https://aws.amazon.com/free/
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

AWS HealthLake Developer Guide

Create an IAM user

Services in AWS, such as HealthLake, require that you provide credentials to access them. This
allows the service to determine whether you have permissions to access the service's resources.

We strongly recommend that you access AWS using AWS Identity and Access Management (IAM),
not the credentials for your AWS account. To use IAM to access AWS, create an IAM user, add the
user to an IAM group with administrative permissions, and then grant administrative permissions to
the IAM user. You can then access AWS using a special URL and the IAM user's credentials.

The getting started exercises in this guide assume that you have a user with administrator
privileges, because you will need to add IAM policies to IAM users roles.

To create an administrator and sign in to the console

1. Create an IAM user named AdminUser in your AWS account. For instructions, see Creating
Your First IAM User and Administrators Group in the IAM User Guide.

2. Sign in to the AWS Management Console using a special URL. For more information, see How
Users Sign In to Your Account in the IAM User Guide.

A IAM user or role with AdministratorAccess is needed to add an IAM user or role as a data lake
administator in AWS Lake Formation.

For more information about IAM, see the following:

• AWS Identity and Access Management (IAM)

• Getting started

• IAM User Guide

Step 1: Configuring a new IAM user or role to use HealthLake
(IAM Administrator)

Persona: IAM Administrator

A user who can create IAM users and roles, and can add data lake administrators.

Create an IAM user 8

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/

AWS HealthLake Developer Guide

These steps in this topic must be carried out by an IAM administrator.

To connect your HealthLake data store to Athena, you need to provision an IAM user or
role that is a data lake administrator and is a HealthLake administrator. This new user or
role grants access to resources found in a data store via AWS Lake Formation, and has the
AmazonHealthLakeFullAccess AWS managed policy added to their user or role. Follow these
instructions to prepare an IAM user or role that has access to both HealthLake and is data lake
administrator in AWS Lake Formation.

Important

An IAM user or role that is a data lake administrator cannot create new data lake
administrators. To add addittional data lake administrator you must use a IAM user or role
which has been granted AdministratorAccess access.

Provision an IAM user or role to be a data lake administrator and a HealthLake administrator

1. Add the following IAM AWS managed policy to a user or role in your organization:
AmazonHealthLakeFullAccess

• If you're unfamiliar with creating an IAM user, see Creating an IAM User and Overview of
AWS IAM Policies in the IAM User Guide.

2. Grant the IAM user access to AWS Lake Formation.

• Add the following IAM AWS managed policy to a user or role in your organization:
AWSLakeFormationDataAdmin

Note

The AWSLakeFormationDataAdmin policy grants access to all AWS Lake Formation
resources. We recommend that you always use the minimum permissions required to
accomplish your task. For more information, see IAM Best Practices in the IAM User
Guide.

3. Create a service role and add it to a user or role in your oranization.

Step 1: Configure an IAM user or role 9

https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html#Using_CreateUser_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/PoliciesOverview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/PoliciesOverview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS HealthLake Developer Guide

• Add the following inline policy to a user or role in your organization. To learn more about
adding inline policies, see Step 2: Create a service role and add it to an IAM user or role (IAM
Administrator).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::my-bucket/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ram:GetResourceShareInvitations",
 "ram:AcceptResourceShareInvitation",
 "glue:CreateDatabase",
 "glue:DeleteDatabase"
],
 "Resource": "*"
 }
]
}

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

For more information on the AWSLakeFormationDataAdmin policy, see Lake Formation Personas
and IAM Permissions Reference in the AWS Lake Formation Developer Guide.

Step 1: Configure an IAM user or role 10

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/
https://docs.aws.amazon.com/

AWS HealthLake Developer Guide

Step 2: Create a service role and add it to an IAM user or role
(IAM Administrator)

Persona: IAM Administrator

A user who can create IAM users and roles, and can add data lake administrators.

For HealthLake to integrate with Athena, you need the following service role. This service role
allows HealthLake to manage sharing your data store with Athena via AWS Lake Formation.

To embed an inline policy for a service role (IAM Console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. In the list, choose the name of the role that you want to edit.

4. Choose the Permissions tab.

5. Choose Add inline policy.

Note

You cannot embed an inline policy in a service-linked role in IAM.

6. Choose the JSON tab.

7. Enter the following JSON policy document. For details about the IAM policy language, see IAM
JSON Policy Reference in the IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::my-bucket/*"

Step 2: Add an inline policy 11

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

AWS HealthLake Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "ram:GetResourceShareInvitations",
 "ram:AcceptResourceShareInvitation",
 "glue:CreateDatabase",
 "glue:DeleteDatabase"
],
 "Resource": "*"
 }
]
}

8. When you are finished, choose Review policy. The Policy Validator reports any syntax errors.

9. On the Review policy page, enter a Name for the policy that you are creating. Review the
policy Summary to see the permissions that are granted by your policy. Then choose Create
policy to save your work.

10. After you create an inline policy, it is automatically embedded in your role.

Step 3: Add a Data Lake Administrator in Lake Formation (IAM
Administrator)

Next, the IAM administrator needs to add the user or role created in step 1 as a data lake
administrator in Lake Formation.

To add an IAM user or role as a data lake administrator

1. Open the AWS Lake Formation console: https://console.aws.amazon.com/lakeformation/

Note

If this is your first time visiting Lake Formation, a Welcome to Lake Formation dialog
box appears asking you to define a Lake Formation administrator.

Step 3: Add a Data Lake Administrator in Lake Formation 12

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_policy-validator.html
https://console.aws.amazon.com/lakeformation/

AWS HealthLake Developer Guide

2. Assign the new user or role to be a AWS Lake Formation data lake administrator.

• Option 1: If you received the Welcome to Lake Formation dialog box.

1. Choose Add other AWS users or roles.

2. Choose the down arrow (▼).

3. Choose the HealthLake administrator you would like to also be Lake Formation
administrators.

4. Choose Get started.

• Option 2: Use the Navigation pane (☰).

1. Choose the Navigation pane (☰).

2. Under Permissions, choose Administrative roles and tasks.

3. In the Data lake administrators section, select Choose administrators .

4. In the Manage data lake administrators dialog box, choose the down arrow (▼).

5. Next, select or search for the HealthLake administrators users or roles who you also want
to be Lake Formation administrators.

6. Then, choose Save.

3. Change the default security settings to be managed by Lake Formation. The HealthLake data
store resources need to be managed by Lake Formation not IAM. To update, see Change the
default permission model in the AWS Lake Formation Developer Guide.

Step 3: Add a Data Lake Administrator in Lake Formation 13

https://docs.aws.amazon.com/lake-formation/latest/dg/getting-started-setup.html#setup-change-cat-settings
https://docs.aws.amazon.com/lake-formation/latest/dg/getting-started-setup.html#setup-change-cat-settings

AWS HealthLake Developer Guide

Step 4: Create a data store (HealthLake Administrator)

Persona: HealthLake Administrator

A user who can create IAM users and roles. Has the AdministratorAccess AWS
managed policy. Has all permissions on all Lake Formation resources. Can add data lake
administrators. Cannot grant Lake Formation permissions if not also designated a data lake
administrator.

This exercise creates a data store and pre-populates it using Synthea data. It uses the IAM user or
role you created in step 1. Synthea is preloaded sample data made available by AWS HealthLake.

To create HealthLake data store (AWS Management Console)

1. Open the HealthLake console at https://console.aws.amazon.com//healthlake/home.

2. Open the Navigation pane (≡).

3. Then, choose Data Stores.

4. Next, choose Create Data Store.

5. In the Data Store settings section, for Data Store name specify a name.

6. (Optional) In the Data Store settings section, for Preload sample data select the checkbox to
preload Synthea data.

• Synthea data is a preloaded sample dataset. For more information, see Preloaded data
types.

7. In the Data Store encryption section choose either Use AWS owned key (default) or Choose a
different AWS KMS key (advanced).

Note

We recommend that customers use a customer managed key for data stores that
contain Personally identifiable information.

8. In the Tags - optional section, you can add tags to your data store.

• To learn more about tagging your data store, see Adding a tag to a data store.

9. Next, choose Create Data Store.

Step 4: Create a data store 14

https://console.aws.amazon.com/healthlake/home

AWS HealthLake Developer Guide

When your data store is ready the status changes to Ready.

Step 5: Perform a search using SQL in Amazon Athena
(HealthLake Administrator)

After you create a data store, and you populate it with preloaded data or import data, you can
start querying your data store using SQL in Amazon Athena. To access your data in Athena, you will
need to connect your data store. For more information, see Connecting your data store to Amazon
Athena.

Preloaded data types

Persona: HealthLake Administrator

A user who can create IAM users and roles. Has the AdministratorAccess AWS
managed policy. Has all permissions on all Lake Formation resources. Can add data lake
administrators. Cannot grant Lake Formation permissions if not also designated a data lake
administrator.

HealthLake supports only SYNTHEA as a preloaded data type. Synthea is a synthetic patient
generator that models the medical history of model-generated patients. It’s an open-source Git
repository that allows HealthLake to generate FHIR R4-compliant resource bundles so that users
can test models without using actual patient data.

The following resource types are available in preloaded data stores.

Supported Synthea resource types

AllergyIntolerance Location

CarePlan MedicationAdministration

CareTeam MedicationRequest

Claim Observation

Condition Organization

Step 5: Perform a search 15

https://synthetichealth.github.io/synthea/

AWS HealthLake Developer Guide

Device Patient

DiagnosticReport Practitioner

Encounter PractitionerRole

ExplanationofBenefit Procedure

ImagingStudy Provenance

Immunization

Preloaded data types 16

AWS HealthLake Developer Guide

AWS HealthLake supported FHIR profile validations

HealthLake supports the base FHIR R4 specification. Included in the R4 specification are FHIR
Profiles. Profiles are used on a FHIR resource type to define a more specific resource type definition
using constraints and/or extensions on the base resource type. For example, a FHIR Profile can
identify mandatory fields such as extensions and value sets. A resource can support multiple
profiles. All HealthLake data stores support using FHIR Profiles.

Adding a FHIR profile is not required when adding data to a HealthLake data store. If no FHIR
profile is specified when a resource is added or updated then the resource is only validated against
the base FHIR R4 schema.

FHIR Profiles to which a resource conforms to, are included in the resource, before it is ingested
into HealthLake. HealthLake validates the specified FHIR Profiles when it is added to your
HealthLake data store.

FHIR Profiles are specified in an implementation guide. HealthLake validates the FHIR Profiles
defined in the following implementation guides.

Supported FHIR profiles by HealthLake

Name VersionImplementation guide Capability

US Core 3.1.1 http://hl7.org/fhir/us/core/STU
3.1.1/

Default

US Core 4.0.0 https://hl7.org/fhir/us/core/STU4/
index.html

Supported

CARIN Blue Button 1.1.0 http://hl7.org/fhir/us/carin-bb/
STU1.1/

Default

CARIN Blue Button 1.0.0 https://hl7.org/fhir/us/carin-bb/
STU1/

Supported

Da Vinci Payer Data
Exchange

1.0.0 https://hl7.org/fhir/us/davinci-
pdex/

Default

17

https://hl7.org/fhir/R4/
http://hl7.org/fhir/us/core/STU3.1.1/
http://hl7.org/fhir/us/core/STU3.1.1/
https://hl7.org/fhir/us/core/STU4/index.html
https://hl7.org/fhir/us/core/STU4/index.html
http://hl7.org/fhir/us/carin-bb/STU1.1/
http://hl7.org/fhir/us/carin-bb/STU1.1/
https://hl7.org/fhir/us/carin-bb/STU1/
https://hl7.org/fhir/us/carin-bb/STU1/
https://hl7.org/fhir/us/davinci-pdex/
https://hl7.org/fhir/us/davinci-pdex/

AWS HealthLake Developer Guide

Name VersionImplementation guide Capability

Da Vinci Health
Record Exchange
(HRex)

0.2.0 https://hl7.org/fhir/us/davinci-
hrex/2020Sep/

Default

DaVinci PDEX Plan
Net

1.1.0 https://hl7.org/fhir/us/davinci-
pdex-plan-net/STU1.1/

Default

DaVinci PDEX Plan
Net

1.0.0 https://hl7.org/fhir/us/davinci-
pdex-plan-net/STU1/

Supported

DaVinci Payer Data
Exchange (PDex)
US Drug Formulary

1.1.0 https://hl7.org/fhir/us/davinci-
drug-formulary/STU1.1/

Default

DaVinci Payer Data
Exchange (PDex)
US Drug Formulary

1.0.1 https://hl7.org/fhir/us/davinci-
drug-formulary/STU1.0.1/

Supported

National Health
Authority's
Ayushman Bharat
Digital Mission
(ABDM)

2.0 https://www.nrces.in/ndhm/fhir/r
4/index.html

Default

Validating FHIR profiles specified in a resource

For a FHIR Profile to be validated add it to the profile element of individual resources using the
profile URL designated in the implementation guide.

FHIR Profiles are validated when you add a new resource to your data store. To add a new resource,
you can use the StartFHIRImportJob API operation, make a POST request to add a new resource, or
make PUT to update an existing resource.

Example – To see which FHIR profile is referenced in a resource

The profile URL is added to the profile element in the "meta" : "profile" key-value pair.
This resource was truncated for clarity.

Validating FHIR profiles specified in a resource 18

https://hl7.org/fhir/us/davinci-hrex/2020Sep/
https://hl7.org/fhir/us/davinci-hrex/2020Sep/
https://hl7.org/fhir/us/davinci-pdex-plan-net/STU1.1/
https://hl7.org/fhir/us/davinci-pdex-plan-net/STU1.1/
https://hl7.org/fhir/us/davinci-pdex-plan-net/STU1/
https://hl7.org/fhir/us/davinci-pdex-plan-net/STU1/
https://hl7.org/fhir/us/davinci-drug-formulary/STU1.1/
https://hl7.org/fhir/us/davinci-drug-formulary/STU1.1/
https://hl7.org/fhir/us/davinci-drug-formulary/STU1.0.1/
https://hl7.org/fhir/us/davinci-drug-formulary/STU1.0.1/
https://www.nrces.in/ndhm/fhir/r4/index.html
https://www.nrces.in/ndhm/fhir/r4/index.html

AWS HealthLake Developer Guide

 {
 "resourceType": "Patient",
 "id": "abcd1234efgh5678hijk9012",
 "meta": {
 "lastUpdated": "2023-05-30T00:48:07.8443764-07:00",
 "profile": [
 "http://hl7.org/fhir/us/core/StructureDefinition/us-core-patient"
]
 }
 }

Example – How to reference a non-default supported FHIR profile

To validate against a supported non-default profile (eg. CarinBB 1.0.0) - add the profile URL with
version (separated by '|') and the base profile URL in the meta.profile element. This example
resource was truncated for clarity.

 {
 "resourceType": "ExplanationOfBenefit",
 "id": "sample-EOB",
 "meta": {
 "lastUpdated": "2024-02-02T05:56:09.4+00:00",
 "profile": [
 "http://hl7.org/fhir/us/carin-bb/StructureDefinition/C4BB-
ExplanationOfBenefit-Pharmacy|1.0.0",
 "http://hl7.org/fhir/us/carin-bb/StructureDefinition/C4BB-
ExplanationOfBenefit-Pharmacy“
]
 }
 }

Validating FHIR profiles specified in a resource 19

AWS HealthLake Developer Guide

Using an AWS HealthLake data store with Fast
Healthcare Interoperability Resources (FHIR) data

In AWS HealthLake, you use a data store to store data in HL7 FHIR (R4) format. The topics in this
chapter describe how to create a data store, import data into a data store, export data from a data
store, and how to monitor a data store. To perform many of the actions and operations described
in this chapter, you must have the required IAM permissions added to your IAM user or role. To
learn more about how HealthLake interacts with IAM, see How AWS HealthLake works with IAM.

HealthLake is also integrated with AWS CloudTrail. You can use CloudTrail to provide a record of
actions taken by a user, role, or an AWS service in HealthLake. CloudTrail captures all API calls and
console actions for HealthLake as events. To learn more, see Logging AWS HealthLake API Calls
with AWS CloudTrail.

To learn more about the Fast Healthcare Interoperability Resources (FHIR) resource types that are
supported by HealthLake, see Supported FHIR resource types in AWS HealthLake.

Amazon Athena compatibility

HealthLake date stores created prior to November, 14, 2022 cannot perform SQL queries
using Athena. To use Athena search capabilities on your preexisting data store, first migrate
the data to a new data store. To learn more about migrating preexisting data stores, see
Migrating an existing data store to use Amazon Athena.

How to use your HealthLake data store

• Creating a HealthLake data store

• Learn more about a specific HealthLake data store

• Using the ListFHIRDatastores API operation

• Deleting a data store example

• Importing files into HealthLake data stores

• Exporting files from a HealthLake data store

20

AWS HealthLake Developer Guide

Creating a HealthLake data store

After November, 14, 2022, the IAM requirements to access HealthLake changed. To both
create analytics enabled data stores and to grant access to them in Athena, add the
AWSLakeFormationDataAdmin managed policy to your IAM user, group or role. The
AWSLakeFormationDataAdmin policy allows you to create data lake administrators and to grant
access to data stores in Athena.

The status of a data store is available on the Data stores page in the console. A HealthLake data
store can have the following statuses:

• Creating – Your data store is being created.

• Active – Your data store is active. You can import and export data from it. You can also manage
and search the FHIR resources you have stored in the data store.

• Deleting – Your data store is being deleted.

• Deleted – Your data store has been deleted.

HealthLake console differences

The HealthLake console does not support creating a SMART on FHIR enabled data store.
To create a SMART on FHIR enabled data store, you must use the AWS CLI or one of the
AWS supported SDKS. To learn more, see Integrating SMART on FHIR with AWS HealthLake.
Also, the console does not differentiate between the two types of data stores supported by
HealthLake when you view an individual data store's details page.

To create a HealthLake data store (AWS Management Console)

1. Open the HealthLake console at https://console.aws.amazon.com//healthlake/home.

2. Open the Navigation pane (≡).

3. Then, choose Data Stores.

4. Next, choose Create Data Store.

5. In the Data Store settings section, for Data Store name specify a name.

6. (Optional) In the Data Store settings section, for Preload sample data select the check box to
preload Synthea data.

CreateFHIRDatastore 21

https://console.aws.amazon.com/healthlake/home

AWS HealthLake Developer Guide

• Synthea data is a preloaded sample dataset. For more information, see Preloaded data
types.

7. In the Data Store encryption section, choose either Use AWS owned key (default) or Choose
a different AWS KMS key (advanced).

8. In the Tags - optional section, you can add tags to your data store.

• To learn more about tagging your data store, see Adding a tag to a data store.

9. Next, choose Create Data Store.

The status of your data stores are available on the Data stores page. A HealthLake data store can
have the following statuses:

• Creating – Your data store is being created.

• Active – Your data store is active. You can import and export data from it. You can also manage
and search the FHIR resources in the data store.

• Deleting – Your data is being deleted.

• Deleted – Your data store has been deleted. This cannot be undone.

To create a HealthLake data store (AWS CLI and SDKs)

You can use the following code examples to create a HealthLake data store.

AWS CLI

The following example demonstrates using the CreateFHIRDatastore operation with the
AWS CLI. To run the example, you must install the AWS CLI. When you create your data store,
encryption at rest defaults to an AWS-owned KMS key, unless specified otherwise. To learn
more about encryption at REST for HealthLake see, Encryption at REST for AWS HealthLake.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\)
Unix continuation character at the end of each line with a caret (^).

aws healthlake create-fhir-datastore \
 --datastore-type-version R4 \
 --preload-data-config PreloadDataType="SYNTHEA" \
 --datastore-name "your-data-store-name"

CreateFHIRDatastore 22

AWS HealthLake Developer Guide

When successful, you get the following JSON response. When your data store is ready to ingest
data, the status changes to ACTIVE. To learn more about importing data to your HealthLake
data store, see Importing files into HealthLake data stores.

{
 "DatastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "DatastoreArn": "arn:aws:healthlake:us-west-2:111122223333:datastore/fhir/
eeb8005725ae22b35b4edbdc68cf2dfd",
 "DatastoreStatus": "CREATING",
 "DatastoreEndpoint": "https://healthlake.us-west-2.amazonaws.com/datastore/
eeb8005725ae22b35b4edbdc68cf2dfd/r4/"
}

To view a list of all data storesdata stores, you can use the ListFHIRDataStore operation.
You can also see a list of Active data stores in the HealthLake console.

Python (boto3)

The following example demonstrates how to create a HealthLake data store using the
create_fhir_datastore operation. When you create your data store encryption at rest
defaults to an AWS-owned AWS KMS key unless specified otherwise. To learn more about
encryption at REST for HealthLake see, Encryption at REST for AWS HealthLake.

import boto3
import logging #built in logging library
from botocore.exceptions import ClientError, ValidationError #specific exception
 ClientError from the boto3 library

def create_healthlake_datastore(DatastoreName=None):
 '''
 :param DatastoreName: the name of the data store, string
 :param:
 :return: True if the data store is created, else False
 '''

 # Create an Amazon Healthlake data store
 # Should we say something about region setting?
 # Should this example have some handling KMS keys

 try:
 if DatastoreName is None:
 healthlake_client = boto3.client('healthlake')
 healthlake_client.create_fhir_datastore(DatastoreTypeVersion='R4')

CreateFHIRDatastore 23

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ListFHIRDatastores.html

AWS HealthLake Developer Guide

 else:
 healthlake_client = boto3.client('healthlake')
 healthlake_client.create_fhir_datastore(DatastoreTypeVersion='R4',
 DatastoreName=DatastoreName)
 except (ClientError, ValidationError) as e:
 logging.error(e)
 return False

 return True

Run the function above
create_healthlake_datastore(DatastoreName='test-datastore-delete-me-2')

A data store can have one of four statuses. Use list_fhir_datastores to view a list of your
HealthLake data stores regardless of status. This example shows how you can filter based on
the status of a data store.

import boto3

healthlake_client = boto3.client('healthlake')
data_store_list = healthlake_client.list_fhir_datastores(Filter={'DatastoreStatus':
 'ACTIVE'})
print(data_store_list)

To learn more, see list_fhir_datastore in the Boto3 Documentation.

Java

The following example demonstrates how to create HealthLake data store using the
CreateFHIRDatastoreRequest operation. To run the example, you must install the
AWS SDK for Java. When you create your data store encryption at rest defaults to an AWS-
owned AWS KMS key unless specified otherwise. To learn more about encryption at REST for
HealthLake see, Encryption at REST for AWS HealthLake.

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.AWSCredentialsProvider;
import com.amazonaws.auth.DefaultAWSCredentialsProviderChain;

import com.amazonaws.services.HealthLake.AWSHealthLake;
import com.amazonaws.services.HealthLake.AWSHealthLakeClient;
import com.amazonaws.services.HealthLake.model.CreateFHIRDatastoreRequest;

CreateFHIRDatastore 24

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/healthlake.html?highlight=healthlake#HealthLake.Client.list_fhir_datastores

AWS HealthLake Developer Guide

import com.amazonaws.services.HealthLake.model.CreateFHIRDatastoreResult;
import com.amazonaws.services.HealthLake.model.DescribeFHIRDatastoreRequest;
import com.amazonaws.services.HealthLake.model.DescribeFHIRDatastoreResult;
import com.amazonaws.services.HealthLake.model.FHIRVersion;
import com.amazonaws.services.HealthLake.model.ListFHIRDatastoresRequest;
import com.amazonaws.services.HealthLake.model.ListFHIRDatastoresResult;
import com.amazonaws.services.HealthLake.model.PreloadDataConfig;
import com.amazonaws.services.HealthLake.model.PreloadDataType;

public class App{

 public static void main(String[] args) {

 // Create credentials using a provider chain. For more information, see
 // https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/
credentials.html
 AWSCredentialsProvider awsCreds =
 DefaultAWSCredentialsProviderChain.getInstance();

 AWSHealthLake awsHealthLake = AWSHealthLakeClient.builder()
 .withRegion("us-east-1").withCredentials(awsCreds).defaultClient();

 CreateFHIRDatastoreRequest createFHIRDatastoreRequest = new
 CreateFHIRDatastoreRequest()
 .withData StoreName("TestDatastore123")
 .withData StoreTypeVersion(FHIRVersion.R4)
 .withPreloadDataConfig(new PreloadDataConfig()
 .withPreloadDataType(PreloadDataType.SYNTHEA));

 }
}

Learn more about a specific HealthLake data store

To describe an individual data store you can use AWS Management Console, AWS SDKs, and the
AWS CLI.

DescribeFHIRDatastore 25

AWS HealthLake Developer Guide

Differences between the AWS Management Console and HealthLake APIs.

In the HealthLake console, you can only view data stores which have the status Active,
Creating, or Deleting. To view details about a HealthLake data store which has been
deleted your must-use the DescribeFHIRDatastore action.

To view the details of a HealthLake data store (AWS Management Console)

1. Open the HealthLake console at https://console.aws.amazon.com//healthlake/home.

2. Open the Navigation pane (≡).

3. Then, choose Data Stores.

4. On the data stores page, choose the name of data store you would like to learn more about.

To view the details of more than one data store at a time use the ListFHIRDatastore API action.

To create HealthLake data store (AWS CLI and SDKs)

You can use the code samples below to create a HealthLake data store.

AWS CLI

The following examples demonstrates using the DescribeFHIRDatastore operation wit the
AWS CLI. To run the example, you must install the AWS CLI.

aws healthlake describe-fhir-datastore --datastore-id
 "5b6e4cd798289a4ab8dad6c1002dd731"

When successful, you get the following JSON response.

{
 "DatastoreProperties": {
 "DatastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "DatastoreArn": "arn:aws:healthlake:us-west-2:728347309221:datastore/
fhir/5b6e4cd798289a4ab8dad6c1002dd731",
 "DatastoreName": "delete-me",
 "DatastoreStatus": "ACTIVE",
 "CreatedAt": "2022-10-03T10:53:45.020000-07:00",

DescribeFHIRDatastore 26

https://console.aws.amazon.com/healthlake/home
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRDataStore.html

AWS HealthLake Developer Guide

 "DatastoreTypeVersion": "R4",
 "DatastoreEndpoint": "https://healthlake.us-west-2.amazonaws.com/
datastore/5b6e4cd798289a4ab8dad6c1002dd731/r4/",
 "SseConfiguration": {
 "KmsEncryptionConfig": {
 "CmkType": "AWS_OWNED_KMS_KEY"
 }
 },
 "PreloadDataConfig": {
 "PreloadDataType": "SYNTHEA"
 }
 }
}

Python (boto3)

The AWS SDK for Python supports the describe_fhir_datastore method which takes in a
single parameter DatastoreId.

import boto3

#Create a Healthlake client
healthlake_client = boto3.client('healthlake')

#Call the describe_fhir_datastore method
data_store_details =
 healthlake_client.describe_fhir_datastore(DatastoreId='cdf8f1557e57c543bdc627fb8f12b7fd')

print(data_store_details)

When successful, it returns a python dictionary.

{'DatastoreProperties': {'DatastoreId': 'cdf8f1557e57c543bdc627fb8f12b7fd',
 'DatastoreArn': 'arn:aws:healthlake:us-west-2:728347309221:datastore/fhir/
cdf8f1557e57c543bdc627fb8f12b7fd', 'DatastoreName': '08-24-2022-test-data-
store', 'DatastoreStatus': 'ACTIVE', 'CreatedAt': datetime.datetime(2022,
 8, 23, 22, 12, 14, 359000, tzinfo=tzlocal()), 'DatastoreTypeVersion': 'R4',
 'DatastoreEndpoint': 'https://healthlake.us-west-2.amazonaws.com/datastore/
cdf8f1557e57c543bdc627fb8f12b7fd/r4/', 'SseConfiguration': {'KmsEncryptionConfig':
 {'CmkType': 'AWS_OWNED_KMS_KEY'}}, 'PreloadDataConfig': {'PreloadDataType':
 'SYNTHEA'}}, 'ResponseMetadata': {'RequestId': 'aef4b268-ad4b-4b57-
bc97-2da956356835', 'HTTPStatusCode': 200, 'HTTPHeaders': {'date': 'Wed, 05 Oct
 2022 01:21:44 GMT', 'content-type': 'application/x-amz-json-1.0', 'content-

DescribeFHIRDatastore 27

AWS HealthLake Developer Guide

length': '547', 'connection': 'keep-alive', 'x-amzn-requestid': 'aef4b268-ad4b-4b57-
bc97-2da956356835'}, 'RetryAttempts': 0}}

To return details about more than one data store at a time use ListFHIRDatastore

To view details about more than one HealthLake data store at a time use the ListFHIRDatastores
API operation.

Using the ListFHIRDatastores API operation

Use the list-fhir-datastore API or the console to find the names, properties, and statuses of the
data stores associated with your account as shown in the following example. You can also set filters
to focus your listings to 'ACTIVE' Data Stores only, as shown in the example.

aws healthlake list-fhir-datastores
 --region us-east-1
 --filter DatastoreStatus=ACTIVE

The following is the response in JSON.

{
 "DatastorePropertiesList": [
 {
 "PreloadDataConfig": {
 "PreloadDataType": "SYNTHEA"
 },
 "DatastoreName": "FhirTestDatastore",
 "DatastoreArn": "arn:aws:healthlake:us-east-1:(AWS Account ID):datastore/
(Datastore ID)",
 "DatastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/datastore/
(Datastore ID)/r4/",
 "DatastoreStatus": "ACTIVE",
 "DatastoreTypeVersion": "R4",
 "CreatedAt": 1605574003.209,
 "DatastoreId": "(Datastore ID)"
 },
 {
 "DatastoreName": "Demo",
 "DatastoreArn": "arn:aws:healthlake:us-east-1:(AWS Account ID):datastore/
(Datastore ID)",

ListFHIRDatastores 28

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ListFHIRDataStore.html

AWS HealthLake Developer Guide

 "DatastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/datastore/
(Datastore ID)/r4/",
 "DatastoreStatus": "ACTIVE",
 "DatastoreTypeVersion": "R4",
 "CreatedAt": 1603761064.881,
 "DatastoreId": "(Datastore ID)"
 }
]
}

Deleting a data store example

To delete a HealthLake data store you can use the AWS Management Console, AWS Management
Console, AWS SDKs, and the AWS CLI.

Deleting a data store is an asynchronous operation. Once started, the status changes to Deleting.
A data store maintains the status of Deleting until all the FHIR data from the date store, and
underlying infrastructure necessary are removed as well.

Once the data and infrastructure are removed, your HealthLake data store status changes
to Deleted. After deletion, the details about your data stores are available only by using the
DescribeFHIRDataStore and ListFHIRDataStores operations for seven days. After seven
days, the deleted data store will not appear in the results.

To successfully delete a data store the user, group, or role making the request must have the IAM
action glue:DeleteDatabase added to their IAM policy. This IAM action is not included as part
of the AWS managed policy, AmazonHealthLakeFullAccess.

To delete a HealthLake data store (AWS Management Console)

1. Open the HealthLake console at https://console.aws.amazon.com//healthlake/home.

2. Open the Navigation pane (≡).

3. Then, choose Data Stores.

4. On the Data Stores page, choose the option next to the data store you want to delete.

5. Then, choose Delete

6. In the dialog box type delete to confirm that you want to delete the select data store.

7. Then, choose Delete.

DeleteFHIRDataStore 29

https://console.aws.amazon.com/healthlake/home

AWS HealthLake Developer Guide

Then the status of your data store will change from Active to Deleting.

To delete a HealthLake data store (AWS CLI and SDKs)

You can use the code samples below to delete a HealthLake data store.

AWS CLI

The following examples demonstrates using the DeleteFHIRDatastore operation with the
AWS CLI. To run the example, you must install the AWS CLI.

aws healthlake delete-fhir-datastore --datastore-id
 'eeb8005725ae22b35b4edbdc68cf2dfd'

When successful, you get the following JSON response.

{
 "DatastoreProperties": {
 "DatastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "DatastoreArn": "arn:aws:healthlake:us-west-2:728347309221:datastore/fhir/",
 "DatastoreName": "delete-me",
 "DatastoreStatus": "ACTIVE",
 "CreatedAt": "2022-10-03T10:53:45.020000-07:00",
 "DatastoreTypeVersion": "R4",
 "DatastoreEndpoint": "https://healthlake.us-west-2.amazonaws.com/
datastore/5b6e4cd798289a4ab8dad6c1002dd731/r4/",
 "SseConfiguration": {
 "KmsEncryptionConfig": {
 "CmkType": "AWS_OWNED_KMS_KEY"
 }
 },
 "PreloadDataConfig": {
 "PreloadDataType": "SYNTHEA"
 }
 }
}

Python (boto3)

The AWS SDK for Python supports the describe_fhir_datastore method which takes in a
single parameter DatastoreId.

import boto3

DeleteFHIRDataStore 30

AWS HealthLake Developer Guide

#Create a Healthlake client
healthlake_client = boto3.client('healthlake')

#Call the describe_fhir_datastore method
data_store_details =
 healthlake_client.describe_fhir_datastore(DatastoreId='cdf8f1557e57c543bdc627fb8f12b7fd')

print(data_store_details)

When successful, it returns a python dictionary.

{'DatastoreProperties': {'DatastoreId': 'cdf8f1557e57c543bdc627fb8f12b7fd',
 'DatastoreArn': 'arn:aws:healthlake:us-west-2:728347309221:datastore/fhir/
cdf8f1557e57c543bdc627fb8f12b7fd', 'DatastoreName': '08-24-2022-test-data-
store', 'DatastoreStatus': 'ACTIVE', 'CreatedAt': datetime.datetime(2022,
 8, 23, 22, 12, 14, 359000, tzinfo=tzlocal()), 'DatastoreTypeVersion': 'R4',
 'DatastoreEndpoint': 'https://healthlake.us-west-2.amazonaws.com/datastore/
cdf8f1557e57c543bdc627fb8f12b7fd/r4/', 'SseConfiguration': {'KmsEncryptionConfig':
 {'CmkType': 'AWS_OWNED_KMS_KEY'}}, 'PreloadDataConfig': {'PreloadDataType':
 'SYNTHEA'}}, 'ResponseMetadata': {'RequestId': 'aef4b268-ad4b-4b57-
bc97-2da956356835', 'HTTPStatusCode': 200, 'HTTPHeaders': {'date': 'Wed, 05 Oct
 2022 01:21:44 GMT', 'content-type': 'application/x-amz-json-1.0', 'content-
length': '547', 'connection': 'keep-alive', 'x-amzn-requestid': 'aef4b268-ad4b-4b57-
bc97-2da956356835'}, 'RetryAttempts': 0}}

To return details about more than one data store at a time use ListFHIRDatastore

use the DeleteFHIRDataStore command using the AWS CLI as shown in the following example.
You can also delete a data store using the delete-fhir-datastore API or the console. Deleting a data
store removes all of the FHIR resource versions contained within the data store and the underlying
infrastructure. Logs related to a deleted data store are retained within the service account in
accordance with HIPAA guidelines.

aws healthlake delete-fhir-datastore
 --datastore-id (Data Store ID)

As shown in the following example JSON response, the status changes to "DELETING" to confirm
that the data store and its contents are in the process of being deleted.

{

DeleteFHIRDataStore 31

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DeleteFHIRDataStore.html

AWS HealthLake Developer Guide

 "DatastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/
datastore/eeb8005725ae22b35b4edbdc68cf2dfd/r4/",
 "DatastoreArn": "arn:aws:healthlake:us-east-1:(AWS Account ID):datastore/(Datastore
 ID)",
 "DatastoreStatus": "DELETING",
 "DatastoreId": "(Datastore ID)"
}

Importing files into HealthLake data stores

After you create your HealthLake data store, you can import files from an Amazon Simple Storage
Service (Amazon S3) bucket. You can use the HealthLake console or the StartFHIRImportJobto
start an import job. HealthLake accepts input files in newline delimited JSON (.ndjson)
format, where each line consists of a valid FHIR resource. You can use the API operations
DescribeFHIRImportJob and ListFHIRImportJobs to describe and list ongoing import jobs.
A customer-owned or AWS-owned KMS key is required for encryption of the Amazon S3 bucket for
all import jobs. To learn more about creating and using a KMS Keys, see Creating keys in the AWS
Key Management Service Developer Guide.

Only one import or export job can run concurrently per HealthLake data store. However, users can
create, read, update, or delete FHIR resources while an import job is in progress.

For each import job, a manifest.json file is generated. This file describes both the successes
and failures of an import job. Users can programmatically navigate to these files. They are
organized into two folders, named SUCCESS and FAILURE. An output file may contain sensitive
information, therefore, users must provide both an output Amazon S3 bucket and an AWS KMS key
for encryption.

The following is an example of the output manifest.json file. It is recommended users use this
file as the first step of troubleshooting a failed import job because it provides details on each file
and what caused the import job to fail.

 {
 "inputDataConfig": {
 "s3Uri": "s3://inputS3Bucket/healthlake-input/invalidInput/"
 },
 "outputDataConfig": {
 "s3Uri": "s3://outputS3Bucket/32839038a2f47f17c2fe0f53f0c3a0ba-
FHIR_IMPORT-19dd7bb7bcc8ee12a09bf6d322744a3d/",

Importing files 32

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS HealthLake Developer Guide

 "encryptionKeyID": "arn:aws:kms:us-west-2:123456789012:key/fbbbfee3-20b3-42a5-a99d-
c48c655ed545"
 },
 "successOutput": {
 "successOutputS3Uri": "s3://outputS3Bucket/32839038a2f47f17c2fe0f53f0c3a0ba-
FHIR_IMPORT-19dd7bb7bcc8ee12a09bf6d322744a3d/SUCCESS/"
 },
 "failureOutput": {
 "failureOutputS3Uri": "s3://outputS3Bucket/32839038a2f47f17c2fe0f53f0c3a0ba-
FHIR_IMPORT-19dd7bb7bcc8ee12a09bf6d322744a3d/FAILURE/"
 },
 "numberOfScannedFiles": 1,
 "numberOfFilesImported": 1,
 "sizeOfScannedFilesInMB": 0.023627,
 "sizeOfDataImportedSuccessfullyInMB": 0.011232,
 "numberOfResourcesScanned": 9,
 "numberOfResourcesImportedSuccessfully": 4,
 "numberOfResourcesWithCustomerError": 5,
 "numberOfResourcesWithServerError": 0
}

Performing an import

You can start an import job by using either the AWS HealthLake console or the AWS HealthLake
import API, start-fhir-import-job API.

Importing files by using the API operations

Prerequisites

When you use the AWS HealthLake API operations, you must first create an AWS Identity and
Access Management (IAM) policy and attach it to an IAM role. To learn more about IAM roles and
trust policies, see IAM Policies and Permissions. Customers must also use a KMS key for encryption.
To learn more about using KMS Keys, see Amazon Key Management Service.

To import files (API), use the following steps.

1. Upload your data into an Amazon S3 bucket.

2. To start a new import job, use the start-FHIR-import-job operation. When you start the
job, indicate to HealthLake the name of the Amazon S3 bucket that contains the input files,
the KMS key you want to use for encryption, and the output data configuration.

Performing an import 33

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_StartFHIRImportJob.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

AWS HealthLake Developer Guide

3. To learn more about a FHIR import job, use the describe-fhir-import-job operation to get the
job's ID, ARN, name, start time, end time, and current status. Use list-fhir-import-job to show
all import jobs and their statuses.

Importing files by using the console

To import files (console), use the following steps.

1. Upload your data into an Amazon S3 bucket.

2. To start a new import job, identify the Amazon S3 bucket, and either create or identify the IAM
role and the KMS key you want to use. To learn more about IAM roles and trust policies, see
IAM Roles. To learn more about using KMS keys, see Amazon Key Management Service.

3. To see the status of your import job, use ListFHIRImportJobs. For more details on the
ListFHIRImportJobs API command, see ListFHIRImportJobs in the AWS HealthLake API
Reference.

IAM policies for import jobs

The IAM role that calls the AWS HealthLake API operations must have a policy that grants access to
the Amazon S3 buckets containing the input files. It must also be assigned a trust relationship that
enables HealthLake to assume the role. To learn more about IAM roles and trust policies, see IAM
Roles.

The role must have the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketPublicAccessBlock",
 "s3:GetEncryptionConfiguration"
],
 "Resource": [
 "arn:aws:s3:::inputS3Bucket",
 "arn:aws:s3:::outputS3Bucket"
],

Importing files by using the console 34

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRImportJob.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ListFHIRImportJob.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ListFHIRImportJobs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS HealthLake Developer Guide

 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::inputS3Bucket/*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::outputS3Bucket/*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "kms:DescribeKey",
 "kms:GenerateDataKey*"
],
 "Resource": [
 "arn:aws:kms:us-east-1:012345678910:key/d330e7fc-b56c-4216-a250-
f4c43ef46e83"
],
 "Effect": "Allow"
 }
]
}

The role must have the following trust relationship.

{
"Version": "2012-10-17",
 "Statement": [
 {"Effect": "Allow",
 "Principal":

IAM policies 35

AWS HealthLake Developer Guide

 {"Service":
 ["healthlake.amazonaws.com"]
 },
 "Action": "sts:AssumeRole"
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "(accountId)"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:healthlake:(region):(accountId):datastore/
fhir/(datastoreId)"
 }
 }
 }
]
}

Example: Starting and monitoring import jobs by using the AWS CLI

The following example shows how to use the AWS CLI to start and monitor an import job. You can
also use the start-fhir-import-job API.

aws healthlake start-fhir-import-job \
--input-data-config S3Uri=s3://inputS3Bucket/inputFolder/ \
--datastore-id (Datastore ID) \
--data-access-role-arn "arn:aws:iam::012345678910:role/DataAccessRole" \
--job-output-data-config '{"S3Configuration": {"S3Uri":"s3://outputS3Bucket/healthlake-
output","KmsKeyId":"arn:aws:kms:us-east-1:012345678910:key/d330e7fc-b56c-4216-a250-
f4c43ef46e83"}}' \
--region us-east-1

When the import job begins, you'll receive the following confirmation.

{
 "JobId": "8a4077553e9a485ad889c1a89c7541f0",
 "JobStatus": "SUBMITTED",
 "DatastoreId": "32839038a2f47f17c2fe0f53f0c3a0ba"
}

Example: Starting and monitoring import jobs by using the AWS CLI 36

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_StartFHIRImportJob.html

AWS HealthLake Developer Guide

To monitor the status of an import job, or to learn its configuration properties, use the describe-
fhir-import-job API or the AWS CLI command, as shown in the following example.

 aws healthlake describe-fhir-import-job \
 --datastore-id (Datastore ID) \
 --job-id c145fbb27b192af392f8ce6e7838e34f \
 --region us-east-1

You receive the following information in response.

{
 "ImportJobProperties": {
 "InputDataConfig": {
 "S3Uri": "s3://(Bucket Name)/(Prefix Name)/"
 },
 "DataAccessRoleArn": "arn:aws:iam::(AWS Account ID):role/(Role Name)",
 "JobStatus": "COMPLETED",
 "JobId": "c145fbb27b192af392f8ce6e7838e34f",
 "SubmitTime": 1606272542.161,
 "EndTime": 1606272609.497,
 "DatastoreId": "(Datastore ID)"
 }
}

To see a list of all import jobs, use the list-fhir-import-jobs API or the AWS CLI command, as shown
in the following example. Users can add one or more filters to limit the results.

 aws healthlake list-fhir-import-jobs\
 --datastore-id (Datastore ID) \
 --submitted-before (DATE like 2024-10-13T19:00:00Z)\
 --submitted-after (DATE like 2020-10-13T19:00:00Z)\
 --job-name "FHIR-IMPORT" \
 --job-status SUBMITTED \
 --max-results (Integer between 1 and 500)

You receive the following information in response.

{
 "ImportJobProperties": {

Example: Starting and monitoring import jobs by using the AWS CLI 37

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRImportJob.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRImportJob.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ListFHIRImportJobs.html

AWS HealthLake Developer Guide

 "OutputDataConfig": {
 "S3Uri": "s3://(Bucket Name)/(Prefix Name)/",
 "S3Configuration": {
 "S3Uri": "s3://(Bucket Name)/(Prefix Name)/",
 "KmsKeyId" : "(KmsKey Id)"
 },
 },
 "DataAccessRoleArn": "arn:aws:iam::(AWS Account ID):role/(Role Name)",
 "JobStatus": "COMPLETED",
 "JobId": "c145fbb27b192af392f8ce6e7838e34f",
 "JobName" "FHIR-IMPORT",
 "SubmitTime": 1606272542.161,
 "EndTime": 1606272609.497,
 "DatastoreId": "(Datastore ID)"
 }
}
"NextToken": String

Exporting files from a HealthLake data store

To export data from your HealthLake data store, use the following operations.

• Make an export request using the StartFHIRExportJob API operation using the HealthLake
SDK.

• This operation only supports making a system-wide export request.

• Make an export request using the export syntax using the HealthLake FHIR REST API.

• This operation supports making system-wide, Patient, and Group export requests. You can also
apply parameters to further filter the data in the export request.

Both of these operations require a service role. In it, HealthLake must be defined as the service
principal, and you must define an Amazon Simple Storage Service (S3) bucket of where you want
to export your files. To learn more, see Creating a service role.

Both of these operations only support exporting your files to an Amazon S3 (S3) bucket. All files
from your HealthLake data store are exported as newline delimited JSON (.ndjson) files, where
each line consists of a valid FHIR resource.

To export files from your HealthLake data store, see the following sections.

Exporting files 38

AWS HealthLake Developer Guide

• Exporting data from your data store by using the HealthLake SDK

• Exporting data from your data store by using the FHIR REST API

Exporting data from your data store by using the HealthLake SDK

You can export files from your data store to an Amazon Simple Storage Service (Amazon S3)
bucket. Files from your data store are exported in newline delimited JSON (.ndjson) format,
where each line consists of a valid FHIR resource. A KMS key is required for encryption of the
Amazon S3 bucket for all export jobs. To learn more about creating a KMS key, see Creating keys in
the AWS Key Management Service Developer Guide.

You can run one concurrent SDK-based export job for each data store per AWS account. To learn
more about the Service Quotas associated with HealthLake, see AWS HealthLake endpoints and
quotas.

You can still create, read, update, and delete FHIR resources while an export job is in progress.

Performing an export

You can start an export job by using either the AWS HealthLake console or the AWS HealthLake
export API, start-fhir-export-job API.

Exporting from your data store

Prerequisites

To use AWS HealthLake API operations, you must create an AWS Identity Access and Management
(IAM) policy and attach it to an IAM role. To learn more about IAM roles and trust policies, see IAM
Policies and Permissions.

To export files, use the following steps.

1. Create an S3 bucket. The Amazon S3 bucket must be in the same AWS Region as the service,
and Block Public Access must be turned on for all options. To learn more, see Using Amazon
S3 block public access. An Amazon-owned or customer-owned KMS key must also be used for
encryption. To learn more about using KMS keys, see Amazon Key Management Service.

2. Create and add an IAM policy to allow the user to create and attach roles and policies. The
following is an example.

{

SDK based export 39

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_StartFHIRExportJob.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-control-block-public-access.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-control-block-public-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

AWS HealthLake Developer Guide

 "Version": "2012-10-17",
 "Statement": [{
 "Action": ["iam:CreateRole", "iam:CreatePolicy", "iam:AttachRolePolicy"],
 "Effect": "Allow",
 "Resource": "*"
 }, {
 "Action": "iam:PassRole"
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "healthlake.amazonaws.com"
 }
 }
 }]
}

3. Create a data access role. HealthLake uses this to write the output Amazon S3 bucket.

4. Add a trust policy to the data access role. The following is an example trust policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": ["healthlake.amazonaws.com"]
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "your-account-id"
 },
 "ArnEquals": {
 "aws:SourceArn": "https://healthlake.your-region.amazonaws.com/
datastore/your-datastore-id/r4/"
 }
 }
 }]
}

5. Add a permissions policy to the data access role that enables the role to access the S3 bucket.

{

SDK based export 40

AWS HealthLake Developer Guide

 "Version": "2012-10-17",
 "Statement": [{
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketPublicAccessBlock",
 "s3:GetEncryptionConfiguration"
],
 "Resource": [
 "arn:aws:s3:::outputS3Bucket"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::outputS3Bucket/*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "kms:DescribeKey",
 "kms:GenerateDataKey*"
],
 "Resource": [
 "arn:aws:kms:us-east-1:012345678910:key/d330e7fc-b56c-4216-a250-
f4c43ef46e83"
],
 "Effect": "Allow"
 }]
}

6. Use the start-fhir-export-job operation to begin a bulk export job.

7. To get the ID, ARN, name, start time, end time, and current status of a FHIR export job, use
describe-fhir-export-job. Use list-fhir-export-jobs to list all export jobs and their statuses.

SDK based export 41

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_StartFHIRexportJob.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRexportJob.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ListFHIRexportJobs.html

AWS HealthLake Developer Guide

Exporting files (console)

To export files (console), use the following steps.

1. Create an output S3 bucket in the same Region as HealthLake.

2. To start a new export job, identify the output Amazon S3 bucket and either create or identify
the IAM role that you want to use. To learn more about IAM roles and trust policies, see IAM
roles. Also use a KMS key encryption. To learn more about using KMS keys, see Amazon Key
Management Service.

3. To see the status of your export job, use ListFHIRExportJobs. For more details on the
ListFHIRExportJobs API command, see ListFHIRExportJobs in the Amazon HealthLake API
Reference.

Exporting data from your data store by using the FHIR REST API

Important

HealthLake data stores created prior to June 1, 2023 only support FHIR REST API based
export job requests for system-wide exports.
HealthLake data stores created prior to June 1, 2023 do not support getting the status of
an export using a GET request on a data store's endpoint.

To make an export request using the FHIR REST API, you must have a IAM user, group, or role
with the required permissions, specify $export as part of the POST request, and include request
parameters in the body of your request. According to the FHIR specification, the FHIR server must
support GET requests, and can support POST requests. In order to support additional parameters, a
body is needed to start the export, therefore HealthLake supports POST requests.

All export requests you make using the FHIR REST API are returned in ndjson format and exported
to an Amazon S3 bucket. Each S3 object will contain only a single FHIR resource type.

You can make a single export request for each AWS account at a time. To learn more about the
Service Quotas associated with HealthLake, see AWS HealthLake endpoints and quotas.

HealthLake supports the following three types of bulk export endpoint requests.

REST based export 42

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ListFHIRExportJobs.html

AWS HealthLake Developer Guide

Type Descriptions Syntax

System
export

Export all data from the
HealthLake FHIR server.

POST https://healthlake. your-regi
on .amazonaws.com/datastore/ your-data
store-id /r4/$export

All
patients

Export all data relating to all
patients including resource
types associated with the
Patient resource type.

POST https://healthlake. your-regi
on .amazonaws.com/datastore/ your-data
store-id /r4/Patient/$export

Group
of
Patients

Export all data relating to a
group of patients specified
with a Group ID.

POST https://healthlake. your-regi
on .amazonaws.com/datastore/ your-data
store-id /r4/Group/ ID/$export

Before you begin

Meet the following requirements to make an export request by using the FHIR REST API for
HealthLake.

• You must have set up a user, group, or role that has the necessary permissions to make the
export request. To learn more, see Authorizing an export request.

• You must have created a service role that grants HealthLake access to the Amazon S3 bucket to
which you want your data to be exported. The service role must also specify HealthLake as the
service principal. To learn more, see Creating a service role.

Authorizing an export request

To make a successful export request using the FHIR REST API, authorize your user, group, or role m
by using either IAM or OAuth2.0. You also must have a service role.

Authorizing a request by using IAM

When you make an $export request, the user, group, or role must have
StartFHIRExportJobWithPost, DescribeFHIRExportJobWithGet, and
CancelFHIRExportJobWithDelete IAM actions included in the policy.

Authorizing a request using SMART on FHIR (OAuth 2.0)

REST based export 43

AWS HealthLake Developer Guide

When you make an $export request on SMART on FHIR enabled HealthLake data store, you need
to have the appropriate scopes assigned. To learn more about supported scopes, see HealthLake
data store FHIR resource specific scopes.

Making an export request

This section describes the required steps you must take when making an export request by using
the FHIR REST API.

To avoid accidental charges on your AWS account, we recommend testing your requests by making
a POST request without supplying the export syntax.

To make the request, you must do the following:

1. Specify export in the POST request URL for a supported endpoint.

2. Specify the required header parameters.

3. Specify a request body that defines the required parameters.

Step 1: Specify export in the POST request URL for a supported endpoint

HealthLake supports three types of bulk export endpoint requests. To make a bulk export request,
you must make a POST-based request on one of the three supported endpoints. The following
examples demonstrate how to specify export in the request URL.

• POST https://healthlake.your-region.amazonaws.com/datastore/your-
datastore-id/r4/$export

• POST https://healthlake.your-region.amazonaws.com/datastore/your-
datastore-id/r4/Patient/$export

• POST https://healthlake.your-region.amazonaws.com/datastore/your-
datastore-id/r4/Group/ID/$export

In that POST request string, you can use the following supported search parameters.

Supported search parameters

HealthLake supports the following search modifiers in bulk export requests.

These examples include special characters which must be encoded prior to submitting your
request.

REST based export 44

AWS HealthLake Developer Guide

Name Required? Description Example

_outputFormat No The format for the
requested Bulk Data
files to be generated
. Accepted values are
application/
fhir+ndjson ,
application/
ndjson , ndjson.

_type No A string of comma
delimited FHIR
resource types that
you want included
in your export job.
We recommend
including _type
because this can have
a cost implication
when all resources
are exported.

&_type=Me
dicationS
tatement,
Observation

_since No Resource types
modified on or after
the date time stamp.
If a resource type
does not have a last
updated time they
will be included in
your response.

&_since=2
024-05-09
T00%3A00%3A00Z

Step 2: Specify the required header parameters

To make an export request using the FHIR REST API, you must specify the following two header
parameters.

REST based export 45

AWS HealthLake Developer Guide

• Content-Type: application/fhir+json

• Prefer: respond-async

Next, you must specify the required elements in the request body.

Step 3: Specify a request body the defines the required parameters.

The export request also requires a body in JSON format. The body can include the following
parameters.

To learn more, see Creating a service role

Key Required? Description Value

DataAccessRoleArn Yes An ARN of a
HealthLake service
role. The service role
used must specify
HealthLake as the
service principal.

arn:aws:i
am:: 444455556
666 :role/your-
healthlake-se
rvice-role

JobName No The name of the
export request.

your-export-
job-name

S3Uri Yes Part of an OutputDat
aConfig key. The S3
URI of the destinati
on bucket where your
exported data will be
downloaded.

s3://DOC-
EXAMPLE-D
ESTINATION-
BUCKET/ EXPORT-
JOB /

KmsKeyId Yes Part of an OutputDat
aConfig key. The ARN
of the AWS KMS key
used to secure the
Amazon S3 bucket.

arn:aws:k
ms: region-of-
bucket:123456789
012 :key/1234abcd-
12ab-34cd
-56ef-123
4567890ab

REST based export 46

AWS HealthLake Developer Guide

Example – Body of an export request made by using the FHIR REST API

To make an export request by using the FHIR REST API, you must specify a body, as shown in the
following.

{
 "DataAccessRoleArn": "arn:aws:iam::444455556666:role/your-healthlake-service-role",
 "JobName": "your-export-job",
 "OutputDataConfig": {
 "S3Configuration": {
 "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/EXPORT-JOB",
 "KmsKeyId": "arn:aws:kms:region-of-
bucket:444455556666:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
 }
}

When your request is successful, you will receive the following response.

Response Header

content-location: https://healthlake.your-region.amazonaws.com/datastore/your-
datastore-id/r4/export/your-export-request-job-id

Response Body

{
 "datastoreId": "your-data-store-id",
 "jobStatus": "SUBMITTED",
 "jobId": "your-export-request-job-id"
}

Managing your export request

After making a successful export request, you can manage that request by using export to
describe the status of a current export request, and export to cancel a current export request.

When you cancel an export request by using the REST API, you will only be billed for the portion of
the data that was exported up to the time you submitted the cancel request.

The following topics describe how you can get the status on or cancel a current export request.

REST based export 47

AWS HealthLake Developer Guide

Canceling an export request

To cancel an export request, make a DELETE request and supply the job ID in the request URL.

DELETE https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
export/your-export-request-job-id

When your request is successful, you receive the following.

{
 "exportJobProperties": {
 "jobId": "your-original-export-request-job-id",
 "jobStatus": "CANCEL_SUBMITTED",
 "datastoreId": "your-data-store-id"
 }
}

When your request is not successful, you receive the following.

{
 "resourceType": "OperationOutcome",
 "issue": [
 {
 "severity": "error",
 "code": "not-supported",
 "diagnostics": "Interaction not supported."
 }
]
}

Describing an export request

To get the status of an export request, make a GET request by using export and your export-
request-job-id.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
export/your-export-request-id

The JSON response will contain an ExportJobProperties object. It may contain the following
key:value pairs.

REST based export 48

AWS HealthLake Developer Guide

Name Required? Description Value

DataAccessRoleArn No An ARN of a
HealthLake service
role. The service role
used must specify
HealthLake as the
service principal.

arn:aws:i
am:: 444455556
666 :role/your-
healthlake-se
rvice-role

SubmitTime No The date time an
export job was
submitted.

Apr 21, 2023
5:58:02

EndTime No The time an export
job was completed.

Apr 21, 2023
6:00:08 PM

JobName No The name of the
export request.

your-export-
job-name

JobStatus No Valid values are:

SUBMITTED |
 IN_PROGRESS
 | COMPLETED
_WITH_ERRORS |
 COMPLETED |
 FAILED

S3Uri Yes Part of an OutputDat
aConfig object. The
Amazon S3 URI
of the destination
bucket where your
exported data will be
downloaded.

s3://DOC-
EXAMPLE-D
ESTINATION-
BUCKET/ EXPORT-
JOB /

KmsKeyId Yes Part of an OutputDat
aConfig object. The

arn:aws:k
ms: region-of-

REST based export 49

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_OutputDataConfig.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_OutputDataConfig.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_OutputDataConfig.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_OutputDataConfig.html

AWS HealthLake Developer Guide

Name Required? Description Value

ARN of the AWS
KMS key used to
secure the Amazon
S3 bucket.

bucket:123456789
012 :key/1234abcd-
12ab-34cd
-56ef-123
4567890ab

Example : Body of a describe export request made using the FHIR REST API

When successful, you will get the following JSON response.

{
 "exportJobProperties": {
 "jobId": "your-export-request-id",
 "JobName": "your-export-job",
 "jobStatus": "SUBMITTED",
 "submitTime": "Apr 21, 2023 5:58:02 PM",
 "endTime": "Apr 21, 2023 6:00:08 PM",
 "datastoreId": "your-data-store-id",
 "outputDataConfig": {
 "s3Configuration": {
 "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/EXPORT-JOB",
 "KmsKeyId": "arn:aws:kms:region-of-
bucket:444455556666:key/1234abcd-12ab-34cd-56ef-1234567890ab""
 }
 },
 "DataAccessRoleArn": "arn:aws:iam::444455556666:role/your-healthlake-service-role",
 }
}

REST based export 50

AWS HealthLake Developer Guide

Managing and searching resources in AWS HealthLake by
using FHIR REST API operations

In AWS HealthLake, you can use Fast Healthcare Interoperability Resources (FHIR) REST API
operations to manage and search resources in your HealthLake data store.

You can use FHIR REST API operations to perform Create, Read, Update, and Delete (CRUD)
operations on resources in a data store. You can also form complex search strings using either a
GET or POST HTTP requests. HealthLake supports a subset of FHIR-supported search operations. To
learn more, see HealthLake supported search parameters.

To find the FHIR-related capabilities of an active HealthLake data store, make a GET request where
metadata is specified in the URL, as follows.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
metadata

When successful, you will receive a 200 HTTP response code and the capability statement for your
data store. For more information on the capability statement, see Resource CapabilityStatement -
Content in the FHIR Documentation Index.

FHIR resource types are validated according to the FHIR R4 Structure Definition. If a resource is not
valid, you will receive an OperationOutcome message with details explaining the exception.

The following table lists the operations that are supported by HealthLake.

Supported Operations

Operation Description Instance-level, Type-level or
Whole-system interaction

Read Read the current state of a
resource

Instance-level

Update Update a resource by its ID (or
create it if it's new)

Instance-level

Delete Delete a resource Instance-level

51

http://hl7.org/fhir/R4/capabilitystatement.html
http://hl7.org/fhir/R4/capabilitystatement.html

AWS HealthLake Developer Guide

Operation Description Instance-level, Type-level or
Whole-system interaction

Create Create a new resource with a
server-assigned ID

Type-level

Search Search the resource type
based on filter criteria

Type-level

Capabilities Get a capability statement for
the system

Whole-system level

Contents

• Supported FHIR resource types in AWS HealthLake

• Performing Create, Read, Update, and Delete (CRUD) operations on HealthLake data stores

• Creating a resource with POST

• Reading a resource with GET

• Updating a resource using PUT

• Conditional Update

• Deleting a resource using DELETE

• Managing multiple FHIR resources using Bundle

• Performing multiple CRUD operations using FHIR bundles

• Grouping resources as a Bundle resource type

• Searching your HealthLake data store by using the FHIR REST API operations

• HealthLake supported search parameters

• Supported search parameter types

• Advanced search parameters supported by HealthLake

• _include

• _revinclude

• _summary

• _elements

• _total
52

AWS HealthLake Developer Guide

• _sort

• _count

• Chaining and Reverse Chaining(_has)

• Supported search modifiers

• Supported search comparators

• Search parameters not supported by HealthLake

• Search with POST examples

• Search with GET

• Extended FHIR operations on HealthLake data stores

• Get Patient Data with Patient $everything

• Get all resources related to a patient

• Patient $everything Parameters

• Patient $everything start and end attributes

• Exporting data from your HealthLake data store using $export

Supported FHIR resource types in AWS HealthLake

This table lists the resource types supported by HealthLake.

Supported FHIR resource types

Account DetectedIssue Invoice Practitioner

ActivityDefinition Device Library PractitionerRole

AdverseEvent DeviceDefinition Linkage Procedure

AllergyIntolerance DeviceMetric List Provenance

Appointment DeviceUseStatement Location Questionnaire

AppointmentRespons
e

DeviceRequest Measure QuestionnaireRespo
nse

AuditEvent-See note DiagnosticReport MeasureReport RelatedPerson

Supported resource types 53

AWS HealthLake Developer Guide

Binary DocumentManifest Media RequestGroup

BodyStructure DocumentReference Medication ResearchStudy

Bundle - See Note EffectEvidenceSynt
hesis

MedicationAdminist
ration

ResearchSubject

CapabilityStatement Encounter MedicationDispense RiskAssessment

CarePlan Endpoint MedicationKnowledg
e

RiskEvidenceSynthe
sis

CareTeam EpisodeOfCare MedicationRequest Schedule

ChargeItem EnrollmentRequest MedicationStatement ServiceRequest

ChargeItemDefinition EnrollmentResponse MessageHeader Slot

Claim ExplanationOfBenefit MolecularSequence Specimen

ClaimResponse FamilyMemberHistor
y

NutritionOrder StructureDefinition

Communication Flag Observation StructureMap

Communica
tionRequest

Goal OperationOutcome Substance

Composition Group Organization SupplyDelivery

ConceptMap GuidanceResponse OrganizationAffili
ation

SupplyRequest

Condition HealthcareService Parameters Task

Consent ImagingStudy Patient ValueSet

Contract Immunization PaymentNotice VisionPrescription

Coverage ImmunizationEvalua
tion

PaymentReconciliat
ion

VerificationResult

Supported resource types 54

AWS HealthLake Developer Guide

CoverageEligibilit
yRequest

Immunizat
ionRecommendation

Person

CoverageEligibilit
yResponse

InsurancePlan PlanDefinition

FHIR specifications and HealthLake

• You cannot make GET or POST requests with these resource types: Binary, Bundle,
OperationOutcome, and Parameters.

• AuditEvent — An AuditEvent resource can be created or read, but it cannot be updated
or deleted.

• Bundle — There are multiple ways HealthLake manages Bundle requests. For more
details, see Managing multiple FHIR resources using Bundle.

• VerificationResult — This resource type is only supported for data stores created after
December 09, 2023.

Performing Create, Read, Update, and Delete (CRUD)
operations on HealthLake data stores

These topics describe how to perform Create, Read, Update, and Delete (CRUD) operations on your
HealthLake data store using the FHIR REST API operations.

Users must use a Signature Version 4 signing process to authenticate HealthLake API requests sent
through an HTTP client. To learn more, see Signature Version 4 signing process in the AWS General
Reference.

Topics

• Creating a resource with POST

• Reading a resource with GET

• Updating a resource using PUT

• Deleting a resource using DELETE

• Managing multiple FHIR resources using Bundle

CRUD operations 55

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

AWS HealthLake Developer Guide

Creating a resource with POST

You use a POST request to create a new resource in a HealthLake data store. POST requests do not
require that you provide an id element. The HealthLake servers return a 201 Created HTTP status
code when a resource has been successfully created.

Note

When you make a POST request on the DocumentReference resource type, the existing
extensions are not modified. Instead, AWS HealthLake adds the new extensions with the
existing ones to your data store. For more details about how HealthLake uses natural
language processing (NLP) on the DocumentReference resource type to extract valuable
medical data, see Using automated resource generation based on natural language
processing (NLP) of the FHIR DocumentReference resource type in AWS HealthLake.

Example Creating a Patient resource using a POST request.

To create a HealthLake data store POST request, use your data store's endpoint and provide a JSON
request body. To find a data store's endpoint, look in the HealthLake console under Data Stores or
by using the DescribeFHIRDatastore operation in the AWS HealthLake API Reference.

POST Request

POST https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient

JSON Request Body

{
 "resourceType": "Patient",
 "identifier": [{ "system": "urn:oid:1.2.36.146.595.217.0.1", "value":
 "12345" }],
 "name": [{
 "family": "Silva",
 "given": ["Ana", "Carolina"]
 }],
 "gender": "female",
 "birthDate": "1992-02-10"
}

POST requests 56

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRDatastore.html

AWS HealthLake Developer Guide

JSON Response

To confirm the creation of the patient resource, you will receive a 201 Created HTTP status code
and the following JSON response.

{
 "resourceType": "Patient",
 "identifier": [
 {
 "system": "urn:oid:1.2.36.146.595.217.0.1",
 "value": "12345"
 }
],
 "name": [
 {
 "family": "Silva",
 "given": [
 "Ana",
 "Carolina"
]
 }
],
 "gender": "female",
 "birthDate": "1992-02-10",
 "id": "274b408a-1201-4e9f-a621-1df937f1a26d",
 "meta": {
 "lastUpdated": "2022-06-13T23:31:24.427Z"
 }
}

Reading a resource with GET

This example shows you how to read a patient FHIR resource using a GET request.

Example Reading a specific Patient resource using a GET request.

To create a HealthLake data store GET request, use your data store's endpoint. To find a data store's
endpoint, look in the HealthLake console under Data Stores or by using the DescribeFHIRDatastore
operation in the AWS HealthLake API Reference.

You also must include the resource type, Patient and a valid identifier, 2de04858-
ba65-44c1-8af1-f2fe69a977d9.

GET requests 57

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRDatastore.html

AWS HealthLake Developer Guide

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient/2de04858-ba65-44c1-8af1-f2fe69a977d9

JSON Response

When successful, you will receive a 200 HTTP status code and the following JSON response.

{
 "resourceType": "Patient",
 "active": true,
 "name": [
 {
 "use": "official",
 "family": "Doe",
 "given": [
 "Jane"
]
 },
 {
 "use": "usual",
 "given": [
 "Jane"
]
 }
],
 "gender": "female",
 "birthDate": "1966-09-01",
 "meta": {
 "lastUpdated": "2020-11-23T06:24:13.202Z"
 },
 "id": "2de04858-ba65-44c1-8af1-f2fe69a977d9"
}

Updating a resource using PUT

The following example shows you how to use PUT to update details about a patient in the patient
FHIR resource type. Furthermore, when you make a PUT request on a resource not yet created, it
will create an initial version.

You request will return either a 200 HTTP status code if the resource was updated, or it will return
a 201 HTTP status code if a new resource was created.

PUT requests 58

AWS HealthLake Developer Guide

Note

When you make a PUT request on the DocumentReference resource type, the existing
extensions are not modified. Instead, AWS HealthLake adds the new extensions with the
existing ones to your data store. For more details about how HealthLake uses natural
language processing (NLP) on the DocumentReference resource type to extract valuable
medical data, see Using automated resource generation based on natural language
processing (NLP) of the FHIR DocumentReference resource type in AWS HealthLake.

Example Updating a Patient resource type using a PUT request

When you make a PUT request, you will need the data store's endpoint, the name of the resource
type you want to update, an identifier, and a JSON request body.

If you use PUT to create a new resource, it uses the identifier provided to create the new resource.

PUT Request

Example structure of a valid PUT request:

PUT https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient/2de04858-ba65-44c1-8af1-f2fe69a977d9

JSON Request Body

An example JSON body used to update the specified patient resource.

{
 "id": "2de04858-ba65-44c1-8af1-f2fe69a977d9",
 "resourceType": "Patient",
 "active": true,
 "name": [
 {
 "use": "official",
 "family": "Doe",
 "given": [
 "Jane"
]
 },
 {
 "use": "usual",

PUT requests 59

AWS HealthLake Developer Guide

 "given": [
 "Jane"
]
 }
],
 "gender": "female",
 "birthDate": "1985-12-31"
}

JSON response

You will receive the following JSON in response to confirm the change:

{
 "id": "2de04858-ba65-44c1-8af1-f2fe69a977d9",
 "resourceType": "Patient",
 "active": true,
 "name": [{
 "use": "official",
 "family": "Doe",
 "given": [
 "Jane"
]
 },
 {
 "use": "usual",
 "given": [
 "Jane"
]
 }
],
 "gender": "female",
 "birthDate": "1985-12-31",
 "meta": {
 "lastUpdated": "2020-11-23T06:43:45.133Z"
 }
}

Conditional Update

Conditional Update allows updating an existing resource based on some identification search
criteria, rather than by logical id. When the server processes this update, it performs a search using

PUT requests 60

AWS HealthLake Developer Guide

its standard search capabilities for the resource type, with the goal of resolving a single logical id
for this request.

The action it takes depends on how many matches are found:

• No matches, no id provided in the request body: The server creates the resource.

• No matches, id provided and resource doesn't already exist with the id: The server treats the
interaction as an Update as Create interaction.

• No matches, id provided and already exist: The server rejects the update with a 409 Conflict
error.

• One Match, no resource id provided OR (resource id provided and it matches the found
resource): The server performs the update against the matching resource as above where, if the
resource was updated, the server SHALL return a 200 OK;

• One Match, resource id provided but does not match resource found: The server returns a
409 Conflict error indicating the client id specification was a problem preferably with an
OperationOutcome

• Multiple matches: The server returns a 412 Precondition Failed error indicating the
client's criteria were not selective enough preferably with an OperationOutcome

Example – Update a patient resource whose name is peter, birthdate is 1st Jan 2000 and phone
number 1234567890:

PUT https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient?name=peter&birthdate=2000-01-01&phone=1234567890

Deleting a resource using DELETE

To delete a resource in your HealthLake data store, you must make a DELETE HTTP request.

Example Deleting a specific Patient resource type using a DELETE request.

To create a DELETE request, use the data store's endpoint. To find a data store's endpoint, look in
the HealthLake console under Data Stores or by using the DescribeFHIRDatastore operation found
in the AWS HealthLake API Reference.

You also must include the resource type and a valid identifier.

DELETE requests 61

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRDatastore.html

AWS HealthLake Developer Guide

DELETE https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient/2de04858-ba65-44c1-8af1-f2fe69a977d9

HTTP response

When successful, you will receive a 204 HTTP status code confirming that the resource is no
longer in the data store. When a delete request fails you will receive a 400 series HTTP status code
indicating why the DELETE request failed.

Managing multiple FHIR resources using Bundle

In the HL7 FHIR R4 specification, bundles are simply a collection of resources. HealthLake supports
creating a Bundle resource type in a FHIR REST API request, and using a bundle transaction to
perform multiple CRUD operations in a single FHIR REST API request. In a bundle transaction, you
must specify the bundle type as batch in the FHIR REST API request.

All bundle requests are recorded by AWS CloudTrail. To learn more about using CloudTrail with
HealthLake, see Logging AWS HealthLake API Calls with AWS CloudTrail.

HL7 FHIR R4 Resources (External)

• To read the full specification, see Resource Type: Bundle in the FHIR Documentation Index.

• To read about batch interactions using the FHIR REST API, see Batch interactions using the FHIR
REST API in the FHIR Documentation Index.

The sections below describe how to structure a FHIR REST API request in order to either create a
new Bundle resource or to process resources individually using bundle transactions.

Differences between the HealthLake console, the AWS CLI, and the AWS SDKs

The HealthLake console only supports Bundle type operations where the Bundle resource
type is specified in the FHIR REST API request URL.

Performing multiple CRUD operations using FHIR bundles

When no resource type is specified in your request URL, the FHIR REST API request is parsed as
individual data store transactions. Each CRUD operation provided in the JSON body is evaluated
and a specific HTTP status code returned. HealthLake supports the Bundle type batch.

Bundle requests 62

https://hl7.org/fhir/R4/Bundle.html
https://hl7.org/fhir/R4/http.html#transaction
https://hl7.org/fhir/R4/http.html#transaction

AWS HealthLake Developer Guide

To perform multiple CRUD operations in a single FHIR REST API request do the following:

The following list shows truncated portions of a request body used in bundle FHIR REST API
request. For a full request body, see Creating a bundle request involving multiple CRUD operations.

1. Do not specify a resource type in your POST request:

POST https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/

2. In the request body specify the Bundle type as "type": "batch"

3. In the request body specify resource-specific data for each CRUD interaction starting with the
resource key.

4. Each CRUD operation is specified as a request in the request body as follows:

{ ...
 "request" : {
 "method" : "HTTP-VERB",
 "url" : "FHIR-RESOURCE-TYPE-URL"
 }
 ...
}

In the JSON response, you get an HTTP status code for each CRUD operation specified in the
request.

HealthLake limits Bundle transactions

• To learn more about the limits HealthLake places on Bundles, see AWS HealthLake endpoints and
quotas.

The following is an example of a Bundle operation containing multiple CRUD operations.

Example – Creating a Bundle request involving multiple CRUD operations.

To make a FHIR REST API request that performs multiple CRUD operations, you must make a POST
request using your data store endpoint, and provide a JSON request body.

You can find your data store's endpoint in the HealthLake console under Data Stores or by using
the DescribeFHIRDatastore operation in the AWS HealthLake API Reference.

Bundle requests 63

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRDatastore.html

AWS HealthLake Developer Guide

POST Request

Make a POST request using your data store's endpoint. Use the next tab, JSON Request Body to
see the required elements of the request body.

POST https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/

JSON Request Body

In the request body, you must provide the following key:value pairs along with any other FHIR
resource-specific data about the individual CRUD requests. The first example shows a truncated
JSON request body highlighting the required elements. The second example is shows a full
JSON request body.

{
 "resourceType": "Bundle",
 "id": "bundle-batch-operation",
 "meta": {
 "lastUpdated": "2014-08-18T01:43:30Z"
 },
 "type": "batch", ## Required
 "entry": [
 {
 ## CRUD Transaction - 1
 "resource": {
 "resourceType": "Patient",
 ...
 },
 "request": { ## Required
 "method": "POST",
 "url": "Patient"
 }
 },
 {
 ## CRUD Transaction - 2
 "resource": {
 "resourceType": "Medication",
 ...
 },
 "request": { ## Required
 "method": "POST",
 "url": "Medication"

Bundle requests 64

AWS HealthLake Developer Guide

 }
 }
]
}

Here's a full example that shows creating a new Patient and Medication resource type.

{
 "resourceType": "Bundle",
 "id": "bundle-transaction",
 "meta": {
 "lastUpdated": "2014-08-18T01:43:30Z"
 },
 "type": "batch",
 "entry": [
 {
 "resource": {
 "resourceType": "Patient",
 "meta": {
 "lastUpdated": "2022-06-03T17:53:36.724Z"
 },
 "text": {
 "status": "generated",
 "div": "Some narrative"
 },
 "active": true,
 "name": [
 {
 "use": "official",
 "family": "Jackson",
 "given": [
 "Mateo",
 "James"
]
 }
],
 "gender": "male",
 "birthDate": "1974-12-25"
 },
 "request": {
 "method": "POST",
 "url": "Patient"
 }

Bundle requests 65

AWS HealthLake Developer Guide

 },
 {
 "resource": {
 "resourceType": "Medication",
 "id": "med0310",
 "contained": [
 {
 "resourceType": "Substance",
 "id": "sub03",
 "code": {
 "coding": [
 {
 "system": "http://snomed.info/sct",
 "code": "55452001",
 "display": "Oxycodone (substance)"
 }
]
 }
 }
],
 "code": {
 "coding": [
 {
 "system": "http://snomed.info/sct",
 "code": "430127000",
 "display": "Oral Form Oxycodone (product)"
 }
]
 },
 "form": {
 "coding": [
 {
 "system": "http://snomed.info/sct",
 "code": "385055001",
 "display": "Tablet dose form (qualifier value)"
 }
]
 },
 "ingredient": [
 {
 "itemReference": {
 "reference": "#sub03"
 },
 "strength": {

Bundle requests 66

AWS HealthLake Developer Guide

 "numerator": {
 "value": 5,
 "system": "http://unitsofmeasure.org",
 "code": "mg"
 },
 "denominator": {
 "value": 1,
 "system": "http://terminology.hl7.org/CodeSystem/v3-
orderableDrugForm",
 "code": "TAB"
 }
 }
 }
]
 },
 "request": {
 "method": "POST",
 "url": "Medication"
 }
 }
]
}

JSON Response

To confirm the creation of the resources specified in the example bundle transaction, you get 201
Created HTTP status code for each included CRUD operation. When a CRUD operation fails you get
400 series HTTP status indicating why the individual request failed.

{
 "resourceType": "Bundle",
 "type": "batch-response",
 "timestamp": "2022-06-15T01:31:34.300+00:00",
 "entry": [
 {
 "response": {
 "status": "201",
 "location": "Patient/fd68ce38-ba30-4459-9eeb-476ad9f4f4ca",
 "lastModified": "2022-06-15T01:31:34.180+00:00"
 }
 },
 {

Bundle requests 67

AWS HealthLake Developer Guide

 "response": {
 "status": "201",
 "location": "Medication/5bf3b8cc-4076-4219-aba1-e2c53d7916f4",
 "lastModified": "2022-06-15T01:31:34.180+00:00"
 }
 }
]
}

Grouping resources as a Bundle resource type

To create a new Bundle resource type, you must specify Bundle in the FHIR REST API request and
provide a valid JSON body containing the resources you want grouped together.

When Bundle is specified in the request URL, the contents of the JSON request body are saved
in your HealthLake data store as-is. Therefore, no CRUD operations can be performed on the
individual resource types. Bundles of this type are assigned a single new resource ID. Because the
resources are saved as-is, you cannot make GET or POST requests on individual resources saved in
the Bundle resource type.

Note

The HL7 FHIR R4 specification also supports grouping resources using Group, Composition,
and List. When you create these resource types, the individual resources are not contained
directly. Instead, they use the Reference element to point to the individual resources.
Using these resources types therefore allow you to modify the individual resources
contained within them.

To create a Bundle resource type, you must specify it in your POST request and provide a JSON
enumerating the resources you want to be included.

Example – Creating a Bundle resource using a POST request

To create a bundle resource do the following

1. Format a FHIR REST API request as follows:

POST https://healthlake.your-region.amazonaws.com/datastore/your-
datastore-id/r4/Bundle

Bundle requests 68

https://hl7.org/fhir/R4/group.html
https://hl7.org/fhir/R4/composition.html
https://hl7.org/fhir/R4/list.html

AWS HealthLake Developer Guide

2. Provide JSON body which specifies the resources you want to group together. This example
groups two patient resources.

{
 "resourceType": "Bundle",
 "id": "bundle-transaction",
 "meta": {
 "lastUpdated": "2018-03-11T11:22:16Z"
 },
 "type": "document",
 "entry": [
 {
 "resource": {
 "resourceType": "Patient",
 "name": [
 {
 "family": "Smith",
 "given": [
 "Jane"
]
 }
],
 "gender": "female",
 "address": [
 {
 "line": [
 "123 Main St."
],
 "city": "Anycity",
 "state": "Any State",
 "postalCode": "12345"
 }
]
 }
 },
 {
 "resource": {
 "resourceType": "Patient",
 "name": [
 {
 "family": "Jackson",
 "given": [
 "Mateo"

Bundle requests 69

AWS HealthLake Developer Guide

]
 }
],
 "gender": "male",
 "address": [
 {
 "line": [
 "1234 Main St."
],
 "city": "Anycity",
 "state": "Any State",
 "postalCode": "12345"
 }
]
 }
 }
]
}

Searching your HealthLake data store by using the FHIR REST
API operations

HealthLake supports searching your data store by using the REST API operations provided as part
of the FHIR standard. In this section, you will find examples of how to make GET and POST requests
on multiple different resource types.

Note

For queries that involve Personally identifiable information (PII) or Protected Health
Information (PHI) it's recommended to use POST requests. In a POST request, PII or PHI is
added as part of the request body and is encrypted in transit.

The FHIR specification supports multiple search parameters types, but HealthLake supports only a
subset. To learn more, see HealthLake supported search parameters.

Searching your data store using the FHIR REST API operations.

• HealthLake supported search parameters

• Supported search parameter types

Search a data store 70

AWS HealthLake Developer Guide

• Advanced search parameters supported by HealthLake

• _include

• _revinclude

• _summary

• _elements

• _total

• _sort

• _count

• Chaining and Reverse Chaining(_has)

• Supported search modifiers

• Supported search comparators

• Search parameters not supported by HealthLake

• Search with POST examples

• Search with GET

HealthLake supported search parameters

This topic provides details about supported search parameters, parameter types, modifiers, and
comparators. Supported parameters are available for all FHIR resources, regardless of type.

Topics

• Supported search parameter types

• Advanced search parameters supported by HealthLake

• Supported search modifiers

• Supported search comparators

• Search parameters not supported by HealthLake

Supported search parameter types

The following table shows the supported search parameter types in HealthLake.

Search parameters 71

AWS HealthLake Developer Guide

Supported search parameters types

Search parameter
Description

_id Resource id (not a full URL)

_lastUpdated Date last updated. Server has discretion on the
boundary precision.

_tag
Search by a resource tag.

_profile Search for all resources tagged with a profile.

_security Search on security labels applied to this
resource.

_source Search on where the resource comes from.

_text Search on the narrative of the resource.

createdAt Search on custom extension - createdAt.

Note

The following search parameters are only supported for datastores created after December
09, 2023 : _security, _source, _text, createdAt.

The following table shows examples of how to modify query strings based on specified data types
for a given resource type. For clarity, special characters in the examples column have not been
encoded. To make a successful query ensure that the query string has been properly encoded.

Search parameters 72

AWS HealthLake Developer Guide

Search Parameter Types Details Examples

Number
Searches for a numerical
value in a specified resource.
Significant figures are
observed.

The number of significant
digits are specific in by search
parameter value, excluding
leading zeros.

Comparison prefixes are
allowed.

[parameter]=100

[parameter]=1e2

[parameter]=lt100

Date/DateTime Searches for a specific date
or time. The expected format
is yyyy-mm-ddThh:mm:s
s[Z|(+|-)hh:mm] but
can vary.

Accepts the following data
types: date, dateTime,
instant, Period, and
Timing. For more details
using these data types in
searches, see date in the FHIR
Documentation Index.

Comparison prefixes are
allowed.

[parameter]=eq2013
-01-14

[parameter]=gt2013
-01-14T10:00

[parameter]=ne2013
-01-14

String Searches for a sequence of
characters in a case-sensitive
manner.

[base]/Patient?giv
en=eve

Search parameters 73

https://www.hl7.org/fhir/search.html#date

AWS HealthLake Developer Guide

Search Parameter Types Details Examples

Supports both HumanName
and Address types. For more
details, see the HumanName
data type entry and the
Address data type entries
in the FHIR Documentation
Index.

Advanced search is supported
using :text modifiers.

[base]/Patient?giv
en:contains=eve

Token Searches for a close-to-exact
match against a string of
characters, often compared to
a pair of medical code values.

Case sensitivity is linked
to the code system used
when creating a query.Sub
sumption-based queries can
help reduce issues linked to
case sensitivity. For clarity the
| has not been encoded.

[parameter]=[syste
m]|[code] : Here
[system] refers a coding
system, and [code] refers to
code value found within that
specific system.

[parameter]=[code] :
Here your input will match
either a code or a system.

[parameter]=|[code
] : Here your input will
match a code, and the system
property has no identifier.

Search parameters 74

https://www.hl7.org/fhir/datatypes.html#HumanName
https://www.hl7.org/fhir/datatypes.html#HumanName
https://www.hl7.org/fhir/datatypes.html#Address

AWS HealthLake Developer Guide

Search Parameter Types Details Examples

Composite Searches for multiple
parameters within a single
resource type, using the
modifiers$ and , operation.

Comparison prefixes are
allowed.

/Patient?language=
FR,NL&language=EN

Observation?compon
ent-code-value-qua
ntity=http://loinc
.org|8480-6$lt60

[base]/Group?chara
cteristic-value=ge
nder$mixed

Quantity Searches for a number,
system, and code as values.
A number is required, but
system and code are optional.
Based on the Quantity
data type. For more details,
see Quantity in the FHIR
Documentation Index.

Uses the following assumed
syntax [paramete
r]=[prefix][number
]|[system]|[code]

[base]/Observation
?value-quantity=5.
4|http://unitsofme
asure.org|mg

[base]/Observation
?value-quantity=5.
4|http://unitsofme
asure.org|mg

[base]/Observation
?value-quantity=5.
4|http://unitsofme
asure.org|mg

[base]/Observation
?value-quantity=le
5.4|http://unitsof
measure.org|mg

Search parameters 75

https://www.hl7.org/fhir/datatypes.html#Quantity

AWS HealthLake Developer Guide

Search Parameter Types Details Examples

Reference Searches for references to
other resources.

[base]/Observation?
subject=Patient/23

test

URI Searches for a string of
characters that unambiguo
usly identifies a particular
resource.

[base]/ValueSet?ur
l=http://acme.org/
fhir/ValueSet/123

Special Searches based on integrated
medical NLP extensions.

Advanced search parameters supported by HealthLake

HealthLake supports the following advanced search parameters.

Name Description Example Capability

_includeUsed to request that
additional resources be
returned in a search request.
It returns resources which
are referenced by the target
resource instance.

Encounter
?_include
=Encounte
r:subject

_revinclu
de

Used to request that
additional resources be
returned in a search request.
It returns resources that
reference the primary
resource instance.

Patient?_
id= patient-
identifier
&_revincl

ude=Encou
nter:patient

Search parameters 76

AWS HealthLake Developer Guide

Name Description Example Capability

_summary Summary can be used to
request a subset of the
resource.

Patient?_
summary=text

The following summary
parameters are supported
: _summary=true ,
_summary=false ,
_summary=text ,
_summary=data .

_elementsRequest a specific set of
elements to be returned
as part of a resource in the
search results.

Patient?_
elements=
identifie
r,active,
link

_total Returns the number of
resources that match the
search parameters.

Patient?_
total=acc
urate

Support _total=ac
curate , _total=none .

_sort Indicate the sort order of
the returned search results
using a comma-separated list.
The - prefix can be used for
any sort rule in the comma-
separated list to indicate
decending order.

Observati
on?_sort=
status,-date

Support sort by fields with
types Number, String,
Quantity, Token, URI,
Reference . Sort by Date is
only supported for datastore
s created after December 09,
2023. Support up to 5 sort
rules.

_count Control how many resources
are returned per page of the
search bundle.

Patient?_
count=100

Maximum page size is 100.

chaining Search elements of reference
d resources. The . directs
the chained search to the
element within the referenced
resource.

Diagnosti
cReport?s
ubject:Pa
tient.nam
e=peter

Search parameters 77

AWS HealthLake Developer Guide

Name Description Example Capability

reverse
chaining
(_has)

Search for a resource based
on the elements of resources
that refer to them.

Patient?_
has:Obser
vation:pa
tient:cod
e=1234-5

_include

Using _include in a search query allows for additional specified FHIR resources to also be
returned. Use _include to include resources that are linked forward.

Example – To use _include to find the patients or the group of patients who have been
diagnosed with a cough

You would search on the Condition resource type specifying the diagnostic code for cough, and
then using _include specify that you want the subject of that diagnosis returned too. In the
Condition resource type subject refers to either the patient resource type or the group resource
type.

For clarity, special characters in the example have not been encoded. To make a successful query
ensure that the query string has been properly encoded.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Condition?code=49727002&_include=Condition:subject

_revinclude

Using _revinclude in a search query allows for additional specified FHIR resources to also be
returned. Use _revinclude to include resources that are linked backwards.

Example – To use _revinclude to include related Encounter and Observation resource types
linked to a specific Patient

To make this search, you would first define the individual Patient by specifying their identifier in
the _id search parameter. Then you would specify additional FHIR resources using the structure
Encounter:patient and Observation:patient.

Search parameters 78

AWS HealthLake Developer Guide

For clarity, special characters in the example have not been encoded. To make a successful query
ensure that the query string has been properly encoded.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient?_id=patient-
identifier&_revinclude=Encounter:patient&_revinclude=Observation:patient

_summary

Using _summary in a search query allows user to request a subset of the FHIR resource. It can
contain one of the following values: true, text, data, false. Any other values will be
treated as invalid. The returned resources will be marked with 'SUBSETTED' in meta.tag, to
indicate that resources are incomplete.

• true: Return all supported elements that are marked as 'summary' in the base definition of the
resource(s).

• text: Return only the 'text', 'id', 'meta' elements, and only top-level mandatory elements.

• data: Return all parts except the 'text' element.

• false: Return all parts of the resource(s)

In a single search request, _summary=text cannot be combined with _include or _revinclude
search parameters.

Example – Get “text” element of Patient resources in a datastore.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient?_summary=text

_elements

Using _elements in a search query allows for specific FHIR resource elements to be requested. The
returned resources will be marked with 'SUBSETTED' in meta.tag, to indicate that resources are
incomplete.

The _elements parameter consists of a comma-separated list of base element names such as
elements defined at the root level in the resource. Only elements that are listed are to be returned.
If _elements parameter values contain invalid elements, server will ignore them and return
mandatory elements and valid elements.

Search parameters 79

AWS HealthLake Developer Guide

_elements will not be applicable to included resources(returned resources whose search mode is
include).

In a single search request, _elements cannot be combined with _summary search parameters.

Example – Get “identifier”, “active”, “link” elements of Patient resources in your HealthLake
datastore.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient?_elements=identifier,active,link

_total

Using _total in a search query will return number of resources that match the requested search
parameters. HealthLake will return the total number of matched resources(returned resources
whose search mode is match) in the Bundle.total of search response.

_total supports the accurate, none parameter values. _total=estimate is not
supported. Any other values will be treated as invalid. _total is not applicable to the included
resources(returned resources whose search mode is include).

Example – Get the total number of Patient resources in a datastore:

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient?_total=accurate

_sort

Using _sort in the search query arranges the results in a specific order. The results are ordered
based on the comma-separated list of sort rules in priority order. The sort rules should be valid
search parameters. Any other values will be treated as invalid.

In a single search request, you can use up to 5 sort search parameters. You can optionally use a -
prefix to indicate descending order. Server will sort on ascending order by default.

The supported sort search parameter types are: Number, String, Date, Quantity, Token,
URI, Reference. If a search parameter refers to an element that is nested, this search parameter
is not supported for sort. For example, search on 'name' of resource type Patient refers to
Patient.name element with HumanName data type is considered as nested. Thus, sort on Patient
resources by 'name' is not supported.

Search parameters 80

AWS HealthLake Developer Guide

Example – Get Patient resources in a datastore and sort them by birthdate in ascending order:

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient?_sort=birthdate

_count

The parameter _count is defined as an instruction to the server regarding how many resources
should be returned in a single page.

The maximum page size is 100. Any values greater than 100 is invalid. _count=0 is not supported.

Example – Search for the Patient resource and set search page size to 25:

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient?_count=25

Chaining and Reverse Chaining(_has)

Chaining and reverse chaining in FHIR provide a more efficient and compact way to obtain
interconnected data, reducing the need for multiple separate queries and making data retrieval
more convenient for developers and users.

If any level of recursion return more than 100 results, HealthLake will return 4xx to protect
datastore from being overloaded and causing multiple paginations.

Example – Chaining - Gets all DiagnosticReport which refer to a Patient where Patient name is
peter.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
DiagnosticReport?subject:Patient.name=peter

Example – Reverse Chaining - Get Patient resources, where the patient resource is referred to by
at least one Observation where the observation has a code of 1234, and where the Observation
refers to the patient resource in the patient search parameter.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient?_has:Observation:patient:code=1234

Search parameters 81

AWS HealthLake Developer Guide

Supported search modifiers

Search modifiers are used with string-based fields. All search modifiers in HealthLake use Boolean-
based logic. For example, you could specify :contains to specify that larger string field should
include a small string in order for it to be included in your search results.

Supported search modifiers

Search modifier
Type

:missing All parameters except Composite

:exact String

:contains String

:not Token

:text Token

:identifier Reference

Supported search comparators

You can use search comparators to control the nature of the matching in a search. You can use
comparators when searching on number, date, and quantity fields. The following table lists search
comparators and their definitions that are supported by HealthLake.

Supported search comparators

Search comparator Description

eq
The value for the parameter in the resource is
equal to the provided value.

ne The value for the parameter in the resource is
not equal to the provided value.

Search parameters 82

AWS HealthLake Developer Guide

Search comparator Description

gt The value for the parameter in the resource is
greater than the provided value.

lt
The value for the parameter in the resource is
less than the provided value.

ge The value for the parameter in the resource is
greater or equal to the provided value.

le The value for the parameter in the resource is
less or equal to the provided value.

sa The value for the parameter in the resource
starts after the provided value.

eb The value for the parameter in the resource
ends before the provided value.

Search parameters not supported by HealthLake

For a full list of supported search parameters, see the FHIR search parameter registry. HealthLake
supports all search parameters except for those listed in the table.

Unsupported search parameters

Bundle-composition Location-near

Bundle-identifier Consent-source-reference

Bundle-message
Contract-patient

Bundle-type Resource-content

Search parameters 83

https://hl7.org/fhir/R4/searchparameter-registry.html

AWS HealthLake Developer Guide

Bundle-timestamp Resource-query

Search with POST examples

You can search a HealthLake data store by making POST requests. You can provide query
parameters in either the URI or in a request body, but you cannot use both in a single request.

The examples in this topic follow that best practice.

Note

For queries that involve Personally identifiable information (PII) or Protected Health
Information (PHI) it's recommended to use POST requests. In a POST request, PII or PHI is
added as part of the request body and is encrypted in transit.

When making a POST request with a parameter in the request body, use Content-Type:
application/x-www-form-urlencoded as part of the header.

This topic provides you with examples of how to search with POST by using the following resource
types.

• Age: Age is not a defined resource type in FHIR. Instead, age is captured as a part of the Patient
resource type. To search for a group of patients based on specific age or age range, use a the
section called “Supported search comparators”. For more details, see Resource type: Patient in
the FHIR Documentation Index.

• Condition: This resource type stores details related to clinical concepts such as a diagnosis,
situations, a clinical condition, and problems that have risen to a level of concern. To learn
more, see Resource type: Condition in the FHIR Documentation Index. HealthLake creates new
conditions based on documents found in the DocumentReference. These additions are excluded
by default when making a POST request. To include them, you must specify a valid identifier for
a condition resource in your search.

• DocumentReference:This resource type is supported by HealthLake. This resource type supports
referencing documents of any type. To learn more, see Resource type: DocumentReference in
the FHIR Documentation Index. HealthLake also provides integrated natural language processing
(NLP) of documents found in the DocumentReference. To learn more, see Using automated

POST requests 84

https://hl7.org/fhir/R4/patient.html
https://hl7.org/fhir/R4/condition.html
https://hl7.org/fhir/R4/documentreference.html

AWS HealthLake Developer Guide

resource generation based on natural language processing (NLP) of the FHIR DocumentReference
resource type in AWS HealthLake.

• Location: This resource type includes both incidental locations (a place that is used for
healthcare without prior designation or authorization) and dedicated, formally appointed
locations. For more details, see Resource type: Location in the FHIR Documentation Index.

• Observation: Measurements and simple assertions made about a patient, device, or other
subject. HealthLake creates new observation resources based on documents found in the
DocumentReference resource. To learn more about how HealthLake creates new resources,
see Using automated resource generation based on natural language processing (NLP) of the
FHIR DocumentReference resource type in AWS HealthLake. These additions are excluded by
default when making a POST request. To include them, you must specify a valid identifier for an
observation resource in your search. To learn more, see Resource type: Observation in the FHIR
Documentation Index.

Each tab shows examples of how to search on the specified resource type. It includes an example of
how to specify the request in the request body.

Age

Use the following to make a POST-based search request on the Patient resource type. This
search uses the eq search comparator to search for individuals who were born in 1997.

You have to specify a request URL and a request body. Here is an example request URL.

POST https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient/_search

To specify the year 1997 in the search, you would add the following element to the request
body.

birthdate=eq1997

JSON Response

When successful, you will get a 200 HTTP response code and a similar JSON response.

POST requests 85

https://hl7.org/fhir/R4/location.html
https://hl7.org/fhir/R4/observation.html

AWS HealthLake Developer Guide

Condition

Using the following to make a POST request on the Condition resource type. This search finds
locations in your HealthLake data store that contain the medical code 72892002.

You have to specify a request URL and a request body. Here is an example request URL.

POST https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Condition/_search

To specify the medical code you want to search, you add this JSON element to the request
body.

code=72892002

JSON Response

When successful, you will get a 200 HTTP response code. The following JSON response has
been truncated for clarity.

{
 "resourceType": "Bundle",
 "type": "searchset",
 "entry": [{
 "resource": {
 "resourceType": "Condition",
 "id": "0063326c-6b42-4d13-af2f-1efe0a65f016",
 "meta": {
 "lastUpdated": "2022-08-23T00:22:49.681Z"
 },
 "clinicalStatus": {
 "coding": [{
 "system": "http://terminology.hl7.org/CodeSystem/condition-clinical",
 "code": "resolved"
 }]
 },
 "verificationStatus": {
 "coding": [{
 "system": "http://terminology.hl7.org/CodeSystem/condition-ver-status",
 "code": "confirmed"
 }]
 },

POST requests 86

AWS HealthLake Developer Guide

 "code": {
 "coding": [{
 "system": "http://snomed.info/sct",
 "code": "72892002",
 "display": "Normal pregnancy"
 }],
 "text": "Normal pregnancy"
 },
 "subject": {
 "reference": "Patient/5fc0070a-696a-4855-94a9-175f1c641a33"
 },
 "encounter": {
 "reference": "Encounter/44078ab9-7ac7-4731-9ac8-4b3ff21a7bdb"
 },
 "onsetDateTime": "2019-08-15T01:19:17-07:00",
 "abatementDateTime": "2020-03-26T01:19:17-07:00",
 "recordedDate": "2019-08-15T01:19:17-07:00"
 },
 "search": {
 "mode": "match"
 }
 },
 {
 "resource": {
 "resourceType": "Condition",
 "id": "d00afdb2-1d2c-44fe-9f3b-033c0fe751a3",
 "meta": {
 "lastUpdated": "2022-08-23T00:20:47.100Z"
 },
 "clinicalStatus": {
 "coding": [{
 "system": "http://terminology.hl7.org/CodeSystem/condition-clinical",
 "code": "resolved"
 }]
 },
 "verificationStatus": {
 "coding": [{
 "system": "http://terminology.hl7.org/CodeSystem/condition-ver-status",
 "code": "confirmed"
 }]
 },
 "code": {
 "coding": [{
 "system": "http://snomed.info/sct",

POST requests 87

AWS HealthLake Developer Guide

 "code": "72892002",
 "display": "Normal pregnancy"
 }],
 "text": "Normal pregnancy"
 },
 "subject": {
 "reference": "Patient/d0a5cd1e-8da7-41bd-9b2f-41eef45246e5"
 },
 "encounter": {
 "reference": "Encounter/73758e67-4aaf-4e80-982b-8821f0b6fdfb"
 },
 "onsetDateTime": "2019-06-13T20:37:40-07:00",
 "abatementDateTime": "2020-01-23T19:37:40-08:00",
 "recordedDate": "2019-06-13T20:37:40-07:00"
 },
 "search": {
 "mode": "match"
 }
 }
]
}

DocumentReference

To see the results of HealthLake's integrated natural language processing (NLP) when making a
POST request on the DocumentReference resource type, format a request is as follows.

POST https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
DocumentReference/_search

To specify the DocumentReference element you want to reference, see Search parameters.
You'll specify those in the request body as JSON.

_lastUpdated=le2021-12-19&infer-icd10cm-entity-text-concept-score;=streptococcal|
0.6&infer-rxnorm-entity-text-concept-score=Amoxicillin|0.8

This query string uses multiple search parameters to search on Amazon Comprehend Medical
API operations used to generate the integrated medical NLP results.

POST requests 88

AWS HealthLake Developer Guide

Location

Use the following to make a POST request on the Location resource type. This search finds
locations in your HealthLake data store that contain the city name Boston as part of the
address.

You must specify a request URL and a request body. Here is an example request URL.

POST https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Location/_search

To specify Boston in the search, add the following element to the request body:

address=Boston

JSON Response

When successful, you will get a 200 HTTP response code. The JSON response has been
truncated for clarity.

{
 "resourceType": "Bundle",
 "type": "searchset",
 "entry": [{
 "resource": {
 "resourceType": "Location",
 "id": "0a6903c7-25c5-4ae4-8354-be88f9c5f2ee",
 "meta": {
 "lastUpdated": "2022-08-23T00:24:24.570Z"
 },
 "status": "active",
 "name": "BRIGHAM AND WOMEN'S HOSPITAL",
 "telecom": [{
 "system": "phone",
 "value": "6177325500"
 }],
 "address": {
 "line": [
 "75 FRANCIS STREET"
],
 "city": "BOSTON",
 "state": "MA",

POST requests 89

AWS HealthLake Developer Guide

 "postalCode": "02115",
 "country": "US"
 },
 "position": {
 "longitude": -71.020173,
 "latitude": 42.33196
 },
 "managingOrganization": {
 "reference": "Organization/27379046-608b-32f0-9df7-8c833cf5d11d",
 "display": "BRIGHAM AND WOMEN'S HOSPITAL"
 }
 },
 "search": {
 "mode": "match"
 }
 },

 {
 "resource": {
 "resourceType": "Location",
 "id": "ca5e7f65-4eb5-4bff-9a6f-07bc80acf8d0",
 "meta": {
 "lastUpdated": "2022-08-23T00:20:47.100Z"
 },
 "status": "active",
 "name": "BETH ISRAEL DEACONESS MEDICAL CENTER",
 "telecom": [{
 "system": "phone",
 "value": "6176677000"
 }],
 "address": {
 "line": [
 "330 BROOKLINE AVENUE"
],
 "city": "BOSTON",
 "state": "MA",
 "postalCode": "02215",
 "country": "US"
 },
 "position": {
 "longitude": -71.020173,
 "latitude": 42.33196
 },
 "managingOrganization": {

POST requests 90

AWS HealthLake Developer Guide

 "reference": "Organization/cb6a50e0-af76-3758-99ad-3200ede03fff",
 "display": "BETH ISRAEL DEACONESS MEDICAL CENTER"
 }
 },
 "search": {
 "mode": "match"
 }
 }
]
}

Observation

Using the following to make a POST-based search request on the Observation resource type.
This search uses the value-concept search parameter to look for medical code, 266919005.
This status indicates Never smoker.

You have to specify a request URL and a request body. Here is an example request URL.

POST https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Observation/_search

To specify the status, Never smoker , set value-concept=266919005 in the body of the
JSON.

value-concept=266919005

JSON Response

When successful, you will get a 200 HTTP response code. The following JSON response has
been truncated for clarity.

{
 "resourceType": "Bundle",
 "type": "searchset",
 "link": [{
 "relation": "next",
 "url": "https://healthlake.us-west-2.amazonaws.com/
datastore/3651c6d3c1e81e785adba06b710b52a9/r4/Observation?value-
concept=266919005&=AAMA-
EFRSURBSGlpcGIyN250ZG9WRXVnTTFOdmtxQk9Bb3Y0YjhVcVdUMGV0eVozNmdjQU9nRjRNUUtscjhCZ1NMUG84VGNqN09nNEFBQUFmakI4QmdrcWhraUc5dzBCQndhZ2J6QnRBZ0VBTUdnR0NTcUdTSWIzRFFFSEFUQWVCZ2xnaGtnQlpRTUVBUzR3RVFRTXI1VWxTbC9lZksydlVkMlpBZ0VRZ0R2bnF6cFFtQzBPdDBXaE82ZWhqbW92QndlcmVkVVBrbU40cnlsWGI1VWJJVWdxVDhUZkxqS3dHSHZOQUNZWkVsajZsa05FNzV6R1dtZnhSZz09tEeRZ6lNDlYyIdmiLObGMU7YIThPsFO5z9gTfXONPrm7i8GdXQgsbBjgMu2BrOFUdPhGOf4Ly8aBOGcCjN60es9nGG27XzRk_3_CkaVjEFZFlbwmPvWM6RXGKdbyExLlR3yOdIFQscvlT1iKj5DlHHLQDanYppTopxDRpTsiy8MozsqK0ENS0NLViqJsCCSmGOxuTZYllB5dckwimpQKfesMxmc_LKEmsjc="
 }],

POST requests 91

AWS HealthLake Developer Guide

 "entry": [{
 "resource": {
 "resourceType": "Observation",
 "id": "000038e0-71c6-4cc0-9c6c-50c8b1c53309",
 "meta": {
 "lastUpdated": "2022-11-03T01:02:38.981Z"
 },
 "status": "final",
 "category": [{
 "coding": [{
 "system": "http://terminology.hl7.org/CodeSystem/observation-category",
 "code": "survey",
 "display": "survey"
 }]
 }],
 "code": {
 "coding": [{
 "system": "http://loinc.org",
 "code": "72166-2",
 "display": "Tobacco smoking status NHIS"
 }],
 "text": "Tobacco smoking status NHIS"
 },
 "subject": {
 "reference": "Patient/598c9d7a-0494-448e-a81e-d50e3606e8db"
 },
 "encounter": {
 "reference": "Encounter/86bdee4a-2aa9-474a-b43f-6237cd68e512"
 },
 "effectiveDateTime": "2019-12-11T19:44:57-08:00",
 "issued": "2019-12-11T19:44:57.438-08:00",
 "valueCodeableConcept": {
 "coding": [{
 "system": "http://snomed.info/sct",
 "code": "266919005",
 "display": "Never smoker"
 }],
 "text": "Never smoker"
 }
 },
 "search": {
 "mode": "match"
 }
 },

POST requests 92

AWS HealthLake Developer Guide

 {
 "resource": {
 "resourceType": "Observation",
 "id": "0c2f6260-e671-4cfd-ac3d-e75f073fa3cd",
 "meta": {
 "lastUpdated": "2022-11-03T01:05:21.488Z"
 },
 "status": "final",
 "category": [{
 "coding": [{
 "system": "http://terminology.hl7.org/CodeSystem/observation-category",
 "code": "survey",
 "display": "survey"
 }]
 }],
 "code": {
 "coding": [{
 "system": "http://loinc.org",
 "code": "72166-2",
 "display": "Tobacco smoking status NHIS"
 }],
 "text": "Tobacco smoking status NHIS"
 },
 "subject": {
 "reference": "Patient/89d9a9b7-9720-4881-a2ab-d7907544b26f"
 },
 "encounter": {
 "reference": "Encounter/8ebba7b0-fdfc-4ec1-a9aa-907cccf60925"
 },
 "effectiveDateTime": "2018-11-17T03:59:36-08:00",
 "issued": "2018-11-17T03:59:36.550-08:00",
 "valueCodeableConcept": {
 "coding": [{
 "system": "http://snomed.info/sct",
 "code": "266919005",
 "display": "Never smoker"
 }],
 "text": "Never smoker"
 }
 },
 "search": {
 "mode": "match"
 }

POST requests 93

AWS HealthLake Developer Guide

 }
]
}

Search with GET

You can search a HealthLake data store by making GET requests. HealthLake only supports
providing query parameters as part of the URI, and not as part of a request body.

Note

For queries that involve Personally identifiable information (PII) or Protected Health
Information (PHI) it's recommended to use POST requests. In a POST request, PII or PHI is
added as part of the request body and is encrypted in transit.

The topic provides examples of how to search with GET using supported resource types in
HealthLake.

• Age: Age is not a defined resource type in FHIR. Instead, age is captured as a part of the patient
resource type. To search for a group of patients based on specific age or age range, you need to
use a the section called “Supported search comparators”. For more details, see Resource type:
Patient in the FHIR Documentation Index.

• Condition: This resource type stores details related to clinical concepts such as a diagnosis,
situations, a clinical condition, and problems that have risen to a level of concern. To learn
more, see Resource type: Condition in the FHIR Documentation Index. HealthLake creates new
conditions based on documents found in the DocumentReference. These additions are excluded
by default when making a POST request. To include them, you must specify valid identifier for a
condition resource in your search.

• DocumentReference:This resource type is supported by HealthLake. This resource type supports
referencing documents of any type. To learn more, see Resource type: DocumentReference in
the FHIR Documentation Index. HealthLake also provides integrated natural language processing
(NLP) of documents found in the DocumentReference. To learn more, see Using automated
resource generation based on natural language processing (NLP) of the FHIR DocumentReference
resource type in AWS HealthLake.

GET requests 94

https://hl7.org/fhir/R4/patient.html
https://hl7.org/fhir/R4/patient.html
https://hl7.org/fhir/R4condition.html
https://hl7.org/fhir/R4documentreference.html

AWS HealthLake Developer Guide

• Location: This resource type includes both incidental locations (a place that is used for
healthcare without prior designation or authorization) and dedicated, formally appointed
locations For more details, see Resource type: Location in the FHIR Documentation Index.

• Observation: Measurements and simple assertions made about a patient, device, or other
subject. HealthLake creates new observation resources based on documents found in the
DocumentReference resource. To learn more about how HealthLake create new resources,
see Using automated resource generation based on natural language processing (NLP) of the
FHIR DocumentReference resource type in AWS HealthLake. These additions are excluded by
default when making a POST request. To include them, you must specify a valid identifier for an
observation resource in your search. To learn more, see Resource type: Observation in the FHIR
Documentation Index.

Each tab shows an example of how to search on the specified resource type. It includes an example
of how to specify the request in the URI, and the related JSON response.

Age

Use the following to make a GET-based search request on the Patient resource type. This
search uses the eq search comparator to search for individuals who were born in 1997.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4//
Patient?birthdate=eq1997

JSON Response

When successful, you will get a 200 HTTP response code.

Condition

Use the following to make a GET request on the Condition resource type. This search finds
locations in your HealthLake data store that contain the medical code 72892002.

You have to specify a request URL and a request body. Here is an example request URL.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Condition?code=72892002

JSON Response

GET requests 95

https://hl7.org/fhir/R4/location.html
https://hl7.org/fhir/R4observation.html

AWS HealthLake Developer Guide

When successful, you will get a 200 HTTP response code. The following JSON response has
been truncated for clarity.

{
 "resourceType": "Bundle",
 "type": "searchset",
 "entry": [{
 "resource": {
 "resourceType": "Condition",
 "id": "0063326c-6b42-4d13-af2f-1efe0a65f016",
 "meta": {
 "lastUpdated": "2022-08-23T00:22:49.681Z"
 },
 "clinicalStatus": {
 "coding": [{
 "system": "http://terminology.hl7.org/CodeSystem/condition-clinical",
 "code": "resolved"
 }]
 },
 "verificationStatus": {
 "coding": [{
 "system": "http://terminology.hl7.org/CodeSystem/condition-ver-status",
 "code": "confirmed"
 }]
 },
 "code": {
 "coding": [{
 "system": "http://snomed.info/sct",
 "code": "72892002",
 "display": "Normal pregnancy"
 }],
 "text": "Normal pregnancy"
 },
 "subject": {
 "reference": "Patient/5fc0070a-696a-4855-94a9-175f1c641a33"
 },
 "encounter": {
 "reference": "Encounter/44078ab9-7ac7-4731-9ac8-4b3ff21a7bdb"
 },
 "onsetDateTime": "2019-08-15T01:19:17-07:00",
 "abatementDateTime": "2020-03-26T01:19:17-07:00",
 "recordedDate": "2019-08-15T01:19:17-07:00"
 },

GET requests 96

AWS HealthLake Developer Guide

 "search": {
 "mode": "match"
 }
 },
 {
 "resource": {
 "resourceType": "Condition",
 "id": "d00afdb2-1d2c-44fe-9f3b-033c0fe751a3",
 "meta": {
 "lastUpdated": "2022-08-23T00:20:47.100Z"
 },
 "clinicalStatus": {
 "coding": [{
 "system": "http://terminology.hl7.org/CodeSystem/condition-clinical",
 "code": "resolved"
 }]
 },
 "verificationStatus": {
 "coding": [{
 "system": "http://terminology.hl7.org/CodeSystem/condition-ver-status",
 "code": "confirmed"
 }]
 },
 "code": {
 "coding": [{
 "system": "http://snomed.info/sct",
 "code": "72892002",
 "display": "Normal pregnancy"
 }],
 "text": "Normal pregnancy"
 },
 "subject": {
 "reference": "Patient/d0a5cd1e-8da7-41bd-9b2f-41eef45246e5"
 },
 "encounter": {
 "reference": "Encounter/73758e67-4aaf-4e80-982b-8821f0b6fdfb"
 },
 "onsetDateTime": "2019-06-13T20:37:40-07:00",
 "abatementDateTime": "2020-01-23T19:37:40-08:00",
 "recordedDate": "2019-06-13T20:37:40-07:00"
 },
 "search": {
 "mode": "match"
 }

GET requests 97

AWS HealthLake Developer Guide

 }
]
}

DocumentationReference

This example shows how to create a search request on the DocumentReference resource type
for patients with a streptococcal diagnosis and who have also been prescribed amoxicillin.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
DocumentReference?_lastUpdated=le2021-12-19&infer-icd10cm-entity-text-concept-
score;=streptococcal|0.6&infer-rxnorm-entity-text-concept-score=Amoxicillin|0.8

When successful you will get the following JSON response.

{
 "resourceType": "Bundle",
 "type": "searchset",
 "entry": [
 {
 "resource": {
 "resourceType": "DocumentReference",
 "id": "985c3e94-4219-4c79-97a1-c94694525e24",
 "meta": {
 "lastUpdated": "2020-11-23T06:09:10.719Z"
 },
 "extension": [
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/",
 "extension": [
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/",
 "extension": [
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/raw-
response",
 "valueString": "{Entities: [{Id: 0,Text: otitis media,Category:
 MEDICAL_CONDITION,Type: DX_NAME,Score: 0.9815994,BeginOffset: 151,EndOffset:
 163,Attributes: [],Traits: [{Name: DIAGNOSIS,Score: 0.95042425}],ICD10CMConcepts:
 [{Description: Otitis media, unspecified, unspecified ear,Code: H66.90,Score:
 0.7176407}, {Description: Otitis media, unspecified,Code: H66.9,Score:
 0.6930445}, {Description: Otitis media, unspecified, left ear,Code: H66.92,Score:
 0.688161}, {Description: Otitis media, unspecified, bilateral,Code: H66.93,Score:

GET requests 98

AWS HealthLake Developer Guide

 0.6748094}, {Description: Otitis media, unspecified, right ear,Code:
 H66.91,Score: 0.6645618}]}, {Id: 1,Text: streptococcal sore throat,Category:
 MEDICAL_CONDITION,Type: DX_NAME,Score: 0.92208487,BeginOffset: 461,EndOffset:
 486,Attributes: [],Traits: [],ICD10CMConcepts: [{Description: Streptococcal
 pharyngitis,Code: J02.0,Score: 0.55638546}, {Description: Acute streptococcal
 tonsillitis, unspecified,Code: J03.00,Score: 0.53159785}, {Description:
 Streptococcal sepsis, unspecified,Code: A40.9,Score: 0.51865804}, {Description:
 Acute pharyngitis, unspecified,Code: J02.9,Score: 0.45085955}, {Description:
 Streptococcal infection, unspecified site,Code: A49.1,Score: 0.41550553}]},
 {Id: 3,Text: disorder,Category: MEDICAL_CONDITION,Type: DX_NAME,Score:
 0.9191257,BeginOffset: 488,EndOffset: 496,Attributes: [],Traits: [{Name:
 DIAGNOSIS,Score: 0.93372077}],ICD10CMConcepts: [{Description: Parkinson's
 disease,Code: G20,Score: 0.6959145}, {Description: Illness, unspecified,Code:
 R69,Score: 0.68428487}, {Description: Disorder of bone, unspecified,Code:
 M89.9,Score: 0.6542605}, {Description: Unspecified mental disorder due to known
 physiological condition,Code: F09,Score: 0.6240179}, {Description: Mental disorder,
 not otherwise specified,Code: F99,Score: 0.61046}]}],ModelVersion: 0.1.0}"
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/
model-version",
 "valueString": "0.1.0"
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-
cm-icd10-entity",
 "extension": [
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/
aws-cm-icd10-entity-id",
 "valueInteger": 0
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/
aws-cm-icd10-entity-text",
 "valueString": "otitis media"
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/
aws-cm-icd10-entity-begin-offset",
 "valueInteger": 151
 },
 {

GET requests 99

AWS HealthLake Developer Guide

 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/
aws-cm-icd10-entity-end-offset",
 "valueInteger": 163
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/
aws-cm-icd10-entity-score",
 "valueDecimal": 0.9815994
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/
aws-cm-icd10-entity-ConceptList",
 "extension": [
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-
icd10/aws-cm-icd10-entity-Concept",
 "extension": [
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/
infer-icd10/aws-cm-icd10-entity-Concept-Code",
 "valueString": "H66.90"
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/
infer-icd10/aws-cm-icd10-entity-Concept-Description",
 "valueString": "Otitis media, unspecified,
 unspecified ear"
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/
infer-icd10/aws-cm-icd10-entity-Concept-Score",
 "valueDecimal": 0.7176407
 }
]
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-
icd10/aws-cm-icd10-entity-Concept",
 "extension": [
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/
infer-icd10/aws-cm-icd10-entity-Concept-Code",
 "valueString": "H66.9"
 },

GET requests 100

AWS HealthLake Developer Guide

 {
 "url": "http://healthlake.amazonaws.com/aws-cm/
infer-icd10/aws-cm-icd10-entity-Concept-Description",
 "valueString": "Otitis media, unspecified"
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/
infer-icd10/aws-cm-icd10-entity-Concept-Score",
 "valueDecimal": 0.6930445
 }
]
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-
icd10/aws-cm-icd10-entity-Concept",
 "extension": [
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/
infer-icd10/aws-cm-icd10-entity-Concept-Code",
 "valueString": "H66.92"
 }
]
 }

Location

Use the following to make a GET request on the Location resource type. This search finds
locations in your HealthLake data store that contain the city name Boston as part of the
address.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4//
Location?address=boston

JSON Response

When successful, you will get a 200 HTTP response code. The JSON response has been
truncated for clarity.

{
 "resourceType": "Bundle",
 "type": "searchset",
 "entry": [

GET requests 101

AWS HealthLake Developer Guide

 {
 "resource": {
 "resourceType": "Location",
 "id": "0a6903c7-25c5-4ae4-8354-be88f9c5f2ee",
 "meta": {
 "lastUpdated": "2022-08-23T00:24:24.570Z"
 },
 "status": "active",
 "name": "BRIGHAM AND WOMEN'S HOSPITAL",
 "telecom": [
 {
 "system": "phone",
 "value": "6177325500"
 }
],
 "address": {
 "line": [
 "75 FRANCIS STREET"
],
 "city": "BOSTON",
 "state": "MA",
 "postalCode": "02115",
 "country": "US"
 },
 "position": {
 "longitude": -71.020173,
 "latitude": 42.33196
 },
 "managingOrganization": {
 "reference":
 "Organization/27379046-608b-32f0-9df7-8c833cf5d11d",
 "display": "BRIGHAM AND WOMEN'S HOSPITAL"
 }
 },
 "search": {
 "mode": "match"
 }
 },
 {
 "resource": {
 "resourceType": "Location",
 "id": "3cc3ad99-e0ff-48b4-b277-052abfc41058",
 "meta": {
 "lastUpdated": "2022-08-23T00:19:37.029Z"

GET requests 102

AWS HealthLake Developer Guide

 },
 "status": "active",
 "name": "NEW ENGLAND BAPTIST HOSPITAL",
 "telecom": [
 {
 "system": "phone",
 "value": "6177545800"
 }
],
 "address": {
 "line": [
 "125 PARKER HILL AVENUE"
],
 "city": "BOSTON",
 "state": "MA",
 "postalCode": "02120",
 "country": "US"
 },
 "position": {
 "longitude": -71.020173,
 "latitude": 42.33196
 },
 "managingOrganization": {
 "reference": "Organization/9a7149fa-49fc-3c87-b935-
d29c55808717",
 "display": "NEW ENGLAND BAPTIST HOSPITAL"
 }
 },
 "search": {
 "mode": "match"
 }
 },
 {
 "resource": {
 "resourceType": "Location",
 "id": "3f956715-3890-4235-85be-3fba5e3488ee",
 "meta": {
 "lastUpdated": "2022-08-23T00:23:38.981Z"
 },
 "status": "active",
 "name": "MASSACHUSETTS GENERAL HOSPITAL",
 "telecom": [
 {
 "system": "phone",

GET requests 103

AWS HealthLake Developer Guide

 "value": "6177262000"
 }
],
 "address": {
 "line": [
 "55 FRUIT STREET"
],
 "city": "BOSTON",
 "state": "MA",
 "postalCode": "02114",
 "country": "US"
 },
 "position": {
 "longitude": -71.020173,
 "latitude": 42.33196
 },
 "managingOrganization": {
 "reference": "Organization/d78e84ec-30aa-3bba-a33a-
f29a3a454662",
 "display": "MASSACHUSETTS GENERAL HOSPITAL"
 }
 },
 "search": {
 "mode": "match"
 }
 },
 {
 "resource": {
 "resourceType": "Location",
 "id": "6cc07b51-7287-443c-b772-c864f7831e13",
 "meta": {
 "lastUpdated": "2022-08-23T00:21:11.045Z"
 },
 "status": "active",
 "name": "TUFTS MEDICAL CENTER",
 "telecom": [
 {
 "system": "phone",
 "value": "6176365000"
 }
],
 "address": {
 "line": [
 "800 WASHINGTON STREET"

GET requests 104

AWS HealthLake Developer Guide

],
 "city": "BOSTON",
 "state": "MA",
 "postalCode": "02111",
 "country": "US"
 },
 "position": {
 "longitude": -71.020173,
 "latitude": 42.33196
 },
 "managingOrganization": {
 "reference": "Organization/b7175ab4-
bde5-3848-891b-579bccb77c7c",
 "display": "TUFTS MEDICAL CENTER"
 }
 },
 "search": {
 "mode": "match"
 }
 },
 {
 "resource": {
 "resourceType": "Location",
 "id": "8101300f-f685-49e7-b428-43b7855c39ee",
 "meta": {
 "lastUpdated": "2022-08-23T00:22:06.474Z"
 },
 "status": "active",
 "name": "BOSTON CHILDREN'S HOSPITAL",
 "telecom": [
 {
 "system": "phone",
 "value": "6177356000"
 }
],
 "address": {
 "line": [
 "300 LONGWOOD AVENUE"
],
 "city": "BOSTON",
 "state": "MA",
 "postalCode": "02115",
 "country": "US"
 },

GET requests 105

AWS HealthLake Developer Guide

 "position": {
 "longitude": -71.020173,
 "latitude": 42.33196
 },
 "managingOrganization": {
 "reference": "Organization/d7b11827-25f2-350b-
bcd8-939fc59851b0",
 "display": "BOSTON CHILDREN'S HOSPITAL"
 }
 },
 "search": {
 "mode": "match"
 }
 },
 {
 "resource": {
 "resourceType": "Location",
 "id": "8b7641d3-6997-48bb-bd60-23e35dfaae9d",
 "meta": {
 "lastUpdated": "2022-08-23T00:20:47.099Z"
 },
 "status": "active",
 "name": "BRIGHAM AND WOMEN'S FAULKNER HOSPITAL",
 "telecom": [
 {
 "system": "phone",
 "value": "6179837000"
 }
],
 "address": {
 "line": [
 "1153 CENTRE STREET"
],
 "city": "BOSTON",
 "state": "MA",
 "postalCode": "02130",
 "country": "US"
 },
 "position": {
 "longitude": -71.020173,
 "latitude": 42.33196
 },
 "managingOrganization": {

GET requests 106

AWS HealthLake Developer Guide

 "reference": "Organization/d733d4a9-080d-3593-
b910-2366e652b7ea",
 "display": "BRIGHAM AND WOMEN'S FAULKNER HOSPITAL"
 }
 },
 "search": {
 "mode": "match"
 }
 },
 {
 "resource": {
 "resourceType": "Location",
 "id": "998ef80b-7b58-4dc3-99ac-c440ec9e282d",
 "meta": {
 "lastUpdated": "2022-08-23T00:21:11.046Z"
 },
 "status": "active",
 "name": "BRIGHAM AND WOMEN'S FAULKNER HOSPITAL",
 "telecom": [
 {
 "system": "phone",
 "value": "6179837000"
 }
],
 "address": {
 "line": [
 "1153 CENTRE STREET"
],
 "city": "BOSTON",
 "state": "MA",
 "postalCode": "02130",
 "country": "US"
 },
 "position": {
 "longitude": -71.020173,
 "latitude": 42.33196
 },
 "managingOrganization": {
 "reference": "Organization/d733d4a9-080d-3593-
b910-2366e652b7ea",
 "display": "BRIGHAM AND WOMEN'S FAULKNER HOSPITAL"
 }
 },
 "search": {

GET requests 107

AWS HealthLake Developer Guide

 "mode": "match"
 }
 },
 {
 "resource": {
 "resourceType": "Location",
 "id": "c454bed3-7013-4376-81cf-4f49342f1402",
 "meta": {
 "lastUpdated": "2022-08-23T00:24:24.573Z"
 },
 "status": "active",
 "name": "MASSACHUSETTS GENERAL HOSPITAL",
 "telecom": [
 {
 "system": "phone",
 "value": "6177262000"
 }
],
 "address": {
 "line": [
 "55 FRUIT STREET"
],
 "city": "BOSTON",
 "state": "MA",
 "postalCode": "02114",
 "country": "US"
 },
 "position": {
 "longitude": -71.020173,
 "latitude": 42.33196
 },
 "managingOrganization": {
 "reference": "Organization/d78e84ec-30aa-3bba-a33a-
f29a3a454662",
 "display": "MASSACHUSETTS GENERAL HOSPITAL"
 }
 },
 "search": {
 "mode": "match"
 }
 },
 {
 "resource": {
 "resourceType": "Location",

GET requests 108

AWS HealthLake Developer Guide

 "id": "ca5e7f65-4eb5-4bff-9a6f-07bc80acf8d0",
 "meta": {
 "lastUpdated": "2022-08-23T00:20:47.100Z"
 },
 "status": "active",
 "name": "BETH ISRAEL DEACONESS MEDICAL CENTER",
 "telecom": [
 {
 "system": "phone",
 "value": "6176677000"
 }
],
 "address": {
 "line": [
 "330 BROOKLINE AVENUE"
],
 "city": "BOSTON",
 "state": "MA",
 "postalCode": "02215",
 "country": "US"
 },
 "position": {
 "longitude": -71.020173,
 "latitude": 42.33196
 },
 "managingOrganization": {
 "reference": "Organization/cb6a50e0-
af76-3758-99ad-3200ede03fff",
 "display": "BETH ISRAEL DEACONESS MEDICAL CENTER"
 }
 },
 "search": {
 "mode": "match"
 }
 }
]
}

Observation

Use the following to make a GET-based search request on the Observation resource type. This
search uses the value-concept search parameter to look for medical code, 266919005. This
status indicates Never smoker.

GET requests 109

AWS HealthLake Developer Guide

You have to specify a request URL and a query string. Here is an example request URL.

POST https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Observation?value-concept=266919005

To specify the status, Never smoker, set value-concept=266919005 as the query string.

JSON Response

When successful, you will get a 200 HTTP response code. The following JSON response has
been truncated for clarity.

{
 "resourceType": "Bundle",
 "type": "searchset",
 "link": [{
 "relation": "next",
 "url": "https://healthlake.us-west-2.amazonaws.com/
datastore/3651c6d3c1e81e785adba06b710b52a9/r4/Observation?value-
concept=266919005&=AAMA-
EFRSURBSGlpcGIyN250ZG9WRXVnTTFOdmtxQk9Bb3Y0YjhVcVdUMGV0eVozNmdjQU9nRjRNUUtscjhCZ1NMUG84VGNqN09nNEFBQUFmakI4QmdrcWhraUc5dzBCQndhZ2J6QnRBZ0VBTUdnR0NTcUdTSWIzRFFFSEFUQWVCZ2xnaGtnQlpRTUVBUzR3RVFRTXI1VWxTbC9lZksydlVkMlpBZ0VRZ0R2bnF6cFFtQzBPdDBXaE82ZWhqbW92QndlcmVkVVBrbU40cnlsWGI1VWJJVWdxVDhUZkxqS3dHSHZOQUNZWkVsajZsa05FNzV6R1dtZnhSZz09tEeRZ6lNDlYyIdmiLObGMU7YIThPsFO5z9gTfXONPrm7i8GdXQgsbBjgMu2BrOFUdPhGOf4Ly8aBOGcCjN60es9nGG27XzRk_3_CkaVjEFZFlbwmPvWM6RXGKdbyExLlR3yOdIFQscvlT1iKj5DlHHLQDanYppTopxDRpTsiy8MozsqK0ENS0NLViqJsCCSmGOxuTZYllB5dckwimpQKfesMxmc_LKEmsjc="
 }],
 "entry": [{
 "resource": {
 "resourceType": "Observation",
 "id": "000038e0-71c6-4cc0-9c6c-50c8b1c53309",
 "meta": {
 "lastUpdated": "2022-11-03T01:02:38.981Z"
 },
 "status": "final",
 "category": [{
 "coding": [{
 "system": "http://terminology.hl7.org/CodeSystem/observation-category",
 "code": "survey",
 "display": "survey"
 }]
 }],
 "code": {
 "coding": [{
 "system": "http://loinc.org",
 "code": "72166-2",
 "display": "Tobacco smoking status NHIS"
 }],

GET requests 110

AWS HealthLake Developer Guide

 "text": "Tobacco smoking status NHIS"
 },
 "subject": {
 "reference": "Patient/598c9d7a-0494-448e-a81e-d50e3606e8db"
 },
 "encounter": {
 "reference": "Encounter/86bdee4a-2aa9-474a-b43f-6237cd68e512"
 },
 "effectiveDateTime": "2019-12-11T19:44:57-08:00",
 "issued": "2019-12-11T19:44:57.438-08:00",
 "valueCodeableConcept": {
 "coding": [{
 "system": "http://snomed.info/sct",
 "code": "266919005",
 "display": "Never smoker"
 }],
 "text": "Never smoker"
 }
 },
 "search": {
 "mode": "match"
 }
 },

 {
 "resource": {
 "resourceType": "Observation",
 "id": "0c2f6260-e671-4cfd-ac3d-e75f073fa3cd",
 "meta": {
 "lastUpdated": "2022-11-03T01:05:21.488Z"
 },
 "status": "final",
 "category": [{
 "coding": [{
 "system": "http://terminology.hl7.org/CodeSystem/observation-category",
 "code": "survey",
 "display": "survey"
 }]
 }],
 "code": {
 "coding": [{
 "system": "http://loinc.org",
 "code": "72166-2",
 "display": "Tobacco smoking status NHIS"

GET requests 111

AWS HealthLake Developer Guide

 }],
 "text": "Tobacco smoking status NHIS"
 },
 "subject": {
 "reference": "Patient/89d9a9b7-9720-4881-a2ab-d7907544b26f"
 },
 "encounter": {
 "reference": "Encounter/8ebba7b0-fdfc-4ec1-a9aa-907cccf60925"
 },
 "effectiveDateTime": "2018-11-17T03:59:36-08:00",
 "issued": "2018-11-17T03:59:36.550-08:00",
 "valueCodeableConcept": {
 "coding": [{
 "system": "http://snomed.info/sct",
 "code": "266919005",
 "display": "Never smoker"
 }],
 "text": "Never smoker"
 }
 },
 "search": {
 "mode": "match"
 }
 }
]
}

Extended FHIR operations on HealthLake data stores

These topics describe how to perform FHIR operations on your HealthLake data store using the
FHIR REST API.

Topics

• Get Patient Data with Patient $everything

• Exporting data from your HealthLake data store using $export

Get Patient Data with Patient $everything

The Patient $everything operation is used to query a FHIR Patient resource along with any other
resources that are related to that patient. This operation can be used to provide a patient with

FHIR Operations 112

AWS HealthLake Developer Guide

access to their entire record or for a provider to perform a bulk data download related to a patient.
HealthLake supports $everything for a specific patient id.

Note

The Patient $everything operation is currently supported on data stores created after Feb
27, 2024.

Get all resources related to a patient

Patient $everything is a REST API operation that can be invoked as shown in the examples below.

GET Request

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient/patient-id/$everything

Note

Resources in response are sorted by resource type and resource id.
Response is always populated with Bundle.total.

Patient $everything Parameters

HealthLake supports the following query parameters

Parameter Details

start Get all patient data after a specified start date.

end Get all patient data before a specified end date.

since Get all patient data updated after a specified date.

_type Get patient data for specific resource types.

Patient $everything 113

AWS HealthLake Developer Guide

Parameter Details

_count Get patient data and specify page size.

Example - Get all patient data after a specified start date

Patient $everything can use the start filter to only query data after a specific date.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient/patient-id/$everything?start=2024-03-15T00:00:00.000Z

Example - Get all patient data before a specified end date

Patient $everything can use the end filter to only query data before a specific date.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient/patient-id/$everything?end=2024-03-15T00:00:00.000Z

Example - Get all patient data updated after a specified date

Patient $everything can use the since filter to only query data updated after a specific date.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient/patient-id/$everything?since=2024-03-15T00:00:00.000Z

Example - Get patient data for specific resource types

Patient $everything can use the _type filter to specify specific resource types to be included in the
response. Multiple resource types can be specified in a comma separated list.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient/patient-id/$everything?_type=Observation,Condition

Example - Get patient data and specify page size

Patient $everything can use the _count to set the page size.

Patient $everything 114

AWS HealthLake Developer Guide

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient/patient-id/$everything?_count=15

Patient $everything start and end attributes

HealthLake supports the following resource attributes for the start and end query parameters.

Resource Resource Element

Account Account.servicePeriod.start

AdverseEv
ent

AdverseEvent.date

AllergyIn
tolerance

AllergyIntolerance.recordedDate

Appointme
nt

Appointment.start

Appointme
ntRespons
e

AppointmentResponse.start

AuditEvent AuditEvent.period.start

Basic Basic.created

BodyStruc
ture

NO_DATE

CarePlan CarePlan.period.start

CareTeam CareTeam.period.start

ChargeIte
m

ChargeItem.occurrenceDateTime, ChargeItem.occurrencePeriod.start, ChargeIte
m.occurrenceTiming.event

Claim Claim.billablePeriod.start

Patient $everything 115

AWS HealthLake Developer Guide

Resource Resource Element

ClaimResp
onse

ClaimResponse.created

ClinicalI
mpression

ClinicalImpression.date

Communica
tion

Communication.sent

Communica
tionReque
st

CommunicationRequest.occurrenceDateTime, CommunicationRequest.occurr
encePeriod.start

Compositi
on

Composition.date

Condition Condition.recordedDate

Consent Consent.dateTime

Coverage Coverage.period.start

CoverageE
ligibilit
yRequest

CoverageEligibilityRequest.created

CoverageE
ligibilit
yResponse

CoverageEligibilityResponse.created

DetectedI
ssue

DetectedIssue.identified

DeviceReq
uest

DeviceRequest.authoredOn

DeviceUse
Statement

DeviceUseStatement.recordedOn

Patient $everything 116

AWS HealthLake Developer Guide

Resource Resource Element

Diagnosti
cReport

DiagnosticReport.effective

DocumentM
anifest

DocumentManifest.created

DocumentR
eference

DocumentReference.context.period.start

Encounter Encounter.period.start

Enrollmen
tRequest

EnrollmentRequest.created

EpisodeOf
Care

EpisodeOfCare.period.start

Explanati
onOfBenef
it

ExplanationOfBenefit.billablePeriod.start

FamilyMem
berHistory

NO_DATE

Flag Flag.period.start

Goal Goal.statusDate

Group NO_DATE

ImagingSt
udy

ImagingStudy.started

Immunizat
ion

Immunization.recorded

Patient $everything 117

AWS HealthLake Developer Guide

Resource Resource Element

Immunizat
ionEvalua
tion

ImmunizationEvaluation.date

Immunizat
ionRecomm
endation

ImmunizationRecommendation.date

Invoice Invoice.date

List List.date

MeasureRe
port

MeasureReport.period.start

Media Media.issued

Medicatio
nAdminist
ration

MedicationAdministration.effective

Medicatio
nDispense

MedicationDispense.whenPrepared

Medicatio
nRequest

MedicationRequest.authoredOn

Medicatio
nStatemen
t

MedicationStatement.dateAsserted

Molecular
Sequence

NO_DATE

Nutrition
Order

NutritionOrder.dateTime

Patient $everything 118

AWS HealthLake Developer Guide

Resource Resource Element

Observati
on

Observation.effective

Patient NO_DATE

Person NO_DATE

Procedure Procedure.performed

Provenanc
e

Provenance.occurredPeriod.start, Provenance.occurredDateTime

Questionn
aireRespo
nse

QuestionnaireResponse.authored

RelatedPe
rson

NO_DATE

RequestGr
oup

RequestGroup.authoredOn

ResearchS
ubject

ResearchSubject.period

RiskAsses
sment

RiskAssessment.occurrenceDateTime, RiskAssessment.occurrencePeriod.start

Schedule Schedule.planningHorizon

ServiceRe
quest

ServiceRequest.authoredOn

Specimen Specimen.receivedTime

SupplyDel
ivery

SupplyDelivery.occurrenceDateTime, SupplyDelivery.occurrencePeriod.start,
SupplyDelivery.occurrenceTiming.event

Patient $everything 119

AWS HealthLake Developer Guide

Resource Resource Element

SupplyReq
uest

SupplyRequest.authoredOn

VisionPre
scription

VisionPrescription.dateWritten

Exporting data from your HealthLake data store using $export

Important

HealthLake data stores created prior to June 1, 2023 only support FHIR REST API based
export job requests for system-wide exports.
HealthLake data stores created prior to June 1, 2023 do not support getting the status of
an export using a GET request on a data store's endpoint.

To make an export request using the FHIR REST API specify $export as part of the POST request,
and include request parameters in the body of your request. According to the FHIR specification,
the FHIR server must support GET requests, and can support POST requests. In order to support
additional parameters, a body is needed to start the export, therefore HealthLake supports POST
requests.

All export requests you make using the FHIR REST API are returned in ndjson format and exported
to an Amazon S3 bucket. Each S3 object will contain only a single FHIR resource type.

You can make a single export request for each AWS account at a time. To learn more about the
Service Quotas associated with HealthLake, see AWS HealthLake endpoints and quotas.

To learn more about making an export requesting using the FHIR REST API, see Exporting data
from your data store by using the FHIR REST API.

Export requests 120

AWS HealthLake Developer Guide

Query AWS HealthLake data stores using SQL in Amazon
Athena

Note

After February 20, 2023, HealthLake data stores do not use integrated natural language
processing (NLP) by default. If you are interested in turning on this feature on your data
store, see How do I turn on HealthLake's integrated natural language processing feature? in
the Troubleshooting chapter.

When you create a HealthLake data store the highly nested FHIR data structure is ingested into
Amazon Athena, and automatically transformed into Iceberg tables queryable with SQL. Granting
access to this new resource is managed using AWS Lake Formation. Each FHIR resource type is
represented as an individual table in Athena.

Important

For data stores created before November, 14, 2022, you must migrate your existing data
store to a new one to query it using SQL. For help, see Migrating an existing data store to
use Amazon Athena.

To create a HealthLake data store, you must add additional IAM policies and a service role to your
IAM user or role that is a HealthLake administrator. To learn more about these changes, see Getting
started with AWS HealthLake.

HealthLake data stores are ingested into Athena as Iceberg tables. To learn more about how
Iceberg tables function in Athena, see Using Iceberg tables in the Athena User Guide.

HealthLake supports READ operations of your HealthLake data stores data stores in Athena. To
learn more about Create, Read, Update, and Delete (CRUD) operations using the FHIR REST API
operations, see Managing and searching resources in AWS HealthLake by using FHIR REST API
operations to learn more about how CRUD operations affect your data in Athena.

The topics in this chapter describe how to connect your HealthLake data store to Athena, how to
query it using SQL, and how to connect results with other AWS services for further analysis.

121

https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg.html

AWS HealthLake Developer Guide

Contents

• Connecting your data store to Amazon Athena

• Granting a user, group, or role access to a HealthLake data store (AWS Lake Formation
Console)

• Getting started with Athena

• Query your HealthLake data store using SQL

• Additional sample SQL queries

Connecting your data store to Amazon Athena

Important

After November, 14, 2022, the IAM requirements to access HealthLake changed. To
both create data stores and to grant access to them in Athena, you must have the
AWSLakeFormationDataAdmin managed policy added to your IAM user, group or role.
You can use the AWSLakeFormationDataAdmin policy to create data lake administrators
and grant access to data stores in Athena.

This topic outlines the necessary steps to create an Athena user, group or role, and grant them
access to FHIR resources found in a HealthLake data store.

• Granting a user, group, or role access to a HealthLake data store (AWS Lake Formation Console)

• Setting up an Athena account

Granting a user, group, or role access to a HealthLake data store (AWS
Lake Formation Console)

Persona: HealthLake administrator

The HealthLake administrator persona is a data lake administrator in AWS Lake Formation.
They grant access to HealthLake data stores in Lake Formation.

Connect your data store 122

AWS HealthLake Developer Guide

For each data store created, there are two entries visible in the AWS Lake Formation console. One
entry is a resource link. Resource link names are always displayed in italics. Each resource link is
displayed with the name and owner of its linked shared resource. For all HealthLake data stores,
the shared resource owner is the HealthLake service account. The other entry is the HealthLake
data store in the HealthLake service account. The steps in this procedure use the data store that is
the resource link.

To learn more about resource links, see How resource links work in Lake Formation in the AWS Lake
Formation Developer Guide.

For a user, group, or role to be able to query data in Athena, you must grant Describe permission
on the resource database. Then, you must grant Select and Describe on the tables.

STEP 1: To grant DESCRIBE permissions on a HealthLake data store resource link database

1. Open the AWS Lake Formation console: https://console.aws.amazon.com/lakeformation/

2. In the primary navigation bar, choose Databases.

3. On the Databases page, choose the radio button next to the name of the data store that is in
italics.

4. Choose Actions (▼).

5. Choose Grant.

6. On the Grant data permissions page, under Principals, choose IAM users or roles.

7. Under IAM users or roles, use the down arrow (▼), or search for the IAM user, role, or group
that you want to be able to make queries on in Athena.

8. Under LF-Tags or catalog resources card, choose the Named data catalog resources option.

9. Under Databases, use the down arrow (▼) to choose the HealthLake data store database that
you want to share access to.

10. In the Resource link permissions card, under Resource link permissions, choose Describe.

When the grant is successful, the Grant permission success banner appears. To view the
permission you just granted, choose Data lake permissions. Find the user, group, and role in the
table. Under the Permissions column, you will see Describe listed.

Now you must use Grant on target to grant Select and Describe on all tables in the database.

Granting access 123

https://docs.aws.amazon.com/lake-formation/latest/dg/resource-links-about.html
https://console.aws.amazon.com/lakeformation

AWS HealthLake Developer Guide

STEP 2: Grant access to all tables in a HealthLake data store resource link

1. Open the AWS Lake Formation console: https://console.aws.amazon.com/lakeformation/

2. In the primary navigation bar, choose Databases.

3. On the Databases page, choose the radio button next to the name of the data store that is in
italics.

4. Choose Actions (▼).

5. Choose Grant on target.

6. On the Grant data permissions page, under Principals, choose IAM users or roles.

7. Under IAM users or roles, use the down arrow (▼) or search for the IAM user, group, or role
that you want to be able to make queries on in Athena.

8. Under LF-Tags or catalog resources card, choose the Named data catalog resources option.

9. Under Databases, use the down arrow (▼) to choose the HealthLake data store database that
you want to grant access to.

10. Under Tables, choose All tables to share all tables with a HealthLake user.

11. In the Table permissions card, under Table permissions, choose Describe and Select.

12. Choose Grant.

After choosing grant,a Grant permissions success banner appears. The specified user can now
make queries on a HealthLake data store in Athena.

Getting started with Athena

HealthLake user

The HealthLake user will use the Athena console, AWS CLI, or AWS SDKs to query a
HealthLake data store shared with them by the HealthLake administrator.

To query a data store using Athena, you must do the following three things.

• Grant the IAM user or role access to the HealthLake data store via Lake Formation. To learn
more, see Granting a user, group, or role access to a HealthLake data store (AWS Lake Formation
Console).

• Create a workgroup for your HealthLake data store.

Getting started with Athena 124

https://console.aws.amazon.com/lakeformation

AWS HealthLake Developer Guide

• Designate an Amazon S3 bucket to store your query results.

To get started with Athena, add the AmazonAthenaFullAccess and AmazonS3FullAccess AWS
managed policies to your user, group or role. Using an AWS managed policy is great way to get
started using a new service. Keep in mind that AWS managed policies might not grant least-
privilege permissions for your specific use cases because they are available for use by all AWS
customers. When you set permissions with IAM policies, grant only the permissions required to
perform a task. To learn more about IAM and applying least-privilege, see Apply least-privilege
permissions in the IAM User Guide.

Important

To query a HealthLake data store in Athena, you must use Athena engine version 3.

Workgroups are resources, and therefore you can use IAM-based policies to control access to
specific workgroups. To learn more, see Using workgroups to control query access and costs in the
Athena User Guide.

To learn more about setting up workgroups, see https://docs.aws.amazon.com/athena/latest/ug/
workgroups-procedure.html in the Athena User Guide.

Note

The region your Amazon S3 bucket is in and the Athena console must match.

Before you can run a query, a query result bucket location in Amazon S3 must be specified, or
you must use a workgroup that has specified a bucket and whose configuration overrides client
settings. Output files are saved automatically for every query that runs.

For more details on specifying query result locations in the Athena console, see Specifying a query
result location using the Athena console in the Amazon Athena User Guide.

To see examples of how to query your HealthLake data store in Athena, see Query your HealthLake
data store using SQL.

Getting started with Athena 125

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/athena/latest/ug/manage-queries-control-costs-with-workgroups.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-procedure.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-procedure.html
https://docs.aws.amazon.com/athena/latest/ug/querying.html#query-results-specify-location-console
https://docs.aws.amazon.com/athena/latest/ug/querying.html#query-results-specify-location-console

AWS HealthLake Developer Guide

Query your HealthLake data store using SQL

Note

After February 20, 2023, HealthLake data stores do not use integrated natural language
processing (NLP) by default. If you are interested in turning on this feature on your data
store, see How do I turn on HealthLake's integrated natural language processing feature? in
the Troubleshooting chapter.
All examples in this topic use fictionalized data created using Synthea. To learn more
about creating a data store preloaded with Synthea data, see Getting started with AWS
HealthLake.

When you import your HealthLake data store into Athena, each resource type from your
HealthLake data store is converted into a table. These tables can be queried individually or as
group using SQL-based queries. Because of the structure of data stores, your data is imported into
Athena as multiple different data types. To learn more about creating SQL queries that can access
these data types, see Querying arrays with complex types and nested structures in the Amazon
Athena User Guide.

For each element in a resource type, the FHIR specification defines a cardinality. The cardinality
of an element defines the lower and upper bounds of how many times this element can appear.
When constructing a SQL query, you must take this into account. For example, let's look at some
elements in Resource type: Patient.

• Element: Name The FHIR specification sets the cardinality as 0..*.

The element is captured as an array.

[{
 id = null,
 extension = null,
 use = official,
 _use = null,
 text = null,
 _text = null,
 family = Wolf938,
 _family = null,
 given = [Noel608],
 _given = null,

Sample SQL queries 126

https://docs.aws.amazon.com/athena/latest/ug/rows-and-structs.html
https://hl7.org/fhir/R4/patient.html

AWS HealthLake Developer Guide

 prefix = null,
 _prefix = null,
 suffix = null,
 _suffix = null,
 period = null
}]

In Athena, to see how a resource type has been ingested, search for it under Tables and views.
To access elements in this array, you can use dot notation. Here's a simple example that would
access the values for given and family.

SELECT
 name[1].given as FirstName,
 name[1].family as LastName
FROM Patient

• Element: MaritalStatus The FHIR specification sets the cardinality as 0..1.

This element is captured as JSON.

{
 id = null,
 extension = null,
 coding = [
 {
 id = null,
 extension = null,
 system = http: //terminology.hl7.org/CodeSystem/v3-MaritalStatus,
 _system = null,
 version = null,
 _version = null,
 code = S,
 _code = null,
 display = Never Married,
 _display = null,
 userSelected = null,
 _userSelected = null
 }

],
 text = Never Married,
 _text = null

Sample SQL queries 127

AWS HealthLake Developer Guide

}

In Athena, to see how a resource type has been ingested, search for it under Tables and views.
To access key-value pairs in the JSON, you can use dot notation. Because it isn't an array, no array
index is required. Here's a simple example that would access the value for text.

SELECT
 maritalstatus.text as MaritalStatus
FROM Patient

To learn more about accessing and searching JSON, see Querying JSON in the Athena User Guide.

Athena Data Manipulation Language (DML) query statements are based on Trino. Athena does not
support all of Trino's features, and there are significant differences. To learn more, see DML queries,
functions, and operators in the Amazon Athena User Guide.

Furthermore, Athena supports multiple data types that you may encounter when creating queries
of your HealthLake data store. To learn more about data types in Athena, see Data types in Amazon
Athena in the Amazon Athena User Guide.

To learn more about how SQL queries work in Athena, see SQL reference for Amazon Athena in the
Amazon Athena User Guide.

Each tab shows examples of how to search on the specified resource types and associated elements
using Athena.

Element: Extension

The element extension is used to create custom fields in a data store.

This example shows you how to access the features of the extension element found in the
Patient resource type.

When your HealthLake data store is imported into Athena, the elements of a resource type are
parsed differently. Because the structure of the element is variable, it cannot be fully specified
in the schema. To handle that variability, the elements inside the array are passed as strings.

In the table description of Patient, you can see the element extension described as
array<string>, which means you can access the elements of array by using an index value. To
access the elements of the string, however, you must use json_extract.

Sample SQL queries 128

https://docs.aws.amazon.com/athena/latest/ug/querying-JSON.html
https://docs.aws.amazon.com/athena/latest/ug/functions-operators-reference-section.html
https://docs.aws.amazon.com/athena/latest/ug/functions-operators-reference-section.html
https://docs.aws.amazon.com/athena/latest/ug/data-types.html
https://docs.aws.amazon.com/athena/latest/ug/data-types.html
https://docs.aws.amazon.com/athena/latest/ug/ddl-sql-reference.html

AWS HealthLake Developer Guide

Here is a single entry from the extension element found in the patient table.

[{
 "valueString": "Kerry175 Cummerata161",
 "url": "http://hl7.org/fhir/StructureDefinition/patient-mothersMaidenName"
 },
 {
 "valueAddress": {
 "country": "DE",
 "city": "Hamburg",
 "state": "Hamburg"
 },
 "url": "http://hl7.org/fhir/StructureDefinition/patient-birthPlace"
 },
 {
 "valueDecimal": 0.0,
 "url": "http://synthetichealth.github.io/synthea/disability-adjusted-life-years"
 },
 {
 "valueDecimal": 5.0,
 "url": "http://synthetichealth.github.io/synthea/quality-adjusted-life-years"
 }
]

Even though this is valid JSON, Athena treats it as a string.

This SQL query example demonstrates how you can create a table that contains the patient-
mothersMaidenName and patient-birthPlace elements. To access these elements, you
need to use different array indices and json_extract.

SELECT
 extension[1],
 json_extract(extension[1], '$.valueString') AS MothersMaidenName,
 extension[2],
 json_extract(extension[2], '$.valueAddress.city') AS birthPlace
FROM patient

To learn more about queries that involve JSON, see Extracting data from JSON in the Amazon
Athena User Guide.

Sample SQL queries 129

https://docs.aws.amazon.com/athena/latest/ug/extracting-data-from-JSON.html

AWS HealthLake Developer Guide

Element: birthDate (Age)

Age is not an element of the Patient resource type in FHIR. Here are two examples for searches
that filter based on age.

Because age is not an element, we use the birthDate for the SQL queries. To see how an
element has been ingested into FHIR, search for the table name under Tables and views. You
can see that it is of type string.

Example 1: Calculating a value for age

In this sample SQL query, we use a built-in SQL tool, current_date and year to extract those
components. Then, we subtract them to return a patient's actual age as a column called age.

SELECT
 (year(current_date) - year(date(birthdate))) as age
FROM patient

Example 2: Filtering for patients who are born before 2019-01-01 and are male.

The SQL query shows you how to use the CAST function to cast the birthDate element as
type DATE, and how to filter based on two criteria in the WHERE clause. Because the element
is ingested as type string by default, we must CAST it as type DATE. Then you can use the <
operator to compare it to a different date, 2019-01-01. By using AND, you can add a second
criteria to the WHERE clause.

SELECT birthdate
FROM patient
-- we convert birthdate (varchar) to date > cast that as date too
WHERE CAST(birthdate AS DATE) < CAST('2019-01-01' AS DATE) AND gender = 'male'

Resource type: Location

This example shows searches for locations within the Location resource type where the city
name is Attleboro.

SELECT *
FROM Location
WHERE address.city='ATTLEBORO'

Sample SQL queries 130

AWS HealthLake Developer Guide

LIMIT 10;

Element: Age

SELECT birthdate
FROM patient
-- we convert birthdate (varchar) to date > cast that as date too
WHERE CAST(birthdate AS DATE) < CAST('2019-01-01' AS DATE) AND gender = 'male'

Resource type: Condition

The resource type condition stores diagnosis data related to issues that have risen to a level
of concern. HealthLake's integrated medical natural language processing (NLP) generates new
Condition resources based on details found in the DocumentReference resource type. When
new resource are generated, HealthLake appends the tag SYSTEM_GENERATED to the meta
element. This sample SQL query demonstrates how you can search the condition table and
return results where the SYSTEM_GENERATED results have been removed.

To learn more about HealthLake's integrated natural language processing (NLP), see Using
automated resource generation based on natural language processing (NLP) of the FHIR
DocumentReference resource type in AWS HealthLake.

SELECT *
FROM condition
WHERE meta.tag[1] is NULL

You can also search within a specified string element to filter your query further. The
modifierextension element contains details about which DocumentReference resource
was used to generate a set of conditions. Again, you must use json_extract to access the
nested JSON elements that are brought into Athena as a string.

This sample SQL query demonstrates how you can search for all the Condition that has been
generated based off of a specific DocumentReference. Use CAST to set the JSON element as a
string so that you can use LIKE to compare.

SELECT
 meta.tag[1].display as SystemGenerated,
 json_extract(modifierextension[4], '$.valueReference.reference') as
 DocumentReference

Sample SQL queries 131

AWS HealthLake Developer Guide

FROM condition
WHERE meta.tag[1].display = 'SYSTEM_GENERATED'

AND CAST(json_extract(modifierextension[4], '$.valueReference.reference') as
 VARCHAR) LIKE '%DocumentReference/67aa0278-8111-40d0-8adc-43055eb9d18d%'

Resource type: Observation

The resource type, Observation stores measurements and simple assertions made about a
patient, device, or other subject. HealthLake's integrated natural language processing (NLP)
generates new Observation resources based on details found in a DocumentReference
resource. This sample SQL query includes WHERE meta.tag[1] is NULL commented out,
which means that the SYSTEM_GENERATED results are included.

SELECT valueCodeableConcept.coding[1].code
FROM Observation
WHERE valueCodeableConcept.coding[1].code = '266919005'
-- WHERE meta.tag[1] is NULL

This column was imported as an struct. Therefore, you can access elements inside it using dot
notation.

Resource type: MedicationStatement

MedicationStatement is a FHIR resource type that you can use to store details about
medications a patient has taken, is taking, or will take in the future. HealthLake's integrated
medical natural language processing (NLP) generates new MedicationStatement resources
based on documents found in the DocumentReference resource type. When new resources are
generated, HealthLake appends the tag SYSTEM_GENERATED to the meta element. This sample
SQL query demonstrates how to create a query that filters based off of a single patient by using
their identifier and finds resources that have been added by HealthLake's integrated NLP.

SELECT *
FROM medicationstatement
WHERE meta.tag[1].display = 'SYSTEM_GENERATED' AND subject.reference =
 'Patient/0679b7b7-937d-488a-b48d-6315b8e7003b';

To learn more about HealthLake's integrated medical NLP, see Using automated resource
generation based on natural language processing (NLP) of the FHIR DocumentReference
resource type in AWS HealthLake.

Sample SQL queries 132

https://iceberg.apache.org/spec/#schemas-and-data-types

AWS HealthLake Developer Guide

Additional sample SQL queries

Note

After February 20, 2023, HealthLake data stores do not use integrated natural language
processing (NLP) by default. If you are interested in turning on this feature on your data
store, see How do I turn on HealthLake's integrated natural language processing feature? in
the Troubleshooting chapter.

This topic demonstrates how you can author SQL queries for HealthLake's integration with Athena.

Example Creating filtering criteria that are based on demographic data

Identifying the correct patient demographics is important when creating a patient cohort. This
sample query demonstrates how you can use Trino dot notation and json_extract to filter data
in your HealthLake data store.

SELECT
 id
 , CONCAT(name[1].family, ' ', name[1].given[1]) as name
 , (year(current_date) - year(date(birthdate))) as age
 , gender as gender
 , json_extract(extension[1], '$.valueString') as MothersMaidenName
 , json_extract(extension[2], '$.valueAddress.city') as birthPlace
 , maritalstatus.coding[1].display as maritalstatus
 , address[1].line[1] as addressline
 , address[1].city as city
 , address[1].district as district
 , address[1].state as state
 , address[1].postalcode as postalcode
 , address[1].country as country
 , json_extract(address[1].extension[1], '$.extension[0].valueDecimal') as latitude
 , json_extract(address[1].extension[1], '$.extension[1].valueDecimal') as longitude
 , telecom[1].value as telNumber
 , deceasedboolean as deceasedIndicator
 , deceaseddatetime
FROM database.patient;

With the Athena console, you can further sort and download the results.

Additional SQL queries 133

AWS HealthLake Developer Guide

Example Creating filters for a patient and their related conditions

This sample query demonstrates how you can find and sort all the related conditions for the
patients found in a HealthLake data store.

SELECT
 patient.id as patientId
 , condition.id as conditionId
 , CONCAT(name[1].family, ' ', name[1].given[1]) as name
 , condition.meta.tag[1].display
 , json_extract(condition.modifierextension[1], '$.valueDecimal') AS confidenceScore
 , category[1].coding[1].code as categoryCode
 , category[1].coding[1].display as categoryDescription
 , code.coding[1].code as diagnosisCode
 , code.coding[1].display as diagnosisDescription
 , onsetdatetime
 , severity.coding[1].code as severityCode
 , severity.coding[1].display as severityDescription
 , verificationstatus.coding[1].display as verificationStatus
 , clinicalstatus.coding[1].display as clinicalStatus
 , encounter.reference as encounterId
 , encounter.type as encountertype
FROM database.patient, condition
WHERE CONCAT('Patient/', patient.id) = condition.subject.reference
ORDER BY name;

You can use the Athena console to further sort these results or download them for further analysis.

Example Creating filters for a patients and their related observations

This sample query demonstrates how you can find and sort all the related observations for the
patients found in a HealthLake data store.

SELECT
 patient.id as patientId
 , observation.id as observationId
 , CONCAT(name[1].family, ' ', name[1].given[1]) as name
 , meta.tag[1].display
 , json_extract(modifierextension[1], '$.valueDecimal') AS confidenceScore
 , status
 , category[1].coding[1].code as categoryCode
 , category[1].coding[1].display as categoryDescription
 , code.coding[1].code as observationCode

Additional SQL queries 134

AWS HealthLake Developer Guide

 , code.coding[1].display as observationDescription
 , effectivedatetime
 , CASE
 WHEN valuequantity.value IS NOT NULL THEN CONCAT(CAST(valuequantity.value AS
 VARCHAR),' ',valuequantity.unit)
 WHEN valueCodeableConcept.coding [1].code IS NOT NULL THEN
 CAST(valueCodeableConcept.coding [1].code AS VARCHAR)
 WHEN valuestring IS NOT NULL THEN CAST(valuestring AS VARCHAR)
 WHEN valueboolean IS NOT NULL THEN CAST(valueboolean AS VARCHAR)
 WHEN valueinteger IS NOT NULL THEN CAST(valueinteger AS VARCHAR)
 WHEN valueratio IS NOT NULL THEN CONCAT(CAST(valueratio.numerator.value AS
 VARCHAR),'/',CAST(valueratio.denominator.value AS VARCHAR))
 WHEN valuerange IS NOT NULL THEN CONCAT(CAST(valuerange.low.value AS
 VARCHAR),'-',CAST(valuerange.high.value AS VARCHAR))
 WHEN valueSampledData IS NOT NULL THEN CAST(valueSampledData.data AS VARCHAR)
 WHEN valueTime IS NOT NULL THEN CAST(valueTime AS VARCHAR)
 WHEN valueDateTime IS NOT NULL THEN CAST(valueDateTime AS VARCHAR)
 WHEN valuePeriod IS NOT NULL THEN valuePeriod.start
 WHEN component[1] IS NOT NULL THEN CONCAT(CAST(component[2].valuequantity.value
 AS VARCHAR),' ',CAST(component[2].valuequantity.unit AS VARCHAR),
 '/', CAST(component[1].valuequantity.value AS VARCHAR),'
 ',CAST(component[1].valuequantity.unit AS VARCHAR))
 END AS observationvalue
 , encounter.reference as encounterId
 , encounter.type as encountertype
FROM database.patient, observation
WHERE CONCAT('Patient/', patient.id) = observation.subject.reference
ORDER BY name;

Example Creating filtering conditions for a patient and their related procedures

Connecting procedures to patients is an important aspect of healthcare. This SQL query
demonstrates how you can use the patient and procedure resource types to do that in Athena. This
SQL query will return all the patients and their related procedures found in your HealthLake data
store.

SELECT
 patient.id as patientId
 , PROCEDURE.id as procedureId
 , CONCAT(name[1].family, ' ', name[1].given[1]) as name
 , status
 , category.coding[1].code as categoryCode
 , category.coding[1].display as categoryDescription

Additional SQL queries 135

AWS HealthLake Developer Guide

 , code.coding[1].code as procedureCode
 , code.coding[1].display as procedureDescription
 , performeddatetime
 , performer[1]
 , encounter.reference as encounterId
 , encounter.type as encountertype
FROM database.patient, procedure
WHERE CONCAT('Patient/', patient.id) = procedure.subject.reference
ORDER BY name;

Now you can use the Athena console to download the results for further analysis or sort them to
better understand the results.

Example Creating filtering conditions for a patient and their related prescriptions

Seeing a current list of medications that patients are taking is important. Using Athena, you can
write a SQL query that uses both the Patient and MedicationRequest resource types found in your
HealthLake data store.

This SQL query joins the Patient and MedicationRequest tables imported into Athena. It also
organizes the prescriptions into their individual entries by using dot notation.

SELECT
 patient.id as patientId
 , medicationrequest.id as medicationrequestid
 , CONCAT(name[1].family, ' ', name[1].given[1]) as name
 , status
 , statusreason.coding[1].code as categoryCode
 , statusreason.coding[1].display as categoryDescription
 , category[1].coding[1].code as categoryCode
 , category[1].coding[1].display as categoryDescription
 , priority
 , donotperform
 , encounter.reference as encounterId
 , encounter.type as encountertype
 , medicationcodeableconcept.coding[1].code as medicationCode
 , medicationcodeableconcept.coding[1].display as medicationDescription
 , dosageinstruction[1].text as dosage
FROM database.patient, medicationrequest
WHERE CONCAT('Patient/', patient.id) = medicationrequest.subject.reference
ORDER BY name

You can use the Athena console to sort the results or download them for further analysis.

Additional SQL queries 136

AWS HealthLake Developer Guide

Example Seeing medications found in the MedicationStatement resource type

The example query shows you how to organize the nested JSON imported into Athena using SQL.
The query uses the meta element to indicate when a medication has been added by HealthLake's
integrated natural language processing (NLP). To learn more about HealthLake's integration
with Amazon Comprehend Medical, see Using automated resource generation based on natural
language processing (NLP) of the FHIR DocumentReference resource type in AWS HealthLake. It
also uses json_extract to search for data inside the array of JSON strings.

SELECT
 medicationcodeableconcept.coding[1].code as medicationCode
 , medicationcodeableconcept.coding[1].display as medicationDescription
 , meta.tag[1].display
 , json_extract(modifierextension[1], '$.valueDecimal') AS confidenceScore
FROM medicationstatement;

You can use the Athena console to download these results or sort them.

Example Filter for a specific disease type

The example shows how you can find a group of patients, aged 18 to 75, who have been diagnosed
with diabetes.

SELECT patient.id as patientId,
 condition.id as conditionId,
 CONCAT(name [1].family, ' ', name [1].given [1]) as name,
 (year(current_date) - year(date(birthdate))) AS age,
 CASE
 WHEN condition.encounter.reference IS NOT NULL THEN condition.encounter.reference
 WHEN observation.encounter.reference IS NOT NULL THEN observation.encounter.reference
 END as encounterId,
 CASE
 WHEN condition.encounter.type IS NOT NULL THEN observation.encounter.type
 WHEN observation.encounter.type IS NOT NULL THEN observation.encounter.type
 END AS encountertype,
 condition.code.coding [1].code as diagnosisCode,
 condition.code.coding [1].display as diagnosisDescription,
 observation.category [1].coding [1].code as categoryCode,
 observation.category [1].coding [1].display as categoryDescription,
 observation.code.coding [1].code as observationCode,
 observation.code.coding [1].display as observationDescription,
 effectivedatetime AS observationDateTime,

Additional SQL queries 137

AWS HealthLake Developer Guide

 CASE
 WHEN valuequantity.value IS NOT NULL THEN CONCAT(CAST(valuequantity.value AS
 VARCHAR),' ',valuequantity.unit)
 WHEN valueCodeableConcept.coding [1].code IS NOT NULL THEN
 CAST(valueCodeableConcept.coding [1].code AS VARCHAR)
 WHEN valuestring IS NOT NULL THEN CAST(valuestring AS VARCHAR)
 WHEN valueboolean IS NOT NULL THEN CAST(valueboolean AS VARCHAR)
 WHEN valueinteger IS NOT NULL THEN CAST(valueinteger AS VARCHAR)
 WHEN valueratio IS NOT NULL THEN CONCAT(CAST(valueratio.numerator.value AS
 VARCHAR),'/',CAST(valueratio.denominator.value AS VARCHAR))
 WHEN valuerange IS NOT NULL THEN CONCAT(CAST(valuerange.low.value AS
 VARCHAR),'-',CAST(valuerange.high.value AS VARCHAR))
 WHEN valueSampledData IS NOT NULL THEN CAST(valueSampledData.data AS VARCHAR)
 WHEN valueTime IS NOT NULL THEN CAST(valueTime AS VARCHAR)
 WHEN valueDateTime IS NOT NULL THEN CAST(valueDateTime AS VARCHAR)
 WHEN valuePeriod IS NOT NULL THEN valuePeriod.start
 WHEN component[1] IS NOT NULL THEN CONCAT(CAST(component[2].valuequantity.value
 AS VARCHAR),' ',CAST(component[2].valuequantity.unit AS VARCHAR),
 '/', CAST(component[1].valuequantity.value AS VARCHAR),'
 ',CAST(component[1].valuequantity.unit AS VARCHAR))
 END AS observationvalue,
 CASE
 WHEN condition.meta.tag [1].display = 'SYSTEM GENERATED' THEN 'YES'
 WHEN condition.meta.tag [1].display IS NULL THEN 'NO'
 WHEN observation.meta.tag [1].display = 'SYSTEM GENERATED' THEN 'YES'
 WHEN observation.meta.tag [1].display IS NULL THEN 'NO'
 END AS IsSystemGenerated,
 CAST(
 json_extract(
 condition.modifierextension [1],
 '$.valueDecimal'
) AS int
) AS confidenceScore
FROM database.patient,
 database.condition,
 database.observation
WHERE CONCAT('Patient/', patient.id) = condition.subject.reference
 AND CONCAT('Patient/', patient.id) = observation.subject.reference
 AND (year(current_date) - year(date(birthdate))) >= 18
 AND (year(current_date) - year(date(birthdate))) <= 75
 AND condition.code.coding [1].display like ('%diabetes%');

Now you can use the Athena console to sort the results or download them for further analysis.

Additional SQL queries 138

AWS HealthLake Developer Guide

AWS HealthLake and interface VPC endpoints (AWS
PrivateLink)

You can establish a private connection between your VPC and AWS HealthLake by creating an
interface VPC endpoint. Interface VPC endpoints are powered by AWS PrivateLink, a technology
that you can use to privately access HealthLake; APIs without an internet gateway, NAT device,
VPN connection, or AWS Direct Connect connection. Instances in your VPC don't need public IP
addresses to communicate with HealthLake; APIs. Traffic between your VPC and HealthLake; does
not leave the Amazon network.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your subnets.

For more information, see Interface VPC endpoints (AWS PrivateLink) in the Amazon VPC User
Guide.

Considerations for HealthLake VPC endpoints

Before you set up an interface VPC endpoint for HealthLake, be sure you review Interface endpoint
properties and limitations in the Amazon VPC User Guide.

HealthLake supports making calls to all of its API actions from your VPC.

Creating an interface VPC endpoint for HealthLake;

You can create a VPC endpoint for the HealthLake; service using either the Amazon VPC console
or the AWS Command Line Interface (AWS CLI). For more information, see Creating an interface
endpoint in the Amazon VPC User Guide.

Create a VPC endpoint for HealthLake; using the following service name:

• com.amazonaws.region.healthlake

If you turn on private DNS for the endpoint, you can make API requests to HealthLake using its
default DNS name for the Region. For example, healthlake.us-east-1.amazonaws.com.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

Considerations for HealthLake VPC endpoints 139

https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint

AWS HealthLake Developer Guide

Creating a VPC endpoint policy for HealthLake

You can attach an endpoint policy to your VPC endpoint that controls access to HealthLake. The
policy specifies the following information:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: VPC endpoint policy for HealthLake actions

The following is an example of an endpoint policy for HealthLake. When attached to an endpoint,
this policy grants access to the HealthLake CreateFHIRDatastore action for all principals on all
resources.

{
 "Statement":[
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "healthlake:create-fhir-datastore"
],
 "Resource":"*"
 }
]
}

Creating a VPC endpoint policy for HealthLake 140

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

AWS HealthLake Developer Guide

Tagging resources in AWS HealthLake

Important notice

AWS HealthLake protects customer data under the AWS Shared Responsibility Model policies.
This means that all customer data is encrypted both in transition and at-rest. However, not all
customer-inputed names for data stores or job-based operations are encypted. They should never
contain Personally Identifiable Information or Protected Health Information. For more information,
see the AWS HealthLake Security chapter.

Tagging using HealthLake resources

You can assign metadata to your AWS resources in the form of tags. Each tag is a label consisting
of a user-defined key and value. Tags can help you manage, identify, organize, search for, and filter
resources.

This topic describes commonly used tagging categories and strategies to help you implement a
consistent and effective tagging strategy. The following sections assume basic knowledge of AWS
resources, tagging, detailed billing, and AWS Identity and Access Management (IAM).

Each tag has two parts:

• A tag key (for example, CostCenter, Environment, or Project). Tag keys are case sensitive.

• A tag value (for example, 111122223333 or Production). Like tag keys, tag values are case
sensitive.

You can use tags to categorize resources by purpose, owner, environment, or other criteria. For
more information, see AWS Tagging Strategies.

You can add, change, or remove tags one resource at a time from each resource’s service console,
service API, or the AWS CLI.

To enable tagging, make sure TagResources are authorized. You can authorize TagResources by
attaching an IAM policy like the following example.

{
 "Version": "2012-10-17",

Important notice 141

https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf

AWS HealthLake Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": "healthlake:CreateFHIRDatastore",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "healthlake:TagResource",
 "Resource": "*"
 }
]
}

Best practices

As you create a tagging strategy for AWS resources, follow best practices:

• Do not store Personally Identifiable Information (PII), Personal Health Information(PHI) or other
sensitive information in tags.

• Use a standardized, case-sensitive format for tags, and apply it consistently across all resource
types.

• Consider tag guidelines that support multiple purposes, like managing resource access control,
cost tracking, automation, and organization.

• Use automated tools to help manage resource tags. AWS Resource Groups and the Resource
Groups Tagging API enable programmatic control of tags, making it possible to automatically
manage, search, and filter tags and resources.

• Tagging is more effective when you use more tags.

• Tags can be edited or modified as user needs change, however to update access control tags, you
must also update the policies that reference those tags to control access to your resources.

Tagging requirements

Tags have the following requirements:

• Keys can't be prefixed with aws:.

• Keys must be unique per tag set.

Best practices 142

https://docs.aws.amazon.com/ARG/latest/userguide/welcome.html
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/overview.html
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/overview.html

AWS HealthLake Developer Guide

• A key must be between 1 and 128 allowed characters.

• A value must be between 0 and 256 allowed characters.

• Values do not need to be unique per tag set.

• Allowed characters for keys and values are Unicode letters, digits, white space, and any of the
following symbols: _ . : / = + - @.

• Keys and values are case sensitive.

Adding a tag to a data store

Adding tags to a data store can help you identify and organize your AWS resources and manage
access to them. First, you add one or more tags (key-value pairs) to a Data Store. You can use up
to fifty tags per user. There are also restrictions on the characters you can use in the key and value
fields.

After you have tags, you can create IAM policies to manage access to the data store based on these
tags. You can use the the HealthLake console or the AWS CLI to add tags to a data store. Adding
tags to a repository can impact access to that repository. Before you add a tag to a data store,
make sure to review any IAM policies that might use tags to control access to resources such as
data stores.

Follow these steps to use the AWS CLI to add a tag to a HealthLake data store. To add a tag to a
data store when you create it, see Creating a HealthLake data store.

At the terminal or command line, run the tag-resource command, specifying the Amazon Resource
Name (ARN) of the data store where you want to add tags and the key and value of the tag you
want to add. You can add more than one tag to a data store. There are also restrictions on the
characters you can use in the key and value fields, as listed in Tagging requirementsFor example,
to add tags to a data store while it is being created, you would use the following command in the
AWS CLI. The name of the data store is Test_Data_Store, and the two added tags with keys are
key1 and key2 with values as value1 and value2 respectively
:

aws healthlake create-fhir-datastore --datastore-type-version R4 --preload-data-config
 PreloadDataType="SYNTHEA" --datastore-name "Test_Data_Store" --tags '[{"Key": "key1",
 "Value": "value1"}, {"Key": "key2", "Value": "value2"}]' --region us-east-1

Adding a tag to a data store 143

AWS HealthLake Developer Guide

To add tags to an existing data store, you would run the following example command:

aws healthlake tag-resource --resource-arn "arn:aws:healthlake:us-
east-1:691207106566:datastore/fhir/0725c83f4307f263e16fd56b6d8ebdbe" --tags '[{"Key":
 "key1", "Value": "value1"}]' --region us-east-1

If successful, this command returns no response.

Listing tags for a data store

Follow these steps to use the AWS CLI to view a list of the AWS tags for a HealthLake Data Store. If
no tags have been added, the returned list is empty.

At the terminal or command line, run the list-tags-for-resource command as shown in the
following example.

aws healthlake-test list-tags-for-resource --resource-arn "arn:aws:healthlake:us-
east-1:674914422125:datastore/fhir/0725c83f4307f263e16fd56b6d8ebdbe" --region us-
east-1

{
 "tags": {
 "key": "value",
 "key1": "value1"
 }
}

Removing tags from a data store

You can remove one or more tags associated with a data store. Removing a tag does not delete the
tag from other AWS resources that are associated with that tag.

At the terminal or command line, run the untag-resource command, specifying the Amazon
Resource Name (ARN) of the data store where you want to remove tags and the tag key of the tag
you want to remove.

Listing tags for a data store 144

AWS HealthLake Developer Guide

aws healthlake untag-resource --resource-arn "arn:aws:healthlake:us-
east-1:674914422125:datastore/fhir/b91723d65c6fdeb1d26543a49d2ed1fa" --tag-keys
 '["key1"]' --region us-east-1

If successful, this command does not return a response. To verify the tags associated with the data
store, run the list-tags-for-resource command.

Removing tags from a data store 145

AWS HealthLake Developer Guide

Monitoring HealthLake

Monitoring is an important part of maintaining the reliability, availability, and performance of
HealthLake and your other AWS solutions. AWS provides the following monitoring tools to watch
HealthLake, report when something is wrong, and take automatic actions when appropriate:

• Amazon CloudWatch monitors your AWS resources and and the applications you run on AWS in
real time. You can collect and track metrics, create customized dashboards, and set alarms that
notify you or take actions when a specified metric reaches a specific threshold . For example,
you can have CloudWatch track CPU usage or other metrics of your Amazon EC2 instances
and automatically launch new instances when needed. For more information, see the Amazon
CloudWatch User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account.
It then delivers the log files to an Amazon S3 bucket that you specify. You can identify which
users and accounts called AWS, the source IP address for those calls, and when they occurred. For
more information, see the AWS CloudTrail User Guide.

Topics

• Monitoring HealthLake with Amazon CloudWatch

Monitoring HealthLake with Amazon CloudWatch

You can monitor HealthLake using CloudWatch, which collects raw data and processes it into
readable, near real-time metrics. These statistics are kept for 15 months, so you can use that
historical information and gain a better perspective on how your web application or service is
performing. You can also set alarms that watch for certain thresholds, and send notifications or
take actions when those thresholds are met. For more information, see the Amazon CloudWatch
User Guide.

Metrics are reported for all HealthLake APIs, including the following.

• data store Management APIs —CreateFHIRDatastore, DeleteFHIRDatastore,
DescribeFHIRDatastore, ListFHIRDatastores

• Import and Export APIs —StartFHIRImportJob, ListFHIRImportJobs, DescribeFHIRImportJob,
StartFHIRExportJob, ListFHIRExportJobs, DescribeFHIRExportJob

Monitoring with CloudWatch 146

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

AWS HealthLake Developer Guide

• HTTP REST Client and resource management APIs — CreateResource, DeleteResource,
GetCapabilities, ReadResource, SearchAll, SearchWithGet, SearchWithPost, UpdateResource.

• Tagging APIs — ListTagsForResource, TagResource, UntagResource

The following tables list the metrics and dimensions for HealthLake.

The following metrics are reported. Each is presented as a frequency count for a user specified data
range.

Metrics

Metrics Description

Call Count The number of calls to APIs. This can be
reported either for the account or a specified
data store.

Units: Count

Valid Statistics: Sum, Count

Dimensions: Operation, data store ID, data
store type

Successful Requests The number of successful API requests.

Units: Count

Valid Statistics: Sum, Average

Dimensions: Operation, data store, data store
type

User Errors The number of requests that failed due to user
error.

Units: Count

Valid Statistics: Sum, Average

Monitoring with CloudWatch 147

AWS HealthLake Developer Guide

Metrics Description

Dimensions: Operation, data store ID, data
store type

Server Errors The number of requests that failed due to
server error.

Units: Count

Valid Statistics: Sum, Average

Dimensions: Operation, data store ID, data
store type

Throttled Requests The number of requests that have been
throttled. This metric is not included in user or
server errors counts.

Units: Count

Valid Statistics: Sum, Average

Dimensions: Operation, data store ID, data
store type

Latency The time it took in milliseconds to process the
user request.

Unit: Milliseconds

Valid statistics: Minimum, Maximum, Average

Dimensions: Operation, data store ID, data
store type

The following dimensions are reported.

Monitoring with CloudWatch 148

AWS HealthLake Developer Guide

Dimensions

Dimensions Description

Operation Which API operation was used

DataStoreID The data store included in the API request

DataStoreType The type of data store (currently only FHIR R4
is supported)

You can get metrics for HealthLake with the AWS Management Console, the AWS CLI, or the
CloudWatch API. You can use the CloudWatch API through one of the Amazon AWS Software
Development Kits (SDKs) or the CloudWatch API tools. The HealthLake console displays graphs
based on the raw data from the CloudWatch API.

You must have the appropriate CloudWatch permissions to monitor HealthLake with CloudWatch.
For more information, see Authentication and Access Control for Amazon CloudWatch in the
Amazon CloudWatch User Guide.

Viewing HealthLake metrics

To view metrics (CloudWatch console)

1. Sign in to the AWS Management Console and open the CloudWatch console.

2. Choose Metrics, choose All Metrics, and then choose AWS/HealthLake.

3. Choose the dimension, choose a metric name, then choose Add to graph.

4. Choose a value for the date range. The metric count for the selected date range is displayed in
the graph.

Creating an alarm using CloudWatch

A CloudWatch alarm watches a single metric over a specified time period, and performs one or
more actions: sending a notification to an Amazon Simple Notification Service (Amazon SNS) topic
or Auto Scaling policy. The action or actions are based on the value of the metric relative to a
given threshold over a number of time periods that you specify. CloudWatch can also send you an
Amazon SNS message when the alarm changes state.

Viewing HealthLake metrics 149

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html
https://console.aws.amazon.com/cloudwatch/home

AWS HealthLake Developer Guide

CloudWatch alarms invoke actions only when the state changes and has persisted for the period
you specify.

To view metrics (CloudWatch console)

1. Sign in to the AWS Management Console and open the CloudWatch console.

2. Choose Alarms, and then choose Create Alarm.

3. Choose AWS/HealthLake, and then choose a metric.

4. For Time Range, choose a time range to monitor, and then choose Next.

5. Enter a Name and Description.

6. For Whenever, choose >=, and type a maximum value.

7. If you want CloudWatch to send an email when the alarm state is reached, in the Actions
section, for Whenever this alarm, choose State is ALARM. For Send notification to, choose a
mailing list or choose New list and create a new mailing list.

8. Preview the alarm in the Alarm Preview section. If you are satisfied with the alarm, choose
Create Alarm.

Creating an alarm 150

https://console.aws.amazon.com/cloudwatch/home

AWS HealthLake Developer Guide

Integrating SMART on FHIR with AWS HealthLake

A Substitutable Medical Applications and Reusable Technologies (SMART) on FHIR enabled
HealthLake data store allows SMART on FHIR compliant applications to access data stored in a
HealthLake data store. HealthLake data is accessed by authenticating and authorizing requests
using a third-party authorization server, and by setting up additional resources in AWS.

To use the SMART on FHIR with your HealthLake data store you must provide the following in your
CreateFHIRDatastore API request.

• Set the AuthorizationStrategy equal to SMART_ON_FHIR_V1.

• Set the IdpLambdaArn equal to the ARN of the AWS Lambda you created to manage token
decoding with your authorization server.

• Define the Metadata elements specified in your authorization server. These metadata elements
are returned in the Discovery Document. To learn more, see Fetching a SMART on FHIR enabled
HealthLake data store's Discovery Document.

• Optional: Enable FineGrainedAuthorizationEnabled if you've set up fine grained authorization on
your authorization server.

You can make a SMART on FHIR enabled data store using the AWS Command Line Interface (AWS
CLI) or via one of the AWS supported SDKs. Creating a SMART on FHIR enabled HealthLake data
store is not supported using the HealthLake console. To learn more, see Create a SMART on FHIR
enabled data store.

To prescribe these parameters in the request, you need to set up resources in other AWS services
(AWS Secrets Manager and AWS Lambda), create new IAM service roles, and set up a SMART
on FHIR compliant authorization server. Use the section Setting up the required resources to
implement a SMART on FHIR compliant data store to learn more about setting up the required
resources and to see a high-level overview of how a SMART on FHIR Application interacts with
HealthLake.

This means that instead of managing user credentials via AWS Identity and Access Management
you are doing so using a SMART on FHIR compliant authorization server.

HealthLake supports SMART on FHIR 1.0. To learn more about this framework, see SMART
Application Launch Framework Implementation Guide Release 1.0.

151

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_CreateFHIRDatastore.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html
http://hl7.org/fhir/smart-app-launch/1.0.0/
http://hl7.org/fhir/smart-app-launch/1.0.0/

AWS HealthLake Developer Guide

To authorize and authenticate requests for data store using SMART on FHIR, HealthLake supports
using:

• OpenID (AuthN) Integration: Used to authenticate that person or client application is who (or
what) they claim to be.

• OAuth 2.0 (AuthZ) Integration: Used to authorize what FHIR resources in your HealthLake data
store an authenticated request can read or write data too. This is defined by the scopes set up in
your authorization server

Contents

• Authentication requirements for SMART on FHIR

• Authorization server elements required to create a SMART on FHIR enabled HealthLake data
store

• Required claims to complete a FHIR REST API request on a SMART on FHIR enabled HealthLake
data store

• Supported SMART on FHIR OAuth scopes by HealthLake

• Standalone launch scope

• HealthLake data store FHIR resource specific scopes

• Using AWS Lambda for token validation with a SMART on FHIR enabled HealthLake data store

• Creating an AWS Lambda function

• Modifying a Lambda function's execution role

• Creating a HealthLake service role for use in the AWS Lambda function used to decode a JWT

• Creating a new IAM policy

• Creating a service role for HealthLake (IAM console)

• Lambda execution role

• Allow HealthLake to trigger your Lambda function

• Provisioning concurrency for your Lambda function

• Creating a SMART on FHIR enabled HealthLake data store

• Using the AWS CLI to create a SMART on FHIR enabled HealthLake data store

• Using fine-grained authorization with a SMART on FHIR enabled HealthLake data store

• Fetching a SMART on FHIR enabled HealthLake data store's Discovery Document

• Making a FHIR REST API request on a SMART enabled HealthLake data store
152

AWS HealthLake Developer Guide

• An example request from client application containing a JWT in the authorization header and
how Lambda should decode that response

• Setting up resources needed to implement a SMART on FHIR compliant data store

• How a client application launches and requests data from a SMART on FHIR enable HealthLake
data store

Authentication requirements for SMART on FHIR

To access FHIR resources in a SMART on FHIR HealthLake data store, a client application must be
authorized by an OAuth 2.0-compliant authorization server and present an OAuth Bearer token as
part of a FHIR REST API request. To find the authorization server's endpoint use the HealthLake
SMART on FHIR Discovery Document via a Well-Known Uniform Resource Identifier. To learn more
about this process, see Fetching a SMART on FHIR enabled HealthLake data store's Discovery
Document.

When you create a SMART on FHIR HealthLake data store, you must define the authorization
server's end point and the token endpoint in the metadata element of the CreateFHIRDatastore
request. To learn more defining the metadata element, see Creating a SMART on FHIR enabled
HealthLake data store.

Using the authorization server endpoints, the client application will authenticate a user with the
authorization service. Once authorized and authenticated, a JSON Web Token (JWT) is generated
by the authorization service and passed to the client application. This token contains FHIR resource
scopes that the client application is allowed to use, which in turn restricts what data the user is able
to access. Optionally, if the launch scope was provided then the response will contain those details.
To learn more about the SMART on FHIR scopes supported by HealthLake, see Supported SMART
on FHIR OAuth scopes by HealthLake.

Using the JWT granted by the authorization server, a client application makes FHIR REST API calls
to a SMART on FHIR enabled HealthLake data store. To validate and decode the JWT, you need to
create a Lambda function. HealthLake invokes this Lambda function on your behalf when a FHIR
REST API request is received. To see an example starter Lambda function, see Using AWS Lambda
for token validation with a SMART on FHIR enabled HealthLake data store.

Authentication requirements 153

AWS HealthLake Developer Guide

Authorization server elements required to create a SMART on FHIR
enabled HealthLake data store

In the CreateFHIRDatastore request, you need to provide the authorization endpoint and the token
endpoint as part of the metadata element in the IdentityProviderConfiguration object.
Both the authorization endpoint and token endpoint are required. To see example of how this is
specifed in CreateFHIRDatastore request, see Creating a SMART on FHIR enabled HealthLake data
store.

Required claims to complete a FHIR REST API request on a SMART on
FHIR enabled HealthLake data store

Your AWS Lambda function must contain the following claims for it to be a valid FHIR REST API
request on a SMART on FHIR enabled HealthLake data store.

• nbf: (Not Before) Claim — The "nbf" (not before) claim identifies the time before which the
JWT MUST NOT be accepted for processing. The processing of the "nbf" claim requires that the
current date/time MUST be after or equal to the not-before date/time listed in the "nbf" claim.
The sample Lambda function we provide converts iat from the server response into nbf.

• exp: (Expiration Time) Claim — The "exp" (expiration time) claim identifies the expiration time on
or after which the JWT must not be accepted for processing.

• isAuthorized: A boolean set to True. Indicates that request has been authorized on the
authorization server.

• aud: (Audience) Claim — The "aud" (audience) claim identifies the recipients that the JWT is
intended for. This must be a SMART on FHIR enabled HealthLake data store endpoint.

• scope: This must be at least one FHIR resource related scope. This scope is defined on your
authorization server. To learn more about FHIR resource related scopes accepted by HealthLake,
see HealthLake data store FHIR resource specific scopes.

Supported SMART on FHIR OAuth scopes by HealthLake

HealthLake uses OAuth 2.0 as an authorization protocol. Using this protocol on your authorization
server allows you to define what FHIR resources in your HealthLake data store a client application
can have read and/or write access too.

Required authorization server elements 154

https://datatracker.ietf.org/doc/html/rfc7519#section-4.1.5
https://datatracker.ietf.org/doc/html/rfc7519#section-4.1.4
https://datatracker.ietf.org/doc/html/rfc7519#section-4.1

AWS HealthLake Developer Guide

The SMART on FHIR framework defines a set of scopes that can be requested from the
authorization server. To view the scope definitions in the SMART on FHIR framework, see SMART
on FHIR Scopes in the HL7 FHIR Resource Guide.

For example, a client application that is only designed to allow patients to view their lab
results or view their contact details should only be authorized to request (via FHIR REST
request) read scopes. To define these as scope you would provide a string like the following
patient/Observation.read. This would allow the client application to request access to the
Observation resource type in a read-only manner on the Patient resource type.

Standalone launch scope

HealthLake supports the standalone launch mode scope launch/patient.

In standalone launch mode a client application requests access to patient's clinical data because
the user and patient are not known to the client application. Thus, the client application's
authorization request explicitly requests the patient scope be returned. After successful
authentication, the authorization server issues a access token containing the requested launch
patient scope. The needed patient context is provided alongside the access token in the
authorization server's response.

Supported launch mode scopes

Scope Description

launch/patient A parameter in a OAuth 2.0 authorization request requesting that
patient data be returned in the authorization response.

HealthLake data store FHIR resource specific scopes

HealthLake defines three levels of scopes.

• Patient-specific scopes grant access to specific data about a single patient. Which patient is
specified in the launch context.

• User-level scopes grant access to specific data that a user can access.

• System-level scopes grant read/write access to all FHIR resource found in the HealthLake data
store.

Standalone launch scope 155

https://hl7.org/fhir/smart-app-launch/1.0.0/scopes-and-launch-context/index.html
https://hl7.org/fhir/smart-app-launch/1.0.0/scopes-and-launch-context/index.html

AWS HealthLake Developer Guide

The following table shows the syntax for constructing FHIR resource related scopes that are
supported by HealthLake. The general format is the following:

('patient' | 'user' | 'system') '/' (fhir-resource | '*') '.' ('read' | 'write' |
 '*')

Supported authorization scopes on HealthLake data stores

Scope syntax Example scope Result

patient/(fhir-resource | '*').
('read' | 'write' | '*')

patient/A
llergyInt
olerance.*

A client application
would have read/write
access to allergies.

user/(fhir-resource | '*').('re
ad' | 'write' | '*')

user/Obse
rvation.read

A client applicati
on would have read
access to all recorded
observations.

system/('read' | 'write' | *) system/*.* A client application
would have read/write
access to all data.

Using AWS Lambda for token validation with a SMART on FHIR
enabled HealthLake data store

When you create a SMART on FHIR enabled HealthLake data store, you need to provide the ARN of
the AWS Lambda function in the CreateFHIRDatastore request. The Lambda function's ARN is
specified in IdentityProviderConfiguration object using the IdpLambdaArn parameter.

You must create the Lambda function prior to creating your SMART on FHIR enabled HealthLake
data store. Once you create the data store, the Lambda ARN cannot be changed. To see the
Lambda ARN you specified when the data store was created use the DescribeFHIRDatastore
API operation.

Performing token validation 156

AWS HealthLake Developer Guide

For a FHIR REST request to succeed on a SMART on FHIR enabled HealthLake data store your
Lambda function needs to do the following:

• The Lambda function must return a response in less than 1 second to HealthLake data store
endpoint.

• Decode the access token provided in the authorization header of the REST API request sent by
the client application.

• Assign an IAM service role that has sufficient permissions to carry out the FHIR REST API request.

• The following claims are required to complete a FHIR REST API request. To learn more, see
Required claims.

• nbf

• exp

• isAuthorized

• aud

• scope

When working with Lambda, you need to create an execution role and a resource-based policy in
addition to your Lambda function. A Lambda's function's execution role is an IAM role that grants
the function permission to access AWS services and resources needed at run time. The resource-
based policy you provide must allow HealthLake to invoke your function on your behalf.

The sections in this topic describe an example request from a client application and decoded
response, the steps needed to create an AWS Lambda function, and how to create a resource-based
policy that HealthLake can assume.

• Part 1: Creating a Lambda function

• Part 2: Creating a HealthLake service role used by the AWS Lambda function

• Part 3: Updating the Lambda function's execution role

• Part 4: Adding a resource policy to your Lambda function

• Part 5: Provisioning concurrency for your Lambda function

Performing token validation 157

AWS HealthLake Developer Guide

Creating an AWS Lambda function

The Lambda function created in this topic is triggered when HealthLake receives a requests to a
SMART on FHIR enabled HealthLake data store. The request from the client application contains a
REST API call, and authorization header containing an access token.

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Authorization: Bearer i8hweunweunweofiwweoijewiwe

The example Lambda function in this topic uses AWS Secrets Manager to obscure credentials
related to the authorization server. We strongly recommend not providing authorization server
login details directly in a Lambda function.

Example validating a FHIR REST request containing an authorization bearer token

The example Lambda function shows you how to validate an FHIR REST request sent to a SMART
on FHIR enabled HealthLake data store. To see step-by-steps directions on how to implement this
Lambda function, see Creating a Lambda function using the AWS Management Console.

If the FHIR REST API request does not contain a valid data store endpoint, access token, and REST
operation the Lambda function will fail. To learn more about the required authorization server
elements, see Required claims.

import base64
import boto3
import logging
import json
import os
from urllib import request, parse

logger = logging.getLogger()
logger.setLevel(logging.INFO)

Uses Secrets manager to gain access to the access key ID and secret access key for
 the authorization server
client = boto3.client('secretsmanager', region_name="region-of-datastore")
response = client.get_secret_value(SecretId='name-specified-by-customer-in-
secretsmanager')
secret = json.loads(response['SecretString'])
client_id = secret['client_id']
client_secret = secret['client_secret']

AWS Lambda function 158

AWS HealthLake Developer Guide

unencoded_auth = f'{client_id}:{client_secret}'
headers = {
 'Authorization': f'Basic {base64.b64encode(unencoded_auth.encode()).decode()}',
 'Content-Type': 'application/x-www-form-urlencoded'
}

auth_endpoint = os.environ['auth-server-base-url'] # Base URL of the Authorization
 server
user_role_arn = os.environ['iam-role-arn'] # The IAM role client application will use
 to complete the HTTP request on the datastore

def lambda_handler(event, context):
 if 'datastoreEndpoint' not in event or 'operationName' not in event or
 'bearerToken' not in event:
 return {}

 datastore_endpoint = event['datastoreEndpoint']
 operation_name = event['operationName']
 bearer_token = event['bearerToken']
 logger.info('Datastore Endpoint [{}], Operation Name:
 [{}]'.format(datastore_endpoint, operation_name))

 ## To validate the token
 auth_response = auth_with_provider(bearer_token)
 logger.info('Auth response: [{}]'.format(auth_response))
 auth_payload = json.loads(auth_response)
 ## Required parameters needed to be sent to the datastore endpoint for the HTTP
 request to go through
 auth_payload["isAuthorized"] = bool(auth_payload["active"])
 auth_payload["nbf"] = auth_payload["iat"]
 return {"authPayload": auth_payload, "iamRoleARN": user_role_arn}

access the server
def auth_with_provider(token):
 data = {'token': token, 'token_type_hint': 'access_token'}
 req = request.Request(url=auth_endpoint + '/v1/introspect',
 data=parse.urlencode(data).encode(), headers=headers)
 with request.urlopen(req) as resp:
 return resp.read().decode()

AWS Lambda function 159

AWS HealthLake Developer Guide

Creating a Lambda function using the AWS Management Console

This procedure assumes you already created the service role that you want HealthLake to assume
when handling a FHIR REST API request on a SMART on FHIR enabled HealthLake data store. If you
have not created the service role, you can still create the Lambda function. You will need to add the
ARN of service role before the Lambda function will work. To learn more about creating a service
role and specifying it in the Lambda function see, Creating a HealthLake service role for use in the
AWS Lambda function used to decode a JWT

To create a Lambda function (AWS Management Console)

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Select Author from scratch.

4. Under Basic information enter a Function name. Under Runtime choose a python based
runtime.

5. For Execution role, choose Create a new role with basic Lambda permissions.

Lambda creates an execution role that grants the function permission to upload logs to
Amazon CloudWatch. The Lambda function assumes the execution role when you invoke your
function, and uses the execution role to create credentials for the AWS SDK.

6. Choose the Code tab, and add the sample Lambda function.

If you've not yet created the service role for the Lambda function to use you'll need to create
it before the sample Lambda function will work. To learn more about creating a service role
for the Lambda function, see Creating a HealthLake service role for use in the AWS Lambda
function used to decode a JWT.

import base64
import boto3
import logging
import json
import os
from urllib import request, parse

logger = logging.getLogger()
logger.setLevel(logging.INFO)

AWS Lambda function 160

https://console.aws.amazon.com/lambda/home/functions
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

AWS HealthLake Developer Guide

Uses Secrets manager to gain access to the access key ID and secret access key
 for the authorization server
client = boto3.client('secretsmanager', region_name="region-of-datastore")
response = client.get_secret_value(SecretId='name-specified-by-customer-in-
secretsmanager')
secret = json.loads(response['SecretString'])
client_id = secret['client_id']
client_secret = secret['client_secret']

unencoded_auth = f'{client_id}:{client_secret}'
headers = {
 'Authorization': f'Basic {base64.b64encode(unencoded_auth.encode()).decode()}',
 'Content-Type': 'application/x-www-form-urlencoded'
}

auth_endpoint = os.environ['auth-server-base-url'] # Base URL of the Authorization
 server
user_role_arn = os.environ['iam-role-arn'] # The IAM role client application will
 use to complete the HTTP request on the datastore

def lambda_handler(event, context):
 if 'datastoreEndpoint' not in event or 'operationName' not in event or
 'bearerToken' not in event:
 return {}

 datastore_endpoint = event['datastoreEndpoint']
 operation_name = event['operationName']
 bearer_token = event['bearerToken']
 logger.info('Datastore Endpoint [{}], Operation Name:
 [{}]'.format(datastore_endpoint, operation_name))

 ## To validate the token
 auth_response = auth_with_provider(bearer_token)
 logger.info('Auth response: [{}]'.format(auth_response))
 auth_payload = json.loads(auth_response)
 ## Required parameters needed to be sent to the datastore endpoint for the HTTP
 request to go through
 auth_payload["isAuthorized"] = bool(auth_payload["active"])
 auth_payload["nbf"] = auth_payload["iat"]
 return {"authPayload": auth_payload, "iamRoleARN": user_role_arn}

Access the server
def auth_with_provider(token):

AWS Lambda function 161

AWS HealthLake Developer Guide

 data = {'token': token, 'token_type_hint': 'access_token'}
 req = request.Request(url=auth_endpoint + '/v1/introspect',
 data=parse.urlencode(data).encode(), headers=headers)
 with request.urlopen(req) as resp:
 return resp.read().decode()

Modifying a Lambda function's execution role

After creating the Lambda function, you need to update the execution role to include the necessary
permissions to call Secrets Manager. In Secrets Manager, each secret you create has an ARN. To
apply the least privilege, the execution role should only have access to the resources needed for the
Lambda function to execute.

You can modify a Lambda function's execution role by searching for it in the IAM console or by
choosing Configuration in the Lambda console. To learn more about managing your Lambda
functions execution role, see Lambda execution role.

Example Lambda function execution role that grants access to GetSecretValue

Adding the IAM action GetSecretValue to execution role grants the necessary permission for the
sample Lambda function to work.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "arn:aws:secretsmanager:your-region:your-aws-account-
id:secret:secret-name-DKodTA"
 }
]
}

At this point you've created a Lambda function that can be used to validate the access token
provided as part of the FHIR REST request sent to your SMART on FHIR enabled HealthLake data
store.

AWS Lambda function 162

AWS HealthLake Developer Guide

Creating a HealthLake service role for use in the AWS Lambda function
used to decode a JWT

Persona: IAM Administrator

A user who can add or remove IAM policies, and create new IAM identities.

Service role

A service role is an IAM role that a service assumes to perform actions on your behalf.
An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the
IAM User Guide.

After the JSON Web Token (JWT) is decoded the authorization Lambda needs to also return an IAM
role ARN. This role must have the necessary permissions to carry out the REST API request or it will
fail due to insufficient permissions.

When setting up a custom policy using IAM it is best to grant the minimum permissions required.
To learn more, see Apply least-privilege permissions in the IAM User Guide.

Creating a HealthLake service role to designate in the authorization Lambda function requires two
steps.

• First, you need to create IAM policy. The policy must specify access to the FHIR resources that
you have provided scopes for in the authorization server.

• Second, you need to create the service role. When you create the role you designate a trust
relationship and attach the policy you created in step one. The trust relationship designates
HealthLake as the service principal. You need to specify a HealthLake data store ARN and a AWS
account ID in this step.

Creating a new IAM policy

The scopes you define in your authorization server determine what FHIR resources an
authenticated user has access to in a HealthLake data store.

The IAM policy you create can be tailored to match the scopes you've defined.

Create a service role 163

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

AWS HealthLake Developer Guide

The following actions in the Action element of an IAM policy statement can be defined. For each
Action in the table you can define a Resource types. In HealthLake a data store is the only
supported resource type that can be defined in the Resource element of an IAM permission policy
statement.

Individual FHIR resources are not a resource that you can define as an element in a IAM permission
policy.

Actions defined by HealthLake

Actions Description Access
level

Resource type (Required)

CreateRes
ource

Grants permission to a
create resource

Write Datastore ARN: arn:aws:healthlake:your-regi
on :111122223333 :datastore/fhir/your-
datastore-id

DeleteRes
ource

Grants permission to
delete resource

Write Datastore ARN: arn:aws:healthlake:your-regi
on :111122223333 :datastore/fhir/your-
datastore-id

ReadResou
rce

Grants permission to read
resource

Read Datastore ARN: arn:aws:healthlake:your-regi
on :111122223333 :datastore/fhir/your-
datastore-id

SearchWit
hGet

Grants permission to
search resources with
GET method

Read Datastore ARN: arn:aws:healthlake:your-regi
on :111122223333 :datastore/fhir/your-
datastore-id

SearchWit
hPost

Grants permission to
search resources with
POST method

Read Datastore ARN: arn:aws:healthlake:your-regi
on :111122223333 :datastore/fhir/your-
datastore-id

StartFHIR
ExportJob
WithPost

Grants permission to
begin a FHIR Export job
with GET

Write Datastore ARN: arn:aws:healthlake:your-regi
on :111122223333 :datastore/fhir/your-
datastore-id

Create a service role 164

AWS HealthLake Developer Guide

Actions Description Access
level

Resource type (Required)

UpdateRes
ource

Grants permission to
update resource

Write Datastore ARN: arn:aws:healthlake:your-regi
on :111122223333 :datastore/fhir/your-
datastore-id

To get started, you can use AmazonHealthLakeFullAccess. This policy would grant read, write,
search, and export on all FHIR resources found in a data store. To grant read-only permissions on a
data store use AmazonHealthLakeReadOnlyAccess.

To learn more about creating a custom policy using the AWS Management Console, AWS CLI, or
IAM SDKs, see Creating IAM policies in the IAM User Guide.

Creating a service role for HealthLake (IAM console)

Use this procedure to create a service role. When you create a service you will also need to
designate an IAM policy.

To create the service role for HealthLake (IAM console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles.

3. Then, choose Create role.

4. On the Select trust entity page, choose Custom trust policy.

5. Next, under Custom trust policy update the sample policy as follows. Replace your-
account-id with your account number, and add the ARN of the data store you want to use in
your import or export jobs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {
 "Service": "healthlake.amazonaws.com"

Create a service role 165

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS HealthLake Developer Guide

 },
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "your-account-id"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:healthlake:your-region:your-account-
id:datastore/fhir/your-datastore-id"
 }
 }
 }
]
}

6. Then, choose Next.

7. On the Add permissions page, choose the policy that you want the HealthLake service to
assume. To find your policy, search for it under Permissions policies.

8. Then, choose Attach policy.

9. Then on the Name, review, and create page under Role name enter a name.

10. (Optional)Then under Description, add a short description for your role.

11. If possible, enter a role name or role name suffix to help you identify the purpose of this
role. Role names must be unique within your AWS account. They are not distinguished by
case. For example, you cannot create roles named both PRODROLE and prodrole. Because
various entities might reference the role, you cannot edit the name of the role after it has been
created.

12. Review the role details, and then choose Create role.

To learn how to specify the role ARN in the sample Lambda function, see Creating an AWS Lambda
function.

Lambda execution role

A Lambda function's execution role is an IAM role that grants the function permission to access
AWS services and resources. This page provides information on how to create, view, and manage a
Lambda function's execution role.

Lambda execution role 166

AWS HealthLake Developer Guide

By default, Lambda creates an execution role with minimal permissions when you create a new
Lambda function using the AWS Management Console. To manage the permissions granted in the
execution role, see Creating an execution role in the IAM console in the Lambda Developer Guide.

The sample Lambda function provided in this topic uses Secrets Manager to obscure the
authorization server's credentials.

As with any IAM role you create it is important to follow the least privilege best practice. During
the development phrase, you might sometimes grant permissions beyond what is required. Before
publishing your function in the production environment, as a best practice, adjust the policy to
include only the required permissions. For more information, see Apply least-privelege in the IAM
User Guide.

Allow HealthLake to trigger your Lambda function

So HealthLake can invoke the Lambda function on your behalf, you must do following:

• You need to set IdpLambdaArn equal to the ARN of the Lambda function you want HealthLake
to invoke in the CreateFHIRDatastore request.

• You need a resource-based policy allowing HealthLake to invoke the Lambda function on your
behalf.

When HealthLake receives a FHIR REST API request on a SMART on FHIR enabled HealthLake data
store, it needs permissions to invoke the Lambda function specified at data store creation on your
behalf. To grant HealthLake access, you'll use a resource-based policy. To learn more about creating
a resource-based policy for a Lambda function, see Allowing an AWS service to call a Lambda
function in the AWS Lambda Developer Guide.

Provisioning concurrency for your Lambda function

Important

HealthLake requires that the maximum run time for your Lambda function be less than one
second (1000 milliseconds).
If you Lambda function exceeds the run time limit you get a TimeOut exception.

To avoid getting this exception, we recommend configuring provisioned concurrency. By allocating
provisioned concurrency before an increase in invocations, you can ensure that all requests are

Triggering your Lambda function 167

https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html#permissions-executionrole-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html#permissions-resource-serviceinvoke
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html#permissions-resource-serviceinvoke

AWS HealthLake Developer Guide

served by initialized instances with low latency. To learn more about configuring provisioned
concurrency, see Configuring provisioned concurrency in the Lambda Developer Guide

To see the average run time for your Lambda function currently use the Monitoring page for your
Lambda function on the Lambda console. By default, the Lambda console provides a Duration
graph which shows you the average, minimum, and maximum amount of time your function code
spends processing an event. To learn more about monitoring Lambda functions, see Monitoring
functions in the Lambda console in the Lambda Developer Guide.

If you have already provisioned concurrency for your Lambda function and want to monitor it, see
Monitoring concurrency in the Lambda Developer Guide.

Creating a SMART on FHIR enabled HealthLake data store

To use the SMART on FHIR framework with HealthLake, create a HealthLake data store with the
IdentityProviderConfiguration parameter specified in your CreateFHIRDatastore request. In
the IdentityProviderConfiguration parameter you specify the following information:

• Set the AuthorizationStrategy equal to SMART_ON_FHIR_V1.

• Set the IdpLambdaArn equal to the ARN of the AWS Lambda you created to manage token
decoding with your authorization server.

• Define the Metadata elements specified in the authorization server as a JSON block. These
metadata elements are returned in the Discovery Document.

• Optional: Enable FineGrainedAuthorizationEnabled. Specify True to use the Fine grained
authorization provided by HealthLake

You can make a SMART on FHIR enabled data store using the AWS Command Line Interface (AWS
CLI) or via one of the AWS supported SDKs. Creating a SMART on FHIR enabled HealthLake data
store is not supported using the HealthLake console.

Using the AWS CLI to create a SMART on FHIR enabled HealthLake data
store

You can use the following code example to create SMART on FHIR enabled HealthLake data store
using the AWS CLI. When creating a SMART on FHIR enabled HealthLake data store you must
specify the identity-provider-configuration parameter.

Create a SMART on FHIR enabled data store 168

https://docs.aws.amazon.com/ambda/latest/dg/provisioned-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-access-metrics.html#monitoring-console-graph-types
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-access-metrics.html#monitoring-console-graph-types
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-concurrency.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html

AWS HealthLake Developer Guide

In the identity-provider-configuration parameter you can optionally enable fine-grained
authorization by setting FineGrainedAuthorizationEnabled equal to True. To learn more
about Fine grained authorization, see Using fine-grained authorization with a SMART on FHIR
enabled HealthLake data store. The example below contains a special character \ to indicate line
breaks or as an escape character. This is for clarity.

aws healthlake create-fhir-datastore \
 --region us-east-1 \
 --datastore-name "your-data-store-name" \
 --datastore-type-version R4 \
 --preload-data-config PreloadDataType="SYNTHEA" \
 --sse-configuration '{ "KmsEncryptionConfig": { \
 "CmkType": "customer-managed-kms-key1",
 "KmsKeyId": "arn:aws:kms:us-east-1:your-account-id:key/your-key-id" } }' \
 --identity-provider-configuration \
 '{"AuthorizationStrategy": "SMART_ON_FHIR_V1", \
 "FineGrainedAuthorizationEnabled": boolean-false-by-default, \
 "IdpLambdaArn": "arn:aws:lambda:your-region:your-account-id:function:your-lambda-
name" \
 "Metadata": "{\"issuer\":\"https://ehr.example.com\",\"jwks_uri\":\"https://
ehr.example.com/.well-known/jwks.json\",\"authorization_endpoint\":\"https://
ehr.example.com/auth/authorize\",\"token_endpoint\":\"https://ehr.token.com/auth/
token\",\"token_endpoint_auth_methods_supported\":[\"client_secret_basic\",\"foo\"],
\"grant_types_supported\":[\"client_credential\",\"foo\"],\"registration_endpoint\":
\"https://ehr.example.com/auth/register\",\"scopes_supported\":[\"openId\",\"profile\",
\"launch\"],\"response_types_supported\":[\"code\"],\"management_endpoint\":\"https://
ehr.example.com/user/manage\",\"introspection_endpoint\":\"https://ehr.example.com/
user/introspect\",\"revocation_endpoint\":\"https://ehr.example.com/user/revoke\",
\"code_challenge_methods_supported\":[\"S256\"],\"capabilities\":[\"launch-ehr\",\"sso-
openid-connect\",\"client-public\"]}"}'

When successful you get the following JSON response:

{
 "DatastoreArn": "arn:aws:healthlake:your-region:111122223333:datastore/fhir/your-
datastore-id",
 "DatastoreEndpoint": "https://healthlake.your-region.amazonaws.com/datastore/your-
datastore-id/r4/",
 "DatastoreId": "your-data-store-id",
 "DatastoreStatus": "data-store-creation-status"
}

Create data store 169

AWS HealthLake Developer Guide

Using fine-grained authorization with a SMART on FHIR
enabled HealthLake data store

Scopes alone do not provide you with the necessary specificity about what data a requester is
authorized to access in a data store. Using fine-grained authorization enables a higher level of
specificity when granting access to a SMART on FHIR enabled HealthLake data store. To use
fine-grained authorization, set FineGrainedAuthorizationEnabled equal to True in the
IdentityProviderConfiguration parameter of your CreateFHIRDatastore request.

If you enabled fine-grained authorization, your authorization server returns a fhirUser scope in
the id_token along with the access token. This permits information about the User to be retrieved
by client application. The client application should treat the fhirUser claim as the URI of a FHIR
resource representing the current user. This can be Patient, Practitioner, or RelatedPerson.
The authorization server's response also includes a user/ scope that defines what data the user
can access. This uses the syntax defined for scopes related to FHIR resource specific scopes:

user/(fhir-resource | '*').('read' | 'write' | '*')

The following are examples of how fine-grained authorization can be used to further specify data
access related FHIR resource types.

• When fhirUser is a Practitioner, fine-grained authorization determines the collection of
patients that the user can access. Access to fhirUser is allowed for only those patients where
the Patient has reference to the fhirUser as a General Practitioner.

Patient.generalPractitioner : [{Reference(Practitioner)}]

• When fhirUser is a Patient or RelatedPerson and the patient referenced in the request is
different from the fhirUser, fine-grained authorization determines access to fhirUser for the
requested patient. Access is allowed when there is a relationship specified in requested Patient
resource.

Patient.link.other : {Reference(Patient|RelatedPerson)}

Enabling fine-grained authorization 170

AWS HealthLake Developer Guide

Fetching a SMART on FHIR enabled HealthLake data store's
Discovery Document

For a client application to make a successful FHIR REST request, it needs to gather the
authorization requirements defined in the HealthLake data store. No authorization (bearer token) is
required for this request to succeed.

To do so, make a GET request and append /.well-known/smart-configuration to the
endpoint of the data store

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/.well-
known/smart-configuration

This returns the HealthLake data store's Discovery Document as a JSON blob. In it, you will find
the authorization_endpoint and the token_endpoint along with the specifications and
capabilities defined in the HealthLake data store.

{
 "authorization_endpoint": "https://oidc.example.com/authorize",
 "token_endpoint": "https://oidc.example.com/oauth/token",
 "capabilities": [
 "launch-ehr",
 "client-public"
]
}

URLs needed for launching a client application successfully

• Authorization endpoint: The URL needed to authorize a client application or user.

• Token endpoint: The endpoint of the authorization server that the client application uses to
communicate with it.

Fetch the Discovery Document 171

AWS HealthLake Developer Guide

Making a FHIR REST API request on a SMART enabled
HealthLake data store

An example request from client application containing a JWT in the
authorization header and how Lambda should decode that response

After the client application request has been authorized and authenticated the client application
must receives a bearer token from the authorization server. Use the bearer token in the
authorization header when sending a FHIR REST API request on a SMART on FHIR enabled
HealthLake data store.

Sample FHIR REST API request to SMART on FHIR enabled a HealthLake data store

An example GET request on a SMART on FHIR enabled HealthLake data store

GET https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/r4/
Patient/[ID]
Authorization: Bearer auth-server-provided-bearer-token

Because a bearer token was found in the authorization header and no AWS IAM identity was
detected HealthLake invokes the Lambda function specified when the SMART on FHIR enabled
HealthLake data store was created. When the token is successfully decoded by your Lambda
function here is an example response which sent to HealthLake.

{
 "authPayload": {
 "iss": "https://authorization-server-endpoint/oauth2/token", # The issuer
 identifier of the authorization server
 "aud": "https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/
r4/", # Required, data store endpoint
 "iat": 1677115637, # Identifies the time at which the token was issued
 "nbf": 1677115637, # Required, the earliest time the JWT would be valid
 "exp": 1997877061, # Required, the time at which the JWT is no longer valid
 "isAuthorized": "true", # Required, boolean indicating the request has been
 authorized
 "uid": "100101", # Unique identifier returned by the auth server
 "scope": "system/*.*" # Required, the scope of the request
 },
 "iamRoleARN": "iam-role-arn" #Required, IAM role to complete the request

Example FHIR REST request 172

AWS HealthLake Developer Guide

}

Setting up resources needed to implement a SMART on FHIR
compliant data store

This topic describes the resources that you need to provision in your AWS account outside
HealthLake, creating a SMART on FHIR enabled HealthLake data store, and how a SMART on FHIR
client application would interact with an authorization server and a HealthLake data store.

The steps in this workflow define the basic steps for how SMART on FHIR requests are handled, and
what resources are needed for them to succeed.

In a SMART on FHIR request process, three applications work together:

• The End-User: Generally, a patient or clinician using a third-party SMART on FHIR Application to
access data in a HealthLake data store.

• The SMART on FHIR Application (referred to as the client application): An application that
wants to access data found in HealthLake data store.

• The Authorization Server: An OpenID Connect compliant server that is able to authenticate
users and issue Access Tokens.

• The HealthLake data store: A SMART on FHIR enabled HealthLake data store that uses a
Lambda function to respond to FHIR REST requests which provide a bearer token.

For these application to work together you need to create the following resources.

We recommend creating the SMART on FHIR enabled HealthLake data store after you have set up
the authorization server, defined the neccessary scopes on it, and created a AWS Lambda function
to handle token introspection.

1. Setting up an authorization server endpoint — Authorization server

To use the SMART on FHIR framework you need to set up an third-party authorization server
that can validate FHIR REST requests made on a data store. To learn more about setting up an
authorization server endpoint that will work with HealthLake, see Authentication requirements for
SMART on FHIR.

2. Define scopes to control who can access what data in your HealthLake data store on your
authorization server — Authorization server

Setting up resources needed to implement a SMART on FHIR compliant data store 173

AWS HealthLake Developer Guide

The SMART on FHIR framework uses OAuth scopes to determine what FHIR resources an
authenticated request has access to and to what extent. Defining scopes are a way to design
for least-privilege. To learn more about scopes defined by the SMART on FHIR framework and
supported by HealthLake see, Supported SMART on FHIR OAuth scopes by HealthLake.

3. Setup a AWS Lambda function capable of performing token introspection —your AWS
account

A FHIR REST request sent by the client application on a SMART on FHIR enabled data store will
contain a JSON Web Token (JWT). To learn more about setting up a Lambda function capable
decoding and validating it, see Decoding a JWT.

4. Create a SMART on FHIR enabled HealthLake data store — your AWS account

To create a SMART on FHIR HealthLake data store you need to provide
an IdentityProviderConfiguration. To learn more the required
IdentityProviderConfiguration parameters in a CreateFHIRDatastore request, see Creating
a SMART on FHIR enabled HealthLake data store.

How a client application launches and requests data from a SMART on
FHIR enable HealthLake data store

This section explain how a client application launches with in the SMART on FHIR context, and is
able to make a sucessful FHIR REST request on an HealthLake data store.

1. Client application makes a GET request to Well-Known Uniform Resource Identifier

A SMART enabled client application needs to make a GET request to find the authorization
endpoints of your HealthLake data store. This is done via a Well-Known Uniform Resource Identifier
(URI) request. To learn more about this, see Fetching a SMART on FHIR enabled HealthLake data
store's Discovery Document.

2. Requesting access and Scopes

The client application uses the authorization endpoint of the authorization server, so that the user
can login. This process authenticates the user. Scopes are used to define what FHIR resources in
your HealthLake data store a client application can access. To learn more about defining scopes,
see Supported SMART on FHIR OAuth scopes by HealthLake.

3. Access tokens

How a client application launches and requests data from a SMART on FHIR enable HealthLake data
store

174

AWS HealthLake Developer Guide

Now that the user has been authenticated, a client application receives a JWT access token from
the authorization server. This token is provided when the client application sends a FHIR REST
request to HealthLake. To learn more about how the JWT is decoded using a Lambda function, see
Performing token validation.

4. Making a FHIR REST Request on SMART on FHIR enabled HealthLake data store

Now, the client application can send a FHIR REST request to a HealthLake data store endpoint
using the access token provided by the authorization server. To see an example FHIR REST request,
see Making a FHIR REST API request on a SMART enabled HealthLake data store.

5. Validating the JWT access token

To validate the access token sent in the FHIR REST request, use a Lambda function. To see how
to create a Lambda function that can perform token introspection, see Creating an AWS Lambda
function.

How a client application launches and requests data from a SMART on FHIR enable HealthLake data
store

175

AWS HealthLake Developer Guide

Using automated resource generation based on
natural language processing (NLP) of the FHIR
DocumentReference resource type in AWS HealthLake

Note

After February 20, 2023, HealthLake data stores do not use integrated natural language
processing (NLP) by default. If you are interested in turning on this feature on your data
store, see How do I turn on HealthLake's integrated natural language processing feature? in
the Troubleshooting chapter.
If you have turned on Amazon Comprehend Medical's integrated NLP, then when you create
or update DocumentReference resources, you will incur charges in your AWS account. For
more details, see AWS HealthLake pricing.
Amazon Comprehend Medical isn't available in Asia Pacific (Mumbai). HealthLake data
stores created in the Asia Pacific (Mumbai) region do not support integrated natural
language processing (NLP).

HealthLake automatically provides you with integrated natural language processing (NLP)
using Amazon Comprehend Medical for unstructured data processing for data stored in the
DocumentReference resource type. To do this, HealthLake calls the Amazon Comprehend Medical
DetectEntities-V2, InferICD10-CM, and InferRxNorm API operations. The results are
automatically appended to the DocumentReference resource as an extension. When the Amazon
Comprehend Medical API operations detect traits that are SIGN, SYMPTOM, and DIAGNOSIS, a
Linkage resource type is generated automatically. New condition and observation resources are
created from entities identified with the traits of SIGN, SYMPTOM, or DIAGNOSIS, and they are
linked to the source document with this linkage resource.

For resources generated by the integrated NLP, you can make GET requests, but searching these
new resources is not supported.

To learn more about searching these extensions using HealthLake's integration with Athena, see
Query your HealthLake data store using SQL.

Contents

• How Amazon Comprehend Medical is integrated with HealthLake

176

https://aws.amazon.com/healthlake/pricing/

AWS HealthLake Developer Guide

• Integration with the FHIR REST API operations

• Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake

• Search parameters

How Amazon Comprehend Medical is integrated with
HealthLake

HealthLake infers data found in the DocumentReference resource type using Amazon
Comprehend Medical. The Amazon Comprehend Medical API operations DetectEntities-V2,
InferICD10-CM, and InferRxNorm detect medical conditions as traits. Each operation provides
different insights.

Language support

Amazon Comprehend Medical API operations only detect medical entities in English
language texts.

• DetectEntities-V2: Inspects the clinical text for a variety of medical entities and returns specific
information about them, such as entity category, location, and confidence score.

• InferICD10-CM: Detects medical conditions in a patient record as entities, and it links those
entities to normalized concept identifiers in the ICD-10-CM knowledge base from the CDC's
National Center for Health Statistics under authorization by the World Health Organization
(WHO).

• InferRxNorm: Detects medications as entities listed in a patient record, and it links them to the
normalized concept identifiers in the RxNorm database from the National Library of Medicine.

The supported traits for each API operation are SIGN, SYMPTOM, and DIAGNOSIS. If traits are
detected, they are added as FHIR-compliant extensions to different locations in your HealthLake
data store.

Locations where extensions are added.

• DocumentReference: The results from the Amazon Comprehend Medical API operations are
added as an extension to each document found within the DocumentReference resource type.

Amazon Comprehend Medical integrated with HealthLake 177

AWS HealthLake Developer Guide

Results in the extension are divided into two groups. You can find them in the results based on
their URL.

• http://healthlake.amazonaws.com/system-generated-resources/

• These are resource types that have been created or added to by HealthLake.

• http://healthlake.amazonaws.com/aws-cm/

• Where the raw output of the Amazon Comprehend Medical API operations is added to your
HealthLake data store.

• Linkage: This resource type is either added or created as a result of the integrated NLP. A GET
request on a specific Linkage returns a list of linked resources. To identify if a Linkage was
added by HealthLake, look for the added "tag": [{"display": "SYSTEM_GENERATED"}]
key-value pair. To learn more about the FHIR specifications for Linkage, see Resource type:
Linkage in the FHIR Documentation Index.

• FHIR resource types generated as a result of the Amazon Comprehend Medical API operations.

• Observation: Has results from the Amazon Comprehend Medical API operations
DetectEntities-V2 and InferICD10-CM added to it when the traits are SIGN or SYMPTOM.

• Condition: Has results from the Amazon Comprehend Medical API operations DetectEntities-
V2 and InferICD10-CM added to it when the traits are DIAGNOSIS.

• MedicationStatement: Has results from the Amazon Comprehend Medical API operation
InferRxNorm added to it.

Integration with the FHIR REST API operations

By default, traits detected by the Amazon Comprehend Medical API operations are not returned
when making a GET request.

To see the results of the integrated NLP operations for these resource types, you must specify a
known ID.

• Linkage

• Observation

• Condition

• MedicationStatement

Integration with the FHIR REST API operations 178

https://hl7.org/fhir/R4/linkage.html
https://hl7.org/fhir/R4/linkage.html

AWS HealthLake Developer Guide

The results of the integrated NLP operations outside the DocumentReference resource type are
only available using a GET request where the specified ID is know to contain results from the
Amazon Comprehend Medical API operations.

Examples of how Amazon Comprehend Medical API operations are
integrated into HealthLake

Example 1: Patient record ingested into a HealthLake data store

Here is an example clinical note based off of a patient's encounter with a medical professional.

Synthetic data

The text in this example is synthetic content and doesn't contain personal health
information (PHI).

1991-08-31

Chief Complaint
- Headache
- Sinus Pain
- Nasal Congestion
- Sore Throat
- Pain with Bright Lights
- Nasal Discharge
- Cough

History of Present Illness
Jerónimo599
 is a 4 month-old non-hispanic white male.

Social History
 Patient has never smoked.

Patient comes from a middle socioeconomic background.

Patient currently has Aetna.

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 179

AWS HealthLake Developer Guide

Allergies
No Known Allergies.

Medications
No Active Medications.

Assessment and Plan
Patient is presenting with bee venom (substance), mold (organism), house dust
 mite (organism), animal dander (substance), grass pollen (substance), tree pollen
 (substance), lisinopril, sulfamethoxazole / trimethoprim, fish (substance).

Plan

The patient was prescribed the following medications:
- astemizole 10 mg oral tablet
- nda020800 0.3 ml epinephrine 1 mg/ml auto-injector
The patient was placed on a careplan:
- self-care interventions (procedure)

As a reminder, this information is encoded in base64 format in the DocumentReference resource.
When this document is ingested into HealthLake and the Amazon Comprehend Medical
API operations are complete, to see the results, you can start with the GETrequest on the
DocumentReference resource type.

 GET https://https://healthlake.your-region.amazonaws.com/datastore/your-datastore-id/
r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/DocumentReference

When the Amazon Comprehend Medical API operations are successful, look for these
key-value pairs inside the extension linked to the following "url": "http://
healthlake.amazonaws.com/aws-cm/"

{
 "url": "http://healthlake.amazonaws.com/aws-cm/status/",
 "valueString": "SUCCESS"
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/message/",
 "valueString": "The Amazon HealthLake integrated medical NLP operation was
 successful."
 }

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 180

AWS HealthLake Developer Guide

The following tabs show you how the ingested medical record is reported in your HealthLake data
store based on the resource type.

DocumentReference

To the see the results for a single DocumentReference resource type, make a GET request
where the id of a specific resource is provided.

GET https://https://healthlake.your-region.amazonaws.com/datastore/your-datastore-
id/r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/DocumentReference/0e938f03-da7f-4178-acd8-
eea9586c46ed

When successful, you get a 200 HTTP response code, and the following JSON response (that
has been truncated for clarity).

Here is the http://healthlake.amazonaws.com/system-generated-resources/
portion. You can see that a new Linkage/e366d29f-2c22-4c19-866e-09603937935a has
been added. You can also see where HealthLake has added inference-based findings to specific
Observation and Condition resource types.

To see how these resource types have been amended, choose the related tabs.

{
 "extension": [
 {
 "url": "http://healthlake.amazonaws.com/linkage",
 "valueReference": {
 "reference": "Linkage/e366d29f-2c22-4c19-866e-09603937935a"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/nlp-entity",
 "valueReference": {
 "reference": "Observation/c6e0a3ff-7a17-4d8b-bfd0-d02d7da090c5"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/nlp-entity",
 "valueReference": {
 "reference": "Condition/0854e1f3-894d-448e-a8d9-3af5b9902baf"
 }
 }

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 181

AWS HealthLake Developer Guide

],
 "url": "http://healthlake.amazonaws.com/system-generated-resources/"
 }

Linkage

To the see the results for a single Linkage resource type, make a GET request where the ID of
a specific resource is provided.

GET https://https://healthlake.your-region.amazonaws.com/
datastore/your-datastore-id/r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/
Linkage/e366d29f-2c22-4c19-866e-09603937935a

When successful, you get a 200 HTTP response code, and the following truncated JSON
response.

The response contains the item element. In it, the key-value pair "type": "source"
indicates the specific DocumentReference entry used to modify the Condition and
Observations listed under the "type": "alternate" key-value pair.

You also see the meta element, and a corresponding key-value pair, "tag": [{"display":
"SYSTEM_GENERATED"}], indicating these resources were created by HealthLake.

{
 "resourceType": "Linkage",
 "id": "e366d29f-2c22-4c19-866e-09603937935a",
 "active": true,
 "item":
 [
 {
 "type": "alternate",
 "resource": {
 "reference": "Observation/c6e0a3ff-7a17-4d8b-bfd0-d02d7da090c5",
 "type": "Observation"
 }
 },
 {
 "type": "alternate",
 "resource": {
 "reference": "Condition/9d5c1ef6-f822-4faf-b55f-7c70f2a4aa8d",
 "type": "Condition"
 }

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 182

AWS HealthLake Developer Guide

 },
 {
 "type": "source",
 "resource": {
 "reference": "DocumentReference/0e938f03-da7f-4178-acd8-eea9586c46ed",
 "type": "DocumentReference"
 }
 }
],
 "meta": {
 "lastUpdated": "2022-10-21T19:38:31.327Z",
 "tag": [{
 "display": "SYSTEM_GENERATED"
 }]
 }
 }

Resource type: Observation

To the see the results for a single Observation resource type, make a GET request where the
ID of a specific resource is provided.

GET https://https://healthlake.your-region.amazonaws.com/
datastore/your-datastore-id/r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/
Observation/e366d29f-2c22-4c19-866e-09603937935a

The results of the Amazon Comprehend Medical API operations are amended to the following
elements: code, meta, and modifierExtension.

code

An element of type CodeableConcept. To learn more, see CodeableConcept in the FHIR
Documentation Index.

HealthLake appends the following three key-value pairs.

• "system": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/": Where
the URL refers to a specific Amazon Comprehend Medical API operation. In this case,
InferICD10CM.

• "code": "A52.06": Where A52.06 is the ICD-10-CM code that identifies the concept found
in the knowledge base from the Centers for Disease Control.

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 183

https://hl7.org/fhir/R4/datatypes.html#CodeableConcept

AWS HealthLake Developer Guide

• "display": "Other syphilitic heart involvement": Where "Other syphilitic
heart involvement" is the long description of the ICD-10-CM code in the ontology.

The following truncated JSON response contains only the code element.

"code": {
 "coding":
 [
 {
 "system": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/",
 "code": "A52.06",
 "display": "Other syphilitic heart involvement"
 }
],
 "text": "Other syphilitic heart involvement"
 }

To understand the model's confidence that the assigned ICD-10-CM code is correct, use the
modifierExtension element.

meta

The meta element contains metadata that indicates whether the code element contains details
that have been added by the Amazon Comprehend Medical API operations.

The following truncated JSON response contains only the meta element.

"meta": {
 "lastUpdated": "2022-10-21T19:38:30.879Z",
 "tag": [{
 "display": "SYSTEM_GENERATED"
 }]
 }

modifierExtension

The modifierExtension element contains more details about the level of confidence of
the assigned codes found in the code element. It also has key-value pairs that provide a link
back to the original DocumentReference used to generate the results and the related Linkage
resource type.

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 184

AWS HealthLake Developer Guide

For each coding element added, you will see an entity-score and an entity-Concept-
Score added to the modifierExtension. For each value in the key-value pair, you see a score.
For entity-score, this score is the level of confidence that Amazon Comprehend Medical
has in the accuracy of the detection. For entity-Concept-Score, this score is the level of
confidence that Amazon Comprehend Medical has that the entity is accurately linked to an
ICD-10-CM concept.

The following truncated JSON response contains only the modifierExtension element.

"modifierExtension": [{
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
score",
 "valueDecimal": 0.45005733
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
Concept-Score",
 "valueDecimal": 0.1111792
 },
 {
 "url": "http://healthlake.amazonaws.com/system-generated-linkage",
 "valueReference": {
 "reference": "Linkage/e366d29f-2c22-4c19-866e-09603937935a"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/source-document-reference",
 "valueReference": {
 "reference": "DocumentReference/0e938f03-da7f-4178-acd8-eea9586c46ed"
 }
 }
]

Full JSON Response

{
 "subject": {
 "reference": "Patient/0679b7b7-937d-488a-b48d-6315b8e7003b"
 },
 "resourceType": "Observation",
 "status": "unknown",
 "code": {

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 185

AWS HealthLake Developer Guide

 "coding": [{
 "system": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/",
 "code": "A52.06",
 "display": "Other syphilitic heart involvement"
 }],
 "text": "Other syphilitic heart involvement"
 },
 "meta": {
 "lastUpdated": "2022-10-21T19:38:30.879Z",
 "tag": [{
 "display": "SYSTEM_GENERATED"
 }]
 },
 "modifierExtension": [{
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
score",
 "valueDecimal": 0.45005733
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
Concept-Score",
 "valueDecimal": 0.1111792
 },
 {
 "url": "http://healthlake.amazonaws.com/system-generated-linkage",
 "valueReference": {
 "reference": "Linkage/e366d29f-2c22-4c19-866e-09603937935a"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/source-document-reference",
 "valueReference": {
 "reference": "DocumentReference/0e938f03-da7f-4178-acd8-eea9586c46ed"
 }
 }
],
 "id": "7e88c7c5-21a5-4dd7-8fc2-a02474fba583"
 }

Condition

To the see the results for a single Condition resource type, make a GET request where the ID
of a specific resource is provided.

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 186

AWS HealthLake Developer Guide

GET https://https://healthlake.your-region.amazonaws.com/datastore/your-
datastore-id/r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/Condition/b06d343d-
ddb8-4f36-82cb-853fcd434dfd

The results of the Amazon Comprehend Medical API operations are amended to the following
elements: code, meta, and modifierExtension.

code

An element of type CodeableConcept. To learn more, see CodeableConcept in the FHIR
Documentation Index.

HealthLake appends the following three key-value pairs.

• "system": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/": Where
the URL refers to a specific Amazon Comprehend Medical API operation. In this case,
InferICD10CM.

• "code": "I70.0": Where A52.06 is the ICD-10-CM code that identifies the concept found
in the knowledge base from the Centers for Disease Control.

• "display": "Atherosclerosis of aorta": Where "Other syphilitic heart
involvement" is the long description of the ICD-10-CM code in the ontology.

The following truncated JSON response contains only the code element.

"code": {
 "coding":
 [
 {
 "system": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/",
 "code": "I70.0",
 "display": "Atherosclerosis of aorta"
 }
],
 "text": "Atherosclerosis of aorta"
 }

To understand the model's confidence that the assigned ICD-10-CM code is correct, use the
modifierExtension element.

meta

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 187

https://hl7.org/fhir/R4/datatypes.html#CodeableConcept

AWS HealthLake Developer Guide

The meta element contains metadata that indicates whether the code element contains details
that have been added by the Amazon Comprehend Medical API operations.

The following truncated JSON response contains only the meta element.

"meta": {
 "lastUpdated": "2022-10-21T19:38:30.877Z",
 "tag": [{
 "display": "SYSTEM_GENERATED"
 }]
 }

modifierExtension

The modifierExtension element contains more details about the level of confidence of
the assigned codes found in the code element. It also has key-value pairs that provide a link
back to the original DocumentReference used to generate the results and the related Linkage
resource type.

For each coding element added, you will see an entity-score and an entity-Concept-
Score added to the modifierExtension. For each value in the key-value pair, you see a score.
For entity-score, this score is the level of confidence that Amazon Comprehend Medical
has in the accuracy of the detection. For entity-Concept-Score, this score is the level of
confidence that Amazon Comprehend Medical has that the entity is accurately linked to an
ICD-10-CM concept.

The following truncated JSON response contains only the modifierExtension element.

"modifierExtension": [{
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
score",
 "valueDecimal": 0.94417894
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
Concept-Score",
 "valueDecimal": 0.8458298
 },
 {
 "url": "http://healthlake.amazonaws.com/system-generated-linkage",
 "valueReference": {

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 188

AWS HealthLake Developer Guide

 "reference": "Linkage/e366d29f-2c22-4c19-866e-09603937935a"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/source-document-reference",
 "valueReference": {
 "reference": "DocumentReference/0e938f03-da7f-4178-acd8-eea9586c46ed"
 }
 }
]

Full JSON Response

{
 "subject": {
 "reference": "Patient/0679b7b7-937d-488a-b48d-6315b8e7003b"
 },
 "resourceType": "Condition",
 "code": {
 "coding": [{
 "system": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/",
 "code": "I70.0",
 "display": "Atherosclerosis of aorta"
 }],
 "text": "Atherosclerosis of aorta"
 },
 "meta": {
 "lastUpdated": "2022-10-21T19:38:30.877Z",
 "tag": [{
 "display": "SYSTEM_GENERATED"
 }]
 },
 "modifierExtension": [{
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
score",
 "valueDecimal": 0.94417894
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
Concept-Score",
 "valueDecimal": 0.8458298
 },
 {

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 189

AWS HealthLake Developer Guide

 "url": "http://healthlake.amazonaws.com/system-generated-linkage",
 "valueReference": {
 "reference": "Linkage/e366d29f-2c22-4c19-866e-09603937935a"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/source-document-reference",
 "valueReference": {
 "reference": "DocumentReference/0e938f03-da7f-4178-acd8-eea9586c46ed"
 }
 }
],
 "id": "b06d343d-ddb8-4f36-82cb-853fcd434dfd"
 }

Example 2: A DocumentReference that contains MedicationStatement resource type

Here is an example of a clinical note based off of a patient's encounter with a medical professional.

Synthetic data

The text in this example is synthetic content and doesn't contain personal health
information (PHI).

Tom is not prescribed Advil

The following tabs show how the ingested medical record is reported in your HealthLake data store
based on the resource type.

DocumentReference

To the see the results for a single DocumentReference resource type, make a GET request
where the ID of a specific resource is provided.

GET https://https://healthlake.your-region.amazonaws.com/datastore/your-datastore-
id/r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/DocumentReference/c549125d-a218-421f-
b8bf-23614c5e796c

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 190

AWS HealthLake Developer Guide

When successful, you get a 200 HTTP response code and the following truncated JSON
response.

The key-value pair, "url": "http://healthlake.amazonaws.com/system-generated-
resources/", indicates that the resource types inside this extension have been added by
Amazon Comprehend Medical API operations. You can see the new Linkage resource type, and
multiple MedicationStatement resources.

"extension": [{
 "extension": [{
 "url": "http://healthlake.amazonaws.com/linkage",
 "valueReference": {
 "reference": "Linkage/394bb244-177b-4409-8657-26b20ed56dd7"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/nlp-entity",
 "valueReference": {
 "reference": "MedicationStatement/cbf6af10-b0b9-451c-bdde-99611e3498a8"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/nlp-entity",
 "valueReference": {
 "reference": "MedicationStatement/9a89b0d3-6681-45ca-9926-27951edce5c7"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/nlp-entity",
 "valueReference": {
 "reference": "MedicationStatement/4a01f6c8-5f3a-4122-80ab-405312f96aa2"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/nlp-entity",
 "valueReference": {
 "reference": "MedicationStatement/fbfb77d8-70cf-4579-b4c0-d6fe3c01656b"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/nlp-entity",
 "valueReference": {
 "reference": "MedicationStatement/1340c9ce-9c48-4bf9-9b2f-d0ab027f5e0b"

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 191

AWS HealthLake Developer Guide

 }
 }
],
 "url": "http://healthlake.amazonaws.com/system-generated-resources/"
 }

Linkage

To the see the results for a single Linkage resource type, make a GET request where the ID of
a specific resource is provided.

GET https://https://healthlake.your-region.amazonaws.com/
datastore/your-datastore-id/r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/
Linkage/394bb244-177b-4409-8657-26b20ed56dd7

When successful, you get a 200 HTTP response code and the following JSON response.

The response contains the item element. In it, the key-value pair "type": "source"
indicates the specific DocumentReference entry used to modify the MedicationStatement
resource types.

You can also see the meta element and a corresponding key-value pair, "tag":
[{"display": "SYSTEM_GENERATED"}], indicating that these resources were created by
HealthLake.

{
 "resourceType": "Linkage",
 "id": "394bb244-177b-4409-8657-26b20ed56dd7",
 "active": true,
 "item": [{
 "type": "alternate",
 "resource": {
 "reference": "MedicationStatement/cbf6af10-b0b9-451c-bdde-99611e3498a8",
 "type": "MedicationStatement"
 }
 },
 {
 "type": "alternate",
 "resource": {
 "reference": "MedicationStatement/9a89b0d3-6681-45ca-9926-27951edce5c7",
 "type": "MedicationStatement"

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 192

AWS HealthLake Developer Guide

 }
 },
 {
 "type": "alternate",
 "resource": {
 "reference": "MedicationStatement/4a01f6c8-5f3a-4122-80ab-405312f96aa2",
 "type": "MedicationStatement"
 }
 },
 {
 "type": "alternate",
 "resource": {
 "reference": "MedicationStatement/fbfb77d8-70cf-4579-b4c0-d6fe3c01656b",
 "type": "MedicationStatement"
 }
 },
 {
 "type": "alternate",
 "resource": {
 "reference": "MedicationStatement/1340c9ce-9c48-4bf9-9b2f-d0ab027f5e0b",
 "type": "MedicationStatement"
 }
 },
 {
 "type": "source",
 "resource": {
 "reference": "DocumentReference/c549125d-a218-421f-b8bf-23614c5e796c",
 "type": "DocumentReference"
 }
 }
],
 "meta": {
 "lastUpdated": "2022-10-24T20:05:03.501Z",
 "tag": [{
 "display": "SYSTEM_GENERATED"
 }]
 }
 }

MedicationStatement

To the see the results for a single MedicationStatement resource type, make a GET request
where the ID of a specific resource is provided.

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 193

AWS HealthLake Developer Guide

GET https://https://healthlake.your-region.amazonaws.com/
datastore/your-datastore-id/r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/
MedicationStatement/9a89b0d3-6681-45ca-9926-27951edce5c7

The MedicationStatement resource type is where the results of the Amazon Comprehend
Medical InferRxNorm API operation are found. The results are amended to the following
elements: medicationCodeableConcept, meta, and modifierExtension.

medicationCodeableConcept

An element of type CodeableConcept. To learn more, see CodeableConcept in the FHIR
Documentation Index.

HealthLake appends the following three key-value pairs.

• "system": ""http://healthlake.amazonaws.com/aws-cm/infer-rxnorm/:
Where the URL refers to a specific Amazon Comprehend Medical API operation. In this case,
InferRxNorm.

• "code": "731533": Where 731533 is an RxNorm concept ID, also known as the RxCUI.

• "display": "ibuprofen 200 MG Oral Capsule [Advil]": Where ibuprofen 200
MG Oral Capsule [Advil] is the description of the RxNorm concept.

The following truncated JSON response contains only the MedicationStatement element.

"medicationCodeableConcept": {
 "coding": [
 {
 "system": "http://healthlake.amazonaws.com/aws-cm/infer-rxnorm/",
 "code": "731533",
 "display": "ibuprofen 200 MG Oral Capsule [Advil]"
 }
]
 }

meta

The meta element contains metadata that indicates whether the code element contains details
that have been added by the Amazon Comprehend Medical API operations.

The following truncated JSON response contains only the meta element.

Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake 194

https://hl7.org/fhir/R4/datatypes.html#CodeableConcept

AWS HealthLake Developer Guide

"meta": {
 "lastUpdated": "2022-10-24T20:05:02.800Z",
 "tag": [
 {
 "display": "SYSTEM_GENERATED"
 }
]
 }

modifierExtension

The modifierExtension element contains key-value pairs that provide a link back to the
original DocumentReference used to generate the results and the related Linkage resource type.

"modifierExtension": [
 {
 "url": "http://healthlake.amazonaws.com/system-generated-linkage",
 "valueReference": {
 "reference": "Linkage/394bb244-177b-4409-8657-26b20ed56dd7"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/source-document-reference",
 "valueReference": {
 "reference": "DocumentReference/c549125d-a218-421f-b8bf-23614c5e796c"
 }
 }
]

Search parameters

The following table lists the searchable attributes for integrated medical NLP.

Search parameters

Search parameters Finds matches for

detectEntities-entity-category Entity Category within the DetectEntities subextens
ion within the AWS CM Extension

Search parameters 195

AWS HealthLake Developer Guide

Search parameters Finds matches for

detectEntities-entity-text Entity Text within the DetectEntities subextension
within the AWS CM Extension

detectEntities-entity-type Entity Type within the DetectEntities subextension
within the AWS CM Extension

detectEntities-entity-score Entity Score within the DetectEntities subextension
within the AWS CM Extension

infer-icd10cm-entity-text Entity Text within the InferICD10CM subextension
within the AWS CM Extension

infer-icd10cm-entity-score Entity Score within the InferICD10CM subextension
within the AWS CM Extension

infer-icd10cm-entity-concept-code Entity Concept Code within the InferICD10CM
subextension within the AWS CM Extension

infer-icd10cm-entity-concept-descrip
tion

Entity Concept Description within the InferICD10CM
subextension within the AWS CM Extension

infer-icd10cm-entity-concept-score Entity Concept Score within the InferICD10CM
subextension within the AWS CM Extension

infer-rxnorm-entity-score Entity Score within the InferRxNorm subextension
within the AWS CM Extension

infer-rxnorm-entity-text Entity Text within the InferRxNorm subextension
within the AWS CM Extension

infer-rxnorm-entity-concept-code Entity Concept Code within the InferRxNorm
subextension within the AWS CM Extension

infer-rxnorm-entity-concept-description Entity Concept Description within the InferRxNorm
subextension within the AWS CM Extension

infer-rxnorm-entity-concept-score Entity Concept Score within the InferRxNorm
subextension within the AWS CM Extension

Search parameters 196

AWS HealthLake Developer Guide

To match the criteria where EntityText and EntityCategory are part of the same entity,
HealthLake provides a special search. The following table describes the special search parameters
that are supported within HealthLake.

Search parameters

Search parameters Matches returned

detectEntities-entity-text-category If there is at least one entity in the DetectEntities
subextension that matches both the entityText and
entityCategory.

detectEntities-entity-type-score If there is at least one entity in the DetectEntities
subextension that matches both the entityType and
entityScore.

detectEntities-entity-text-score If there is at least one entity in the DetectEntities
subextension that matches both the entityText and
entityScore.

detectEntities-entity-text-type If there is at least one entity in the DetectEntities
subextension that matches both the entityText and
entityType.

detectEntities-entity-category-score If there is at least one entity that matches both the
entityCategory and entityScore.

infer-icd10cm-entity-text-concept-code If there is at least one entity in the InferICD10CM
sub-extension that matches the entityText and there
is at least one conceptCode for that entity that
matches the code.

infer-icd10cm-entity-text-concept-score If there is at least one entity in the InferICD10CM
sub-extension that matches the entityText and there
is at least one conceptScore for that entity that
matches the score.

Search parameters 197

AWS HealthLake Developer Guide

Search parameters Matches returned

infer-icd10cm-entity-concept-descrip
tion-concept-score

If there is at least one concept within the entity in
the InferICD10CM sub-extension that matches the
concept description and the conceptScore.

infer-rxnorm-entity-text-concept-code If there is at least one entity in the InferRxNorm
sub-extension that matches the entityText and there
is at least one conceptCode for that entity that
matches the code.

infer-rxnorm-entity-text-concept-score If there is at least one entity in the InferRxNorm
sub-extension that matches the entityText and there
is at least one conceptScore for that entity that
matches the score.

infer-rxnorm-entity-concept-descript
ion-concept-score

If there is at least one concept within the entity in
the InferRxNorm sub-extension that matches the
concept description and the conceptScore.

Search parameters 198

AWS HealthLake Developer Guide

Security in AWS HealthLake

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud AWS is responsible for protecting the infrastructure that runs AWS services
in the AWS Cloud. AWS also provides you with services that you can use securely. Third-party
auditors regularly test and verify the effectiveness of our security as part of the AWS Compliance
Programs. To learn about the compliance programs that apply to HealthLake, see AWS Services
in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using HealthLake. The following topics show you how to configure HealthLake to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your HealthLake resources.

Topics

• Data Protection in AWS HealthLake

• Encryption at REST for AWS HealthLake

• Encryption in transit for AWS HealthLake

• Identity and access management for AWS HealthLake

• Logging AWS HealthLake API Calls with AWS CloudTrail

• Compliance Validation for AWS HealthLake

• Resilience in AWS HealthLake

• Infrastructure Security in AWS HealthLake

• Security best practices in AWS HealthLake

199

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS HealthLake Developer Guide

Data Protection in AWS HealthLake

The AWS shared responsibility model applies to data protection in AWS HealthLake. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with HealthLake or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Encryption at REST for AWS HealthLake

HealthLake provides encryption by default to protect sensitive customer data at rest by using a
service owned AWS Key Management Service (AWS KMS) key. Customer-managed KMS keys are

Data Protection 200

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

AWS HealthLake Developer Guide

also supported and are required for both importing and exporting files from a data store. To learn
more about Customer-managed KMS Key, see Amazon Key Management Service. Customers can
choose an AWS owned KMS key or a Customer-managed KMS key when creating a data store. The
encryption configuration cannot be changed after a data store has been created. If a data store is
using an AWS owned KMS Key, it will be denoted as AWS_OWNED_KMS_KEY and you will not see
the specific key used for encryption at rest.

AWS owned KMS key

HealthLake uses these keys by default to automatically encrypt potentially sensitive information
such as personally identifiable or Private Health Information(PHI) data at rest. AWS owned KMS
keys aren't stored in your account. They're part of a collection of KMS keys that AWS owns and
manages for use in multiple AWS accounts. AWS services can use AWS owned KMS keys to protect
your data. You can't view, manage, use AWS owned KMS keys, or audit their use. However, you
don't need to do any work or change any programs to protect the keys that encrypt your data.

You're not charged a monthly fee or a usage fee if you use AWS owned KMS keys, and they don't
count against AWS KMS quotas for your account. For more information, see AWS owned keys.

Customer managed KMS keys

HealthLake supports the use of a symmetric customer managed KMS key that you create, own, and
manage to add a second layer of encryption over the existing AWS owned encryption. Because you
have full control of this layer of encryption, you can perform such tasks as:

• Establishing and maintaining key policies, IAM policies, and grants

• Rotating key cryptographic material

• Enabling and disabling key policies

• Adding tags

• Creating key aliases

• Scheduling keys for deletion

You can also use CloudTrail to track the requests that HealthLake sends to AWS KMS on your
behalf. Additional AWS KMS charges apply.For more information, see customer owned keys.

AWS owned KMS key 201

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

AWS HealthLake Developer Guide

Create a customer managed key

You can create a symmetric customer managed key by using the AWS Management Console, or the
AWS KMS APIs.

Follow the steps for Creating symmetric customer managed key in the AWS Key Management
Service Developer Guide.

Key policies control access to your customer managed key. Every customer managed key must have
exactly one key policy, which contains statements that determine who can use the key and how
they can use it. When you create your customer managed key, you can specify a key policy. For
more information, see Managing access to customer managed keys in the AWS Key Management
Service Developer Guide.

To use your customer managed key with your HealthLake resources, kms:CreateGrant operations
must be permitted in the key policy. This adds a grant to a customer managed key which controls
access to a specified KMS key, which gives a user access to the kms:grant operations HealthLake
requires. See Using grantsfor more information.

To use your customer managed KMS key with your HealthLake resources, the following API
operations must be permitted in the key policy:

• kms:CreateGrant adds grants to a specific customer managed KMS key which allows access to
grant operations.

• kms:DescribeKey provides the customer managed key details needed to validate the key. This is
required for all operations.

• kms:GenerateDataKey provides access to encrypt resources at rest for all write operations.

• kms:Decrypt provides access to read or search operations for encrypted resources.

The following is a policy statement example that allows a user to create and interact with a data
store in AWS HealthLake which is encrypted by that key:

"Statement": [
 {
 "Sid": "Allow access to create data stores and do CRUD/search in AWS
 HealthLake",
 "Effect": "Allow",

Create a customer managed key 202

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#managing-access
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html#terms-grant-operations
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS HealthLake Developer Guide

 "Principal": {
 "AWS": "arn:aws:iam::111122223333:HealthLakeFullAccessRole"
 },
 "Action": [
 "kms:DescribeKey",
 "kms:CreateGrant",
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "healthlake.amazonaws.com",
 "kms:CallerAccount": "111122223333"
 }
 }
 }
]

Required IAM permissions for using a customer managed KMS key

When creating a data store with AWS KMS encryption enabled using a customer managed KMS
key, there are required permissions for both the key policy and the IAM policy for the user or role
creating the HealthLake data store.

You can use the kms:ViaService condition key to limit use of the KMS key to only requests that
originate from HealthLake.

For more information about key policies, see Enabling IAM policies in the AWS Key Management
Service Developer Guide.

The IAM user, IAM role, or AWS account creating your repositories must have the
kms:CreateGrant,kms:GenerateDataKey, and kms:DescribeKey permissions plus the necessary
HealthLake permissions.

How HealthLake uses grants in AWS KMS

HealthLake requires a grant to use your customer managed KMS key. When you create a Data
Store encrypted with a customer managed KMS key, HealthLake creates a grant on your behalf by
sending a CreateGrant request to AWS KMS. Grants in AWS KMS are used to give HealthLake access
to a KMS key in a customer account.

Required IAM permissions for using a customer managed KMS key 203

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-root-enable-iam
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html

AWS HealthLake Developer Guide

The grants that HealthLake creates on your behalf should not be revoked or retired. If you revoke
or retire the grant that gives HealthLake permission to use the AWS KMS keys in your account,
HealthLake cannot access this data, encrypt new FHIR resources pushed to the data store, or
decrypt them when they are pulled. When you revoke or retire a grant for HealthLake, the change
occurs immediately. To revoke access rights, you should delete the data store rather than revoking
the grant. When a data store is deleted, HealthLake retires the grants on your behalf.

Monitoring your encryption keys for HealthLake

You can use CloudTrail to track the requests that HealthLake sends to AWS KMS on your
behalf when using a customer managed KMS key. The log entries in the CloudTrail log show
healthlake.amazonaws.com in the userAgent field to clearly distinguish requests made by
HealthLake.

The following examples are CloudTrail events for CreateGrant, GenerateDataKey, Decrypt, and
DescribeKey to monitor AWS KMS operations called by HealthLake to access data encrypted by
your customer managed key.

The following shows how to use CreateGrant to allow HealthLake to access a customer provided
KMS key, enabling HealthLake to use that KMS key to encrypt all customer data at rest.

Users are not required to create their own grants. HealthLake creates a grant on your behalf by
sending a CreateGrant request to AWS KMS. Grants in AWS KMS are used to give HealthLake access
to a AWS KMS key in a customer account.

 {
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLEROLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Sampleuser01,
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLEKEYID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "EXAMPLEROLE",
 "arn": "arn:aws:iam::111122223333:role/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Sampleuser01"
 },

Required IAM permissions for using a customer managed KMS key 204

AWS HealthLake Developer Guide

 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2021-06-30T19:33:37Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "healthlake.amazonaws.com"
 },
 "eventTime": "2021-06-30T20:31:15Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateGrant",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "healthlake.amazonaws.com",
 "userAgent": "healthlake.amazonaws.com",
 "requestParameters": {
 "operations": [
 "CreateGrant",
 "Decrypt",
 "DescribeKey",
 "Encrypt",
 "GenerateDataKey",
 "GenerateDataKeyWithoutPlaintext",
 "ReEncryptFrom",
 "ReEncryptTo",
 "RetireGrant"
],
 "granteePrincipal": "healthlake.us-east-1.amazonaws.com",
 "keyId": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN",
 "retiringPrincipal": "healthlake.us-east-1.amazonaws.com"
 },
 "responseElements": {
 "grantId": "EXAMPLE_ID_01"
 },
 "requestID": "EXAMPLE_ID_02",
 "eventID": "EXAMPLE_ID_03",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 }
],
 "eventType": "AwsApiCall",

Required IAM permissions for using a customer managed KMS key 205

AWS HealthLake Developer Guide

 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

The following examples shows how to use GenerateDataKey to ensure the user has necessary
permissions to encrypt data before storing it.

 {
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLEUSER",
 "arn": "arn:aws:sts::111122223333:assumed-role/Sampleuser01",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLEKEYID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "EXAMPLEROLE",
 "arn": "arn:aws:iam::111122223333:role/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Sampleuser01"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2021-06-30T21:17:06Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "healthlake.amazonaws.com"
 },
 "eventTime": "2021-06-30T21:17:37Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "healthlake.amazonaws.com",
 "userAgent": "healthlake.amazonaws.com",
 "requestParameters": {
 "keySpec": "AES_256",
 "keyId": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"

Required IAM permissions for using a customer managed KMS key 206

AWS HealthLake Developer Guide

 },
 "responseElements": null,
 "requestID": "EXAMPLE_ID_01",
 "eventID": "EXAMPLE_ID_02",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

The following example shows how HealthLake calls the Decrypt operation to use the stored
encrypted data key to access the encrypted data.

 {
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLEUSER",
 "arn": "arn:aws:sts::111122223333:assumed-role/Sampleuser01",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLEKEYID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "EXAMPLEROLE",
 "arn": "arn:aws:iam::111122223333:role/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Sampleuser01"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2021-06-30T21:17:06Z",
 "mfaAuthenticated": "false"

Required IAM permissions for using a customer managed KMS key 207

AWS HealthLake Developer Guide

 }
 },
 "invokedBy": "healthlake.amazonaws.com"
 },
 "eventTime": "2021-06-30T21:21:59Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "healthlake.amazonaws.com",
 "userAgent": "healthlake.amazonaws.com",
 "requestParameters": {
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "keyId": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 },
 "responseElements": null,
 "requestID": "EXAMPLE_ID_01",
 "eventID": "EXAMPLE_ID_02",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

The following example shows how HealthLake uses the DescribeKey operation to verify if the AWS
KMS customer owned AWS KMS key is in a usable state and to help a user troubleshoot if it is not
functional.

 {
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLEUSER",
 "arn": "arn:aws:sts::111122223333:assumed-role/Sampleuser01",

Required IAM permissions for using a customer managed KMS key 208

AWS HealthLake Developer Guide

 "accountId": "111122223333",
 "accessKeyId": "EXAMPLEKEYID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "EXAMPLEROLE",
 "arn": "arn:aws:iam::111122223333:role/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Sampleuser01"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2021-07-01T18:36:14Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "healthlake.amazonaws.com"
 },
 "eventTime": "2021-07-01T18:36:36Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DescribeKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "healthlake.amazonaws.com",
 "userAgent": "healthlake.amazonaws.com",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 },
 "responseElements": null,
 "requestID": "EXAMPLE_ID_01",
 "eventID": "EXAMPLE_ID_02",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Required IAM permissions for using a customer managed KMS key 209

AWS HealthLake Developer Guide

Learn more

The following resources provide more information about data at rest encryption.

For more information about AWS Key Management Service basic concepts, see the AWS KMS
documentation.

For more information about Security best practices in the AWS KMS documentation.

Encryption in transit for AWS HealthLake

AWS HealthLake uses TLS 1.2 to encrypt data in transit through the public endpoint and through
backend services.

Identity and access management for AWS HealthLake

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use HealthLake resources. IAM is an AWS service that you can
use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS HealthLake works with IAM

• Identity-based policy examples for AWS HealthLake

• AWS managed policies for AWS HealthLake

• Troubleshooting AWS HealthLake identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in HealthLake.

Encryption in transit 210

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://docs.aws.amazon.com/kms/latest/developerguide/best-practices.html

AWS HealthLake Developer Guide

Service user – If you use the HealthLake service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more HealthLake features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
HealthLake, see Troubleshooting AWS HealthLake identity and access.

Service administrator – If you're in charge of HealthLake resources at your company, you probably
have full access to HealthLake. It's your job to determine which HealthLake features and resources
your service users should access. You must then submit requests to your IAM administrator to
change the permissions of your service users. Review the information on this page to understand
the basic concepts of IAM. To learn more about how your company can use IAM with HealthLake,
see How AWS HealthLake works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to HealthLake. To view example HealthLake identity-based
policies that you can use in IAM, see Identity-based policy examples for AWS HealthLake.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Authenticating with identities 211

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html

AWS HealthLake Developer Guide

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

Authenticating with identities 212

https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials

AWS HealthLake Developer Guide

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or

Authenticating with identities 213

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS HealthLake Developer Guide

store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most

Managing access using policies 214

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role

AWS HealthLake Developer Guide

policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Managing access using policies 215

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS HealthLake Developer Guide

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing access using policies 216

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AWS HealthLake Developer Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS HealthLake works with IAM

Before you use IAM to manage access to HealthLake, learn what IAM features are available to use
with HealthLake.

IAM features you can use with AWS HealthLake

IAM feature HealthLake support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how HealthLake and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

How AWS HealthLake works with IAM 217

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS HealthLake Developer Guide

Identity-based policies for AWS HealthLake

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for AWS HealthLake

To view examples of HealthLake identity-based policies, see Identity-based policy examples for
AWS HealthLake.

Resource-based policies within AWS HealthLake

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant

How AWS HealthLake works with IAM 218

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS HealthLake Developer Guide

the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for AWS HealthLake

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of HealthLake actions, see Actions defined by AWS HealthLake in the Service
Authorization Reference.

Policy actions in HealthLake use the following prefix before the action:

healthlake

To specify multiple actions in a single statement, separate each action with a comma.

"Action": [
 "healthlake:action1",
 "healthlake:action2"
]

To view examples of HealthLake identity-based policies, see Identity-based policy examples for
AWS HealthLake.

How AWS HealthLake works with IAM 219

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html#amazonhealthlake-actions-as-permissions

AWS HealthLake Developer Guide

Policy resources for AWS HealthLake

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of HealthLake resource types and their ARNs, see Resources defined by AWS
HealthLake in the Service Authorization Reference. To learn the actions with which you can specify
the ARN of each resource, see Actions defined by AWS HealthLake.

To view examples of HealthLake identity-based policies, see Identity-based policy examples for
AWS HealthLake.

Policy condition keys for AWS HealthLake

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

How AWS HealthLake works with IAM 220

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html#amazonhealthlake-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html#amazonhealthlake-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html#amazonhealthlake-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

AWS HealthLake Developer Guide

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of HealthLake condition keys, see Condition keys for AWS HealthLake in the Service
Authorization Reference. To learn the actions and resources with which you can use a condition key,
see Actions defined by AWS HealthLake.

To view examples of HealthLake identity-based policies, see Identity-based policy examples for
AWS HealthLake.

Access control lists (ACLs) in AWS HealthLake

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) with AWS HealthLake

Supports ABAC (tags in policies) Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

How AWS HealthLake works with IAM 221

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html#amazonhealthlake-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html#amazonhealthlake-actions-as-permissions

AWS HealthLake Developer Guide

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with AWS HealthLake

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for AWS HealthLake

Supports forward access sessions (FAS) Yes

How AWS HealthLake works with IAM 222

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

AWS HealthLake Developer Guide

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for AWS HealthLake

Supports service roles Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

For information about service roles and the inline policy required for full access to AWS
HealthLake, see Getting started with AWS HealthLake.

Warning

Changing the permissions for a service role might break HealthLake functionality. Edit
service roles only when HealthLake provides guidance to do so.

Service-linked roles for AWS HealthLake

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

How AWS HealthLake works with IAM 223

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS HealthLake Developer Guide

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for AWS HealthLake

By default, users and roles don't have permission to create or modify HealthLake resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by HealthLake, including the format of the
ARNs for each of the resource types, see Actions, resources, and condition keys for AWS HealthLake
in the Service Authorization Reference.

Topics

• Policy best practices

• Using the AWS HealthLake console

• Accessing an AWS HealthLake data store in Amazon Athena

• Allowing users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete HealthLake
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

Identity-based policy examples 224

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

AWS HealthLake Developer Guide

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the AWS HealthLake console

To access the AWS HealthLake console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the HealthLake resources in your AWS
account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

For full access to HealthLake, attach the following policies to an IAM user or role:
AmazonHealthLakeFullAccess and AWSLakeFormationDataAdmin. You also need to attach

Identity-based policy examples 225

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS HealthLake Developer Guide

the HealthLake inline policy which is a service role. A service role is an IAM role that a service
assumes to perform actions on your behalf. An IAM administrator can create, modify, and delete
a service role from within IAM. For more information, see Creating a role to delegate permissions
to an AWS service in the IAM User Guide. For information about the inline policy which creates the
required service role, see Getting started with AWS HealthLake. You must also use the AWS Lake
Formation console or CLI to assign your HealthLake administrator to be an AWS Lake Formation
Data Lake administrator. For more information, see Getting started with AWS HealthLake.

Accessing an AWS HealthLake data store in Amazon Athena

If you want to provide users and roles with access to the HealthLake data stores in Amazon
Athena, attach the following IAM policies to the role or user: AmazonAthenaFullAccess and
AmazonS3FullAccess. Select and Describe permissions are also required on tables managed
by AWS Lake Formation. AWS Lake Formation table permissions are granted by an AWS Lake
Formation administrator in the AWS Lake Formation console or via the CLI. For more information,
see Getting started with AWS HealthLake

Allowing users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",

Identity-based policy examples 226

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS HealthLake Developer Guide

 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

AWS managed policies for AWS HealthLake

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policies 227

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS HealthLake Developer Guide

AWS managed policy: AmazonHealthLakeFullAccess

The AmazonHealthLakeFullAccess policy provides full access to HealthLake. With this policy
attached to their user or role, users can use HealthLake to access, query, import, and export data
in HealthLake. To perform many common actions in HealthLake, you must add additional policies
to the user or role. For more information, see Getting Started and HealthLake operations and
permissions.

You can attach the AmazonHealthLakeFullAccess policy to your IAM identities.

This policy grants administrative and contributor permissions that allow users and roles to
query, search, import, and export with HealthLake, and it also makes it possible for HealthLake to
perform actions on behalf of the users and roles that have these permissions.

Permissions details

This policy includes the following statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "healthlake:*",
 "s3:ListAllMyBuckets",
 "s3:ListBucket",
 "s3:GetBucketLocation",
 "iam:ListRoles"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "healthlake.amazonaws.com"
 }

AWS managed policies 228

AWS HealthLake Developer Guide

 }
 }
]
}

AWS managed policy: AmazonHealthLakeReadOnlyAccess

AmazonHealthLakeReadOnlyAccess policy grants read-only access and permissions to
HealthLake and related resources in other AWS services. Apply this policy to users who you want
to grant the ability to query and view HealthLake data stores, but not the ability to create or make
changes to them.

You can attach the AmazonHealthLakeReadOnlyAccess policy to your IAM identities.

This policy grants read-only permissions that allow users and roles to query HealthLake.

Permissions details

This policy includes the following statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "healthlake:ListFHIRDatastores",
 "healthlake:DescribeFHIRDatastore",
 "healthlake:DescribeFHIRImportJob",
 "healthlake:DescribeFHIRExportJob",
 "healthlake:GetCapabilities",
 "healthlake:ReadResource",
 "healthlake:SearchWithGet",
 "healthlake:SearchWithPost",
 "healthlake:SearchEverything"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]

AWS managed policies 229

AWS HealthLake Developer Guide

}

HealthLake operations and permissions

The following table lists typical operations in HealthLake and the permissions needed to perform
them.

HealthLake operations Required permissions

Create a data store in HealthLake AmazonHealthLakeFu
llAccess ,AmazonLakeFormatio
nDataAdmin , inline policy, and AWS
Lake Formation Administrator permissions
managed by AWS Lake Formation

Delete a data store in HealthLake AmazonHealthLakeFullAccess ,
AmazonLakeFormationDataAdmi
n , inline policy, and AWS Lake Formation
Administrator permissions managed by AWS
Lake Formation

List, search, or query a data store in HealthLak
e

AmazonHealthLakeReadOnlyAccess

Query a data store using Amazon Athena AmazonAthenaFullAccess , AmazonS3F
ullAccess , AWS Lake Formation Select
and Describe permissions on tables
managed by AWS Lake Formation

Import data from HealthLake See IAM policies for import jobs.

Export data from HealthLake See Exporting from your data store.

HealthLake updates to AWS managed policies

View details about updates to AWS managed policies for HealthLake from the time that this service
began tracking these changes. For automatic alerts about changes to this page, subscribe to the
RSS feed on the HealthLake Document history page.

AWS managed policies 230

AWS HealthLake Developer Guide

Change Description Date

AmazonHealthLakeFullAccess AmazonHealthLakeFu
llAccess policy required to
allow full access to HealthLak
e.

November, 14, 2022

AmazonHealthLakeRe
adOnlyAccess

AmazonHealthLakeRe
adOnlyAccess policy
required for read-only access
to HealthLake.

November, 14, 2022

HealthLake started tracking
changes

HealthLake started tracking
changes for its AWS managed
policies.

November, 14, 2022

Troubleshooting AWS HealthLake identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with HealthLake and IAM.

Topics

• I am not authorized to perform an action in AWS HealthLake

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AWS HealthLake resources

I am not authorized to perform an action in AWS HealthLake

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your user name and password.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but does not have the fictional
healthlake:GetWidget permissions.

Troubleshooting 231

AWS HealthLake Developer Guide

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 healthlake:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-widget resource using the healthlake:GetWidget action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to HealthLake.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in HealthLake. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my AWS HealthLake
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether HealthLake supports these features, see How AWS HealthLake works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

Troubleshooting 232

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html

AWS HealthLake Developer Guide

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Logging AWS HealthLake API Calls with AWS CloudTrail

AWS HealthLake is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service in HealthLake. CloudTrail captures all API calls for HealthLake
as events. The calls captured include calls from the HealthLake console and code calls to the
HealthLake API operations. If you create a trail, you can enable continuous delivery of CloudTrail
events to an Amazon S3 bucket, including events for HealthLake. If you don't configure a trail,
you can still view the most recent events in the CloudTrail console in Event history. Using the
information collected by CloudTrail, you can determine the request that was made to HealthLake,
the IP address from which the request was made, who made the request, when it was made, and
additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

AWS HealthLake Information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
HealthLake, that activity is recorded in a CloudTrail event along with other AWS service events in
Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for HealthLake, create a
trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you
create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

Logging AWS HealthLake API Calls with AWS CloudTrail 233

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations

AWS HealthLake Developer Guide

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All HealthLake actions are logged by CloudTrail and are documented in the HealthLake API
Reference and in this Developer Guide for actions performed using the FHIR REST API. For example,
calls to the following actions generate entries in the CloudTrail log files:

• DescribeFHIRImportJob

• DescribeFHIRExportJob

• StartFHIRImportJob

• ListFHIRImportJobs

• StartFHIRExportJob

• ListFHIRExportJobs

• CreateFHIRDatastore

• ListFHIRDatastores

• DeleteFHIRDatastore

• DescribeFHIRDatastore

• UpdateResource

• CreateResource

• DeleteResource

• ReadResource

• GetCapabilities

• SearchWithGet

• SearchWithPost

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

AWS HealthLake Information in CloudTrail 234

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/Welcome.html

AWS HealthLake Developer Guide

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding AWS HealthLake Log File Entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the
CreateFHIRDatastore action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROA2B3ZHOADD2OJ4AHJX:git
 full_access_iam_role580074395690222150",
 "arn": "arn:aws:sts::691207106566:assumed-role/
colossusfrontend_full_access_iam_role/_iam_role580074395690222150",
 "accountId": "AccountID",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROA2B3ZHOADD2OJ4AHJX",
 "arn": "arn:aws:iam::691207106566:role/full_access_iam_role",
 "accountId": "AccountID",
 "userName": "full_access_iam_role"
 },
 "webIdFederationData": {

 },
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-11-20T00:08:15Z"
 }
 }

Understanding AWS HealthLake Log File Entries 235

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS HealthLake Developer Guide

 },
 "eventTime": "2020-11-20T00:08:16Z",
 "eventSource": "healthlake.amazonaws.com",
 "eventName": "CreateFHIRDatastore",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "3.213.247.1",
 "userAgent": "Coral/Netty4",
 "requestParameters": {
 "datastoreName":
 "testCreateFHIRDatastore_GBYAZFCLLBLSUTOYYFQZRLBLQJNFOYQVRPZBOJAIIUAHICAEAGIWLNVQEYAMSXVWMBLXCDCLMJKYFBTHJLBRURUDVBUTEHIIZHNZGHOKYGJSLWJKNCRQPXDSRCPYJAUBHTQPDRKUGDAAXPBSXLIAKQAQV",
 "datastoreTypeVersion": "R4",
 "clientToken": "d737ffe0-14dd-44cc-9f0a-fdf59b26c66b"
 },
 "responseElements": {
 "datastoreId": "datastoreID",
 "datastoreArn": "arn:aws:healthlake:us-
east-1:691207106566:datastore/55576c487ff4975262b10d1d65eb4509",
 "datastoreStatus": "CREATING",
 "datastoreEndpoint": "datastore_endpoint/"
 },
 "requestID": "68e62bdd-d2d4-44c1-af69-e6f055a69f99",
 "eventID": "7ef483dc-5dca-469e-823a-7d9e3a7fe924",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "691207106566"
}

Compliance Validation for AWS HealthLake

Third-party auditors assess the security and compliance of AWS HealthLake as part of multiple
AWS compliance programs. For HealthLake this includes HIPAA.

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Compliance Validation 236

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

AWS HealthLake Developer Guide

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Compliance Validation 237

https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html

AWS HealthLake Developer Guide

Resilience in AWS HealthLake

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, HealthLake offers several features to help support
your data resiliency and backup needs.

Infrastructure Security in AWS HealthLake

As a managed service, AWS HealthLake is protected by the AWS global network security procedures
that are described in the Amazon Web Services: Overview of Security Processes whitepaper.

You use AWS published API calls to access HealthLake through the network. Clients must support
Transport Layer Security (TLS) 1.0 or later. We recommend TLS 1.2 or later. Clients must also
support cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE)
or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Security best practices in AWS HealthLake

AWS HealthLake provides a number of security features to consider as you develop and implement
your own security policies. The following best practices are general guidelines and don’t represent
a complete security solution. Because these best practices might not be appropriate or sufficient
for your environment, treat them as helpful considerations rather than prescriptions.

• Implement least privilege access.

• Whenever possible, use Customer-Managed-Keys(CMKs) to encrypt your data. To learn more
about CMKs, see Amazon Key Management Service.

Resilience 238

https://aws.amazon.com/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

AWS HealthLake Developer Guide

• Use Search with POST, not Search with GET when querying for PHI or PII in your data store.

• Limit access to sensitive and important auditing functions.

• When creating resources through the update or bulk import APIs, do not use PHI or PII, including
the names of data stores and jobs, in any visible fields or in the logical FHIR ID (LID).

• When sending create, read, update, delete, or search requests, do not use PHI in the HTTP
header.

• Enable AWS CloudTrail to audit AWS HealthLake use and to ensure that there is no unexpected
activity.

• Review best practices for using Amazon S3 buckets securely. To learn more, see Security best
practices in the Amazon S3 user guide.

Security best practices 239

https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-best-practices.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-best-practices.html

AWS HealthLake Developer Guide

AWS HealthLake endpoints and quotas

The following sections contain information about AWS HealthLake quotas, and endpoints. For
adjustable quotas, you can request a quota increase using the Service Quotas console. For more
information, see Requesting a quota increase in the Service Quotas User Guide.

Service endpoints

The table shows the available HealthLake service endpoints in a given region.

Region
Name

Region Endpoint Protocol

US East
(Ohio)

us-east-2 healthlake.us-east-2.amazonaws.com

healthlake-fips.us-east-2.amazonaws.com

HTTPS

HTTPS

US
East (N.
Virginia)

us-east-1 healthlake.us-east-1.amazonaws.com

healthlake-fips.us-east-1.amazonaws.com

HTTPS

HTTPS

US West
(Oregon)

us-
west-2

healthlake.us-west-2.amazonaws.com

healthlake-fips.us-west-2.amazonaws.com

HTTPS

HTTPS

Asia
Pacific
(Mumbai)

ap-
south-1

healthlake.ap-south-1.amazonaws.com HTTPS

Service quotas for HealthLake

The following are the default quotas for HealthLake.

Service endpoints 240

https://console.aws.amazon.com/servicequotas/
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

AWS HealthLake Developer Guide

Name Default Adjustabl
e

Description

Number of characters in a medical note Each supported
Region: 10,000

No The maximum number of
characters in an individua
l medical note within
the DocumentReference
Resource type (POST/
PUT requests).

Number of concurrent StartFHIR
ImportJob jobs

Each supported
Region: 1

No The maximum concurren
t StartFHIRImportJob
jobs.

Number of concurrentStartFHI
RExportJob jobs

Each supported
Region: 1

No The maximum concurren
t StartFHIRExportJob
jobs.

Number of data stores per account Each supported
Region: 10

Yes The default maximum
number of active data
stores per account.

Number of files in a StartFHIR
ImportJob

Each supported
Region: 10,000

No The maximum number
of files in a StartFHIR
ImportJob.

Number of resources per Bundle Each supported
Region: 160

No The maximum number
of resources allowed in a
Bundle request.

Rate of Bundle requests per account Each supported
Region: 20

Yes The maximum number
of POST Bundle requests
that you can make per
second per account.

Rate of Bundle requests per data store Each supported
Region: 10

Yes The maximum number
of POST Bundle requests
that you can make per

Service quotas for HealthLake 241

https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-3EA1D6C3
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-D0D9461D
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-51420D3D

AWS HealthLake Developer Guide

Name Default Adjustabl
e

Description

second per data store.
Data stores created prior
to 8/21/2023 will be
limited to 1 request per
second.

Rate of CancelFHIRExportJob requests
using DELETE per account

Each supported
Region: 1

No The maximum number
of CancelFHIRExportJo
b requests using DELETE
that you can make per
minute per account.

Rate of CreateFHIRDatastore requests
per account

Each supported
Region: 1

No The maximum number
of CreateFHIRDatastor
e requests that you can
make per minute per
account.

Rate of DELETE requests per account Each supported
Region: 2,000

Yes The maximum number
of DELETE requests that
you can make per second
per account.

Rate of DELETE requests per data store Each supported
Region: 1,000

Yes The maximum number
of DELETE requests
that you can make per
second per data store.
Data stores created prior
to 8/21/2023 will be
limited to 100 requests
per second.

Service quotas for HealthLake 242

https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-B24305BE
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-C208C0FF

AWS HealthLake Developer Guide

Name Default Adjustabl
e

Description

Rate of DeleteFHIRDatastore requests
per account

Each supported
Region: 1

No The maximum number
of DeleteFHIRDatastor
e requests that you can
make per minute per
account.

Rate of DescribeFHIRDatastore
requests per account

Each supported
Region: 10

No The maximum number
of DescribeFHIRDatast
ore requests that you
can make per second per
account.

Rate of DescribeFHIRExportJob
requests per account

Each supported
Region: 10

No The maximum number
of DescribeFHIRExport
Job requests that you
can make per second per
account.

Rate of DescribeFHIRExportJob
requests using GET per account

Each supported
Region: 10

No The maximum number of
DescribeFHIRExportJob
requests using GET that
you can make per second
per account.

Rate of DescribeFHIRImportJob
requests per account

Each supported
Region: 10

No The maximum number
of DescribeFHIRImport
Job requests that you
can make per second per
account.

Rate of Discovery requests per account Each supported
Region: 10

No The maximum number of
Discovery requests that
you can make per minute
per account.

Service quotas for HealthLake 243

AWS HealthLake Developer Guide

Name Default Adjustabl
e

Description

Rate of GET requests per account Each supported
Region: 6,000

Yes The maximum number
of GET requests that you
can make per second per
account.

Rate of GET requests per data store Each supported
Region: 3,000

Yes The maximum number
of GET requests that you
can make per second
per data store. Data
stores created prior
to 8/21/2023 will be
limited to 100 requests
per second.

Rate of GetCapabilities requests per
account

Each supported
Region: 10

No The maximum number of
GetCapabilities requests
that you can make per
second per account.

Rate of ListFHIRDatastores requests per
account

Each supported
Region: 10

No The maximum number
of ListFHIRDatastores
requests that you can
make per second per
account.

Rate of ListFHIRExportJobs requests
per account

Each supported
Region: 10

No The maximum number
of ListFHIRExportJobs
requests that you can
make per second per
account.

Service quotas for HealthLake 244

https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-F39A95A1
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-863A7B88

AWS HealthLake Developer Guide

Name Default Adjustabl
e

Description

Rate of ListFHIRImportJobs requests
per account

Each supported
Region: 10

No The maximum number
of ListFHIRImportJobs
requests that you can
make per second per
account.

Rate of ListTagsforResource requests
per account

Each supported
Region: 10

No The maximum number
of ListTagsforResourc
e requests that you can
make per second per
account.

Rate of POST requests per account Each supported
Region: 2,000

Yes The maximum number of
POST requests that you
can make per second per
account.

Rate of POST requests per data store Each supported
Region: 1,000

Yes The maximum number
of POST requests that
you can make per second
per data store. Data
stores created prior
to 8/21/2023 will be
limited to 100 requests
per second.

Rate of PUT requests per account Each supported
Region: 2,000

Yes The maximum number
of PUT requests that you
can make per second per
account.

Service quotas for HealthLake 245

https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-B94D535B
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-9EB60712
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-0BAE502B

AWS HealthLake Developer Guide

Name Default Adjustabl
e

Description

Rate of PUT requests per data store Each supported
Region: 1,000

Yes The maximum number
of PUT requests that you
can make per second
per data store. Data
stores created prior
to 8/21/2023 will be
limited to 100 requests
per second.

Rate of StartFHIRExportJob requests
per account

Each supported
Region: 1

No The maximum number
of StartFHIRExportJob
requests that you can
make per minute per
account.

Rate of StartFHIRExportJob requests
using POST per account

Each supported
Region: 1

No The maximum number
of StartFHIRExportJob
requests using POST that
you can make per minute
per account.

Rate of StartFHIRImportJob requests
per account

Each supported
Region: 1

No The maximum number
of StartFHIRImportJob
requests that you can
make per minute per
account.

Rate of TagResource requests per
account

Each supported
Region: 10

No The maximum number
of TagResource requests
that you can make per
second per account.

Service quotas for HealthLake 246

https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-9375C7A1

AWS HealthLake Developer Guide

Name Default Adjustabl
e

Description

Rate of UntagResource requests per
account

Each supported
Region: 10

No The maximum number of
UntagResource requests
that you can make per
second per account.

Rate of search requests using GET per
account

Each supported
Region: 200

Yes The maximum number
of search requests using
GET that you can make
per second per account.

Rate of search requests using GET per
data store

Each supported
Region: 100

Yes The maximum number
of search requests using
GET that you can make
per second per data
store.

Rate of search requests using POST per
account

Each supported
Region: 200

Yes The maximum number
of search requests using
POST that you can make
per second per account.

Rate of search requests using POST per
data store

Each supported
Region: 100

Yes The maximum number
of search requests using
POST that you can make
per second per data
store.

Size of individual imported file Each supported
Region: 5
Gigabytes

No The maximum size (in
GB) of an individual file
included in a StartFHIR
ImportJob.

Total import job size Each supported
Region: 500
Gigabytes

No The maximum size (in
GB) of all files included in
the import job.

Service quotas for HealthLake 247

https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-98AD4FBA
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-611058A1
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-6FDC6068
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-7366BBDE

AWS HealthLake Developer Guide

Troubleshooting

The following documentation can help you troubleshoot problems you might have with using AWS
HealthLake.

Topics

• Why can't I create a HealthLake data store?

• Exceeded number of data stores allowed per account

• How do I create authorization for the FHIR RESTful APIs?

• My data isn't in FHIR R4 format- can I still use HealthLake?

• Why am I receiving AccessDenied errors when using the FHIR RESTful APIs for a data store
encrypted with a customer managed KMS key?

• Why did my import fail?

• How do I find DocumentReference resources that could not be processed?

• Migrating an existing data store to use Amazon Athena

• Connecting search results in Athena to other AWS services

• The Athena console is not working after importing data into a new data store

• Why do I get a Lake Formation permissions error: lakeformation:PutDataLakeSettings when
adding a new data lake administrator?

• How do I turn on HealthLake's integrated natural language processing feature?

• My data store status is not changing from Creating

• My SDK data store creation status returns an exception or unknown status

• My FHIR POST API operation with a 10MB document to HealthLake gets a 413Request Entity Too
Large error.

Why can't I create a HealthLake data store?

On November, 14, 2022, HealthLake updated the required IAM permissions needed to create a new
data store. If you haven't updated policies attached to the user or role that accesses HealthLake
you get the following error.

AccessDeniedException: Insufficient Lake Formation permission(s): Required Database on
 Catalog

Why can't I create a HealthLake data store? 248

AWS HealthLake Developer Guide

To view updated IAM policy requirements for creating a data store, see AWS managed policy:
AmazonHealthLakeFullAccess. For step-by-step directions on how to add these policies to your IAM
user or role, see Getting started with AWS HealthLake.

To create a data store, you also need use of a symmetrical customer-owned or Amazon-owned KMS
key. Make sure you have the correct permissions in your IAM policy. To learn more about AWS KMS,
see AWS Key Management Service in the AWS Key Management Service Developer Guide.

Exceeded number of data stores allowed per account

HealthLake has a quota of 10 data stores per account. To learn how to request a quota increase,
visit AWS Support Center.

How do I create authorization for the FHIR RESTful APIs?

Users should use a Signature Version 4 signing process to add authentication to HealthLake API
requests sent through an HTTP client. To learn more, see Signature Version 4 signing process.

To create sigv4 authorization using the AWS SDK for Python, create a script similar to the following
example.

import boto3
import requests
import json
from requests_auth_aws_sigv4 import AWSSigV4

Set the input arguments
data_store_endpoint = 'https://healthlake.us-east-1.amazonaws.com/datastore/<datastore
 id>/r4//'
resource_path = "Patient"
requestBody = {"resourceType": "Patient", "active": True, "name": [{"use":
 "official","family": "Dow","given": ["Jen"]},{"use": "usual","given":
 ["Jen"]}],"gender": "female","birthDate": "1966-09-01"}
region = 'us-east-1'

#Frame the resource endpoint
resource_endpoint = data_store_endpoint+resource_path
session = boto3.session.Session(region_name=region)
client = session.client("healthlake")

Exceeded number of data stores allowed per account 249

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

AWS HealthLake Developer Guide

Frame authorization
auth = AWSSigV4("healthlake", session=session)

Calling data store FHIR endpoint using SigV4 auth

r = requests.post(resource_endpoint, json=requestBody, auth=auth,)
print(r.json())

Additional information about using sigv4 authorization using AWS SDK for Python can be found in
the Boto3 credentials topic.

My data isn't in FHIR R4 format- can I still use HealthLake?

Only FHIR R4 formatted data can be imported into a HealthLake data store. For a list of partners
who offer products to help users transform their data, see AWS HealthLake Partners.

Why am I receiving AccessDenied errors when using the FHIR
RESTful APIs for a data store encrypted with a customer
managed KMS key?

Permissions for both customer managed key and IAM policies are required for a user or role to
access a data store. A user must have the required IAM permissions for using a customer managed
key. If a user has revoked or retired a grant that gave HealthLake permission to use the customer
managed KMS key, HealthLake will return an AccessDenied error.

HealthLake must have the permission in place to access customer data, to encrypt new FHIR
resources imported to a data store, and to decrypt the FHIR resources when they are requested.

To learn more, see Troubleshooting key access.

Why did my import fail?

A successful import job will generate a folder with output inputFileName.ndjson files, however
individual records can fail to import. When this happens, a second FAILURE folder will be generated
with a manifest of records that failed to be imported. The job output location to access the
manifest file is JobProperties.JobOutputDataConfig.S3Configuration.S3Uri.

My data isn't in FHIR R4 format- can I still use HealthLake? 250

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
https://aws.amazon.com/healthlake/
https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html

AWS HealthLake Developer Guide

This manifest file contains details about the job output such as location of all successful
responses (successOutput.successOutputS3Uri), the location of all failed responses
(failureOutput.failureOutputS3Uri) and additional job metrics. The contents of manifest file
are parsable programmatically. The following sample manifest file lists the input and output
Amazon S3 buckets, and also information on the number of resources scanned and how many were
imported successfully.

 {
 "inputDataConfig": {
 "s3Uri": "s3://inputS3Bucket/healthlake-input/invalidInput/"
 },
 "outputDataConfig": {
 "s3Uri": "s3://outputS3Bucket/32839038a2f47f17c2fe0f53f0c3a0ba-
FHIR_IMPORT-19dd7bb7bcc8ee12a09bf6d322744a3d/",
 "encryptionKeyID": "arn:aws:kms:us-west-2:123456789012:key/
fbbbfee3-20b3-42a5-a99d-c48c655ed545"
 },
 "successOutput": {
 "successOutputS3Uri": "s3://
outputS3Bucket/32839038a2f47f17c2fe0f53f0c3a0ba-
FHIR_IMPORT-19dd7bb7bcc8ee12a09bf6d322744a3d/SUCCESS/"
 },
 "failureOutput": {
 "failureOutputS3Uri": "s3://
outputS3Bucket/32839038a2f47f17c2fe0f53f0c3a0ba-
FHIR_IMPORT-19dd7bb7bcc8ee12a09bf6d322744a3d/FAILURE/"
 },
 "numberOfScannedFiles": 1,
 "numberOfFilesImported": 1,
 "sizeOfScannedFilesInMB": 0.023627,
 "sizeOfDataImportedSuccessfullyInMB": 0.011232,
 "numberOfResourcesScanned": 9,
 "numberOfResourcesImportedSuccessfully": 4,
 "numberOfResourcesWithCustomerError": 5,
 "numberOfResourcesWithServerError": 0
 }

To analyze why an import job failed use the DescribeFHIRImportJob API to analyze the
JobProperties. The following is recommended:

Why did my import fail? 251

AWS HealthLake Developer Guide

• If the status is FAILED and a message is present, the failures are related to job parameters such as
input data size or number of input files being beyond HealthLake quotas.

• If the import job status is COMPLETED_WITH_ERRORS, check the manifest file, Manifest.json, for
information on which files did not import successfully.

• If the import job status is FAILED and a message is not present, go to the job output location to
access the manifest file, Manifest.json.

For each input file, there is failure output file with input file name for any resource that fails to
import. The responses contain line number (lineId) corresponding to the location of input data,
FHIR response object (UpdateResourceResponse), and status code (statusCode) of the response.

A sample output file would look like the following:

{"lineId":3, UpdateResourceResponse:{"jsonBlob":
{"resourceType":"OperationOutcome","issue":
[{"severity":"error","code":"processing","diagnostics":"1 validation error detected:
 Value 'Patient123' at 'resourceType' failed to satisfy constraint: Member must satisfy
 regular expression pattern: [A-Za-z]{1,256}"}]}, "statusCode":400}
{"lineId":5, UpdateResourceResponse:{"jsonBlob":
{"resourceType":"OperationOutcome","issue":
[{"severity":"error","code":"processing","diagnostics":"This property must be an
 simple value, not a com.google.gson.JsonArray","location":["/EffectEvidenceSynthesis/
name"]},{"severity":"error","code":"processing","diagnostics":"Unrecognised
 property '@telecom'","location":["/EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Unrecognised
 property '@gender'","location":["/EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Unrecognised
 property '@birthDate'","location":["/EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Unrecognised
 property '@address'","location":["/EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Unrecognised
 property '@maritalStatus'","location":["/EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Unrecognised
 property '@multipleBirthBoolean'","location":["/EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Unrecognised
 property '@communication'","location":["/EffectEvidenceSynthesis"]},
{"severity":"warning","code":"processing","diagnostics":"Name should be usable as an
 identifier for the module by machine processing applications such as code generation
 [name.matches('[A-Z]([A-Za-z0-9_]){0,254}')]","location":["EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Profile http://hl7.org/fhir/

Why did my import fail? 252

AWS HealthLake Developer Guide

StructureDefinition/EffectEvidenceSynthesis, Element 'EffectEvidenceSynthesis.status':
 minimum required = 1, but only found 0","location":["EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Profile
 http://hl7.org/fhir/StructureDefinition/EffectEvidenceSynthesis,
 Element 'EffectEvidenceSynthesis.population': minimum required
 = 1, but only found 0","location":["EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Profile
 http://hl7.org/fhir/StructureDefinition/EffectEvidenceSynthesis,
 Element 'EffectEvidenceSynthesis.exposure': minimum required =
 1, but only found 0","location":["EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Profile http://
hl7.org/fhir/StructureDefinition/EffectEvidenceSynthesis, Element
 'EffectEvidenceSynthesis.exposureAlternative': minimum required
 = 1, but only found 0","location":["EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Profile http://hl7.org/fhir/
StructureDefinition/EffectEvidenceSynthesis, Element 'EffectEvidenceSynthesis.outcome':
 minimum required = 1, but only found 0","location":["EffectEvidenceSynthesis"]},
{"severity":"information","code":"processing","diagnostics":"Unknown
 extension http://synthetichealth.github.io/synthea/disability-adjusted-
life-years","location":["EffectEvidenceSynthesis.extension[3]"]},
{"severity":"information","code":"processing","diagnostics":"Unknown extension
 http://synthetichealth.github.io/synthea/quality-adjusted-life-years","location":
["EffectEvidenceSynthesis.extension[4]"]}]}, "statusCode":400}
{"lineId":7, UpdateResourceResponse:{"jsonBlob":
{"resourceType":"OperationOutcome","issue":
[{"severity":"error","code":"processing","diagnostics":"2 validation errors detected:
 Value at 'resourceId' failed to satisfy constraint: Member must satisfy regular
 expression pattern: [A-Za-z0-9-.]{1,64}; Value at 'resourceId' failed to satisfy
 constraint: Member must have length greater than or equal to 1"}]}, "statusCode":400}
{"lineId":9, UpdateResourceResponse:{"jsonBlob":
{"resourceType":"OperationOutcome","issue":
[{"severity":"error","code":"processing","diagnostics":"Missing required id field in
 resource json"}]}, "statusCode":400}
{"lineId":15, UpdateResourceResponse:{"jsonBlob":
{"resourceType":"OperationOutcome","issue":
[{"severity":"error","code":"processing","diagnostics":"Invalid JSON found in input
 file"}]}, "statusCode":400}

The example shows that there were failures on line 3, 4, 7, 9, 15 from the corresponding input lines
from input file. For each of those lines, the explanations are as follows:

• On Line 3, the response explains that resourceType provided in line 3 of input file is not valid.

Why did my import fail? 253

AWS HealthLake Developer Guide

• On Line 5, the response explains that there is a FHIR validation error in line 5 of input file.

• On Line 7, the response explains that there is a validation issue with resourceId provided as
input.

• On Line 9, the response explains that input file must contain a valid resource id.

• On line 15, the response of input file is that the file is not in a valid JSON format.

How do I find DocumentReference resources that could not be
processed?

If a DocumentReference resource was not valid, HealthLake will provide an extension indicating a
validation error instead of the integrated medical NLP output. In order to find DocumentReference
resources that led to a validation error during NLP processing, customers can use HealthLake’s
search function with search key cm-decoration-status and search value VALIDATION_ERROR.
This search will list all DocumentReference resources that led to validation errors, along with an
error message describing the nature of the error. The structure of the extension field in those
DocumentReference resources with validation errors will resemble the following example.

"extension": [
 {
 "extension": [
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/status/",
 "valueString": "VALIDATION_ERROR"
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/message/",
 "valueString": "Resource led to too many nested objects after NLP
 operation processed the document. 10937 nested objects exceeds the limit of 10000."
 }
],
 "url": "http://healthlake.amazonaws.com/aws-cm/"
 }
]

A VALIDATION_ERROR can also occur if NLP decoration creates more than 10,000 nested objects.
When this happens, the document must be split into smaller documents before processing.

How do I find DocumentReference resources that could not be processed? 254

AWS HealthLake Developer Guide

Migrating an existing data store to use Amazon Athena

data stores created before November, 14, 2022 are functional, but are not queryable in Athena
using SQL. To query a preexisting data store with Athena, you must first migrate it to a new data
store.

To migrate data to a new data store

1. Create a new data store.

2. Export the data from the pre-existing to an Amazon S3 bucket.

3. Import the data into the new data store from the Amazon S3 bucket.

Exporting data to an Amazon S3 bucket incurs an extra charge. The extra charge depends on the
size of the data that you export.

Connecting search results in Athena to other AWS services

You can experience issues when sharing your search results from Athena with other AWS services.

Issue can occur when you use json_extract[1] as part of a SQL search query.

To fix this issue, you must update to CATVAR.

You might encounter this issue when trying to Create save results, a Table (static), or View
(dynamic).

The Athena console is not working after importing data into a
new data store

After you import data into a new data store, the data may not be available for use immediately.
This is to allow time for the data to be ingested into the iceberg tables. Try again at a later time.

Migrating an existing data store to use Amazon Athena 255

AWS HealthLake Developer Guide

Why do I get a Lake Formation permissions error:
lakeformation:PutDataLakeSettings when adding a new data
lake administrator?

If your IAM user or role contains the AWSLakeFormationDataAdmin AWS managed policy you
cannot add new data lake administrators. You will get an error containing the following:

User arn:aws:sts::111122223333:assumed-role/lakeformation-admin-user is not authorized
 to perform: lakeformation:PutDataLakeSettings on resource: arn:aws:lakeformation:us-
east-2:111122223333:catalog:111122223333 with an explicit deny in an identity-based
 policy

The AWS managed policy AdministratorAccess is required to add an IAM user or role
as a AWS Lake Formation data lake administrator. If your IAM user or role also contains
AWSLakeFormationDataAdmin the action will fail. The AWSLakeFormationDataAdmin
AWS managed policy contains an explict deny for the AWS Lake Formation API operation,
PutDataLakeSetting.

Even administrators with full access to AWS using the AdministratorAccess AWS managed
policy can be limited by the AWSLakeFormationDataAdmin policy.

How do I turn on HealthLake's integrated natural language
processing feature?

As of February 20, 2023, the default behavior of HealthLake data stores changed.

Current data stores: All current HealthLake data stores will stop using natural language
processing (NLP) on base64-encoded DocumentReference resources. This means that
new DocumentReference resources will not be analyzed using NLP, and no new resources
will be generated based off of text in the DocumentReference resource type. For existing
DocumentReference resources, the data and resources generated via NLP remain, but they will
not be updated after February 20, 2023.

New data stores: HealthLake data stores created after February 20, 2023 will not perform natural
language processing (NLP) on base64-encoded DocumentReference resources.

To turn on this feature you must create a case using AWS Support Center Console. To create your
case, log in to your AWS account, and then choose Create case. To learn more about creating a case

Why do I get a Lake Formation permissions error: lakeformation:PutDataLakeSettings when adding a
new data lake administrator?

256

https://console.aws.amazon.com/support/home#/

AWS HealthLake Developer Guide

and case management, see Creating support cases and case management in the AWS Support User
Guide.

My data store status is not changing from Creating

If you try to create a new HealthLake data store, and your data store status is not changing from
Creating you need to update Athena to use the AWS Glue Data Catalog.

To learn more, see Upgrading to the AWS Glue Data Catalog step-by-step in the Amazon Athena
User Guide.

After successfully upgrading the AWS Glue Data Catalog, you can now create a data store.

To remove the old data store get started by creating a case using AWS Support Center Console.
To create your case, log in to your AWS account, and then choose Create case. To learn more, see
Creating support cases and case management in the AWS Support User Guide.

My SDK data store creation status returns an exception or
unknown status

Please update your SDK to the latest version if your list data store or describe data store API calls
return an exception or unknown data store status.

My FHIR POST API operation with a 10MB document to
HealthLake gets a 413Request Entity Too Large error.

AWS HealthLake has a synchronous Create and Update API limit of 5MB to avoid increased
latencies and timeouts.

You can ingest large documents, upto 164MB, using the Binary ResourceType using the Bulk Import
API.

My data store status is not changing from Creating 257

https://docs.aws.amazon.com/awssupport/latest/user/case-management.html
https://docs.aws.amazon.com/athena/latest/ug/glue-upgrade.html
https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/awssupport/latest/user/case-management.html

AWS HealthLake Developer Guide

Document History for the AWS HealthLake Developer
Guide

The following table describes the documentation changes for AWS HealthLake releases.

• API version: latest

• Latest documentation update: 12/09/2023

Change Description Date

HealthLake now supports
new FHIR search parameters,
extension and resource type.

HealthLake now supports
new FHIR search parameters,
extension and resource type.

December 9, 2023

HealthLake now supports the
SMART on FHIR framework

HealthLake now supports
creating SMART on FHIR
enabled HealthLake data
stores.

May 31, 2023

HealthLake now supports
profile validation

HealthLake now supports
FHIR profile validation.

May 31, 2023

HealthLake now supports
export

HealthLake now supports
exporting files using the FHIR
REST API operation export.

May 31, 2023

Asia Pacific (Mumbai) region AWS HealthLake is now
available in the Asia Pacific
(Mumbai) region.

April 4, 2023

Integrated natural language
processing turned off

HealthLake turned off
integrated natural language
processing (NLP) on all data
stores as of February 20,
2023.

February 20, 2023

258

https://docs.aws.amazon.com/healthlake/latest/devguide/search-parameters-advanced.html
https://docs.aws.amazon.com/healthlake/latest/devguide/search-parameters-advanced.html
https://docs.aws.amazon.com/healthlake/latest/devguide/search-parameters-advanced.html
https://docs.aws.amazon.com/healthlake/latest/devguide/smart-on-fhir.html
https://docs.aws.amazon.com/healthlake/latest/devguide/smart-on-fhir.html
https://docs.aws.amazon.com/healthlake/latest/devguide/profile-validation.html
https://docs.aws.amazon.com/healthlake/latest/devguide/profile-validation.html
https://docs.aws.amazon.com/healthlake/latest/devguide/export-datastore.html
https://docs.aws.amazon.com/healthlake/latest/devguide/export-datastore.html
https://docs.aws.amazon.com/general/latest/gr/Amazon-HealthLake.html
https://docs.aws.amazon.com/healthlake/latest/devguide/comprehend-medical-disable.html
https://docs.aws.amazon.com/healthlake/latest/devguide/comprehend-medical-disable.html

AWS HealthLake Developer Guide

HealthLake integrates with
Amazon Athena

You can now use Athena to
query data stores created
after November, 14, 2022.

November 14, 2022

Total import job size
increased

Maximum total size of all
files in a StartFHIRImportJob
request is now 500 GB.

October 3, 2022

Bundle support HealthLake now supports
the Bundle resource type for
ingesting multiple resources.

August 5, 2022

Updated Quotas for CRUD
operations in HealthLake

HealthLake now supports
higher limits for CRUD
requests.

July 14, 2022

Include support HealthLake now supports
_include in data store
queries.

July 14, 2022

AWS HealthLake is now
generally available

HealthLake is now generally
available.

July 30, 2020

259

https://docs.aws.amazon.com/healthlake/latest/devguide/search-healthlake.html
https://docs.aws.amazon.com/healthlake/latest/devguide/search-healthlake.html
https://docs.aws.amazon.com/healthlake/latest/devguide/quotas.html
https://docs.aws.amazon.com/healthlake/latest/devguide/quotas.html
https://docs.aws.amazon.com/healthlake/latest/devguide/bundle-updates.html
https://docs.aws.amazon.com/healthlake/latest/devguide/quotas.html
https://docs.aws.amazon.com/healthlake/latest/devguide/quotas.html
https://docs.aws.amazon.com/healthlake/latest/devguide/adv-search.html
https://docs.aws.amazon.com/healthlake/latest/devguide/what-is-amazon-health-lake.html
https://docs.aws.amazon.com/healthlake/latest/devguide/what-is-amazon-health-lake.html

AWS HealthLake Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

260

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	AWS HealthLake
	Table of Contents
	What is AWS HealthLake?
	Benefits of AWS HealthLake
	HealthLake use cases
	Accessing HealthLake
	HIPAA eligibility and data security
	Pricing

	How AWS HealthLake works
	Creating and monitoring data stores
	Using Create, Read, Update, and Delete (CRUD) operations
	Automated Resource generation from FHIR DocumentReference resource extensions
	Querying a data store by using SQL
	Searching a data store using FHIR REST API operations
	Importing data
	Exporting data

	Getting started with AWS HealthLake
	Prerequisites: Sign up for AWS
	Create an IAM user
	Step 1: Configuring a new IAM user or role to use HealthLake (IAM Administrator)
	Step 2: Create a service role and add it to an IAM user or role (IAM Administrator)
	Step 3: Add a Data Lake Administrator in Lake Formation (IAM Administrator)
	Step 4: Create a data store (HealthLake Administrator)
	Step 5: Perform a search using SQL in Amazon Athena (HealthLake Administrator)
	Preloaded data types

	AWS HealthLake supported FHIR profile validations
	Validating FHIR profiles specified in a resource

	Using an AWS HealthLake data store with Fast Healthcare Interoperability Resources (FHIR) data
	Creating a HealthLake data store
	Learn more about a specific HealthLake data store
	Using the ListFHIRDatastores API operation
	Deleting a data store example
	Importing files into HealthLake data stores
	Performing an import
	Importing files by using the API operations
	Importing files by using the console
	IAM policies for import jobs
	Example: Starting and monitoring import jobs by using the AWS CLI

	Exporting files from a HealthLake data store
	Exporting data from your data store by using the HealthLake SDK
	Performing an export
	Exporting from your data store
	Exporting files (console)

	Exporting data from your data store by using the FHIR REST API
	Before you begin
	Authorizing an export request
	Making an export request
	Step 1: Specify export in the POST request URL for a supported endpoint
	Supported search parameters

	Step 2: Specify the required header parameters
	Step 3: Specify a request body the defines the required parameters.

	Managing your export request
	Canceling an export request
	Describing an export request

	Managing and searching resources in AWS HealthLake by using FHIR REST API operations
	Supported FHIR resource types in AWS HealthLake
	Performing Create, Read, Update, and Delete (CRUD) operations on HealthLake data stores
	Creating a resource with POST
	Reading a resource with GET
	Updating a resource using PUT
	Conditional Update

	Deleting a resource using DELETE
	Managing multiple FHIR resources using Bundle
	Performing multiple CRUD operations using FHIR bundles
	Grouping resources as a Bundle resource type

	Searching your HealthLake data store by using the FHIR REST API operations
	HealthLake supported search parameters
	Supported search parameter types
	Advanced search parameters supported by HealthLake
	_include
	_revinclude
	_summary
	_elements
	_total
	_sort
	_count
	Chaining and Reverse Chaining(_has)

	Supported search modifiers
	Supported search comparators
	Search parameters not supported by HealthLake

	Search with POST examples
	Search with GET

	Extended FHIR operations on HealthLake data stores
	Get Patient Data with Patient $everything
	Get all resources related to a patient
	Patient $everything Parameters
	Patient $everything start and end attributes

	Exporting data from your HealthLake data store using $export

	Query AWS HealthLake data stores using SQL in Amazon Athena
	Connecting your data store to Amazon Athena
	Granting a user, group, or role access to a HealthLake data store (AWS Lake Formation Console)
	Getting started with Athena

	Query your HealthLake data store using SQL
	Additional sample SQL queries

	AWS HealthLake and interface VPC endpoints (AWS PrivateLink)
	Considerations for HealthLake VPC endpoints
	Creating an interface VPC endpoint for HealthLake;
	Creating a VPC endpoint policy for HealthLake

	Tagging resources in AWS HealthLake
	Important notice
	Tagging using HealthLake resources
	Best practices
	Tagging requirements
	Adding a tag to a data store
	Listing tags for a data store
	Removing tags from a data store

	Monitoring HealthLake
	Monitoring HealthLake with Amazon CloudWatch
	Viewing HealthLake metrics
	Creating an alarm using CloudWatch

	Integrating SMART on FHIR with AWS HealthLake
	Authentication requirements for SMART on FHIR
	Authorization server elements required to create a SMART on FHIR enabled HealthLake data store
	Required claims to complete a FHIR REST API request on a SMART on FHIR enabled HealthLake data store

	Supported SMART on FHIR OAuth scopes by HealthLake
	Standalone launch scope
	HealthLake data store FHIR resource specific scopes

	Using AWS Lambda for token validation with a SMART on FHIR enabled HealthLake data store
	Creating an AWS Lambda function
	Creating a Lambda function using the AWS Management Console
	Modifying a Lambda function's execution role

	Creating a HealthLake service role for use in the AWS Lambda function used to decode a JWT
	Creating a new IAM policy
	Creating a service role for HealthLake (IAM console)

	Lambda execution role
	Allow HealthLake to trigger your Lambda function
	Provisioning concurrency for your Lambda function

	Creating a SMART on FHIR enabled HealthLake data store
	Using the AWS CLI to create a SMART on FHIR enabled HealthLake data store

	Using fine-grained authorization with a SMART on FHIR enabled HealthLake data store
	Fetching a SMART on FHIR enabled HealthLake data store's Discovery Document
	Making a FHIR REST API request on a SMART enabled HealthLake data store
	An example request from client application containing a JWT in the authorization header and how Lambda should decode that response

	Setting up resources needed to implement a SMART on FHIR compliant data store
	How a client application launches and requests data from a SMART on FHIR enable HealthLake data store

	Using automated resource generation based on natural language processing (NLP) of the FHIR DocumentReference resource type in AWS HealthLake
	How Amazon Comprehend Medical is integrated with HealthLake
	Integration with the FHIR REST API operations
	Examples of how Amazon Comprehend Medical API operations are integrated into HealthLake

	Search parameters

	Security in AWS HealthLake
	Data Protection in AWS HealthLake
	Encryption at REST for AWS HealthLake
	AWS owned KMS key
	Customer managed KMS keys
	Create a customer managed key
	Required IAM permissions for using a customer managed KMS key
	How HealthLake uses grants in AWS KMS
	Monitoring your encryption keys for HealthLake
	Learn more

	Encryption in transit for AWS HealthLake
	Identity and access management for AWS HealthLake
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS HealthLake works with IAM
	Identity-based policies for AWS HealthLake
	Identity-based policy examples for AWS HealthLake

	Resource-based policies within AWS HealthLake
	Policy actions for AWS HealthLake
	Policy resources for AWS HealthLake
	Policy condition keys for AWS HealthLake
	Access control lists (ACLs) in AWS HealthLake
	Attribute-based access control (ABAC) with AWS HealthLake
	Using temporary credentials with AWS HealthLake
	Cross-service principal permissions for AWS HealthLake
	Service roles for AWS HealthLake
	Service-linked roles for AWS HealthLake

	Identity-based policy examples for AWS HealthLake
	Policy best practices
	Using the AWS HealthLake console
	Accessing an AWS HealthLake data store in Amazon Athena
	Allowing users to view their own permissions

	AWS managed policies for AWS HealthLake
	AWS managed policy: AmazonHealthLakeFullAccess
	AWS managed policy: AmazonHealthLakeReadOnlyAccess
	HealthLake operations and permissions
	HealthLake updates to AWS managed policies

	Troubleshooting AWS HealthLake identity and access
	I am not authorized to perform an action in AWS HealthLake
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS HealthLake resources

	Logging AWS HealthLake API Calls with AWS CloudTrail
	AWS HealthLake Information in CloudTrail
	Understanding AWS HealthLake Log File Entries

	Compliance Validation for AWS HealthLake
	Resilience in AWS HealthLake
	Infrastructure Security in AWS HealthLake
	Security best practices in AWS HealthLake

	AWS HealthLake endpoints and quotas
	Service endpoints
	Service quotas for HealthLake

	Troubleshooting
	Why can't I create a HealthLake data store?
	Exceeded number of data stores allowed per account
	How do I create authorization for the FHIR RESTful APIs?
	My data isn't in FHIR R4 format- can I still use HealthLake?
	Why am I receiving AccessDenied errors when using the FHIR RESTful APIs for a data store encrypted with a customer managed KMS key?
	Why did my import fail?
	How do I find DocumentReference resources that could not be processed?
	Migrating an existing data store to use Amazon Athena
	Connecting search results in Athena to other AWS services
	The Athena console is not working after importing data into a new data store
	Why do I get a Lake Formation permissions error: lakeformation:PutDataLakeSettings when adding a new data lake administrator?
	How do I turn on HealthLake's integrated natural language processing feature?
	My data store status is not changing from Creating
	My SDK data store creation status returns an exception or unknown status
	My FHIR POST API operation with a 10MB document to HealthLake gets a 413Request Entity Too Large error.

	Document History for the AWS HealthLake Developer Guide
	AWS Glossary

